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“Slow down, you crazy child

You’re so ambitious for a juvenile

But then if you’re so smart

Tell me why are you still so afraid ?”

(Billi Joel)



RESUMO

ALMEIDA, C.A.S. Desenvolvimento de um modelo de aprendizado de máquina para pre-
ver o estado de saúde das transmissões de máquinas de construção. 2024. 65 p. Trabalho de
Conclusão de Curso (Graduação em Engenharia Aeronáutica) – Faculdade de Engenharia Mecâ-
nica, Universidade Federal de Uberlândia, Uberlândia - MG, 2024.

Com o aumento da dependência de abordagens orientadas por dados em estratégias de manu-
tenção industrial, a necessidade de técnicas avançadas de manutenção preditiva torna-se cada
vez mais evidente. Este estudo concentra-se na aplicação de algoritmos de Machine Learning
(ML) para aprimorar a confiabilidade e eficiência dos sistemas de transmissão de veículos, com
foco no monitoramento da saúde das transmissões powershift para máquinas de construção
na ZF Friedrichshafen, uma empresa global de tecnologia automotiva. Ao utilizar algoritmos
de ML, este projeto visa identificar padrões em dados operacionais, facilitando a previsão de
possíveis falhas e permitindo intervenções oportunas. O objetivo central do estudo foi comparar
os algoritmos de ML, Floresta Aleatória (Random Forest), K Vizinhos Mais Próximos (KNN) e
Máquinas de Vetores de Suporte (SVM), para identificar o mais eficaz na previsão de falhas de
transmissão. A pesquisa envolveu etapas que abrangeram desde a coleta e pré-processamento de
dados até a otimização e avaliação dos modelos, utilizando métricas de aprendizado de máquina.
Os resultados mostraram que o algoritmo de Floresta Aleatória superou os outros em termos
de precisão, recall e pontuação F1, para a aplicação em estudo. Sua capacidade robusta em
classificar com precisão instâncias positivas e negativas foi especialmente significativa na análise
de dados operacionais de veículos.

Palavras-chave: Algoritmos de aprendizado de máquina, manutenção preditiva, sistemas de
transmissão de veículos, análise de dados operacionais, random forest.



ABSTRACT

ALMEIDA, C.A.S. Development of a machine learning model to predict construction ma-
chinery gearboxes’ health status. 2024. 65 p. Trabalho de Conclusão de Curso (Graduação em
Engenharia Aeronáutica) – Faculdade de Engenharia Mecânica, Universidade Federal de Uber-
lândia, Uberlândia - MG, 2024.

As industries increasingly turn to data-driven methods in their maintenance strategies, the need
for advanced predictive maintenance techniques becomes increasingly evident. This study
focuses on the application of Machine Learning (ML) algorithms to enhance the reliability and
efficiency of vehicle transmission systems, with a focus on monitoring the health of powershift
transmissions for construction machinery, at ZF Friedrichshafen, a global automotive technology
company. By utilizing ML algorithms, this project aims to identify patterns in operational data,
facilitating the prediction of potential failures and enabling timely interventions. The goal of the
study was to compare the ML ML algorithms, Random Forest, K Nearest Neighbors (KNN),
and Support Vector Machines (SVM) to identify the most effective in predicting transmission
failures. The research involved stages ranging from data collection and pre-processing to model
optimization and evaluation, using machine learning metrics. The results revealed that the
Random Forest algorithm outperformed the others in terms of precision, recall, and F1 score for
the studied use case. Its robust ability to accurately classify positive and negative instances was
particularly significant in the analysis of vehicle operational data.

Keywords: Machine learning algorithms, predictive maintenance, vehicle transmission systems,
operational data analysis, random forest.
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CHAPTER

1
INTRODUCTION

FAILURE prediction is an essential component of industrial maintenance strategies, which aim
to prevent system failures from occurring and minimize unplanned downtime of equipment,

machines, and processes Leukel, González and Riekert (2021). Many companies employ MPC
(Maintenance Planning and Control) teams to schedule preventive and predictive maintenance,
using a variety of technologies, such as vibration sensors, thermography, and oil analysis, to
anticipate future failures and plan timely interventions. Preventive maintenance uses data analysis
to identify patterns in equipment behavior and performance, leading to interventions before
serious failures occur Leukel, González and Riekert (2021).

The availability of data and technological developments are using Machine Learning
(ML) algorithms in a variety of complex problems such as preventive maintenance applications.
These algorithms have the ability to find patterns in data and learn from them. This makes it
possible to later use new data that has not been seen before and make predictions about it based
on what has been learned previously Campos, Costa and Vieira (2019).

According to Silva, Sá and Menegatti (2019), "the use of predictive maintenance with
technologies is presented as an alternative to guaranteeing and improving the levels of reliability".
In this context, the use of machine learning methods is a great ally for monitoring the health of
vehicle transmissions. The automotive transmission has the important function of adjusting the
engine’s torque and speed according to the vehicle’s needs in different driving situations. This
ensures that the vehicle maintains the right traction and speed, supporting the engine to always
work in the best possible conditions Lechner and Naunheimer (1999).

To enhance vehicle dynamics, efficiency, and safety, the use of electronic components
such as the TCU (Transmission Control Unit) has been adopted. This is an electronic device
that manages and regulates the operation of the automatic transmission system in a vehicle. The
TCU communicates with various sensors and systems in the vehicle to obtain information on
speed, throttle position, and other parameters that influence the behavior of the transmission.
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This information can be stored in EEPROMs (Electrically Erasable Programmable Memory).

EEPROMs, a type of volatile memory in each TCU, can store small amounts of data and
allow users to erase and reprogram individual bytes as needed. The Data Analytics team at ZF
company developed the TCU Data Tool, which converts the binary data stored on EEPROMs
into a human readable format, most specifically JavaScript Object Notation (JSON).

ZF is a global technology company that provides systems for passenger vehicles, com-
mercial vehicles, and industrial technology, contributing to the next generation of mobility. The
company operates in four main technological domains: Vehicle Motion Control, Integrated
Safety, Automated Driving, and Electric Mobility, offering comprehensive product and software
solutions to established vehicle manufacturers. ZF products include transmission technology
for cars and commercial vehicles, as well as specialized industrial equipment. The company is
involved in various sectors, including railway, maritime, defense, aviation, and general industrial
applications ZF (2024).

1.1 Main Objectives
This work aims to use the field data stored in the vehicle’s EEPROM to compare machine

learning algorithms and identify the most effective one for predicting failures of a powershift
transmission used in construction machinery applications, thus indicating the state of health of
this component. Another objective is to find an algorithm capable of minimizing the number of
cases in which transmission problems are not detected, i.e., when the algorithm indicates that the
transmission is healthy despite real problems.

Thereby, this work aims to provide a tool to effectively monitor transmissions, aiding
in the early detection of faults and contributing to the maintenance of vehicles equipped with
ZF transmissions. Possible impacts include reducing maintenance costs, increasing operational
efficiency, improving vehicle safety during operation and reduceing machine downtime.

1.2 Structuring the Document
The document is structured as follows:

• Chapter 2: It presents a literature review on the main topics involved in this document,
such as data analytics, machine learning approaches.

• Chapter 3: The methodology employed in the development of the work is presented
and detailed, including explanations of the decisions made. The aim is to provide a
comprehensive understanding of the context of the work presented.
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• Chapter 4: This section presents the results obtained from the methodology used, providing
a discussion of the results, limitations encountered during the development of the work
and justification for the choice of a final model.

• Chapter 5: This provides a review of the information presented and discussed, with the
aim of offering a conclusion to the work and providing perspectives for future research.
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CHAPTER

2
LITERATURE REVIEW

THIS chapter describes the main concepts of machine learning, with an emphasis on the pre-
processing stages, model selection, and a detailed explanation of how it works. The theory

behind these concepts is presented, along with the metrics used to validate their performance. It
also provides an overview of the research already conducted by ZF’s Data Analytics team.

2.1 Previous Works
The Data analyses Team plays a central role in ZF’s business unit, focusing on developing

solutions for the industrial division. Its main responsibilities include data visualization, data
analyses from tests and field operation and data collection enhancements. Additionally, they
are involved in developing integrated software for data acquisition, promoting efficiency, and
continuous improvement of systems.

Within the team, several previous projects have explored transmission analyses methods
using machine learning. For example, Monteiro (2022) conducted a study using an unsupervised
method to analyze the impacts and correlations of transmission’s adaption functionality in
construction machineries’ gearboxes. Berenguer (2021) and Magalhães (2022), on the other hand,
employed supervised methods in their projects. Magalhães (2022) investigated relationships
between transmission data and available vehicle types, while Berenguer (2021) compared
different machine learning classification approaches to compose a predictive maintenance system
for a specific construction machinery transmission. These projects provided a solid foundation
for this project, especially Berenguer (2021)’s work, which conducts similar analyses on a CVT
(Continuously Variable Transmission) transmission contributing to a broader understanding of
the subject. Although analyses have already been carried out for other types of transmission,
the powershift transmission had not been investigated in detail before, and this work is really
important for that.
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In this context, the team’s work aims not only to analyze existing data, but also to explore
techniques and approaches to increase the analyses’ efficiency and accuracy, thus contributing to
the continuous development of innovative and validated solutions in ZF’s industrial area.

2.2 Data Analytics
Data exploration and interpretation, known as Data Analytics, is essential for discovering

valuable insights and meaningful patterns in specific data sets. When combined with Machine
Learning (ML), this practice becomes even more powerful, enabling complex and scalable
analyses that would not be possible manually Tsai et al. (2015), Hofmann, Neukart and Bäck
(2017).

Data analyses can be divided into several distinct categories: descriptive analyses, which
focuses on exploring and describing events through visual representations and statistical data;
diagnostic analyses, which seeks to understand the roots of the events observed in the descriptive
phase; predictive analyses, which aims to avoid undesirable events by anticipating the possibility
of a specific event occurring; and prescriptive analyses, which is dedicated to anticipating the
possible results of an action Kumbure and Luukka (2022).

2.3 Machine Learning
Machine learning represents a dynamic field of computer algorithms that aims to emulate

human intelligence through environmental learning processes Naqa and Murphy (2015). The
main objective of learning systems involves the exploration and application of algorithms that
use previous data to predict outcomes on new inputs, relying heavily on principles of linear
algebra, probability theory, statistics, and mathematical optimization Liu (2017).

The substantial volume of data accumulated by industrial systems encompasses valuable
insights into processes, events, and alarms on an industrial production line. Equipment main-
tenance is a fundamental element that directly affects uptime and operational efficiency, thus
protecting the company from significant losses. Identifying and correcting equipment faults be-
comes imperative to avoid possible interruptions in production processes. Hence, ML techniques
have emerged as a promising solution in predictive maintenance (PdM) scenarios, to anticipate
failures in production lines Carvalho et al. (2019).

The formal definition of ML’s concept most accepted today was proposed by Mitchell
(1997) as “a computer program is said to learn from experience E concerning some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E”. Thus, it can be inferred that the machine learns when it improves its success in a
given task by interacting with the problem using the provided data.
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Depending on the problem’s nature, machine learning tasks can be classified into three
different categories: supervised learning, unsupervised learning, and reinforcement learning Liu
(2017). Figure 1 presents the categories cited above.

Figure 1 – Types of machine learning tasks.

Source: Liu (2017).

A workflow for developing ML models is shown in Figure 2, providing a brief overview
of the main stages of a machine-learning project.

Figure 2 – Workflow for developing ML models.

Source: Maleki et al. (2020).
.
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2.3.1 Supervised Learning

In supervised learning, the main objective is to understand the connection between
a given set of input variables, denoted as x, and an output variable, represented by y. This
understanding enables the model to predict results for new and unseen data instances based on
the acquired mapping. The learning process in supervised settings relies heavily on labeled data,
where each data point is paired with a known output, usually provided through events or expert
annotations. Mathematically, this relationship can be formulated as shown in Equation 2.1, where
D represents the training set comprising N training samples.

D = {(xi,yi)}N
i=1 (2.1)

Where xi is a vector of numbers of dimension D, representing features, attributes, or
variables. yi can be a categorical or nominal variable from some finite set, in which yi ∈ {1, . . . ,c},
with c being the number of classes; or it can be a real-valued scalar. When yi is categorical, this is
a classification problem, and when yi is a real value, this is a regression problem Murphy (2012).
Figure 3 describes the approaches to the classification and regression problems by Stetco et al.

(2019).

Figure 3 – Typical workflow for two supervised tasks.

Source: Stetco et al. (2019).
.
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2.3.2 Unsupervised Learning

In unsupervised learning, the machine receives inputs (x1,x2, ..) but does not obtain target
results, i.e., it does not have the output y Ghahramani (2003). The aim is to directly infer the
probability density properties of the data without the help of a supervisor or teacher providing
the correct answers Hastie et al. (2009). This is a much less well-defined problem because you
don’t tell the model what kind of patterns to look for and there is no obvious error metric to use
Murphy (2012). The Equation 2.2 shows the mathematical representation for this method.

D = {(xi)}N
i=1 (2.2)

2.3.3 Reinforcement Learning

According to Ghahramani (2003), this is a less commonly used method, in this case, the
machine interacts with its environment by producing actions (a1,a2, ..) these actions affect the
state of the environment, which in turn causes the machine to receive some scalar rewards (or
punishments r1,r2, ..). The machine’s goal is to learn to act in such a way as to maximize the
future rewards it receives (or minimize the punishments) during its lifetime.

2.4 Gathering Data and Data Pre-processing
Gathering data is a fundamental step in the development of any ML workflow, so ensuring

comprehensive data acquisition is essential to its success. Missing crucial features can result
in unexpected consequences during subsequent analyses and model development, which can
compromise the integrity of the entire study Maleki et al. (2020).

The use of ML requires the preparation of the data provided for the algorithms, including,
data cleaning, feature scaling, feature selection, data balancing, etc. Muhamedyev (2015).

2.4.1 Data Cleaning

Companies have a huge availability of data that influences decision-making. However,
they often contain issues such as missing data, incorrect formatting, and spelling mistakes during
data entry. Other common problems include, duplicate records, or other types of invalid data,
which affects the accuracy of the results. Therefore, data cleaning offers better data quality,
which will ensure that it is ready for the analyses phase Rahm, Do et al. (2000), Ridzuan and
Zainon (2019).

Although the effort required to clean the data during extraction and integration is time-
consuming, it is necessary to achieve query optimization and data quality Fatima, Nazir and
Khan (2017).
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2.4.2 Feature Scaling

Data scaling is important in data pre-processing because it affects the performance of
ML algorithms Ambarwari et al. (2020). If the scale is not applied and one feature has a greater
magnitude compared to others, it could be dominant during another training Hackeling (2017).
The most commonly used techniques are max-min normalization and standardization.

The max-min normalization resizes the original data so that it is all between 0 and 1, if
the distribution of the data is not uniform, meaning there is a significant disparity between the
maximum and minimum values across different features, normalization can distort the relative
importance of the features. This can lead to a significant loss of information in some features,
while others may be artificially amplified Sharma (2022),Hsu and Lin (2002). This scaling
method is useful when the data set does not contain outliers, as the scale can be defined by
extreme values Ali et al. (2014). The Equation 2.3 presents the mathematical representation of
this normalization.

Xnormal =
X−Xmin

Xmax−Xmin
(2.3)

where Xmin and Xmax are the minimum and maximum values in the dataset respectively and X is
each value.

Standardization, on the other hand, first subtracts the mean value (X) and then divides
the result by the standard deviation (σ), Borriello et al. (2024), as presented in Equation 2.4.

Xstand =
X− X̄

σ
(2.4)

The values are not limited to a certain range by standardization; moreover, this approach
makes them much less affected by outliers Borriello et al. (2024).

2.4.3 Feature Selection

The objectives of feature selection are varied. They include simplifying models to
make them more understandable, improving data mining performance by focusing on the most
informative features and discarding irrelevant or redundant ones. In addition, feature selection
aims to provide clean and understandable data for the model Li et al. (2017). When there is a large
number of features, learning models tend to overfit, which can cause performance degradation
on unseen data. High dimensional data can significantly increase memory storage requirements
and the computational costs of data analyses Li et al. (2017).

According to Huang et al. (2012), characteristics should not be highly correlated with
each other as this would add redundancy to the problem. One way to mitigate this problem is
to use correlation matrix to check the linear association between features, represented by the
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correlation coefficient, ranging from -1 to 1. This parameter associated with the covariance
provide the foundation for many statistical techniques; magnitudes greater in absolute value
indicate a stronger association. Positive values indicate a direct relationship, while negative
values indicate a negative or inverse relationship Hadd and Rodgers (2020).

2.4.4 Data Balancing

One of the primary challenges in machine learning is training classifiers with unbalanced
data, a common characteristic of most real-world problems Carvalho and Prati (2018). Conven-
tional algorithms tend to underperform on such datasets, as they are typically designed with the
assumption of balanced data distribution. For a binary response variable with two classes, when
the event is under-represented, it is called a minority class Wah et al. (2016).

This problem of unbalanced class distribution can lead algorithms to learn excessively
complex models that fit the data very well and have little relevance. It can be seen that, despite the
better performance of computational intelligence techniques, they are biased towards instances
of the majority class, learning better about the majority class than the minority class Farquad and
Bose (2012). Usually, models such as Decision Tree (DT), KNN, and Naïve Bayes (NB), are
biased towards the majority class. The SVM is less affected by class imbalance when compared
to other classification algorithms. However, studies such as Gopi, Suvarna and Padmaja (2016)
shown that strong class imbalance makes the SVM threshold skewed towards minority class
samples.

2.5 Bias and Variance
The concept of square bias refers to the component of error in an algorithm stemming

from its central tendency when trained on diverse datasets Brain and Webb (1999). Mitchell
(1980) introduced the term bias in machine learning, defining it as "any rationale for favoring
one generalization [hypothesis] over another, beyond strict adherence to the observed training
instances". Models characterized by high bias tend to yield consistent outcomes for a given input,
regardless of the training data utilized. Typically, models with high bias exhibit rigidity, meaning
they under-fit the training data Hackeling (2017).

Variance quantifies the extent to which deviations from the central tendency contribute to
error Brain and Webb (1999). A model with high variance will produce different errors for input,
depending on the training set used. Unlike a model with high bias, a model with high variance
may overfit the data, modeling the noise in the training data, in other words, be very flexible
Hackeling (2017). The possible combinations of bias and variance are shown in Figure 4.
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Figure 4 – Combinations of bias and variance.

Source: Hackeling (2017).

A model considered ideal will have low bias and low variance, but unfortunately, when
one decreases the other frequently increases, this relationship is called the bias-variance trade-off,
Hackeling (2017). To find the best trade-off Hackeling (2017), suggests the usage of cross-
validation.

2.6 Cross-validation and Grid Search
A fundamental principle in accuracy assessment emphasizes the importance of separate

sets for training and evaluation. A similar concern arises with the selection of user-defined
parameters, also kown as hyperparameters, necessary for various machine learning techniques,
such as the number of trees in Random Forests, the gamma and c values in radial basis function
kernel for Support Vector Machines (SVM), and the k-distance in k-Nearest Neighbors (k-NN).
These parameters significantly impact classification accuracy, often requiring optimization,
commonly known as tuning. Careful selection of hyperparameters during the training phase
ensures improved learning, resulting in enhanced performance of the chosen machine learning
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algorithm. Techniques like cross-validation and Grid Search facilitate this process Ramezan,
Warner and Maxwell (2019); Ogunsanya, Isichei and Desai (2023).

Cross-validation (CV) is a way to reduce the bias caused by the random selection of
samples and to verify the stability and generalization ability of the model Varma and Simon
(2006). In cross-validation, multiple partitions are generated, potentially allowing each sample to
be used multiple times for multiple purposes, with the overall aim of improving the statistical
reliability of the results Ramezan, Warner and Maxwell (2019). Examples of cross-validation
methods include k-fold and leave-one-out Duro, Franklin and Dubé (2012).

The k-fold cross-validation method involves randomly dividing the sample set into a
series of folds (groups) of equal size, where k indicates the number of partitions, or folds, into
which the data set is divided. k−1 of these partitions are used for training and the last one is
used for testing. This procedure is repeated k times, so that k estimates are generated and tested.
The average of the results is then reported Stone (1974). Figure 5 shows the steps described by
Stone (1974), considering 4 folds.

Figure 5 – k-fold cross-validation method.

Source: Adapted from Ghorbanzadeh et al. (2020).

Leave-one-out cross-validation is similar to k-fold cross-validation, except that the
number of folds is equal to the number of samples in the data set. Despite its effectiveness, this
method can be slow when faced with excessively large data sets Hastie et al. (2009).

The grid search algorithm (GSA) is a fundamental method for hyperparameter opti-
mization. It systematically explores parameter values within predefined ranges to identify the
combination that produces the best model performance Gao and Hou (2016). This method
evaluates all viable combinations of hyperparameters to ensure optimal results. Grid search is
known for its simplicity, ease of understanding, and ability to explore several parameter values
simultaneously Ogunsanya, Isichei and Desai (2023) Ramadhan et al. (2017). According to
Sukamto, Hadiyanto and Kurnianingsih (2023), using cross-validation with GridSearch facilitates
testing the model’s parameters without having to perform manual validation one by one.
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2.7 Classifier Selection
Systematic empirical studies have indicated that the most effective algorithm may differ

depending on the application in question Domingos (2012), so it is interesting to experiment
with these in relation to the available data, in addition to adjusting hyperparameters in order to
improve performance and avoid overfitting Saxena and Aggarwal (2020).

Hastie et al. (2009) divides the classification techniques into parametric, non-parametric,
and ensemble. A parametric classifier uses the statistical distributions associated with each class
to carry out its classifications. In contrast, non-parametric classifiers are used when the density
function is unknown and are used to estimate the probability density function. As there is no prior
information available, these models estimate the unknown function from the training data set
based on trial and error Imam, Musilek and Reformat (2024), Sahoo and Kumar (2012). These
techniques can deal with complex data and can be used to make predictions and find patterns
and relationships within a data set Hastie et al. (2009).

Parametric methods are valued for their efficiency in terms of computational resources
compared to non-parametric methods. However, their efficiency depends heavily on precise as-
sumptions about the distribution. When these assumptions diverge from reality, the interpretation
of the results can become subjective Jahnke (2015). According to Hastie et al. (2009), these
models are not accurate representations of the data and are more susceptible to underfitting.

In the case of ensemble methods, the algorithms create a set of classifiers and then
classify new data points using a (weighted) vote of their predictions Dietterich (2000), usually
being classified into a positive and negative class Hastie et al. (2009).

Considering the extensive availability of machine learning algorithms and the limi-
tations of parametric models compared to non-parametric ones, this work will explore two
non-parametric models: SVM and KNN, along with an ensemble method, Random Forest. The
optimization and testing of these models aim to provide a more flexible, robust, and accurate
approach. This choice allows us to explore the diversity of techniques available and to maximize
the effectiveness of data analyses. These models will be presented and defined in subsection 2.7.1.

2.7.1 Models Exploring

2.7.1.1 Random Forest

The random forest algorithm, introduced by Breiman (2001) in 2001, has become a very
efficient tool for classification and regression tasks in various domains.

The Random Forest for classification consists of a collection of tree-structured classifiers,
where the Θz are independent and identically distributed random vectors and each tree casts a
unit vote for the most popular class of the input x Breiman (2001). This can be represented by
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Equation 2.5.

h(x,Θz), z = 1,2, . . . (2.5)

When employing the bagging technique, every decision tree within the collection is
constructed using a randomized subset, drawn with replacement from the training dataset. As
per statistics, the subset is anticipated to encompass roughly 64% of the instances present at
least once in the subset. These instances within the subset are denoted as "in-bag instances",
while the remaining ones (around 36%) are termed "out-of-bag instances". Each tree within the
ensemble serves as a primary classifier to ascertain the class label of an unlabeled instance. This
mechanism entails a collective voting approach, where each classifier contributes by casting a
vote for the anticipated class label, mitigating overfitting Fawagreh, Gaber and Elyan (2014).
Figure 6 exemplifies the above explanation.

Figure 6 – Random forest algorithm.

Source: Ma et al. (2023).
.

This model is not only robust to noise, enhancing its efficiency and versatility in classifi-
cation and regression tasks, but it also offers valuable insights through its feature importance
measures. Jesmeen et al. (2018), AlSagri and Ykhlef (2020) Equation 2.7 formulates the latter.

Feature Importance(i) =
∑

m
j=1 F( j)

l
(2.6)

where F( j) is the importance of each feature in the tree, m is the total number of nodes, i.e., the
decision points in each tree and l is the number of trees.
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Besides providing the importance of features, this algorithm has important parameters
that can be adjusted to obtain the ideal classifier. Two of these parameters are the number of
estimators and the depth of the mask AlSagri and Ykhlef (2020).

The number of estimators and the maximum tree depth are two crucial hyperparameters
that influence the performance of tree-based models. The number of estimators defines the
number of trees that make up the model, while the maximum tree depth determines the maximum
number of splits each tree can make. When the mask depth is too low, the model tends to be
trained superficially, resulting in high bias. This means that the model may not be able to capture
the full complexity of the data, leading to underfitting, where the model is oversimplified to
adequately represent the patterns in the data. On the other hand, if the depth of the mask is too
high, the model may overfit, even capturing the noise in the data. This leads to high variance,
where the model fits the training data very well, but has difficulty generalizing to unseen data,
resulting in overfitting. Therefore, finding an appropriate balance in the choice of maximum
tree depth is essential to avoid both underfitting and overfitting, ensuring that the model can
capture relevant patterns in the training data and generalize well to new data. This optimization of
hyperparameters is a crucial part of creating effective, high-performance models, and techniques
such as grid search are recommended for this purpose Brain and Webb (1999), Mantovani et al.

(2018), Bartz et al. (2023).

2.7.1.2 K Nearest Neighbor

This algorithm estimates the conditional distribution of y based on x and then classifies
a given observation into the class with the highest estimated probability. It classifies an object
by conducting a majority vote of its neighbors, assigning the object to the most common class
among the k nearest neighbors Hmeidi, Hawashin and El-Qawasmeh (2008) (Figure 7).

Figure 7 – KNN algorithm.

Source: Chen et al. (2023).
.
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Empirical studies have consistently demonstrated the efficiency of this algorithm in
various data sets, especially in classification scenarios. Researchers widely use it in data mining
and machine learning applications due to its simple implementation and exceptional performance,
being an important technique in data classification tasks Begum, Chakraborty and Sarkar (2015).

However, the performance of KNN classification can be affected by problems such as the
selection of the K value and the selection of the distance measures, i.e., their hyperparameters.
This is why cross-validation in conjunction with Grid Search has been used to test different
values of K Zhang et al. (2018),Guo et al. (2003). For KNN, a small K parameter can make the
result susceptible to noise, as it will only consider very close neighbors, while a large K value
can unnecessarily include many points from the other class. It is therefore imperative to fine-tune
the optimum value of K to obtain the best performance Sukamto, Hadiyanto and Kurnianingsih
(2023).

By default the Euclidean distance is used in scikit learn to calculate the distance measure.
The Euclidean distance is a measure of distance between two points in Euclidean space. It is
derived from the Pythagoras theorem and is commonly used in geometry and various areas of
mathematics, physics, and computer science. Formally, the Euclidean distance between two
points P(s1,s2) and Q(t1, t2) on a two-dimensional plane can be calculated by the Equation 2.7.

d(S,T) =
√

(s2− s1)
2 +(t2− t1)

2 (2.7)

According Kumbure and Luukka (2022) the Euclidean distance is often not the ideal
choice for practical problems, and better results can be obtained by generalizing it. The
Minkowski distance is a generalization of the Euclidean distance that can be used to calcu-
late the distance between two points in an n-dimensional space. Kumbure and Luukka (2022).
Using the Minkowski distance allows the method to obtain more reasonable nearest neighbors
for the target sample. Another important advantage to this author about this method is that the
nearest neighbors are weighted by fuzzy weights based on their similarity to the target sample,
leading to a more accurate prediction using a weighted average. The Minkowski distance can be
calculated by the Equation 2.15.

d(S,T) =

(
n

∑
i=1
|si− ti|p

) 1
p

(2.8)

where p is a positive integer that determines the order of the Minkowski distance, and si and ti
are two points in a n-dimensional space.

Although the Euclidean distance is the default option in KNN problems, in this work the
Minkowski distance is used for the advantages mentioned above.
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2.7.1.3 Support Vector Machine

Support Vector Machine (SVM) belong to the field of supervised learning models,
which have specialized learning algorithms adapted for classification and regression analyses.
In essence, the SVM aims to identify the ideal hyperplane in an n-dimensional classification
space, strategically maximizing the margin between distinct classes Cortes and Vapnik (1995)
(Figure 8).

Figure 8 – SVM algorithm in 2-dimensions.

Source: Cortes and Vapnik (1995).
.

According to Cao, Naito and Ninomiya (2008), SVM with a non-linear kernel has shown
good results in classifying patterns and has therefore been widely used in various application
areas. Some common kernel functions include polynomial, RBF, sigmoid, etc. The general
formulation for the karnel is shown in Equation 2.9.

f (x) =
n

∑
i=1

αiyiφ(x,xi)+b (2.9)

Where αi, the Lagrange multiplier, φ , the kernel function, where yi ∈ (−1,+1), indicating the
class to which the feature vector xi ∈ Rn.

The SVM classifier, tailored for binary classification tasks, stands out as a kernel-based
supervised learning technique employed for categorizing data into multiple classes. Nevertheless,
it might not be the optimal choice when dealing with a considerable volume of training examples
Cortes and Vapnik (1995). One of the hurdles associated with non-linear kernel SVMs is the
escalating complexity of classification, which tends to correlate with the number of support
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vectors required Cao, Naito and Ninomiya (2008). However, as highlighted by Xie Yi Zhao and
Zhang (2019), the algorithm possesses the capability to strike a balance between model com-
plexity and the extraction of insights from sample information, thereby enhancing generalization
performance. Furthermore, SVM enables using the technique of adjusting class weights, which
is usually implemented to ensure that the model is trained in a more balanced way and that the
minority classes have an adequate influence during training Hsu and Lin (2002), Rawat and
Mishra (2022).

This study used the SVM with the RBF (Radial Basis Function) kernel. By adopting this
kernel, the SVM’s decision function is represented by the kernel function, denoted as φ , and
mathematically represented by Equation 2.10.

φ(x,xi) = e−gamma||x−xi||2, gamma > 0 (2.10)

The effect of SVM RBF depends, on the gamma parameter, represented in Equation 2.10
and the selection of the penalty coefficient C for the wrong subsample, another hyperparameter of
this model Xie Yi Zhao and Zhang (2019). The gamma parameter defines the range of influence
of a single training example learn (2024). In general, the selection of the hyperparameters is
a non-convex optimization problem and thus many algorithms have been proposed to solve it,
among them: grid search, random search, and others Wainer and Fonseca (2021).

2.8 Evaluating Models
In Supervised ML, there are several ways of evaluating the performance of learning

algorithms and their classifiers Powers (2020). Which are related to the P performance mentioned
at the beginning of the chapter.

2.8.1 Confusion Matrix

The quality of a binary classification is typically assessed with the aid of a 2x2 confusion
matrix. This is simply a cross-tabulation of the labels assigned to a set of cases by a classifier
against the corresponding labels in a reference data set. The labels used for the two classes can
vary between studies, but generally take the form of positive versus negative Powers (2020). For
this study, the classes will be divided into Category 0 (False) and Category 1 (True).

The four elements of the confusion matrix show the correct and incorrect allocations
made by the classifier. The cases allocated correctly and located on the main diagonal of the
matrix are true positives (TP, cases that have been classified as positive and have a positive label)
and true negatives (TN, cases that have been classified as negative and also have a negative label)
Foody (2023).
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Instances incorrectly assigned in the classification process represent erroneous classifica-
tions, manifesting as false positives (FP) and false negatives (FN) Foody (2023). Figure 9 shows
the confusion matrix.

Figure 9 – Confusion matrix to binary classification.

Source: Navin and Pankaja (2016).

In classification models, the decision function generates scores ranging from 0 to 1,
indicating the probability of a positive label. By default, the threshold for classifying instances is
set at 0.5. Thus, results between 0 and 0.5 are classified as negative, while those above 0.5 are
labeled positive. However, project requirements may justify adjusting this threshold as necessary
Pedregosa et al. (2011).

2.8.2 Precision and Recall

Some common performance measures can be calculated from the confusion matrix, such,
as precision and recall and AUC-ROC curve Hackeling (2017).

2.8.3 Precision

Precision measures the specificity of retrieval, defined as the proportion of items collected
that are considered relevant by the user; this measure penalizes the retrieval of irrelevant items by
the system (FP) but does not penalize the system’s failure to collect items that the user considers
relevant (FN) and can be calculated by Equation 2.11 Alvarez (2002).

Precision =
T P

T P+FP
(2.11)

2.8.4 Recall

The recall also called sensitivity, represents the proportion of outcomes generated by the
system in comparison to all actual instances of the malicious class (TP), accurately predicting
positive observations, i.e., the model’s ability to predict positive cases. It is calculated as the
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ratio between truly positive predictions and the set of all positive predictions as presented in
Equation 2.12 . Salam et al. (2021), Luque et al. (2019).

Recall =
T P

T P+FN
(2.12)

2.8.5 F1 score

Most machine learning application areas widely use the F1 measure. The F1 score
combines precision and recall in a single metric, simplifying performance evaluation. It calculates
the harmonic mean of these metrics, so when the F1 score is low, it indicates that either precision
or recall is low Alvarez (2002).

The F1 score is calculated as presented in Equation 2.13:

F1 score = 2× Precision×Recall
Precision+Recall

(2.13)

2.8.6 Specificity

Specificity is a crucial measure of a model’s ability to accurately predict negative cases. It
quantifies the proportion of correctly identified negative predictions to the total number of actual
negative cases. In essence, specificity measures the model’s accuracy in discerning instances that
do not present the desired condition or outcome Luque et al. (2019). The Specificity is calculated
as shown in the Equation 2.14

Specificity =
T N

T N +FP
(2.14)

2.8.7 AUC-ROC Curve

The ROC (Receiver Operating Characteristic) curve graphically represents the perfor-
mance of a classification model in two dimensions. ROC graphs have long been used to represent
the trade-off between classifier hit and miss rates Egan (1975). As a performance graph method,
its attributes are particularly advantageous for domains characterized by unbalanced class dis-
tributions and variable classification error costs. These qualities have gained importance with
ongoing research into cost-sensitive learning and learning amid class imbalances Fawcett (2006).

Furthermore, the most important statistic associated with ROC curves is the Area Under
the ROC Curve or AUC. The Area Under Curve (AUC) is a one-dimensional metric that quantifies
one perspective of the model’s performance Marzban (2004). As the curve is located in the unit
square, it has 0 ≤ AUC ≤ 1. The AUC is equal to 1 when the classifier scores each positive
higher than each negative, indicating a theoretically perfect test; an AUC value of 0.5 indicates
no discrimination ability, and an AUC equal to 0 indicates that each negative is scored higher
than each positive Flach (2016). To plot the AUC-ROC curve, it is necessary to calculate the



Chapter 2. Literature Review 34

true positive rate (TPR) and false positive rate (FPR), which can be obtained from the confusion
matrix. Where TPR is represented by the Equation 2.12, being equal to recall, and FPR by the
equation Equation 2.15.

FPR = 1−Speci f icity (2.15)

The Figure 10 exemplifies the AUC-ROC curve.

Figure 10 – Trade-off between sensitivity and FPR rate.

Source: Elbasheer et al. (2022).
.
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CHAPTER

3
METHODS

THIS chapter details the methods used to develop the project, including gathering and con-
verting data using the company’s in-house tool, the TCU Data Tool. The methodologies

applied during data exploration and pre-processing are also discussed. In addition, the techniques
employed to optimize the models are presented, along with the metrics used to evaluate them.

3.1 Working and Development Environment
The programming language chosen for this project was Python, primarily because it

serves as the team’s default working language. Python, as highlighted by Sarkar, Bali and Sharma
(2018), stands out as one of the most popular programming languages for data science, with a
highly active developer community and a large number of useful libraries for scientific computing
and machine learning. The version used is 3.10.10.

According to Sarkar, Bali and Sharma (2018), the ecosystem in Python is a collection
of libraries that allow developers to extract and transform data, perform data manipulation
operations, apply robust existing machine learning algorithms, and easily develop custom
algorithms. These libraries include, NumPy, pandas, scikit-learn Matplotlib, and Seaborn.

The NumPy library offers robust support for multidimensional arrays and a comprehen-
sive set of mathematical functions, facilitating a wide range of scientific calculations Müller
and Guido (2016). Pandas, on the other hand, perfectly integrates the computational power of
NumPy matrices with versatile data manipulation features reminiscent of relational databases.
With its advanced indexing features, Pandas simplifies reshaping and slicing operations, as well
as providing optimized methods for dealing with diverse and labeled datasets McKinney (2012).

The scikit-learn library is widely used for machine learning tasks due to its popularity
and accessibility in the open-source community Raschka (2015). Taking advantage of a diverse
ecosystem, scikit-learn offers cutting-edge implementations of several renowned machine learn-
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ing algorithms, all in a user-friendly interface tightly coupled with Python. This addresses the
growing need for statistical data analyses among individuals outside the traditional domains of
the software and web industries Sarkar, Bali and Sharma (2018).

Complementing these tools, Matplotlib and Seaborn stand out as indispensable for creat-
ing visual data representations. They offer users a multitude of graphical options and extensive
customization features, facilitating data visualization and exploration effectively VanderPlas
(2016).

3.2 Gathering Data
Initially, the binary data collected from each vehicle’s eeprom were converted into JSON

format with the help of the TCU Data Tool. The files were then stored in a folder for further
analyses.

After converting the data, all the files stored in the folder were imported into Python
in order to extract relevant information for the analyses and ensure that they were properly
processed. The criteria for selecting the files were based on the presence of essential information,
such as serial number and operating time. This filtering stage enabled the identification and
understanding of the vehicle’s operation, ensuring the quality of the data analyzed in these
respects.

The absence of correct information can be attributed to human error or problems when
reading/converting the binary file. Table 1 in section 4.1 shows the number of files available
before and after this stage, providing a clear view of the data filtering and selection process.

3.3 Exploration Data
Data exploration is fundamental for understanding its details. In this work, this explo-

ration was carried out with the help of the dataprep.eda module, which is part of the DataPrep

library. This tool is designed to help with exploratory data analyses in Python, providing infor-
mation on missing values, correlated features, descriptive statistics and visualizations. The aim
is to understand the distribution of information, check whether there are missing values in the
features used that will need to be dealt with, and the operating time of the vehicles. Exploring the
information was essential to understanding the behavior of the variables contained in the dataset.

3.3.1 Distribution of Data

The Kolmogorov-Smirnov (KS) test evaluates the maximum absolute difference between
the distribution functions of certain samples. KS is also independent of the distribution, it takes
advantage of all the data points in the samples, and it is not sensitive to the direction in which
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the data is classified Lopes, Reid and Hobson (2007). It was applied to, feature_1, feature_2,
and feature_11 to understand the behavior of the data that will compose the dataset. These
features were used because they were previously selected as features of interest by the company.
Considering that this methodology does not require the data to follow a specific distribution and
that the distribution of available data is unknown, it becomes a versatile tool for exploratory
analyses. With the KS test, the probability density of the data was checked, in this context, the
kstest object from the scipy.stats library in SciPy was used, to check if the distribution of the
data was uniform. The results can be found in subsection 4.2.1, where the result of the KS test is
presented with the data’s probability density.

3.4 Data Pre-processing

3.4.1 Data Cleaning

Figure 11 describes the steps that were carried out during data pre-processing. They are
discussed below.

Figure 11 – Pre-processing steps.

Source: Adapted from Monteiro (2022).

3.4.1.1 Duplicated Filter

After the verification described in the previous section, an analysis was initiated to
identify if there were duplicate readouts. Consequently, this filter retained only one file from sets
of readouts containing the exact same data, such as serial number and operating time.
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3.4.1.2 Duplicated Filter 2

In the process of identifying duplicate readouts, some readouts which, although they
did not have the same operating time and were not classified as duplicates in the previous filter,
had very close operating times, with approximately two hours difference between them. These
readouts may be related to a new parameterization version carried out by the testing team to
verify if the content of the EEPROM was correct or if the vehicle’s behavior was as expected.

Considering that the main objective of the thesis is the health of the transmissions, it
is important to consider information where the vehicle is in real operation, that is, it has been
conducted in the field, under the operating conditions for which it was designed. Thus, files with
the same serial number and small differences in the total vehicle operating time were compared
regarding transmission data. Those that had the same information in the collected transmission
data were also considered duplicates, and only the one with the higher operating time was
retained.

3.4.1.3 Operational Time Filter

In collaboration with the ZF technical team, a threshold of time equal to or greater
than 100 hours of the vehicle’s operating time was defined. This is because vehicles with little
operating time would not provide information about transmission wear, not contributing to the
conducted study and potentially resulting in noisy information.

3.4.1.4 Values Reset Filter

Additionally, when the technician performs two readouts, one before and another after
resetting the data, this reset results in a second readout not identified in the duplicate filter
because their files’ content is different since the latest one had its memory erased. Applying this
filter involved querying the data for a total transmission operating time equal to zero. Thus, this
filter was also added ZF (2024), Monteiro (2022).

