Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/46683
Full metadata record
DC FieldValueLanguage
dc.creatorSolis, Gyan Carlos Robert Morales-
dc.date.accessioned2025-08-27T12:42:19Z-
dc.date.available2025-08-27T12:42:19Z-
dc.date.issued2025-07-24-
dc.identifier.citationSOLIS, Gyan Carlos Robert Morales. Uma introdução aos polinômios sobre corpos finitos. 2025. 79 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Uberlândia, Uberlândia, 2025. DOI http://doi.org/10.14393/ufu.di.2025.446.pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/46683-
dc.description.abstractIn this work, we study topics in finite field theory. Initially, we explore the structure of finite fields, covering from basic properties to representations of their elements, such as polynomial, cyclotomic, and matrix representations. Next, we focus on the study of polynomials over finite fields, highlighting: the order-defined polynomials, linked to the structure of multiplicative groups; the primitive polynomials; and the irreducible polynomials, fundamental for factorization and construction of field extensions. Finally, we examine q-polynomials, which generalize classical polynomial structures.pt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCorpos finitospt_BR
dc.subjectFinite fieldspt_BR
dc.subjectExtensões algébricaspt_BR
dc.subjectAlgebraic extensionspt_BR
dc.subjectBases normaispt_BR
dc.subjectNormal basespt_BR
dc.subjectPolinômios ciclotômicospt_BR
dc.subjectCyclotomic polynomialspt_BR
dc.subjectPolinômios primitivospt_BR
dc.subjectPrimitive polynomialspt_BR
dc.subjectAutomorfismos de Frobeniuspt_BR
dc.subjectFrobenius automorphismspt_BR
dc.subjectRepresentações algébricaspt_BR
dc.subjectAlgebraic representationspt_BR
dc.subjectQ-polinômiospt_BR
dc.subjectQ-polynomialspt_BR
dc.titleUma introdução aos polinômios sobre corpos finitospt_BR
dc.title.alternativeAn introduction to polynomials over finite fieldspt_BR
dc.title.alternativeIntroducción a los polinomios sobre cuerpos finitospt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor1Tizziotti, Guilherme Chaud-
dc.contributor.advisor1Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4509915T7&tokenCaptchar=0cAFcWeA5prcvFY-cmP-MDc6Dj0WYyHLH-QKQDT5LcImv6g5hk4v3HwAwZamYIV-qnThziKMdODr08yrGg4ZhMI_0Nh-OnlP4ZkKgSuPokRevpI8rXAazIrVhs31vnNlduRWdL1ZHo4PkEcukTSKF6EtFpQqRUYa-M1A-yPn8WMO4om0CqS0DkPlOyXdtSc82J3EKE5TtWLNlZBwPGgQ2oUAD3p2SGDKl1mn7CgCkemDXLuaFiHw-ffgxi96teSt9jvo-YZ_1kLLcRfJH3rzFVOOOz6Dis8cYb8BBqqAbO8yVjJsMoJ2FE4NWck65nPqnScr6vSorAjplFfXpy8gx20n_bZ2lmY6KciG8KCLvoGKote07pR9TuVN49ApExq6OCFHh7H59f4cXH36-XVgVpKvTBtb6njb_vHROwwuaN5CaX7lm8bI3raH2d9gWJIiNqq0J1d3IP632oheS6Mb-PTN0-UQWKyYlV2ssX1cSpxKZOPZ4QonKuwStu9FsrCA6JpgZIiuITchVnQxwNQTXraxRbbDFjPyHkWUXw88lV9jN_UR6CO7QHrIWAU4K4UcthQObXbwp9Aowa-8oY65Cv4jbhwk5zWb5Q1t9wX3diWAGz6hYRAfOfBsEqRWByKCxywhW_kYxJD5efd4UfPrsn0PpwC4OWdVreSoy86Lnk-QZOJWUriGFhqI2uoOS-0cSaCZIkrD1ewyibIBrSGxI_tBtjMnHoasP9VTdDKS37e6hb5BXfP4DujMuXDDPdkg7K7hhsuGIhTAiv3QV6RmsWlsWpgyv6Y2PdaDAI4jDEGmyRVIlOqFpoQq3b0DovLQrivMUIb5aNoqcopt_BR
