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RESUMO

A avaliacdo da idade éssea é uma ferramenta diagnéstica essencial na pratica pediatrica e
endocrinoldgica, utilizada para monitorar a maturacao esquelética e auxiliar no diagnéstico
de disturbios de crescimento. Os métodos tradicionais de avaliacao, como os atlas de
Greulich and Pyle (GP) ou o sistema de pontuagao de Tanner-Whitehouse (TW), dependem
da analise visual de radiografias da mao e punho. Contudo, esses métodos manuais
sao reconhecidamente demorados, subjetivos e suscetiveis a uma variabilidade inter e
intraobservador consideravel, o que pode impactar a consisténcia do acompanhamento
clinico. O aprendizado de maquina surge como uma solugdo para reduzir essas limitagoes,
oferecendo o potencial de serem objetivos, rapidos e reprodutiveis. Este trabalho propoe uma
metodologia hibrida e automatizada para a avaliacao. O fluxo desenvolvido consiste em trés
etapas principais: primeiramente, as imagens passam por uma fase de pré-processamento,
onde a equalizacao de histograma é aplicada para normalizar o brilho e o contraste. Em
seguida, um modelo de deteccao de objetos (YOLO) é utilizado para localizar e segmentar
automaticamente trés regides de interesse dsseas (articulacao, metacarpo e carpo). Por
fim, uma arquitetura de regressao customizada é empregada, onde trés Redes Neurais
Convolucionais (CNNs) independentes processam as imagens. As saidas dessas redes sdo
entao fundidas, através de uma média ponderada ajustada, e combinadas com a informacao
demografica do sexo do paciente, servindo como entrada para um Perceptron de Multiplas
Camadas (MLP) que realiza a predigao final. A avaliagao final do modelo, conduzida
em um conjunto de teste isolado, resultou em um Erro Médio Absoluto (MAE) de 6,13
meses e um Erro Percentual Absoluto Médio (MAPE) de 6,45%. Estes resultados validam
a eficacia da arquitetura hibrida proposta, demonstrando que a fusao de caracteristicas
regionais especializadas e dados demograficos produz um modelo com alta capacidade de
generalizagao e precisao competitiva em relacao ao estado da arte, sendo clinicamente

relevante para o apoio diagnostico.

Palavras-chave: aprendizado de maquina. deteccao de objetos. idade Ossea. python.

processamento digital de imagens. redes neurais convolucionais. YOLO.



ABSTRACT

Bone age assessment is an essential diagnostic tool in pediatric and endocrinological
practice, used to monitor skeletal maturation and assist in the diagnosis of growth
disorders. Traditional assessment methods, such as the Greulich and Pyle (GP) atlas or
the Tanner-Whitehouse (TW) scoring system, rely on the visual analysis of hand and
wrist radiographs. However, these manual approaches are known to be time-consuming,
subjective, and prone to considerable inter- and intra-observer variability, which may
compromise the consistency of clinical follow-up. Machine learning emerges as a solution to
reduce these limitations, offering the potential to be objective, fast, and reproducible. This
work proposes a hybrid and fully automated methodology for bone age evaluation. The
developed pipeline consists of three main stages: first, the images undergo a pre-processing
phase, in which histogram equalization is applied to normalize brightness and contrast.
Next, an object detection model (YOLO) is used to automatically locate and segment
three bone regions of interest (joint, metacarpal, and carpal). Finally, a custom regression
architecture is employed, in which three independent Convolutional Neural Networks
(CNNs) process the images. The outputs of these networks are then fused through an
adjusted weighted average and combined with the patient’s sex information, serving as
input to a Multilayer Perceptron (MLP) that performs the final prediction. The final
evaluation of the model, conducted on an isolated test set, resulted in a Mean Absolute
Error (MAE) of 6.13 months and a Mean Absolute Percentage Error (MAPE) of 6.45%.
These results validate the effectiveness of the proposed hybrid architecture, demonstrating
that the integration of specialized regional features with demographic data yields a model
with high generalization capability and competitive accuracy compared to the state of the

art, making it clinically relevant for diagnostic support.

Keywords: bone age. convolutional neural networks. digital image processing. machine

learning. object detection. python. YOLO.
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1 INTRODUCAO

1.1 Consideracées Iniciais

A avaliagao da idade 6ssea é uma pratica clinica fundamental e rotineira na pediatria,
utilizada para monitorar a maturagao esquelética de criangas e adolescentes (Satoh, 2015).
A discrepancia entre a idade dssea de um paciente e sua idade cronoldgica é um indicador
diagnostico vital para a investigacao de uma variedade de condigoes, incluindo distirbios
de crescimento, desordens enddcrinas (como puberdade precoce ou atrasada) e sindromes
pedidtricas. Na pratica clinica, uma idade dssea 20% abaixo ou acima da idade cronolégica
é considerada anormal (Melmed et al., 2015). A utilidade deste método cessa quando o
individuo atinge a maturidade esquelética, que é o ponto em que o crescimento 6sseo

longitudinal termina, geralmente em torno dos 18 ou 19 anos (Malina et al., 2004).

Historicamente, a avaliacao da idade dssea é realizada por radiologistas através
da inspecao visual de radiografias da mao e punho esquerdos. Dois métodos classicos,
desenvolvidos em meados do século XX, dominam esta pratica: o método de Greulich
& Pyle (GP) e o método de Tanner & Whitehouse (TW). O método GP (Greulich;
Pyle, 1959), se baseia em uma comparacao holistica da radiografia do paciente com um
atlas de imagens de referéncia padronizadas, selecionando a imagem do atlas que mais se
assemelha & do paciente. Por outro lado, o método TW (Tanner et al., 1975), em suas
varias iteragoes (como o TW2 e TW3), adota uma abordagem mais granular e analitica.
Neste método, regices de interesse especificas, como os 0ssos carpais e as epifises das
falanges, sao pontuadas individualmente com base em seus estagios de maturacao, e a

soma desses escores é convertida em uma idade dssea.

O método GP ¢é o padrao dominante e quase exclusivo na prética clinica diaria de
endocrinologistas e radiologistas. Sua utilizagdo nao é apenas uma escolha preferencial
baseada na rapidez, mas uma imposicao estrutural dos protocolos de satiide publica. O
método T'W, apesar de sua comprovada superioridade cientifica e estatistica, permanece
confinado a nichos académicos, ensaios clinicos farmacéuticos e casos de extrema complexi-
dade dismoérfica, devido a sua inviabilidade temporal no fluxo de trabalho moderno (Kim;
Yang, 1998).

1.2 Objetivo

Apesar de sua utilidade clinica estabelecida, os métodos manuais sao inerentemente
dependentes da experiéncia do radiologista, consomem um tempo clinico valioso e estao
sujeitos a uma variabilidade interobservador e intraobservador significativa, o que pode

afetar a consisténcia do diagnéstico (Thodberg et al., 2008). Neste contexto, a evolugao do
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aprendizado de maquina, e especificamente das redes neurais profundas (deep learning),
oferece um potencial transformador para a radiologia diagnéstica. Sistemas de deep learning
tém demonstrado uma capacidade notavel na analise de imagens médicas, fornecendo
ferramentas objetivas, rapidas e reprodutiveis que podem auxiliar no diagnéstico (Litjens et
al., 2017). A automatizacao dessa tarefa visa, portanto, mitigar as limitagdes dos métodos

manuais, oferecendo uma avaliacao consistente, precisa e instantanea.

O presente trabalho propoe uma metodologia hibrida para a avaliacdo automatizada
da idade d6ssea baseada em aprendizado profundo. A abordagem consiste em um fluxo de
trés etapas. Primeiramente, as imagens de radiografias da mao passam por um estégio de
pré-processamento, no qual sdo aplicadas técnicas de realce de contraste com o objetivo
de reduzir variacoes de aquisi¢cao, melhorar a qualidade visual e enfatizar estruturas dsseas
relevantes. Em seguida, um modelo de detecgao de objetos You Only Look Once (Vocé S
Olha Uma Vez) (YOLO) é empregado para localizar e segmentar automaticamente multi-
plas regioes de interesse da mao. Por fim, essas regioes sao processadas por Convolutional
Neural Networks (Redes Neurais Convolucionais) (CNNs) especializadas em cada regido,
cujas saidas, combinadas com a informacao de sexo do paciente, sdo integradas por um
Multilayer Perceptron (Perceptron de Multiplas Camadas) (MLP) para a regressao final
da idade 6ssea. O objetivo final é desenvolver e validar um sistema de diagndstico robusto
e preciso, capaz de generalizar para novos dados e servir como uma ferramenta de apoio

confiavel para endocrinologistas pediatricos e radiologistas.

1.3 Hipoteses

Este trabalho parte de hipoteses metodoldgicas especificas. A hipdtese central é
que um modelo de deep learning que analisa regioes de interesse anatomicas de forma
especializada e, em seguida, funde essa informacao é capaz de alcangar um desempenho
superior ao de modelos que analisam a imagem da mao de forma holistica. Assume-se que
um detector de objetos moderno (YOLO) pode ser treinado com um conjunto de dados

limitado para extrair essas regidoes com alta precisao, viabilizando a arquitetura regional.

Adicionalmente, levanta-se a hipotese de que a inclusao de multiplos conjuntos de
dados no treinamento e a integragao de informagoes demograficas sao fatores cruciais para
melhorar a robustez e a generalizacao do modelo final. Espera-se que o modelo proposto

alcance um resultado competitivo com o estado da arte, validando a eficacia da arquitetura

hibrida.

1.4 Estrutura do trabalho

O presente trabalho foi dividido nos seguintes capitulos:

« Capitulo 1 - Introdugao - Introducao geral do trabalho, contendo consideragoes sobre
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os métodos manuais existentes, a motivacao e objetivos definidos e a estrutura do
trabalho.

Capitulo 2 - Literatura Relacionada - Aborda a literatura relacionada, revisando os
métodos classicos de radiologia, e os algoritmos aplicados ao problema da avaliagao

da idade 6ssea, métodos utilizados e resultados obtidos.

Capitulo 3 - Fundamentacao Tedrica - Detalha a fundamentacao tedrica, cobrindo
os conceitos de Processamento Digital de Imagens, Redes Neurais Artificiais, hiper-

parametros e as métricas de performance utilizadas.

Capitulo 4 - Metodologia do Trabalho - Descreve a metodologia empregada, incluindo
a definicao do banco de dados, as ferramentas de software, o pré-processamento, a
estratégia de extragdo de regioes de interesse e o modelo final de deteccao da idade

Ossea.

Capitulo 5 - Resultados - Apresenta os resultados obtidos, detalhando o desempenho
dos modelos de segmentagao de regioes e de detecgao da idade 6ssea, e conduz

discussoes comparativas com o estado da arte.

Capitulo 6 - Conclusao - Finaliza o trabalho com as conclusoes, sintetizando os

resultados, destacando as contribui¢oes da pesquisa e propondo trabalhos futuros.



20

2 LITERATURA RELACIONADA

2.1 Introducao

O desenvolvimento de técnicas eficazes para avaliar a maturidade dssea ¢ essencial
para tomada de decisao clinica e precisao do diagnéstico, contribuindo no tratamento
adequado de diversas condigoes de satide. Novos métodos para automatizar a avaliagao
da maturidade 6ssea foram apresentados nos tultimos anos devido ao avanco das técnicas
de aprendizado de maquina e visao computacional, reduzindo a necessidade de extensas

avaliagoes manuais e diminuindo a possibilidade de erro humano.

Diversas metodologias tradicionais de processamento de imagens tém sido usadas
para resolver o problema com diferentes graus de sucesso. Normalmente, tais abordagens
envolvem procedimentos de pré processamento que envolvem a segmentacao de regioes de
interesse e o treinamento de algoritmos de redes neurais, fazendo uma andlise de regressao
na saida para obter a idade como resultado final. As principais contribui¢des na area
sao revisadas, abordando tanto as técnicas tradicionais de avaliacdo da maturidade éssea

quanto os avancos feitos pelos algoritmos de aprendizado de maquina.

Neste capitulo, primeiramente sao abordadas as técnicas radiolégicas tradicionais
que tém sido empregadas ha anos para avaliar a maturidade 6ssea, juntamente com algumas
de suas desvantagens. Em seguida, as estratégias baseadas em aprendizado de maquina sao
discutidas, enfatizando os algoritmos mais populares, seus usos em diferentes contextos e

os resultados alcangados.

2.2 Métodos Classicos de Avaliacao

Os métodos radiologicos cléssicos se baseiam principalmente na analise manual de
radiografias, com destaque para a analise de regioes especificas, como o punho e a mao
(Cavallo et al., 2021). Os dois métodos mais amplamente adotados foram desenvolvidos
ao longo do século XX e incluem diretrizes elaboradas por William Walter Greulich e
Sarah Idell Pyle (Greulich; Pyle, 1959), e James Tanner e R.H. Whitehouse (Tanner et al.,
1975). Cada um deles apresenta diferentes abordagens para avaliagio da maturacao dssea,
variando no detalhamento e na precisao das suas escalas. Em um momento de transi¢ao
para métodos digitais e automaticos, compreender as bases e limitacoes desses métodos
é essencial para valorizar a evolugao da radiologia e os avancgos tecnoldgicos que buscam

aprimorar a precisao diagnostica.
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2.2.1 Greulich and Pyle

A publicagao de 1959 do Atlas Radiografico de Desenvolvimento Esquelético da
Mao e do Pulso de Greulich e Pyle (GP) continua sendo uma das técnicas mais ampla-
mente utilizadas pelos radiologistas para determinar a idade déssea (Sanctis et al., 2014).
Aproximadamente 14.000 radiografias da mao esquerda foram obtidas e cuidadosamente
analisadas durante o estudo, que envolveu cerca de 1.000 criangas norte americanas exa-
minadas em intervalos de 3 a 12 meses entre 1931 e 1942. A aparéncia das superficies
articulares, as correlacoes de tamanho e a geometria dos ossos nos centros de ossificacao
sao a base para esta abordagem de determinacao da idade 6ssea, com referéncias separadas
para os sexos feminino e masculino. Comparando esses critérios selecionados com centenas
de criancas sauddveis de idades similares, eles foram entao capazes de estimar os desvios

padrao previstos.

Ao comparar as radiografias da mao do paciente com a referéncia mais préxima
listada no atlas, a idade Ossea é determinada, expressa em meses. Na versao original
da abordagem de Greulich e Pyle, cada osso da mao e do punho ¢é intrinsecamente
comparado com radiografias “normais” de referéncia tiradas em vérias idades. A maioria
das institui¢oes emprega uma versao “rapida” modificada deste procedimento (Bull et al.,
1999), na qual é escolhida a correspondéncia mais proxima entre a aparéncia geral de uma
determinada radiografia e as radiografias de referéncia. Este método atualizado pode ser

menos preciso que o original, mas é significativamente mais rapido.

Como o método GP se baseia no estudo de uma populacao especifica de pacientes
de origem socioeconomica branca de classe média a alta, uma possivel desvantagem é
sua aplicabilidade a populagoes diversas modernas. De acordo com pesquisas anteriores
realizadas na Asia, Europa e Africa, o desenvolvimento esquelético destes jovens nio
atende as diretrizes de Greulich e Pyle (Zafar et al., 2010), (Biiken et al., 2007), (Jiménez-
Castellanos et al., 1996), (Kowo-Nyakoko et al., 2023), demonstrando que esse método

nao seria representativo para todo o espectro étnico de criangas na sociedade.

2.2.2 Tanner and Whitehouse

Desenvolvida numa amostra de cerca de 2.600 criancas britanicas de classes socio-
economicas média e baixa, acompanhadas por intervalos variando de aproximadamente
6 meses a 1 ano, a técnica de Tanner e Whitehouse (TW) foi descrita amplamente pela
primeira vez em 1975. Foi posteriormente refinada para TW2 em 1983, utilizando dados
adicionais recolhidos na Europa Ocidental e na Asia. A terceira edicio TW3, que incluiu
dados da América do Norte e da Europa e pontuagoes de maturidade modificadas, foi
publicada em 2001.

A abordagem considera um exame minucioso das caracteristicas estruturais das

regioes Osseas de interesse. Cada osso recebe uma pontuagao determinada pelo sexo e nivel
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de desenvolvimento do paciente. Desta forma, cada regidao clinicamente relevante recebe
uma pontuacao de maturidade, que normalmente é classificada de A até 1. Existem até
trés critérios distintos para cada estdgio: a pontuagdo RUS (que inclui a falange, a ulna e
os ossos metacarpais), a pontuagdo CARPAL (que inclui apenas os ossos do carpo), e as
pontuacoes para 20 ossos especificos do punho e da mao. Cada estagio recebe entdo um
valor numérico. Apds somar esses nimeros, obtém-se um escore esquelético, a partir do

qual a idade esquelética pode ser obtida diretamente nas tabelas.

O principal beneficio deste procedimento é que ele minimiza a variabilidade in-
teroperador ao avaliar cada fragmento 6sseo. Embora o método radiografico TW tenha
sido utilizado e aceito por véarios grupos étnicos (Zhang et al., 2008), (Shah et al., 2021),
(Pinchi et al., 2014), e seja ideal para uso devido a sua capacidade de avaliar centros de
ossificacao separadamente, radiologistas e endocrinologistas consideram-no menos aceitavel
devido a sua complexidade na determinagao da idade dssea (Buckler, 1983). E necesséria
muita experiéncia e mesmo observadores qualificados podem obter resultados diferentes.
O posicionamento inadequado das maos pode alterar significativamente a aparéncia dos
0ssos, causando aumentos significativos na pontuacao esquelética, assim, mesmo a precisao
deste método é limitada. No entanto, é mais objetivo, preciso e reprodutivel que o método

GP, especialmente para pesquisa (Khan; Elayappen, 2012).

2.3 Algoritmos de Machine Learning

O célculo computadorizado da idade éssea a partir de radiografias de punho existe
hé aproximadamente trés décadas (Mughal et al., 2014). Geralmente, esses métodos
englobam etapas de pré-processamento e segmentacao das imagens em regides de interesse,
além do treinamento de algoritmos de Redes Neurais Artificiais (RNAs) de regressao. Para
a avaliacao dos resultados de predigao, a métrica mais comumente utilizada e apresentada
em todos os trabalhos analisados foi 0 Mean Absolute Error (Erro Absoluto Médio) (MAE),
que indica a média de desvio das previsoes. Quanto menor o valor do MAE, mais preciso é
o modelo. Os detalhes matematicos desse indicador serdao discutidos mais profundamente

no capitulo 3.

O trabalho de (Chu et al., 2018) foi dividido em duas partes, a primeira para
segmentar as imagens, e a segunda para a avaliagdo da idade dssea. A segmentacao foi
performada utilizando uma rede neural para geracao de mascaras no formato preciso da
mao do paciente, baseada em U-Net e VGG16. As imagens resultantes dessa aplicagao
foram utilizadas para o treinamento do modelo proposto, também baseado no VGG16. O

resultado alcancado foi um MAE de 5,98 meses.

(Iglovikov et al., 2018) realizou testes com segmentagao da mao inteira e também
com extragao de regioes de centros de ossificagdo. O melhor resultado obtido de MAE de

6,10 meses foi encontrado realizando a técnica de Ensemble Learning, que consiste em
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combinar diversos modelos de predicao mais simples e produzir a partir desses um modelo
agrupado mais complexo, e para esse método, foram agrupados 15 modelos treinados
utilizando arquitetura VGG-Net.

Em (Wibisono et al., 2019), nenhum método de pré-processamento e segmentacao
foi empregado. O trabalho compoe um estudo de comparagao entre duas redes, VGG16 e

MobileNet, com resultados de 14,78 meses e 17,09 meses respectivamente.

Em (Pan et al., 2020) o método proposto alcangou MAE de 8,59 meses, onde foi
aplicada uma pré etapa de segmentacao precisa da mao inteira, performada com modelo
U-Net e Deep Active Learning (AL), além de normalizacao no brilho das imagens. Foram
realizados testes com diversos modelos pré-treinados diferentes, e o que obteve o melhor

resultado apresentado foi uma combinacao de dois modelos Inception-ResNet-V2.

Na pesquisa de (Mehta et al., 2021) o pré-processamento é realizado manipulando
uma fungdo que permite desenhar uma regiao retangular para corte, obtendo manualmente
das radiografias originais apenas a regiao ao entorno da mao, e melhorando a luminancia
das imagens com correcao gama. O método proposto utilizou InceptionV3 atingindo um
resultado MAE de 5,92 meses.

O método de (Zulkifley et al., 2021) consiste em uma primeira parte de segmentagao
da regiao da mao do fundo com DeepLab V3+, sendo depois girada para uma posicao
vertical com MobileNet V1. A segunda parte é a predicao da idade éssea, realizada com

arquitetura Xception remodelada, que atingiu um valor de erro de 7,69 meses.

(Guo et al., 2022) conduziu um estudo mais extenso avaliando modelos com
diferentes regioes 6sseas segmentadas da mao e punho, separadas e em conjunto. Para
a etapa de segmentacdo, a arquitetura do modelo Inception-ResNet-V2 foi utilizada. O
resultado final obtido na etapa de avaliacao da idade foi de 6,07 meses, utilizando o modelo

hibrido combinando todas as regioes extraidas.

(Andleeb et al., 2025) desenvolveu um algoritmo baseado em DenseNet201, sem
performar nenhuma segmentagio nas imagens em regides de interesse, acoplando a saida da
rede pré-treinada em uma rede neural customizada para a etapa de regressao e estimativa
da previsao. O MAE final foi de 4,87 meses.

Em (Sirati-Amsheh et al., 2025) nenhuma técnica de segmentagao é aplicada,
utilizando apenas redimensionamento necessario das amostras. A metodologia proposta foi
de utilizar uma rede Autoencoder, para extrair features das imagens, utilizando as saidas
como entrada da rede neural convolucional padrao, onde obtiveram o resultado final de

9,30 meses.

Todos os estudos apresentados foram resumidos avaliando a aplicacao de segmen-
tagdo em regides de interesse, se foram geradas novas imagens (Data Augmentation) a

partir de cépias alteradas, e se houve a reutilizagdo de um modelo pré-treinado ( Transfer
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Learning). Com relagao ao nimero de amostras, todos os métodos propostos utilizaram
a base de dados da Radiological Society of North America (Sociedade de Radiologia da
América do Norte) (RSNA), que possui 12611 imagens de treino e validagdo. Em 3 dos 9
trabalhos citados foi empregado Data Augmentation, e todos utilizaram Transfer Learning.

A Tabela 1 ilustra esses resultados:

Tabela 1 — Comparacao de resultados para avaliacado por RNAs de regressao

Data Transfer
Trabalho Segmentacio MAE (meses)

Augmentation Learning

(Chu et al., 2018) Mao inteira Sim U-Net e VGG16 5,98

Mao inteira e
(Iglovikov et al., 2018) Sim VGG-Net 6,10
centros de ossificagao

(Wibisono et al., 2019) - Nao VGG16 e MobileNet 14,78
U-Net e

(Pan et al., 2020) Mao inteira Nao 8,59

Inception-ResNet-V2
(Mehta et al., 2021) Mao inteira Sim InceptionV3 5,92
DeepLab V3+ e

(Zulkifley et al., 2021) Mao inteira Nao 7,69

Xception
6 centros
(Guo et al., 2022) Nao Inception-ResNet-V2 6,07
de ossificacao
(Andleeb et al., 2025) - Nao DenseNet201 4,87
(Sirati-Amsheh et al., 2025) - Nao Autoencoder 9,30

2.4 Consideracoes Finais

Neste capitulo foram abordadas as principais técnicas utilizadas na avaliagao da
idade 6ssea. Na secao 2.2 foram discutidas as principais técnicas fundamentadas em bases
tedricas que sao empregadas como pratica clinica padrao. Por outro lado, a se¢ao 2.3
apresentou as principais técnicas e algoritmos de machine learning desenvolvidos nos

ultimos anos para a previsao computacional e automatizada desse indicador clinico.

Os métodos de segmentacao e arquitetura das redes abrangeram uma ampla gama
de abordagens, indicando que para o desafio proposto, outras caracteristicas como robustez
do algoritmo e performance em bases de teste podem ser mais importantes para obter

melhores resultados.

No capitulo seguinte serao apresentados os fundamentos teéricos de cada método
de processamento e dos algoritmos empregados na pesquisa, contemplando suas formu-
lacoes matematicas e estatisticas, bem como a descri¢ao do software e da linguagem de

programacao utilizada.
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3 FUNDAMENTACAO TEORICA

3.1 Processamento Digital de Imagens

A luz é um tipo particular de radiagao eletromagnética que pode ser percebida pelo
olho humano e apresenta um comportamento ondulatorio caracterizado por sua frequéncia
(f), velocidade (c) (2.998 x 108 m/s) e comprimento de onda (A). O comprimento de onda

é dado em metros, e se relaciona com a frequéncia por meio da equagao (1):

A= (3.1)

~| o

A frequéncia é expressa em Hertz (Hz), sendo que 1 Hz corresponde a um ciclo
completo de uma onda senoidal por segundo. As ondas eletromagnéticas podem ser
representadas como ondas senoidais que se propagam no espaco, caracterizadas por seu
comprimento de onda. A organizacdo dessas ondas, em funcdo de suas frequéncias e

comprimentos de onda, constitui o espectro eletromagnético, ilustrado na Figura 1.
Figura 1 — Representagao do espectro eletromagnético

Frequéncia (Hz)

2

1020 10* 10" 10" 107 10 10% 0% 108 102 10t 10 10° 108 107 10° 10°
L | | | | | | | \ | | | | | | L I

Comprimento de onda (metros)

10072 107" 107 107 107 1077 107 107 107 1077 107 1wt 0t 10*  10f
| | | l | | | | | | | | | | | |
€« E = B o
Raios gama Raios X Ultravioleta Infravermelho Micro-ondas Ondas de ridio

Espectro visivel

04x107° 05x107° 06 % 107° 0,7 % 107"
Ultravioleta Violeta ~ Azul ~ Verde  Amarelo Laranja Vermelho Infravermelho

Fonte: Gonzales e Wintz (1987). Adaptado pela autora.

Dentro desse espectro, a faixa visivel ao olho humano corresponde aproximadamente
ao intervalo entre 0,43 pum (violeta) e 0,79 pm (vermelho). Nos menores comprimentos
de onda, situam-se os raios gama e os raios X. A radiacao gama desempenha um papel
fundamental em areas como a medicina, na producao de imagens para diagnoéstico, na
astronomia, para a observacao de fendmenos cosmicos, e em aplicagoes de monitoramento
em ambientes nucleares. Ja os raios X, além de sua conhecida utilizacao em exames

médicos, sao largamente empregados na odontologia e em inspecoes de materiais. A regiao
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do infravermelho ja se situa em bandas de comprimentos de onda maiores, cuja principal
caracteristica é a emissao de calor, com aplicagdes voltadas a geracao de imagens térmicas,

permitindo a deteccao de objetos ou seres vivos a partir de suas assinaturas de calor.

Um dispositivo fisico com a func¢do de captar a energia emitida em determinada
faixa do espectro é capaz de gerar imagens referentes a eventos ou objetos de interesse
nessa mesma banda. Apods a captura, um digitalizador é responsavel por converter os sinais
analégicos obtidos pelo sensor em dados digitais, estruturados de modo que possam ser

armazenados, processados e posteriormente analisados.

A digitalizacao de imagens consiste na conversao de um campo de imagem continua,
tal como percebido no mundo real, em uma representacao digital capaz de ser manipulada
por sistemas computacionais. Esse processo envolve a discretizacao da imagem em pequenas
unidades fundamentais, de tamanho finito, conhecidas como pixels. Cada pixel corresponde
a um ponto da imagem e estd associado a um valor de intensidade entre 0 e 255 para
representar uma cor, e em conjunto, formam um arranjo bidimensional que preserva a

estrutura visual do objeto original (Gonzales; Wintz, 1987).

A area de processamento de imagens trabalha com a manipulagao desses pixels,
com o objetivo de aprimorar a qualidade das informagoes visuais e extrair informagoes.
Nessa secao serao discutidas as técnicas de pré-processamento utilizadas nesse trabalho,

com desenvolvimento da teoria, suas aplicacoes, propésitos e objetivos.

3.1.1 Canalis de cores

Imagens monocromaticas, comumente denominadas imagens em escala de cinza, sao
formadas a partir da variacao de intensidades de um tnico canal, sem qualquer informagao
de cor. Cada pixel é associado a um valor numérico que representa sua intensidade luminosa,

ou seja, o nivel de brilho correspondente aquele ponto da imagem.

Esse processo decorre da quantizagao, em que o intervalo continuo de intensidades
¢é discretizado em niveis finitos. Se n for o nimero de bits de codigo atribuidos a cada
amostra, entao o nimero de niveis de quantizacao possui amplitude M = 2". O nimero
de niveis M é escolhido de forma que a qualidade da imagem resultante seja aceitavel
para os observadores humanos (Acharya; Ray, 2005). Imagens digitais de 8 bits sdo mais
amplamente utilizadas nos processos de visao computacional, e a intensidade pode assumir
valores inteiros entre 0 e 255, onde 0 representa o preto absoluto, 255 o branco, e os valores

intermediarios correspondem aos diferentes tons de cinza que compdem a imagem.

De maneira geral, imagens em escala de cinza apresentam grande utilidade no
processamento de imagens, além de serem aplicaveis em diversos outros contextos que
demandam menor capacidade computacional em comparacao as imagens coloridas. Apesar

de a informacao cromatica ser relevante em muitas situacgoes, quando a cor nao é um
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. . . ) . . .
fator determinante, as imagens em tons de cinza tornam-se especialmente vantajosas,
pois reduzem significativamente o tempo de processamento e o espago necessario para

armazenamento (Tan; Jiang, 2018).

Para a representacao de imagens coloridas, foram desenvolvidos modelos de cores
padronizados que estabelecem especificagoes consistentes para uso em diferentes dispo-
sitivos. O modelo mais amplamente adotado em aplicagoes praticas, especialmente em
monitores, cameras e sistemas de video, ¢ o modelo RGB, no qual as cores sao formadas
pela combinacao de trés componentes primarios: R (Red — Vermelho), G (Green — Verde)
e B (Blue — Azul). Cada componente é representado por diferentes niveis de intensidade
luminosa, de modo que a mistura dessas intensidades resulta na percepc¢ao das diversas

cores.

Uma imagem colorida é quantizada separadamente em cada um de seus canais de
cor, e cada pixel necessita de n bits por canal, totalizando 3n bits por pixel. No caso comum
de imagens de 24 bits, sao utilizados 8 bits para cada canal, o que resulta em mais de 16,7
milhdes de combinacoes possiveis de cores. Nessa representacao, o valor 0 corresponde a
auséncia de intensidade (preto absoluto), enquanto 255 representa a intensidade maxima
da cor em cada canal. Assim, por exemplo, o triplo (0, 255, 0) corresponde ao verde puro,
enquanto (255, 255, 255) representa o branco, resultante da soma méxima dos trés canais.

A Figura 2 demonstra as intensidades de cada canal representadas em niveis de cinza.

Figura 2 — Decomposi¢ao de uma imagem colorida em canais de cores segmentados. (a)
Canal Vermelho; (b) Verde; (¢) Azul. (d) Imagem original

(b)

Fonte: Elaborado pela autora.
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Os mesmos conceitos definidos para imagens monocromaticas também se aplicam
a cada plano de uma imagem colorida. Dessa forma, técnicas de processamento em escala
de cinza podem ser utilizadas em cada canal individualmente, permitindo manipulacoes
especificas ou o tratamento independente de R, G e B, antes de serem recombinados para

formar a imagem composta.

3.1.2 Equalizacao de Imagem

Durante o pré-processamento de imagens, ¢ comum a necessidade de corrigir certos
elementos que podem comprometer a andlise posterior de suas caracteristicas. Um dos
principais fatores ¢ a iluminacao, que pode gerar sombras intensas, obscurecendo detalhes
de textura e estrutura, ou ainda apresentar variagoes irregulares que distorcem os resultados
obtidos. Uma das técnicas de correcao ou aprimoramento de imagens é a equalizagao de
histograma (Pratt, 2007).

O histograma de uma imagem corresponde a representacao grafica da distribuicao de
intensidades de seus pixels e pode ser entendido como uma estrutura de dados que registra
a frequéncia de ocorréncia de cada nivel de intensidade presente na imagem, fornecendo
uma visao quantitativa sobre sua luminosidade e contraste. O histograma de uma imagem
digital com intervalo [0, L — 1] é uma fungao discreta h(ry) = ny, onde L é o nimero de
niveis de intensidade, r é o k-ésimo valor de intensidade e n, é o ntimero de pixels da
imagem com intensidade 7. A técnica de equalizacao ajusta a distribuicao dos niveis de
intensidade da imagem, com o objetivo de criar um histograma com contagens de bin
aproximadamente iguais, aproximando-se de uma distribui¢do em linha reta, melhorando
o contraste e resultando, em diversas aplicagdes, em um aumento significativo no nivel de

detalhes perceptiveis. A sua fungao de transformagao 7'(r) é dada pela equagao (2):

k
sp =T Zprrj :Z% 0<m<1l e k=0,1,..L—1 (32
onde:
T(ry) - Transformagdo que mapeia um valor de pixel r em um valor de pixel s.
pr(r;) - Fungao densidade de probabilidade do nivel r; da imagem de entrada.
n; - Numero de pixels na imagem de entrada que tém nivel r; de tom de
cinza.

N - Numero total de pixels na imagem de entrada.

Essa fungdo é um caso especifico da classe mais geral de métodos de remapeamento
de histogramas, aplicada de maneira global a imagem. Entretanto, essa abordagem apre-

senta uma limitacao importante: ela atua de maneira indiscriminada, podendo realcar o
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contraste de ruidos de fundo ao mesmo tempo em que reduz a visibilidade de informagoes
relevantes (Toet; Wu, 2014).

Para contornar esse problema, surgiu o Adaptive Histogram Equalization (Equa-
lizagdo Adaptativa de Histograma) (AHE), , que aplica o processo de equalizagdo de
forma local, calculando o histograma em regioes delimitadas por uma janela deslizante
bidimensional. Embora mais eficaz em diversos casos, o AHE apresenta a desvantagem de
superamplificar o contraste em areas com baixo nivel de variacao, resultando em imagens

artificialmente exageradas.

Uma solugdo para essa limitacao é o Contrast Limited Adaptive Histogram Equali-
zation (Equalizagdo de Histograma Adaptativa Limitada por Contraste) (CLAHE). Nesse
método, o contraste é controlado por meio do recorte do histograma em um valor predefi-
nido antes do calculo da fungao de distribuicao acumulada. Esse valor limite ¢ ajustado
conforme a normaliza¢do do histograma ou o tamanho da vizinhanca considerada, produ-
zindo resultados mais equilibrados (Shome; Vadali, 2011). A Figura 3 exemplifica o efeito

das equalizacoes em uma captura de angiografia cerebral.
Figura 3 — Equalizagdo em imagem de angiografia cerebral. (a) Imagem original. (b)

Equalizagao global. (¢) AHE. (d) CLAHE. (e) a (h) Histograma das imagens
(a), (b), (c) e (d) respectivamente
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Fonte: Elaborado pela autora.

A imagem original tem pouco contraste entre fundo e vasos, com a maior parte dos

pixels concentrados em uma faixa estreita (e). Na equalizacao global todos os valores de
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intensidade sao redistribuidos sobre toda a faixa dindmica (f), gerando uma distribuicao
quase uniforme mas com grande espagamento. Os vasos ficam bem visiveis, mas o ruido
também é muito amplificado. No histograma do AHE (g) a distribuigao de intensidades
esta espalhada em toda a faixa. H4 uma maior variacao local e o efeito é uma imagem
com contraste muito elevado em regides pequenas, também exagerando o ruido de fundo.
O método CLAHE ¢é mais suave e concentrado (h), sem picos artificiais nem dispersao
exagerada. Na imagem, isso se traduz em vasos bem real¢ados, mas sem amplificar tanto o

ruido.

3.1.3 Redimensionamento

O avanco na tecnologia de imagem tornou a geragao e a exibicdo de imagens
digitais disponiveis em todos os lugares. Diferentes telas sdo usadas para visualizacao,
desde monitores de computador de alta resolugao até dispositivos moéveis de baixa resolucao,
além da necessidade de impressao de documentos com imagens posicionadas, exigindo

frequentemente alteragoes de tamanho e proporcao para a adaptacao.

Esse processo de alterar o tamanho de imagens para uma exibicao ideal é geralmente
denominado como redimensionamento. E uma etapa fundamental no processamento digital
e em aplicacoes de visao computacional. Esse procedimento consiste em reduzir, ampliar
ou padronizar o tamanho sem modificar de forma significativa o contetido visual relevante.
Sua importancia esta diretamente associada a eficiéncia computacional, uma vez que
imagens de grandes dimensoes demandam mais memoria e processamento e a qualidade

dos resultados obtidos em diferentes contextos.

Em termos de uma imagem bidimensional, significa aumentar/diminuir a largura e
a altura calculando os novos valores de pixel. Dado uma imagem I de tamanho m x n e um
tamanho alvo de m’ x n’ | o objetivo é produzir uma nova imagem I’ de tamanho m’ x n’
que serd um bom representante da imagem I (Vaquero et al., 2010). O método de redi-
mensionamento mais popular é a interpolagao dos pixels da imagem original, um processo
matematico que utiliza valores conhecidos para estimar valores em pontos desconhecidos.
Os métodos mais comuns sao: vizinhos mais préximos, bilinear e bictibica. Contudo, é
importante destacar que tais métodos quando mal aplicados podem introduzir distor¢oes
perceptiveis, como serrilhados ou borramentos, principalmente quando a proporcao da
imagem original difere grandemente da proporc¢ao da imagem resultante (Dighe; Guru,
2014).

A interpolagao do vizinho mais préximo é o método mais simples e computacional-
mente mais rapido entre os algoritmos de interpolacao. Sua estratégia consiste em atribuir
ao novo pixel o valor do pixel mais préximo da posicao correspondente na imagem original,
obtido pelo arredondamento das coordenadas. Apesar da simplicidade, essa abordagem

tende a introduzir artefatos indesejaveis, e por essa razao, seu uso pratico é bastante
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limitado (Parsania et al., 2014).

A interpolacao bilinear, por sua vez, utiliza os quatro pixels vizinhos mais proximos
para estimar a intensidade de cada ponto da imagem resultante. Embora demande um
pouco mais de processamento em comparacao ao método anterior, produz resultados

visualmente mais agradaveis com transicoes mais suaves entre pixels.

Ja a interpolacao bictiibica representa um avango em relacao as anteriores, pois
considera um conjunto de 16 pixels vizinhos mais proximos. Esse aumento de complexidade
computacional permite preservar detalhes mais finos da imagem e reduzir a ocorréncia de
distor¢oes, tornando-a superior a bilinear em termos de qualidade visual. Por esse motivo,
a interpolacao bicubica é amplamente adotada como padrao em softwares profissionais de

edi¢ao e processamento de imagens.

A Figura 4 mostra o exemplo de uma imagem de 760 x 760 pixels em (a), redi-
mensionada utilizando os trés métodos para 20% de seu tamanho original em (b) até (d),
resultando no tamanho final de 152 x 152 pixels. Essa versao reduzida foi ampliada na
figura apenas para fins de visualizacao, de modo a evidenciar de forma clara as diferencas

na qualidade final.

Figura 4 — (a) Imagem original. (b) Redimensionamento por interpola¢ao do vizinho mais
préximo; (c¢) Bilinear; (d) Bictbica

Fonte: Elaborado pela autora.
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3.1.4 Data Augmentation

A quantidade e a qualidade dos dados sao aspectos que exercem influéncia direta
sobre o desempenho de modelos de aprendizado de maquina. Quando treinados com
conjuntos de dados reduzidos, ou expostos a amostras desbalanceadas, a capacidade
de generalizagao do modelo é prejudicada, apresentando desempenho significativamente
inferior em dados de teste. Esse cenario é recorrente em aplicagoes praticas, nas quais a
obtencao de dados é frequentemente limitada ou onerosa, e o processo demanda elevado

GSfOI'QO € recursos.

O Data Augmentation (Acréscimo de Dados) surge como um conjunto de técnicas
voltadas a geracao de amostras artificiais de alta qualidade a partir da manipulagao de
dados ja existentes. O principio fundamental consiste em ampliar artificialmente o conjunto
de treinamento por meio da cria¢ao de copias transformadas das amostras originais (Wang
et al., 2024). Além de aumentar a diversidade dos dados, essa estratégia contribui para
reduzir a discrepancia entre os conjuntos de treinamento e as condigdes encontradas em

aplicagoes do mundo real.

Nesta secao, serao abordados os métodos mais frequentemente usados e de imple-
mentacao relativamente simples, baseados em transformacoes espaciais geométricas. Esse
tipo de manipulacao atua sobre a disposicao espacial dos pixels em uma imagem, preser-
vando seus valores originais, de modo a gerar novas amostras a partir da reorganizacao

estrutural do contetido visual.

Rotagao consiste em girar a imagem em torno de seu centro em diferentes angulos.
Essa transformagao permite que o modelo se torne mais invariante a mudancas de orientacao,
uma caracteristica relevante em tarefas em que a posicao relativa do objeto de interesse
pode variar. Translagao refere-se ao deslocamento da imagem ao longo dos eixos horizontal
e/ou vertical. Essa técnica auxilia o modelo a lidar com situagdes em que o objeto nao se
encontra centralizado ou perfeitamente alinhado no campo de visao. O espelhamento
aplica uma inversao horizontal ou vertical da imagem, criando uma versao especular da
amostra original. Essa operagao ¢ particularmente 1til em cenarios em que a simetria é uma
propriedade relevante, evitando que o modelo memorize posicoes fixas. Ajuste de brilho
altera a intensidade luminosa da imagem, simulando diferentes condig¢oes de iluminagao.
Dessa forma, o modelo é exposto a variacoes de contraste e iluminacao, tornando-se mais
resiliente a essas condi¢oes no ambiente real. Por fim, o zoom amplia ou reduz a regiao

de interesse da imagem, modificando o nivel de proximidade em relagdo ao objeto.

Apesar da simplicidade dessas técnicas, diversos trabalhos demonstraram sua alta
eficicia em diversas tarefas de visdo computacional (Mumuni; Mumuni, 2022). A Figura 5

exibe uma imagem original seguida dos resultados das cinco operagoes para exemplificagao.
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Figura 5 — Exemplos da aplicagdo de Data Augmentation. a) Imagem original. b) Rotagao
de 30°. ¢) Translagao. d) Espelhamento. e) Ajuste de brilho. f) Zoom

(a) (b) (c)
(d) (e) (H)

Fonte: Elaborado pela autora.

3.2 Anatomia 6ssea da mao

A mao humana é composta por um conjunto de ossos que desempenham funcoes
fundamentais tanto para a mobilidade quanto para a precisao dos movimentos. Estrutural-
mente, ela é formada por trés grupos principais: carpos, metacarpos e falanges. As falanges,
que totalizam 14 em cada mao, sao responsaveis pela estrutura dos dedos, dividindo-se
em proximais, médias e distais, com excecao do polegar, que possui apenas duas. Os
metacarpos, em nimero de cinco, conectam o carpo as falanges e constituem o esqueleto
da palma. J& os ossos do carpo, localizados no punho, sao oito pequenos ossos dispostos
em duas fileiras que atuam como base de sustentagao. Além dessas estruturas, o punho

também ¢é composto do radio e da ulna (Maw et al., 2016).

A idade 6ssea é estimada a partir da analise da presenca, do tamanho, da forma
e do grau de fusao dos centros de ossificacdo. Desde o periodo neonatal até o final
da adolescéncia, diferentes centros de ossificacao surgem e se consolidam em sequéncia
cronolodgica relativamente previsivel. Em criancas mais novas, predominam estruturas
cartilaginosas e centros de ossificagdo ainda pouco desenvolvidos. Com o avango da idade,
esses centros tornam-se progressivamente mineralizados, até a completa fusao, marcando o
fim do crescimento longitudinal dos ossos (Gilsanz; Ratib, 2005). Uma representacao da

anatomia Ossea se encontra na Figura 6.
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Figura 6 — Anatomia esquelética da mao
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Fonte: Elaborado pela autora.

3.3 RNA - Redes Neurais Artificiais

As RNAs sao modelos computacionais de autoaprendizagem capazes de realizar
predicao e processamento de padroes nao lineares. Inspiradas em estudos modernos de
neurociéncia, essas redes simulam, de forma simplificada, o funcionamento das conexoces
neurais do cérebro humano. Sua estrutura é organizada em trés componentes principais:
a camada de entrada, responsavel por receber os dados; uma ou mais camadas ocultas,
onde ocorre o processamento interno das informacoes; e a camada de saida, que fornece
o resultado final. As camadas ocultas sao formadas por unidades de processamento
denominadas neurénios, cada uma conectada a todos os nés da camada anterior. Os
neuronios desempenham um papel central na operagao da rede, pois sdo responsaveis por

transformar os sinais de entrada em representagoes tteis na saida (Haykin, 2009).

O modelo de um neurénio k£ ¢é representado no diagrama de blocos da Figura 7.

Define-se trés caracteristicas fundamentais do modelo neural:

e 1. Um grupo de sinapses ou elos de conexao, cada um com seu préprio peso ou forga.
Em particular, o peso sindptico wy; ¢ multiplicado por um sinal x; na entrada da

sinapse j conectada ao neurdnio k.

o 2. Um somador para adicionar os sinais de entrada, que sao ponderados pelas forcas

sinapticas do neurdnio; os processos descritos aqui criam um combinador linear.

e 3. Uma funcao de ativagao para restringir a magnitude, ou faixa de amplitude, da
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salda de um neurdnio.

Figura 7 — Modelo nao linear de um neurdnio k
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Fonte: Haykin (2009). Adaptado pela autora.

Em termos matematicos, podemos descrever o neurdnio k representado na Figura

6 escrevendo as equagoes (3), (4) e (5).

Uy = Wiz (3.3)
j=1
yi = p(ur + by) (3.4)
v = Uk + by (35)
onde:
x; - Sinais de entrada.
wy; - Pesos sindpticos do neuronio.
Uy, - Saida do combinador linear.
by - DBias aplicado a um neurdnio.
©(-) - Fungao de ativagao.
Uk - Potencial de ativagdo do neurénio k.
yr - Sinal de saida do neurdnio.

O bias é um elemento que serve para aumentar o grau de liberdade dos ajustes dos

pesos, de forma a transladar a funcao de ativacao no eixo.
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O processo de aprendizagem em redes neurais é conduzido por um algoritmo
de aprendizagem, cuja funcao principal é ajustar os pesos sindpticos da rede de forma
estruturada, de modo a atingir o objetivo estabelecido no projeto. A meta é definir uma
regra de treinamento que possibilite a atualizacao dos pesos em cada camada, buscando
minimizar a funcao de erro. Um dos grandes diferenciais desses algoritmos é a capacidade
de generalizacao, ou seja, a habilidade da rede em gerar respostas adequadas mesmo para
entradas que nao foram apresentadas durante a fase de treinamento. As estruturas de
RNA ganharam destaque como a principal metodologia para analise de imagens, devido as

suas grandes capacidades de aprendizado e vantagens em lidar com padroes complicados.

A disposicao dos neurdnios de uma rede neural apresenta estreita relagdo com o
método de aprendizado empregado em seu treinamento. De modo geral, as arquiteturas

de redes neurais podem ser agrupadas em trés categorias diferentes:

Redes feedforward de camada tnica: Nesse tipo de arquitetura, os neurénios
estao organizados de forma que a camada de entrada, composta por nos de origem, projeta-
se diretamente sobre a camada de saida, sem a existéncia de retroalimentacao entre elas.
Trata-se, portanto, de uma rede feedforward, ou direta. A Figura 8 ilustra um exemplo em
que quatro nés da camada de entrada se conectam diretamente a quatro nés da camada

de saida.

Essa estrutura recebe a denominacgao de rede de camada tnica, sendo o termo
“camada tunica” atribuido exclusivamente a camada de saida, onde de fato ocorre o
processamento computacional. A camada de entrada, por sua vez, nao é considerada nesse
contexto, uma vez que nao realiza operagoes de célculo, funcionando apenas como ponto

de fornecimento dos dados a rede.

Figura 8 — Rede feedforward com uma tnica camada de neurdnios

() =
Camada de entrada Camada de saida

Fonte: Haykin (2009). Adaptado pela autora.
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Redes Feedforward Multicamadas: Esse tipo de arquitetura é caracterizado
pela presenca de uma ou mais camadas ocultas, denominadas assim porque nao estao
diretamente acessiveis nem a partir da entrada nem da saida da rede. A fungdo essencial
dessas camadas intermediarias é atuar como um elo entre os dados de entrada e a saida final,
possibilitando a rede a capacidade de extrair estatisticas de ordem superior e representar

relagoes mais complexas dos dados.

O processamento ocorre de maneira sequencial: os nés de origem fornecem os
elementos que compoem o padrao de ativacao inicial, o qual é transmitido para os neurtnios
da segunda camada. Em seguida, os sinais resultantes dessa camada sao propagados para
a camada seguinte e assim sucessivamente, até alcangar a camada de saida. O conjunto
de ativagoes produzidas pelos neurdnios dessa ultima camada constitui a resposta final
da rede ao padrao de entrada apresentado. Um exemplo de uma rede com arquitetura
composta por 10 nés de entrada, 4 neuronios ocultos e 2 neurénios de saida pode ser

observado na Figura 9.

Figura 9 — Rede feedforward totalmente conectada com uma camada oculta e uma camada
de saida

Camada de entrada Camada oculta Camada de saida

Fonte: Haykin (2009). Adaptado pela autora.

Redes Recorrentes: Diferentemente das redes feedforward, onde o fluxo de
informacao ocorre apenas da entrada até a saida, essa rede caracteriza-se pela presenca de
pelo menos um loop de feedback, que incorporam elementos de atraso unitario no tempo
(denotados por z7!), armazenando temporariamente os sinais e os reapresentam a rede no
proximo instante. Isso significa que a saida de um neurénio em determinado instante pode
ser realimentada como entrada em passos de tempo subsequentes, possibilitando que a

rede retenha informagoes do passado e, assim, modele dependéncias temporais.
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Essa rede pode ser composta por apenas uma camada de neurénios, conforme
mostrado no grafico arquitetonico da Figura 10, em que cada neurdnio envia sua saida de
volta as entradas de todos os outros neurénios (estrutura recorrente totalmente conectada),

ou ainda por arquiteturas mais complexas que incluem camadas ocultas adicionais.

Figura 10 — Rede recorrente sem camadas ocultas
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Fonte: Haykin (2009). Adaptado pela autora.

3.3.1 MLP - Multilayer Perceptron

A primeira rede neural descrita algoritmicamente foi o perceptron, um modelo
de classificacao binaria proposto por Frank Rosenblatt em 1958. O perceptron é o tipo
mais bésico de rede neural utilizada para categorizacdo de padroes linearmente separaveis,
sendo capaz de realizar classificacoes apenas entre duas classes. A solucao para essa
limitacao veio com a introdugao de uma ou mais camadas ocultas de neuronios entre
a camada de entrada e a de saida, dando origem ao Multilayer Perceptron (Perceptron
de Multicamada) (MLP). Ao adicionar essas camadas intermediérias, a rede adquire a
capacidade de aprender representacoes internas e nao-lineares dos dados. Essencialmente,
as camadas ocultas transformam o espaco de caracteristicas original em um novo espaco,
de maior dimensionalidade, onde o problema se torna linearmente separavel para a camada
de saida (Pan, 2024).
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O MLP pertence a uma classe mais ampla de arquiteturas, sendo um subtipo
especifico de Redes Feedforward Multicamadas. A Figura 11 mostra o grafico arquitetonico

de um MLP com duas camadas ocultas e uma camada de saida.

Figura 11 — Grafico arquitetonico de um MLP com duas camadas ocultas
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Fonte: Haykin (2009). Adaptado pela autora.

O treinamento de uma rede neural é fundamentalmente um problema de otimizacao,
onde objetivo é encontrar o conjunto de parametros que minimiza uma fungao de perda que
quantifica a discrepancia entre as predi¢oes da rede e os valores verdadeiros para um dado
conjunto de treinamento. Importante notar que esses processos sao aplicaveis nao apenas
para o MLP, mas também as redes neurais em geral. O método mais comum para realizar
essa otimizacao € o gradiente descendente, um algoritmo iterativo que ajusta os parametros
na diregdo oposta ao gradiente da fun¢do de perda com respeito aos parametros. Os ajustes
sucessivos aplicados ao vetor de peso w sao na direcao da descida mais ingreme, isto ¢, em
uma dire¢ao oposta ao vetor do gradiente V&(w), que também pode ser resumido pela

equagao (6):

9= V§(w) (3.6)
Correspondentemente, o algoritmo da descida mais ingreme é descrito formalmente

pela equagao (7):
w(n+ 1) = w(n) - ng(n) (3.7)

onde n ¢ uma constante positiva chamada de tamanho do passo ou parametro

de taxa de aprendizagem (que sera melhor descrita na segao 3.2.4), e g(n) é o vetor do
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gradiente calculado no ponto w(n). Assim, a regra de atualizagdo para cada parametro é

dada pela equagao (8):

Aw(n) = w(n +1) —w(n) = —ng(n) (3.8)

O algoritmo de retropropagacao ¢ um método notavelmente eficiente para calcular
o gradiente, e funciona determinando sistematicamente como cada peso e bias na rede
contribui para o erro total. Ele consiste em duas fases, sendo a primeira forward pass
(passe direto), onde um lote de dados de entrada é propagado através da rede, da primeira
a ultima camada, para gerar as saidas. A funcao de perda é entao usada para calcular o
erro entre as saidas previstas e os alvos verdadeiros. A segunda é o backward pass (passe
reverso), onde o gradiente do erro é calculado primeiro com respeito as ativagoes da camada,
de saida e é propagado para tras, camada por camada. Em cada camada, é calculado o
gradiente da perda com respeito aos seus parametros, e o gradiente da perda com respeito
as ativacoes da camada anterior. Este tltimo é entao passado para a camada anterior, de
forma sucessiva, até que os gradientes para todos os parametros tenham sido calculados
(Amari, 1993).

3.3.2 CNN - Convolutional Neural Network

Convolutional Neural Networks (Redes Neural Convolucionais) (CNNs) sao baseadas
em MLPs projetado especificamente para reconhecer e avaliar formas bidimensionais. Essas
redes empregam uma arquitetura tinica que é adequada para a classificacdo de imagens, e

se valem de trés conceitos fundamentais: convolugao, pesos e bias compartilhados e pooling.

Convolucio: E o processo central em uma CNN e serve para extrair caracteris-
ticas relevantes de uma imagem ou sinal, permitindo que a rede detecte padrées como
bordas, texturas ou formas especificas. Uma pequena matriz de pesos é definida, chamada
comumente de filtro, percorrendo a imagem por um processo de deslizamento com um
passo determinado (Nielsen, 2015). Em cada posigao, realiza-se o produto ponto a ponto
entre os valores da imagem e os valores do filtro, em seguida todos esses produtos sao
somados, produzindo um tnico valor escalar, que ird compor a posi¢ao equivalente no

feature map (mapa de caracteristicas).

A dimensao D,,; do feature map resultante de uma operagao de convolugao é dada

pela equagao (9):

Dy, — F +2P
Dy = Zn 2 T20 (3.9)
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onde:
D;, - Dimensao de entrada (altura ou largura).
F - Tamanho do filtro.
P - Padding (preenchimento) aplicado na borda da imagem.
S - Stride (passo) do filtro.

A Figura 12 mostra uma imagem de tamanho 28x28, com um filtro deslizante de

5x5H com passo 1 no canto superior esquerdo, produzindo uma saida de tamanho 24x24:
Figura 12 — Feature map criado a partir da convolugao da imagem de entrada

Entrada Feature map
28 X 28 24 X 24

—

Fonte: Elaborado pela autora.

Pesos e bias compartilhados: Os pesos determinam a importancia de cada pixel
dentro do filtro para detectar padroes especificos, como bordas ou texturas, e o bias é
um valor adicional que permite ao neurtnio ajustar a ativacao independentemente dos
valores dos pixels, aumentando a flexibilidade do modelo. Para um filtro especifico, os
mesmos pesos sao usados em todas as posicoes da imagem, aplicando a mesma operacao
de convolucao em cada regido, identificando a mesma caracteristica. Cada filtro também
possui um tnico bias, que é adicionado a todos os valores do feature map gerado pelo filtro.

Esse compartilhamento garante eficiéncia e consisténcia nas operagoes.

Camadas de pooling: Etapa normalmente empregada imediatamente apoés a
convolugao, com o objetivo de reduzir a dimensao espacial do feature map, mantendo as
informacoes mais importantes. Uma janela, geralmente de tamanho 2x2 ou 3x3, percorre o
feature map gerado em passos definidos e substitui os pixels da regido por um tnico valor.
Os tipos mais comuns sao: Max Pooling, que seleciona o valor maximo, destacando
as caracteristicas mais expressivas, como bordas e texturas fortes; Average Pooling

calcula a média dos valores da janela produzindo uma versao suavizada do feature map; e
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o Min Pooling que seleciona o valor minimo, destacando as caracteristicas mais suaves.
Essa técnica diminui a complexidade computacional e introduz invariancia a pequenas

mudancas na posicao de caracteristicas (Hou et al., 2021).

Cada unidade na camada de pooling, por exemplo, pode resumir uma regiao de 2 x
2 neuronios na camada anterior. Depois de agrupar os 24 x 24 neurdnios produzidos a partir
da camada convolucional ilustrada no exemplo, temos 12 x 12 neurdnios. O agrupamento

¢ aplicado separadamente a cada feature map.

Como normalmente é necessario detectar miiltiplas caracteristicas para construir
um modelo eficaz, geralmente havera multiplos feature maps diferentes em cada camada
convolucional. A Figura 13 representa a arquitetura de uma CNN, que consiste em uma
camada de entrada, duas camadas ocultas e uma camada de saida. A camada de entrada
recebe imagens de dimensao 28x28 pixels. Na primeira camada oculta sao aplicados 4
filtros convolucionais de tamanho 5x5, produzindo 4 feature maps de tamanho 24x24. Cada

mapa 24x24 passa por pooling de tamanho 2x2, reduzindo suas dimensoes pela metade.

Na segunda camada oculta, sao aplicados 12 filtros convolucionais (de tamanho
5x5) sobre os 4 mapas anteriores, seguido novamente por um pooling de 2x2, obtendo uma
salda de tamanho 4x4. Cada mapa 4x4 tem 16 elementos, e multiplicando pelo nimero de
feature maps resultantes, tém-se 192 neurdnios de entrada para a camada densa. Esses
valores sdo achatados e conectados a uma camada totalmente conectada. A depender do
problema proposto, as caracteristicas dos neurdnios resultantes podem ser mapeadas para
o niamero de classes discretas a ser detectada, ou para um tnico neurdnio, caso a saida

desejada seja um valor continuo.

Figura 13 — Rede convolucional para processamento de imagem

1* camada oculta 2% camada oculta
| |
| || |
Entrada Feature maps Feature maps Feature maps Feature maps Saida
28 X 28 4@24 X 24 4@12 X 12 12@8 X 8 12@4 X 4 192X 1

1

—

Fonte: Haykin (2009). Adaptado pela autora.
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3.3.3 YOLO - You Only Look Once

Reconhecimento de imagens é uma area da visao computacional e do aprendizado
de maquina que tem como objetivo identificar e classificar objetos, padroes, pessoas, lugares
ou qualquer outro elemento presente em uma imagem digital. Um conjunto de objetos
similares, com uma ou mais caracteristicas semelhantes, é considerado como pertencente a

mesma classe de padroes (Queiroz; Gomes, 2006).

A tarefa de reconhecimento pode ser divida em 3 partes: classificacao, que se
refere a atribuicdo de uma categoria; deteccao, que envolve localizar e rotular miltiplos
objetos na mesma imagem; e segmentacao, que separa cada objeto ou regiao da imagem
pixel a pixel. A deteccdo de objetos surgiu como um componente critico em intimeras
aplicagoes, abrangendo varios campos, como seguranca, saiide, veiculos autonomos, robotica,

e realidade aumentada.

Os modelos que conduzem essas andalises podem ser categorizados em dois tipos:
detectores de um estagio e detectores de dois estagios. Os detectores de dois estagios
dividem a tarefa de reconhecimento em duas partes. A primeira, gera propostas de regides,
que sao areas da imagem onde provavelmente existe um objeto. Para cada regiao proposta
o modelo extrai as caracteristicas visuais correspondentes e classifica o que tem dentro
daquela regiao. Devido a essa natureza de duas etapas executadas sucessivamente para
varias regides da imagem, e a complexidade do CNN utilizado, os custos computacionais
sao altos, limitando seu uso em detecgoes offline e nao em cenarios de casos em tempo real

(Baldovino et al., 2024).

Por outro lado, detectores de estagio tinico sao compostos apenas por uma CNN
de alimentacao unica, que fornece diretamente as caixas delimitadoras dos objetos, bem
como suas respectivas classificagoes. As mudancas oferecidas por esses modelos resultaram
em custos computacionais mais baixos, proporcionando maior precisao, e ainda assim

mantendo uma alta velocidade de processamento.

Entre os diferentes algoritmos de deteccao de objetos de estagio tinico, o framework
You Only Look Once (Vocé S6 Olha Uma Vez) (YOLO), de Joseph Redmon et al., foi
publicado na IEEE Conference on Computer Vision and Pattern Recognition (CVPR) de
2016 (Redmon et al., 2016). Ele apresentou pela primeira vez uma abordagem ponta a
ponta em tempo real para reconhecimento de objetos. Seu nome se refere ao fato de que
essa arquitetura é capaz de realizar a tarefa de deteccao e classificacdo com uma tnica

passagem pela rede.

O YOLO analisa globalmente a imagem ao fazer previsdes. Ao contréario das técnicas
baseadas em janela deslizante e proposta de regiao, esse modelo analisa a imagem inteira
durante o treinamento e o teste, codificando implicitamente informacoes contextuais

sobre as classes, bem como sua aparéncia, aprendendo representacoes generalizaveis de
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objetos (Terven et al., 2023). Desde o seu inicio, a familia YOLO evoluiu por meio de
multiplas iteracoes, cada uma delas baseada nas versoes anteriores para abordar limitagoes
e aprimorar o desempenho. A versao lancada em 2024, o YOLOv11, de autoria de Glenn
Jocher e Jing Qiu (Jocher; Qiu, 2024), é o modelo mais recente e avancado da série YOLO

da empresa Ultralytics.

Na arquitetura do YOLO, as camadas convolucionais profundas nao apenas ex-
traem caracteristicas, mas sao organizadas para produzir um mapa de caracteristicas
espacialmente alinhado a imagem, no qual cada posi¢ao do mapa corresponde a uma regiao
fixa da imagem de entrada. A medida que a rede reduz a resolucao espacial por meio de
convolugoes e pooling, ela aumenta a abstracao seméntica dessas regioes, de modo que cada
célula do mapa final codifica o que existe naquela regiao e onde esta. As ultimas camadas
convolucionais atuam com regressao densa, transformando esse mapa em um tensor de
saida no qual, para cada célula da grade, sdo previstos simultaneamente as coordenadas e
dimensoes das caixas delimitadoras e as probabilidades de classe. A arquitetura base do

modelo pode ser visualizada na Figura 14.

Figura 14 — Arquitetura do YOLO
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Fonte: Redmon et al. (2016).

3.3.4 Hiperparametros e Configuragoes

Os hiperparametros e as configuragoes estruturais de uma rede neural sao variaveis
que influenciam a topologia da rede e sao fundamentais para o sucesso do processo de
treinamento e determinacao da sua capacidade de generalizacao. Diferentemente dos
pardmetros aprendidos e ajustados durante o treinamento (os pesos sindpticos), esses
elementos precisam ser estabelecidos previamente e exercem influéncia determinante sobre
o comportamento de aprendizado. Uma sele¢ao adequada permite a obtencao de redes com

melhor desempenho, velocidade de convergéncia otimizada e capacidade de generalizacao
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robusta, além de reduzir o risco de overfitting e o custo computacional (Raiaan et al.,
2024).

a) Classificagao e Regressao

No contexto de aprendizado de maquina supervisionado, os modelos sao treinados
a partir de dados de entrada e saida rotulada, e a principal diferenca entre classificagao e
regressao esta no tipo de variavel alvo que o modelo busca prever. A classificacao é utilizada
quando a variavel de saida é categorica e assume valores discretos que representam classes.
Esses algoritmos trabalham com probabilidades de ocorréncia de um evento, e a atribuicao
de uma classe especifica pode ser dada pela maior probabilidade aferida, ou por limiares
especificos. A regressao é empregada quando a variavel de saida é continua, e o resultado

final serd um valor em um intervalo numérico (Goodfellow et al., 2016).

b) Divisdo das amostras

Para realizar o treinamento de um modelo, amostras suficientes devem ser coletadas
e o conjunto de dados deve ser preparado antes do inicio do processo. Essa preparacao
envolve dividir os dados em trés subconjuntos distintos: treino, validagao e teste. O
conjunto de treinamento atua no modelo ajustando os pardmetros internos. O modelo
passa repetidamente por esses dados durante o treinamento em varias iteragoes, tentando

minimizar uma func¢ao de erro ou maximizar acertos.

A base de validagao é utilizada para avaliar o desempenho do modelo durante ou
apés cada iteracao de treinamento, sem que haja um aprendizado direto com esses dados,
mas com a inten¢ao de estimar o erro de generalizagdo, permitindo que os hiperparametros
sejam atualizados adequadamente. Por fim, o conjunto de teste é usado para estimar
o verdadeiro desempenho de campo de um modelo apds a conclusao do processo de

aprendizagem, avaliando o modelo de forma final e imparcial (Ripley, 2007).