3.4.2 Feature Selection

The second part of the data preprocessing involves selecting the features that were used
to train and test the models. They need to represent the problem domain well and facilitate the
interpretability of the model. Thus, initially, the ZF technical team identified some features that
would be important to be evaluated and selected some of them as features for the model. After
defining these relevant features, the process of extracting data from JSON files was initiated.

Considering that the collected data were in different formats, such as events, discrete
intervals, tables, or parts, not all information could be used directly as features. Therefore,
preprocessing these data was necessary. Some data were combined based on key factors, such
as identifying the most important intervals for analysis. In addition, Key Performance Indicator



Chapter 3. Methods 39

(KPI) techniques were investigated, and, based on the available data and the company’s needs,
an important KPI feature was implemented. The calculations will not be shown due to the
company’s data protection policy. This is represented as feature_2 in Figure 18 in subsection 4.4.1,
highlighting its importance in the model decision.

Data with little or no variation, such as data with the same classification ("True" or
"False") in all files, for example, were removed as they would not provide relevant information
for the model. After this step, a total of 32 features remained.

To reduce the dimensionality of the dataset, the correlation matrix was used. As explained
in subsection 2.4.3, correlation coefficients range from -1 to +1; magnitudes greater in absolute
value indicate a stronger association. Positive values indicate a direct relationship, while negative
values indicate a negative or inverse relationship. Thus, the Pearson correlation coefficient was
employed to identify the linear correlation among the features. This is the most commonly used
coefficient in correlation calculations, according to Stevens (1946).

The correlation matrix was applied to the data using the corr() method from Pandas. Data
with a correlation greater than the absolute value of 0.75 were removed, as they would provide
redundant information to the model, potentially impairing its interpretation. This approach aims
to enhance the model’s interpretability and reduce computational power without compromising
results as subsection 2.4.3.

After this process, 21 features remained, which were used for training and testing the
models. The Table 3 subsection 4.2.3 shows the number of features during the gathering and
preprocessing data, and how many remained afterward.

3.4.3 Unbalanced Data

Once the dataset had been formatted and prepared for the model’s training and testing
stages, an analysis was carried out to check the balance of the data in relation to the labels.
This verification was crucial to check that there was an equal distribution between vehicles in
Categories 0 (False) and 1 (True) so that the ML algorithms could learn about both.

This is an important approach because, according to subsection 2.4.4, unbalanced data
can lead the algorithm to produce biased results towards the majority category. Furthermore, it
could influence the choice of algorithms used, as some may not handle this type of dataset very
well. The results are presented in section 4.3.

3.4.4 Feature Scaling

Feature scaling is an essential part of pre-processing, as it has a significant impact on
scale-sensitive algorithms such as SVM and KNN. This process prevents features with different
scales from unduly dominating the learning process.
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In this thesis, the chosen method for scaling the data was standardization because it is
less sensitive to outliers compared to normalization methods, ensuring that the scale of the data
is not defined by extreme values Borriello et al. (2024). Additionally, the data used in the study
did not have a uniform distribution, as presented in 4.2.1, making the use of this method more
appropriate. Considering that machine learning algorithms do not handle missing values well, the
approach proposed by Géron (2022) was employed, in which the missing values were replaced
with the median of the respective column.

According to Géron (2022), replacing missing values with the median value is less
sensitive to outliers than replacing them with the mean. If there are extreme values in a given
column, the median value is less affected than the mean, ensuring a more robust replacement. In
addition, using the median preserves the distribution of the data as much as possible. This means
that replacing missing values does not drastically alter the way the data is distributed, which can
be important for maintaining the integrity of the data.

For the application, the Standard Scaler method from Scikit Learn was employed with
the make_pipeline object from the sklearn.pipeline library. In this case, preprocessing, i.e., the
Standard Scaler is applied first, followed by the chosen ML model, thus establishing a chained
sequence of transformations and a final estimator. This method proves highly beneficial when
the goal is to organize and streamline the workflow. After the preprocessing stage, a total of 554
files were available.

3.5 Model Selection and Training
Given that the company provided information regarding the target values (labels) for the

specified problem, the initial step was investigating the most suitable supervised methods.

Model selection is one of the crucial steps in ML, requiring experimentation with the
data. Considering the limited amount of data available and the multitude of ML algorithms that
could be used, three models were selected and optimized to understand their behavior concerning
the data.

The method’s choice aimed to determine which one produced the best results according
to the company’s requirements, i.e., correctly classifying the health of the transmission and
minimizing the number of false negatives.

kNN was chosen because it is a non-parametric model, simple to understand and im-
plement, flexible and efficient on various datasets, as discussed in subsubsection 2.7.1.2, being
able to perform well on small datasets. Another method chosen was SVM, as it works well with
small training samples, can find the best separation between classes and has tools to deal with
unbalanced data, being widely used in classification problems.

Random Forest was added to the list of models investigated because it is a classification
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algorithm that calculates the importance of the feature during model training. In addition,
it uses several decision trees for classification, each trained independently with a random
sample of data and a random subset of resources. Combining the results of these trees through
majority voting brings significant benefits, especially in mitigating overfitting, as discussed in
subsubsection 2.7.1.1.

3.5.1 Training and Testing

The separation of data into training and testing sets is another crucial step. The training
data was used for model optimization, while the testing data was used for validation, ensuring
that the model performs well on data it has never seen before.

To split the data, the train_test_split object from Scikit Learn was employed. This
method takes the specified proportion for data separation and uses a random method for the split.
Following the methodology of Géron (2022), the data was split into 80% for training and 20%
for testing. Figure 12 indicates the steps described before.

Figure 12 – Training and testing data.

Source: Elaborated by the author.
.

3.5.2 Model Optimization and Evaluation

After defining the models and splitting the data into training and testing data, each model
was optimized using the training data. The testing data was then validated using the metrics
discussed in section 2.8.

Considering the main hyperparameters of each, as described in Chapter 2, the models
were optimized. For this, the Grid Search method in combination with cross-validation was
implemented. As discussed earlier, it allows evaluation of the model’s average performance on
different partitions, ensuring that the choice of hyperparameters is more robust and generic. To
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split the data during cross-validation, the k-fold cross-validation object from the Scikit-Learn
library was used.

For the study conducted in this thesis, the training data was divided into 10 folds
using k-fold cross-validation, a value commonly indicated in references, such as Stone (1974).
Additionally, Scikit-Learn’s shuffle method was used to shuffle the data during separation in
order not to use the information in the order available in the dataset, reducing the possibility
of introducing bias in the training set. F1 score results were employed to evaluate if the best
hyperparameters returned coherent values, that is, that they were close to each other, in all the
cross-validation parts. This metric was chosen because, as discussed in section 2.8, it establishes
a direct relationship between Precision, which measures the accuracy of positive predictions,
and recall, which measures the model’s ability to find all positive cases. F1 score ranges from
0 to 1, where values close to 1 show better performance, while values close to 0 suggest poor
performance. In section 4.5, the results for this analyses can be found, validating the chosen
hyperparameters.

In the case of the Random Forest algorithm, in addition to optimizing the hyperparameters,
the f eature_importances attribute of Scikit-learn was used, which, according to ScikitLearn,
indicates the importance of features during model training. This enables the exclusion of less
relevant features for the model. The hyperparameters were adjusted beforehand because the goal
was to find the best possible model for the dataset before proceeding with training and evaluating
feature importance. This approach is because the hyperparameters have a considerable impact on
the results of the model, so the importance of the features could be altered for a model that has
not been previously optimized. The results are presented and discussed in subsection 4.4.1.
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CHAPTER

4
RESULTS AND DISCUSSIONS

THIS chapter presents the results of the methodologies used above, including the gathering
data, exploration, and pre-processing stages, as well as model training. In addition the

results of model optimization are presented. Metrics such as confusion matrix, F1 score, and
AUC-ROC curve are applied to identify the best-performing model for the available dataset. In
addition, the limitations encountered during development are discussed.

4.1 Gathering Data and Pre-processing
Table 1 presents the results related to the data available after the Gathering data and

Pre-processing.

Table 1 – Number of readouts after gathering and preprocessing data.

Stage Before After

Gathering data 3027 1811
Pre-processing 1811 554

During the stages described in Table 1, a total of 82% of the data was removed. Of this
total, 40% was removed during the gathering data step, indicating a problem in the quality of the
provided data, such as incorrect formatting, and duplicate records as discussed in subsection 2.4.1
and 42% during the pre-processing stage.