dc.contributor.referee1Mendoza, Erik Antonio Rojas-
dc.contributor.referee1Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K2746935T9&tokenCaptchar=03AFcWeA7l0U3d8ckESMp1pA0IgXx9vjIzP_Z1WX6zr03ZXDWm_9rVc4FagMmZjBkAF9npqJSV9JiH7GokjkrW369nmPrv7yToOakz9aMAEKB3EJTRMfzVQqD50nNFfh7DBmzzm9b7GUe2hK8CvbZCikisOBEITIcSBEJnyCvudY13h8q5dVc_9DtEAbYrIXFWapPR9fmWnP7KfEEBAoPIE4ZRcbr45pOz6lAhihpMv4NZRrdERGWZGbIiizwHqX_rUMbLHkHFHkat-3gHfqJsAAbi0aBeM0rUyoz1Y-cCHgLMZJ0lQUk-zeknTYkC0Yba5F5gA0Chy2ytWVLJcBIs5alhiL1qfsUVajDLfv-3ssfu2eHCESNl9OzSEPHiWHbDkRc-V8uyEF-NR-qgnPf1V5gHT6xzgQvJSEZDR76ZmmHnAMZyptqmUAAYjJBugEkIpgsPMvf9k0JriuQlKJXfE0BuwnVZkULLup1xWLBdPpyk1ogyxBpSVjYfdQEbO7hjPT1mRqplUUleGTDlkOKnRMlA2GnjAjT3SbGlk9u8hL8i7QkmwRQeeRxAsHTunATmQQAlYrxjRC1vHkFKWwiZf07UdwUV0vHjTtMUoMowkPjdtH0pqxwMQJEeHHUE50KjDnr2deVDngm9WHv3TUEyDC_lzpxxqNhYiP3fxeVSGsQsB77AYnTn_6EibE-_c4XkqZ4-x-uaVzwlHlYLqVuC7EDK6XMWYI7zQB33wxPikzKuZObT-Hg2Jqm2AqKPkRxwgGPG4Uj9rNrdxWydbnJuJFi5kxVp8oRXSz8o73qPWLgyuV9-DzsRYsl3hocPqYJa0G99Z698-aMjRC1kP7Jy_AOjLRp7b48grKpXmoPop8ZsvnV1b_Xn3eoR9gTKnza2N3DsKWNhcPJHqFWfKud5d4dTh_ZVNdHhILPrqEk0hZqnLEEy2kpRRd00snitPB1-M0D16XphwiJTZrU0CGLeAT6vf6Q07zAiXkHeSR9XodQHV7Iy_YoXJstdyKMfhrFoIGnc3fO1MChL4QY6aVeAZav84FPhnwpPHFm0UUl9qFxYO_bN8ln3ZiZVULjjGyGd_tQgc1NQzBbRpt_BR
dc.contributor.referee2Sousa, João Paulo Guardieiro-
dc.contributor.referee2Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8465460H1&tokenCaptchar=03AFcWeA5E_u7flHv3t4jRovlZrY4piKWUqa2IrbZvLxDqYF6UgRtn0p5glnSShOaIgQ5C4ZcqVvbpdqOoxxjDKVbsZVasgUjZ_mpIQwcqGlCIcgEkb7PyzjxUcbgxkcZc2Mu1LL-9jpsXRHoKGuJy1wxXkZP5dCYvKPzmnV0CS66fMVKtBBQMuCy1Wl1zt-i5xgl17i3eKL2Xt32JZodG75IQfY6nx02-UvtduLGolMzPPULLn3d08xRZKExCKs3H8aXzM0kpfLvjtayaeAVOAHbIAcVvI_BOQnjF7WSv6eErDI0aKAuDDC7wnnRUzYcEVXosPCs_XCafhtdeZl8RG-BPTzPVQvTnMLnT78aynSCDsVUg9BME_n77vnthltOSF-jQDS1GfSqKbeohQz210QfFjM-OU3KFYzCPBS5ye5iZgbpP8_W3Lan0XzcBxpIvPepAiOTHSGAJyrxQXDIZC3b-orHkoNxLdq8fxke_0k6oCjNS-J47ILbnnMGQQEe-darPlrg0jUjo97caTp0x39DTBRH7w9VI493EfCXH8OU635vaDSTewBF8yi6eAMpmfmjfJ6G1dVyp_aW7Un-Q3rAiE0OvXuPal8UZS9Z0W6DokdIg95We0bqWs7s1etq3Q6skU3zKmxE_IBFqQaFfh7OIt4dQuq3CvYI4homoKHa221iTIRaHgUE8wEHXos7IsCskUxrRGEp0rnrgYgov5iTQtyQJtHN-sEy6e235aQEf30asD_8A_Ry-awGqDn2F8q1cI5Uk5QM7y_XX7SpVWJ-IWNsiMzn9ZsEPwF43mfFV_346D2tWG2oc3FFI3sWsVoSMypPs0wChPOY6H0b0Yh1fqrxKLTjguGvKX61Rk6lp4eF1yDOhA7woaRA48WWOolMQqghJI9b_HXn0T5W3P2eXMaW7w8Xsrma0MWR3L6ZEbMCU77DUjW2gx30FmHnlmz3pbacRNDz3RFGLEdhicjPmWXv-dmX1i4lzV2DNzZYrGFgd4_YxSuZXat8mcv_aXTOaV0kd1cqpH0-NRaqAcNPAhdHVCNKgs7yigB6M5MKMGDGV_o0tUmcpt_BR
