Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/38235
Document type: Trabalho de Conclusão de Curso
Access type: Acesso Aberto
Title: Álgebras alternativas semissimples
Alternate title (s): Alternative semisimple algebras
Author: Coelho, Julia Bernardes
First Advisor: Barros, Dylene Agda Souza de
First member of the Committee: Rodrigues, Rodrigo Lucas
Second member of the Committee: Silva, Adriana Rodrigues da
Summary: Neste trabalho de conclusão de curso abordaremos o conceito e propriedades básicas de álgebras alternativas. Falaremos do processo de duplicação de Cayley-Dickson para tratar de um dos mais importantes exemplos de álgebras alternativas. Por fim, estudaremos as álgebras alternativas semissimples de dimensão finita e mostraremos que uma álgebra alternativa semissimples de dimensão finita é soma direta de ideais simples.
Abstract: In this work, we will address the concept and basic properties of alternative algebras. We will talk about the Cayley-Dickson duplication process to deal with one of the most important examples of alternative algebras. Finally, we will study the finite-dimensional semisimple alternative algebras and show that any finite-dimensional semisimple alternative algebra is a direct sum of simple ideals.
Keywords: Álgebras alternativas
Álgebras alternativas semissimples.
Números de cayley
Alternative Algebras
Cayley numbers
Semisimple alternative algebras
Area (s) of CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA
Language: por
Country: Brasil
Publisher: Universidade Federal de Uberlândia
Quote: COELHO, Julia Bernardes. Álgebras alternativas semissimples. 2023. 46 f. Trabalho de Conclusão de Curso (Graduação em Matemática) - Universidade Federal de Uberlândia, Uberlândia, 2023.
URI: https://repositorio.ufu.br/handle/123456789/38235
Date of defense: 6-Feb-2023
Appears in Collections:TCC - Matemática

Files in This Item:
File Description SizeFormat 
ÁlgebrasAlternativasSemissimples.pdfTCC1.47 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons