Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufu.br/handle/123456789/43251
ORCID:  http://orcid.org/0000-0003-1873-3643
Tipo de documento: Tese
Tipo de acceso: Acesso Aberto
Título: An approach to the personalized learning objects recommendation problem as a set covering problem using ontologies and metaheuristics
Título (s) alternativo (s): Uma abordagem para o problema de recomendação personalizada de objetos de aprendizagem como um problema de cobertura de conjuntos usando ontologias e metaheurísticas
Autor: Belizário Júnior, Clarivando Francisco
Primer orientador: Dorça, Fabiano Azevedo
Primer coorientador: Assis, Luciana Pereira de
Segundo coorientador: Andrade, Alessandro Vivas
Primer miembro de la banca: Fernandes, Márcia Aparecida
Segundo miembro de la banca: Cattelan, Renan Gonçalves
Tercer miembro de la banca: Oliveira, José Palazzo Moreira de
Cuarto miembro de la banca: Costa, Evandro de Barros
Resumen: Recommender Systems are extensively utilized in e-commerce platforms, such as sales websites and Netflix, to intelligently suggest products, movies, and series tailored to the user’s preferences. In the context of education, the key challenge for these systems is to provide personalized recommendations of educational content that align with students’ needs, considering their knowledge levels, learning styles, and cognitive preferences. This work implements a recommender system designed to suggest learning objects across various areas of knowledge, integrating small learning objects, called interventions, such as definitions, examples, and hints. To personalize these recommendations, the Learning Objects Recommendation Problem is formulated as a set-covering problem, which belongs to the class of NP-Hard problems. A heuristic search-based algorithm was proposed and compared with other metaheuristics, resulting in a promising approach to solving this problem, as demonstrated by the results. The proposed solution aims to minimize the challenges of cold-start and rating sparsity, common in traditional recommender systems, by using advanced collaborative filtering techniques and an ontology that models the students’ needs, knowledge, learning styles, and search parameters. Additionally, the recommender system was implemented with a chatbot and tested for recommending content on the C programming language for first-year students of the Computer Science course, using gamification to alleviate possible pedagogical difficulties in the teaching-learning process.
Abstract: Recommender Systems are extensively utilized in e-commerce platforms, such as sales websites and Netflix, to intelligently suggest products, movies, and series tailored to the user’s preferences. In the context of education, the key challenge for these systems is to provide personalized recommendations of educational content that align with students’ needs, considering their knowledge levels, learning styles, and cognitive preferences. This work implements a recommender system designed to suggest learning objects across various areas of knowledge, integrating small learning objects, called interventions, such as definitions, examples, and hints. To personalize these recommendations, the Learning Objects Recommendation Problem is formulated as a set-covering problem, which belongs to the class of NP-Hard problems. A heuristic search-based algorithm was proposed and compared with other metaheuristics, resulting in a promising approach to solving this problem, as demonstrated by the results. The proposed solution aims to minimize the challenges of cold-start and rating sparsity, common in traditional recommender systems, by using advanced collaborative filtering techniques and an ontology that models the students’ needs, knowledge, learning styles, and search parameters. Additionally, the recommender system was implemented with a chatbot and tested for recommending content on the C programming language for first-year students of the Computer Science course, using gamification to alleviate possible pedagogical difficulties in the teaching-learning process.
Palabras clave: Learning objects recommendation
Collaborative filtering
Learning styles
Ontology
Set covering
Recommender system
Chatbot
Gamification
Área (s) del CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Tema: Ciência da Computação
Inteligência artificial
Inteligência artificial - Aplicações educacionais
Ontologias (Recuperação da informação)
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Ciência da Computação
Cita: BELIZÁRIO JÚNIOR, Clarivando Francisco. An approach to the personalized learning objects recommendation problem as a set covering problem using ontologies and metaheuristics. 2024. 140 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.te.2024.554.
Identificador del documento: http://doi.org/10.14393/ufu.te.2024.554
URI: https://repositorio.ufu.br/handle/123456789/43251
Fecha de defensa: 29-jul-2024
Objetivos de Desarrollo Sostenible (ODS): ODS::ODS 4. Educação de qualidade - Assegurar a educação inclusiva, e equitativa e de qualidade, e promover oportunidades de aprendizagem ao longo da vida para todos.
Aparece en las colecciones:TESE - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
ApproachPersonalizedLearning.pdfTese24.75 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.