Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufu.br/handle/123456789/36369
ORCID: | http://orcid.org/0000-0001-5289-0840 |
Tipo de documento: | Tese |
Tipo de acceso: | Acesso Aberto |
Título: | Explainable artificial intelligence approaches for fault diagnosis in rotating machinery |
Título (s) alternativo (s): | Abordagens de inteligência artificial explicáveis para diagnóstico de falhas em máquinas rotativas |
Autor: | Brito, Lucas Costa |
Primer orientador: | Duarte, Marcus Antônio Viana |
Primer coorientador: | Susto, Gian Antonio |
Primer miembro de la banca: | Pederiva, Robson |
Segundo miembro de la banca: | Dedini, Kátia Lucchesi Cavalca |
Tercer miembro de la banca: | Lima, Antonio Marcos Gonçalves |
Cuarto miembro de la banca: | Guimarães, Guilmar |
Resumen: | Due to the growing interest for increasing productivity and cost reduction in industrial environment, new techniques for monitoring rotating machinery are emerging. Artificial Intelligence (AI) is one of the approaches that has been proposed to analyze the collected data (e.g., vibration signals) providing a diagnosis of the asset’s operating condition. Currently, several machine learning and deep learning-based modules have achieved excellent results in fault diagnosis. Nevertheless, to further increase user adoption and diffusion of such technologies, users and human experts must be provided with explanations and insights by the models. Another issue is related, in most cases, with the unavailability of labeled historical data that makes the use of supervised models unfeasible. To overcome these problems, this thesis proposes new methodologies for fault diagnosis in rotating machinery based on explainable artificial intelligence and vibration analysis. The possibility of reducing the number of monitored features is presented. A novel framework is proposed for automatic identification of relevant frequency bands in vibration signals, called Band Relevance Factor (BRF). Moreover, an unsupervised identification of the fault in rotating machinery through vibration analysis and unsupervised classification of the type of fault, based on the analysis of the features relevance is introduced. Finally, a new transfer learning classification approach based on a synthetic dataset, without the need to have signals of real fault conditions is developed, namely Fault Diagnosis using eXplainable AI (FaultD-XAI). The effectiveness of the proposed approaches is shown on different datasets containing mechanical faults in rotating machinery. |
Abstract: | Devido ao crescente interesse pelo aumento da produtividade e redução de custos no ambiente industrial, novas técnicas de monitoramento de máquinas rotativas estão surgindo. A Inteligência Artificial (IA) é uma das abordagens que tem sido proposta para analisar os dados coletados (por exemplo, sinais de vibração) fornecendo um diagnóstico da condição de operação do ativo. Atualmente, vários modelos baseados em aprendizado de máquina e aprendizado profundo têm alcançado excelentes resultados no diagnóstico de falhas. No entanto, para aumentar ainda mais a adoção e difusão de tais tecnologias, usuários e especialistas humanos devem receber explicações dos modelos. Outra questão está relacionada, na maioria dos casos, com a indisponibilidade de dados históricos rotulados que inviabilizam o uso de modelos supervisionados. Para superar esses problemas, esta tese propõe novas metodologias para diagnóstico de falhas em máquinas rotativas baseadas em inteligência artificial explicável e análise de vibração. A possibilidade de reduzir o número de parâmetros monitorados é apresentada. Uma nova estrutura é proposta para identificação automática de bandas de frequência relevantes em sinais de vibração, chamada de Fator de Relevância de Banda (BRF). Além disso, uma identificação não supervisionada da falha em máquinas rotativas através da análise de vibração e classificação não supervisionada do tipo de falha, com base na análise da relevância dos parâmetros é apresentada. Por fim, é desenvolvida uma nova abordagem de classificação baseado na transferência de aprendizado em um conjunto de dados sintético, sem a necessidade de ter sinais de condições reais de falha, denominada Detecção de Falhas usando Inteligência Artificial Explicável (FaultD-XAI). A eficácia das abordagens propostas é mostrada em diferentes conjuntos de dados contendo falhas mecânicas em máquinas rotativas. |
Palabras clave: | Explainable Artificial Intelligence Fault Diagnosis Rotating Machinery Predictive Maintenance Inteligência Artificial Explicável Diagnóstico de Falhas Máquinas Rotativas Manutenção Preditiva |
Área (s) del CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS::DINAMICA DOS CORPOS RIGIDOS, ELASTICOS E PLASTICOS CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROJETOS DE MAQUINAS::ESTATICA E DINAMICA APLICADA CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROJETOS DE MAQUINAS::MAQUINAS, MOTORES E EQUIPAMENTOS |
Tema: | Engenharia mecânica Inteligência artificial Falhas de sistemas de computação Máquinas automáticas |
Idioma: | eng |
País: | Brasil |
Editora: | Universidade Federal de Uberlândia |
Programa: | Programa de Pós-graduação em Engenharia Mecânica |
Cita: | BRITO, Lucas Costa. Explainable artificial intelligence approaches for fault diagnosis in rotating machinery. 2022. 177 f. Tese (Doutorado em Engenharia Mecânica) - Federal University of Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.557 |
Identificador del documento: | http://doi.org/10.14393/ufu.te.2022.557 |
URI: | https://repositorio.ufu.br/handle/123456789/36369 |
Fecha de defensa: | 21-oct-2022 |
Aparece en las colecciones: | TESE - Engenharia Mecânica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ExplainableArtificialIntelligence.pdf | Tese | 14.66 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons