Use este identificador para citar ou linkar para este item: https://repositorio.ufu.br/handle/123456789/48073
ORCID:  http://orcid.org/0009-0008-4872-1655
Tipo do documento: Dissertação
Tipo de acesso: Acesso Embargado
Término do embargo: 2027-12-19
Título: A Dynamic GPF scheduler proposal backed by Differential Evolution and Neural Network on 5G HetNet simulated scenarios
Título(s) alternativo(s): Uma proposta de Escalonador GPF Dinâmico com apoio de Evolução Diferencial e Rede Neural em cenários 5G HetNet simulados
Autor(es): Resende, Getúlio Martins
Primeiro orientador: Silva, Éderson Rosa da
Primeiro membro da banca: Silva, Ederson Rosa da
Segundo membro da banca: Mateus, Alexandre Coutinho
Terceiro membro da banca: Soares, Claiton Luiz
Resumo: To achieve the desired 5G goals, a network must be efficient and fair simultaneously, allowing high data rates for regular users while also equally serving low-power users. Static schedulers, as the name implies, don’t change their scheduling policy regardless of the number of users, giving rise to the need for dynamic schedulers that can shift this paradigm by sensing the number of network users and other parameters like Signal-to-Interferenceplus- Noise Ratio (SINR) and changing the scheduling policy accordingly, raising network efficiency and fairness. Thus, this work presents an optimization technique that uses the Differential Evolution (DE) algorithm and, later, trains a feedforward Neural Network (NN) to mimic the DE’s decision-making to act as a dynamic Generalized Proportional Fair (GPF), adapting its two internal parameters, α and β, assuring a threshold Jain’s fairness index value while seeking a throughput maximization in a simulated 5G Heterogeneous Network (HetNet). Results show that the method achieves a minimal 0.7 Jain’s fairness index for most numbers of users, from 40 to 200 users, while having a better average throughput when compared to a related scheduler. It was also noted that the implemented DE algorithm took an impractical runtime to work as an online optimizer; in contrast, using the created dynamic NN scheduler added only 0.03% to 0.57% in simulation runtime compared to GPF.
Abstract: To achieve the desired 5G goals, a network must be efficient and fair simultaneously, allowing high data rates for regular users while also equally serving low-power users. Static schedulers, as the name implies, don’t change their scheduling policy regardless of the number of users, giving rise to the need for dynamic schedulers that can shift this paradigm by sensing the number of network users and other parameters like Signal-to-Interferenceplus- Noise Ratio (SINR) and changing the scheduling policy accordingly, raising network efficiency and fairness. Thus, this work presents an optimization technique that uses the Differential Evolution (DE) algorithm and, later, trains a feedforward Neural Network (NN) to mimic the DE’s decision-making to act as a dynamic Generalized Proportional Fair (GPF), adapting its two internal parameters, α and β, assuring a threshold Jain’s fairness index value while seeking a throughput maximization in a simulated 5G Heterogeneous Network (HetNet). Results show that the method achieves a minimal 0.7 Jain’s fairness index for most numbers of users, from 40 to 200 users, while having a better average throughput when compared to a related scheduler. It was also noted that the implemented DE algorithm took an impractical runtime to work as an online optimizer; in contrast, using the created dynamic NN scheduler added only 0.03% to 0.57% in simulation runtime compared to GPF.
Palavras-chave: 5G
Differential Evolution (DE)
Generalized Proportional Fair (GPF) scheduler
Heterogeneous Network (HetNet)
Neural Network
Proportional Fair (PF) scheduler
Engenharia elétrica
Área(s) do CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES
Assunto: Engenharia elétrica
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Engenharia Elétrica
Referência: RESENDE, Getúlio Martins. A Dynamic GPF scheduler proposal backed by Differential Evolution and Neural Network on 5G HetNet simulated scenarios. 2025. 77 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2026. DOI http://doi.org/10.14393/ufu.di.2025.731.
Identificador do documento: http://doi.org/10.14393/ufu.di.2025.731
URI: https://repositorio.ufu.br/handle/123456789/48073
Data de defesa: 19-Dez-2025
Objetivos de Desenvolvimento Sustentável (ODS): ODS::ODS 12. Consumo e produção responsáveis - Assegurar padrões de produção e de consumo sustentáveis.
Aparece nas coleções:DISSERTAÇÃO - Engenharia Elétrica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DynamicGPFScheduler.pdf
  Até 2027-12-19
Dissertação7.11 MBAdobe PDFVisualizar/Abrir    Solictar uma cópia


Este item está licenciada sob uma Licença Creative Commons Creative Commons