Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufu.br/handle/123456789/48073
ORCID:  http://orcid.org/0009-0008-4872-1655
Tipo de documento: Dissertação
Tipo de acceso: Acesso Embargado
Fecha de embargo: 2027-12-19
Título: A Dynamic GPF scheduler proposal backed by Differential Evolution and Neural Network on 5G HetNet simulated scenarios
Título (s) alternativo (s): Uma proposta de Escalonador GPF Dinâmico com apoio de Evolução Diferencial e Rede Neural em cenários 5G HetNet simulados
Autor: Resende, Getúlio Martins
Primer orientador: Silva, Éderson Rosa da
Primer miembro de la banca: Silva, Ederson Rosa da
Segundo miembro de la banca: Mateus, Alexandre Coutinho
Tercer miembro de la banca: Soares, Claiton Luiz
Resumen: To achieve the desired 5G goals, a network must be efficient and fair simultaneously, allowing high data rates for regular users while also equally serving low-power users. Static schedulers, as the name implies, don’t change their scheduling policy regardless of the number of users, giving rise to the need for dynamic schedulers that can shift this paradigm by sensing the number of network users and other parameters like Signal-to-Interferenceplus- Noise Ratio (SINR) and changing the scheduling policy accordingly, raising network efficiency and fairness. Thus, this work presents an optimization technique that uses the Differential Evolution (DE) algorithm and, later, trains a feedforward Neural Network (NN) to mimic the DE’s decision-making to act as a dynamic Generalized Proportional Fair (GPF), adapting its two internal parameters, α and β, assuring a threshold Jain’s fairness index value while seeking a throughput maximization in a simulated 5G Heterogeneous Network (HetNet). Results show that the method achieves a minimal 0.7 Jain’s fairness index for most numbers of users, from 40 to 200 users, while having a better average throughput when compared to a related scheduler. It was also noted that the implemented DE algorithm took an impractical runtime to work as an online optimizer; in contrast, using the created dynamic NN scheduler added only 0.03% to 0.57% in simulation runtime compared to GPF.
Abstract: To achieve the desired 5G goals, a network must be efficient and fair simultaneously, allowing high data rates for regular users while also equally serving low-power users. Static schedulers, as the name implies, don’t change their scheduling policy regardless of the number of users, giving rise to the need for dynamic schedulers that can shift this paradigm by sensing the number of network users and other parameters like Signal-to-Interferenceplus- Noise Ratio (SINR) and changing the scheduling policy accordingly, raising network efficiency and fairness. Thus, this work presents an optimization technique that uses the Differential Evolution (DE) algorithm and, later, trains a feedforward Neural Network (NN) to mimic the DE’s decision-making to act as a dynamic Generalized Proportional Fair (GPF), adapting its two internal parameters, α and β, assuring a threshold Jain’s fairness index value while seeking a throughput maximization in a simulated 5G Heterogeneous Network (HetNet). Results show that the method achieves a minimal 0.7 Jain’s fairness index for most numbers of users, from 40 to 200 users, while having a better average throughput when compared to a related scheduler. It was also noted that the implemented DE algorithm took an impractical runtime to work as an online optimizer; in contrast, using the created dynamic NN scheduler added only 0.03% to 0.57% in simulation runtime compared to GPF.
Palabras clave: 5G
Differential Evolution (DE)
Generalized Proportional Fair (GPF) scheduler
Heterogeneous Network (HetNet)
Neural Network
Proportional Fair (PF) scheduler
Engenharia elétrica
Área (s) del CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES
Tema: Engenharia elétrica
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Engenharia Elétrica
Cita: RESENDE, Getúlio Martins. A Dynamic GPF scheduler proposal backed by Differential Evolution and Neural Network on 5G HetNet simulated scenarios. 2025. 77 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2026. DOI http://doi.org/10.14393/ufu.di.2025.731.
Identificador del documento: http://doi.org/10.14393/ufu.di.2025.731
URI: https://repositorio.ufu.br/handle/123456789/48073
Fecha de defensa: 19-dic-2025
Objetivos de Desarrollo Sostenible (ODS): ODS::ODS 12. Consumo e produção responsáveis - Assegurar padrões de produção e de consumo sustentáveis.
Aparece en las colecciones:DISSERTAÇÃO - Engenharia Elétrica

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
DynamicGPFScheduler.pdf
  Hasta 2027-12-19
Dissertação7.11 MBAdobe PDFVisualizar/Abrir    Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons