Use este identificador para citar ou linkar para este item: https://repositorio.ufu.br/handle/123456789/41976
ORCID:  http://orcid.org/0009-0007-4635-5308
Tipo do documento: Trabalho de Conclusão de Curso
Tipo de acesso: Acesso Aberto
Título: Development of a machine learning model to predict construction machinery gearboxes’ health status
Título(s) alternativo(s): Desenvolvimento de um modelo de aprendizado de máquina para prever o estado de saúde das transmissões de máquinas de construção
Autor(es): Almeida, Camila Aparecida Da Silva
Primeiro orientador: Silva, Higor Luis
Primeiro membro da banca: Cavallini Junior, Aldemir Aparecido
Segundo membro da banca: Monteiro, Nuno Alvares De Paula
Resumo: As industries increasingly turn to data-driven methods in their maintenance strategies, the need for advanced predictive maintenance techniques becomes increasingly evident. This study focuses on the application of Machine Learning (ML) algorithms to enhance the reliability and efficiency of vehicle transmission systems, with a focus on monitoring the health of powershift transmissions for construction machinery, at ZF Friedrichshafen, a global automotive technology company. By utilizing ML algorithms, this project aims to identify patterns in operational data, facilitating the prediction of potential failures and enabling timely interventions. The goal of the study was to compare the ML ML algorithms, Random Forest, K Nearest Neighbors (KNN), and Support Vector Machines (SVM) to identify the most effective in predicting transmission failures. The research involved stages ranging from data collection and pre-processing to model optimization and evaluation, using machine learning metrics. The results revealed that the Random Forest algorithm outperformed the others in terms of precision, recall, and F1 score for the studied use case. Its robust ability to accurately classify positive and negative instances was particularly significant in the analysis of vehicle operational data.
Palavras-chave: Machine learning algorithms
Vehicle transmission systems
Predictive maintenance
Operational data analysis
Algoritmos de aprendizado de máquina
Sistemas de transmissão de veículos
Manutenção preditiva
Análise de dados operacionais
Área(s) do CNPq: CNPQ::ENGENHARIAS
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Referência: ALMEIDA, Camila Aparecida. Development of a machine learning model to predict construction machinery gearboxes’ health status. 2024. 66 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Aeronáutica) – Universidade Federal de Uberlândia, Uberlândia, 2024.
URI: https://repositorio.ufu.br/handle/123456789/41976
Data de defesa: 22-Mar-2024
Aparece nas coleções:TCC - Engenharia Aeronáutica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DevelopmentMachineLearning.pdf8.04 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.