A taxa de divisao do conjunto de dados é determinada pela quantidade de amostras
e da complexidade do problema. Se uma base possui muitos dados, por exemplo, em ordem
de centenas de milhares de amostras, pode-se reservar uma proporc¢ao menor para teste,
pois ainda terd amostras suficientes para uma boa avaliacao. Caso contrario, é necessario
encontrar um equilibrio melhor para que todos os conjuntos tenham representatividade.
Nao existe uma porcentagem de divisao apropriada, mas, normalmente, utiliza-se cerca de

70% dos dados para o treinamento, 15% para a validacao, e 15% para o teste.

c) Neurodnios e camadas

A definicao da arquitetura de uma rede neural, em especial o nimero de camadas e
de neurdnios em cada camada, é um fator determinante para o desempenho do modelo. O

numero de neurdnios na camada de entrada é definido pelo niimero de variaveis ou atributos
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de entrada do problema. Para imagens, esse valor deve ser o resultado da multiplicacao
entre a altura e a largura das imagens para escala de cinza, e novamente multiplicado por
trés para imagens coloridas de trés canais, como é o caso do padrao RGB. Em problemas

tabulares, cada coluna da base de dados corresponde a um neurdnio de entrada.

Para a camada de saida, o nimero ira depender do tipo de tarefa a ser realizada,
sendo comum a utilizacao de um tinico neurdnio para regressao ou para classificacio binaria,
e de multiplos neur6nios para classificacao multiclasse, onde cada neurdénio de saida sera
a probabilidade de uma classe. O niimero de unidades ocultas é um parametro livre que
pode ser ajustado para fornecer o melhor desempenho preditivo (Bishop; Nasrabadi, 2006).
Obrigatoriamente, deve estar entre o niimero de entradas e o nimero de saidas, e deve ser
grande o suficiente para capturar os padroes, mas nao tao grande a ponto de superajustar.
Em problemas de imagens, o nimero de neur6nios é definido indiretamente pelo tamanho
dos feature maps e pooling. Uma pratica recomendada para definir esses valores seria por

testes empiricos de otimizacao de hiperparametros.

Quando se trata de camadas ocultas, as redes rasas com 1 a 2 camadas ocultas
podem funcionar bem para problemas menos complexos e dados com menos dimensoes
ou caracteristicas. Redes mais profundas de 3 a 5 camadas tendem a oferecer melhor
capacidade de generalizagao e eficiéncia na representacao de fungoes complexas, e sdo mais

indicadas para tarefas de visao computacional e processamento de linguagem natural.

d) Fungao de ativacao

As funcgoes de ativacao sdo usadas para transformar um sinal de entrada em um sinal
de saida, que é entao enviado como entrada para a proxima camada. A escolha da fun¢ao de
ativagao depende da tarefa especifica e da arquitetura da rede, e o processo de aprendizagem
pode ser acelerado selecionando a fungao de ativagao apropriada (Rasamoelina et al., 2020).
Existem diferentes tipos de fungoes de ativacao. Atualmente, as mais utilizados nas CNNs

Sao0:

Funcgao Sigmoide: sua curva parece uma forma de S. A fungdo varia entre 0 e 1,

portanto é usada para prever uma probabilidade como saida.

1

fe)= 1= (3.10)

Fungado Tangente Hiperbdlica (Tanh): a fungdo tanh tem forma semelhante a
fungao sigmoide, mas o intervalo esta entre -1 e 1. A vantagem é que os valores zero serao
mapeados proximos de zero e os valores negativos serao mapeados fortemente negativos.

Sua definicao matemética é:
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f(x) = tanh(x) = 1_‘_26_% —1 (3.11)

Fungao Unidade Linear Retificada (ReLU): ReLLU é a fungao de ativagdo mais
utilizada para camadas de convolucdo. E uma funcio meio-retificada. E matematicamente

definida como:

0 <0
f(z) = max(0,x) = (3.12)
r x>0

Entender os pontos fortes e fracos de cada funcao é crucial para selecionar a mais
apropriada para uma determinada aplicacao de rede neural. Fungoes Sigmoide e Tanh
sao adequados para tarefas especificas de classificacao e probabilidades, enquanto ReLLU é
comumente usado em redes profundas modernas. A Figura 15 demonstra os graficos das

fungoes de ativacao.
Figura 15 — Gréfico representativo das fungoes de ativagao
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Fonte: Elaborado pela autora.

e) Batch e Epocas

Batch size é o nimero de dados processados simultaneamente antes da atualizacao
dos pesos da rede durante a estimativa de gradiente. Ao invés dos modelos atualizarem os
parametros da rede a cada exemplo individual ou somente apds todo o conjunto de dados,
o treinamento em mini-batches faz uma atualizagao intermediaria, conciliando estabilidade

no gradiente e eficiéncia computacional. Valores menores de batch size tendem a introduzir
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mais ruido, podendo favorecer a capacidade de generalizagdo do modelo, mas com custo
computacional maior, enquanto valores maiores fornecem estimativas mais estaveis, mas

podem levar a menor poder de generalizagdo e exigir mais meméria (Kandel; Castelli,
2020).

Epocas é um hiperpardmetro que determina o nimero de passagens completas para
uma rede neural durante o treinamento. Durante cada época, o modelo processa todos os
exemplos disponiveis, geralmente em mini-batches, e ajusta seus pesos. Tradicionalmente,
o numero de épocas ¢é grande, permitindo que o procedimento de aprendizado continue
até que o erro do modelo seja adequadamente minimizado (Zhang et al., 2016). Poucas
épocas podem resultar em casos onde a rede nao aprende suficientemente os padroes dos
dados, porém épocas demais também podem acarretar na memorizacao dos dados de

treino, perdendo capacidade de generalizacao.

Nao existe uma pré-definicao do niimero correto de épocas para todos os conjuntos de
dados, mas é possivel determinar uma aproximacao ideal utilizando a curva de aprendizado,
um grafico de linhas que mostra a evolucao dos erros nas bases de treino e validacao
com o acréscimo de épocas. Para muitos dos algoritmos o erro de treinamento é sempre
uma funcao decrescente, no entanto, o erro calculado em relagao ao conjunto de validacao
frequentemente apresenta uma diminuigao inicial, seguida por um aumento a medida que a
rede comega a sofrer over-fitting. O ponto de interrupgao é obtido utilizando a estratégia de
early-stopping, onde o treinamento ¢é encerrado apds o erro nos dados de validagao atingir
a saturacao, que pode ser definida em nuimero de épocas subsequentes com nenhuma

melhora ou piora nos erros. A Figura 16 ilustra a aplicagdo do método.

Figura 16 — Exemplificacao da regra de early-stopping
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de validagao

Ponto de  Erro do conjunto
early- de treino
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Fonte: Haykin (2009). Adaptado pela autora.
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f) Taxa de aprendizagem

A taxa de aprendizagem determina o tamanho do passo que o modelo dé na direcao
oposta ao gradiente do erro em cada iteragao, controlando assim a velocidade com que os
pesos da rede séo atualizados. E muitas vezes descrita nas equacoes da literatura como 7,
e seus valores sao pequenos e positivos, geralmente variando entre 0.0 e 1.0. Se for muito
grande (n > 0.1), a curva de aprendizado apresentara oscilagoes violentas, pois os pesos
saltam demais no espago da fun¢ao de perda. Se a taxa de aprendizagem for muito baixa
(n < 107%), o aprendizado prossegue lentamente e o aprendizado pode ficar estagnado em

minimos locais (Bengio, 2012).

A taxa de aprendizagem pode ser escolhida por experimentacdo empirica, mas
geralmente ¢ melhor escolhé-la monitorando as curvas de aprendizagem que correlacionam
a funcdo objetivo com as iteracdes do modelo. E um dos hiperpardmetros mais sensiveis no
treinamento de redes neurais, exigindo cuidadosa escolha e, muitas vezes, uso de técnicas

adaptativas e de otimizagao.

3.4 Meétricas de Performance

A avaliacdo de modelos de aprendizado de méaquina requer o uso de métricas de
desempenho adequadas, capazes de refletir de maneira confiavel a qualidade das previsoes.
A escolha das métricas depende diretamente da natureza do problema, podendo ser de
classificagao ou de regressao. Além de quantificar a qualidade do modelo, as métricas de
performance desempenham papel crucial na comparagao entre diferentes abordagens e na
orientacao do ajuste de hiperpardmetros. A definicao correta das avaliagbes é uma etapa
indispensavel para a validacao de modelos, garantindo a relevancia pratica das solugoes
propostas. Normalmente, o interesse principal esta na performance de um algoritmo
em dados que ele ndo viu antes, pois isso determina quao bem ele funcionara quando
implantado no mundo real. Portanto, a avaliacao final de um modelo sera usando sempre

um conjunto de dados de teste.

3.4.1 Classificacao

Em problemas de classificacao, a performance estd relacionada a capacidade do
modelo de prever corretamente rétulos aos dados de entrada. As métricas usados para
avaliar a robustez de um classificador sdao acuracia, precisao e recall. Acuracia diz a
propor¢ao de previsoes corretas (positivas e negativas) em relacio ao total de amostras,
medindo o quao frequentemente o modelo acerta. Precisao calcula a proporcao de
instancias classificadas como positivas que realmente sao positivas, estimando a confianga
nas previsoes positivas. Por fim, o Recall calcula a proporcao de instancias realmente

positivas que o modelo conseguiu identificar, ou seja, a capacidade do modelo de encontrar
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todos os positivos. Frequentemente, Precisao e Recall sao analisados juntos. As férmulas

para calcular esses valores sdo apresentadas abaixo:

L VP+ VN
Acuracia = VPT VN L FPLEN (3.13)
. VP
Precisao = m (314)
VP
Recall = ———— 3.15
T VPYFN (3.15)

onde:

VP - Verdadeiro Positivo.
VN - Verdadeiro Negativo.
FP - Falso Positivo.
FN - Falso Negativo.

3.4.2 Regressao

Em tarefas de regressao, nas quais o objetivo é prever valores continuos, a maneira
de avaliar o modelo é medir a correlacao entre os valores reais e os previstos. A avaliacao
geralmente se baseia em medidas de erro, tais como o MSE, o RMSE, MAE e MAPE, que
capturam diferentes aspectos da precisao e robustez das previsoes. O Mean Squared Error
(Erro Quadratico Médio) (MSE) calcula a média dos quadrados dos erros de previsao,
penalizando mais fortemente erros grandes devido a elevacao ao quadrado. O Root Mean
Squared Error (Raiz do Erro Quadratico Médio) (RMSE) é a raiz quadrada do MSE, mas

retorna os valores na mesma unidade da varidvel prevista, facilitando a interpretacao.

O Mean Absolute Error (Erro Absoluto Médio) (MAE) é a média dos valores
absolutos dos erros, e representa o erro médio em termos absolutos, sem exagerar o peso
de grandes desvios. Por fim, o Mean Absolute Percentage Error (Erro Percentual Absoluto
Médio) (MAPE) mostra o erro médio do modelo em termos percentuais. As definigoes de

cada métrica se encontram nas equagoes abaixo:

MSE =23 (4 - )2 (3.16)

ni4

RMSE = J 1 Zn:(yi —9)2 =VMSE (3.17)

n;3

1 X
MAE =~ >y — il (3.18)
=1
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100 &Ny — 9
MAPE = — Y %4 (3.19)
noG45 Y
onde:
y; - Valor verdadeiro.
9; - Valor previsto.

n - Numero total de observagoes.
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4 MATERIAIS E METODOS

4.1 Introducao

De modo geral, modelos de aprendizado de méaquina buscam estabelecer um
mapeamento entre um conjunto de entradas e a forma desejada de saida. No contexto da
estimativa da idade 6ssea a partir de radiografias da mao, a imagem constitui a entrada
do sistema, enquanto a idade éssea estimada representa a saida. Como a variavel a ser
predita é continua, a formulacdo do problema como uma tarefa de regressao apresenta-se

como a abordagem mais adequada para modelar a relagdo entrada—saida.

Este capitulo descreve a metodologia adotada para a predicao da idade éssea a
partir das imagens radiograficas, detalhando os recursos empregados, as etapas de pré-
processamento e a arquitetura das redes neurais artificiais utilizadas. A fim de sintetizar
as etapas e componentes desenvolvidos ao longo deste trabalho, apresenta-se na Figura 17

uma visao geral do fluxo completo do método proposto.

Figura 17 — Fluxo do método completo
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Fonte: Elaborado pela autora.
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4.2 Banco de dados

A idade dssea constitui uma medida utilizada para quantificar o estagio de desenvol-
vimento esquelético em criancas e adolescentes. Essa métrica difere da idade cronoldgica,
uma vez que ¢ expressa em uma escala que varia de 0 a 228 meses. Em condig¢oes de
crescimento consideradas normais, criangas do mesmo sexo e com idades cronologicas

idénticas tendem a apresentar idades ¢sseas semelhantes (Cunningham et al., 2016).

O desenvolvimento de modelos de aprendizado profundo depende fortemente da
disponibilidade e da qualidade dos dados utilizados no processo de treinamento e validacao.
Nesse contexto, a construgao e a caracterizagao do banco de dados constituem etapas
fundamentais, pois a representatividade e a diversidade das amostras impactam diretamente
no desempenho e na capacidade de generalizacdo do modelo. Para o treinamento do modelo

proposto neste trabalho, foram utilizadas duas bases de dados publicas distintas: a RSNA

e o RHPE.

O conjunto de dados da Radiological Society of North America (Sociedade de
Radiologia da América do Nort) (RSNA) foi desenvolvido com o objetivo de apoiar o
avanco e a avaliagao de técnicas automatizadas de estimativa da idade 6ssea. Ele é composto
por 12.611 radiografias da mao, obtidas majoritariamente em dois hospitais pediatricos nos
Estados Unidos: o Children’s Hospital Colorado e o Lucile Packard Children’s Hospital
(RSNA, 2017).

Além das radiografias, é disponibilizado um arquivo em formato CSV contendo a
idade 6ssea aferida por radiologistas, bem como a informacao de género dos individuos. A
anotacao das idades foi realizada por seis especialistas médicos, com o valor final atribuido

a cada exame calculado a partir da média ponderada das avaliagoes.

A base contempla imagens de participantes de ambos os sexos, sendo 5.778 (46%)
correspondentes a participantes do sexo feminino e 6.833 (54%) do sexo masculino. As
imagens foram adquiridas por diferentes equipamentos de raio-X, apresentando variagao
de resolugao que vai de 800 x 1.011 pixels até 2.460 x 2.970 pixels. A Figura 18 apresenta

a distribuicao de frequéncia da idade éssea no conjunto de dados.
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Figura 18 — Distribui¢do do dataset RSNA
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Fonte: Elaborado pela autora.
A Figura 19 apresenta alguns exemplos de radiografias da mao provenientes da

base RSNA, ilustrando a diversidade de qualidade, posicao e caracteristicas anatomicas

presentes no conjunto de dados utilizado como referéncia neste trabalho.

Figura 19 — Exemplos de imagens presentes na base RSNA
(a) (b) (c)

Fonte: Elaborado pela autora.
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O estudo de (Escobar et al., 2019) apresentou um novo conjunto de dados de
referéncia, denominado Radiological Hand Pose Estimation (Estimativa Radiolégica da
Postura da Mao) (RHPE), desenvolvido a partir da anélise local de regides de interesse
em radiografias da mao. Essa base é composta por 6.204 radiografias, provenientes de uma
populacao com caracteristicas distintas das bases até entao disponiveis para a tarefa de
avaliacao da idade 6ssea, o que garante maior variabilidade e contribui para uma melhor

capacidade de generalizacao dos modelos.

O banco inclui imagens de maos direitas e esquerdas, de pacientes do sexo masculino
e feminino, com idades compreendidas entre 0 e 228 meses, e as anotacoes de idade dssea
foram realizadas por dois radiologistas especialistas. Em termos de distribuicao por sexo,
54% (3.526) das radiografias correspondem a pacientes do sexo feminino, enquanto 46%
(2.678) pertencem a pacientes do sexo masculino. Adicionalmente, a base disponibiliza
também um arquivo CSV informacoes referentes a idade éssea e ao sexo dos pacientes.
As imagens apresentam variagdo nas dimensoes, indo da menor resolugao de 973 x 1.192
pixels até a maior de 8.480 x 6.960 pixels. A Figura 20 apresenta a distribuicao nesse

conjunto de dados.

Figura 20 — Distribuicao do dataset RHPE
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Fonte: Elaborado pela autora.
A Figura 21 exibe amostras de radiografias da base RHPE, evidenciando a varia-

bilidade tipica do banco institucional e destacando diferencas de aquisicao e padroes de

posicionamento em relacao a base RSNA.
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Figura 21 — Exemplos de imagens presentes na base RHPE
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Fonte: Elaborado pela autora.

Uma anélise comparativa dos graficos para os conjuntos de dados RSNA e RHPE
mostra que ambos possuem um formato de distribuicdo muito semelhante, onde a concen-
tracdo de dados nao é uniforme. H4 poucas amostras nas idades mais jovens (abaixo de 50
meses) e uma quantidade significativamente maior no periodo da adolescéncia, entre 120 e
180 meses (10 a 15 anos), sendo um reflexo direto da pratica médica do mundo real. A
principal razao pela qual se avalia a idade 0ssea é para investigar possiveis distirbios de
crescimento, e a maioria dessas preocupagoes se tornam mais evidente durante a puber-
dade e pré-puberdade. Ainda assim, se complementam resultando em uma base de dados
mais diversificada, abrangendo variagoes de diferentes populagoes e equipamentos. Essa
combinagao é estratégica para construir modelos de inteligéncia artificial mais robustos e

capazes de funcionar bem em novos cenarios clinicos.

4.3 Softwares e Bibliotecas

4.3.1 Ambiente de desenvolvimento

O desenvolvimento do presente trabalho foi realizado utilizando a linguagem de
programacao Python, em conjunto com o ambiente de desenvolvimento integrado Visual
Studio Code (VS Code). A escolha do Python se deve a sua ampla adogao na comunidade

cientifica e de aprendizado de maquina, bem como a disponibilidade de bibliotecas especi-
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alizadas para processamento de imagens, manipulacao de dados e construcao de modelos
de aprendizado profundo. O VS Code, por sua vez, oferece recursos avancados de edicao,
depuracao e integracao com sistemas de controle de versao, proporcionando um fluxo de
trabalho eficiente e organizado. Essa combinacgao possibilitou a implementacao de rotinas
complexas de pré-processamento, treinamento e avaliacao de modelos de forma reprodutivel

e modular, favorecendo tanto a produtividade quanto a manutencao do codigo.

4.3.2 Bibliotecas e pacotes

Nesta subsecao sao apresentadas as principais bibliotecas e pacotes Python em-
pregados no desenvolvimento do projeto. Tais ferramentas foram utilizadas para etapas
como manipulagao de dados, pré-processamento de imagens, construgao e treinamento
de modelos, visualizacao gréfica e avaliagao de desempenho. A lista a seguir descreve

individualmente cada biblioteca empregada e suas fungoes.
a) Numpy

Biblioteca fundamental para computacao cientifica, oferecendo estruturas de dados
eficientes, como arrays multidimensionais, além de fun¢does matemaéaticas e operagoes
vetorizadas. Sua utilizacdo permite manipulacoes rapidas e eficientes de grandes volumes
de dados numéricos, sendo amplamente empregada em pré-processamento de imagens e

operacoes matriciais em aprendizado de méaquina.
b) Matplotlib

Uma biblioteca de visualizagdo que possibilita a criagdo de graficos estaticos, ani-
mados e interativos. Ela é utilizada para a andlise exploratoria de dados, acompanhamento
do treinamento de modelos e apresentacao de resultados de forma visualmente clara e

personalizavel, contribuindo para a interpretacdo e comunicacao dos achados.
c) OpenCV

O OpenCV Open Source Computer Vision Library (Biblioteca de Visao Computaci-
onal de Codigo Aberto) é uma biblioteca voltada para processamento e andlise de imagens
e videos. Ela oferece fungoes para leitura, transformacao, segmentagao e manipulagao de

imagens, sendo essencial para tarefas de pré-processamento.
d) Pandas

Biblioteca especializada em manipulacao e analise de dados tabulares estruturados.
Por meio de suas estruturas de dados, é possivel organizar, filtrar, agregar e transformar
grandes conjuntos de informacoes de maneira eficiente, permitindo importar e exportar

dados de varios formatos de arquivos de tabelas e consultas a banco de dados.
e) Pytorch

O PyTorch é uma biblioteca de aprendizado profundo que fornece uma interface
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flexivel para construcao, treinamento e avaliagdo de redes neurais. Sua arquitetura di-
namica de grafos computacionais facilita a implementacdo de modelos complexos e o

acompanhamento de gradientes.
f) Scikit-learn

Biblioteca de aprendizado de maquina que oferece algoritmos de classificagao,
regressao, agrupamento e pré-processamento de dados, construido sobre NumPy, Pandas
e Matplotlib. Sua facilidade de integracao e conjunto abrangente de métricas permitem

validagao de modelos e andlise estatistica de dados.
g) Seaborn

O Seaborn ¢ uma biblioteca de visualizacao estatistica baseada no Matplotlib. Ela
facilita a criacao de graficos complexos e esteticamente consistentes, como mapas de calor,

distribuicoes e boxplots, sendo 1til na andlise exploratéria de dados.
h) Ultralytics

O Ultralytics fornece implementacoes avangadas da familia de modelos YOLO,
voltadas para deteccao de objetos em imagens, com compatibilidade com frameworks de
aprendizado profundo como PyTorch. Sua utilizagdo permite treinar e aplicar redes de
alta performance para identificar estruturas ou objetos especificos, oferecendo suporte
a diferentes resolucoes de entrada e facilidades para integracdo com pipelines de visao

computacional.
i) Optuna

Biblioteca de otimizacao de hiperparametros que automatiza a busca por combina-
¢oes ideais de parametros em modelos de aprendizado de maquina. Ele utiliza técnicas de
otimizacgao inteligente para aumentar a eficiéncia e desempenho de modelos computacionais.
O espago de busca de hiperparametros é definido dinamicamente durante a execuc¢ao do
cédigo, permitindo flexibilidade na experimentacao. A biblioteca utiliza algoritmos de oti-
mizagao sequencial para sugerir novas combinacoes de parametros com base nos resultados
de avaliagoes anteriores, equilibrando exploragao e exploragao do espago de busca. Além
disso, o Optuna oferece recursos para paralelizacdo de experimentos, registro automatico

de resultados e integragao com frameworks populares como PyTorch e TensorFlow.
j) Albumentations

Ferramenta amplamente utilizada em visdo computacional por sua eficiéncia e
flexibilidade no tratamento conjunto de imagens para tarefas de deteccdo de objetos.
Diferentemente de bibliotecas tradicionais de aumento de dados, a Albumentations garante
que, ao aplicar uma transformagao geométrica na imagem (como rotagao, translagao ou
escala), as coordenadas das caixas delimitadoras sejam ajustadas automaticamente e de

forma precisa, preservando a correspondéncia entre imagem e rétulo.
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4.3.3 Ferramentas auxiliares

Além das bibliotecas de software utilizadas diretamente na implementagao, este
trabalho também fez uso de ferramentas auxiliares essenciais para o preparo dos dados e
para o processamento eficiente dos modelos. Nesta subsecao sao descritas a ferramenta
de anotacao de imagens e o recurso de processamento acelerado utilizados ao longo do

projeto.
a) CVAT

O CVAT Computer Vision Annotation Tool (Ferramenta de Anotacao de Visao
Computacional) é uma ferramenta de c6digo aberto para anotacao de imagens e videos,
permitindo a marcacao de objetos, regides de interesse e pontos de referéncia. Ele é utilizado
para criar dados anotados de referéncia em tarefas de visao computacional, oferencendo

uma variedade de opcoes de rotulagem.
b) GPU

A GPU (Graphics Processing Unit) é um componente de hardware especializado
em processamento paralelo, originalmente desenvolvidos para aplicagoes graficas. Seu uso
permite acelerar significativamente operagoes computacionais complexas, como o treina-
mento de redes neurais e o processamento intensivo de imagens. Todos os experimentos
foram implementados em uma GPU com especificagoes NVIDIA GeForce GTX 1060 6GB.

4.4 Pré Processamento

Diversos fatores influenciam a aparéncia final de imagens radiogréaficas. Os valores
do pixels sao afetados por parametros técnicos utilizados durante a aquisi¢do da radiografia,
pela orientacao da mao em relacao ao detector de imagem e pelo nivel geral de lumino-
sidade da regiao registrada. Nos conjuntos de dados observa-se uma ampla variacao na
intensidade das imagens decorrente da natureza multi-institucional do material, coletado
com equipamentos e protocolos distintos. Assim, torna-se necessario reduzir as variagoes
de intensidade que nao estao relacionadas as caracteristicas estruturais de interesse, de

modo a evitar que ruidos de aquisi¢cao interfiram na analise computacional.

Um método amplamente reconhecido para esse fim é a equalizacao de histogramas,
utilizada para uniformizar distribui¢des de intensidade em conjuntos de imagens. Neste
trabalho, foi empregada a técnica de CLAHE, a fim de normalizar as diferentes varia¢oes
de tons de cinza e realcar detalhes relevantes para a tarefa proposta. A Figura 22 apresenta

algumas imagens apos a aplicagao desse procedimento na base de dados.
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Figura 22 — Exemplares de radiografias disponiveis na base. a), b) e ¢) Imagens originais.
d), e) e f) Corregao com CLAHE

(b) (c)

Fonte: Elaborado pela autora.

4.5 Extracdo das regides de interesse

Selecionar de forma adequada a regidao da imagem utilizada para inferéncia é
fundamental, pois contribui para eliminar variagoes visuais que nao tém relagdo com a
idade 6ssea. Nas radiografias, o fundo da imagem nao fornece informagoes tteis para essa
estimativa e, por isso, pode ser descartado sem comprometer o desempenho do modelo.
Além disso, o padrao de ossificagao tende a ser semelhante em diferentes partes da mao,
o que torna algumas informacoes visuais repetitivas e, portanto, desnecessarias para a
analise. Assim, ao definir as regides de interesse, deve-se considerar o equilibrio entre
eliminar redundancias, preservar as caracteristicas Gnicas e manter apenas os aspectos

realmente relevantes para a predicao da idade Ossea.

Para viabilizar a extracdo automatica das regioes de interesse, foi empregado um
modelo da familia YOLO, especificamente a versao 10 disponibilizada pela Ultralytics. O
primeiro passo para treinar o modelo ¢ a anotacdo manual das regides relevantes da mao,
que servira como base de aprendizado supervisionado. Esse processo foi realizado com

auxilio da plataforma CVAT (Computer Vision Annotation Tool).

Para este trabalho, foram rotuladas 204 imagens, selecionadas manualmente de
forma criteriosa a fim de representar a diversidade existente no banco de dados. Nessa
selecao, buscou-se contemplar diferentes condi¢des, como variacoes no posicionamento e

orientacao da mao, niveis distintos de brilho e contraste, diferencas na proporcao entre a
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area da mao e o tamanho total da imagem, além da presenca de bordas e identificadores
dos exames. No CVAT, cada radiografia é entao carregada e a area de interesse é delimitada
manualmente por meio de caixas delimitadoras. Essas anotac¢oes sao associadas a rétulos
especificos, permitindo ao modelo aprender a identificar automaticamente essas regioes em
novas imagens. O processo de rotulagao manual e geragao de caixas delimitadoras pode

ser visto na Figura 23.

Figura 23 — Interface do CVAT para rotulacao de imagens
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Fonte: Elaborado pela autora.

As regides escolhidas para o desenvolvimento do trabalho foram trés: (i) a arti-
culacdo entre a falange média e proximal, (ii) os quatro ossos do metacarpo localizados
na palma da méo e (iii) os ossos do carpo. Apds a conclusdo da etapa de anotagao, os
arquivos com as coordenadas dessas regioes foram exportados em formato compativel
com o YOLOvV10, constituindo, junto com as imagens originais, o conjunto de dados de
treinamento. Cada imagem recebe um arquivo de rétulo correspondente no formato .txt,
de modo que a estrutura dos diretérios seguiu o padrao: /data/train/images/00001.png
para a imagem e /data/train/labels/00001.txt para o respectivo rétulo.

O arquivo de rétulo contém uma linha para cada regiao anotada dentro da imagem,
composta por cinco valores separados por espacos, representando as informagoes necessarias
para que o modelo localize e classifique os objetos de forma precisa. O valor de classe
indica a regiao anotada, x_centro e y centro representam as coordenadas do centro da
caixa delimitadora, e largura e altura correspondem as dimensoes da caixa delimitadora,
sendo todos esses valores normalizados em relagao a largura e altura total da imagem.
A normalizacao é realizada dividindo a coordenada original pelo tamanho da imagem
correspondente, resultando em valores entre 0 e 1, garantindo que as anotagoes permanegam
consistentes mesmo quando as imagens sao redimensionadas. A Tabela 2 exemplifica o

formato do arquivo de anotacao:
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Tabela 2 — Exemplo da formatacao de saida das anotacoes.

<classe> <x_centro> <y_centro> <largura> <altura>
0 0.510735 0.229892 0.129617 0.086406
1 0.470988 0.507748 0.407023 0.212016
2 0.408085 0.622367 0.213246 0.116426

O conjunto total de imagens anotadas foi dividido em duas parti¢oes: 70% destinadas
ao treinamento e 30% reservadas para validacdo, assegurando que o modelo fosse avaliado
em dados nao vistos durante o aprendizado, sendo fundamental para mensurar a capacidade
de generalizacao. Para ampliar a variabilidade do conjunto de treinamento e tornar o
modelo mais robusto a diferentes condi¢oes de captura, aplicou-se uma etapa de aumento
de dados, gerando duas novas versoes de cada imagem original combinando diversas
variacoes aplicadas de forma aleatéria, com auxilio da biblioteca Albumentations. As
transformagoes disponibilizadas foram: (i) Espelhamento horizontal completo, permitindo
que o modelo reconheca a mao independentemente da lateralidade; (ii) Rotagao aleatéria
no intervalo de -10° a 10°, simulando pequenas variagoes de posicionamento durante o
exame radiogréfico; (iii) Variacao aleatéria de escala de até 10%, ajustando a proporgao
entre a mao e a area total da imagem; (iv) Modificacdo controlada nos pardmetros de
brilho (£20%), contraste (+10%) e saturagao (£20%), de modo a representar variagoes

de iluminacao e qualidade de aquisicao da imagem.

Apés essa etapa, iniciou-se o processo de configuracao e treinamento do modelo. O
YOLOv10 fornece cinco versoes escalonadas: YOLOv10n (nano), YOLOv10s (pequeno),
YOLOv10m (médio), YOLOv10! (grande) e YOLOv10x (extragrande). Cada varia¢ao do
YOLOvV10 usa a mesma arquitetura base, mas difere em profundidade da rede, niimero
de canais por camada, nimero total de parametros, e uso de memoéria e tempo de
inferéncia. Optou-se pela versao pequena (s) do modelo, que oferece um bom equilibrio
entre desempenho computacional e precisao na deteccao, sendo especialmente adequada

para conjuntos de dados de tamanho moderado e aplica¢gbes em pesquisa.

O treinamento foi conduzido localmente utilizando GPU, o que possibilitou maior
eficiéncia no processamento de lotes e convergéncia mais rapida do modelo. As imagens sao
redimensionadas automaticamente na entrada do modelo, e os principais hiperparametros

adotados foram os seguintes:

Tamanho da imagem - 800 x 800 px
Numero de épocas - 200

Batch size - 8

Taxa de aprendizado - 1073

Early stopping - 20
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4.6 Deteccido da Idade Ossea

Com o modelo YOLOv10 devidamente treinado e validado, tornou-se possivel
aplicar o detector a toda a base de imagens radiogréaficas, automatizando o processo de
localizacao e recorte das regides de interesse previamente definidas. Assim, para cada
imagem original da base, o modelo realiza a inferéncia e identifica, por meio das caixas
delimitadoras aprendidas durante o treinamento, as areas correspondentes as trés regides

anatdomicas definidas.

Com esses resultados, inicia-se a fase de predicao da idade dssea, conduzida por
uma rede neural. Nessa etapa, as regides extraidas sao utilizadas como entradas do modelo
regressivo, que tem como objetivo estimar, de forma continua, a idade 6ssea do individuo,
extraindo caracteristicas discriminativas relacionadas a morfologia e densidade dssea dos
diferentes estagios de ossificacdo. Para ilustrar visualmente o processo de desenvolvimento
esquelético considerado neste estudo, a Figura 24 apresenta um exemplo da evolugao da
ossificagao nas regides extraidas ao longo de diferentes faixas etarias. Observa-se que, com
o avancgo da idade, hd uma progressiva fusdao e aumento na densidade e definicao das
estruturas dsseas.

Figura 24 — Evolucao da ossificacao nas regides extraidas: articulacao, metacarpo e carpo,

respectivamente. a) Pacientes com 18 meses; b) 84 meses; ¢) 162 meses ¢ d)
204 meses

(a) (d)

Fonte: Elaborado pela autora.

O particionamento do conjunto de dados utilizado para o treinamento e avaliacao
do modelo foi realizado de forma estratificada, considerando a variavel alvo, de modo
a garantir que todas as divisoes apresentassem uma distribui¢ao semelhante de idades.
Dados de toda a faixa etdria foram incluidos para treinamento no estudo. Assim, 70% das
amostras foram destinadas ao conjunto de treinamento, enquanto 15% foram reservadas

para validacao e os 15% restantes para teste.

Para lidar com o desbalanceamento da base de dados, foi empregado Data Aug-

mentation no conjunto de treino, aumentando artificialmente as amostras das classes
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minoritarias, e subamostragem nas classes majoritarias. Para as classes minoritarias, cada
imagem original gerou 3 cdpias adicionais com modificagoes: (i) Espelhamento horizontal;
(ii) Rotagoes aleatérias de até £30°; (iii) Translag¢oes no eixo x de +15pz e no eixo y
de £10pz; (iv) Ajustes de brilho e contraste de £20%. As classes majoritarias foram

limitadas em 800 amostras. A distribuicao dos conjuntos pode ser visto na Figura 25.

Figura 25 — Distribuicao das amostras em cada base. a) Treino; b) Validagao; ¢) Teste
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Fonte: Elaborado pela autora.
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Ao final desse processo, todas as imagens originais e aumentadas foram consolidadas
em um diretdrio final, resultando em um conjunto com 13.815 amostras para treino, 2.838
para validacao, e 2.785 para teste. Todas as partigoes possuem histogramas comparaveis,
garantindo que nao haja concentragao excessiva de determinadas faixas etarias, permitindo
que o modelo aprenda de forma consistente os padrdes de ossificagdo para todas as idades
e seja avaliado de maneira justa, refletindo sua capacidade de generalizacao. As imagens
recortadas de todas as regioes foram redimensionadas reduzindo o tamanho para 150 x
150 pixels e convertidas para escala de cinza, assegurando compatibilidade com a rede

neural convolucional regressora utilizada na etapa seguinte.

O modelo de predicao da idade 6ssea desenvolvido neste trabalho se baseia em
uma arquitetura composta por trés redes neurais convolucionais independentes, cada
uma especializada em processar uma regiao especifica. Cada rede convolucional segue a
mesma arquitetura, consistindo em trés blocos convolucionais sequenciais. Cada bloco é
composto por uma camada convolucional seguida de funcao de ativagdo ReLLU e operagao
de Max Pooling, com o objetivo de extrair caracteristicas relevantes das imagens e reduzir
gradualmente suas dimensoes espaciais. O primeiro bloco convolucional recebe a imagem
em escala de cinza e aplica 64 filtros de tamanho 3x3, seguidos de ativacao ReLLU e uma
operacao de Maz Pooling, resultando em feature maps de dimensao 75x75. O segundo
bloco, com 128 filtros de tamanho 3x3, processa os 64 canais provenientes da etapa
anterior, reduzindo a dimensao espacial para 37x37. Por fim, o terceiro bloco convolucional
utiliza 256 filtros também de 3x 3, extraindo representagdes mais complexas e condensadas

da imagem, com feature maps finais de tamanho 18x18.

A saida convolucional é entdo achatada, transformando-se em um vetor unidimen-
sional de tamanho 1x82.944, resultante da multiplicacdo entre o tamanho dos feature
maps e a quantidade de filtros da ultima camada convolucional. Em seguida, sdo aplicadas
transformacoes lineares, responsaveis por combinar as caracteristicas extraidas nas etapas
anteriores e gerar representacoes significativas dos dados. Essas camadas totalmente co-
nectadas possuem dimensoes de 1x256 e 1x128, respectivamente, seguidas por fungoes de
ativacao ReLLU. Por fim, uma camada linear de saida tinica produz a predi¢ao da idade
6ssea correspondente a cada regiao analisada. A Figura 26 apresenta as camadas da rede

desenvolvida.
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Figura 26 — Grafico arquitetonico da CNN
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Fonte: Elaborado pela autora.

Apos a inferéncia de cada regiao, as predicoes individuais de cada rede sao combina-
das por meio de uma média ponderada, na qual os pesos sao calculados com base no Erro
Quadratico (EQ) individual de cada predigao em relagao a idade real do paciente. Essa
estratégia permite que predi¢des mais confidveis exer¢cam maior influéncia na estimativa

final antes da etapa de refinamento. Os erros sdo obtidos pela equagao (20):

EQ; = () —y)? (4.1)

Em seguida, cada erro é transformado em um peso (w;) por meio da fungao softmax,
aplicada sobre os valores negativos dos erros, de forma que previsoes mais precisas recebam

maior peso e influéncia na combinacgao final. Essa conversao é dada por (21):

e_EQi

— (4.2)

Ww; = 3

Durante o processo de treinamento, o peso atribuido a cada rede neural é atualizado
iterativamente, de modo a refletir a contribuicao relativa de cada modelo ao longo das
épocas. Ao término do treinamento, os valores finais desses pesos sao armazenados e
posteriormente empregados nas etapas de validagao e teste, assegurando consisténcia
na avaliac@o. Assim, a predigdo final (§ina) da idade éssea é obtida como uma média

ponderada das estimativas individuais, expressa por:

3
Ofinat = Y Wil (4.3)
i=1

A predigdo média ponderada das CNNs é entdo fornecida como entrada para
uma rede neural MLP, juntamente com o sexo do paciente. Essa etapa foi desenvolvida

com o objetivo de ajustar a predicao da idade dssea levando em consideragao o sexo
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biologico do paciente, motivada por evidéncias clinicas amplamente documentadas de que
o desenvolvimento esquelético apresenta diferencas significativas entre individuos do sexo
masculino e feminino, o que impacta diretamente na velocidade e padrao de ossificacao
(Cole et al., 2015).

A arquitetura da MLP foi concebida de maneira simples, composta por duas
camadas totalmente conectadas. A camada de entrada recebe dois atributos: a idade 6ssea
predita pela CNN e a codificacao numérica do sexo do paciente (0 para feminino e 1 para
masculino). Essa entrada é processada por uma camada densa com 32 neurdnios e fungio
de ativacao ReLLU. Em seguida, uma camada linear de saida com um tinico neurénio produz
o valor final refinado da idade éssea, incorporando informacoes demograficas relevantes
sem que seus gradientes influenciem diretamente o treinamento das redes convolucionais.

A arquitetura pode ser avaliada na Figura 27.

Figura 27 — Gréfico arquitetonico da MLP

Saida da CNN

Sexo do paciente

Entrada Camada Camada Saida
Oculta Oculta

Fonte: Elaborado pela autora.

O processo de otimizagao foi conduzido com uma taxa de aprendizado inicial de
1073 para a CNN e 1072 para a MLP. O treinamento foi realizado ao longo de 30 épocas,
utilizando batch size de 64, valor definido em funcao da capacidade da GPU disponivel.
Como func¢ao de perda, empregou-se o MSE, atribuindo penalidades mais severas a erros

de maior magnitude.
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5 RESULTADOS

Este capitulo apresenta e discute os resultados obtidos nas duas etapas principais
da metodologia proposta. Primeiramente, sao analisados os desempenhos do modelo
de detecgdo e segmentagao das regides anatomicas da mao na secao 5.1, incluindo a
avaliacdo quantitativa das métricas obtidas pelo modelo YOLO. Em seguida, na secao 5.2,
sao apresentados os resultados do modelo de regressao para estimativa da idade 6ssea,
construido a partir das imagens segmentadas. Nesta segunda parte, sao detalhadas as
métricas de erro obtidas durante o treinamento e validagao, além da avaliagao final em
conjunto de teste independente. Por fim, é realizada uma discussao abrangente sobre os
resultados alcancados, comparando com os métodos existentes no estado da arte de modo

a contextualizar as contribuicoes e limitagoes.

5.1 Modelo de segmentacao de regides

A avaliacao da etapa de segmentacao das regides de interesse, implementado com o
YOLOvV10, foi conduzida de modo a avaliar tanto a capacidade do modelo em localizar
corretamente as estruturas de interesse quanto seu potencial pratico para uso em um
processamento automatico de estimativa de idade 6ssea. Para estimar o desempenho do
modelo, foram utilizadas as métricas padronizadas em deteccao de objetos, comparando

as caixas preditas com as caixas de referéncia anotadas manualmente.

5.1.1 Desempenho em treinamento

Nesta etapa o modelo foi avaliado durante o processo de treinamento e validacao,
utilizando exclusivamente o subconjunto de dados reservado para essas fases. O objetivo
dessa analise inicial foi monitorar a convergéncia do modelo, verificar a estabilidade das
métricas de desempenho e identificar possiveis indicios de sobreajuste. Ao longo das 200
épocas o desempenho do modelo foi monitorado continuamente no conjunto de validacao,
e com o critério de early stopping para encerrar o treinamento caso nao fosse observada
melhoria significativa nas métricas de validacao apos 20 épocas consecutivas, a estabilidade

foi atingida na época 69.

O processo de otimizacao foi conduzido com os hiperparametros padrao do YO-
LOv10 utilizando as funcgoes de perda de localizacdo e de classificacdo. A perda de
localizacao estd associada a precisao dos limites das caixas delimitadoras anotadas e
previstas, a sobreposi¢ao, tamanho e centro. Ja a perda de classificagdo representa o erro
de classificagdo entre as categorias previstas e as reais. Ambas as perdas devem ser as mais

préximas de zero possivel.
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A Figura 28 apresenta o acompanhamento dessas curvas ao longo das épocas. A
queda acentuada da perda de localizacao nas primeiras épocas, seguida de estabilizacao
em valores proximos de 0.3 no treinamento e 2.5 na validacao, demonstra que o modelo
aprendeu a localizar adequadamente as estruturas de interesse, com pequenas variagoes
residuais. Para a perda de classificacao, a reducao para valores préximos de 1 no conjunto
de validagao demonstra uma boa discriminacao entre as classes, com baixo indice de falsos

positivos e falsos negativos.

Figura 28 — Evolugao das fungoes de perda para o modelo de segmentacao. (a) Perda de
localizagao. (b) Perda de classificacao
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Fonte: Elaborado pela autora.

Além das fungoes de perda, a Figura 29 apresenta a evolugdo das métricas de
precisao e recall durante o treinamento, calculadas sobre o conjunto de validacao. Durante
o treinamento, ambas as métricas apresentaram crescimento acentuado nas primeiras
épocas, com resultados finais de 97% para precisao e 96% para recall, indicando que
o modelo atingiu um equilibrio satisfatério entre detecgoes corretas e abrangéncia das

previsoes no dataset fornecido.

A partir desses indicadores o desempenho do modelo em validagao foi analisado
para cada classe de interesse, utilizando a matriz de confusao obtida na Figura 30, e
calculando as métricas individuais. A matriz mostra que o modelo alcangou desempenho
elevado em todas as categorias, com valores predominantes ao longo da diagonal principal,
indicando classificagoes corretas. As ocorréncias fora da diagonal representam erros de

confusao entre as classes, que, neste caso, sao pouco expressivas.



70

Figura 29 — Evolugao das métricas de precisao e recall para o modelo de segmentacao
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Fonte: Elaborado pela autora.

Figura 30 — Matriz de confusao para o modelo de segmentacao em validagao
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Fonte: Elaborado pela autora.

Para a classe articulacao foram registradas 56 classificacoes corretas e 5 incorretas,
sendo 4 delas regides que nao foram identificadas e que o modelo considerou como fundo
(falso negativo) e 1 regiao de fundo que foi classificada como articulagao (falso positivo).

Assim, a precisao é de 98%, e o recall é de 93%.

Para a classe metacarpo observam-se 59 classificagbes corretas e 2 incorretas (1
falso positivo e 1 falso negativo). A precisdo e o recall para essa classe é de 98%. A classe
carpo apresentou 60 predicoes corretas, com 5 erros de classificacao de falsos positivos.

Assim, a precisao ¢ 92% e o recall é 100%.

O indice global de acuréacia considerando as trés classes é de aproximadamente 0.93,

o que evidéncia excelente desempenho geral. Observa-se que os pequenos erros na base
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de validagao podem ser atribuidas a grande variabilidade introduzida intencionalmente
nas etapas de treinamento e validagao, com o objetivo de tornar o modelo mais robusto a
diferentes padroes de posicionamento e iluminacao. Essa diversidade expoe o modelo a
cenarios mais desafiadores do que aqueles presentes na base original, que em sua maioria
apresenta disposi¢coes mais padronizadas. Dessa forma, é esperado que o desempenho do
modelo na base completa apresente resultados superiores aos observados na validacao. A

Tabela 3 resume os resultados de validacao encontrados.

Tabela 3 — Comparacao de resultados de validacao para o modelo de segmentacao

Regiao Precisao Recall Acuracia

Global 0.97 0.96 0.93
Articulacao 0.98 0.93 -
Metacarpo 0.98 0.98 -

Carpo 0.92 1.00 -

5.1.2 Resultados finais

Apés a etapa de validagao, o modelo foi aplicado sobre o conjunto completo de
18.787 imagens da base de dados. O tempo total de inferéncia usando apenas CPU foi de
2.188 segundos (& 36 minutos), o que corresponde a uma média de aproximadamente 0.11
segundos por imagem, demonstrando a eficiéncia computacional do modelo YOLOv10s,

mesmo considerando o elevado nimero de detecgoes necessarias.

A partir da matriz de confusao apresentada na Figura 31, é possivel observar
que o modelo obteve 6timo desempenho, com boa capacidade de generalizacao apds o
treinamento. As trés classes de interesse apresentaram taxas de precisao e recall superiores
a 99.5%, o que indica um equilibrio relevante entre as previsoes corretas e o nimero de
detecgoes realizadas para cada categoria. Dessa forma, a acuracia global, definida como a

proporcao total de classificagoes corretas, manteve-se igualmente alta, em torno de 99.7%.
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Figura 31 — Matriz de confusao para o modelo de segmentacao na base total
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Fonte: Elaborado pela autora.

O modelo salva automaticamente as imagens com as regides recortadas diretamente
na pasta do projeto, enquanto as imagens correspondentes as detec¢oes ausentes, em um

total de 109, foram obtidas manualmente.

5.2 Modelo de deteccao da idade 6ssea

O modelo de estimativa da idade 6ssea recebe as regioes obtidas na etapa anterior
como entrada, extraindo caracteristicas morfolégicas e estruturais presentes nas radiografias.
A avaliacao do modelo, sendo um problema de regressao, foi conduzida utilizando as
métricas de Erro Absoluto Médio (MAE) e Erro Percentual Absoluto Médio (MAPE),

selecionadas para fornecer uma visao completa da precisao e do erro do modelo.

5.2.1 Desempenho em treinamento

Esta secao detalha os resultados obtidos durante a fase de treinamento e validacao,
e o0 objetivo desta andlise ¢ avaliar a capacidade do modelo em aprender os padroes a
partir dos dados de treinamento e sua habilidade de generalizar esse aprendizado para

dados novos, representados pelo conjunto de validacao.

Para aprofundar a compreensao do comportamento do modelo hibrido, sera anali-
sado primeiro o desempenho individual de cada uma das trés redes convolucionais que
processam as diferentes regides da imagem. A Figura 32 apresenta as curvas do MAE por

época, separadamente para os conjuntos de treinamento e validacao.
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Figura 32 — Curvas de MAE por época para as CNNs de cada regido. a) Articulagao, b)
Metacarpo, ¢) Carpo
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Fonte: Elaborado pela autora.

A rede apresentada em (a) é focada nas articulagoes, e demonstra um comporta-
mento de treinamento robusto e estavel. A curva de treinamento exibe uma convergéncia
suave, iniciando com um MAE superior a 30 meses e reduzindo-se consistentemente e
estabilizando em 7.62 meses. A curva de validacao também apresenta uma queda acentuada
inicial, atingindo o ponto de convergéncia em 11.76 meses. A rede (b) desenvolvida para o
metacarpo apresenta uma dindmica de treinamento diferente, onde a curva de treinamento
converge de forma mais acelerada nas épocas iniciais em comparacao com a rede anterior,
atingindo um plat6 de erro minimo mais cedo com um MAE de 9.77 meses. Ambas as redes,
apesar de processarem regioes distintas da imagem e exibirem performance de treinamento
diferentes, alcancam um desempenho de generalizacao final proximo, com um MAE de

validagao de 11.82 meses.

O treinamento da terceira rede em (c) para a regiao do carpo inicia também com
um MAE elevado, e decresce de forma suave e consistente ao longo das 30 épocas. O modelo
atingiu um MAE final estabelecendo-se em 6.54 meses com os dados de treinamento. A
curva de validagao apresenta uma dinadmica com mais instabilidade no comeco, porém

convergindo para um MAE de validagao final estavel, em 9.26 meses. Observa-se um
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padrao geral de convergéncia em todas as redes, com o MAE de treinamento diminuindo
consistentemente ao longo das épocas e estabilizando-se em limites distintos para cada
CNN, indicando que todas as regioes contém uma quantidade comparavel e distinta de

informacgao preditiva.