dc.creator.Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K1129809H1&tokenCaptchar=03AFcWeA5WTBderddNcbwyaTq427zzeJKSYiQEvd2ZChgBaplrfOo70EPl9zJv8GH7xsYAuh9NVyZ8-L7Hysb6MvQnpvhZPvYi6pwfD9rZaq2L6GO8NiJgYi7wZuDUPQCzkzisq_AmpT8BufR79BX8qRFBVNHzqkMN0Iv0C_gMUFP1DNM4SLDuuCzsfgBByb1RbKmmdoA14Qb7jrxVFkQJ8m_vLh9FOEvC-cSfE219IWU4sjHdZF3PL8nuIL51KSv2s5ptjKKWkin75QF8cGu5FoLiUKY8tPhioZfPlhjXQWeAHG66DOAoKmAM1Iu2hxsooMl8usBOxgCrHpngWfBV54Fn48IqNdJhll0s-JwSQeRB-n6iKsb0QejPFZgXFu2nCFUDjwvRNo8yv_pUufFmXUzyOGEfNP1oY_iA5kAIMP_FMa3Q-CiFBxEvwzFhCS75sJ60uoQTrFcFYgx-_qH8hkMP3K-24jRdsxDpCgI5Pie-XtqeywTCFU6nbny6eNJu0lfw3R4tG-5O9v_ajMdeu4rY4xD-I5NW8UOWOoFNNQSv7HJlCQFwxNo21l09kI5-XIA48F3XdxIzWGdydgYjjTM3TW7QnKG8tJ29zS1VWLiLdy5NNREHvV50vMdaq1FD_G24pup0VMKp41p-DoGy8O3MuB8eDEbW5ol9zMH1jBIKJ7EkcQXW-aSB0K_umGy5yXGrSjXDu3Y7-wOnoX-HSTZKJmxqx0rccmC_EJ6pOLojvQxgFJrqclxN-WodD6N1FrgCu8dcY8rgvtuX8WNfp-qos2x_UDmnugVSOYIGanTL4xymegy-ThSgG66_Z9TU99iuRI8ggxs_cb2wzeXILtUvnTAlUfmbqqRAkQorEBrgdICEs3C3EDEeGDbYAtxVyvqNW-8yzY6aBWAs8tLK6_OvBQ9l6Y0m2FEXaLXFnbH0bk2tULXuQGe_lwRaxy1f6vlecBfa7NR7DPuoX9m4olIjVFrNdXD--3NQhdyEhrawAVk6K0TTaY5cvnhW0LltilnJvH_Fmyf-nP1fAOg14m5Oi6UJaJHkc5HqZOZuCr7H_HX7Bbk2S9HIlrDGeWVXS-favqvgP831pt_BR
dc.description.degreenameDissertação (Mestrado)pt_BR
dc.description.resumoNeste trabalho, estudamos tópicos da teoria de corpos finitos. Inicialmente, exploramos a estrutura de corpos finitos, abrangendo desde propriedades básicas até representações de seus elementos, como as polinomiais, ciclotômicas e matriciais. Em seguida, concentramonos no estudo de polinômios sobre corpos finitos, destacando os polinômios de ordem definida, vinculados à estrutura dos grupos multiplicativos; os polinômios primitivos; e os polinômios irredutíveis, fundamentais para fatoração e construção de extensões de corpos. Por fim, examinamos os q-polinômios, que generalizam estruturas polinomiais clássicas.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-graduação em Matemáticapt_BR
dc.sizeorduration79pt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA::GEOMETRIA ALGEBRICApt_BR
dc.identifier.doihttp://doi.org/10.14393/ufu.di.2025.446pt_BR
dc.orcid.putcode190674341-
dc.crossref.doibatchidee87d639-8c9d-4ec8-96d5-2ff155af2748-
dc.subject.autorizadoMatemáticapt_BR
dc.subject.autorizadoPolinômiospt_BR
dc.subject.autorizadoMétodo dos elementos finitospt_BR
dc.subject.odsODS::ODS 4. Educação de qualidade - Assegurar a educação inclusiva, e equitativa e de qualidade, e promover oportunidades de aprendizagem ao longo da vida para todos.pt_BR
Appears in Collections:DISSERTAÇÃO - Matemática

Files in This Item:
File Description SizeFormat 
IntroduçãoPolinômiosCorpos.pdfDissertação676.78 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons