Please use this identifier to cite or link to this item:
https://repositorio.ufu.br/handle/123456789/28122
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Martins, Luísa Andrade | - |
dc.date.accessioned | 2020-01-03T14:42:17Z | - |
dc.date.available | 2020-01-03T14:42:17Z | - |
dc.date.issued | 2019-12-16 | - |
dc.identifier.citation | MARTINS, Luísa Andrade. Espaços métricos e os Fractais SFI. 2019. 38 f. Trabalho de Conclusão de Curso (Graduação em Matemática) - Universidade Federal de Uberlândia, Uberlândia, 2020. | pt_BR |
dc.identifier.uri | https://repositorio.ufu.br/handle/123456789/28122 | - |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal de Uberlândia | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | Fractais SFI | pt_BR |
dc.subject | ISF fractals | pt_BR |
dc.subject | Espaço de Hausdorff | pt_BR |
dc.subject | Hausdorff space | pt_BR |
dc.subject | Métrica de Hausdorff | pt_BR |
dc.subject | Metric of Hausdorff | pt_BR |
dc.subject | Teorema do ponto fixo de Banach | pt_BR |
dc.subject | Banach fixed point Theorem | pt_BR |
dc.title | Espaços métricos e os Fractais SFI | pt_BR |
dc.type | Trabalho de Conclusão de Curso | pt_BR |
dc.contributor.advisor1 | Galves, Ana Paula Tremura | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2733373203786930 | pt_BR |
dc.contributor.referee1 | Rezende, Germano Abud de | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/4057045968849847 | pt_BR |
dc.contributor.referee2 | Coelho, Francielle Rodrigues de Castro | - |
dc.contributor.referee2Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777134Z8 | pt_BR |
dc.description.degreename | Trabalho de Conclusão de Curso (Graduação) | pt_BR |
dc.description.resumo | Este trabalho tem como propósito o estudo dos fractais que podem ser vistos como pontos fixos de um sistema de funções iteradas, que são chamados Fractais SFI. Tais fractais serão definidos no Espaço de Hausdorff, cujos pontos são subconjuntos compactos não vazios de um espaço métrico completo X, com a métrica de Hausdorff, que determina o grau de correspondência entre dois conjuntos segundo sua distância. Para tal, serão estudados conceitos básicos de espaços métricos como: compacidade, sequência de Cauchy, espaços métricos completos, entre outros. Além disso, serão apresentados o conceito de ponto fixo e o Teorema do Ponto Fixo de Banach, os quais serão de grande importância na definição e na demonstração de resultados sobre Fractais SFI. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.course | Matemática | pt_BR |
dc.sizeorduration | 38 | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA | pt_BR |
dc.orcid.putcode | 66781544 | - |
Appears in Collections: | TCC - Matemática |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
EspaçosMétricosFractais.pdf | 1.96 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License