Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/44118
ORCID:  http://orcid.org/0009-0000-2873-4506
Document type: Trabalho de Conclusão de Curso
Access type: Acesso Aberto
Title: Análise de posts maliciosos na Dark Web usando aprendizado de máquina não supervisionado
Alternate title (s): Analysis of malicious posts on the Dark Web using unsupervised machine learning
Author: Reis, Anna Letycia Fernandes
First Advisor: Miani, Rodrigo Sanches
First member of the Committee: Gabriel, Paulo Henrique Ribeiro
Second member of the Committee: Travençolo, Bruno Augusto Nassif
Summary: Este trabalho apresenta uma análise de posts maliciosos extraídos de fóruns da Dark Web por meio de técnicas de aprendizado não supervisionado, com o objetivo de identificar as temáticas predominantes associadas a ameaças cibernéticas. Para isso, foi empregada uma metodologia baseada em algoritmos de agrupamento, como K-means, DBSCAN e KNN, além da aplicação da Análise de Tópicos Latentes (LDA) para identificar padrões temáticos latentes. Os resultados demonstraram que o algoritmo K-means se destacou ao estruturar os dados em três clusters principais, identificando temas predominantes como segurança de dados, busca por informações sensíveis e comunidades de hacking. Essa abordagem possibilitou a rotulagem e interpretação dos conteúdos com base nos padrões observados, contribuindo para a compreensão das táticas e intenções dos cibercriminosos. Como perspectivas futuras, sugere-se ampliar a base de dados para incluir ambientes como a Deep Web, Surface Web e redes sociais, além de incorporar algoritmos avançados de aprendizado profundo e ferramentas de monitoramento em tempo real, visando um aprimoramento contínuo na detecção e categorização de ameaças.
Abstract: This work presents an analysis of malicious posts extracted from Dark Web forums using unsupervised learning techniques, aiming to identify the predominant themes associated with cyber threats. A methodology was employed based on clustering algorithms, such as K-means, DBSCAN, and KNN, in addition to applying Latent Dirichlet Allocation (LDA) to identify latent thematic patterns. The results demonstrated that the K-means algorithm excelled in structuring the data into three main clusters, identifying predominant themes such as data security, search for sensitive information, and hacking communities. This approach enabled the labeling and interpretation of content based on observed patterns, contributing to the understanding of cybercriminals’ tactics and intentions. For future work, it is suggested to expand the dataset to include environments such as the Deep Web, Surface Web, and social networks, as well as to incorporate advanced deep learning algorithms and real-time monitoring tools, aiming for continuous improvement in threat detection and categorization.
Keywords: Dark Web, Aprendizado não supervisionado, K-means, LDA, Segurança cibernética, Análise de posts maliciosos
Dark Web, Unsupervised learning, K-means, LDA, Cybersecurity, Malicious post analysis.
Area (s) of CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Language: por
Country: Brasil
Publisher: Universidade Federal de Uberlândia
Quote: REIS, Anna Letycia Fernandes. Análise de posts maliciosos na Dark Web usando aprendizado de máquina não supervisionado. 2024. 44 f. Trabalho de Conclusão de Curso ( Graduação em Sistemas de Informação) – Universidade Federal de Uberlândia, Uberlândia, 2024.
URI: https://repositorio.ufu.br/handle/123456789/44118
Date of defense: 18-Nov-2024
Appears in Collections:TCC - Sistemas de Informação (Uberlândia)

Files in This Item:
File Description SizeFormat 
AnalisePostsMaliciosos.pdfTCC935.58 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.