Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/48088
ORCID:  http://orcid.org/0009-0009-7278-4362
Document type: Dissertação
Access type: Acesso Aberto
Title: Detecção de Maturidade Óssea utilizando algoritmo YOLO e Redes Neurais Convolucionais
Alternate title (s): Bone Maturity Detection using YOLO algorithm and Convolutional Neural Networks
Author: Oliveira, Bianca Bertoldo de
First Advisor: Veiga, Antônio Cláudio Paschoarelli
First coorientator: Carneiro, Milena Bueno Pereira
First member of the Committee: Silva, Ederson Rosa da
Second member of the Committee: Bernadelli, Cláriton Rodrigues
Third member of the Committee: Cardoso, Cristiane de Fátima dos Santos
Fourth member of the Committee: Silva, Rafael Augusto da
Summary: A avaliação da idade óssea é uma ferramenta diagnóstica essencial na prática pediátrica e endocrinológica, utilizada para monitorar a maturação esquelética e auxiliar no diagnóstico de distúrbios de crescimento. Os métodos tradicionais de avaliação, como os atlas de Greulich and Pyle (GP) ou o sistema de pontuação de Tanner-Whitehouse (TW), dependem da análise visual de radiografias da mão e punho. Contudo, esses métodos manuais são reconhecidamente demorados, subjetivos e suscetíveis a uma variabilidade inter e intraobservador considerável, o que pode impactar a consistência do acompanhamento clínico. O aprendizado de máquina surge como uma solução para reduzir essas limitações, oferecendo o potencial de serem objetivos, rápidos e reprodutíveis. Este trabalho propõe uma metodologia híbrida e automatizada para a avaliação. O fluxo desenvolvido consiste em três etapas principais: primeiramente, as imagens passam por uma fase de pré-processamento, onde a equalização de histograma é aplicada para normalizar o brilho e o contraste. Em seguida, um modelo de detecção de objetos (YOLO) é utilizado para localizar e segmentar automaticamente três regiões de interesse ósseas (articulação, metacarpo e carpo). Por fim, uma arquitetura de regressão customizada é empregada, onde três Redes Neurais Convolucionais (CNNs) independentes processam as imagens. As saídas dessas redes são então fundidas, através de uma média ponderada ajustada, e combinadas com a informação demográfica do sexo do paciente, servindo como entrada para um Perceptron de Múltiplas Camadas (MLP) que realiza a predição final. A avaliação final do modelo, conduzida em um conjunto de teste isolado, resultou em um Erro Médio Absoluto (MAE) de 6,13 meses e um Erro Percentual Absoluto Médio (MAPE) de 6,45%. Estes resultados validam a eficácia da arquitetura híbrida proposta, demonstrando que a fusão de características regionais especializadas e dados demográficos produz um modelo com alta capacidade de generalização e precisão competitiva em relação ao estado da arte, sendo clinicamente relevante para o apoio diagnóstico.
Abstract: Bone age assessment is an essential diagnostic tool in pediatric and endocrinological practice, used to monitor skeletal maturation and assist in the diagnosis of growth disorders. Traditional assessment methods, such as the Greulich and Pyle (GP) atlas or the Tanner-Whitehouse (TW) scoring system, rely on the visual analysis of hand and wrist radiographs. However, these manual approaches are known to be time-consuming, subjective, and prone to considerable inter- and intra-observer variability, which may compromise the consistency of clinical follow-up. Machine learning emerges as a solution to reduce these limitations, offering the potential to be objective, fast, and reproducible. This work proposes a hybrid and fully automated methodology for bone age evaluation. The developed pipeline consists of three main stages: first, the images undergo a pre-processing phase, in which histogram equalization is applied to normalize brightness and contrast. Next, an object detection model (YOLO) is used to automatically locate and segment three bone regions of interest (joint, metacarpal, and carpal). Finally, a custom regression architecture is employed, in which three independent Convolutional Neural Networks (CNNs) process the images. The outputs of these networks are then fused through an adjusted weighted average and combined with the patient’s sex information, serving as input to a Multilayer Perceptron (MLP) that performs the final prediction. The final evaluation of the model, conducted on an isolated test set, resulted in a Mean Absolute Error (MAE) of 6.13 months and a Mean Absolute Percentage Error (MAPE) of 6.45%. These results validate the effectiveness of the proposed hybrid architecture, demonstrating that the integration of specialized regional features with demographic data yields a model with high generalization capability and competitive accuracy compared to the state of the art, making it clinically relevant for diagnostic support.
Keywords: aprendizado de máquina
machine learning
detecção de objetos
object detection
idade óssea
bone age
python
processamento digital de imagens
digital image processing
redes neurais convolucionais
convolutional neural networks
YOLO
Area (s) of CNPq: CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Subject: Engenharia elétrica
Language: por
Country: Brasil
Publisher: Universidade Federal de Uberlândia
Program: Programa de Pós-graduação em Engenharia Elétrica
Quote: OLIVEIRA, Bianca Bertoldo de. Detecção de Maturidade Óssea utilizando algoritmo YOLO e Redes Neurais Convolucionais. 2025. 86 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2026. DOI http://doi.org/10.14393/ufu.di.2025.661.
Document identifier: http://doi.org/10.14393/ufu.di.2025.661
URI: https://repositorio.ufu.br/handle/123456789/48088
Date of defense: 12-Dec-2025
Sustainable Development Goals SDGs: ODS::ODS 9. Indústria, Inovação e infraestrutura - Construir infraestrutura resiliente, promover a industrialização inclusiva e sustentável, e fomentar a inovação.
ODS::ODS 9. Indústria, Inovação e infraestrutura - Construir infraestrutura resiliente, promover a industrialização inclusiva e sustentável, e fomentar a inovação.
Appears in Collections:DISSERTAÇÃO - Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
DeteccaoMaturidadeOssea.pdfDissertação36.34 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons