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”Don’t find fault. Find a remedy”.

Henry Ford
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love and unique wisdom and to Dona Madá for always remembering the joy of living.

To my wife and her family for their love, attention and understanding whenever

necessary.

To all UFU colleagues and technicians for their contribution to the development

of this work.

To my friends for encouraging me to always pursue the goals set.

To Petrobras, CNPq (National Council for Scientific and Techno- logical

Development) and CAPES (Federal Agency for the Support and Improvement of Higher

Education) for financial support.



viii

Brito, L. C., Abordagens de Inteligência Artificial Explicáveis para Diagnóstico de Falhas
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RESUMO

Devido ao crescente interesse pelo aumento da produtividade e redução de custos no ambiente

industrial, novas técnicas de monitoramento de máquinas rotativas estão surgindo. A

Inteligência Artificial (IA) é uma das abordagens que tem sido proposta para analisar os

dados coletados (por exemplo, sinais de vibração) fornecendo um diagnóstico da condição

de operação do ativo. Atualmente, vários modelos baseados em aprendizado de máquina

e aprendizado profundo têm alcançado excelentes resultados no diagnóstico de falhas.

No entanto, para aumentar ainda mais a adoção e difusão de tais tecnologias, usuários

e especialistas humanos devem receber explicações dos modelos. Outra questão está

relacionada, na maioria dos casos, com a indisponibilidade de dados históricos rotulados

que inviabilizam o uso de modelos supervisionados. Para superar esses problemas, esta tese

propõe novas metodologias para diagnóstico de falhas em máquinas rotativas baseadas em

inteligência artificial explicável e análise de vibração. A possibilidade de reduzir o número de

parâmetros monitorados é apresentada. Uma nova estrutura é proposta para identificação

automática de bandas de frequência relevantes em sinais de vibração, chamada de Fator

de Relevância de Banda (BRF). Além disso, uma identificação não supervisionada da falha

em máquinas rotativas através da análise de vibração e classificação não supervisionada do

tipo de falha, com base na análise da relevância dos parâmetros é apresentada. Por fim, é

desenvolvida uma nova abordagem de classificação baseado na transferência de aprendizado

em um conjunto de dados sintético, sem a necessidade de ter sinais de condições reais de falha,

denominada Detecção de Falhas usando Inteligência Artificial Explicável (FaultD-XAI). A

eficácia das abordagens propostas é mostrada em diferentes conjuntos de dados contendo

falhas mecânicas em máquinas rotativas.

Palavras Chave: Inteligência Artificial Explicável, Diagnóstico de Falhas, Máquinas

Rotativas, Manutenção Preditiva.
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ABSTRACT

Due to the growing interest for increasing productivity and cost reduction in industrial

environment, new techniques for monitoring rotating machinery are emerging. Artificial

Intelligence (AI) is one of the approaches that has been proposed to analyze the collected data

(e.g., vibration signals) providing a diagnosis of the asset’s operating condition. Currently,

several machine learning and deep learning-based modules have achieved excellent results

in fault diagnosis. Nevertheless, to further increase user adoption and diffusion of such

technologies, users and human experts must be provided with explanations and insights

by the models. Another issue is related, in most cases, with the unavailability of labeled

historical data that makes the use of supervised models unfeasible. To overcome these

problems, this thesis proposes new methodologies for fault diagnosis in rotating machinery

based on explainable artificial intelligence and vibration analysis. The possibility of reducing

the number of monitored features is presented. A novel framework is proposed for automatic

identification of relevant frequency bands in vibration signals, called Band Relevance Factor

(BRF). Moreover, an unsupervised identification of the fault in rotating machinery through

vibration analysis and unsupervised classification of the type of fault, based on the analysis of

the features relevance is introduced. Finally, a new transfer learning classification approach

based on a synthetic dataset, without the need to have signals of real fault conditions is

developed, namely Fault Diagnosis using eXplainable AI (FaultD-XAI). The effectiveness

of the proposed approaches is shown on different datasets containing mechanical faults in

rotating machinery.

Keywords: Explainable Artificial Intelligence, Fault Diagnosis, Rotating Machinery,

Predictive Maintenance.
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CHAPTER I

INTRODUCTION

Rotating machinery is commonly used in mechanical systems and plays an

important role in industrial applications Lei et al. (2013). Among the various types

of rotating machinery, the following popular types are typically adopted in industrial

application: aeroengine, steam, gas and wind turbine, automobile transmission, drive trains,

fans, blowers, machine tools, compressors, motors, pumps, gearboxes and so on. Even though

the rotating machinery is diversified, it generally includes some common essential rotating

parts, such as rotors, rolling element bearings, and gears Lei (2017).

The rotor is the rotating part of the equipment and some common faults are: mass

unbalance, looseness, bent, misalignment, rub. A rolling element bearing is a component

that carries loads by placing rolling elements (such as balls or rollers) between two races.

Generally, the rolling bearing consists of four components: outer race, inner race, cage

and rolling elements which can suffer from different problems (improper mounting, poor

lubrication, entry of foreign matter). All of these problems can cause different bearing faults

including: flaking, spalling, peeling, abrasion, scoring, corrosion, pitting, crack, material

failure. A gear is a rotating machine part having cut teeth, which meshes with another

toothed part to transmit torque and motion. Geared devices can change the speed, torque,

and direction of a power source Lei (2017). There are a number of reasons for which a gear

may fail in mechanical systems: tooth wear, tooth load, gear eccentricity, backlash, gear

misalignment, broken or cracked teeth. Due to the complexity of the systems any fault of
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the rotating machinery can cause the complete failure of the system, and therefore must be

monitored.

Among the main monitoring techniques currently used, predictive maintenance

(PdM) stands out, which include: vibration, oil, thermography analysis, etc. Due to advances

in monitoring systems and methods for predicting remaining useful life (RUL), PdM has

increasingly become a focus of interest for professionals and researchers, Bousdekis et al.

(2018). In addition, since vibration analysis is one of the non-invasive techniques, which

presents the greatest amount of information about the monitored component, its use in

industry increases every day. It is important to note that, depending on the type of asset

being monitored, other predictive techniques are also commonly used to monitor: stator

current, stray fluxes, thermal image, oil, noise level, etc.

The study of artificial intelligence (AI) techniques applied in the monitoring of

rotating machinery is a topic in continuous development and of great interest by both

researchers and industrial engineers. More and more, industries are adopting sophisticated

technologies for monitoring to increase the reliability and availability of the machines, and,

consequently, remaining competitive in the globalized economy.

Recently, Lei et al. (2020) presented a broad review with more than 400 citations,

focused on AI applications for fault detection. The authors provide a historical overview,

current developments and future prospects. Among the revised Machine Learning (ML)

methods employed in the field, the authors recognized the following as the most commonly

adopted: ANNs, Decision Trees, kNN, Probabilistic Graphical Model and Support Vector

Machines (SVM). Moreover, the following Deep Learning (DL) approaches are taken

into consideration: Autoencoders, Convolutional Neural Networks, Deep Belief Network,

Residual Neural Networks. The authors also confirm the dependence on real and labeled

data from the machine under analysis. In addition to highlighting the recent and future

importance in the Intelligent Fault Diagnosis (IFD) scenario of explainable models, with

increasing interest starting from 2017. Finally, they mention that traditional ML models

should not be abandoned despite the recent advances of DL: this is because it is still worth

investigating statistical learning in IFD with the big data revolution, since the theories

of statistical learning have rigorous theoretical bases, which promote the construction of
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diagnostic models with parameters, characteristics and results that are easy to understand.

Another important topic in the monitoring of AI-based rotating machines is

dimensionality reduction. When using ML algorithms, usually relevant features are extracted

from the vibration signal to be used as inputs in the model. Although the extraction is

focused on features that are relevant for monitoring the equipment, due to the large number

of faults that may exist, many features can be generated, increasing the size of the dataset. To

deal with high dimensional datasets, feature selection and dimensionality reduction is often

performed as a pre-processing step to achieve efficient storage of the data and robustness of

AI algorithms Zocco et al. (2021).

As detailed by Liu et al. (2018) there are three basic tasks of fault diagnosis:

(1) determining whether the equipment is normal or not (Anomaly Detection); (2) finding

the incipient fault and its reason (Fault Classification); (3) predicting the trend of fault

development (Fault Prognosis). It is clear that when determining the type of fault and its

reason (task 2), consequently the answer on the condition of the equipment is obtained (task

1). However, the AI models usually used to classify the type of fault require to be trained

with labeled data (supervised training), and examples for all conditions, which in most of

the cases is not available in the industry Carletti et al. (2019). In addition, motivated by

the recent advances in Deep Learning (DL), the vast majority of AI technologies lack of

explainability traits and they require a large volume of data labeled for both normal and

fault conditions, dramatically limiting their industry application.

An important aspect in the field that has not been fully explored yet is the one

related to interpretability of AI-based monitoring solutions in rotating machinery: as argued

above, without providing explainable results to the user, even when AI- based modules

provide excellent results in historical data, AI models are unlikely to be applied in real-world

scenarios Molnar (2020). Moreover, as mentioned by Lei et al. (2020), collecting labeled

data from machines generates a high cost, and consequently unlabeled data is the majority

in engineering scenarios.

Recently studies are being developed with a focus on Explainable Artificial

Intelligence (XAI). In order to explain black-box models, different methods can be used

according to the AI model in use Du et al. (2019). In general, the methods provide
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information to understand how the model performs fault detection, which can be, for

example, a ranking of the most important features, the model weight relevance or the most

significant points in the underlying signals Doshi-Velez and Kim (2017). Despite the current

interest, the vast majority of studies are focused on explainability for DL models and mostly

on fault classification. More information can be found in the articles available on the topic

Lei et al. (2016); Zhang et al. (2017); Jia et al. (2018); Li, Zhao, Sun, Cheng, Chen, Yan and

Gao (2019); Abid et al. (2020); Li, Zhang and Ding (2019); Chen and Lee (2020); Grezmak

et al. (2019, 2020); Saeki et al. (2019).

Therefore, to overcome the limitations presented, the work proposes the

development and study of methodologies for monitoring rotating machinery based on

explainable artificial intelligence and vibration analysis.

1.1 Objectives

The main goal of this work is to present new methodologies for monitoring

rotating machinery based on explainable artificial intelligence and vibration analysis, and

consequently enable engineering applications.

The other objectives are:

i) a comparison of different features extracted from the vibration signal and

dimensionality reduction techniques, in the unsupervised detection of faults in rotating

machinery (anomaly detection);

ii) a novel framework for automatic identification of relevant frequency bands in

vibration signals, called Band Relevance Factor (BRF);

iii) unsupervised identification of the fault in rotating machinery through vibration

analysis and unsupervised classification of the type of fault in rotating machinery, based on

the analysis of the features relevance;

iv) a new explainable transfer learning classification approach based on a synthetic

dataset, without the need to have signals of real fault conditions, namely FaultD-XAI (Fault

Diagnosis using eXplainable AI);

In addition to the highlighted objectives, a new dataset was created and will be
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publicly available, simulating real situations, to study the defects: unbalance, mechanical

looseness and misalignment.

1.2 Thesis structure

The work is divided into six chapters. Although all studies are directly related to

the monitoring of rotating machinery using artificial intelligence, each methodology involves

a specific area of the theme, and therefore, they were divided into separate chapters.

Thus, each chapter is composed of a specific introduction to the topic and theoretical

foundation. Subsequently, the experimental procedure is presented. The analyzes and results

are discussed, and finally, a specific conclusion is presented.

In Chapter I, the general introduction on the thesis theme and its objectives is

presented, placing the study in the context of current research. The development of the

work is presented in Chapters II to VI. Chapter II addresses the problem of relevance

and excess of features in the analysis and the possibility of working with dimensionality

reduction techniques (objective - i). Chapter III presents a new automatic methodology

(Band Relevance Factor - BRF) to determine the most relevant frequency bands in the

signal, contributing to the extraction of features and explainability when used in AI models

(objective - ii). In Chapter IV a new contribution to the unsupervised identification of the

fault in rotating machinery through vibration analysis and unsupervised classification of the

type of fault in rotating machinery, based on the analysis of the features relevance (XAI)

is presented (objective - iii). Aiming to solve the lack of real and labeled data to train

AI models, in addition to the lack of interpretability of the results, Chapter V presents a

new transfer learning classification approach based on a synthetic dataset (objective - iv),

without the need to have signals of real fault conditions (Fault Diagnosis using eXplainable AI

- FaultD-XAI). Finally, the main conclusions and suggestions for future work are presented

in Chapter VI.



CHAPTER II

FAULT DETECTION OF BEARING: AN UNSUPERVISED MACHINE LEARNING

APPROACH EXPLOITING FEATURE EXTRACTION AND DIMENSIONALITY

REDUCTION

The monitoring of rotating machinery is an essential activity for asset management

today. Due to the large amount of monitored equipment, analyzing all the collected signals /

features becomes an arduous task, leading the specialist to rely often on general alarms, which

in turn can compromise the accuracy of the diagnosis. In order to make monitoring more

intelligent, several machine learning techniques have been proposed to reduce the dimension

of the input data and also to analyze it. This chapter, therefore, aims to compare the use

of vibration features extracted based on machine learning models, expert domain, and other

signal processing approaches for identifying bearing faults (anomalies) using machine learning

(ML)—in addition to verifying the possibility of reducing the number of monitored features,

and consequently the behavior of the model when working with reduced dimensionality

of the input data. As vibration analysis is one of the predictive techniques that present

better results in the monitoring of rotating machinery, vibration signals from an experimental

bearing dataset were used. The proposed features were used as input to an unsupervised

anomaly detection model (Isolation Forest) to identify bearing fault. Through the study, it

is possible to verify how the ML model behaves in view of the different possibilities of input

features used, and their influences on the final result in addition to the possibility of reducing

the number of features that are usually monitored by reducing the dimension. In addition
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to increasing the accuracy of the model when extracting correct features for the application

under study, the reduction in dimensionality allows the specialist to monitor in a compact

way the various features collected on the equipment.

2.1 Introduction

Rotating machinery plays an important role in industrial applications Lei et al.

(2013). Among the various types of essential rotating parts, rolling element bearings are

considered one of the most important. Among the main monitoring techniques currently

used, predictive maintenance (PdM) stands out, which include: vibration, oil, thermography

analysis, etc. Due to advances in monitoring systems and methods for predicting remaining

useful life (RUL), PdM has increasingly become a focus of interest for professionals and

researchers Bousdekis et al. (2018). In addition, since vibration analysis is one of the non-

invasive techniques, which presents the greatest amount of information about the monitored

component, its use in industry increases every day. It is important to note that, depending

on the type of asset being monitored, other predictive techniques are also commonly used to

monitor: stator current, stray fluxes, thermal image, oil, noise level, etc.

With the reduction in the cost of hardware, more and more sensors are being

implemented in the industrial field, considerably increasing the amount of collected signals.

Such signals must be analyzed by specialists in order to identify possible faults in the

components, so that the planned corrective maintenance can be carried out. However, due

to the large amount of generated signals, there are not always enough specialists to analyze

all the signals or sufficiently reliable alarm techniques to make the analysis automatic.

Thus, several strategies using artificial intelligence have been studied. Among them, the

unsupervised fault detection, also called anomaly detection, stands out. Although the field

of rotating machinery monitoring is widely developed, a small number of unsupervised

approaches have been presented, in relation to the vast majority focused on supervised

classification and prognostics, as shown in the review works Liu et al. (2018); Stetco

et al. (2019). Anomaly detection consists of identifying unexpected events that vary greatly

from normal events, as they usually present different characteristic patterns.The ability to
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work unsupervised makes it possible to overcome the problem of obtaining labels in real

applications.

When using ML algorithms, usually relevant features are extracted from the

vibration signal to be used as inputs in the model. Although the extraction is focused

on features that are relevant for monitoring the equipment, due to the large number of faults

that may exist, many features can be generated, increasing the size of the dataset. To deal

with high dimensional datasets, unsupervised dimensionality reduction is often performed as

a pre-processing step to achieve efficient storage of the data and robustness of ML algorithms

Zocco et al. (2021).

Dimensionality reduction is an important tool in the use of ML algorithms, which

can help to avoid some common problems, such as: (i) Curse of dimensionality: due to the

high number of features in relation to the sample, the algorithm tends to suffer overfitting,

fitting very well to the training data, but showing a high error rate in the test group.

(ii) Occam’s Razor: to be used in real applications, the models are intended to be simple

and explainable. The greater the number of features present, the greater the difficulty in

explaining the model under development. Consequently, real applications become unfeasible.

(iii) Garbage In Garbage Out: when using features that do not present significant information

for the model, the final result obtained will be lower than desired. In other words, low quality

inputs produce bad outputs. To overcome these problems, it is essential to perform feature

selection and dimensionality reduction in the dataset.

Therefore, this chapter aims to present a comparison of different features extracted

from the vibration signal and dimensionality reduction techniques, in the unsupervised

detection of faults in rotating machinery (anomaly detection). In addition to the main

objective, different features for monitoring bearing faults are proposed. The proposed

methodology has the great advantages over traditional methods of anomaly detection,

allowing to work with a reduced number of features, which results in: (i) possibility of

follow-up of features by specialists—assists in data visualization (given that some assets can

present more than 100 features acquired in real time, which makes detailed monitoring of all

impracticable); (ii) avoid introducing irrelevant or correlated features in machine learning

models, which would result in a loss of learning quality and, consequently, a reduction in the
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success rate; (iii) reduced data storage space; and (iv) less computational time for training

the models.

The remainder of this chapter starts with a brief explanation about feature

extraction, dimensionality reduction, anomaly detection Section 2.2, and the methodology is

presented in Section 2.3. Results and discussion are shown in Section 2.5. Finally, Section 2.6

concludes this chapter.

2.2 Background

2.2.1 Feature Extraction

Monitoring rotating machines has a great advantage over other research fields,

which is prior knowledge of the behavior and characteristics of the vast majority of machine

failures. Such knowledge allows the application of ML models, and, therefore, it was decided

to work with ’classic’ ML techniques, exploring the wide knowledge of filtering approaches

and features definitions provided by the literature.

Monitoring through the vibration signal is one of the non-invasive techniques that

provide the greatest amount of information about the dynamic behavior of the asset, and, for

this reason, it is of growing interest Ciabattoni et al. (2018); Wei et al. (2019). In addition to

vibration, other techniques and physical variables can be measured for monitoring. Despite

this, the vibration analysis technique stands out, among other reasons, because: (i) it does

not need to stop the asset to perform the measurement; (ii) easy placement of the sensor for

data acquisition (in the most common case of accelerometers); (iii) widespread knowledge

about the characteristics of faults; (iv) fast acquisition time (in most cases), enabling the

monitoring of a greater amount of assets; and (v) it provides information about mechanical,

electrical, and even structural conditions.

As shown in Brito et al. (2022), the features to detect faults in rotating machinery

using vibration signals are commonly extracted from:

(i) Time domain: mean, standard deviation, rms (root mean square), peak value, peak-to-

peak value, shape indicator, skewness, kurtosis, crest factor, clearance indicator, etc.

(ii) Frequency domain: mean frequency, central frequency, energy in frequency bands, etc.
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(iii) Time-frequency domain: entropy are usually extracted by Wavelet Transform, Wavelet

Packet Transform, and empirical model decomposition.

2.2.2 Dimensionality Reduction

The higher the number of features, the harder it gets to visualize the training

set and then work on it. Sometimes, many of these features are correlated or redundant.

Because of this, a fundamental tool for ML applications is dimensionality reduction.

Dimensionality reduction can be done in two main ways: (i) keeping only the most

relevant features from the original dataset (generally called feature selection); and (ii)

reducing the original dataset into a new one through analysis/combinations of the input

variables, where the new dataset contains basically the same information as the original

(generally called dimensionality reduction). Different techniques can be used to reduce the

dimensionality of the data obtained, such as: Principal Component Analysis (PCA), t-

distributed Stochastic Neighbor Embedding (t-SNE), Isometric Feature Mapping (ISOMAP),

Independent Component Analysis (ICA), and Neural Network Autoencoder (AE). In general,

the objective is to reduce the number of features by creating new representative ones and

thus discarding the originals. The new set, therefore, should be able to summarize most of

the information contained in the original set of features.

The advantages are: (i) reduced data storage space; (ii) less computational time for

training the models; (iii) better performance in some algorithms that do not work well in high

dimensions; (iv) reduction of correlated variables; and (v) assistance with data visualization.

On the other hand, some disadvantages can be mentioned, such as: (i) loss of explainability

of the features (when space transformation occurs) and (ii) lack of representativeness of the

problem under analysis.

PCA Jolliffe (1986) is a linear transformation that seeks to find the low-dimensional

subspace within the data that maximally preserve the covariance up to rotation. This

maximum covariance subspace encapsulates the directions along which the data vary the

most. Therefore, projecting the data onto this subspace can be thought of as projecting the

data onto the subspace that retains the most information Strange and Zwiggelaar (2014).

ISOMAP measures the inter-point manifold distances by approximating geodesics
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(rather than Euclidean distance as in Multidimensional scaling—MDS) Tenenbaum et al.

(2000). Geodesic distance is the shortest distance between two points on a curve. The

use of manifold distances can often lead to a more accurate and robust measure of distances

between points so that points that are far away according to manifold distances, as measured

in the high-dimensional space, are mapped as far away in the low-dimensional space Strange

and Zwiggelaar (2014).

t-SNE computes the probability that pairs of data points in the high-dimensional

space are related and then chooses a low-dimensional embedding which produce a

similar distribution VanDerMaaten and Hinton (2008). It minimizes the Kullback–Leibler

divergence between the two distributions with respect to the locations of the points in the

map.

ICA is based on information-theory which transforms a set of vectors into a

maximally independent set Jutten and Hérault (1991). It assumes that each sample of data

are a mixture of independent components, and it aims to find these independent components.

It is based on three main assumptions: (i) Mixing process is linear; (ii) All source signals are

independent of each other; and (iii) All source signals have non-Gaussian distribution. The

major difference between PCA and ICA is that PCA looks for uncorrelated factors while

ICA looks for independent factors. At each step, ICA changes the basis vector (projection

directions) and measures the non-Gaussianity of the obtained sources and at each step it

takes the basis vectors more towards non-Gaussianity. After some stopping criteria, it reaches

an estimation of the original independent sources. ICA extracts hidden factors within data

by transforming a set of variables to a new set that is maximally independent and, typically,

it is not used for reducing dimensionality but for separating superimposed signals.

Finally, the idea of autoencoders has been part of the historical landscape of neural

networks for decades Goodfellow et al. (2016). Autoencoders are a type of artificial neural

network that aims to copy their inputs to their outputs. They compress the input into a

latent-space representation, and then reconstruct the output from this representation. The

output from the bottleneck is used directly as the reduced dimensionality of the input.
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2.2.3 Anomaly Detection (AD) and Isolation Forest (IF)

Anomaly detection (also known as outlier detection (The terms ‘Anomaly’ and

‘Outlier’ will be treated in the same way in this work)) refers to the task of identifying rare

observations which differ from the general (’normal’) distribution of a data at hand Zhao,

Nasrullah and Li (2019). In other words, they are samples that have values so different from

other observations that they are capable of raising suspicions about the mechanism from

which they were generated Hawkins (1980). An important parameter of anomaly detection

approaches is the ability to summarize a multivariate system in just one indicator, called

Anomaly Score (AS) (Other authors refer to the concept of Anomaly Score with various

names like for example Health Factor or Deviance Index). While only one study, to the

best of our knowledge, has been presented in the field of rotating machinery monitoring

using vibration data and state-of-art models Brito et al. (2022), AD approaches have been

successfully applied in various areas like fraud detection and oil and gas Barbariol et al.

(2020).

Isolation Forest (iForest or IF) is probably the most popular AD approach. It works

well in high-dimensional problems that have a large number of irrelevant attributes, and in

situations where a training set does not contain any anomalies. Given its high performance

and the possibility to parallelize its computation (thanks to its ensemble structure), it was

selected for the study. IF Liu et al. (2008) uses the concept of isolation instead of measuring

distance or density to detect anomalies. The IF exploits a space partitioning procedure: the

main idea underlying the approach is that an outlier will require less iterations than an inlier

to be isolated. At the end of the partition procedure, an anomaly score is generated. If it is

very close to 1, then they are tagged as anomalies; on the other hand, values much smaller

than 0.5 are quite safe to classify the normal instances, and if values are close to 0.5, then

the entire sample does not really have any distinct anomaly Liu et al. (2008). The complete

flowchart exemplifying the steps presented above is shown in Figure 2.1.
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Figure 2.1: Flowchart of the anomaly detection method.

2.3 Proposed approach

The proposed methodology is divided into five main parts: (1) Data Acquisition;

(2) Feature Extraction; (3) Dimensionality Reduction; (4) Fault detection: Anomaly

Detection; and (5) Feature Trend Analysis, Figure 4.1. The data are acquired. The

vibration features are initially extracted based on the type of monitored component. The

dimensionality of each extracted feature and the raw signal is reduced. The features are

divided into a training and testing group, and the hyperparameters of the anomaly detection

models are tuned. The samples are evaluated using the original and reduced features in the

fault detection part. Finally, a feature trend analysis is performed.

Figure 2.2: General framework of the proposed methodology.



34

2.3.1 Data Acquisition and Feature Extraction

Accelerometers were used to collect the vibration signal. The 22 features were

carefully extracted from the vibration signal for the bearing analysis, taking into account

the authors’ experience and the most relevant features in the literature on the subject

Bolón Canedo et al. (2013); Zhang et al. (2011, 2018); Lei and Zuo (2009); Li, Yang, Li, Xu

and Huang (2017); Singh and Shaik (2019), as they are typical choices in signal processing.

The selected features are shown in Table 2.1. Three energy features were calculated in the

frequency bands of 10–1000 hz, 1000–4000 hz, and 4000–10,000 hz, and nine wavelet sub

bands were extracted for entropy calculation.

Table 2.1 – Features extracted from the vibration signal
Features Description Features Description

Absolute Energy

∫

|x(t)|2dt Root Mean Square (rms)

√

√

√

√

1

N

N
∑

i=1

x2
i

Kurtosis
1
N

∑N

i=1(xi − x̄)4

( 1
N

∑N

i=1(xi − x̄)2)2
Skewness

1
N

∑N

i=1(xi − x̄)3

( 1
N

∑N

i=1(xi − x̄)2)
3
2

Global value from envelope analysis peak-to-peak max(xe)−min(xe) Crest Factor max(|x|)/rms

Principal Frequency max(xfi) Wavelet sub band entropy −
N
∑

i=1

pi ∗ log(pi)

Ball Pass Frequency Outer (BPFI) r/min
Nb

2
(1 +

Bd

Pd

cos(β)) Ball Pass Frequency Inner (BPFO) r/min
Nb

2
(1−

Bd

Pd

cos(β))

Ball Spin Frequency (BSF) r/min
Pd

Bd

[(1−
Bd

Pd

cos(β))2]

Where a sampled vibration signal in time domain is defined as x = x1, x2,. . . ,xN, in

frequency domain xf = xf1, xf2,. . . , xfN and after the envelop analysis xe = xe1, xe2,. . . ,xeN. pi

is the probability that each sub band in wavelet transform will be in state i from N possible

states, xfilt is the filtered signal in the specific band, r/min is the rotation speed, D1 bearing

outer diameter and D2 bearing inner diameter, Nb the number of ball, Pd = (D1+D2)/2 and

β the contact angle.

In case of bearing analysis, specific features are those that indicate the type of fault

(BPFI, BPFO, and BSF) and the remaining features are those that indicate the presence of

a defect. The bearing fault frequencies are important to assess the type of defect and confirm

its existence, which is not always noticed by other features. It is also important mentioning

that there are cases where the fault does not present the classic defect behavior with the

deterministic bearing frequencies in evidence Smith and Randall (2015), which makes it

important to use other features. Knowing that bearing faults are generally associated with
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impacts, kurtosis is a relevant feature for the study. Impacts generally excite high frequencies,

and with the evolution of the fault, new frequencies tend to appear in other bands, which

can be noticed in the energy per sub band and in the wavelet frequency sub bands. The

principal frequency can vary with the appearance of the defect, stabilizing and suffering

changing with the fault evolution due to the random behavior caused by the excessive wear.

Crest factor tends to increase as the amplitude of high frequency impacts in the bearing

increase compared to the amplitude of overall broadband vibration. Skewness will provide

information on how the signal is symmetrical with respect to its mean value. Finally, the rms

value, global value from envelope analysis, and absolute energy represent the global behavior

of the system, indicating a general degradation and accentuation of the defect Brito et al.

(2022).

2.3.2 Dimensionality Reduction, Fault Detection, and Feature Trend Analysis

To perform the dimensionality reduction, different methods were used, namely:

PCA, t-SNE, ISOMAP, ICA, and AE. Dimension reduction can be performed in different

ways, which will consequently impact the final result. Firstly, the dimension of the features

extracted from the raw signal was reduced. Furthermore, the dimension of the raw signal

was also reduced, in order to verify the possibility of using the reduced signal directly in the

ML model. Dimensionality reduction here is taken as a proxy to assess the goodness of the

feature’s importance and also the possibility of reducing the large number of features that

are usually monitored.

Fault detection (AD) was performed using the ML model Isolation Forest. The

following were used as inputs in the model: all original features extracted from the vibration

signal, original features extracted from the vibration signal and manually selected, features

extracted from the vibration signal with reduced dimension, and raw vibration signal with

reduced dimension. The features used were plotted in the form of a trend in order to visually

verify their respective values and possible deviations from the curve’s behavior, helping the

specialist to visualize the anomaly. Furthermore, through this analysis, it is possible to verify

features that are more relevant to the problem under study.
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2.4 Experimental Procedure

Since bearing is one of the most important components in rotating machinery,

a bearing dataset (a benchmark for failure prediction in industry 4.0 Diallo et al. (2021))

was chosen for the study. The dataset considered publicly is provided by the University of

Cincinnati Center for Intelligent Maintenance Systems (available in Lee et al. (2007) and

described in Qiu et al. (2006)), namely Bearing Dataset, is composed by three run-to-failure

tests with four bearings in each test and no labels are available. All four bearings were force

lubricated. A PCB 353B33 High Sensitivity Quartz ICPs Accelerometer was installed on

each bearing housing. To assess the efficiency of the AD model, the data were manually

labeled. For the study, bearing 01 of test 02 was used. Due to the proximity of the other

bearings, at the end of the test the fault was verified by visual analysis, and confirmed

by envelope analysis. The bearing used was a Rexnord ZA-2115, and the speed was kept

constant at 2000 r/min. The shaft was driven by an AC motor and coupled by rub belts

and a radial load was added to the shaft through a spring mechanism. All failures occurred

after exceeding the projected bearing life, which is more than 100 million revolutions. The

vibration signals consist of 20,480 points with the sampling rate set at 20 kHz. Vibration data

were collected every 20 minutes by a National Instruments DAQCard-6062E data acquisition

card. Four thermocouple sensors were placed on the outer race of the bearings to monitoring

temperature due to lubrication purposes Qiu et al. (2006). The experimental apparatus

(bearing test rig) is shown in Figure 2.3.

Figure 2.3: Experimental Apparatus (Bearing Test Ring) adapted from Qiu et al. (2006).
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2.4.1 Tests and Analysis Approaches

Four tests were performed to evaluate the extracted features and the dimensionality

reduction, as follows: (i) Anomaly detection using all features extracted from the raw signal;

(ii) Anomaly detection using features selected manually from those extracted in test (i); (iii)

Anomaly detection using the sets obtained by reducing the dimensionality of the features

extracted in test (i); and (iv) Anomaly detection using the raw signal with reduced dimension

through the PCA method.

For the fault detection using the Isolation Forest model, a dynamic condition was

considered with the data collected in sequence, where a temporal relationship and fault

evolution are presented. For the study, a sliding window was used, where the training

group was updated with each new sample, in case it was considered normal. Twenty-five

samples were initially used for the training group and, after each iteration, if the sample

was considered normal, it was added to the training group, in order to ensure stability in

the model. This approach was used in order to minimize as much as possible the amount of

initial samples needed for the method to work, also ensuring its stability. For this situation,

as the model was started together with the machine under normal conditions (e.g., after

maintenance or a new machine), there are no anomalies in the training group. It is worth

noting that this approach can also be used if there are anomalies in the training group (e.g.,

cases of continuous monitoring where the machine was repaired after a fault, and it is desired

to use all the signals to increase the amount of data in the model).

2.4.2 Hyperparameter Tuning and Evaluation Metrics

The hyperparameters for the Isolation Forest model were adjusted based on the

training group to obtain the best performance (100 estimator and 128 the maximum number

of samples). A cross-validation procedure was applied, using a Leave P Out (LPO) approach

for the dynamic condition, where 5% of the training samples were removed in each new

update of the training group. The hyperparameters are presented in relation to the library

used Zhao, Nasrullah and Li (2019).

As for the dimensionality reduction methods, two main components were used.

The choice was to guarantee the possibility of data visualization, based on the PCA technique
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through temporal signal analysis, it is necessary to use other signal processing techniques

such as envelope analysis, Figure 2.5. The use of the technique makes it possible to filter

out other excitations that can hide the evidence of fault frequencies in bearings due to their

low amplitude. This is also another factor that makes necessary to use relevant features in

ML models. Figure 2.5 shows the moment of the beginning of the incipient fault indicated

by the presence of fault frequencies (BPFO). Therefore, based on the analysis of the 984

observations, 531 were labeled as normal and 453 as anomalies (fault).

Figure 2.5: Waterfall envelope spectrum of the signals in normal operating condition
(528,529,530) and after the beginning of the incipient fault (531) with the arrows at the
characteristic frequencies of fault of the outer race in the bearing under analysis.

2.5.2 Fault Detection: Anomaly Detection

Using the proposed methodology, the F1-Score results with the respective standard

deviation (in percentage) obtained for the fault detection are presented in Figure 2.6.

Among all the sets of proposed features, the set with features manually selected

based on the type of fault under study was the one with the best result (test ii). This is

due to the fact that the selected features were carefully chosen to present a high correlation

with the fault, being extremely relevant for the detection of anomaly (e.g., BPFO which is

exclusive for the type of fault present). The fact that the set has a small dimension also

contributes to the result. As it is the test that showed the best result, its confusion matrix

in percentage and the respective standard deviations are presented as: TN (True Negative)

= 52.78 (0.06), TP (True Positive) = 45.43 (0.56), FN (False Negative) = 1.74 (0.56), and
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FP (False Positive) = 0.08 (0.06)%. Analyzing the confusion matrix, it is possible to observe

that there is a small amount of false negatives, which means that the method is able to

identify all faults/anomalies, thus avoiding future breakdown. Another important point

to be highlighted is that the errors happened at the beginning of the fault, and, with its

progression, they no longer exist. Such phenomenon can occur even with human specialists

due to the difficulty in detection of incipient faults. However, with the progression of the

fault, it is possible to correctly identify and avoid a breakdown of the equipment.

Figure 2.6: F1-Score and standard deviation (in percentage) obtained for the fault detection.

It is possible to notice that, when using all the extracted features (test i), the

fault detection method presents a result inferior to the best obtained, and a larger standard

deviation. Using all extracted features, features that were not relevant to the fault under

study were intruded, resulting in information that tends to ’confuse’ the model, and therefore

reducing its assertiveness. Furthermore, a greater number of features tends to introduce bias

and variance in the system, increasing the standard deviation of the results, and consequently

reducing their robustness. The dimensionality reduction methods (test iii) showed good

results, close to the set of manually selected features, mainly: PCA, t-SNE, and ICA. The

result shows that the methods were able to reduce the size of the data in a representative way.

In addition, it is also possible to use the methods for similar situations where there are several

features to be monitored, and the analysis of it all is impracticable. Thus, it is possible to
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proceed with the dimensionality reduction and follow only the obtained main components.

If there is any detected variation, all available features should be analyzed. It is noteworthy

that, despite being extremely useful tools for monitoring rotating machinery and artificial

intelligence applications, when performing the domain transformation, the explainability of

these features is lost, which can be harmful for real applications.

2.5.3 Trend Analysis: Extracted Features

Analyzing Figure 2.7, it can be noticed that the features present different behaviors

in relation to the analyzed signals. Ideally, a variation of the features is expected in sample

number 531, when it is possible to notice the appearance of fault frequencies through the

envelope analysis, which in turn is a good tool to detect incipient defects in bearings.

As expected, Figure 2.7, frequency range, and wavelet features are good indicators

to monitor bearing RUL (except for low frequency bands/wavelet, due to the fault type),

following the concept of the four stages of life. In general, for bearing faults, initially,

excitation at very high frequency (>aprox.20khz) is possible to be detected by specific

techniques such as: acoustic emission—followed by the second stage with high frequency

(>approx.1–2khz), capable of being detected by envelope analysis, for example. In the third

stage, there is an increase in the amplitudes related to the fault frequencies, which can be

seen in the acceleration and velocity spectrum. Finally, where the failure is imminent, the

spectrum floor is raised, and the spectrum does not have the harmonics, but the noise floor

is considerably higher, and very high frequency vibration may trend downwards (smoothing

of metal reduces sharp impacts).

As features conventionally used to detect failures in rotating machines were

extracted in general, not all parameters show indication of the defect since its incipient

phase, as can be seen in Figure 2.8 for the BPFO, which is the type of fault present in

the bearing. Thus, as expected, this parameter is able to characterize the failure from its

incipient stage.

The features were extracted to cover different types of failures in rotating

machinery; therefore, not all of them present an indication of the defect since its incipient

stage. On the other hand, specific features for fault identification, as can be seen in Figure 2.8
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Figure 2.7: Trend analysis and behavior of extracted features during testing.

for BPFO, were able to characterize the fault since its incipient stage.

Features such as absolute energy, kurtosis, skewness, rms, and global value from

envelope analysis pk-pk can be characterized as relevant for identifying the fault under study,

given the variation in the trend with respect to fault progression. The crest factor and other

characteristic frequencies of bearing failures (BPFI and BSF) presented variations but less

significant in relation to the others. Crest factor showed a noisy variation. BPFI and BSF,

for not showing correlation with bearing fault, showed significant variation only towards

the end of life. The principal frequency feature presented variations, mainly after the fault

aggravation, which can be explained by the increase in the noise floor, and consequently

variations in the main frequencies for each sample due to its random behavior.
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Figure 2.8: Zoom of BPFO features.

2.5.4 Trend Analysis: Extracted Features with Reduced Dimension

The results obtained for each method (PCA—97.45%, t-SNE—96.67%,

ISOMAP—87.14%, ICA—97.39 % and AE—81.32%) can be compared with the behavior

of its principal components, Figure 2.9. With the best result among the dimensionality

reduction techniques studied, PCA presents significant variations in the first principal

component in the anomaly region, and a slight inclination from sample 531 that can be

observed by zooming in on the second principal component. This inclination is responsible

for helping the Isolation Forest to identify the incipient fault, considering that it is not

present in the first main component. The same behavior for the principal components can

be noticed in the ICA method.

Figure 2.9: Reduced dimensionality of extracted features using different methods.

t-SNE showed a slope in the trend for the two principal components since the
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incipient fault, resulting in a high hit rate, despite the noisy behavior in the first component.

Similar to t-SNE, AE showed great variation where the samples were in a normal state, and

it was not able to identify incipient faults which justify the lower result. The same problem

occurred using ISOMAP, which was not able to identify the incipient faults, considering that

the principal components showed variations, approximately, only after the 600 sample.

2.5.5 Dimensionality Reduction in the Raw Signal

The purpose of the analysis (test iv) is to verify the possibility of reducing the

dimension of the raw signal, and using the principal components in an anomaly detection

algorithm, in order to avoid the need to extract features beforehand.

As the PCA was the technique with the best result among the studied methods,

it was used. The initial signal with 20,480 points was reduced to 2, 300 and 800 principal

components were chosen based on the number of samples available, 2 for comparison with

the analyses performed previously, 300, the quantity with the best result and 800, a value

close to the maximum acceptable by the method. The F1-Score results with the respective

standard deviation (in percentage) obtained for PCA using the reduced features of the raw

signal are presented in Figure 2.10.

Figure 2.10: F1-Score and standard deviation (in percentage) obtained for PCA using the
reduced features of the raw signal.

The results obtained show that it is possible to reduce the dimension of a raw
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signal through the PCA method and obtain similar results using previously extracted features

(going from 20,480 points to 300 components). On the other hand, the number of features

needed to represent the problem well is high when compared with the extracted features

(test ii), which leads to an increase in the computational cost, and makes it impossible to use

certain machine learning algorithms that do not present good results with high dimensional

space.

When using only two principal components, a variance explained of 6.86% was

obtained while for two components using the extracted features (test i and ii), 100% was

obtained. For 300 and 800 principal components, a variance explained of 76.92 and 96.36%

was obtained. The tests using the proposed anomaly detection methodology showed results

similar to the features extracted with only 300 principal components, and a significant

reduction in the metrics for the other quantities studied. This fact was expected, since,

as it is a raw signal, using only a few principal components is not able to represent the signal

under analysis well. On the other hand, a high amount of components introduces irrelevant

correlations and features to ML models, reducing their efficiency and robustness (increase in

the standard deviation).

It can be concluded that, for the studied data, it is possible to reduce the raw signal

size and obtain good results in the anomaly detection using Isolation Forest. However, on

the other hand, the final dimension obtained is still extremely high when compared with

the dimension obtained based on the features previously extracted, making the model less

efficient and less robust. The trend analysis of the features, Figure 2.11 (It is noteworthy

that all components are represented overlaid due to the quantity in each analysis), confirms

that only two principal components are not able to represent the variations shown above.

On the other hand, with the increase of the main components, a greater amount of variations

can be noticed, contributing to the increase in the efficiency of the model, which results in

a trade-off.
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Figure 2.11: Reduced dimensionality of raw signal using PCA with a different quantity of
principal components.

2.6 Conclusions

This chapter presents a comparison of different features extracted from the

vibration signal and dimensionality reduction techniques, in the unsupervised detection of

fault in rotating machinery, especially bearings (anomaly detection). A framework composed

of five main steps is proposed, namely: (1) Data Acquisition; (2) Feature Extraction;

(3) Dimensionality Reduction; (4) Fault detection: Anomaly Detection; and (5) Feature

Trend Analysis.

The results show that it is possible to use vibration signals for unsupervised fault

detection in rotating machinery, especially bearings. Furthermore, the feature extraction

process is fundamental for the success of ML models. Techniques to reduce the size of input

features have been proposed, showing their feasibility. Among the studied techniques, PCA

had the best performance, being second only to the manual selection of features based on

the expert’s knowledge.

The raw signal can also be reduced in size, and later used in ML models for fault

detection. It is noteworthy, however, that the amount of principal components needed to

represent the problem tends to be greater, which can lead to a reduction in the robustness

and assertiveness of the system. Feature trend analysis is an interesting tool to visually

verify variations in the system, and can be used by the specialist in conjunction with the

anomaly score obtained by the model for monitoring.

The work contributes to the development of monitoring of rotating machinery

through machine learning, avoiding the introduction of irrelevant or correlated features in

ML models, reducing data storage space and computational time to train the models. This,

in addition to allowing the monitoring of anomalies using artificial intelligence, allows the
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specialist to monitor the features in a summarized manner, which is not always possible when

there are many monitoring variables. Thus, decision-making is supported by solid indicators,

essential for application in an industrial scenario, a concept that is further explored in the new

area of study in artificial intelligence, called Explainable Artificial Intelligence (XAI). New

studies will focus on understanding how the model relates input features with significance to

perform anomaly detection, and thus be able to work optimized on dimensionality reduction.



CHAPTER III

BAND RELEVANCE FACTOR (BRF): A NOVEL AUTOMATIC FREQUENCY
BAND SELECTION METHOD BASED ON VIBRATION ANALYSIS FOR

ROTATING MACHINERY

The monitoring of rotating machinery has now become mandatory in the industry,

given the high criticality in production processes. Extracting relevant information from the

signals is the key point for the success of the activity. Studies in the areas of Informative

Frequency Band selection (IFB) and Feature Extraction/Selection have demonstrated

effective approaches to extracting information. However, in general, it focuses on identifying

bands where impulsive excitations are present or analyzing the relevance of the features

after its signal extraction, still counting on the lack of process automation. Just as other

frequencies relevant to a vibration analysis of a rotating machinery are not identified, features

can be extracted from irrelevant bands, inserting unnecessary information into the analysis.

To overcome this problem, the study proposes a new approach called BRF (Band Relevance

Factor). The approach aims to perform an automatic selection of all relevant frequency

bands for a vibration analysis of a rotating machine based on spectral entropy. The results

are presented through a relevance ranking and can be visually analyzed through a heatmap.

The efficiency of the approach is validated in a synthetically created dataset and two real

dataset, showing that the BRF is able to identify the bands that present relevant information

for the analysis of rotating machinery.

3.1 Introduction

Rotating machinery is one of the most widely used mechanical equipment of

modern industry Li, Wang, Liu, Liang and Si (2018). Due to its criticality in the processes,
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several techniques are used to monitor the integrity of each asset, among which the vibration

analysis stands out Brito et al. (2022).

The vibration signal is composed of characteristics that refer to the behavior of

the system under analysis Schmidt et al. (2021). Vibration signals from rotating machinery

usually present frequency bands where the dynamic behavior of the equipment and certain

faults can be analyzed. Determining the regions that present relevant information is essential

to assist the specialist in identifying defects, evaluating the quality of the collected signal,

allowing the extraction of significant features for use in statistical and machine learning (ML)

models, or even helping to explain the artificial intelligence models, an area of recent interest

called: Explainable Artificial Intelligence (XAI).

Despite the amount of information that can be obtained by analyzing the signals,

the collected vibration signals of rotating machinery are usually weakened and disturbed

by the strong environment noises and other neighboring components Li, Wang, Liu, Liang

and Si (2018). This makes it necessary to develop methods to assist in extracting relevant

information.

Two major areas stand out in the study of identifying relevant information in

signals: i) Feature Extraction/Selection ii) Informative Frequency Band selection (IFB).

Feature extraction/selection is one of the fundamental areas of study for signal analysis

and applications of statistical and machine learning models. Performing the extraction

and selection of relevant features allows knowing the signal under study and avoiding the

introduction of non-significant or redundant features that tend to reduce the assertiveness

of the model Brito et al. (2021). For the study of rotating machinery, as shown in Brito

et al. (2022), the features to detect faults and to analyze the dynamic behavior of rotating

machinery using vibration signals are commonly extracted from time, frequency and time-

frequency domain.

Correctly identifying the relevant frequency bands for feature extraction/selection

is critical to successful application. When features are extracted directly from the raw signal

without a previous relevance analysis, there is a high chance of introducing a lot of irrelevant

information into the analysis. As presented by Liu et al. (2022) if the extracted features

are good enough, any classification algorithm may perform very well. Unfortunately, it is a
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really challenging task that is almost impossible to fulfill in the real application.

Studies have been developed, and can be divided into three categories, i.e.,

filters, wrappers, and embedded methods. Yan and Jia (2019) propose a fault diagnosis

strategy based on improved multiscale dispersion entropy (IMDE) and max-relevance min-

redundancy (mRMR). The analysis show that the proposed method can extract effectively

fault information. Zhang et al. (2018) use the two-stage feature selection, where Relief is

applied for preliminarily selection and in the reselection process, Binary Particle Swarm

Optimization (BPSO). Wang, Zhao, Zhang and Ning (2021) proposes an end-to-end feature

selection and diagnosis method for rotating machinery combining with dimensionality

reduction. Li, Yang, Li, Xu and Huang (2017) analyzed the multi-scale symbolic dynamic

entropy and mRMR feature selection for fault detection in planetary gearboxes. Other

works can be found at Bolón Canedo et al. (2013), where a general review on the topic

is presented. Also in Liu et al. (2022) where an analysis of the importance of extracting

features is performed.

In most of the works presented, the main focus is to obtain relevant information

from the extraction of features, which, combined with artificial intelligence methods, are

capable of diagnosing the operating condition of the equipment. Despite the good results

presented, it is noted that the choice of frequency bands still needs to be automated, since in

general, the methods use the raw signal or equally divided bands, without a prior analysis of

relevance. Or, when the relevance is analyzed, it is related to the feature already extracted

from the signal. In engineering scenarios, however, the machine users would like an automatic

method to shorten the maintenance cycle and improve the diagnosis accuracy Lei et al.

(2020).

Another area of study is called: Informative Frequency Band Obuchowski et al.

(2014) (some other terminologies are: Frequency Band Selection (FBS) Liu, Jin, Zuo and

Peng (2019), Optimal Band Selection Barszcz and Jab Lonski (2011); Cui et al. (2019). Unlike

feature extraction, the area aims to study mainly methods to distinguish regions where

impulsive excitations occur caused by faults such as bearings and gear defects, given the

difficulty of identifying the bands excited by impulses, in noisy signals, or in incipient defects.

Miao et al. (2022) present a practical framework of Gini Index (GI) in the
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application of rotating machinery, comparing state-of-the-art and new methods, such

as spectral kurtosis-based methods, decomposition methods, deconvolution methods:

Kurtogram Antoni (2006, 2007), Protrugram Barszcz and Jab Lonski (2011), Autogram

Moshrefzadeh and Fasana (2018), GI derivations. At the end of the tests, using the Envelope

spectrum kurtosis-based method (Protrugram) it was not possible to analyze the impulsive

excitations in the presence of harmonic interference. As for the Kurtosis-based method

(minimum entropy deconvolution (MED) Endo and Randall (2007) and Kurtogram) it was

also not possible to perform analysis in the presence of random impulse. Hebda-Sobkowicz

et al. (2020) present a novel approach to detecting cyclic impulses in the presence of non-cyclic

impulses, using conditional variance based (CVB) statistic/selector and compare the result

to the state-of-arts methods: spectral kurtosis l2/l1 norm Wang (2018b), Alpha selector Zak

et al. (2015), kurtogram, spectral Gini index Miao et al. (2017), spectral smoothness index

Bozchalooi and Liang (2007); Wang (2018a), and the infogram Antoni (2016). In summary,

for a signal with only Gaussian noise, no technique indicated any band, as expected. For the

cyclic and non-cyclic impulsive signal with Gaussian noise background, all methods showed

good results. For the case in which the presence of the non-cyclic impulsive signal was much

greater in relation to the cyclic impulse, the CVB selector was able to identify the frequency

band corresponding to the cyclic impulses.

As can be seen, IFB works are focused on determining frequency regions where

impulsive excitations are present, so that the signal can be filtered and a signal analysis

technique such as envelope applied. The studies are extremely relevant, in view of the great

difficulty in identifying such frequency bands, due to the low amplitudes presented when

the defect is in the incipient stage. On the other hand, other frequencies present in the

signal are also related to faults and/or dynamic behavior of the machine, which, because

they present behavior different from the impulsive (eg, cyclic/harmonic/random) are not

addressed by the aforementioned methods. Such frequency bands are fundamental for a

vibration analysis performed by a human expert, and also for the automatic extraction

of features for AI models. This is because it contains information regarding the dynamic

behavior of the machine (e.g., rotation frequency), and various faults such as: unbalance,

mechanical backlash, misalignment, etc.
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Because most of the time, they are evident in the signal, due to their greater

amplitude, such frequencies are not the focus of the works on IFB. However, aiming to

support the human expert in decision making and Artificial Intelligence (AI) frameworks

in the automatic extraction of relevant features and XAI, developing a method that can

automatically identify such relevant frequency bands in the signal, contributes to the

monitoring studies of rotating machinery and possible industrial applications.

Thus, the study proposes a new approach called BRF (Band Relevance Factor).

The approach aims to perform an automatic selection of all relevant frequency bands for a

vibration analysis of a rotating machinery based on spectral entropy.

Initially, the method allows the automatic evaluation of the quality of the collected

signal, assessing whether it only presents noise, or if there is the presence of characteristic

frequencies of the equipment. Furthermore, the method automatically points the vibration

analyst to all relevant frequency bands in the signal. Finally, the use of the method as

a pre-feature extraction stage allows the extraction of features in automatically selected

relevant bands, for use in statistical and machine learning models.

Because it has a strong relationship with the behavior of rotating machinery, since

the vast majority of faults are related to harmonic components and their multiples, spectral

entropy was used. Due to its behavior, a signal from a healthy machine will show larger

entropy value due to its high irregularity, while a faulted machine will have low entropy due

to its low irregularity caused by the localized damage Wang et al. (2016); Li, Yang, Li, Xu

and Huang (2017), which allows mapping the most relevant bands. In addition to entropy,

the approach combines the use of the root-mean-square value (rms), a parameter widely used

in vibration analysis of rotating machinery, as it provides an overview of the energy present

in the signal.

In summary, the main contributions of this chapter are: i) A novel framework is

proposed for automatic identification of relevant frequency bands in vibration signals; ii) A

relevance ranking is proposed, to define among the selected bands the most important ones;

iii) The heatmap is proposed to facilitate the visual analysis of the relevance ranking; iv)

Possibility of applying the method in different rotating machinery and faults; v) Industrial

application.
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Due to the main characteristics, the work can be considered a contribution to

two major areas: feature extraction/selection and IFB. Initially it shares the main objective

of feature extraction, which is to extract relevant information from the signal, adding an

automatic framework. On the other hand, it uses informative frequency band analysis more

broadly (not focused only on impulsive defects), to automatically determine the relevant

frequency bands in the signals. Such bands can be evaluated by the specialist during the

analysis, or selected by an ML framework to evaluate the dynamic behavior of rotating

machinery.

The remainder of this chapter starts with a brief explanation about Entropy. The

proposed method is presented in Section 3. Experimental procedure is shown in Section 4.

Results and discussion are given in Section 5. Finally, Section 6 concludes this chapter.

3.2 Background

3.2.1 Entropy

Entropy, as a statistical measure, is able to quantify and detect changes in time

series taking into account their nonlinear behavior Li, Wang, Liu, Liang and Si (2018). Due

to its characteristics, recently several entropy-based methods have been studied for rotating

machinery. Li, Li, Yang, Liang and Xu (2018); Zheng et al. (2018) proposed the multi-scale

permutation entropy for fault diagnosis in planetary gearboxes and rolling bearing. Zheng

et al. (2017) studied a fuzzy entropy approach for fault detection in bearing. In general,

studies show promising results for the use of techniques in monitoring rotating machinery.

Cheng et al. (2016); Luo et al. (2016); Ai et al. (2017) presented studies involving Spectral

Entropy in the detection of faults in rotating machines. Other studies can be found in Li,

Wang, Liu, Liang and Si (2018); Liu., Zhi, Zhang, Guo, Peng and Liu (2019).

The definition of entropy is proposed by Shannon to evaluate the irregularity and

self-similarity of time series in information theory Shannon (1948). For the discrete data

series {x1, x2,..., xn}, the Shannon entropy H is defined as follows in Equation 3.1.

H(x) = −
n

∑

i=1

p(xi)log(p(xi)) (3.1)
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where p represents the probability of the time series {xi}

A bigger entropy indicates a more uncertainty or irregularity of time series and if

a probability can be divided into the sum of several individual values, so does the Shannon

entropy Li, Wang, Liu, Liang and Si (2018). For a given time series, if the probability values

of different states are similar, it is difficult to determine the future status, thus the time

series has its maximum entropy value. In contrast, if there is only one state, the time series

has its minimum entropy Rostaghi and Azami (2016).

Among the different methods of using Shannon’s Entropy proposed in the fault

diagnosis of rotating machinery Li, Wang, Liu, Liang and Si (2018), Spectral Entropy stands

out. The spectral entropy of a signal is a measure of its spectral distribution, and it is a

normalized form of Shannon entropy, calculated in Equation 3.2.

S(x) = −

∑n

i=1 Pxlog(Px)

log(n)
(3.2)

where, P x is the probability distribution and n is the total frequency points used to

normalized between 0 and 1. P x is described in Equation 3.3.

Px =
Ei

∑n

i Ei

(3.3)

E i is the energy in each frequency i.

When the distribution of values is flat with equal or close amplitudes for each

frequency component, Spectral entropy will result in high values, close to 1. Distribution

similar to a signal with only noise. On the other hand, if the amplitudes are concentrated in

a few frequency components, especially if only a few frequencies have non-zero amplitudes,

the spectral entropy value will be close to 0 Pan et al. (2008); Liu et al. (2013).

It is known that the vast majority of faults in rotating machines are related to

harmonic components and their multiples. For this reason, it is possible to use entropy to

analyze the signals, knowing that the vibration signal collected from a healthy machine has

a larger entropy value due to its high irregularity, while that collected from a faulty rotating

machinery has a smaller entropy value due to its low irregularity caused by the localized
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and the difference between them is called the Correction Factor (rmsdiff). The entropy of

the complete signal and each band is calculated (S ). The difference between the entropy of

the complete signal and each band is calculated, called the Entropy Difference Factor (Sdiff).

Finally, the division between the Entropy Difference Factor and the Correction Factor is

calculated to obtain the new proposed feature, called Band Relevance Factor (BRF). Positive

values indicate that the band under analysis is relevant to the original signal, and negative

values that the band is irrelevant to the original signal.

For the methodology, a so-called relevant signal is a signal that presents

deterministic frequencies distinguishable from the background noise, without the need to

perform advanced signal processing to remove it. Likewise, relevant frequency bands are

regions that present relevant information for analysis and that can be identified through a

spectral analysis, not involving advanced processing techniques. In addition, they allow the

specialist to carry out an analysis regarding its characteristic, in order to understand the

dynamic behavior of a system and/or identify related faults.

3.3.1 Raw Signal Entropy

The first step of the methodology consists of calculating the entropy of the raw

(original) signal in order to measure the irregularity of the system. If the entropy value in

dB is greater than or equal to -3 dB, the signal is considered noise. In this case no band is

relevant in relation to the others, and therefore the following procedure does not need to be

applied and the signal is not analyzed.

The -3 dB point is commonly used with filters. It indicates the frequency at which

the associated power drops to half of its 50% maximum value. A regular/noise (equiprobable)

signal in the frequency domain tends to have roughly the same amplitude value at all

frequencies. Therefore, when calculating the value of Spectral Entropy (S ), regular signals

(equiprobable) will have S equal to or close to 1, and ordered signals (harmonics) will have

S less than 1 and closer to 0. Analyzing the entropy value (assuming S = 1) for regular dB

signals, it is known that S = 10log10(1) is equal to 0.

Thus, the value for regular/noise signals (equiprobable) analyzed on the dB scale

will present values of entropy zero or close to zero. Assuming that some signals may be
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combinations of harmonics and noise, it is necessary to define a maximum entropy value from

which it is possible to analyze the signals for fault detection (i.e., the signals are not purely

noise). Assuming that 3 dB means a gain or reduction of 50% of power in the associated

frequency, and approximately 0 dB being the entropy value for a regular signal/noise, it is

defined that for the entropy value of - 3dB, the system is proportionately more ordered, with

less uncertainty and less variability. Being possible to separate the deterministic frequencies

from the noise, and consequently perform the analysis of the behavior of the machine, and

identify faults.

Therefore, if the S of the original signal is less than -3 dB, there is the presence of

relevant frequencies in the signal, which may be related to some fault characteristic or the

dynamic behavior of the equipment, and therefore it is possible to continue the analysis. For

higher S values the signal is considered irrelevant.

3.3.2 Correction Factor

After analyzing the relevance of the complete signal, filtering the signal in k -level

(bands of interest) and transforming it to the frequency domain, the Correction Factor,

proposed as a weighting in the BRF, is calculated in Equation 3.4.

rmsdiff = rmsbase − rmsfiltered (3.4)

where rmsbase is a statistical measure defined as the root mean square value of the original

signal and rmsfiltered the root mean square value of the filtered band, both in dB. rms

measures the overall value of energy present in the signal, the greater the magnitude, the

greater the rms value from the global point of view.

A signal with many spectral components (e.g., excitation of resonances in bearings,

mechanical looseness, cavitation etc.), will result in a larger entropy value due to its high

irregularity, which may have amplitudes low or high. Consequently, if the BRF used only

entropy as an analysis parameter, the ranking of the most relevant bands in the signal could

present an error, since the amplitude would not be directly taken into account. Therefore,

the Correction Factor is proposed to quantify the importance of the amplitude present in



58

the frequency band through the difference between the rms value of the original and filtered

signal.

3.3.3 Entropy Difference Factor

The Entropy Difference Factor is proposed to evaluate the order, uncertainty and

variability of the signal, calculated in Equation 3.5.

Sdiff = 3 + Sbase − Sfiltered (3.5)

To provide decision making based on the Sdiff (+ or -), 3 dB was added to the Sdiff value.

This allows to replace the decision threshold which was previously -3 dB to 0 dB. Thus, if

the Sdiff difference is positive or equal to zero, the band under analysis is relevant, otherwise

the band is not relevant to the analysis.

In the new scale, the value for regular/noise bands (equiprobable) analyzed in dB

will present positive entropy values. Considering that the signal was approved in the first

test, the value of Sbase has a negative value, so when applied to the equation we will have:

(-) - (+) = -, therefore irrelevant for the signal.

In a signal with only one harmonic, the Sfiltered value of the band in which the

harmonic is present will be less than or approximately the same as the full signal, resulting

in a Sdiff equal to or approximately zero. In a signal with harmonic and noise, when filtering

in the harmonic region, entropy tends to reduce, as it is a more ordered region (since the

harmonic is present), and less uncertainty, due to the noise limitation, in this way, the Sfiltered

entropy will be lower, ensuring a positive value.

3.3.4 Band Relevance Factor (BRF)

Although entropy quantifies the regularity of the signal, that is, the presence of

harmonics or random frequencies, not all component failures present harmonic behavior,

which can lead to an error in the identification ranking of the relevance of the band if only

the Entropy Difference Factor is used. To overcome this problem, the Entropy Difference

Factor is divided by the Correction Factor, resulting in the Band Relevance Factor (BRF).

The more energy in the band, the lower the value of the Correction Factor, and
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consequently the higher the value of the BRF, since it is in the denominator. In this way,

it is possible to determine, among the selected bands, which is the one with the greatest

relevance.

The Band Relevance Factor is obtained through the Equation 3.6.

BRF =
Sdiff

rmsdiff
(3.6)

Being, Sdiff the Entropy Difference Factor and rmsdiff the Correction Factor.

As shown, positive values indicate that the band under analysis presents relevant

information for analysis. In addition, the higher the BRF value, the more information that

band presents for analysis, thus making it possible not only to define whether the band is

relevant or not, but also to obtain a relevance ranking.

3.3.5 Heatmap and Relevance Ranking

Through BRF it is possible to obtain a ranking with the most relevant frequency

bands in each analyzed k -level. To facilitate the visualization of the frequency bands, a

heatmap is proposed, where the values are normalized on a scale from 1 to -1, with only

positive values being relevant.

Each level represents the division of the signal into 2k, where k is the level and 2k

is the amount of bands present in each level. Example: a complete signal with a frequency

range from 0 to 10240 hz, for level 0, the bandwidth (BW) will be from 0 to 10240 hz (20),

that is, the complete signal. For level 1, the signal will be divided into two bands (21), 0 to

5120 hz and 5120 to 10240 hz and so on for the other levels.

It is worth mentioning that the analyzes must be performed per level, that is, each

level will present a relevance ranking, since the calculations are performed separately, and

only combined to obtain all the results in a single graph.

The same happens for the rms value used for comparison, however the values are

normalized from 0 to 1, as there are no negative rms values in the frequency signal.
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3.4 Experimental procedure

3.4.1 Data description

Three dataset were used, one synthetically created to exemplify the proposed

approach (Case 1), one publicly available (Case 2 - Bearing dataset) and one developed

by the author for the study (Case 3 - Mechanical faults dataset). The dataset were chosen

because they approach different faults present in the components of rotating machinery, in

addition to presenting the differences between normal and fault conditions for each rotating

machinery. The use of different dataset allows validating the proposed methodology under

different conditions, and exemplifying the strengths and limitations.

Since the bearing dataset (Case 2) is publicly available and already explored in

Brito et al. (2022), it will be commented shortly. For more details, please refer to Qiu

et al. (2006); Brito et al. (2022). All real dataset are vibration signals collected using

accelerometers.

Case 1: Synthetic dataset

The proposed methodology aims to evaluate, mainly, the frequency bands that

have relevance in the signal, thus allowing the analysis by the expert, or extraction of features

for use in machine learning models. In this way, a synthetic dataset was generated, aiming

to replicate real conditions in rotating machinery.

The proposed signal is an oscillatory signal whose waveform is given in the time

domain by Equation 3.7.

x(t) = Asin(2π ft + θ ) (3.7)

where A indicates the peak amplitude of the signal, f frequency [Hz], t time vector [s] and

θ phase [rad], because monoaxial accelerometers without tachometer were used, the phase

reference was not considered, although it could help in the identification of some defects. t

= 1s and fs = 20480 hz were used.

The harmonic signal was chosen to compose the dataset, due to its similarity with

characteristic defects in rotating machinery, such as the force produced by the unbalance of
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a rotor. Furthermore, the harmonic signal represents the fundamental rotation frequency of

the machine (1x), which is one of the most relevant parameters for the analysis of rotating

machinery signals.

In real signals, in addition to the influence of other frequencies related to nearby

machines, external excitations etc., some vibrations/defects excite more than one frequency

in the signal, such as mechanical looseness, misalignment, gear defects. To simulate a

condition closer to reality, the synthetic signal was composed of ndifferent frequencies,

Equation 3.8.

xt(t) = A1 sin(2π f1t + θ ) + A2 sin(2π f2t + θ ) + ... + An sin(2π fnt + θ ) (3.8)

where xt(t) is a sum of harmonic signals x(t) Equation 3.7, of different frequencies, f 1, f 2,...,

fn. The frequencies were defined in such a way that when performing the division by bands,

some bands contained more than one frequency, others only one and others none, namely:

30, 120, 500, 700, 750, 2300, 2450, 2600, 2700, 2800 and 3450 hz. Amplitudes were randomly

determined for a range of 0 - 1.

In real applications, every signal will present a noise level, and for this reason, it

was added to the synthetic signal, Equation 3.9.

xs = xt + αgaussG, G ∼ N(0, 1) (3.9)

where αgauss > 0 is the Gaussian noise coefficient, xs is the final synthetic signal, xt is the

raw signal and G the gaussian noise.

As the proposed method aims to identify relevant frequency bands, and knowing

that they can be influenced by the noise present in the signal, four noise levels were added.

As it is a synthetic and known signal, the different noise levels were obtained based

on the signal-to-noise ratio (SNR). SNR is the ratio between the desired information or the

power of a signal and the undesired signal or the power of the background noise, and its unit

of expression is typically decibels (dB). Equation 3.10.
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SNR = 10log 10(
P signal

P noise

) (3.10)

where, Psignal and Pnoise are the rms value in volts for the signal and noise respectively.

Observing Equation 3.10, note that SNR greater than 1:1 (greater than 0 dB)

indicates more signal than noise. Therefore, the SNR levels were defined as: 24, 12, 6 and

0 dB. The SNR relationships were also designed in such a way to facilitate the visualization

of the signals in the frequency domain, allowing for a better validation of the methodology,

with the proposal being:

i) 24 dB (SNR): the harmonic frequencies present in the signal are easily evidenced

in spectral analysis, with a small noise.

ii) 12 dB (SNR): harmonic frequencies continue to be visible in a spectral analysis,

but with an increase in background noise, which does not preclude a correct identification.

iii) 6 dB (SNR): harmonic frequencies of greater amplitude are identifiable in a

conventional spectral analysis, and may have some frequencies close to noise, which would

raise doubts as to whether it is noise or harmonic frequency.

iv) 0 dB (SNR): harmonic frequencies and noise are completely mixed in a

conventional spectral analysis, not allowing the identification of machine faults.

To facilitate the description in the text, the noises will be called low, medium, high

and mixed, referring to SNR 24, 12, 6 and 0 dB, respectively.

Case 2: Bearing dataset

The dataset Qiu et al. (2006) is composed of remaining useful life (RUL) test on

bearings, with 03 tests performed and 4 bearings in each test. The end of life reached for

each bearing occurred after 100 million revolutions which is the designed life time. Each file

consists of 20,480 points with the sampling rate set at 20 kHz. The signals were manually

labeled, based on knowledge about fault diagnosis using vibration analysis, and 2 signals were

selected to validate the applicability of the proposed method. For the study, the bearing 01

of test 02 was used, with signal 150 representing the normal operating condition and signal

905 with fault in the outer race.
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Case 3: Mechanical faults dataset

The last dataset was developed by the authors. The faults were introduced on

a test bench, Fig. 5.2, being: motor, frequency inverter, bearing house, two bearings, two

pulleys, belt and rotor (disc).

Figure 3.2: Bench test.

20 tests were performed, 5 for each condition: unbalance, misalignment,

mechanical looseness and normal operating condition. Each test consists of 4 sets of 420

signals collected continuously. Each file consisting of 25,000 points with the sampling rate

set at 25 kHz (420 signals per accelerometer). Resulting in the end of the tests, in a total

of 8400 signals per accelerometer. The rotation was kept constant with a value measured on

the axis of approximately 1238 rpm. The sequence of tests was randomly defined. Before

starting any test, the bench was dismantled and returned to normal operating condition, to

later introduce the fault. The experimental procedure allows variations to occur, making the

tests closer to industrial reality.

Because it is a small bench, the measurement points are close, and in order to

reduce the computational cost of the tests, only the signals from the horizontal position of

the accelerometer present in the coupled side bearing (near the pulley) were used in the

analyses.

In addition, only two conditions were chosen to facilitate the reading and

understanding of the methodology, in view of the other dataset used, namely: normal

operating condition and unbalance.
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methodology must be able to identify the bands in which such frequencies are present.

Case 2: Bearing Fault

In Fig.3.4, the two randomly selected signals from the Case 2, representing normal

operating condition Fig.3.4a and bearing outer race fault Fig.3.4b are presented.

(a) Normal condition (b) Outer race fault

Figure 3.4: Examples of vibration signals for Case 2.

In Fig.3.4a it can be noted that only one frequency related to the dynamic behavior

of the equipment is highlighted since there is no fault in the signal. On the other hand, in

Fig.3.4b other frequencies become present, indicating to the specialist a change in equipment

behavior, which in turn is related to the fault. The frequencies highlighted in both cases

are relevant for diagnosis and should be analyzed by the specialist to determine the current

condition of the equipment. Therefore, as in the analysis, the methodology must be able to

identify such frequencies as relevant.

Case 3: Mechanical faults dataset

In Fig.3.8, the two randomly selected signals from the Case 3, representing normal

operating condition Fig.3.5a and unbalance Fig.3.5b are presented.

(a) Normal condition (b) Unbalance

Figure 3.5: Examples of vibration signals for Case 3.

The dataset was purposely generated to simulate severe industrial conditions,

where the vibration signal has a rich amount of frequencies, even if they are not related to
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equipment faults (e.g., instrumentation interference, nearby equipment etc.). Thus, even for

the normal operating condition, it can be noted that in Fig.3.5a there are several highlighted

frequencies. In Fig.3.5b where the unbalance was inserted, it is verified that the frequency

related to the unbalance starts to dominate the signal, presenting greater relevance for the

analysis (21.9 hz). Through a vibration analysis performed by a specialist, the rotation

frequency will be related to the characteristic of the unbalance defect in the machine.

Therefore, the methodology must be able to identify such frequency as relevant even with

the presence of other frequencies in the signal.

3.5.2 BRF Analysis

In this subsection, the results obtained with the proposed methodology and rms

value are presented. Due to the lack of space, for each dataset a signal was selected and the

heatmap with the most relevant bands per level is presented. For the analysis of the other

signals, the ranking with the five most relevant bands are presented.

Case 1: Synthetic dataset

To represent the synthetic dataset, the heatmap with medium noise was selected,

Fig. 3.6.

It can be noted that the BRF was able to identify as relevant the bands that contain

the frequencies inserted in the signal. It is also verified that the smaller the size of the band,

the BRF tends to classify regions that present only noise as relevant. This occurs because,

as it is limited in a small region, only one or a few dominant frequencies can occur and the

entropy may assumes a value close to a system with equiprobable signal. This limitation

is circumvented by analyzing the ranking with the most relevant bands determined by the

method (or heatmap color scale), which points out to the harmonic frequencies inserted in

the signal.

Comparing with the rms, the methodology was able to better distinguish the

relevant bands for analysis, as can be observed in levels 1, 2, 3, 4 and 5, mainly. According

to the BRF, bands with a value less than/equal to zero (scale from white to red) are irrelevant

for the analysis. Analyzing the heatmap, the regions with a white to red scale are bands
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Table 3.1 – Relevance Ranking - Case 1

Signal Feat.
Rank/
k-level

1
(BW 5120 hz)

2
(BW 2560 hz)

3
(BW 1280 hz)

4
(BW 640hz)

5
(BW 320 hz)

6
(BW 160 hz)

7
(BW 80 hz)

8
(BW 40 hz)

Low
Noise

BRF

1 0:5120 0:2560 0:1280 2560:3200 2560:2880 0:160 0:80 0:40
2 2560:5120 2560:3840 0:640 0:320 2720:2880 2800:2880 2800:2840
3 1280:2560 640:1280 640:960 640:800 640:720 680:720
4 1920:2560 2240:2560 2240:2400 2240:2320 2280:2320
5 3200:3840 320:640 2560:2720 2640:2720 2680:2720

RMS

1 0:5120 0:2560 0:1280 0:640 2560:2880 2560:2720 640:720 680:720
2 5120:10240 2560:5120 2560:3840 2560:3200 2240:2560 640:800 0:80 0:40
3 5120:7680 1280:2560 1920:2560 640: 960 0:160 2640:2720 2680:2720
4 7680:10240 8960:10240 640:1280 0:320 480:640 480:560 2280: 2320
5 5120:6400 9600:10240 320:640 2240:2400 2240: 2320 480:520

Medium
Noise

BRF

1 0:5120 0:2560 0:1280 0:640 640:960 640:800 640:720 680:720
2 2560:5120 2560:3840 640:1280 2560:2880 0:160 0:80 0:40
3 1280:2560 2560:3200 0:320 2240:2400 2240:2320 2280:2320
4 1920:2560 2240:2560 480:640 480:560 480:520
5 3200:3840 320:640 2720:2880 2800:2880 2800:2840

RMS

1 0:5120 0:2560 2560:3840 0:640 2560:2880 0:160 2240: 2320 480:520
2 5120:10240 2560:5120 0:1280 2560:3200 2240:2560 2560:2720 480:560 2280:2320
3 5120:7680 1280:2560 1920:2560 320:640 2720:2880 640:720 0:40
4 7680:10240 5120:6400 3200:3840 0:320 640:800 0:80 680:720
5 3840:5120 5120:5760 640: 960 2240:2400 2640:2720 2680:2720

High
Noise

BRF

1 0:5120 0:2560 2560:3840 2560:3200 2560:2880 2720:2880 2800:2880 2800:2840
2 2560:5120 0:1280 0:640 2240:2560 2560:2720 0:80 0:40
3 1280:2560 1920:2560 0:320 0:160 2240: 2320 2280:2320
4 640:1280 640: 960 2240:2400 640:720 680:720
5 3200:3840 320:640 640:800 2640:2720 2680:2720

RMS

1 0:5120 2560:5120 2560:3840 0:640 2560:2880 2560:2720 480:560 2280:2320
2 5120:10240 0:2560 0:1280 2560:3200 4160:4480 640:800 2560:2640 480:520
3 5120:7680 3840:5120 5120:5760 0:320 3680:3840 0:80 0:40
4 7680:10240 5120:6400 3840: 4480 5440:5760 0:160 720:800 680:720
5 6400:7680 4480:5120 640: 960 4160:4320 4240:4320 2600:2640

Mixed
Noise

BRF

1 - - - - - - - -
2
3
4
5

RMS

1 5120:10240 5120:7680 5120:6400 0:640 6080:6400 6240:6400 6320:6400 5680:5720
2 0:5120 2560:5120 0:1280 2560:3200 2880:3200 4880:5040 4560:4640 4560:4600
3 7680:10240 2560:3840 5760:6400 4480:4800 0:160 5680:5760 1400:1440
4 5120:7680 8960:10240 7040:7680 960:1280 5600:5760 8480:8560 6360:6400
5 3840:5120 5120:5760 0:320 3040:3200 3280:3360 8520:8560
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Table 3.2 – Ranking comparison - Case 1

Signal
k-level/

Type of Analysis
0

(BW 10240 hz)
1

(BW 5120 hz)
2

(BW 2560 hz)
3

(BW 1280 hz)
4

(BW 640hz)
5

(BW 320 hz)
6

(BW 160 hz)
7

(BW 80 hz)
8

(BW 40 hz)

Low Noise
VA 100 % 50 % 50 % 60 % 80 % 100 % 80 % 80 % 80 %
PA 100 % 50 % 50 % 60 % 0 % 60 % 0 % 0 % 20 %

Medium Noise
VA 100 % 50 % 50 % 60 % 80 % 100 % 80 % 80 % 80 %
PA 100 % 50 % 50 % 20 % 20 % 0 % 0 % 0 % 0 %

High Noise
VA 100 % 50 % 50 % 40 % 40 % 60 % 60 % 20 % 60 %
PA 100 % 50 % 0 % 40 % 0 % 40 % 0 % 0 % 20 %

Mixed Noise
VA 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
PA 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

the bands address some of the harmonic frequencies inserted in the signal: 30, 120, 500, 700,

750, 2300, 2450, 2600, 2700, 2800 and 3450 hz. What does not occur using only rms.

From the analysis it can also be verified that when there is a positive signal-to-noise

ratio (SNR), that is, more signal than noise in the sample, even with different levels, the

BRF is able to identify the relevant frequency bands of the signal.

Finally, analyzing the condition in which the SNR is equal to zero (amount of

noise and signal is equal), it is verified that the methodology presents null ranking. That

is, in the first analysis performed, the method identifies that it is not possible to separate

(for conventional analysis) relevant bands in the signal, since it is completely mixed with

noise. Using only the rms value, the analyst would be induced to check all bands since there

is energy coming from the noise. In an automatic methodology for extracting features for

an artificial intelligence method (e.g., machine learning), it would result in the extraction of

irrelevant features and consequently a reduction in the model’s accuracy rate.

To make a comparison between the 5 most relevant bands obtained in the ranking

with BRF and rms, two analyzes were performed. The first, called Values Analysis (VA),

calculates the number of times that the same band appeared in the two methodologies

without taking into account the order, and the second, called Position Analysis (PA), checks

how many times the positions (order) of the selected bands were equal in the ranking,

Table 3.2.

Analyzing Table 3.2, it can be verified that the signal where the noise is totally

mixed, all the values were different, since according to the BRF, no band was considered

relevant. For the other signals, it can be noted that the percentage of values that are repeated

in both methodologies is similar for conditions: low and medium noise, where the amount

of noise is lower, and reduces for high noise condition where the amount of noise is greater

than the previous ones. This happens because the BRF is more robust in the presence of
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noise, being able to better quantify the bands that are relevant for the analysis when there is

higher noise. Regarding the ranking positions (order), it can be noted that the methodologies

presented different sequences in most cases.

Case 2: Bearing dataset

The heatmap for the two selected signals, normal and fault condition on the outer

race, are shown in Fig.3.7a and Fig.3.7b, respectively.

(a) Normal condition (b) Fault in outer race

Figure 3.7: Heatmap - Case 2.

For the normal condition, Fig.3.7a, both methodologies highlighted the band in

which the frequency of approximately 1000 Hz was present as the most relevant. In the

BRF, only one band was selected as relevant at all levels. However, using the rms value,

other bands also presented energy close to the maximum value.

In Fig.3.7b where the fault is present, both methodologies identified the high

frequency region (excitation of the resonances due to the impact generated by the fault)

as relevant. On the other hand, it is known that with the progression of the fault, the

excitations present only at high frequency begin to appear in the region of medium and

low frequency, associated with the characteristics of the bearing. In this case, the BRF was

able to identify not only high frequency excitations as relevant, but also excitations in the

region below 2000 Hz. The rms value considered only the high frequency region as the most

relevant. Knowing that this behavior is associated with the progression of the fault, using

only the rms the analyst could miss an evolution of the defect, since the low and medium

frequencies would not be as prominent as the high ones.
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The rankings with the five most relevant bands according to BRF and rms for the

two signals from Case 2 are shown in Table 3.3.

Table 3.3 – Relevance Ranking - Case 2

Signal Feat.
Rank/
k-level

1
(BW 5120 hz)

2
(BW 2560 hz)

3
(BW 1280 hz)

4
(BW 640hz)

5
(BW 320 hz)

6
(BW 160 hz)

7
(BW 80 hz)

8
(BW 40 hz)

1 0:5120 0:2560 0:1280 640:1280 960:1280 960:1120 960:1040 1000:1040
2
3
4

BRF

5
1 0:5120 2560:5120 3840:5120 3840: 4480 4160:4480 4320:4480 960:1040 1000:1040
2 5120:10240 0:2560 2560:3840 3200:3840 4480:4800 960:1120 4400:4480 4400:4440
3 5120:7680 0:1280 4480:5120 3520:3840 4640:4800 4320:4400 4360:4400
4 7680:10240 1280:2560 640:1280 3200:3520 4480:4640 4640:4720 4680:4720

Normal

RMS

5 5120:6400 0:640 3840:4160 3520:3680 0:80 40:80

1 0:5120 2560:5120 3840:5120 4480:5120 4480:4800 800:960 880:960 920:960
2 0:2560 0:1280 640:1280 640:960 4640:4800 4480:4560 4480:4520
3 1280:2560 3840: 4480 960:1280 4480:4640 4640:4720 4680:4720
4 1280:1920 4160:4480 960:1120 4720:4800 4720:4760

BRF

5 3200:3840 1600:1920 4320:4480 4400:4480 4440:4480
1 0:5120 2560:5120 3840:5120 4480:5120 4480:4800 4640:4800 4640:4720 4680:4720
2 5120:10240 0:2560 2560:3840 3840: 4480 4160:4480 4480:4640 4480:4560 4480:4520
3 5120:7680 0:1280 3200:3840 4800:5120 4320:4480 4400:4480 4440:4480
4 7680:10240 5120:6400 640:1280 3520:3840 4160:4320 4720:4800 4720:4760

Fault

RMS

5 1280:2560 5120:5760 3200:3520 4800:4960 4880:4960 4920:4960

As in Case 1, the ranking of the BRF confirms the selection of bands related

to the most relevant frequencies in the signal, associated with the fault diagnosis. For the

normal situation, only one band was selected as relevant, and for the fault condition, different

bands in low, medium and high frequencies were selected, according to the fault progression

characteristic mentioned above. On the other hand, the rms value no longer points to

frequencies that are directly associated with the defect present in the signal.

The comparison between the top 5 values of the relevance rankings obtained with

BRF and rms is presented in Table 3.4.

It can be noted that in the normal condition, the methodologies presented more

different values, since the rms considered the high frequency region relevant in this situation.

On the other hand, the fault situation presented some similar values (mainly related to high

frequency), and the main difference is related to the low frequency region considered by BRF

and not by the rms.

Table 3.4 – Ranking comparison - Case 2

Signal
k-level/

Type of Analysis
0

(BW 10240 hz)
1

(BW 5120 hz)
2

(BW 2560 hz)
3

(BW 1280 hz)
4

(BW 640hz)
5

(BW 320 hz)
6

(BW 160 hz)
7

(BW 80 hz)
8

(BW 40 hz)

Normal
VA 100 % 50 % 25 % 20 % 40 % 0 % 20 % 40 % 40 %
PA 100 % 50 % 0 % 0 % 0 % 0 % 0 % 20 % 20 %

Fault
VA 100 % 50 % 50 % 60 % 80 % 40 % 60 % 80 % 80 %
PA 100 % 50 % 50 % 20 % 20 % 20 % 0 % 40 % 40 %
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Case 3: Mechanical fault dataset

The heatmap for the two selected signals, normal and unbalance, are shown in

Fig.3.8a and Fig.3.8b, respectively.

(a) Normal condition (b) Unbalance

Figure 3.8: Heatmap - Case 3.

For the normal condition, Fig.3.8a both methodologies selected similar frequency

bands, mainly at levels 5, 6 and 7. For the fault condition, Fig.3.8b, as it is an unbalance, the

most relevant frequency in the signal is related to the rotation frequency, which in the case

it is at 21.9 hz. Analyzing the result obtained by the BRF, it is noted that the band that

contained the frequency was selected as the most relevant in each of the levels, validating the

methodology. On the other hand, using the rms, the region presented lower or no relevance

when analyzing each level.

