Please use this identifier to cite or link to this item:
https://repositorio.ufu.br/handle/123456789/46683Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.creator | Solis, Gyan Carlos Robert Morales | - |
| dc.date.accessioned | 2025-08-27T12:42:19Z | - |
| dc.date.available | 2025-08-27T12:42:19Z | - |
| dc.date.issued | 2025-07-24 | - |
| dc.identifier.citation | SOLIS, Gyan Carlos Robert Morales. Uma introdução aos polinômios sobre corpos finitos. 2025. 79 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Uberlândia, Uberlândia, 2025. DOI http://doi.org/10.14393/ufu.di.2025.446. | pt_BR |
| dc.identifier.uri | https://repositorio.ufu.br/handle/123456789/46683 | - |
| dc.description.abstract | In this work, we study topics in finite field theory. Initially, we explore the structure of finite fields, covering from basic properties to representations of their elements, such as polynomial, cyclotomic, and matrix representations. Next, we focus on the study of polynomials over finite fields, highlighting: the order-defined polynomials, linked to the structure of multiplicative groups; the primitive polynomials; and the irreducible polynomials, fundamental for factorization and construction of field extensions. Finally, we examine q-polynomials, which generalize classical polynomial structures. | pt_BR |
| dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal de Uberlândia | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
| dc.subject | Corpos finitos | pt_BR |
| dc.subject | Finite fields | pt_BR |
| dc.subject | Extensões algébricas | pt_BR |
| dc.subject | Algebraic extensions | pt_BR |
| dc.subject | Bases normais | pt_BR |
| dc.subject | Normal bases | pt_BR |
| dc.subject | Polinômios ciclotômicos | pt_BR |
| dc.subject | Cyclotomic polynomials | pt_BR |
| dc.subject | Polinômios primitivos | pt_BR |
| dc.subject | Primitive polynomials | pt_BR |
| dc.subject | Automorfismos de Frobenius | pt_BR |
| dc.subject | Frobenius automorphisms | pt_BR |
| dc.subject | Representações algébricas | pt_BR |
| dc.subject | Algebraic representations | pt_BR |
| dc.subject | Q-polinômios | pt_BR |
| dc.subject | Q-polynomials | pt_BR |
| dc.title | Uma introdução aos polinômios sobre corpos finitos | pt_BR |
| dc.title.alternative | An introduction to polynomials over finite fields | pt_BR |
| dc.title.alternative | Introducción a los polinomios sobre cuerpos finitos | pt_BR |
| dc.type | Dissertação | pt_BR |
| dc.contributor.advisor1 | Tizziotti, Guilherme Chaud | - |
| dc.contributor.advisor1Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4509915T7&tokenCaptchar=0cAFcWeA5prcvFY-cmP-MDc6Dj0WYyHLH-QKQDT5LcImv6g5hk4v3HwAwZamYIV-qnThziKMdODr08yrGg4ZhMI_0Nh-OnlP4ZkKgSuPokRevpI8rXAazIrVhs31vnNlduRWdL1ZHo4PkEcukTSKF6EtFpQqRUYa-M1A-yPn8WMO4om0CqS0DkPlOyXdtSc82J3EKE5TtWLNlZBwPGgQ2oUAD3p2SGDKl1mn7CgCkemDXLuaFiHw-ffgxi96teSt9jvo-YZ_1kLLcRfJH3rzFVOOOz6Dis8cYb8BBqqAbO8yVjJsMoJ2FE4NWck65nPqnScr6vSorAjplFfXpy8gx20n_bZ2lmY6KciG8KCLvoGKote07pR9TuVN49ApExq6OCFHh7H59f4cXH36-XVgVpKvTBtb6njb_vHROwwuaN5CaX7lm8bI3raH2d9gWJIiNqq0J1d3IP632oheS6Mb-PTN0-UQWKyYlV2ssX1cSpxKZOPZ4QonKuwStu9FsrCA6JpgZIiuITchVnQxwNQTXraxRbbDFjPyHkWUXw88lV9jN_UR6CO7QHrIWAU4K4UcthQObXbwp9Aowa-8oY65Cv4jbhwk5zWb5Q1t9wX3diWAGz6hYRAfOfBsEqRWByKCxywhW_kYxJD5efd4UfPrsn0PpwC4OWdVreSoy86Lnk-QZOJWUriGFhqI2uoOS-0cSaCZIkrD1ewyibIBrSGxI_tBtjMnHoasP9VTdDKS37e6hb5BXfP4DujMuXDDPdkg7K7hhsuGIhTAiv3QV6RmsWlsWpgyv6Y2PdaDAI4jDEGmyRVIlOqFpoQq3b0DovLQrivMUIb5aNoqco | pt_BR |
| dc.contributor.referee1 | Mendoza, Erik Antonio Rojas | - |
| dc.contributor.referee1Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K2746935T9&tokenCaptchar=03AFcWeA7l0U3d8ckESMp1pA0IgXx9vjIzP_Z1WX6zr03ZXDWm_9rVc4FagMmZjBkAF9npqJSV9JiH7GokjkrW369nmPrv7yToOakz9aMAEKB3EJTRMfzVQqD50nNFfh7DBmzzm9b7GUe2hK8CvbZCikisOBEITIcSBEJnyCvudY13h8q5dVc_9DtEAbYrIXFWapPR9fmWnP7KfEEBAoPIE4ZRcbr45pOz6lAhihpMv4NZRrdERGWZGbIiizwHqX_rUMbLHkHFHkat-3gHfqJsAAbi0aBeM0rUyoz1Y-cCHgLMZJ0lQUk-zeknTYkC0Yba5F5gA0Chy2ytWVLJcBIs5alhiL1qfsUVajDLfv-3ssfu2eHCESNl9OzSEPHiWHbDkRc-V8uyEF-NR-qgnPf1V5gHT6xzgQvJSEZDR76ZmmHnAMZyptqmUAAYjJBugEkIpgsPMvf9k0JriuQlKJXfE0BuwnVZkULLup1xWLBdPpyk1ogyxBpSVjYfdQEbO7hjPT1mRqplUUleGTDlkOKnRMlA2GnjAjT3SbGlk9u8hL8i7QkmwRQeeRxAsHTunATmQQAlYrxjRC1vHkFKWwiZf07UdwUV0vHjTtMUoMowkPjdtH0pqxwMQJEeHHUE50KjDnr2deVDngm9WHv3TUEyDC_lzpxxqNhYiP3fxeVSGsQsB77AYnTn_6EibE-_c4XkqZ4-x-uaVzwlHlYLqVuC7EDK6XMWYI7zQB33wxPikzKuZObT-Hg2Jqm2AqKPkRxwgGPG4Uj9rNrdxWydbnJuJFi5kxVp8oRXSz8o73qPWLgyuV9-DzsRYsl3hocPqYJa0G99Z698-aMjRC1kP7Jy_AOjLRp7b48grKpXmoPop8ZsvnV1b_Xn3eoR9gTKnza2N3DsKWNhcPJHqFWfKud5d4dTh_ZVNdHhILPrqEk0hZqnLEEy2kpRRd00snitPB1-M0D16XphwiJTZrU0CGLeAT6vf6Q07zAiXkHeSR9XodQHV7Iy_YoXJstdyKMfhrFoIGnc3fO1MChL4QY6aVeAZav84FPhnwpPHFm0UUl9qFxYO_bN8ln3ZiZVULjjGyGd_tQgc1NQzBbR | pt_BR |
| dc.contributor.referee2 | Sousa, João Paulo Guardieiro | - |
| dc.contributor.referee2Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8465460H1&tokenCaptchar=03AFcWeA5E_u7flHv3t4jRovlZrY4piKWUqa2IrbZvLxDqYF6UgRtn0p5glnSShOaIgQ5C4ZcqVvbpdqOoxxjDKVbsZVasgUjZ_mpIQwcqGlCIcgEkb7PyzjxUcbgxkcZc2Mu1LL-9jpsXRHoKGuJy1wxXkZP5dCYvKPzmnV0CS66fMVKtBBQMuCy1Wl1zt-i5xgl17i3eKL2Xt32JZodG75IQfY6nx02-UvtduLGolMzPPULLn3d08xRZKExCKs3H8aXzM0kpfLvjtayaeAVOAHbIAcVvI_BOQnjF7WSv6eErDI0aKAuDDC7wnnRUzYcEVXosPCs_XCafhtdeZl8RG-BPTzPVQvTnMLnT78aynSCDsVUg9BME_n77vnthltOSF-jQDS1GfSqKbeohQz210QfFjM-OU3KFYzCPBS5ye5iZgbpP8_W3Lan0XzcBxpIvPepAiOTHSGAJyrxQXDIZC3b-orHkoNxLdq8fxke_0k6oCjNS-J47ILbnnMGQQEe-darPlrg0jUjo97caTp0x39DTBRH7w9VI493EfCXH8OU635vaDSTewBF8yi6eAMpmfmjfJ6G1dVyp_aW7Un-Q3rAiE0OvXuPal8UZS9Z0W6DokdIg95We0bqWs7s1etq3Q6skU3zKmxE_IBFqQaFfh7OIt4dQuq3CvYI4homoKHa221iTIRaHgUE8wEHXos7IsCskUxrRGEp0rnrgYgov5iTQtyQJtHN-sEy6e235aQEf30asD_8A_Ry-awGqDn2F8q1cI5Uk5QM7y_XX7SpVWJ-IWNsiMzn9ZsEPwF43mfFV_346D2tWG2oc3FFI3sWsVoSMypPs0wChPOY6H0b0Yh1fqrxKLTjguGvKX61Rk6lp4eF1yDOhA7woaRA48WWOolMQqghJI9b_HXn0T5W3P2eXMaW7w8Xsrma0MWR3L6ZEbMCU77DUjW2gx30FmHnlmz3pbacRNDz3RFGLEdhicjPmWXv-dmX1i4lzV2DNzZYrGFgd4_YxSuZXat8mcv_aXTOaV0kd1cqpH0-NRaqAcNPAhdHVCNKgs7yigB6M5MKMGDGV_o0tUmc | pt_BR |
