Use este identificador para citar ou linkar para este item:
https://repositorio.ufu.br/handle/123456789/37762
ORCID: | http://orcid.org/0000-0003-3551-475X |
Tipo do documento: | Tese |
Tipo de acesso: | Acesso Embargado |
Título: | Readmissão hospitalar potencialmente evitável em população pediátrica : modelos de predição |
Título(s) alternativo(s): | Potentially avoidable hospital readmission in pediatric poulation: prediction models |
Autor(es): | Silva, Nayara Cristina da |
Primeiro orientador: | Pena, Geórgia das Graças |
Primeiro coorientador: | Backes, André Ricardo |
Segundo coorientador: | Albertini, Marcelo Keese |
Primeiro membro da banca: | Rios, Ricardo Araújo |
Segundo membro da banca: | Fernandes, Anita Maria da Rocha |
Terceiro membro da banca: | Bertarini, Pedro Luiz Lima |
Quarto membro da banca: | Vogt, Barbara Perez |
Resumo: | Introdução: Readmissões hospitalares potencialmente evitáveis (RHPE) são eventos complexos com impacto negativo tanto para o paciente como para o sistema de saúde. Na população pediátrica um episódio de readmissão pode ser ainda pior, podendo impactar no desenvolvimento da criança ou adolescente, afetando negativamente o desenvolvimento motor, cognitivo, emocional e psicossocial a curto, médio e principalmente em longo prazo. Assim, o desenvolvimento de modelos de predição, especialmente utilizando o aprendizado de máquina, tem sido promissor para minimizar este desfecho. Entretanto, ainda são escassos os estudos, especialmente os interpretáveis com potencial aplicação prática. Objetivos: Desenvolver modelos de predição de RHPE de 30 dias, para crianças e adolescentes, internados em hospital de nível terciário. Métodos: Foi realizada coorte retrospectiva com dados de todos pacientes pediátricos (0 a 18 anos) internados em hospital terciário entre janeiro 2014 a dezembro 2018 (n=9.080). Internações que resultaram em óbito, altas hospitalares contra orientação médica ou readmissões planejadas foram excluídas. Foram coletados dados demográficos, clínicos, nutricionais e exames bioquímicos. Para o primeiro manuscrito, estimou-se um modelo de predição baseado em um sistema de pontuação (escore HOSPITAL) e posteriormente, classificou-se os pacientes em grupos de baixo, intermediário e alto risco. No segundo manuscrito, utilizou-se o algoritmo J48 e aplicou validação cruzada leave-one-out para desenvolver árvores de decisão interpretáveis. Para o terceiro manuscrito, construiu-se modelos baseados em machine learning utilizando vários algoritmos: classification and regression tree - CART, random forest – RF, gradient boosting machine – GBM, extreme gradient boosting - XGBoost, decision tree - DT e logistic regression - LR. Para comparar o desempenho dos modelos, calculamos a áreas sob a curva (AUC, area under the receiver operating curve). Outras medidas de desempenho também foram consideradas, como sensibilidade, especificidade, índice de Youden e acurácia, quando pertinentes. Resultados: A frequência de RHPE em 30 dias variou de 9,5 a 11,70%. O escore HOSPITAL apresentou boa capacidade discriminatória (AUC 0,80 IC 95% 0,77-0,83) para RHPE em população pediátrica (Manuscrito 1). Para melhorar as estimativas utilizamos técnicas de machine learning, visando construir um modelo de predição, interpretável e de fácil aplicação na pratica clínica. A árvore de decisão (algoritmo J48, aplicada a 63,6% dos casos novos) demonstrou que alteração na proteína C reativa, de hemoglobina e de sódio e o não acompanhamento nutricional foram os atributos que contribuíram para a RHPE (Manuscrito 2). Por fim, o algoritmo XGBoost apresentou o melhor índice de Youden. Os preditores foram: diagnóstico de câncer, idade, níveis de hemácias, leucócitos, amplitude de distribuição dos glóbulos vermelhos e sódio, admissão eletiva e multimorbidade (Mansucrito 3). Conclusão: O escore HOSPITAL pode ser utilizado para população pediátrica, o XGBoost mostrou boa discriminação e, a árvore de decisão embora com menor potencial discriminatório para RHPE, identificou atributos importantes para a prática clínica, especialmente o não acompanhamento nutricional. Além disso, os três modelos de predição desenvolvidos oferecem vantagens uma vez que foram encontrados atributos clínicos que fazem parte da rotina de assistência, de fácil obtenção e baixo custo, permitindo a obtenção do resultado de probabilidade de readmissão em tempo real se implementada no sistema de internação hospitalar. Por fim, destacamos a importância de melhorar a qualidade e a especificidade dos registros de dados hospitalares, como por exemplo, os dados nutricionais para construir modelos de predição de readmissão hospitalar. |
Abstract: | Background: Potentially avoidable hospital readmissions (PAHR) are complex events with a negative impact on both the patient and the health system. In the pediatric population, a readmission episode can be even worse, and may impact the development of the child or adolescent, negatively affecting motor, cognitive, emotional and psychosocial development in the short, medium and especially long term. Thus, the development of prediction models, especially using machine learning, has been promising to minimize this outcome. However, studies are still scarce, especially those that can be interpreted with potencial practical application. Objective: To develop 30-day PAHR prediction models for children and adolescents admitted to a tertiary hospital. Methods: A retrospective cohort was performed with data from all pediatric patients (0 to 18 years old) admitted to a tertiary hospital between January 2014 and December 2018 (n: 9,080). Admissions that resulted in death, hospital discharges against medical advice or planned visits/readmissions were excluded. Demographic, clinical, nutritional and biochemical data were collected. For the first manuscript, a prediction model based on a scoring system (HOSPITAL score) was estimated and, subsequently, patients were classified into low, intermediate and high risk groups. In the second manuscript, we used the J48 algorithm and applied leave-one-out cross-validation to develop interpretable decision trees. For the third manuscript, models based on machine learning were built, several algorithms were investigated: classification and regression tree - CART, random forest – RF, gradient boosting machine – GBM, extreme gradient boosting - XGBoost, decision tree - DC e logistic regression - LR. To compare the performance of the models, we computed the area under the receiver operating curve (AUC). Other performance measures were also calculated, such as sensitivity, specificity, Youden’s J index and accuracy, when relevant. Results: The frequency of PAHR in 30 days ranged from 9.5 to 11.70%. The HOSPITAL score showed good discriminatory ability (AUC of 0.80 95% CI 0.77-0.83) for PAHR in a pediatric population (Manuscript 1). To improve the estimates, we used machine learning techniques, aiming to build a predictive model, interpretable and easy to apply in clinical practice. The decision tree (J48 algorithm, applied to 63.6% of new cases) showed that changes in C-reactive protein, hemoglobin and sodium levels and lack of nutritional monitoring were the attributes that contributed to PAHR (Manuscript 2). Finally, the XGBoost algorithm presented the best Youden’s J index. The predictors (XGBoost) were: cancer diagnosis, age, levels of red blood cells, leukocytes, red cell distribution width and sodium, elective admission and multimorbidity (Manuscript 3). Conclusion: The HOSPITAL score can be used for the pediatric population, the XGBoost showed good discrimination and the decision tree, although with less discriminatory potential for PAHR, identified important attributes for clinical practice, especially the lack of nutritional monitoring. Besides, the three prediction models developed offer advantages, since clinical attributes were found that are part of the care routine, easy to get and low cost, allowing to obtain the readmission probability result in real time if implemented in the admission system hospital. Finally, we highlight the importance of improving the quality and specificity of hospital data records, such as nutritional data, to build hospital readmission prediction models. |
Palavras-chave: | Aprendizado de Máquina Readmissão Hospitalar Regras de Predição Clínica Pediatria Fatores de Risco Machine Learning Hospital Readmission Clinical Decision Rules Pediatrics Risk factors |
Área(s) do CNPq: | CNPQ::CIENCIAS DA SAUDE |
Idioma: | por |
País: | Brasil |
Editora: | Universidade Federal de Uberlândia |
Programa: | Programa de Pós-graduação em Ciências da Saúde |
Referência: | SILVA, Nayara Cristina da. Readmissão hospitalar potencialmente evitável em população pediátrica : modelos de predição. 2023. 83f. Tese (Doutorado em Ciências da Saúde) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.8026 |
Identificador do documento: | http://doi.org/10.14393/ufu.te.2023.8026 |
URI: | https://repositorio.ufu.br/handle/123456789/37762 |
Data de defesa: | 24-Mar-2023 |
Aparece nas coleções: | TESE - Ciências da Saúde |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ReadmissãoHospitalarPotencialmente.pdf Até 2025-03-24 | Tese | 2.09 MB | Adobe PDF | Visualizar/Abrir Solictar uma cópia |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.