Thus, 554 files were used in the training and testing stages of the models. Within this
set, there are 360 files with a unique serial number (that is, 360 vehicles) and 194 readouts with
repeated serial numbers. Although some of these files come from the same vehicle, they exhibit
significant variability in operation times, spanning intervals such as 200 hours and 2000 hours of
operation, for example. This temporal variation allows transmission to be analyzed in different
operating periods. Figure 13 shows the the distribution of the operating time in the whole dataset.
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Figure 13 – Operating time using the whole dataset.

Source: Elaborated by the author.

To address the possibility of bias that data at different operation times may cause,
techniques such as checking class balance, cross-validation, k-folds, and shuffling were applied,
as described in subsection 3.5.1.

4.2 Data Exploration

4.2.1 Distribution of Data

Given a dataset made up of 21 features, features_1, features_2, and features_11 were
selected for analysis in terms of their distribution. As discussed in subsection 3.4.4, the choice
of scale type is crucial and depends on the nature of the data distribution. This understanding
directly influences the definition of the appropriate type of scale to be used. Figure 14 shows the
results.
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Figure 14 – Distribution of data.

Source: Elaborated by the author.

As the data does not have the same probability density, and the value p− value is zero
for all features tested, the hypothesis that the data follows a uniform distribution can be rejected.
Probability density refers to the measure of how often values occur in a distribution. If some
values occur with greater probability than others, this indicates that the distribution is not uniform,
requiring the application of techniques such as adjusting class weights, choosing models capable
of dealing with this type of data and applying a standardization method suitable for a non-uniform
distribution.

4.2.2 Missing Data Statistics

As shown in Table 2, the dataset had 18 missing data distributed among the features. To
obtain these results the dataprep.eda module was used, as discussed in section 3.3 . To solve
this problem, the median was used in the column in question so as not to alter the distribution of
the data, as discussed in subsection 3.4.4.

Table 2 – Missing data statistics.

Missing data 18
Missing data (%) 0.15
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4.2.3 Feature Selection

As described in subsection 3.4.2, 10 features were removed as they showed no variation
in the data, leaving a total of 32 features. To further reduce the number of features, a correlation
matrix was utilized, resulting in a final set of 21 features. Table 3 presents the results.

Table 3 – Number of features.

Before After Reason

Feature Selection 42 32 Constant features
32 21 High correlation to other features

Figure 15 displays the outcomes of the final correlation matrix, indicating that the 21
selected features do not exhibit high correlation among themselves, thus avoiding information
redundancy for the model. As mentioned in subsection 3.4.2, the threshold used was 0.75.

Figure 15 – Correlation linear between features.

Source: Elaborated by the author.
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4.3 Unbalanced Data
According to Figure 16, 46.6% of the data corresponds to Category 0 (False), while

53.4% is associated with Category 1 (True). Therefore, the dataset contains more information
about vehicles that experienced issues than about healthy vehicles. Considering that the files
typically come from customers who have experienced transmission problems and have sought
support from the ZF technical team, it was expected that the dataset would consist of a greater
number of instances from Category 1.

Figure 16 – Class distribution.

Source: Elaborated by the author.

As discussed in subsection 3.4.3, the presence of an imbalance in the dataset can lead
to results biased towards the majority class, and some algorithms are sensitive to datasets with
label imbalances. Although the differences between the classes are not extreme and maybe the
models could handle it, due to the limited samples available for training and testing, techniques
were employed to deal with the imbalance during the model training. This approach was used
to ensure that the models was trained and evaluated accurately, even in the presence of data
limitations.

4.4 Model Selection and Training
By the methodologies outlined in section 3.5, the models were tested and optimized

using the 21 features for subsequent comparison and evaluation using the metrics discussed in
section 2.8.
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4.4.1 Random Forest Optimization

4.4.1.1 Hyperparameters

As previously mentioned in subsubsection subsubsection 2.7.1.1, the most relevant
hyperparameters for this model are the number of estimators and the depth of the mask. The
number of estimators controls the count of trees used during the process, while the depth of the
mask determines the maximum depth for each tree.

As discussed in subsection 3.5.2, GridSearch, combined with cross-validation, was
applied to optimize the model’s hyperparameters, aiming to find the combination that maximized
the F1 score performance metric. As mentioned in section 2.8, the F1 score takes into account
both precision and recall, providing a balanced evaluation of performance, especially in situations
where there is an imbalance between classes, as addressed in this work.

In this context, the F1 is specially relevant, as it is crucial to accurately identify positive
instances (precision) and minimize false negatives. The choice of the F1 score as the evaluation
metric aims to achieve a robust balance between positive classification capability and minimal
classification errors, thereby making our model more adept at addressing the nuances of the
problem. Figure 17 presents the obtained results, making the data easier to understand.

Figure 17 – Random Forest Hyperparameters.

Source: Elaborated by the author.
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Figure 17 shows the distribution of the F1 score when the number of trees and their
maximum depth are varied. As highlighted by the orange dot, the best F1 score corresponds to
71 estimators and 12 masks. Thus, the model was tested using these hyperparameters.

It is observed that the values found during the previously described process are close to
those defined in all cross-validation splits, maintaining cohesion among them. As a result, the
model demonstrates consistency in its performance, with a range between 0.69 and 0.74.

4.4.1.2 Importance of Features

Given that the random forest provides the ability to calculate feature importance during
training, as outlined in subsubsection 2.7.1.1, this will also be a metric for optimizing the model.
To achieve this, the f eature_importances object from Scikit-Learn was employed.

Figure 18 presents the results of feature importance during the model training. In collab-
oration with the technical team from ZF, a threshold of 0.03 was defined after some analyses to
further reduce the dataset’s dimensionality. Thus, features with importance less than or equal
to 0.03 were discarded, namely, feature_4, feature_8, feature_12, feature_13, and feature_21.
Figure 19 illustrates the results after the removal of these features.

Figure 18 – Importance of features to model with all features.

Source: Elaborated by the author.
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Figure 19 – Importance of features to model after removal of features.

Source: Elaborated by the author.

Analyzing figure 19, it is evident that feature_1 and feature_5 have gained greater
importance for the model after the removal less important features. This can be attributed to
a more accurate representation of the data, removing noisy features or to a reduction in the
complexity of the model, as in subsection 2.4.3. As some features have been removed, 16 were
left.

4.4.1.3 Final Model

After the step described in subsubsection 4.4.1.2, the model was reoptimized as detailed
in section subsubsection 4.4.1.1, as the removal of features could impact the results of previously
assigned hyperparameters. Therefore, for the final model, the number of trees was 50, and the
maximum depth was 11, setting an F1 score of 0.77 as ilustrated in Figure 20.
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Figure 20 – Random Forest hyperparameters after removing the features.

Source: Elaborated by the author.

4.4.2 KNN Optimization

4.4.2.1 Hyperparameters

As described in section subsubsection 2.7.1.2, for the KNN, the number of neighbors
is the most important hyperparameter to be optimized, as it affects the model’s generalization
capability. If K is too small, between 1 and 3, for example, the model may be more sensitive to
noise because the assigned class is only related to very close neighbors. However, if the value of
K is too large, the model may overfit to training data and not perform well for unseen data.

Therefore, the techniques described in subsection 3.5.2, and discussed in the subsubsec-
tion 4.4.1.1, were applied to the training data to find the number of neighbors with the best F1

score. It is worth mentioning that, as discussed subsection 2.4.1, similar to SVM, this model also
has high sensitivity to imbalanced datasets.

Thus, the objects weights = distance and p = 3 from Scikit-Learn were used. According
to Scikit-Learn, the weights parameter instructs the algorithm to weigh distances between dat-
apoints inversely to the distance, meaning closer instances to the query point will have higher
weight in the voting than farther instances. As for the hyperparameter p= 3 indicates that the met-
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ric used to calculate this distance was Minkowski. As discussed in section subsubsection 2.7.1.2,
Minkowski is a generalization of Euclidean distance. Furthermore, this method is versatile and
can adapt to any type of distribution, efficiently handling the non-uniform distribution of the data
used in this thesis. Figure 21 presents the results obtained, using the Grid Search.

Figure 21 – KNN hyperparameter.

Source: Elaborated by the author.

Analyzing Figure 21 one can notice tha the correlation of the number of neighbors with
the optimal F1 score, demonstrating that 13 neighbors yield the best result. Thus, it was used in
the evaluation of the final model.

4.4.3 SVM Optimization

4.4.3.1 Hyperparameters

As per subsubsection 2.7.1.3, the most crucial parameters for SVM that was optimized
are C, responsible for penalizing classification errors, and gamma, which influences how the
kernel function affects the decision boundary between classes. To achieve this, the methodol-
ogy mentioned in section 2.6 and discussed in subsubsection 4.4.1.1, in which grid search in
combination with cross-validation is used to maximize the F1 score, was applied.

Considering that this model is sensitive to dataset imbalance, as discussed in subsec-
tion 3.4.3, the class_weight = balanced parameter was applied during the use of training data.
By subsubsection 2.7.1.3, SVM adjusts class weights to compensate for this imbalance and
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ensure that the model is trained more evenly, taking all classes into account equally, regardless
of their frequency. Figure 22 presents the results.

Figure 22 – SVM hyperparameters.

Source: Elaborated by the author.

It is noted that the values of C and gamma that provide the best F1 score are 9 and
0.49, therefore, they were used to train the model and conduct tests to evaluate the model’s
performance after optimization.

4.5 Evaluating Models
As described in subsection 3.5.1, the data was split, with 80% of 554 readouts presented

in Table 1, allocated for training and 20% for testing the models. For model evaluation, test data
was utilized, consisting of 112 vehicles.

Table 4 presents the precision, recall, and F1 score information for the models studied in
this work.
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Table 4 – Evaluating models.

Model Precision Recall F1-score

Random Forest 0.794 0.795 0.794
KNN 0.755 0.75 0.751
SVM 0.719 0.714 0.716

Analyzing Table 4, it is observed that all models achieved a balance between precision
and recall. This suggests good performance in identifying both positive and negative instances
during data classification.

By section 2.8, when analyzing a model’s performance, the confusion matrix is crucial
as it provides information about the number of FP, FN, TP, and TN, enabling a comprehensive
analysis and facilitating result interpretation. Figure 23 shows the results.

Figure 23 – Confusion matrix to models.

(a) Random Forest. (b) KNN.

(c) SVM.

Source: Elaborated by the author.
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Figure 23a illustrates the Random Forest results, where 34 vehicles were correctly
classified as True Negatives (TN) and 55 as True Positives (TP). Moreover, 23 (20% of test data)
vehicles were misclassified, resulting in 11 False Negatives (FN) and 12 False Positives (FP).

In Figure 23b, the KNN results are presented. 84 vehicles were accurately classified,
including 34 as TN and 50 as TP. However, there were misclassifications, leading to 16 FN and
12 FP, indicating a percentage of 25% of test data.

And finally in Figure 23c, the SVM results indicate 80 vehicles are correctly classified,
with 32 as TN and 48 as TP. Similar to the other models, 32 (28.6% of test data) vehicles were
misclassified, resulting in 18 FN and 14 FP.

Another widely employed metric in model evaluation is the AUC-ROC (Area Under the
Receiver Operating Characteristic curve), as detailed in section 2.8. The AUC-ROC quantifies
the overall quality of the model in making classifications and distinguishing between Category
0 (False) and Category 1 (True). The results of the AUC-ROC range from 0 to 1, with values
closer to 1 considered indicative of superior performance.

Figure 24 displays the AUC-ROC results for the three models, enabling a direct compari-
son of their performances. It is emphasized that higher values in the AUC-ROC reflect a superior
ability of the model to balance sensitivity and specificity. This visual analysis makes it easier to
interpret the effectiveness of each model in discriminating between classes, since the larger the
area under the curve, the better the model’s ability to classify the data.

Figure 24 – AUC-ROC curve.

Source: Elaborated by the author.
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Examining the ROC curve, it becomes clear that the Random Forest presents an AUC of
0.89, indicating its superiority compared to SVM and KNN, as assessed by this metric.

4.6 Overall Discussions
When analyzing the results of the evaluated metrics for model assessment, as discussed

earlier, a consistent balance is observed in the precision and recall outcomes, as evidenced in
Table 4. This balance suggests that the models are making classification decisions in a well-
balanced manner. As highlighted in subsubsection 4.4.1.1, it is crucial not only to achieve correct
classifications but also to reduce the number of FN. Therefore, seeking a balance between these
metrics is ideal, aiming at minimizing FN and correctly classifying instances.

Although all models exhibited similar behavior, the Random Forest stands out by deliver-
ing the best results in all metrics analyzed in this study. It achieved an F1 score of 0.794, while the
KNN recorded an F1 score of 0.76, and the SVM, a value of 0.716. Furthermore, when examining
the confusion matrix, Random Forest presented 11 false negatives, compared to 14 for SVM
and 14 for KNN, respectively. Finally, the Random Forest exhibited an AUC of 0.89, surpassing
the values of 0.87 for KNN and 0.79 for SVM. Therefore, among the models evaluated with
the dataset used in this study, the Random Forest consistently demonstrates superior results,
supported by the analyzed metrics.

Even though the models performed well in the metrics analyzed, it is essential to ac-
knowledge the limitations in the currently available dataset. One of these limitations lies in the
quality of the labels assigned to the data. There is no guarantee that instances classified as "False"
really dont have problems, because these may have failed after obtaining the label. Another
significant limitation is the scarcity of data available for training and testing the models. The
limited quantity of training examples may have constrained the models’ ability to learn and
generalize various characteristics necessary for accurate classification of transmission health.
The quality of the label, coupled with the amount of data provided, may account for the high
number of misclassifications.

Thus, the model requires greater reliability regarding the labels assigned to the data,
as well as an expansion of the dataset to be analyzed and validated before being employed in
industrial applications. Currently, this model can be used in the dashboards developed within the
data analysis team as a way to demonstrate to clients that by providing more data, this model can
be applied in their daily operations, providing crucial information of the evaluated transmission.
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CHAPTER

5
CONCLUSIONS AND PROSPECTS

THIS chapter provides the final conclusions, discussions and general remarks about the
presented study. It also gives a perspective of future improvements and research branches

which can be derived from the proposed methodology.

5.1 Conclusion
The aim of this thesis was to use field data from vehicle EEPROMs to compare machine

learning algorithms and identify the most effective one for predicting powershift transmission
failures, thus indicating the state of health of this component. One of the main objectives was
to find an algorithm that could minimize the number of undetected transmission problems,
i.e., cases in which the transmission is erroneously indicated as healthy. The overall goal was
to develop a tool for effective transmission monitoring, aiding fault detection, contributing to
vehicle maintenance and improving vehicle safety during operation.

The study revealed that the models evaluated showed a well-balanced performance in
terms of precision and recall, suggesting effective classification decisions. The Random Forest
model was notably superior, obtaining the highest scores in all metrics, including an F1 score of
0.794 and an AUC of 0.89, thus establishing itself as the most effective model in this study.

Despite these positive results, it is necessary to recognize the limitations of the available
data set. The quality of the labels assigned to the data is uncertain, which represents a risk of
incorrect classification. Instances marked as "False" may not be labeled accurately, reflecting
possible problems in the quality of the data. In addition, the limited amount of data available to
train and test the models may have restricted their ability to learn and generalize the features
needed for accurate transmission health classification. This data scarcity could be a significant
factor behind the high number of misclassifications observed.

At the current stage, the model can be used in dashboards within the data analysis team
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to demonstrate to clients the benefits of collaborative data provision. However, it is essential
to use a more extensive data set to validate this tool. By improving the quality and increasing
the volume of data in the set, the model can be validated more thoroughly, which will result in
greater reliability. Subsequently, there is potential for its deployment in industrial applications,
providing crucial information on the integrity of the vehicle’s transmission, this can reduce
maintenance costs and machine downtime.

5.2 Future Works
For future work, it is recommended to expand the dataset to validate the effectiveness of

the proposed tool. This implies obtaining more data, preferably with a higher accuracy label,
to strengthen the reliability of the model. After this step, it is feasible to employ the same
pipeline developed in this project to implement tools that assess different types of transmission.
Furthermore, it is suggested to explore the probability function predict_proba() available
in scikit-learn to visualize the classification decision boundary of the Random Forest model.
Adjusting precision and recall parameters will provide valuable insights into the model’s behavior,
contributing to possible optimization. Finally, it is recommended to explore other ensemble
methods, such as Gradient Boosting Machines (GBM), which have stood out in the field of data
science. Evaluating the data from this perspective may offer a more comprehensive understanding,
as ensemble methods have shown promising results compared to the non-parametric methods
studied in this work.
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