Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufu.br/handle/123456789/41976
ORCID: | http://orcid.org/0009-0007-4635-5308 |
Tipo de documento: | Trabalho de Conclusão de Curso |
Tipo de acceso: | Acesso Aberto |
Título: | Development of a machine learning model to predict construction machinery gearboxes’ health status |
Título (s) alternativo (s): | Desenvolvimento de um modelo de aprendizado de máquina para prever o estado de saúde das transmissões de máquinas de construção |
Autor: | Almeida, Camila Aparecida Da Silva |
Primer orientador: | Silva, Higor Luis |
Primer miembro de la banca: | Cavallini Junior, Aldemir Aparecido |
Segundo miembro de la banca: | Monteiro, Nuno Alvares De Paula |
Resumen: | As industries increasingly turn to data-driven methods in their maintenance strategies, the need for advanced predictive maintenance techniques becomes increasingly evident. This study focuses on the application of Machine Learning (ML) algorithms to enhance the reliability and efficiency of vehicle transmission systems, with a focus on monitoring the health of powershift transmissions for construction machinery, at ZF Friedrichshafen, a global automotive technology company. By utilizing ML algorithms, this project aims to identify patterns in operational data, facilitating the prediction of potential failures and enabling timely interventions. The goal of the study was to compare the ML ML algorithms, Random Forest, K Nearest Neighbors (KNN), and Support Vector Machines (SVM) to identify the most effective in predicting transmission failures. The research involved stages ranging from data collection and pre-processing to model optimization and evaluation, using machine learning metrics. The results revealed that the Random Forest algorithm outperformed the others in terms of precision, recall, and F1 score for the studied use case. Its robust ability to accurately classify positive and negative instances was particularly significant in the analysis of vehicle operational data. |
Palabras clave: | Machine learning algorithms Vehicle transmission systems Predictive maintenance Operational data analysis Algoritmos de aprendizado de máquina Sistemas de transmissão de veículos Manutenção preditiva Análise de dados operacionais |
Área (s) del CNPq: | CNPQ::ENGENHARIAS |
Idioma: | eng |
País: | Brasil |
Editora: | Universidade Federal de Uberlândia |
Cita: | ALMEIDA, Camila Aparecida. Development of a machine learning model to predict construction machinery gearboxes’ health status. 2024. 66 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Aeronáutica) – Universidade Federal de Uberlândia, Uberlândia, 2024. |
URI: | https://repositorio.ufu.br/handle/123456789/41976 |
Fecha de defensa: | 22-mar-2024 |
Aparece en las colecciones: | TCC - Engenharia Aeronáutica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DevelopmentMachineLearning.pdf | 8.04 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.