| dc.creator.Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K1129809H1&tokenCaptchar=03AFcWeA5WTBderddNcbwyaTq427zzeJKSYiQEvd2ZChgBaplrfOo70EPl9zJv8GH7xsYAuh9NVyZ8-L7Hysb6MvQnpvhZPvYi6pwfD9rZaq2L6GO8NiJgYi7wZuDUPQCzkzisq_AmpT8BufR79BX8qRFBVNHzqkMN0Iv0C_gMUFP1DNM4SLDuuCzsfgBByb1RbKmmdoA14Qb7jrxVFkQJ8m_vLh9FOEvC-cSfE219IWU4sjHdZF3PL8nuIL51KSv2s5ptjKKWkin75QF8cGu5FoLiUKY8tPhioZfPlhjXQWeAHG66DOAoKmAM1Iu2hxsooMl8usBOxgCrHpngWfBV54Fn48IqNdJhll0s-JwSQeRB-n6iKsb0QejPFZgXFu2nCFUDjwvRNo8yv_pUufFmXUzyOGEfNP1oY_iA5kAIMP_FMa3Q-CiFBxEvwzFhCS75sJ60uoQTrFcFYgx-_qH8hkMP3K-24jRdsxDpCgI5Pie-XtqeywTCFU6nbny6eNJu0lfw3R4tG-5O9v_ajMdeu4rY4xD-I5NW8UOWOoFNNQSv7HJlCQFwxNo21l09kI5-XIA48F3XdxIzWGdydgYjjTM3TW7QnKG8tJ29zS1VWLiLdy5NNREHvV50vMdaq1FD_G24pup0VMKp41p-DoGy8O3MuB8eDEbW5ol9zMH1jBIKJ7EkcQXW-aSB0K_umGy5yXGrSjXDu3Y7-wOnoX-HSTZKJmxqx0rccmC_EJ6pOLojvQxgFJrqclxN-WodD6N1FrgCu8dcY8rgvtuX8WNfp-qos2x_UDmnugVSOYIGanTL4xymegy-ThSgG66_Z9TU99iuRI8ggxs_cb2wzeXILtUvnTAlUfmbqqRAkQorEBrgdICEs3C3EDEeGDbYAtxVyvqNW-8yzY6aBWAs8tLK6_OvBQ9l6Y0m2FEXaLXFnbH0bk2tULXuQGe_lwRaxy1f6vlecBfa7NR7DPuoX9m4olIjVFrNdXD--3NQhdyEhrawAVk6K0TTaY5cvnhW0LltilnJvH_Fmyf-nP1fAOg14m5Oi6UJaJHkc5HqZOZuCr7H_HX7Bbk2S9HIlrDGeWVXS-favqvgP831 | pt_BR |
| dc.description.degreename | Dissertação (Mestrado) | pt_BR |
| dc.description.resumo | Neste trabalho, estudamos tópicos da teoria de corpos finitos. Inicialmente, exploramos a estrutura de corpos finitos, abrangendo desde propriedades básicas até representações de seus elementos, como as polinomiais, ciclotômicas e matriciais. Em seguida, concentramonos no estudo de polinômios sobre corpos finitos, destacando os polinômios de ordem definida, vinculados à estrutura dos grupos multiplicativos; os polinômios primitivos; e os polinômios irredutíveis, fundamentais para fatoração e construção de extensões de corpos. Por fim, examinamos os q-polinômios, que generalizam estruturas polinomiais clássicas. | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.program | Programa de Pós-graduação em Matemática | pt_BR |
| dc.sizeorduration | 79 | pt_BR |
| dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA::GEOMETRIA ALGEBRICA | pt_BR |
| dc.identifier.doi | http://doi.org/10.14393/ufu.di.2025.446 | pt_BR |
| dc.orcid.putcode | 190674341 | - |
| dc.crossref.doibatchid | ee87d639-8c9d-4ec8-96d5-2ff155af2748 | - |
| dc.subject.autorizado | Matemática | pt_BR |
| dc.subject.autorizado | Polinômios | pt_BR |
| dc.subject.autorizado | Método dos elementos finitos | pt_BR |
| dc.subject.ods | ODS::ODS 4. Educação de qualidade - Assegurar a educação inclusiva, e equitativa e de qualidade, e promover oportunidades de aprendizagem ao longo da vida para todos. | pt_BR |
| Appears in Collections: | DISSERTAÇÃO - Matemática | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| IntroduçãoPolinômiosCorpos.pdf | Dissertação | 676.78 kB | Adobe PDF | ![]() View/Open |
This item is licensed under a Creative Commons License