A Figura 33 apresenta as curvas de convergéncia do MLP final, responsavel pela
média das saidas das trés CNNs regionais e pela integracao da informagao do sexo do
paciente, gerando a predicao definitiva da idade déssea. O grafico mostra, respectivamente,
o MAE e o MAPE ao longo de 30 épocas.

Figura 33 — Curvas de convergéncia de (a) MAE e (b) MAPE para o modelo MLP final
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Fonte: Elaborado pela autora.

As curvas de treinamento demonstram um processo de aprendizado com uma
descida acentuada nas épocas iniciais, seguida por uma convergéncia suave. O MAE de
treinamento inicia acima de 20 meses e estabiliza em um valor baixo de 3.57 meses. O
MAPE segue um padrao similar, convergindo para 3.73%. Este comportamento indica que
o MLP possui capacidade suficiente para se ajustar aos dados de treinamento combinados.
As curvas de validagdo também conseguiram convergir e estabilizar apés a época 20,

atingindo um platd estdvel com um MAE de validagao final de 4.97 meses, e 0o MAPE em
5.04%.

O resultado demonstra que o modelo aprendeu a ponderar as saidas das CNNs,
e integrar a informacao de sexo do paciente como um preditor demografico chave. A
combinacao desses fatores permitiu ao MLP final gerar uma predigao significativamente
mais precisa do que qualquer componente individual. Os resultados ao final das 30 épocas

estao consolidados na Tabela 4.
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Tabela 4 — Resultados de MAE e MAPE para os modelos CNN e MLP.

Modelo MAE MAPE

CNN (a)

Treino 762  7.85%

Validagdo 11.76  11.40%
CNN (b)

Treino 9.77 9.89%

Validagao 11.82  12.04%
CNN (c)

Treino 6.54  7.02%

Validacdo  9.26  10.13%
MLP

Treino 3.57 3.73%

Validagao  4.97 5.04%

5.2.2 Desempenho em teste

Apoés a fase de otimizacao utilizando os conjuntos de treinamento e validagao, esta
secao apresenta a avaliagao final do modelo conduzida no conjunto de teste, um subconjunto

de dados isolado que nao foi utilizado em nenhuma etapa anterior do desenvolvimento.

A Figura 34 apresenta o grafico de dispersao das previsdoes do modelo comparado
com os valores reais para todas as amostras do conjunto de teste. Para facilitar a visuali-
zagao, as imagens no eixo X foram indexadas e ordenadas de acordo com a idade Ossea
real, representadas pela linha azul do grafico, e as previsoes individuais do modelo sao
representadas pelos pontos verdes. Em um gréafico de dispersao, a precisao do modelo é
inferida pela proximidade dos pontos de dados ao redor da linha que representa a idade

real.

Na andlise visual deste grafico observa-se uma nuvem de previsoes densa que segue de
perto da referéncia, demonstrando que o modelo aprendeu a relagao entre as caracteristicas
da imagem e a idade 6ssea, mantendo uma alta correlacao positiva, especialmente na faixa
etaria intermediaria. No entanto, algumas discrepancias permanecem entre as idades mais
jovens e mais velhas. A principal causa técnica é diretamente visivel no histograma de
distribuicao da base que apresenta sub-representacao nas extremidades, que nao pode ser

totalmente amenizada com técnicas de aumento de dados.
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Figura 34 — Gréafico de dispersao das previsdes no conjunto de teste
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Fonte: Elaborado pela autora.

A avaliacdo do modelo hibrido final no conjunto de teste resultou nas métricas de
desempenho com valores de 6.13 meses para o MAE, e um MAPE de 6.45%. O resultado
demonstra que a performance é estavel e generalizavel, onde os erros sao apenas ligeiramente
superiores ao observado ao final da convergéncia no conjunto de validacao, e indicando um

baixo erro relativo em relacao a idade real dos pacientes, validando a arquitetura proposta.

5.3 Discussoes

Esta secao tem como objetivo contextualizar os resultados obtidos pelo modelo
proposto para avaliacao da idade 6ssea, comparando-os com abordagens relevantes da
literatura recente, incluindo os trabalhos fornecidos. Serao analisadas as métricas de
desempenho, as escolhas metodoldgicas, o uso de informagoes demograficas, a flexibilidade
da arquitetura, a composicao dos dados de treinamento e as estratégias de validacao,

identificando as vantagens e limitacoes do método desenvolvido.

5.3.1 Comparagao geral de desempenho

O modelo proposto neste trabalho apresentou um Erro Médio Absoluto (MAE)
de 6,13 meses e um Erro Percentual Absoluto Médio (MAPE) de 6,45% no conjunto
de validagao. Diversos trabalhos prévios reportaram desempenhos semelhantes. (Guo et
al., 2022), (Mehta et al., 2021) e (Chu et al., 2018) obtiveram MAEs entre 5,92 e 6,07
meses em seus conjuntos de teste, valores muito préoximos ao observado neste estudo. De
forma andloga, (Iglovikov et al., 2018) relataram um MAE de 6.10 meses utilizando um

conjunto de redes VGG. Esses resultados reforcam que a arquitetura hibrida e regionalizada
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aqui proposta é capaz de extrair informagoes relevantes de maneira eficaz, alcangando

desempenho equivalente ao de métodos consolidados na area.

Por outro lado, (Andleeb et al., 2025) reportaram um MAE consideravelmente
inferior, de 4,87 meses. Entretanto, tal resultado foi obtido sobre um conjunto de teste
clinico especifico composto por pacientes com Escoliose Idiopatica do Adolescente (EIA).
Embora esse modelo também tenha sido treinado sobre a base RSNA, o desempenho
superior pode estar relacionado tanto a especificidade do conjunto de teste quanto a

arquitetura DenseNet201 empregada.

Alguns estudos, contudo, apresentaram erros substancialmente maiores. (Wibisono
et al., 2019) obtiveram MAE de 14,78 meses ao empregar VGG16, com erros ainda maiores
para métodos classicos de aprendizado de maquina. (Zulkifley et al., 2021) alcangaram um
MAE de 7,69 meses, enquanto (Sirati-Amsheh et al., 2025) reportaram 9,30 meses com
sua abordagem pré-treinada de forma nao supervisionada. (Pan et al., 2020), ao empregar
conjuntos de regressores sobre features extraidas por Inception-ResNet-V2, reportaram
MAE de 8,59 meses. O desempenho superior do modelo aqui apresentado frente a essas
abordagens pode ser atribuido a diferencas estruturais na arquitetura ou a estratégia de

treinamento adotada.

5.3.2 Comparacao de metodologia

A andlise comparativa das metodologias evidencia que distintas escolhas arquite-
turais e de pré-processamento exercem impacto direto no desempenho final dos modelos.
De forma semelhante a proposta de (Iglovikov et al., 2018), o presente estudo também se
baseia na segmentacao da imagem em regioes especificas de interesse. Os autores treinaram
CNNs independentes sobre as regides carpais e metacarpais/falanges, concluindo que esta
ultima é mais informativa, exceto em fases iniciais do desenvolvimento. Observaram que o
conjunto de modelos regionais superava o desempenho das redes individuais, corroborando
a relevancia da abordagem regional. O método aqui proposto expande essa ideia ao incluir
trés regides distintas e realizar a fusao via MLP, em contraste com a simples média

ponderada.

(Guo et al., 2022) também exploraram regioes de interesse inspiradas no método
Tanner-Whitehouse. O desempenho obtido (MAE de 6,07 meses) é praticamente idéntico
ao do presente trabalho, sugerindo que ambas as estratégias sao eficazes na combinacao
das representacoes regionais. (Zulkifley et al., 2021), por sua vez, recorreram & arquitetura
Xception. Apesar da sofisticacdo da abordagem, o MAE obtido (7,69 meses) pode indicar
que a definicao manual de regides, aliada ao MLP, mostrou-se mais eficiente do que essa
implementacgao especifica, possivelmente também em fungao da auséncia da variavel de
sexo. (Chu et al., 2018) abordaram o problema de forma distinta, convertendo a regressao

continua em um conjunto de classificagdes ordinais (K1 classes). Essa reformulacao
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resultou em MAE competitivos (5,98 meses), sugerindo que abordagens ordinais podem

oferecer vantagens, embora o presente trabalho mantenha a formulacao de regressao direta.

O sexo é um fator clinicamente relevante para a estimativa da idade éssea, e 0 modelo
proposto o incorpora explicitamente como variavel de entrada no MLP final. Estudos
anteriores também reconheceram sua importancia. (Iglovikov et al., 2018) observaram
que modelos especificos por sexo podiam superar os modelos mistos, enquanto (Pan et
al., 2020) reportaram resultados semelhantes ao treinar redes separadas para cada corte.
(Mehta et al., 2021) incluiram a varidvel de género na entrada da rede Inception V3, ao
passo que (Zulkifley et al., 2021) optaram por omiti-la por motivos de privacidade, o que
pode ter contribuido para o desempenho inferior. A inclusao explicita do sexo, portanto,
representa um diferencial metodologico relevante e possivelmente vantajoso em termos

preditivos.

Todas as pesquisas utilizaram exclusivamente o dataset RSNA, o que pode limitar
a generalizagao clinica. A variabilidade introduzida utilizando as bases RSNA e RHPE
em conjunto representa uma vantagem significativa, aumentando a robustez do modelo.
(Andleeb et al., 2025) evidenciaram a importancia dessa questao ao testar sua rede em
pacientes com EIA, fora da distribui¢ao original da RSNA. Além disso, a metodologia
aqui aplicada faz distingao explicita entre os conjuntos de treinamento, validagao e teste,
reservando este tltimo para avaliagao final. Tal pratica reduz o risco de otimizagao indevida
de hiperparametros sobre o conjunto de teste, evitando estimativas infladas de desempenho,
uma limitagao observada em estudos que utilizam apenas divisdes 70/30 ou 80/20, como
(Guo et al., 2022) e (Wibisono et al., 2019).
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6 CONCLUSAO

6.1 Introducao

A aplicacao de técnicas de aprendizado de maquina tem impulsionado uma trans-
formagao significativa na area médica, especialmente em tarefas diagnosticas baseadas
em imagem. Sistemas de diagndstico computadorizados, potencializados por redes neurais
convolucionais, demonstram uma capacidade crescente de identificar padroes complexos,
superando em alguns casos a variabilidade humana e oferecendo suporte objetivo a decisao
clinica. A avaliacao da idade d6ssea é um exemplo proeminente dessa contribuicao, onde a
analise automatizada de radiografias de mao e punho auxilia no diagnéstico de distirbios
de crescimento. Este capitulo final tem como objetivo consolidar as conclusoes extraidas do
presente trabalho, destacando seus resultados, contribui¢gdes metodoldgicas e delineando

caminhos para investigacoes futuras.

6.2 Conclusoes Finais

A metodologia proposta neste trabalho constituiu-se de um fluxo de trés etapas.
Inicialmente, as imagens de radiografias da mao foram submetidas a um estagio de pré-
processamento, no qual foram aplicadas técnicas de realce de contraste, com o objetivo
de destacar estruturas ésseas relevantes. Em seguida, foi implementado um modelo de
deteccao de objetos (YOLOvV10) para a segmentacao automatica das regides de interesse
(articulagdo, metacarpo e carpo). Este modelo de detec¢ao demonstrou um étimo desem-
penho, alcancando uma acuracia global de 99,7% na base total. Essa etapa foi essencial
para garantir que as imagens utilizadas pelo modelo de regressao representassem de forma

precisa as regioes anatomicas relevantes.

A terceira etapa, focada na avaliagao da idade 6ssea, empregou uma arquitetura
hibrida projetada para otimizar a extragao de caracteristicas regionais. A metodologia
proposta empregou trés redes neurais convolucionais (CNNs) customizadas, onde cada
rede se especializou em uma regiao de interesse distinta da radiografia da mao (articulacao,
metacarpo e carpo). As saidas preditivas de cada CNN foram combinadas através de uma
média ponderada, ajustada pelos respectivos erros de validagao de cada rede, e concatenadas
com a informacgao demografica do sexo do paciente. Este vetor de caracteristicas consolidado
serviu como entrada para um Perceptron de Miltiplas Camadas (MLP) final, responsavel

pela regressao da idade éssea.

A avaliacao final do modelo, realizada em um conjunto de teste isolado, confirmou
a eficicia e a robustez da abordagem. O modelo alcancou um Erro Médio Absoluto (MAE)
de 6,13 meses e um Erro Percentual Absoluto Médio (MAPE) de 6,45%. A proximidade
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entre o MAE de teste e o de validacao é um indicador forte da capacidade de generalizagao
do modelo. Este desempenho posiciona o modelo proposto de forma competitiva em
relacao ao estado da arte, atingindo um nivel de precisao que nao s6 se equipara a diversas
abordagens publicadas, mas também se enquadra dentro da variabilidade interobservador

frequentemente aceita na pratica clinica.

6.3 Contribuicoes

Os resultados alcangados evidenciam que este estudo oferece contribuicoes signifi-
cativas para o campo do processamento de imagens médicas. A combinagao de multiplas
CNNSs regionais, especializadas em diferentes areas anatémicas, com um MLP final para a
fusdo de caracteristicas e integracao de dados demograficos (sexo), demonstrou ser uma

estratégia eficaz, validando a arquitetura de deep learning hibrida e customizada.

Além da arquitetura em si, uma contribuicdo metodoldgica significativa foi a
utilizacao de dois conjuntos de dados distintos para o treinamento. Esta abordagem,
ainda pouco comum na literatura que predominantemente utiliza apenas a base RSNA,
injetou uma variabilidade crucial no processo de treinamento. A exposicdo do modelo
a diferentes equipamentos, protocolos de aquisi¢ao e perfis populacionais melhora sua
robustez e capacidade de generalizacao para amostras clinicas do mundo real, que podem

divergir da distribuicao do conjunto de dados do desafio RSNA.

Adicionalmente, embora modelos de detecgao de objetos como o YOLO (You Only
Look Once) sejam avangados, sua aplicagao especifica para a localizagdo automatica de
ROIs no contexto da avaliagdo de idade 6ssea ainda é escassa. A maioria dos trabalhos
existentes tende a ndo empregar técnicas de segmentacao especificas ou a utilizar modelos
de segmentacao distintos, geralmente baseados em abordagens convencionais. O uso do
YOLO representa uma abordagem promissora e relevante para o avanco na automatizagao
do fluxo de anélise, com alta fidelidade e baixo custo de anotacao, contribuindo para tornar

o processo mais eficiente e independente de intervencao manual.

As estratégias adotadas para o pré-processamento, segmentacao e extragao de
regioes demonstraram ser eficientes, de implementacao simples e com baixo custo com-
putacional, o que as torna adequadas para diferentes aplicagoes baseadas em imagens
radiograficas digitalizadas. A solucao proposta foi integralmente desenvolvida neste tra-
balho, apresentando flexibilidade para ser treinada com distintos conjuntos de dados e
demandando um tempo de treinamento compativel com aplicagoes praticas, e um rapido

tempo de inferéncia.
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6.4 Trabalhos Futuros

Embora os resultados obtidos sejam promissores, este trabalho abre diversas oportu-

nidades para investigacoes futuras e aprimoramentos. As seguintes dire¢des sao propostas:

o Ampliar o conjunto de dados utilizado no treinamento, especialmente nas faixas
etarias com menor representatividade, a fim de reduzir o desbalanceamento e aprimorar a
capacidade de generalizacao do modelo. Essa expansao pode incluir tanto a coleta de novos
exames quanto o uso de data augmentation avancado ou geragao de imagens sintéticas por

meio de redes generativas.

o Explorar novas técnicas de pré-processamento de imagens, com o objetivo de
otimizar a segmentacao das estruturas 6sseas da mao e do punho. Métodos baseados em
filtragem adaptativa, equalizagdo local de contraste e normalizacao de intensidade podem

contribuir para uma extracao mais precisa das regides de interesse.

e Avaliar a aplicabilidade do modelo em diferentes bases externas, oriundas de
hospitais ou bancos de imagens publicos, a fim de verificar sua capacidade de generalizacao

e robustez frente a variagoes de protocolo de aquisi¢do e qualidade das radiografias.

o Aprimorar a arquitetura da rede neural convolucional (CNN), realizando ajustes
finos de Transfer Learning com modelos pré-treinados em bases médicas de raios X, de

modo a acelerar o treinamento e melhorar a extracao de caracteristicas relevantes.

o Investigar diferentes configuragoes arquiteturais, como o aumento do nimero de
camadas convolucionais e da resolucao das imagens de entrada, bem como a execugao em
plataformas computacionais mais potentes, visando avaliar o impacto desses fatores sobre

a acuracia e o tempo de processamento.
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