Use este identificador para citar ou linkar para este item: https://repositorio.ufu.br/handle/123456789/43251
ORCID:  http://orcid.org/0000-0003-1873-3643
Tipo do documento: Tese
Tipo de acesso: Acesso Aberto
Título: An approach to the personalized learning objects recommendation problem as a set covering problem using ontologies and metaheuristics
Título(s) alternativo(s): Uma abordagem para o problema de recomendação personalizada de objetos de aprendizagem como um problema de cobertura de conjuntos usando ontologias e metaheurísticas
Autor(es): Belizário Júnior, Clarivando Francisco
Primeiro orientador: Dorça, Fabiano Azevedo
Primeiro coorientador: Assis, Luciana Pereira de
Segundo coorientador: Andrade, Alessandro Vivas
Primeiro membro da banca: Fernandes, Márcia Aparecida
Segundo membro da banca: Cattelan, Renan Gonçalves
Terceiro membro da banca: Oliveira, José Palazzo Moreira de
Quarto membro da banca: Costa, Evandro de Barros
Resumo: Recommender Systems are extensively utilized in e-commerce platforms, such as sales websites and Netflix, to intelligently suggest products, movies, and series tailored to the user’s preferences. In the context of education, the key challenge for these systems is to provide personalized recommendations of educational content that align with students’ needs, considering their knowledge levels, learning styles, and cognitive preferences. This work implements a recommender system designed to suggest learning objects across various areas of knowledge, integrating small learning objects, called interventions, such as definitions, examples, and hints. To personalize these recommendations, the Learning Objects Recommendation Problem is formulated as a set-covering problem, which belongs to the class of NP-Hard problems. A heuristic search-based algorithm was proposed and compared with other metaheuristics, resulting in a promising approach to solving this problem, as demonstrated by the results. The proposed solution aims to minimize the challenges of cold-start and rating sparsity, common in traditional recommender systems, by using advanced collaborative filtering techniques and an ontology that models the students’ needs, knowledge, learning styles, and search parameters. Additionally, the recommender system was implemented with a chatbot and tested for recommending content on the C programming language for first-year students of the Computer Science course, using gamification to alleviate possible pedagogical difficulties in the teaching-learning process.
Abstract: Recommender Systems are extensively utilized in e-commerce platforms, such as sales websites and Netflix, to intelligently suggest products, movies, and series tailored to the user’s preferences. In the context of education, the key challenge for these systems is to provide personalized recommendations of educational content that align with students’ needs, considering their knowledge levels, learning styles, and cognitive preferences. This work implements a recommender system designed to suggest learning objects across various areas of knowledge, integrating small learning objects, called interventions, such as definitions, examples, and hints. To personalize these recommendations, the Learning Objects Recommendation Problem is formulated as a set-covering problem, which belongs to the class of NP-Hard problems. A heuristic search-based algorithm was proposed and compared with other metaheuristics, resulting in a promising approach to solving this problem, as demonstrated by the results. The proposed solution aims to minimize the challenges of cold-start and rating sparsity, common in traditional recommender systems, by using advanced collaborative filtering techniques and an ontology that models the students’ needs, knowledge, learning styles, and search parameters. Additionally, the recommender system was implemented with a chatbot and tested for recommending content on the C programming language for first-year students of the Computer Science course, using gamification to alleviate possible pedagogical difficulties in the teaching-learning process.
Palavras-chave: Learning objects recommendation
Collaborative filtering
Learning styles
Ontology
Set covering
Recommender system
Chatbot
Gamification
Área(s) do CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Assunto: Ciência da Computação
Inteligência artificial
Inteligência artificial - Aplicações educacionais
Ontologias (Recuperação da informação)
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Ciência da Computação
Referência: BELIZÁRIO JÚNIOR, Clarivando Francisco. An approach to the personalized learning objects recommendation problem as a set covering problem using ontologies and metaheuristics. 2024. 140 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.te.2024.554.
Identificador do documento: http://doi.org/10.14393/ufu.te.2024.554
URI: https://repositorio.ufu.br/handle/123456789/43251
Data de defesa: 29-Jul-2024
Objetivos de Desenvolvimento Sustentável (ODS): ODS::ODS 4. Educação de qualidade - Assegurar a educação inclusiva, e equitativa e de qualidade, e promover oportunidades de aprendizagem ao longo da vida para todos.
Aparece nas coleções:TESE - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ApproachPersonalizedLearning.pdfTese24.75 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.