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“The good thing about science is that it is

true whether or not you believe in it.”

Neil deGrasse Tyson



RESUMO

A avaliação da idade óssea é uma ferramenta diagnóstica essencial na prática pediátrica e

endocrinológica, utilizada para monitorar a maturação esquelética e auxiliar no diagnóstico

de distúrbios de crescimento. Os métodos tradicionais de avaliação, como os atlas de

Greulich and Pyle (GP) ou o sistema de pontuação de Tanner-Whitehouse (TW), dependem

da análise visual de radiografias da mão e punho. Contudo, esses métodos manuais

são reconhecidamente demorados, subjetivos e suscetíveis a uma variabilidade inter e

intraobservador considerável, o que pode impactar a consistência do acompanhamento

clínico. O aprendizado de máquina surge como uma solução para reduzir essas limitações,

oferecendo o potencial de serem objetivos, rápidos e reprodutíveis. Este trabalho propõe uma

metodologia híbrida e automatizada para a avaliação. O fluxo desenvolvido consiste em três

etapas principais: primeiramente, as imagens passam por uma fase de pré-processamento,

onde a equalização de histograma é aplicada para normalizar o brilho e o contraste. Em

seguida, um modelo de detecção de objetos (YOLO) é utilizado para localizar e segmentar

automaticamente três regiões de interesse ósseas (articulação, metacarpo e carpo). Por

fim, uma arquitetura de regressão customizada é empregada, onde três Redes Neurais

Convolucionais (CNNs) independentes processam as imagens. As saídas dessas redes são

então fundidas, através de uma média ponderada ajustada, e combinadas com a informação

demográfica do sexo do paciente, servindo como entrada para um Perceptron de Múltiplas

Camadas (MLP) que realiza a predição final. A avaliação final do modelo, conduzida

em um conjunto de teste isolado, resultou em um Erro Médio Absoluto (MAE) de 6,13

meses e um Erro Percentual Absoluto Médio (MAPE) de 6,45%. Estes resultados validam

a eficácia da arquitetura híbrida proposta, demonstrando que a fusão de características

regionais especializadas e dados demográficos produz um modelo com alta capacidade de

generalização e precisão competitiva em relação ao estado da arte, sendo clinicamente

relevante para o apoio diagnóstico.

Palavras-chave: aprendizado de máquina. detecção de objetos. idade óssea. python.

processamento digital de imagens. redes neurais convolucionais. YOLO.



ABSTRACT

Bone age assessment is an essential diagnostic tool in pediatric and endocrinological

practice, used to monitor skeletal maturation and assist in the diagnosis of growth

disorders. Traditional assessment methods, such as the Greulich and Pyle (GP) atlas or

the Tanner-Whitehouse (TW) scoring system, rely on the visual analysis of hand and

wrist radiographs. However, these manual approaches are known to be time-consuming,

subjective, and prone to considerable inter- and intra-observer variability, which may

compromise the consistency of clinical follow-up. Machine learning emerges as a solution to

reduce these limitations, offering the potential to be objective, fast, and reproducible. This

work proposes a hybrid and fully automated methodology for bone age evaluation. The

developed pipeline consists of three main stages: first, the images undergo a pre-processing

phase, in which histogram equalization is applied to normalize brightness and contrast.

Next, an object detection model (YOLO) is used to automatically locate and segment

three bone regions of interest (joint, metacarpal, and carpal). Finally, a custom regression

architecture is employed, in which three independent Convolutional Neural Networks

(CNNs) process the images. The outputs of these networks are then fused through an

adjusted weighted average and combined with the patient’s sex information, serving as

input to a Multilayer Perceptron (MLP) that performs the final prediction. The final

evaluation of the model, conducted on an isolated test set, resulted in a Mean Absolute

Error (MAE) of 6.13 months and a Mean Absolute Percentage Error (MAPE) of 6.45%.

These results validate the effectiveness of the proposed hybrid architecture, demonstrating

that the integration of specialized regional features with demographic data yields a model

with high generalization capability and competitive accuracy compared to the state of the

art, making it clinically relevant for diagnostic support.

Keywords: bone age. convolutional neural networks. digital image processing. machine

learning. object detection. python. YOLO.
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1 INTRODUÇÃO

1.1 Considerações Iniciais

A avaliação da idade óssea é uma prática clínica fundamental e rotineira na pediatria,

utilizada para monitorar a maturação esquelética de crianças e adolescentes (Satoh, 2015).

A discrepância entre a idade óssea de um paciente e sua idade cronológica é um indicador

diagnóstico vital para a investigação de uma variedade de condições, incluindo distúrbios

de crescimento, desordens endócrinas (como puberdade precoce ou atrasada) e síndromes

pediátricas. Na prática clínica, uma idade óssea 20% abaixo ou acima da idade cronológica

é considerada anormal (Melmed et al., 2015). A utilidade deste método cessa quando o

indivíduo atinge a maturidade esquelética, que é o ponto em que o crescimento ósseo

longitudinal termina, geralmente em torno dos 18 ou 19 anos (Malina et al., 2004).

Historicamente, a avaliação da idade óssea é realizada por radiologistas através

da inspeção visual de radiografias da mão e punho esquerdos. Dois métodos clássicos,

desenvolvidos em meados do século XX, dominam esta prática: o método de Greulich

& Pyle (GP) e o método de Tanner & Whitehouse (TW). O método GP (Greulich;

Pyle, 1959), se baseia em uma comparação holística da radiografia do paciente com um

atlas de imagens de referência padronizadas, selecionando a imagem do atlas que mais se

assemelha à do paciente. Por outro lado, o método TW (Tanner et al., 1975), em suas

várias iterações (como o TW2 e TW3), adota uma abordagem mais granular e analítica.

Neste método, regiões de interesse específicas, como os ossos carpais e as epífises das

falanges, são pontuadas individualmente com base em seus estágios de maturação, e a

soma desses escores é convertida em uma idade óssea.

O método GP é o padrão dominante e quase exclusivo na prática clínica diária de

endocrinologistas e radiologistas. Sua utilização não é apenas uma escolha preferencial

baseada na rapidez, mas uma imposição estrutural dos protocolos de saúde pública. O

método TW, apesar de sua comprovada superioridade científica e estatística, permanece

confinado a nichos acadêmicos, ensaios clínicos farmacêuticos e casos de extrema complexi-

dade dismórfica, devido à sua inviabilidade temporal no fluxo de trabalho moderno (Kim;

Yang, 1998).

1.2 Objetivo

Apesar de sua utilidade clínica estabelecida, os métodos manuais são inerentemente

dependentes da experiência do radiologista, consomem um tempo clínico valioso e estão

sujeitos a uma variabilidade interobservador e intraobservador significativa, o que pode

afetar a consistência do diagnóstico (Thodberg et al., 2008). Neste contexto, a evolução do
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aprendizado de máquina, e especificamente das redes neurais profundas (deep learning),

oferece um potencial transformador para a radiologia diagnóstica. Sistemas de deep learning

têm demonstrado uma capacidade notável na análise de imagens médicas, fornecendo

ferramentas objetivas, rápidas e reprodutíveis que podem auxiliar no diagnóstico (Litjens et

al., 2017). A automatização dessa tarefa visa, portanto, mitigar as limitações dos métodos

manuais, oferecendo uma avaliação consistente, precisa e instantânea.

O presente trabalho propõe uma metodologia híbrida para a avaliação automatizada

da idade óssea baseada em aprendizado profundo. A abordagem consiste em um fluxo de

três etapas. Primeiramente, as imagens de radiografias da mão passam por um estágio de

pré-processamento, no qual são aplicadas técnicas de realce de contraste com o objetivo

de reduzir variações de aquisição, melhorar a qualidade visual e enfatizar estruturas ósseas

relevantes. Em seguida, um modelo de detecção de objetos You Only Look Once (Você Só

Olha Uma Vez) (YOLO) é empregado para localizar e segmentar automaticamente múlti-

plas regiões de interesse da mão. Por fim, essas regiões são processadas por Convolutional

Neural Networks (Redes Neurais Convolucionais) (CNNs) especializadas em cada região,

cujas saídas, combinadas com a informação de sexo do paciente, são integradas por um

Multilayer Perceptron (Perceptron de Múltiplas Camadas) (MLP) para a regressão final

da idade óssea. O objetivo final é desenvolver e validar um sistema de diagnóstico robusto

e preciso, capaz de generalizar para novos dados e servir como uma ferramenta de apoio

confiável para endocrinologistas pediátricos e radiologistas.

1.3 Hipóteses

Este trabalho parte de hipóteses metodológicas específicas. A hipótese central é

que um modelo de deep learning que analisa regiões de interesse anatômicas de forma

especializada e, em seguida, funde essa informação é capaz de alcançar um desempenho

superior ao de modelos que analisam a imagem da mão de forma holística. Assume-se que

um detector de objetos moderno (YOLO) pode ser treinado com um conjunto de dados

limitado para extrair essas regiões com alta precisão, viabilizando a arquitetura regional.

Adicionalmente, levanta-se a hipótese de que a inclusão de múltiplos conjuntos de

dados no treinamento e a integração de informações demográficas são fatores cruciais para

melhorar a robustez e a generalização do modelo final. Espera-se que o modelo proposto

alcance um resultado competitivo com o estado da arte, validando a eficácia da arquitetura

híbrida.

1.4 Estrutura do trabalho

O presente trabalho foi dividido nos seguintes capítulos:

• Capítulo 1 - Introdução - Introdução geral do trabalho, contendo considerações sobre
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os métodos manuais existentes, a motivação e objetivos definidos e a estrutura do

trabalho.

• Capítulo 2 - Literatura Relacionada - Aborda a literatura relacionada, revisando os

métodos clássicos de radiologia, e os algoritmos aplicados ao problema da avaliação

da idade óssea, métodos utilizados e resultados obtidos.

• Capítulo 3 - Fundamentação Teórica - Detalha a fundamentação teórica, cobrindo

os conceitos de Processamento Digital de Imagens, Redes Neurais Artificiais, hiper-

parâmetros e as métricas de performance utilizadas.

• Capítulo 4 - Metodologia do Trabalho - Descreve a metodologia empregada, incluindo

a definição do banco de dados, as ferramentas de software, o pré-processamento, a

estratégia de extração de regiões de interesse e o modelo final de detecção da idade

óssea.

• Capítulo 5 - Resultados - Apresenta os resultados obtidos, detalhando o desempenho

dos modelos de segmentação de regiões e de detecção da idade óssea, e conduz

discussões comparativas com o estado da arte.

• Capítulo 6 - Conclusão - Finaliza o trabalho com as conclusões, sintetizando os

resultados, destacando as contribuições da pesquisa e propondo trabalhos futuros.
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2 LITERATURA RELACIONADA

2.1 Introdução

O desenvolvimento de técnicas eficazes para avaliar a maturidade óssea é essencial

para tomada de decisão clínica e precisão do diagnóstico, contribuindo no tratamento

adequado de diversas condições de saúde. Novos métodos para automatizar a avaliação

da maturidade óssea foram apresentados nos últimos anos devido ao avanço das técnicas

de aprendizado de máquina e visão computacional, reduzindo a necessidade de extensas

avaliações manuais e diminuindo a possibilidade de erro humano.

Diversas metodologias tradicionais de processamento de imagens têm sido usadas

para resolver o problema com diferentes graus de sucesso. Normalmente, tais abordagens

envolvem procedimentos de pré processamento que envolvem a segmentação de regiões de

interesse e o treinamento de algoritmos de redes neurais, fazendo uma análise de regressão

na saída para obter a idade como resultado final. As principais contribuições na área

são revisadas, abordando tanto as técnicas tradicionais de avaliação da maturidade óssea

quanto os avanços feitos pelos algoritmos de aprendizado de máquina.

Neste capítulo, primeiramente são abordadas as técnicas radiológicas tradicionais

que têm sido empregadas há anos para avaliar a maturidade óssea, juntamente com algumas

de suas desvantagens. Em seguida, as estratégias baseadas em aprendizado de máquina são

discutidas, enfatizando os algoritmos mais populares, seus usos em diferentes contextos e

os resultados alcançados.

2.2 Métodos Clássicos de Avaliação

Os métodos radiológicos clássicos se baseiam principalmente na análise manual de

radiografias, com destaque para a análise de regiões específicas, como o punho e a mão

(Cavallo et al., 2021). Os dois métodos mais amplamente adotados foram desenvolvidos

ao longo do século XX e incluem diretrizes elaboradas por William Walter Greulich e

Sarah Idell Pyle (Greulich; Pyle, 1959), e James Tanner e R.H. Whitehouse (Tanner et al.,

1975). Cada um deles apresenta diferentes abordagens para avaliação da maturação óssea,

variando no detalhamento e na precisão das suas escalas. Em um momento de transição

para métodos digitais e automáticos, compreender as bases e limitações desses métodos

é essencial para valorizar a evolução da radiologia e os avanços tecnológicos que buscam

aprimorar a precisão diagnóstica.
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2.2.1 Greulich and Pyle

A publicação de 1959 do Atlas Radiográfico de Desenvolvimento Esquelético da

Mão e do Pulso de Greulich e Pyle (GP) continua sendo uma das técnicas mais ampla-

mente utilizadas pelos radiologistas para determinar a idade óssea (Sanctis et al., 2014).

Aproximadamente 14.000 radiografias da mão esquerda foram obtidas e cuidadosamente

analisadas durante o estudo, que envolveu cerca de 1.000 crianças norte americanas exa-

minadas em intervalos de 3 a 12 meses entre 1931 e 1942. A aparência das superfícies

articulares, as correlações de tamanho e a geometria dos ossos nos centros de ossificação

são a base para esta abordagem de determinação da idade óssea, com referências separadas

para os sexos feminino e masculino. Comparando esses critérios selecionados com centenas

de crianças saudáveis de idades similares, eles foram então capazes de estimar os desvios

padrão previstos.

Ao comparar as radiografias da mão do paciente com a referência mais próxima

listada no atlas, a idade óssea é determinada, expressa em meses. Na versão original

da abordagem de Greulich e Pyle, cada osso da mão e do punho é intrinsecamente

comparado com radiografias “normais” de referência tiradas em várias idades. A maioria

das instituições emprega uma versão “rápida” modificada deste procedimento (Bull et al.,

1999), na qual é escolhida a correspondência mais próxima entre a aparência geral de uma

determinada radiografia e as radiografias de referência. Este método atualizado pode ser

menos preciso que o original, mas é significativamente mais rápido.

Como o método GP se baseia no estudo de uma população específica de pacientes

de origem socioeconômica branca de classe média a alta, uma possível desvantagem é

sua aplicabilidade a populações diversas modernas. De acordo com pesquisas anteriores

realizadas na Ásia, Europa e África, o desenvolvimento esquelético destes jovens não

atende às diretrizes de Greulich e Pyle (Zafar et al., 2010), (Büken et al., 2007), (Jiménez-

Castellanos et al., 1996), (Kowo-Nyakoko et al., 2023), demonstrando que esse método

não seria representativo para todo o espectro étnico de crianças na sociedade.

2.2.2 Tanner and Whitehouse

Desenvolvida numa amostra de cerca de 2.600 crianças britânicas de classes socio-

econômicas média e baixa, acompanhadas por intervalos variando de aproximadamente

6 meses a 1 ano, a técnica de Tanner e Whitehouse (TW) foi descrita amplamente pela

primeira vez em 1975. Foi posteriormente refinada para TW2 em 1983, utilizando dados

adicionais recolhidos na Europa Ocidental e na Ásia. A terceira edição TW3, que incluiu

dados da América do Norte e da Europa e pontuações de maturidade modificadas, foi

publicada em 2001.

A abordagem considera um exame minucioso das características estruturais das

regiões ósseas de interesse. Cada osso recebe uma pontuação determinada pelo sexo e nível
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de desenvolvimento do paciente. Desta forma, cada região clinicamente relevante recebe

uma pontuação de maturidade, que normalmente é classificada de A até I. Existem até

três critérios distintos para cada estágio: a pontuação RUS (que inclui a falange, a ulna e

os ossos metacarpais), a pontuação CARPAL (que inclui apenas os ossos do carpo), e as

pontuações para 20 ossos específicos do punho e da mão. Cada estágio recebe então um

valor numérico. Após somar esses números, obtém-se um escore esquelético, a partir do

qual a idade esquelética pode ser obtida diretamente nas tabelas.

O principal benefício deste procedimento é que ele minimiza a variabilidade in-

teroperador ao avaliar cada fragmento ósseo. Embora o método radiográfico TW tenha

sido utilizado e aceito por vários grupos étnicos (Zhang et al., 2008), (Shah et al., 2021),

(Pinchi et al., 2014), e seja ideal para uso devido à sua capacidade de avaliar centros de

ossificação separadamente, radiologistas e endocrinologistas consideram-no menos aceitável

devido à sua complexidade na determinação da idade óssea (Buckler, 1983). É necessária

muita experiência e mesmo observadores qualificados podem obter resultados diferentes.

O posicionamento inadequado das mãos pode alterar significativamente a aparência dos

ossos, causando aumentos significativos na pontuação esquelética, assim, mesmo a precisão

deste método é limitada. No entanto, é mais objetivo, preciso e reprodutível que o método

GP, especialmente para pesquisa (Khan; Elayappen, 2012).

2.3 Algoritmos de Machine Learning

O cálculo computadorizado da idade óssea a partir de radiografias de punho existe

há aproximadamente três décadas (Mughal et al., 2014). Geralmente, esses métodos

englobam etapas de pré-processamento e segmentação das imagens em regiões de interesse,

além do treinamento de algoritmos de Redes Neurais Artificiais (RNAs) de regressão. Para

a avaliação dos resultados de predição, a métrica mais comumente utilizada e apresentada

em todos os trabalhos analisados foi o Mean Absolute Error (Erro Absoluto Médio) (MAE),

que indica a média de desvio das previsões. Quanto menor o valor do MAE, mais preciso é

o modelo. Os detalhes matemáticos desse indicador serão discutidos mais profundamente

no capítulo 3.

O trabalho de (Chu et al., 2018) foi dividido em duas partes, a primeira para

segmentar as imagens, e a segunda para a avaliação da idade óssea. A segmentação foi

performada utilizando uma rede neural para geração de máscaras no formato preciso da

mão do paciente, baseada em U-Net e VGG16. As imagens resultantes dessa aplicação

foram utilizadas para o treinamento do modelo proposto, também baseado no VGG16. O

resultado alcançado foi um MAE de 5,98 meses.

(Iglovikov et al., 2018) realizou testes com segmentação da mão inteira e também

com extração de regiões de centros de ossificação. O melhor resultado obtido de MAE de

6,10 meses foi encontrado realizando a técnica de Ensemble Learning, que consiste em
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combinar diversos modelos de predição mais simples e produzir a partir desses um modelo

agrupado mais complexo, e para esse método, foram agrupados 15 modelos treinados

utilizando arquitetura VGG-Net.

Em (Wibisono et al., 2019), nenhum método de pré-processamento e segmentação

foi empregado. O trabalho compõe um estudo de comparação entre duas redes, VGG16 e

MobileNet, com resultados de 14,78 meses e 17,09 meses respectivamente.

Em (Pan et al., 2020) o método proposto alcançou MAE de 8,59 meses, onde foi

aplicada uma pré etapa de segmentação precisa da mão inteira, performada com modelo

U-Net e Deep Active Learning (AL), além de normalização no brilho das imagens. Foram

realizados testes com diversos modelos pré-treinados diferentes, e o que obteve o melhor

resultado apresentado foi uma combinação de dois modelos Inception-ResNet-V2.

Na pesquisa de (Mehta et al., 2021) o pré-processamento é realizado manipulando

uma função que permite desenhar uma região retangular para corte, obtendo manualmente

das radiografias originais apenas a região ao entorno da mão, e melhorando a luminância

das imagens com correção gama. O método proposto utilizou InceptionV3 atingindo um

resultado MAE de 5,92 meses.

O método de (Zulkifley et al., 2021) consiste em uma primeira parte de segmentação

da região da mão do fundo com DeepLab V3+, sendo depois girada para uma posição

vertical com MobileNet V1. A segunda parte é a predição da idade óssea, realizada com

arquitetura Xception remodelada, que atingiu um valor de erro de 7,69 meses.

(Guo et al., 2022) conduziu um estudo mais extenso avaliando modelos com

diferentes regiões ósseas segmentadas da mão e punho, separadas e em conjunto. Para

a etapa de segmentação, a arquitetura do modelo Inception-ResNet-V2 foi utilizada. O

resultado final obtido na etapa de avaliação da idade foi de 6,07 meses, utilizando o modelo

híbrido combinando todas as regiões extraídas.

(Andleeb et al., 2025) desenvolveu um algoritmo baseado em DenseNet201, sem

performar nenhuma segmentação nas imagens em regiões de interesse, acoplando a saída da

rede pré-treinada em uma rede neural customizada para a etapa de regressão e estimativa

da previsão. O MAE final foi de 4,87 meses.

Em (Sirati-Amsheh et al., 2025) nenhuma técnica de segmentação é aplicada,

utilizando apenas redimensionamento necessário das amostras. A metodologia proposta foi

de utilizar uma rede Autoencoder, para extrair features das imagens, utilizando as saídas

como entrada da rede neural convolucional padrão, onde obtiveram o resultado final de

9,30 meses.

Todos os estudos apresentados foram resumidos avaliando a aplicação de segmen-

tação em regiões de interesse, se foram geradas novas imagens (Data Augmentation) a

partir de cópias alteradas, e se houve a reutilização de um modelo pré-treinado (Transfer
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Learning). Com relação ao número de amostras, todos os métodos propostos utilizaram

a base de dados da Radiological Society of North America (Sociedade de Radiologia da

América do Norte) (RSNA), que possui 12611 imagens de treino e validação. Em 3 dos 9

trabalhos citados foi empregado Data Augmentation, e todos utilizaram Transfer Learning.

A Tabela 1 ilustra esses resultados:

Tabela 1 – Comparação de resultados para avaliação por RNAs de regressão

Trabalho Segmentação
Data

Augmentation

Transfer

Learning
MAE (meses)

(Chu et al., 2018) Mão inteira Sim U-Net e VGG16 5,98

(Iglovikov et al., 2018)
Mão inteira e

centros de ossificação
Sim VGG-Net 6,10

(Wibisono et al., 2019) - Não VGG16 e MobileNet 14,78

(Pan et al., 2020) Mão inteira Não
U-Net e

Inception-ResNet-V2
8,59

(Mehta et al., 2021) Mão inteira Sim InceptionV3 5,92

(Zulkifley et al., 2021) Mão inteira Não
DeepLab V3+ e

Xception
7,69

(Guo et al., 2022)
6 centros

de ossificação
Não Inception-ResNet-V2 6,07

(Andleeb et al., 2025) - Não DenseNet201 4,87

(Sirati-Amsheh et al., 2025) - Não Autoencoder 9,30

2.4 Considerações Finais

Neste capítulo foram abordadas as principais técnicas utilizadas na avaliação da

idade óssea. Na seção 2.2 foram discutidas as principais técnicas fundamentadas em bases

teóricas que são empregadas como prática clínica padrão. Por outro lado, a seção 2.3

apresentou as principais técnicas e algoritmos de machine learning desenvolvidos nos

últimos anos para a previsão computacional e automatizada desse indicador clínico.

Os métodos de segmentação e arquitetura das redes abrangeram uma ampla gama

de abordagens, indicando que para o desafio proposto, outras características como robustez

do algoritmo e performance em bases de teste podem ser mais importantes para obter

melhores resultados.

No capítulo seguinte serão apresentados os fundamentos teóricos de cada método

de processamento e dos algoritmos empregados na pesquisa, contemplando suas formu-

lações matemáticas e estatísticas, bem como a descrição do software e da linguagem de

programação utilizada.
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3 FUNDAMENTAÇÃO TEÓRICA

3.1 Processamento Digital de Imagens

A luz é um tipo particular de radiação eletromagnética que pode ser percebida pelo

olho humano e apresenta um comportamento ondulatório caracterizado por sua frequência

(f), velocidade (c) (2.998 × 108 m/s) e comprimento de onda (λ). O comprimento de onda

é dado em metros, e se relaciona com a frequência por meio da equação (1):

λ =
c

f
(3.1)

A frequência é expressa em Hertz (Hz), sendo que 1 Hz corresponde a um ciclo

completo de uma onda senoidal por segundo. As ondas eletromagnéticas podem ser

representadas como ondas senoidais que se propagam no espaço, caracterizadas por seu

comprimento de onda. A organização dessas ondas, em função de suas frequências e

comprimentos de onda, constitui o espectro eletromagnético, ilustrado na Figura 1.

Figura 1 – Representação do espectro eletromagnético

Fonte: Gonzales e Wintz (1987). Adaptado pela autora.

Dentro desse espectro, a faixa visível ao olho humano corresponde aproximadamente

ao intervalo entre 0,43 µm (violeta) e 0,79 µm (vermelho). Nos menores comprimentos

de onda, situam-se os raios gama e os raios X. A radiação gama desempenha um papel

fundamental em áreas como a medicina, na produção de imagens para diagnóstico, na

astronomia, para a observação de fenômenos cósmicos, e em aplicações de monitoramento

em ambientes nucleares. Já os raios X, além de sua conhecida utilização em exames

médicos, são largamente empregados na odontologia e em inspeções de materiais. A região
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do infravermelho já se situa em bandas de comprimentos de onda maiores, cuja principal

característica é a emissão de calor, com aplicações voltadas à geração de imagens térmicas,

permitindo a detecção de objetos ou seres vivos a partir de suas assinaturas de calor.

Um dispositivo físico com a função de captar a energia emitida em determinada

faixa do espectro é capaz de gerar imagens referentes a eventos ou objetos de interesse

nessa mesma banda. Após a captura, um digitalizador é responsável por converter os sinais

analógicos obtidos pelo sensor em dados digitais, estruturados de modo que possam ser

armazenados, processados e posteriormente analisados.

A digitalização de imagens consiste na conversão de um campo de imagem contínua,

tal como percebido no mundo real, em uma representação digital capaz de ser manipulada

por sistemas computacionais. Esse processo envolve a discretização da imagem em pequenas

unidades fundamentais, de tamanho finito, conhecidas como pixels. Cada pixel corresponde

a um ponto da imagem e está associado a um valor de intensidade entre 0 e 255 para

representar uma cor, e em conjunto, formam um arranjo bidimensional que preserva a

estrutura visual do objeto original (Gonzales; Wintz, 1987).

A área de processamento de imagens trabalha com a manipulação desses pixels,

com o objetivo de aprimorar a qualidade das informações visuais e extrair informações.

Nessa seção serão discutidas as técnicas de pré-processamento utilizadas nesse trabalho,

com desenvolvimento da teoria, suas aplicações, propósitos e objetivos.

3.1.1 Canais de cores

Imagens monocromáticas, comumente denominadas imagens em escala de cinza, são

formadas a partir da variação de intensidades de um único canal, sem qualquer informação

de cor. Cada pixel é associado a um valor numérico que representa sua intensidade luminosa,

ou seja, o nível de brilho correspondente àquele ponto da imagem.

Esse processo decorre da quantização, em que o intervalo contínuo de intensidades

é discretizado em níveis finitos. Se n for o número de bits de código atribuídos a cada

amostra, então o número de níveis de quantização possui amplitude M = 2n. O número

de níveis M é escolhido de forma que a qualidade da imagem resultante seja aceitável

para os observadores humanos (Acharya; Ray, 2005). Imagens digitais de 8 bits são mais

amplamente utilizadas nos processos de visão computacional, e a intensidade pode assumir

valores inteiros entre 0 e 255, onde 0 representa o preto absoluto, 255 o branco, e os valores

intermediários correspondem aos diferentes tons de cinza que compõem a imagem.

De maneira geral, imagens em escala de cinza apresentam grande utilidade no

processamento de imagens, além de serem aplicáveis em diversos outros contextos que

demandam menor capacidade computacional em comparação às imagens coloridas. Apesar

de a informação cromática ser relevante em muitas situações, quando a cor não é um
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Os mesmos conceitos definidos para imagens monocromáticas também se aplicam

a cada plano de uma imagem colorida. Dessa forma, técnicas de processamento em escala

de cinza podem ser utilizadas em cada canal individualmente, permitindo manipulações

específicas ou o tratamento independente de R, G e B, antes de serem recombinados para

formar a imagem composta.

3.1.2 Equalização de Imagem

Durante o pré-processamento de imagens, é comum a necessidade de corrigir certos

elementos que podem comprometer a análise posterior de suas características. Um dos

principais fatores é a iluminação, que pode gerar sombras intensas, obscurecendo detalhes

de textura e estrutura, ou ainda apresentar variações irregulares que distorcem os resultados

obtidos. Uma das técnicas de correção ou aprimoramento de imagens é a equalização de

histograma (Pratt, 2007).

O histograma de uma imagem corresponde à representação gráfica da distribuição de

intensidades de seus pixels e pode ser entendido como uma estrutura de dados que registra

a frequência de ocorrência de cada nível de intensidade presente na imagem, fornecendo

uma visão quantitativa sobre sua luminosidade e contraste. O histograma de uma imagem

digital com intervalo [0, L − 1] é uma função discreta h(rk) = nk, onde L é o número de

níveis de intensidade, rk é o k-ésimo valor de intensidade e nk é o número de pixels da

imagem com intensidade rk. A técnica de equalização ajusta a distribuição dos níveis de

intensidade da imagem, com o objetivo de criar um histograma com contagens de bin

aproximadamente iguais, aproximando-se de uma distribuição em linha reta, melhorando

o contraste e resultando, em diversas aplicações, em um aumento significativo no nível de

detalhes perceptíveis. A sua função de transformação T (r) é dada pela equação (2):

sk = T (rk) =
k

∑

j=0

pr(rj) =
k

∑

j=0

nj

N
, 0 ≤ rk ≤ 1 e k = 0, 1, ..., L − 1 (3.2)

onde:

T (rk) - Transformação que mapeia um valor de pixel r em um valor de pixel s.

pr(rj) - Função densidade de probabilidade do nível rj da imagem de entrada.

nj - Número de pixels na imagem de entrada que têm nível rj de tom de

cinza.

N - Número total de pixels na imagem de entrada.

Essa função é um caso específico da classe mais geral de métodos de remapeamento

de histogramas, aplicada de maneira global à imagem. Entretanto, essa abordagem apre-

senta uma limitação importante: ela atua de maneira indiscriminada, podendo realçar o
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intensidade são redistribuídos sobre toda a faixa dinâmica (f), gerando uma distribuição

quase uniforme mas com grande espaçamento. Os vasos ficam bem visíveis, mas o ruído

também é muito amplificado. No histograma do AHE (g) a distribuição de intensidades

está espalhada em toda a faixa. Há uma maior variação local e o efeito é uma imagem

com contraste muito elevado em regiões pequenas, também exagerando o ruído de fundo.

O método CLAHE é mais suave e concentrado (h), sem picos artificiais nem dispersão

exagerada. Na imagem, isso se traduz em vasos bem realçados, mas sem amplificar tanto o

ruído.

3.1.3 Redimensionamento

O avanço na tecnologia de imagem tornou a geração e a exibição de imagens

digitais disponíveis em todos os lugares. Diferentes telas são usadas para visualização,

desde monitores de computador de alta resolução até dispositivos móveis de baixa resolução,

além da necessidade de impressão de documentos com imagens posicionadas, exigindo

frequentemente alterações de tamanho e proporção para a adaptação.

Esse processo de alterar o tamanho de imagens para uma exibição ideal é geralmente

denominado como redimensionamento. É uma etapa fundamental no processamento digital

e em aplicações de visão computacional. Esse procedimento consiste em reduzir, ampliar

ou padronizar o tamanho sem modificar de forma significativa o conteúdo visual relevante.

Sua importância está diretamente associada à eficiência computacional, uma vez que

imagens de grandes dimensões demandam mais memória e processamento e à qualidade

dos resultados obtidos em diferentes contextos.

Em termos de uma imagem bidimensional, significa aumentar/diminuir a largura e

a altura calculando os novos valores de pixel. Dado uma imagem I de tamanho m×n e um

tamanho alvo de m′ × n′ , o objetivo é produzir uma nova imagem I ′ de tamanho m′ × n′

que será um bom representante da imagem I (Vaquero et al., 2010). O método de redi-

mensionamento mais popular é a interpolação dos pixels da imagem original, um processo

matemático que utiliza valores conhecidos para estimar valores em pontos desconhecidos.

Os métodos mais comuns são: vizinhos mais próximos, bilinear e bicúbica. Contudo, é

importante destacar que tais métodos quando mal aplicados podem introduzir distorções

perceptíveis, como serrilhados ou borramentos, principalmente quando a proporção da

imagem original difere grandemente da proporção da imagem resultante (Dighe; Guru,

2014).

A interpolação do vizinho mais próximo é o método mais simples e computacional-

mente mais rápido entre os algoritmos de interpolação. Sua estratégia consiste em atribuir

ao novo pixel o valor do pixel mais próximo da posição correspondente na imagem original,

obtido pelo arredondamento das coordenadas. Apesar da simplicidade, essa abordagem

tende a introduzir artefatos indesejáveis, e por essa razão, seu uso prático é bastante
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limitado (Parsania et al., 2014).

A interpolação bilinear, por sua vez, utiliza os quatro pixels vizinhos mais próximos

para estimar a intensidade de cada ponto da imagem resultante. Embora demande um

pouco mais de processamento em comparação ao método anterior, produz resultados

visualmente mais agradáveis com transições mais suaves entre pixels.

Já a interpolação bicúbica representa um avanço em relação às anteriores, pois

considera um conjunto de 16 pixels vizinhos mais próximos. Esse aumento de complexidade

computacional permite preservar detalhes mais finos da imagem e reduzir a ocorrência de

distorções, tornando-a superior à bilinear em termos de qualidade visual. Por esse motivo,

a interpolação bicúbica é amplamente adotada como padrão em softwares profissionais de

edição e processamento de imagens.

A Figura 4 mostra o exemplo de uma imagem de 760 x 760 pixels em (a), redi-

mensionada utilizando os três métodos para 20% de seu tamanho original em (b) até (d),

resultando no tamanho final de 152 x 152 pixels. Essa versão reduzida foi ampliada na

figura apenas para fins de visualização, de modo a evidenciar de forma clara as diferenças

na qualidade final.

Figura 4 – (a) Imagem original. (b) Redimensionamento por interpolação do vizinho mais
próximo; (c) Bilinear; (d) Bicúbica

Fonte: Elaborado pela autora.
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3.1.4 Data Augmentation

A quantidade e a qualidade dos dados são aspectos que exercem influência direta

sobre o desempenho de modelos de aprendizado de máquina. Quando treinados com

conjuntos de dados reduzidos, ou expostos a amostras desbalanceadas, a capacidade

de generalização do modelo é prejudicada, apresentando desempenho significativamente

inferior em dados de teste. Esse cenário é recorrente em aplicações práticas, nas quais a

obtenção de dados é frequentemente limitada ou onerosa, e o processo demanda elevado

esforço e recursos.

O Data Augmentation (Acréscimo de Dados) surge como um conjunto de técnicas

voltadas à geração de amostras artificiais de alta qualidade a partir da manipulação de

dados já existentes. O princípio fundamental consiste em ampliar artificialmente o conjunto

de treinamento por meio da criação de cópias transformadas das amostras originais (Wang

et al., 2024). Além de aumentar a diversidade dos dados, essa estratégia contribui para

reduzir a discrepância entre os conjuntos de treinamento e as condições encontradas em

aplicações do mundo real.

Nesta seção, serão abordados os métodos mais frequentemente usados e de imple-

mentação relativamente simples, baseados em transformações espaciais geométricas. Esse

tipo de manipulação atua sobre a disposição espacial dos pixels em uma imagem, preser-

vando seus valores originais, de modo a gerar novas amostras a partir da reorganização

estrutural do conteúdo visual.

Rotação consiste em girar a imagem em torno de seu centro em diferentes ângulos.

Essa transformação permite que o modelo se torne mais invariante a mudanças de orientação,

uma característica relevante em tarefas em que a posição relativa do objeto de interesse

pode variar. Translação refere-se ao deslocamento da imagem ao longo dos eixos horizontal

e/ou vertical. Essa técnica auxilia o modelo a lidar com situações em que o objeto não se

encontra centralizado ou perfeitamente alinhado no campo de visão. O espelhamento

aplica uma inversão horizontal ou vertical da imagem, criando uma versão especular da

amostra original. Essa operação é particularmente útil em cenários em que a simetria é uma

propriedade relevante, evitando que o modelo memorize posições fixas. Ajuste de brilho

altera a intensidade luminosa da imagem, simulando diferentes condições de iluminação.

Dessa forma, o modelo é exposto a variações de contraste e iluminação, tornando-se mais

resiliente a essas condições no ambiente real. Por fim, o zoom amplia ou reduz a região

de interesse da imagem, modificando o nível de proximidade em relação ao objeto.

Apesar da simplicidade dessas técnicas, diversos trabalhos demonstraram sua alta

eficácia em diversas tarefas de visão computacional (Mumuni; Mumuni, 2022). A Figura 5

exibe uma imagem original seguida dos resultados das cinco operações para exemplificação.
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saída de um neurônio.

Figura 7 – Modelo não linear de um neurônio k

Fonte: Haykin (2009). Adaptado pela autora.

Em termos matemáticos, podemos descrever o neurônio k representado na Figura

6 escrevendo as equações (3), (4) e (5).

uk =
m

∑

j=1

wkjxj (3.3)

yk = φ(uk + bk) (3.4)

vk = uk + bk (3.5)

onde:

xj - Sinais de entrada.

wkj - Pesos sinápticos do neurônio.

uk - Saída do combinador linear.

bk - Bias aplicado a um neurônio.

φ(·) - Função de ativação.

vk - Potencial de ativação do neurônio k.

yk - Sinal de saída do neurônio.

O bias é um elemento que serve para aumentar o grau de liberdade dos ajustes dos

pesos, de forma a transladar a função de ativação no eixo.
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O processo de aprendizagem em redes neurais é conduzido por um algoritmo

de aprendizagem, cuja função principal é ajustar os pesos sinápticos da rede de forma

estruturada, de modo a atingir o objetivo estabelecido no projeto. A meta é definir uma

regra de treinamento que possibilite a atualização dos pesos em cada camada, buscando

minimizar a função de erro. Um dos grandes diferenciais desses algoritmos é a capacidade

de generalização, ou seja, a habilidade da rede em gerar respostas adequadas mesmo para

entradas que não foram apresentadas durante a fase de treinamento. As estruturas de

RNA ganharam destaque como a principal metodologia para análise de imagens, devido às

suas grandes capacidades de aprendizado e vantagens em lidar com padrões complicados.

A disposição dos neurônios de uma rede neural apresenta estreita relação com o

método de aprendizado empregado em seu treinamento. De modo geral, as arquiteturas

de redes neurais podem ser agrupadas em três categorias diferentes:

Redes feedforward de camada única: Nesse tipo de arquitetura, os neurônios

estão organizados de forma que a camada de entrada, composta por nós de origem, projeta-

se diretamente sobre a camada de saída, sem a existência de retroalimentação entre elas.

Trata-se, portanto, de uma rede feedforward, ou direta. A Figura 8 ilustra um exemplo em

que quatro nós da camada de entrada se conectam diretamente a quatro nós da camada

de saída.

Essa estrutura recebe a denominação de rede de camada única, sendo o termo

“camada única” atribuído exclusivamente à camada de saída, onde de fato ocorre o

processamento computacional. A camada de entrada, por sua vez, não é considerada nesse

contexto, uma vez que não realiza operações de cálculo, funcionando apenas como ponto

de fornecimento dos dados à rede.

Figura 8 – Rede feedforward com uma única camada de neurônios

Fonte: Haykin (2009). Adaptado pela autora.
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Redes Feedforward Multicamadas: Esse tipo de arquitetura é caracterizado

pela presença de uma ou mais camadas ocultas, denominadas assim porque não estão

diretamente acessíveis nem a partir da entrada nem da saída da rede. A função essencial

dessas camadas intermediárias é atuar como um elo entre os dados de entrada e a saída final,

possibilitando à rede a capacidade de extrair estatísticas de ordem superior e representar

relações mais complexas dos dados.

O processamento ocorre de maneira sequencial: os nós de origem fornecem os

elementos que compõem o padrão de ativação inicial, o qual é transmitido para os neurônios

da segunda camada. Em seguida, os sinais resultantes dessa camada são propagados para

a camada seguinte e assim sucessivamente, até alcançar a camada de saída. O conjunto

de ativações produzidas pelos neurônios dessa última camada constitui a resposta final

da rede ao padrão de entrada apresentado. Um exemplo de uma rede com arquitetura

composta por 10 nós de entrada, 4 neurônios ocultos e 2 neurônios de saída pode ser

observado na Figura 9.

Figura 9 – Rede feedforward totalmente conectada com uma camada oculta e uma camada
de saída

Fonte: Haykin (2009). Adaptado pela autora.

Redes Recorrentes: Diferentemente das redes feedforward, onde o fluxo de

informação ocorre apenas da entrada até a saída, essa rede caracteriza-se pela presença de

pelo menos um loop de feedback, que incorporam elementos de atraso unitário no tempo

(denotados por z−1), armazenando temporariamente os sinais e os reapresentam à rede no

próximo instante. Isso significa que a saída de um neurônio em determinado instante pode

ser realimentada como entrada em passos de tempo subsequentes, possibilitando que a

rede retenha informações do passado e, assim, modele dependências temporais.
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O MLP pertence a uma classe mais ampla de arquiteturas, sendo um subtipo

específico de Redes Feedforward Multicamadas. A Figura 11 mostra o gráfico arquitetônico

de um MLP com duas camadas ocultas e uma camada de saída.

Figura 11 – Gráfico arquitetônico de um MLP com duas camadas ocultas

Fonte: Haykin (2009). Adaptado pela autora.

O treinamento de uma rede neural é fundamentalmente um problema de otimização,

onde objetivo é encontrar o conjunto de parâmetros que minimiza uma função de perda que

quantifica a discrepância entre as predições da rede e os valores verdadeiros para um dado

conjunto de treinamento. Importante notar que esses processos são aplicáveis não apenas

para o MLP, mas também às redes neurais em geral. O método mais comum para realizar

essa otimização é o gradiente descendente, um algoritmo iterativo que ajusta os parâmetros

na direção oposta ao gradiente da função de perda com respeito aos parâmetros. Os ajustes

sucessivos aplicados ao vetor de peso w são na direção da descida mais íngreme, isto é, em

uma direção oposta ao vetor do gradiente ∇ξ(w), que também pode ser resumido pela

equação (6):

g = ∇ξ(w) (3.6)

Correspondentemente, o algoritmo da descida mais íngreme é descrito formalmente

pela equação (7):

w(n + 1) = w(n) − ηg(n) (3.7)

onde η é uma constante positiva chamada de tamanho do passo ou parâmetro

de taxa de aprendizagem (que será melhor descrita na seção 3.2.4), e g(n) é o vetor do
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gradiente calculado no ponto w(n). Assim, a regra de atualização para cada parâmetro é

dada pela equação (8):

∆w(n) = w(n + 1) − w(n) = −ηg(n) (3.8)

O algoritmo de retropropagação é um método notavelmente eficiente para calcular

o gradiente, e funciona determinando sistematicamente como cada peso e bias na rede

contribui para o erro total. Ele consiste em duas fases, sendo a primeira forward pass

(passe direto), onde um lote de dados de entrada é propagado através da rede, da primeira

à última camada, para gerar as saídas. A função de perda é então usada para calcular o

erro entre as saídas previstas e os alvos verdadeiros. A segunda é o backward pass (passe

reverso), onde o gradiente do erro é calculado primeiro com respeito às ativações da camada

de saída e é propagado para trás, camada por camada. Em cada camada, é calculado o

gradiente da perda com respeito aos seus parâmetros, e o gradiente da perda com respeito

às ativações da camada anterior. Este último é então passado para a camada anterior, de

forma sucessiva, até que os gradientes para todos os parâmetros tenham sido calculados

(Amari, 1993).

3.3.2 CNN - Convolutional Neural Network

Convolutional Neural Networks (Redes Neural Convolucionais) (CNNs) são baseadas

em MLPs projetado especificamente para reconhecer e avaliar formas bidimensionais. Essas

redes empregam uma arquitetura única que é adequada para a classificação de imagens, e

se valem de três conceitos fundamentais: convolução, pesos e bias compartilhados e pooling.

Convolução: É o processo central em uma CNN e serve para extrair caracterís-

ticas relevantes de uma imagem ou sinal, permitindo que a rede detecte padrões como

bordas, texturas ou formas específicas. Uma pequena matriz de pesos é definida, chamada

comumente de filtro, percorrendo a imagem por um processo de deslizamento com um

passo determinado (Nielsen, 2015). Em cada posição, realiza-se o produto ponto a ponto

entre os valores da imagem e os valores do filtro, em seguida todos esses produtos são

somados, produzindo um único valor escalar, que irá compor a posição equivalente no

feature map (mapa de características).

A dimensão Dout do feature map resultante de uma operação de convolução é dada

pela equação (9):

Dout =
Din − F + 2P

S
+ 1 (3.9)
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3.3.3 YOLO - You Only Look Once

Reconhecimento de imagens é uma área da visão computacional e do aprendizado

de máquina que tem como objetivo identificar e classificar objetos, padrões, pessoas, lugares

ou qualquer outro elemento presente em uma imagem digital. Um conjunto de objetos

similares, com uma ou mais características semelhantes, é considerado como pertencente à

mesma classe de padrões (Queiroz; Gomes, 2006).

A tarefa de reconhecimento pode ser divida em 3 partes: classificação, que se

refere à atribuição de uma categoria; detecção, que envolve localizar e rotular múltiplos

objetos na mesma imagem; e segmentação, que separa cada objeto ou região da imagem

pixel a pixel. A detecção de objetos surgiu como um componente crítico em inúmeras

aplicações, abrangendo vários campos, como segurança, saúde, veículos autônomos, robótica,

e realidade aumentada.

Os modelos que conduzem essas análises podem ser categorizados em dois tipos:

detectores de um estágio e detectores de dois estágios. Os detectores de dois estágios

dividem a tarefa de reconhecimento em duas partes. A primeira, gera propostas de regiões,

que são áreas da imagem onde provavelmente existe um objeto. Para cada região proposta

o modelo extrai as características visuais correspondentes e classifica o que tem dentro

daquela região. Devido à essa natureza de duas etapas executadas sucessivamente para

várias regiões da imagem, e à complexidade do CNN utilizado, os custos computacionais

são altos, limitando seu uso em detecções offline e não em cenários de casos em tempo real

(Baldovino et al., 2024).

Por outro lado, detectores de estágio único são compostos apenas por uma CNN

de alimentação única, que fornece diretamente as caixas delimitadoras dos objetos, bem

como suas respectivas classificações. As mudanças oferecidas por esses modelos resultaram

em custos computacionais mais baixos, proporcionando maior precisão, e ainda assim

mantendo uma alta velocidade de processamento.

Entre os diferentes algoritmos de detecção de objetos de estágio único, o framework

You Only Look Once (Você Só Olha Uma Vez) (YOLO), de Joseph Redmon et al., foi

publicado na IEEE Conference on Computer Vision and Pattern Recognition (CVPR) de

2016 (Redmon et al., 2016). Ele apresentou pela primeira vez uma abordagem ponta a

ponta em tempo real para reconhecimento de objetos. Seu nome se refere ao fato de que

essa arquitetura é capaz de realizar a tarefa de detecção e classificação com uma única

passagem pela rede.

O YOLO analisa globalmente a imagem ao fazer previsões. Ao contrário das técnicas

baseadas em janela deslizante e proposta de região, esse modelo analisa a imagem inteira

durante o treinamento e o teste, codificando implicitamente informações contextuais

sobre as classes, bem como sua aparência, aprendendo representações generalizáveis de
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robusta, além de reduzir o risco de overfitting e o custo computacional (Raiaan et al.,

2024).

a) Classificação e Regressão

No contexto de aprendizado de máquina supervisionado, os modelos são treinados

a partir de dados de entrada e saída rotulada, e a principal diferença entre classificação e

regressão está no tipo de variável alvo que o modelo busca prever. A classificação é utilizada

quando a variável de saída é categórica e assume valores discretos que representam classes.

Esses algoritmos trabalham com probabilidades de ocorrência de um evento, e a atribuição

de uma classe específica pode ser dada pela maior probabilidade aferida, ou por limiares

específicos. A regressão é empregada quando a variável de saída é contínua, e o resultado

final será um valor em um intervalo numérico (Goodfellow et al., 2016).

b) Divisão das amostras

Para realizar o treinamento de um modelo, amostras suficientes devem ser coletadas

e o conjunto de dados deve ser preparado antes do início do processo. Essa preparação

envolve dividir os dados em três subconjuntos distintos: treino, validação e teste. O

conjunto de treinamento atua no modelo ajustando os parâmetros internos. O modelo

passa repetidamente por esses dados durante o treinamento em várias iterações, tentando

minimizar uma função de erro ou maximizar acertos.

A base de validação é utilizada para avaliar o desempenho do modelo durante ou

após cada iteração de treinamento, sem que haja um aprendizado direto com esses dados,

mas com a intenção de estimar o erro de generalização, permitindo que os hiperparâmetros

sejam atualizados adequadamente. Por fim, o conjunto de teste é usado para estimar

o verdadeiro desempenho de campo de um modelo após a conclusão do processo de

aprendizagem, avaliando o modelo de forma final e imparcial (Ripley, 2007).

A taxa de divisão do conjunto de dados é determinada pela quantidade de amostras

e da complexidade do problema. Se uma base possui muitos dados, por exemplo, em ordem

de centenas de milhares de amostras, pode-se reservar uma proporção menor para teste,

pois ainda terá amostras suficientes para uma boa avaliação. Caso contrário, é necessário

encontrar um equilíbrio melhor para que todos os conjuntos tenham representatividade.

Não existe uma porcentagem de divisão apropriada, mas, normalmente, utiliza-se cerca de

70% dos dados para o treinamento, 15% para a validação, e 15% para o teste.

c) Neurônios e camadas

A definição da arquitetura de uma rede neural, em especial o número de camadas e

de neurônios em cada camada, é um fator determinante para o desempenho do modelo. O

número de neurônios na camada de entrada é definido pelo número de variáveis ou atributos
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de entrada do problema. Para imagens, esse valor deve ser o resultado da multiplicação

entre a altura e a largura das imagens para escala de cinza, e novamente multiplicado por

três para imagens coloridas de três canais, como é o caso do padrão RGB. Em problemas

tabulares, cada coluna da base de dados corresponde a um neurônio de entrada.

Para a camada de saída, o número irá depender do tipo de tarefa a ser realizada,

sendo comum a utilização de um único neurônio para regressão ou para classificação binária,

e de múltiplos neurônios para classificação multiclasse, onde cada neurônio de saída será

a probabilidade de uma classe. O número de unidades ocultas é um parâmetro livre que

pode ser ajustado para fornecer o melhor desempenho preditivo (Bishop; Nasrabadi, 2006).

Obrigatoriamente, deve estar entre o número de entradas e o número de saídas, e deve ser

grande o suficiente para capturar os padrões, mas não tão grande a ponto de superajustar.

Em problemas de imagens, o número de neurônios é definido indiretamente pelo tamanho

dos feature maps e pooling. Uma prática recomendada para definir esses valores seria por

testes empíricos de otimização de hiperparâmetros.

Quando se trata de camadas ocultas, as redes rasas com 1 a 2 camadas ocultas

podem funcionar bem para problemas menos complexos e dados com menos dimensões

ou características. Redes mais profundas de 3 a 5 camadas tendem a oferecer melhor

capacidade de generalização e eficiência na representação de funções complexas, e são mais

indicadas para tarefas de visão computacional e processamento de linguagem natural.

d) Função de ativação

As funções de ativação são usadas para transformar um sinal de entrada em um sinal

de saída, que é então enviado como entrada para a próxima camada. A escolha da função de

ativação depende da tarefa específica e da arquitetura da rede, e o processo de aprendizagem

pode ser acelerado selecionando a função de ativação apropriada (Rasamoelina et al., 2020).

Existem diferentes tipos de funções de ativação. Atualmente, as mais utilizados nas CNNs

são:

Função Sigmoide: sua curva parece uma forma de S. A função varia entre 0 e 1,

portanto é usada para prever uma probabilidade como saída.

f(x) =
1

1 + e−x
(3.10)

Função Tangente Hiperbólica (Tanh): a função tanh tem forma semelhante à

função sigmoide, mas o intervalo está entre -1 e 1. A vantagem é que os valores zero serão

mapeados próximos de zero e os valores negativos serão mapeados fortemente negativos.

Sua definição matemática é:
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f(x) = tanh(x) =
2

1 + e−2x
− 1 (3.11)

Função Unidade Linear Retificada (ReLU): ReLU é a função de ativação mais

utilizada para camadas de convolução. É uma função meio-retificada. É matematicamente

definida como:

f(x) = max(0, x) =











0 x < 0

x x ≥ 0
(3.12)

Entender os pontos fortes e fracos de cada função é crucial para selecionar a mais

apropriada para uma determinada aplicação de rede neural. Funções Sigmoide e Tanh

são adequados para tarefas específicas de classificação e probabilidades, enquanto ReLU é

comumente usado em redes profundas modernas. A Figura 15 demonstra os gráficos das

funções de ativação.

Figura 15 – Gráfico representativo das funções de ativação

Fonte: Elaborado pela autora.

e) Batch e Épocas

Batch size é o número de dados processados simultaneamente antes da atualização

dos pesos da rede durante a estimativa de gradiente. Ao invés dos modelos atualizarem os

parâmetros da rede a cada exemplo individual ou somente após todo o conjunto de dados,

o treinamento em mini-batches faz uma atualização intermediária, conciliando estabilidade

no gradiente e eficiência computacional. Valores menores de batch size tendem a introduzir
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mais ruído, podendo favorecer a capacidade de generalização do modelo, mas com custo

computacional maior, enquanto valores maiores fornecem estimativas mais estáveis, mas

podem levar a menor poder de generalização e exigir mais memória (Kandel; Castelli,

2020).

Épocas é um hiperparâmetro que determina o número de passagens completas para

uma rede neural durante o treinamento. Durante cada época, o modelo processa todos os

exemplos disponíveis, geralmente em mini-batches, e ajusta seus pesos. Tradicionalmente,

o número de épocas é grande, permitindo que o procedimento de aprendizado continue

até que o erro do modelo seja adequadamente minimizado (Zhang et al., 2016). Poucas

épocas podem resultar em casos onde a rede não aprende suficientemente os padrões dos

dados, porém épocas demais também podem acarretar na memorização dos dados de

treino, perdendo capacidade de generalização.

Não existe uma pré-definição do número correto de épocas para todos os conjuntos de

dados, mas é possível determinar uma aproximação ideal utilizando a curva de aprendizado,

um gráfico de linhas que mostra a evolução dos erros nas bases de treino e validação

com o acréscimo de épocas. Para muitos dos algoritmos o erro de treinamento é sempre

uma função decrescente, no entanto, o erro calculado em relação ao conjunto de validação

frequentemente apresenta uma diminuição inicial, seguida por um aumento à medida que a

rede começa a sofrer over-fitting. O ponto de interrupção é obtido utilizando a estratégia de

early-stopping, onde o treinamento é encerrado após o erro nos dados de validação atingir

a saturação, que pode ser definida em número de épocas subsequentes com nenhuma

melhora ou piora nos erros. A Figura 16 ilustra a aplicação do método.

Figura 16 – Exemplificação da regra de early-stopping

Fonte: Haykin (2009). Adaptado pela autora.
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f) Taxa de aprendizagem

A taxa de aprendizagem determina o tamanho do passo que o modelo dá na direção

oposta ao gradiente do erro em cada iteração, controlando assim a velocidade com que os

pesos da rede são atualizados. É muitas vezes descrita nas equações da literatura como η,

e seus valores são pequenos e positivos, geralmente variando entre 0.0 e 1.0. Se for muito

grande (η > 0.1), a curva de aprendizado apresentará oscilações violentas, pois os pesos

saltam demais no espaço da função de perda. Se a taxa de aprendizagem for muito baixa

(η < 10−4), o aprendizado prossegue lentamente e o aprendizado pode ficar estagnado em

mínimos locais (Bengio, 2012).

A taxa de aprendizagem pode ser escolhida por experimentação empírica, mas

geralmente é melhor escolhê-la monitorando as curvas de aprendizagem que correlacionam

a função objetivo com as iterações do modelo. É um dos hiperparâmetros mais sensíveis no

treinamento de redes neurais, exigindo cuidadosa escolha e, muitas vezes, uso de técnicas

adaptativas e de otimização.

3.4 Métricas de Performance

A avaliação de modelos de aprendizado de máquina requer o uso de métricas de

desempenho adequadas, capazes de refletir de maneira confiável a qualidade das previsões.

A escolha das métricas depende diretamente da natureza do problema, podendo ser de

classificação ou de regressão. Além de quantificar a qualidade do modelo, as métricas de

performance desempenham papel crucial na comparação entre diferentes abordagens e na

orientação do ajuste de hiperparâmetros. A definição correta das avaliações é uma etapa

indispensável para a validação de modelos, garantindo a relevância prática das soluções

propostas. Normalmente, o interesse principal está na performance de um algoritmo

em dados que ele não viu antes, pois isso determina quão bem ele funcionará quando

implantado no mundo real. Portanto, a avaliação final de um modelo será usando sempre

um conjunto de dados de teste.

3.4.1 Classificação

Em problemas de classificação, a performance está relacionada à capacidade do

modelo de prever corretamente rótulos aos dados de entrada. As métricas usados para

avaliar a robustez de um classificador são acurácia, precisão e recall. Acurácia diz a

proporção de previsões corretas (positivas e negativas) em relação ao total de amostras,

medindo o quão frequentemente o modelo acerta. Precisão calcula a proporção de

instâncias classificadas como positivas que realmente são positivas, estimando a confiança

nas previsões positivas. Por fim, o Recall calcula a proporção de instâncias realmente

positivas que o modelo conseguiu identificar, ou seja, a capacidade do modelo de encontrar
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todos os positivos. Frequentemente, Precisão e Recall são analisados juntos. As fórmulas

para calcular esses valores são apresentadas abaixo:

Acurácia =
V P + V N

V P + V N + FP + FN
(3.13)

Precisão =
V P

V P + FP
(3.14)

Recall =
V P

V P + FN
(3.15)

onde:

V P - Verdadeiro Positivo.

V N - Verdadeiro Negativo.

FP - Falso Positivo.

FN - Falso Negativo.

3.4.2 Regressão

Em tarefas de regressão, nas quais o objetivo é prever valores contínuos, a maneira

de avaliar o modelo é medir a correlação entre os valores reais e os previstos. A avaliação

geralmente se baseia em medidas de erro, tais como o MSE, o RMSE, MAE e MAPE, que

capturam diferentes aspectos da precisão e robustez das previsões. O Mean Squared Error

(Erro Quadrático Médio) (MSE) calcula a média dos quadrados dos erros de previsão,

penalizando mais fortemente erros grandes devido à elevação ao quadrado. O Root Mean

Squared Error (Raiz do Erro Quadrático Médio) (RMSE) é a raiz quadrada do MSE, mas

retorna os valores na mesma unidade da variável prevista, facilitando a interpretação.

O Mean Absolute Error (Erro Absoluto Médio) (MAE) é a média dos valores

absolutos dos erros, e representa o erro médio em termos absolutos, sem exagerar o peso

de grandes desvios. Por fim, o Mean Absolute Percentage Error (Erro Percentual Absoluto

Médio) (MAPE) mostra o erro médio do modelo em termos percentuais. As definições de

cada métrica se encontram nas equações abaixo:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (3.16)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 =
√

MSE (3.17)

MAE =
1

n

n
∑

i=1

|yi − ŷi| (3.18)



51

MAPE =
100

n

n
∑

i=1

yi − ŷi

yi

(3.19)

onde:

yi - Valor verdadeiro.

ŷi - Valor previsto.

n - Número total de observações.
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4 MATERIAIS E MÉTODOS

4.1 Introdução

De modo geral, modelos de aprendizado de máquina buscam estabelecer um

mapeamento entre um conjunto de entradas e a forma desejada de saída. No contexto da

estimativa da idade óssea a partir de radiografias da mão, a imagem constitui a entrada

do sistema, enquanto a idade óssea estimada representa a saída. Como a variável a ser

predita é contínua, a formulação do problema como uma tarefa de regressão apresenta-se

como a abordagem mais adequada para modelar a relação entrada–saída.

Este capítulo descreve a metodologia adotada para a predição da idade óssea a

partir das imagens radiográficas, detalhando os recursos empregados, as etapas de pré-

processamento e a arquitetura das redes neurais artificiais utilizadas. A fim de sintetizar

as etapas e componentes desenvolvidos ao longo deste trabalho, apresenta-se na Figura 17

uma visão geral do fluxo completo do método proposto.

Figura 17 – Fluxo do método completo

Fonte: Elaborado pela autora.
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4.2 Banco de dados

A idade óssea constitui uma medida utilizada para quantificar o estágio de desenvol-

vimento esquelético em crianças e adolescentes. Essa métrica difere da idade cronológica,

uma vez que é expressa em uma escala que varia de 0 a 228 meses. Em condições de

crescimento consideradas normais, crianças do mesmo sexo e com idades cronológicas

idênticas tendem a apresentar idades ósseas semelhantes (Cunningham et al., 2016).

O desenvolvimento de modelos de aprendizado profundo depende fortemente da

disponibilidade e da qualidade dos dados utilizados no processo de treinamento e validação.

Nesse contexto, a construção e a caracterização do banco de dados constituem etapas

fundamentais, pois a representatividade e a diversidade das amostras impactam diretamente

no desempenho e na capacidade de generalização do modelo. Para o treinamento do modelo

proposto neste trabalho, foram utilizadas duas bases de dados públicas distintas: a RSNA

e o RHPE.

O conjunto de dados da Radiological Society of North America (Sociedade de

Radiologia da América do Nort) (RSNA) foi desenvolvido com o objetivo de apoiar o

avanço e a avaliação de técnicas automatizadas de estimativa da idade óssea. Ele é composto

por 12.611 radiografias da mão, obtidas majoritariamente em dois hospitais pediátricos nos

Estados Unidos: o Children’s Hospital Colorado e o Lucile Packard Children’s Hospital

(RSNA, 2017).

Além das radiografias, é disponibilizado um arquivo em formato CSV contendo a

idade óssea aferida por radiologistas, bem como a informação de gênero dos indivíduos. A

anotação das idades foi realizada por seis especialistas médicos, com o valor final atribuído

a cada exame calculado a partir da média ponderada das avaliações.

A base contempla imagens de participantes de ambos os sexos, sendo 5.778 (46%)

correspondentes a participantes do sexo feminino e 6.833 (54%) do sexo masculino. As

imagens foram adquiridas por diferentes equipamentos de raio-X, apresentando variação

de resolução que vai de 800 × 1.011 pixels até 2.460 × 2.970 pixels. A Figura 18 apresenta

a distribuição de frequência da idade óssea no conjunto de dados.
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alizadas para processamento de imagens, manipulação de dados e construção de modelos

de aprendizado profundo. O VS Code, por sua vez, oferece recursos avançados de edição,

depuração e integração com sistemas de controle de versão, proporcionando um fluxo de

trabalho eficiente e organizado. Essa combinação possibilitou a implementação de rotinas

complexas de pré-processamento, treinamento e avaliação de modelos de forma reprodutível

e modular, favorecendo tanto a produtividade quanto a manutenção do código.

4.3.2 Bibliotecas e pacotes

Nesta subseção são apresentadas as principais bibliotecas e pacotes Python em-

pregados no desenvolvimento do projeto. Tais ferramentas foram utilizadas para etapas

como manipulação de dados, pré-processamento de imagens, construção e treinamento

de modelos, visualização gráfica e avaliação de desempenho. A lista a seguir descreve

individualmente cada biblioteca empregada e suas funções.

a) Numpy

Biblioteca fundamental para computação científica, oferecendo estruturas de dados

eficientes, como arrays multidimensionais, além de funções matemáticas e operações

vetorizadas. Sua utilização permite manipulações rápidas e eficientes de grandes volumes

de dados numéricos, sendo amplamente empregada em pré-processamento de imagens e

operações matriciais em aprendizado de máquina.

b) Matplotlib

Uma biblioteca de visualização que possibilita a criação de gráficos estáticos, ani-

mados e interativos. Ela é utilizada para a análise exploratória de dados, acompanhamento

do treinamento de modelos e apresentação de resultados de forma visualmente clara e

personalizável, contribuindo para a interpretação e comunicação dos achados.

c) OpenCV

O OpenCV Open Source Computer Vision Library (Biblioteca de Visão Computaci-

onal de Código Aberto) é uma biblioteca voltada para processamento e análise de imagens

e vídeos. Ela oferece funções para leitura, transformação, segmentação e manipulação de

imagens, sendo essencial para tarefas de pré-processamento.

d) Pandas

Biblioteca especializada em manipulação e análise de dados tabulares estruturados.

Por meio de suas estruturas de dados, é possível organizar, filtrar, agregar e transformar

grandes conjuntos de informações de maneira eficiente, permitindo importar e exportar

dados de vários formatos de arquivos de tabelas e consultas à banco de dados.

e) Pytorch

O PyTorch é uma biblioteca de aprendizado profundo que fornece uma interface
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flexível para construção, treinamento e avaliação de redes neurais. Sua arquitetura di-

nâmica de grafos computacionais facilita a implementação de modelos complexos e o

acompanhamento de gradientes.

f) Scikit-learn

Biblioteca de aprendizado de máquina que oferece algoritmos de classificação,

regressão, agrupamento e pré-processamento de dados, construído sobre NumPy, Pandas

e Matplotlib. Sua facilidade de integração e conjunto abrangente de métricas permitem

validação de modelos e análise estatística de dados.

g) Seaborn

O Seaborn é uma biblioteca de visualização estatística baseada no Matplotlib. Ela

facilita a criação de gráficos complexos e esteticamente consistentes, como mapas de calor,

distribuições e boxplots, sendo útil na análise exploratória de dados.

h) Ultralytics

O Ultralytics fornece implementações avançadas da família de modelos YOLO,

voltadas para detecção de objetos em imagens, com compatibilidade com frameworks de

aprendizado profundo como PyTorch. Sua utilização permite treinar e aplicar redes de

alta performance para identificar estruturas ou objetos específicos, oferecendo suporte

a diferentes resoluções de entrada e facilidades para integração com pipelines de visão

computacional.

i) Optuna

Biblioteca de otimização de hiperparâmetros que automatiza a busca por combina-

ções ideais de parâmetros em modelos de aprendizado de máquina. Ele utiliza técnicas de

otimização inteligente para aumentar a eficiência e desempenho de modelos computacionais.

O espaço de busca de hiperparâmetros é definido dinamicamente durante a execução do

código, permitindo flexibilidade na experimentação. A biblioteca utiliza algoritmos de oti-

mização sequencial para sugerir novas combinações de parâmetros com base nos resultados

de avaliações anteriores, equilibrando exploração e exploração do espaço de busca. Além

disso, o Optuna oferece recursos para paralelização de experimentos, registro automático

de resultados e integração com frameworks populares como PyTorch e TensorFlow.

j) Albumentations

Ferramenta amplamente utilizada em visão computacional por sua eficiência e

flexibilidade no tratamento conjunto de imagens para tarefas de detecção de objetos.

Diferentemente de bibliotecas tradicionais de aumento de dados, a Albumentations garante

que, ao aplicar uma transformação geométrica na imagem (como rotação, translação ou

escala), as coordenadas das caixas delimitadoras sejam ajustadas automaticamente e de

forma precisa, preservando a correspondência entre imagem e rótulo.
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4.3.3 Ferramentas auxiliares

Além das bibliotecas de software utilizadas diretamente na implementação, este

trabalho também fez uso de ferramentas auxiliares essenciais para o preparo dos dados e

para o processamento eficiente dos modelos. Nesta subseção são descritas a ferramenta

de anotação de imagens e o recurso de processamento acelerado utilizados ao longo do

projeto.

a) CVAT

O CVAT Computer Vision Annotation Tool (Ferramenta de Anotação de Visão

Computacional) é uma ferramenta de código aberto para anotação de imagens e vídeos,

permitindo a marcação de objetos, regiões de interesse e pontos de referência. Ele é utilizado

para criar dados anotados de referência em tarefas de visão computacional, oferencendo

uma variedade de opções de rotulagem.

b) GPU

A GPU (Graphics Processing Unit) é um componente de hardware especializado

em processamento paralelo, originalmente desenvolvidos para aplicações gráficas. Seu uso

permite acelerar significativamente operações computacionais complexas, como o treina-

mento de redes neurais e o processamento intensivo de imagens. Todos os experimentos

foram implementados em uma GPU com especificações NVIDIA GeForce GTX 1060 6GB.

4.4 Pré Processamento

Diversos fatores influenciam a aparência final de imagens radiográficas. Os valores

do pixels são afetados por parâmetros técnicos utilizados durante a aquisição da radiografia,

pela orientação da mão em relação ao detector de imagem e pelo nível geral de lumino-

sidade da região registrada. Nos conjuntos de dados observa-se uma ampla variação na

intensidade das imagens decorrente da natureza multi-institucional do material, coletado

com equipamentos e protocolos distintos. Assim, torna-se necessário reduzir as variações

de intensidade que não estão relacionadas às características estruturais de interesse, de

modo a evitar que ruídos de aquisição interfiram na análise computacional.

Um método amplamente reconhecido para esse fim é a equalização de histogramas,

utilizada para uniformizar distribuições de intensidade em conjuntos de imagens. Neste

trabalho, foi empregada a técnica de CLAHE, a fim de normalizar as diferentes variações

de tons de cinza e realçar detalhes relevantes para a tarefa proposta. A Figura 22 apresenta

algumas imagens após a aplicação desse procedimento na base de dados.
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Tabela 2 – Exemplo da formatação de saída das anotações.

<classe> <x_centro> <y_centro> <largura> <altura>

0 0.510735 0.229892 0.129617 0.086406

1 0.470988 0.507748 0.407023 0.212016

2 0.408085 0.622367 0.213246 0.116426

O conjunto total de imagens anotadas foi dividido em duas partições: 70% destinadas

ao treinamento e 30% reservadas para validação, assegurando que o modelo fosse avaliado

em dados não vistos durante o aprendizado, sendo fundamental para mensurar a capacidade

de generalização. Para ampliar a variabilidade do conjunto de treinamento e tornar o

modelo mais robusto a diferentes condições de captura, aplicou-se uma etapa de aumento

de dados, gerando duas novas versões de cada imagem original combinando diversas

variações aplicadas de forma aleatória, com auxílio da biblioteca Albumentations. As

transformações disponibilizadas foram: (i) Espelhamento horizontal completo, permitindo

que o modelo reconheça a mão independentemente da lateralidade; (ii) Rotação aleatória

no intervalo de -10° a 10°, simulando pequenas variações de posicionamento durante o

exame radiográfico; (iii) Variação aleatória de escala de até 10%, ajustando a proporção

entre a mão e a área total da imagem; (iv) Modificação controlada nos parâmetros de

brilho (±20%), contraste (±10%) e saturação (±20%), de modo a representar variações

de iluminação e qualidade de aquisição da imagem.

Após essa etapa, iniciou-se o processo de configuração e treinamento do modelo. O

YOLOv10 fornece cinco versões escalonadas: YOLOv10n (nano), YOLOv10s (pequeno),

YOLOv10m (médio), YOLOv10l (grande) e YOLOv10x (extragrande). Cada variação do

YOLOv10 usa a mesma arquitetura base, mas difere em profundidade da rede, número

de canais por camada, número total de parâmetros, e uso de memória e tempo de

inferência. Optou-se pela versão pequena (s) do modelo, que oferece um bom equilíbrio

entre desempenho computacional e precisão na detecção, sendo especialmente adequada

para conjuntos de dados de tamanho moderado e aplicações em pesquisa.

O treinamento foi conduzido localmente utilizando GPU, o que possibilitou maior

eficiência no processamento de lotes e convergência mais rápida do modelo. As imagens são

redimensionadas automaticamente na entrada do modelo, e os principais hiperparâmetros

adotados foram os seguintes:

Tamanho da imagem - 800 × 800 px

Número de épocas - 200

Batch size - 8

Taxa de aprendizado - 10−3

Early stopping - 20
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4.6 Detecção da Idade Óssea

Com o modelo YOLOv10 devidamente treinado e validado, tornou-se possível

aplicar o detector a toda a base de imagens radiográficas, automatizando o processo de

localização e recorte das regiões de interesse previamente definidas. Assim, para cada

imagem original da base, o modelo realiza a inferência e identifica, por meio das caixas

delimitadoras aprendidas durante o treinamento, as áreas correspondentes às três regiões

anatômicas definidas.

Com esses resultados, inicia-se a fase de predição da idade óssea, conduzida por

uma rede neural. Nessa etapa, as regiões extraídas são utilizadas como entradas do modelo

regressivo, que tem como objetivo estimar, de forma contínua, a idade óssea do indivíduo,

extraindo características discriminativas relacionadas à morfologia e densidade óssea dos

diferentes estágios de ossificação. Para ilustrar visualmente o processo de desenvolvimento

esquelético considerado neste estudo, a Figura 24 apresenta um exemplo da evolução da

ossificação nas regiões extraídas ao longo de diferentes faixas etárias. Observa-se que, com

o avanço da idade, há uma progressiva fusão e aumento na densidade e definição das

estruturas ósseas.

Figura 24 – Evolução da ossificação nas regiões extraídas: articulação, metacarpo e carpo,
respectivamente. a) Pacientes com 18 meses; b) 84 meses; c) 162 meses e d)
204 meses

Fonte: Elaborado pela autora.

O particionamento do conjunto de dados utilizado para o treinamento e avaliação

do modelo foi realizado de forma estratificada, considerando a variável alvo, de modo

a garantir que todas as divisões apresentassem uma distribuição semelhante de idades.

Dados de toda a faixa etária foram incluídos para treinamento no estudo. Assim, 70% das

amostras foram destinadas ao conjunto de treinamento, enquanto 15% foram reservadas

para validação e os 15% restantes para teste.

Para lidar com o desbalanceamento da base de dados, foi empregado Data Aug-

mentation no conjunto de treino, aumentando artificialmente as amostras das classes
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Ao final desse processo, todas as imagens originais e aumentadas foram consolidadas

em um diretório final, resultando em um conjunto com 13.815 amostras para treino, 2.838

para validação, e 2.785 para teste. Todas as partições possuem histogramas comparáveis,

garantindo que não haja concentração excessiva de determinadas faixas etárias, permitindo

que o modelo aprenda de forma consistente os padrões de ossificação para todas as idades

e seja avaliado de maneira justa, refletindo sua capacidade de generalização. As imagens

recortadas de todas as regiões foram redimensionadas reduzindo o tamanho para 150 ×

150 pixels e convertidas para escala de cinza, assegurando compatibilidade com a rede

neural convolucional regressora utilizada na etapa seguinte.

O modelo de predição da idade óssea desenvolvido neste trabalho se baseia em

uma arquitetura composta por três redes neurais convolucionais independentes, cada

uma especializada em processar uma região específica. Cada rede convolucional segue a

mesma arquitetura, consistindo em três blocos convolucionais sequenciais. Cada bloco é

composto por uma camada convolucional seguida de função de ativação ReLU e operação

de Max Pooling, com o objetivo de extrair características relevantes das imagens e reduzir

gradualmente suas dimensões espaciais. O primeiro bloco convolucional recebe a imagem

em escala de cinza e aplica 64 filtros de tamanho 3×3, seguidos de ativação ReLU e uma

operação de Max Pooling, resultando em feature maps de dimensão 75×75. O segundo

bloco, com 128 filtros de tamanho 3×3, processa os 64 canais provenientes da etapa

anterior, reduzindo a dimensão espacial para 37×37. Por fim, o terceiro bloco convolucional

utiliza 256 filtros também de 3×3, extraindo representações mais complexas e condensadas

da imagem, com feature maps finais de tamanho 18×18.

A saída convolucional é então achatada, transformando-se em um vetor unidimen-

sional de tamanho 1×82.944, resultante da multiplicação entre o tamanho dos feature

maps e a quantidade de filtros da última camada convolucional. Em seguida, são aplicadas

transformações lineares, responsáveis por combinar as características extraídas nas etapas

anteriores e gerar representações significativas dos dados. Essas camadas totalmente co-

nectadas possuem dimensões de 1×256 e 1×128, respectivamente, seguidas por funções de

ativação ReLU. Por fim, uma camada linear de saída única produz a predição da idade

óssea correspondente a cada região analisada. A Figura 26 apresenta as camadas da rede

desenvolvida.
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Figura 26 – Gráfico arquitetônico da CNN

Fonte: Elaborado pela autora.

Após a inferência de cada região, as predições individuais de cada rede são combina-

das por meio de uma média ponderada, na qual os pesos são calculados com base no Erro

Quadrático (EQ) individual de cada predição em relação à idade real do paciente. Essa

estratégia permite que predições mais confiáveis exerçam maior influência na estimativa

final antes da etapa de refinamento. Os erros são obtidos pela equação (20):

EQi = (ŷi − y)2 (4.1)

Em seguida, cada erro é transformado em um peso (wi) por meio da função softmax,

aplicada sobre os valores negativos dos erros, de forma que previsões mais precisas recebam

maior peso e influência na combinação final. Essa conversão é dada por (21):

wi =
e−EQi

∑

3

j=1
e−EQj

(4.2)

Durante o processo de treinamento, o peso atribuído a cada rede neural é atualizado

iterativamente, de modo a refletir a contribuição relativa de cada modelo ao longo das

épocas. Ao término do treinamento, os valores finais desses pesos são armazenados e

posteriormente empregados nas etapas de validação e teste, assegurando consistência

na avaliação. Assim, a predição final (ŷfinal) da idade óssea é obtida como uma média

ponderada das estimativas individuais, expressa por:

ŷfinal =
3

∑

i=1

wiŷi (4.3)

A predição média ponderada das CNNs é então fornecida como entrada para

uma rede neural MLP, juntamente com o sexo do paciente. Essa etapa foi desenvolvida

com o objetivo de ajustar a predição da idade óssea levando em consideração o sexo
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biológico do paciente, motivada por evidências clínicas amplamente documentadas de que

o desenvolvimento esquelético apresenta diferenças significativas entre indivíduos do sexo

masculino e feminino, o que impacta diretamente na velocidade e padrão de ossificação

(Cole et al., 2015).

A arquitetura da MLP foi concebida de maneira simples, composta por duas

camadas totalmente conectadas. A camada de entrada recebe dois atributos: a idade óssea

predita pela CNN e a codificação numérica do sexo do paciente (0 para feminino e 1 para

masculino). Essa entrada é processada por uma camada densa com 32 neurônios e função

de ativação ReLU. Em seguida, uma camada linear de saída com um único neurônio produz

o valor final refinado da idade óssea, incorporando informações demográficas relevantes

sem que seus gradientes influenciem diretamente o treinamento das redes convolucionais.

A arquitetura pode ser avaliada na Figura 27.

Figura 27 – Gráfico arquitetônico da MLP

Fonte: Elaborado pela autora.

O processo de otimização foi conduzido com uma taxa de aprendizado inicial de

10−3 para a CNN e 10−2 para a MLP. O treinamento foi realizado ao longo de 30 épocas,

utilizando batch size de 64, valor definido em função da capacidade da GPU disponível.

Como função de perda, empregou-se o MSE, atribuindo penalidades mais severas a erros

de maior magnitude.
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5 RESULTADOS

Este capítulo apresenta e discute os resultados obtidos nas duas etapas principais

da metodologia proposta. Primeiramente, são analisados os desempenhos do modelo

de detecção e segmentação das regiões anatômicas da mão na seção 5.1, incluindo a

avaliação quantitativa das métricas obtidas pelo modelo YOLO. Em seguida, na seção 5.2,

são apresentados os resultados do modelo de regressão para estimativa da idade óssea,

construído a partir das imagens segmentadas. Nesta segunda parte, são detalhadas as

métricas de erro obtidas durante o treinamento e validação, além da avaliação final em

conjunto de teste independente. Por fim, é realizada uma discussão abrangente sobre os

resultados alcançados, comparando com os métodos existentes no estado da arte de modo

a contextualizar as contribuições e limitações.

5.1 Modelo de segmentação de regiões

A avaliação da etapa de segmentação das regiões de interesse, implementado com o

YOLOv10, foi conduzida de modo a avaliar tanto a capacidade do modelo em localizar

corretamente as estruturas de interesse quanto seu potencial prático para uso em um

processamento automático de estimativa de idade óssea. Para estimar o desempenho do

modelo, foram utilizadas as métricas padronizadas em detecção de objetos, comparando

as caixas preditas com as caixas de referência anotadas manualmente.

5.1.1 Desempenho em treinamento

Nesta etapa o modelo foi avaliado durante o processo de treinamento e validação,

utilizando exclusivamente o subconjunto de dados reservado para essas fases. O objetivo

dessa análise inicial foi monitorar a convergência do modelo, verificar a estabilidade das

métricas de desempenho e identificar possíveis indícios de sobreajuste. Ao longo das 200

épocas o desempenho do modelo foi monitorado continuamente no conjunto de validação,

e com o critério de early stopping para encerrar o treinamento caso não fosse observada

melhoria significativa nas métricas de validação após 20 épocas consecutivas, a estabilidade

foi atingida na época 69.

O processo de otimização foi conduzido com os hiperparâmetros padrão do YO-

LOv10 utilizando as funções de perda de localização e de classificação. A perda de

localização está associada à precisão dos limites das caixas delimitadoras anotadas e

previstas, a sobreposição, tamanho e centro. Já a perda de classificação representa o erro

de classificação entre as categorias previstas e as reais. Ambas as perdas devem ser as mais

próximas de zero possível.
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de validação podem ser atribuídas à grande variabilidade introduzida intencionalmente

nas etapas de treinamento e validação, com o objetivo de tornar o modelo mais robusto a

diferentes padrões de posicionamento e iluminação. Essa diversidade expõe o modelo a

cenários mais desafiadores do que aqueles presentes na base original, que em sua maioria

apresenta disposições mais padronizadas. Dessa forma, é esperado que o desempenho do

modelo na base completa apresente resultados superiores aos observados na validação. A

Tabela 3 resume os resultados de validação encontrados.

Tabela 3 – Comparação de resultados de validação para o modelo de segmentação

Região Precisão Recall Acurácia

Global 0.97 0.96 0.93

Articulação 0.98 0.93 -

Metacarpo 0.98 0.98 -

Carpo 0.92 1.00 -

5.1.2 Resultados finais

Após a etapa de validação, o modelo foi aplicado sobre o conjunto completo de

18.787 imagens da base de dados. O tempo total de inferência usando apenas CPU foi de

2.188 segundos (≈ 36 minutos), o que corresponde a uma média de aproximadamente 0.11

segundos por imagem, demonstrando a eficiência computacional do modelo YOLOv10s,

mesmo considerando o elevado número de detecções necessárias.

A partir da matriz de confusão apresentada na Figura 31, é possível observar

que o modelo obteve ótimo desempenho, com boa capacidade de generalização após o

treinamento. As três classes de interesse apresentaram taxas de precisão e recall superiores

a 99.5%, o que indica um equilíbrio relevante entre as previsões corretas e o número de

detecções realizadas para cada categoria. Dessa forma, a acurácia global, definida como a

proporção total de classificações corretas, manteve-se igualmente alta, em torno de 99.7%.
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Tabela 4 – Resultados de MAE e MAPE para os modelos CNN e MLP.

Modelo MAE MAPE

CNN (a)

Treino 7.62 7.85%

Validação 11.76 11.40%

CNN (b)

Treino 9.77 9.89%

Validação 11.82 12.04%

CNN (c)

Treino 6.54 7.02%

Validação 9.26 10.13%

MLP

Treino 3.57 3.73%

Validação 4.97 5.04%

5.2.2 Desempenho em teste

Após a fase de otimização utilizando os conjuntos de treinamento e validação, esta

seção apresenta a avaliação final do modelo conduzida no conjunto de teste, um subconjunto

de dados isolado que não foi utilizado em nenhuma etapa anterior do desenvolvimento.

A Figura 34 apresenta o gráfico de dispersão das previsões do modelo comparado

com os valores reais para todas as amostras do conjunto de teste. Para facilitar a visuali-

zação, as imagens no eixo X foram indexadas e ordenadas de acordo com a idade óssea

real, representadas pela linha azul do gráfico, e as previsões individuais do modelo são

representadas pelos pontos verdes. Em um gráfico de dispersão, a precisão do modelo é

inferida pela proximidade dos pontos de dados ao redor da linha que representa a idade

real.

Na análise visual deste gráfico observa-se uma nuvem de previsões densa que segue de

perto da referência, demonstrando que o modelo aprendeu a relação entre as características

da imagem e a idade óssea, mantendo uma alta correlação positiva, especialmente na faixa

etária intermediária. No entanto, algumas discrepâncias permanecem entre as idades mais

jovens e mais velhas. A principal causa técnica é diretamente visível no histograma de

distribuição da base que apresenta sub-representação nas extremidades, que não pode ser

totalmente amenizada com técnicas de aumento de dados.
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aqui proposta é capaz de extrair informações relevantes de maneira eficaz, alcançando

desempenho equivalente ao de métodos consolidados na área.

Por outro lado, (Andleeb et al., 2025) reportaram um MAE consideravelmente

inferior, de 4,87 meses. Entretanto, tal resultado foi obtido sobre um conjunto de teste

clínico específico composto por pacientes com Escoliose Idiopática do Adolescente (EIA).

Embora esse modelo também tenha sido treinado sobre a base RSNA, o desempenho

superior pode estar relacionado tanto à especificidade do conjunto de teste quanto à

arquitetura DenseNet201 empregada.

Alguns estudos, contudo, apresentaram erros substancialmente maiores. (Wibisono

et al., 2019) obtiveram MAE de 14,78 meses ao empregar VGG16, com erros ainda maiores

para métodos clássicos de aprendizado de máquina. (Zulkifley et al., 2021) alcançaram um

MAE de 7,69 meses, enquanto (Sirati-Amsheh et al., 2025) reportaram 9,30 meses com

sua abordagem pré-treinada de forma não supervisionada. (Pan et al., 2020), ao empregar

conjuntos de regressores sobre features extraídas por Inception-ResNet-V2, reportaram

MAE de 8,59 meses. O desempenho superior do modelo aqui apresentado frente a essas

abordagens pode ser atribuído a diferenças estruturais na arquitetura ou à estratégia de

treinamento adotada.

5.3.2 Comparação de metodologia

A análise comparativa das metodologias evidencia que distintas escolhas arquite-

turais e de pré-processamento exercem impacto direto no desempenho final dos modelos.

De forma semelhante à proposta de (Iglovikov et al., 2018), o presente estudo também se

baseia na segmentação da imagem em regiões específicas de interesse. Os autores treinaram

CNNs independentes sobre as regiões carpais e metacarpais/falanges, concluindo que esta

última é mais informativa, exceto em fases iniciais do desenvolvimento. Observaram que o

conjunto de modelos regionais superava o desempenho das redes individuais, corroborando

a relevância da abordagem regional. O método aqui proposto expande essa ideia ao incluir

três regiões distintas e realizar a fusão via MLP, em contraste com a simples média

ponderada.

(Guo et al., 2022) também exploraram regiões de interesse inspiradas no método

Tanner-Whitehouse. O desempenho obtido (MAE de 6,07 meses) é praticamente idêntico

ao do presente trabalho, sugerindo que ambas as estratégias são eficazes na combinação

das representações regionais. (Zulkifley et al., 2021), por sua vez, recorreram à arquitetura

Xception. Apesar da sofisticação da abordagem, o MAE obtido (7,69 meses) pode indicar

que a definição manual de regiões, aliada ao MLP, mostrou-se mais eficiente do que essa

implementação específica, possivelmente também em função da ausência da variável de

sexo. (Chu et al., 2018) abordaram o problema de forma distinta, convertendo a regressão

contínua em um conjunto de classificações ordinais (K–1 classes). Essa reformulação
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resultou em MAE competitivos (5,98 meses), sugerindo que abordagens ordinais podem

oferecer vantagens, embora o presente trabalho mantenha a formulação de regressão direta.

O sexo é um fator clinicamente relevante para a estimativa da idade óssea, e o modelo

proposto o incorpora explicitamente como variável de entrada no MLP final. Estudos

anteriores também reconheceram sua importância. (Iglovikov et al., 2018) observaram

que modelos específicos por sexo podiam superar os modelos mistos, enquanto (Pan et

al., 2020) reportaram resultados semelhantes ao treinar redes separadas para cada corte.

(Mehta et al., 2021) incluíram a variável de gênero na entrada da rede Inception V3, ao

passo que (Zulkifley et al., 2021) optaram por omiti-la por motivos de privacidade, o que

pode ter contribuído para o desempenho inferior. A inclusão explícita do sexo, portanto,

representa um diferencial metodológico relevante e possivelmente vantajoso em termos

preditivos.

Todas as pesquisas utilizaram exclusivamente o dataset RSNA, o que pode limitar

a generalização clínica. A variabilidade introduzida utilizando as bases RSNA e RHPE

em conjunto representa uma vantagem significativa, aumentando a robustez do modelo.

(Andleeb et al., 2025) evidenciaram a importância dessa questão ao testar sua rede em

pacientes com EIA, fora da distribuição original da RSNA. Além disso, a metodologia

aqui aplicada faz distinção explícita entre os conjuntos de treinamento, validação e teste,

reservando este último para avaliação final. Tal prática reduz o risco de otimização indevida

de hiperparâmetros sobre o conjunto de teste, evitando estimativas infladas de desempenho,

uma limitação observada em estudos que utilizam apenas divisões 70/30 ou 80/20, como

(Guo et al., 2022) e (Wibisono et al., 2019).
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6 CONCLUSÃO

6.1 Introdução

A aplicação de técnicas de aprendizado de máquina tem impulsionado uma trans-

formação significativa na área médica, especialmente em tarefas diagnósticas baseadas

em imagem. Sistemas de diagnóstico computadorizados, potencializados por redes neurais

convolucionais, demonstram uma capacidade crescente de identificar padrões complexos,

superando em alguns casos a variabilidade humana e oferecendo suporte objetivo à decisão

clínica. A avaliação da idade óssea é um exemplo proeminente dessa contribuição, onde a

análise automatizada de radiografias de mão e punho auxilia no diagnóstico de distúrbios

de crescimento. Este capítulo final tem como objetivo consolidar as conclusões extraídas do

presente trabalho, destacando seus resultados, contribuições metodológicas e delineando

caminhos para investigações futuras.

6.2 Conclusões Finais

A metodologia proposta neste trabalho constituiu-se de um fluxo de três etapas.

Inicialmente, as imagens de radiografias da mão foram submetidas a um estágio de pré-

processamento, no qual foram aplicadas técnicas de realce de contraste, com o objetivo

de destacar estruturas ósseas relevantes. Em seguida, foi implementado um modelo de

detecção de objetos (YOLOv10) para a segmentação automática das regiões de interesse

(articulação, metacarpo e carpo). Este modelo de detecção demonstrou um ótimo desem-

penho, alcançando uma acurácia global de 99,7% na base total. Essa etapa foi essencial

para garantir que as imagens utilizadas pelo modelo de regressão representassem de forma

precisa as regiões anatômicas relevantes.

A terceira etapa, focada na avaliação da idade óssea, empregou uma arquitetura

híbrida projetada para otimizar a extração de características regionais. A metodologia

proposta empregou três redes neurais convolucionais (CNNs) customizadas, onde cada

rede se especializou em uma região de interesse distinta da radiografia da mão (articulação,

metacarpo e carpo). As saídas preditivas de cada CNN foram combinadas através de uma

média ponderada, ajustada pelos respectivos erros de validação de cada rede, e concatenadas

com a informação demográfica do sexo do paciente. Este vetor de características consolidado

serviu como entrada para um Perceptron de Múltiplas Camadas (MLP) final, responsável

pela regressão da idade óssea.

A avaliação final do modelo, realizada em um conjunto de teste isolado, confirmou

a eficácia e a robustez da abordagem. O modelo alcançou um Erro Médio Absoluto (MAE)

de 6,13 meses e um Erro Percentual Absoluto Médio (MAPE) de 6,45%. A proximidade
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entre o MAE de teste e o de validação é um indicador forte da capacidade de generalização

do modelo. Este desempenho posiciona o modelo proposto de forma competitiva em

relação ao estado da arte, atingindo um nível de precisão que não só se equipara a diversas

abordagens publicadas, mas também se enquadra dentro da variabilidade interobservador

frequentemente aceita na prática clínica.

6.3 Contribuições

Os resultados alcançados evidenciam que este estudo oferece contribuições signifi-

cativas para o campo do processamento de imagens médicas. A combinação de múltiplas

CNNs regionais, especializadas em diferentes áreas anatômicas, com um MLP final para a

fusão de características e integração de dados demográficos (sexo), demonstrou ser uma

estratégia eficaz, validando a arquitetura de deep learning híbrida e customizada.

Além da arquitetura em si, uma contribuição metodológica significativa foi a

utilização de dois conjuntos de dados distintos para o treinamento. Esta abordagem,

ainda pouco comum na literatura que predominantemente utiliza apenas a base RSNA,

injetou uma variabilidade crucial no processo de treinamento. A exposição do modelo

a diferentes equipamentos, protocolos de aquisição e perfis populacionais melhora sua

robustez e capacidade de generalização para amostras clínicas do mundo real, que podem

divergir da distribuição do conjunto de dados do desafio RSNA.

Adicionalmente, embora modelos de detecção de objetos como o YOLO (You Only

Look Once) sejam avançados, sua aplicação específica para a localização automática de

ROIs no contexto da avaliação de idade óssea ainda é escassa. A maioria dos trabalhos

existentes tende a não empregar técnicas de segmentação específicas ou a utilizar modelos

de segmentação distintos, geralmente baseados em abordagens convencionais. O uso do

YOLO representa uma abordagem promissora e relevante para o avanço na automatização

do fluxo de análise, com alta fidelidade e baixo custo de anotação, contribuindo para tornar

o processo mais eficiente e independente de intervenção manual.

As estratégias adotadas para o pré-processamento, segmentação e extração de

regiões demonstraram ser eficientes, de implementação simples e com baixo custo com-

putacional, o que as torna adequadas para diferentes aplicações baseadas em imagens

radiográficas digitalizadas. A solução proposta foi integralmente desenvolvida neste tra-

balho, apresentando flexibilidade para ser treinada com distintos conjuntos de dados e

demandando um tempo de treinamento compatível com aplicações práticas, e um rápido

tempo de inferência.



81

6.4 Trabalhos Futuros

Embora os resultados obtidos sejam promissores, este trabalho abre diversas oportu-

nidades para investigações futuras e aprimoramentos. As seguintes direções são propostas:

• Ampliar o conjunto de dados utilizado no treinamento, especialmente nas faixas

etárias com menor representatividade, a fim de reduzir o desbalanceamento e aprimorar a

capacidade de generalização do modelo. Essa expansão pode incluir tanto a coleta de novos

exames quanto o uso de data augmentation avançado ou geração de imagens sintéticas por

meio de redes generativas.

• Explorar novas técnicas de pré-processamento de imagens, com o objetivo de

otimizar a segmentação das estruturas ósseas da mão e do punho. Métodos baseados em

filtragem adaptativa, equalização local de contraste e normalização de intensidade podem

contribuir para uma extração mais precisa das regiões de interesse.

• Avaliar a aplicabilidade do modelo em diferentes bases externas, oriundas de

hospitais ou bancos de imagens públicos, a fim de verificar sua capacidade de generalização

e robustez frente a variações de protocolo de aquisição e qualidade das radiografias.

• Aprimorar a arquitetura da rede neural convolucional (CNN), realizando ajustes

finos de Transfer Learning com modelos pré-treinados em bases médicas de raios X, de

modo a acelerar o treinamento e melhorar a extração de características relevantes.

• Investigar diferentes configurações arquiteturais, como o aumento do número de

camadas convolucionais e da resolução das imagens de entrada, bem como a execução em

plataformas computacionais mais potentes, visando avaliar o impacto desses fatores sobre

a acurácia e o tempo de processamento.



82

REFERÊNCIAS

ACHARYA, T.; RAY, A. K. Image processing: principles and applications. [S.l.:

s.n.]: John Wiley & Sons, 2005.

AMARI, S.-i. Backpropagation and stochastic gradient descent method. Neurocompu-
ting, Elsevier, v. 5, n. 4-5, 1993. DOI: https://doi.org/10.1016/0925-2312(93)90006-O.

ANDLEEB, I. et al. Automatic evaluation of bone age using hand radiographs and
pancorporal radiographs in adolescent idiopathic scoliosis. Diagnostics, MDPI, v. 15,
n. 4, 2025. DOI: https://doi.org/10.3390/diagnostics15040452.

BALDOVINO, R. G. et al. Comprehensive analysis on ultralytics-supported yolo models for
detection and recognition of large office objects for indoor navigation. Procedia Computer
Science, Elsevier, v. 246, 2024. DOI: https://doi.org/10.1016/j.procs.2024.09.158.

BENGIO, Y. Practical recommendations for gradient-based training of deep architectures.
In: Neural networks: Tricks of the trade: Second edition. [S.l.: s.n.]: Springer,
2012. p. 437–478. DOI: https://doi.org/10.1007/978-3-642-35289-826.

BISHOP, C. M.; NASRABADI, N. M. Pattern recognition and machine learning.
[S.l.: s.n.]: Springer, 2006. v. 4.

BUCKLER, J. How to make the most of bone ages. Archives of disease in childhood,
BMJ Publishing Group, v. 58, n. 10, 1983. DOI: https://doi.org/10.1136/adc.58.10.761.

BÜKEN, B. et al. Is the assessment of bone age by the greulich–pyle method reliable at
forensic age estimation for turkish children? Forensic science international, Elsevier,
v. 173, n. 2-3, 2007. DOI: https://doi.org/10.1016/j.forsciint.2007.02.023.

BULL, R. et al. Bone age assessment: a large scale comparison of the greulich and pyle,
and tanner and whitehouse (tw2) methods. Archives of disease in childhood, BMJ
Publishing Group Ltd, v. 81, n. 2, 1999. DOI: https://doi.org/10.1136/adc.81.2.172.

CAVALLO, F. et al. Evaluation of bone age in children: a mini-review. Frontiers in Pe-
diatrics, Frontiers Media SA, v. 9, 2021. DOI: https://doi.org/10.3389/fped.2021.580314.

CHU, M. et al. Bone age assessment based on two-stage deep neural networks. In: IEEE.
2018 Digital Image Computing: Techniques and Applications (DICTA). [S.l.:

s.n.], 2018. p. 1–6. DOI: https://doi.org/10.1109/DICTA.2018.8615764.

COLE, T. J. et al. Ethnic and sex differences in skeletal maturation among the birth to
twenty cohort in south africa. Archives of disease in childhood, BMJ Publishing
Group Ltd, v. 100, n. 2, 2015. DOI: https://doi.org/10.1136/archdischild-2014-306399.

CUNNINGHAM, C. et al. Bone development. Developmental Juvenile Osteology,
Elsevier, 2016. DOI: https://doi.org/10.1016/B978-0-12-382106-5.00003-7.

DIGHE, P. C.; GURU, S. K. Survey on image resizing techniques. International
Journal of Science and Research (IJSR), v. 3, n. 12, 2014.



83

ESCOBAR, M. et al. Hand pose estimation for pediatric bone age assessment.
In: SPRINGER. International conference on medical image computing
and computer-assisted intervention. [S.l.: s.n.], 2019. p. 531–539. DOI:
https://doi.org/10.1007/978-3-030-32226-759.

GILSANZ, V.; RATIB, O. Hand bone age: a digital atlas of skeletal maturity.
[S.l.: s.n.]: Springer, 2005.

GONZALES, R. C.; WINTZ, P. Digital image processing. [S.l.: s.n.]: Addison-Wesley
Longman Publishing Co., Inc., 1987.

GOODFELLOW, I. et al. Deep learning. [S.l.: s.n.]: MIT press Cambridge, 2016. v. 1.

GREULICH, W.; PYLE, S. Radiographic Atlas of Skeletal Development of the
Hand and Wrist. Stanford University Press, 1959. ISBN 9780804703987. Disponível em:
https://books.google.com.br/books?id=olezJFYxM6oC.

GUO, L. et al. Bone age assessment based on deep convolutional features and fast extreme
learning machine algorithm. Frontiers in Energy Research, Frontiers Media SA, v. 9,
2022. DOI: https://doi.org/10.3389/fenrg.2021.813650.

HAYKIN, S. Neural Networks and Learning Machines. Prentice Hall, 2009.
(Neural networks and learning machines, v. 10). ISBN 9780131471399. Disponível em:
https://books.google.com.br/books?id=K7P36lKzI\_QC.

HOU, Y. et al. The state-of-the-art review on applications of intrusive sensing, image
processing techniques, and machine learning methods in pavement monitoring and analysis.
Engineering, Elsevier, v. 7, n. 6, 2021. DOI: https://doi.org/10.1016/j.eng.2020.07.030.

IGLOVIKOV, V. I. et al. Paediatric bone age assessment using deep convolutional
neural networks. In: SPRINGER. Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support: 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018,
Proceedings 4. [S.l.: s.n.], 2018. p. 300–308. DOI: https://doi.org/10.1007/978-3-030-
00889-534.

JIMÉNEZ-CASTELLANOS, J. et al. Skeletal maturation of wrist and hand ossification
centers in normal spanish boys and girls: a study using the greulich-pyle method.
Cells Tissues Organs, S. Karger AG Basel, Switzerland, v. 155, n. 3, 1996. DOI:
https://doi.org/10.1159/000147806.

JOCHER, G.; QIU, J. Ultralytics YOLO11. 2024. Disponível em: https:
//github.com/ultralytics/ultralytics.

KANDEL, I.; CASTELLI, M. The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset. ICT express, Elsevier, v. 6,
n. 4, 2020. DOI: https://doi.org/10.1016/j.icte.2020.04.010.

KHAN, K.; ELAYAPPEN, A. S. Bone growth estimation using radiology (greulich–pyle
and tanner–whitehouse methods). Handbook of growth and growth monitoring in
health and disease, Springer, 2012. DOI: https://doi.org/10.1007/978-1-4419-1795-9176.



84

KIM, S. Y.; YANG, S. W. Assessment of bone age: A comparison of the greulich pyle
method to the tanner whitehouse method. Endocrinology and Metabolism, Korean
Endocrine Society, v. 13, n. 2, 1998.

KOWO-NYAKOKO, F. et al. Evaluation of two methods of bone age assessment
in peripubertal children in zimbabwe. Bone, Elsevier, v. 170, 2023. DOI:
https://doi.org/10.1016/j.bone.2023.116725.

LITJENS, G. et al. A survey on deep learning in medical image analysis. Medical image
analysis, Elsevier, v. 42, 2017. DOI: https://doi.org/10.1016/j.media.2017.07.005.

MALINA, R. M. et al. Growth, maturation, and physical activity. [S.l.: s.n.]:
Human kinetics, 2004.

MAW, J. et al. Hand anatomy. British Journal of Hospital Medicine, MA Healthcare
London, v. 77, n. 3, 2016. DOI: https://doi.org/10.12968/hmed.2016.77.3.C34.

MEHTA, C. et al. Deep learning framework for automatic bone age assessment. In:
IEEE. 2021 43rd Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC). [S.l.: s.n.], 2021. p. 3093–3096. DOI:
https://doi.org/10.1109/EMBC46164.2021.9629650.

MELMED, S. et al. Williams textbook of endocrinology E-Book. [S.l.: s.n.]:
Elsevier Health Sciences, 2015.

MUGHAL, A. M. et al. Bone age assessment methods: a critical review. Pakistan
journal of medical sciences, Professional Medical Publications, v. 30, n. 1, 2014. DOI:
https://doi.org/10.12669/pjms.301.4295.

MUMUNI, A.; MUMUNI, F. Data augmentation: A comprehensive survey of modern ap-
proaches. Array, Elsevier, v. 16, 2022. DOI: https://doi.org/10.1016/j.array.2022.100258.

NIELSEN, M. A. Neural networks and deep learning. [S.l.: s.n.]: Determination
press San Francisco, CA, USA, 2015. v. 25.

PAN, X. et al. Fully automated bone age assessment on large-scale hand x-ray
dataset. International journal of biomedical imaging, Hindawi, 2020. DOI:
https://doi.org/10.1155/2020/8460493.

PAN, Y. Different types of neural networks and applications: Evidence from feedforward,
convolutional and recurrent neural networks. Highlights in Science, Engineering and
Technology, v. 85, 03 2024. DOI: https://doi.org/10.54097/6rn1wd81.

PARSANIA, P. et al. A review: Image interpolation techniques for image scaling.
International Journal of Innovative Research in Computer and Communication
Engineering, v. 2, n. 12, 2014. DOI: https://doi.org/10.15680/IJIRCCE.2014.0212024.

PINCHI, V. et al. Skeletal age estimation for forensic purposes: A comparison of gp, tw2
and tw3 methods on an italian sample. Forensic science international, Elsevier, v. 238,
2014. DOI: https://doi.org/10.1016/j.forsciint.2014.02.030.

PRATT, W. K. Digital image processing: PIKS Scientific inside. [S.l.: s.n.]: Wiley
Online Library, 2007. v. 4.



85

QUEIROZ, J. E. R. de; GOMES, H. M. Introdução ao processamento digital de imagens.
Rita, v. 13, n. 2, 2006.

RAIAAN, M. A. K. et al. A systematic review of hyperparameter optimization techniques
in convolutional neural networks. Decision Analytics Journal, Elsevier, v. 11, 2024.
DOI: https://doi.org/10.1016/j.dajour.2024.100470.

RASAMOELINA, A. D. et al. A review of activation function for artificial neural
network. In: IEEE. 2020 IEEE 18th world symposium on applied machine
intelligence and informatics (SAMI). [S.l.: s.n.], 2020. p. 281–286. DOI:
https://doi.org/10.1109/SAMI48414.2020.9108717.

REDMON, J. et al. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2016. p. 779–788. DOI: https://doi.org/10.1109/CVPR.2016.91.

RIPLEY, B. D. Pattern recognition and neural networks. [S.l.: s.n.]: Cambridge
university press, 2007.

RSNA. 2017. Disponível em: https://www.rsna.org/education/ai-resources-and-training/
ai-image-challenge/rsna-pediatric-bone-age-challenge-2017.

SANCTIS, V. D. et al. Hand x-ray in pediatric endocrinology: Skeletal age assessment
and beyond. Indian journal of endocrinology and metabolism, Medknow, v. 18, n.
Suppl 1, 2014. DOI: https://doi.org/10.4103/2230-8210.145076.

SATOH, M. Bone age: assessment methods and clinical applications. Clinical Pediatric
Endocrinology, The Japanese Society for Pediatric Endocrinology, v. 24, n. 4, 2015.
DOI: https://doi.org/10.1297/cpe.24.143.

SHAH, N. et al. Comparison of bone age assessments by gruelich-pyle, gilsanz-ratib,
and tanner whitehouse methods in healthy indian children. Indian Journal
of Endocrinology and Metabolism, Medknow, v. 25, n. 3, 2021. DOI:
https://doi.org/10.4103/ijem.IJEM82620.

SHOME, S. K.; VADALI, S. R. K. Enhancement of diabetic retinopathy imagery using
contrast limited adaptive histogram equalization. International Journal of Computer
Science and Information Technologies, Citeseer, v. 2, n. 6, 2011.

SIRATI-AMSHEH, M. et al. Ae-bonet: A deep learning method for pediatric bone age
estimation using an unsupervised pre-trained model. Journal of Biomedical Physics
& Engineering, v. 15, n. 3, 2025.

TAN, L.; JIANG, J. Digital signal processing: fundamentals and applications.
[S.l.: s.n.]: Academic press, 2018.

TANNER, J. et al. Prediction of adult height from height, bone age, and occurrence
of menarche, at ages 4 to 16 with allowance for midparent height. Archives
of disease in childhood, BMJ Publishing Group Ltd, v. 50, n. 1, 1975. DOI:
https://doi.org/10.1136/adc.50.1.14.

TERVEN, J. et al. A comprehensive review of yolo architectures in computer vision: From
yolov1 to yolov8 and yolo-nas. Machine learning and knowledge extraction, MDPI,
v. 5, n. 4, 2023. DOI: https://doi.org/10.3390/make5040083.



86

THODBERG, H. H. et al. The bonexpert method for automated determination of skeletal
maturity. IEEE transactions on medical imaging, IEEE, v. 28, n. 1, 2008. DOI:
https://doi.org/10.1109/TMI.2008.926067.

TOET, A.; WU, T. Efficient contrast enhancement through log-power histogram
modification. Journal of Electronic Imaging, Society of Photo-Optical Instrumentation
Engineers, v. 23, n. 6, 2014. DOI: https://doi.org/10.1117/1.JEI.23.6.063017.

VAQUERO, D. et al. A survey of image retargeting techniques. In: SPIE. Applications
of digital image processing XXXIII. [S.l.: s.n.], 2010. v. 7798, p. 328–342. DOI:
https://doi.org/10.1117/12.862419.

WANG, Z. et al. A comprehensive survey on data augmentation. 2024.

WIBISONO, A. et al. Deep learning and classic machine learning approach for
automatic bone age assessment. In: IEEE. 2019 4th Asia-Pacific Conference
on Intelligent Robot Systems (ACIRS). [S.l.: s.n.], 2019. p. 235–240. DOI:
https://doi.org/10.1109/ACIRS.2019.8935965.

ZAFAR, A. M. et al. An appraisal of greulich-pyle atlas for skeletal age assessment in
pakistan. JPMA. The Journal of the Pakistan Medical Association, v. 60, n. 7,
2010.

ZHANG, C. et al. Understanding deep learning requires rethinking generalization. 2016.

ZHANG, S.-Y. et al. Standards of tw3 skeletal maturity for chinese chil-
dren. Annals of human biology, Taylor & Francis, v. 35, n. 3, 2008. DOI:
https://doi.org/10.1080/03014460801953781.

ZULKIFLEY, M. A. et al. Intelligent bone age assessment: an automated system to detect
a bone growth problem using convolutional neural networks with attention mechanism.
Diagnostics, MDPI, v. 11, n. 5, 2021. DOI: https://doi.org/10.3390/diagnostics11050765.


	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Considerações Iniciais
	Objetivo
	Hipóteses
	Estrutura do trabalho

	Literatura Relacionada
	Introdução
	Métodos Clássicos de Avaliação
	Greulich and Pyle
	Tanner and Whitehouse

	Algoritmos de Machine Learning
	Considerações Finais

	Fundamentação Teórica
	Processamento Digital de Imagens
	Canais de cores
	Equalização de Imagem
	Redimensionamento
	Data Augmentation

	Anatomia óssea da mão
	RNA - Redes Neurais Artificiais
	MLP - Multilayer Perceptron
	CNN - Convolutional Neural Network
	YOLO - You Only Look Once
	Hiperparâmetros e Configurações

	Métricas de Performance
	Classificação
	Regressão


	Materiais e Métodos
	Introdução
	Banco de dados
	Softwares e Bibliotecas
	Ambiente de desenvolvimento
	Bibliotecas e pacotes
	Ferramentas auxiliares

	Pré Processamento
	Extração das regiões de interesse
	Detecção da Idade Óssea

	Resultados
	Modelo de segmentação de regiões
	Desempenho em treinamento
	Resultados finais

	Modelo de detecção da idade óssea
	Desempenho em treinamento
	Desempenho em teste

	Discussões
	Comparação geral de desempenho
	Comparação de metodologia


	Conclusão
	Introdução
	Conclusões Finais
	Contribuições
	Trabalhos Futuros

	Referências