The rankings with the five most relevant bands according to BRF and rms for the

two signals from Case 3 are shown in Table 3.5.

The ranking of the BRF for the unbalance condition confirms the presence of the

rotation frequency (associated with fault) in the selected band as the most relevant in each

of the levels.

The comparison between the top 5 values of the relevance rankings obtained with

BRF and rms is presented in Table 3.6.

It can be noted that there are differences in the values and positions selected in the

top 5 of each methodology, with greater similarity for levels 5, 6 and 7 in relation to values

(normal condition, mainly). As in the other Cases, the positions of the rankings present

greater differences.
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Table 3.5 – Relevance Ranking - Case 3

Signal Feat.
Rank/
k-level

1
(BW 6250 hz)

2
(BW 3125 hz)

3
(BW 1562 hz)

4
(BW 781 hz)

5
(BW 390 hz)

6
(BW 195 hz)

7
(BW 97 hz)

8
(BW 48 hz)

Normal

BRF

1 0:6250 0:3125 0:1562 0:781 390:781 585:781 585:683 634:683
2 781:1562 0:390 195:390 195:293 244:292
3 781:1171 781:976 781:878 585:633
4 1171:1561 976:1171 683:781 732:812
5 10156:10546 0:195 878:976 781:829

RMS

1 0:6250 0:3125 0:1562 0:781 781:1171 585:781 585:683 634:683
2 6250:12500 6250:9375 1562:3124 781:1562 390:781 781:976 878:976 878:927
3 3125:6250 6250:7812 1562:2343 0:390 976:1171 976:1074 585:633
4 9375:12500 7812:9375 2343:3125 1171:1561 390:585 781:878 927:976
5 3125:4687 7812:8593 1953:2343 195:390 683:781 1025:1074

Fault

BRF

1 0:6250 0:3125 0:1562 0:781 0:390 0:195 0:97 0:48
2 195:390 683:780 683:731
3 293:390 293:341
4 878:927
5 585:633

RMS

1 0:6250 0:3125 0:1562 0:781 781:1171 585:781 683:781 293:341
2 6250:12500 6250:9375 1562:3124 781:1562 390:781 781:976 781:878 634:683
3 3125:6250 6250:7812 1562:2343 0:390 976:1171 976:1074 731:781
4 9375:12500 4687: 6250 2343:3125 1171:1561 195:390 585:683 781:829
5 7812:9375 7812:8593 1953:2343 390:585 293:390 976:1024

Table 3.6 – Ranking comparison - Case 3

Signal
k-level/

Type of Analysis
0

(BW 12500 hz)
1

(BW 6250 hz)
2

(BW 3125 hz)
3

(BW 1562 hz)
4

(BW 781 hz)
5

(BW 390 hz)
6

(BW 195 hz)
7

(BW 97 hz)
8

(BW 48 hz)

Normal
VA 100 % 50 % 25 % 20 % 40 % 80 % 80 % 80 % 40 %
PA 100 % 50 % 25 % 20 % 40 % 20 % 20 % 20 % 40 %

Fault
VA 100 % 50 % 25 % 20 % 20 % 20 % 20 % 40 % 0 %
PA 100 % 50 % 25 % 20 % 20 % 0 % 0 % 0 % 0 %

3.6 Conclusions

A new approach that allows to automatically select the relevant frequency bands

for an analysis of rotating machinery signals, and to obtain the respective ranking of

importance is presented. Through the analysis of the entropy and rms value of the signal, the

BRF is obtained allowing the classification of relevance of the band. In automatic systems

(e.g., Artificial Intelligence frameworks) the use of the method allows analyzing only bands

that contain relevant information, and in manual analyses, it provides the vibration specialist

with guidance on the main focuses of the analysis.

The results obtained for the different dataset show that the BRF is able to identify

the bands that present relevant information for the analysis of rotating machinery. The

methodology was able to identify the relevance of bands both for synthetically generated

data, with and without the presence of noise, and for two real dataset.

Due to its unsupervised characteristic, the methodology can be applied within

frameworks as a pre-feature extraction method in data analytics and artificial intelligence

applications, avoiding extracting features from irrelevant bands of the signal. The BRF

also makes a brief contribution to the development of XAI (when applied together with AI
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techniques), by providing the ranking of relevance of the bands. It can also be used to verify

the correct operation of sensors (quality of the acquired signal), contributing to the reliability

of wireless/remote and IoT (Internet of Things) monitoring systems.

Future works will explore the possibility of using the BRF value as an anomaly

detection / drift concept detection method. Considering the variation in the classification of

a band from relevant to irrelevant during a time series may indicate variations or anomalies

in the system. Or suggesting that the model needs to be retrained due to a new distribution

of the data.

In addition, the BRF will be studied as a monitoring feature over time (trend

analysis) in order to assess its sensitivity as an indicator of the component’s end-of-life.

Future developments also include studying the behavior of the method in time series of

different applications (e.g., electroencephalogram (EEG) etc).



CHAPTER IV

AN EXPLAINABLE ARTIFICIAL INTELLIGENCE APPROACH FOR

UNSUPERVISED FAULT DETECTION AND DIAGNOSIS IN ROTATING

MACHINERY

The monitoring of rotating machinery is an essential task in today’s production

processes. Currently, several machine learning and deep learning-based modules have

achieved excellent results in fault detection and diagnosis. Nevertheless, to further increase

user adoption and diffusion of such technologies, users and human experts must be provided

with explanations and insights by the modules. Another issue is related, in most cases,

with the unavailability of labeled historical data that makes the use of supervised models

unfeasible. Therefore, a new approach for fault detection and diagnosis in rotating machinery

is here proposed. The methodology consists of three parts: feature extraction, fault detection

and fault diagnosis. In the first part, the vibration features in the time and frequency

domains are extracted. Secondly, in the fault detection, the presence of fault is verified in

an unsupervised manner based on anomaly detection algorithms. The modularity of the

methodology allows different algorithms to be implemented. Finally, in fault diagnosis,

Shapley Additive Explanations (SHAP), a technique to interpret black-box models, is

used. Through the feature importance ranking obtained by the model explainability, the

fault diagnosis is performed. Two tools for diagnosis are proposed, namely: unsupervised

classification and root cause analysis. The effectiveness of the proposed approach is shown

on three datasets containing different mechanical faults in rotating machinery. The study
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also presents a comparison between models used in machine learning explainability: SHAP

and Local Depth-based Feature Importance for the Isolation Forest (Local-DIFFI). Lastly,

an analysis of several state-of-art anomaly detection algorithms in rotating machinery is

included.

4.1 Introduction

Rotating machinery is commonly used in mechanical systems and plays an

important role in industrial applications Lei et al. (2013). Among the various types

of rotating machinery, the following popular types are typically adopted in industrial

application: aeroengine, steam, gas and wind turbine, automobile transmission, drive trains,

fans, blowers, machine tools, compressors, motors, pumps, gearboxes and so on. Even though

the rotating machinery is diversified, it generally includes some common essential rotating

parts, such as rotors, rolling element bearings, and gears Lei (2017).

The rotor is the rotating part of the equipment and some common faults are: mass

unbalance, looseness, bent, misalignment, rub. A rolling element bearing is a component

that carries loads by placing rolling elements (such as balls or rollers) between two races.

Generally, the rolling bearing consists of three components: outer race, inner race and rolling

elements which can suffer from different problems (improper mounting, poor lubrication,

entry of foreign matter). All of these problems can cause different bearing faults including:

flaking, spalling, peeling, abrasion, scoring, corrosion, pitting, crack, material failure. A gear

is a rotating machine part having cut teeth, which meshes with another toothed part to

transmit torque. Geared devices can change the speed, torque, and direction of a power

source Lei (2017). There are a number of reasons for which a gear may fail in mechanical

systems: tooth wear, tooth load, gear eccentricity, backlash, gear misalignment, broken or

cracked teeth. Due to the complexity of the systems any fault of the rotating machinery can

cause the complete failure of the system, and therefore must be monitored.

The study of artificial intelligence (AI) techniques applied in the monitoring

of rotating machinery is a topic in continuous development and of great interest by

both researchers and industrial engineers. More and more, industries are adopting more

sophisticated technologies for monitoring to increase the reliability and availability of the
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machines, and, consequently, remaining competitive in the globalized economy.

As detailed by Liu et al. (2018) there are three basic tasks of fault diagnosis: (1)

determining whether the equipment is normal or not; (2) finding the incipient fault and its

reason; (3) predicting the trend of fault development. It is clear that when determining

the type of fault and its reason (task 2), consequently the answer on the condition of the

equipment is obtained (task 1). However, the AI models usually used to classify the type

of fault require to be trained with labeled data (supervised training), and examples for all

conditions, which in most of the cases is not available in the industry Carletti et al. (2019).

In addition, motivated by the recent advances in Deep Learning (DL), the vast majority of

AI technologies lack of explainability traits and they require a large volume of data labeled

for both normal and fault conditions, dramatically limiting their industry application.

Although the field of rotating machinery monitoring is widely developed, a small

number of approaches have been presented based on unsupervised anomaly detection, in

relation to the vast majority focused on classification and prognostics, as shown in the review

works Liu et al. (2018); Kumar and Hati (2020); Lei et al. (2020); Stetco et al. (2019). A

detailed review of AI for fault detection in rotating machines is presented in Liu et al. (2018):

most of the 100 references cited there refer mainly to the fault classification. In their review,

the main models present in literature were: Artificial Neural Networks (ANNs), k-Nearest

Neighbor (kNN), Naives Bayes, Support Vector Machines (SVM) and DL-based approaches.

In Kumar and Hati (2020) a review of the main machine learning (ML) and DL techniques

applied in the monitoring of induction motors is presented, aiming to detect faults such as:

broken bars, bearings, stator faults and eccentricity. Among more than 100 references cited,

the vast majority refers to classification and the main models used are: ANNs, Decision

Trees, k-NN, SVM and DL-based approaches.

More recently, a broad review with more than 400 citations, focused on AI

applications for fault detection is presented Lei et al. (2020). The authors provide a historical

overview, in addition to current developments and future prospects. Among the revised ML

methods employed in the field, the authors recognized the following as the most commonly

adopted: ANNs, Decision Trees, kNN, Probabilistic Graphical Model and SVM. Moreover,

the following DL approaches are taken into consideration: Autoencoders, Convolutional
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Neural Networks, Deep Belief Network, Residual Neural Networks. As the other cited review

works, the references in Lei et al. (2020) mainly focused on classification of the type of fault.

The authors also confirm the dependence on real and labeled data from the machine under

analysis. In addition to highlighting the recent and future importance in the Intelligent

Fault Diagnosis (IFD) scenario of explainable models, with increasing interest starting from

2017. Finally, they mention that traditional ML models should not be abandoned despite

the recent advances of DL: this is because it is still worth investigating statistical learning

in IFD with the big data revolution, since the theories of statistical learning have rigorous

theoretical bases, which promote the construction of diagnostic models with parameters,

characteristics and results that are easy to understand.

Anomaly detection is the process of identifying unexpected events in the dataset,

which are different from normal. In general, the signals generated by a fault have

characteristic patterns that are different from normal and indicate a change in the behavior

of the machine. Using a method that indicates changes in the current condition of the

equipment, does not need a labeled historical dataset for training and provides explainability

of the results can be the solution to the mass dissemination of artificial intelligence methods

in the industrial environment for monitoring rotating machinery.

Among the references studied, there are very few studies involving anomaly

detection with unsupervised approaches in the monitoring of rotating machinery. Authors

in Ogata and Murakawa (2016 in Bilbao, Spain.) used Fourier local autocorrelation (FLAC)

and Gaussian Mixture Model (GMM) approach (based on class cluster) to extract features

in the time-frequency domain and to detect faults respectively; in the same work, vibration

signals were used to detect faults in wind turbine components. The authors showed that

the use of features extracted from FLAC improves the model’s performance, making it

possible to detect anomalies in even more complicated cases, such as low speeds, where

conventional features do not present such satisfactory results. In von Birgelen et al. (2018)

an application of the Self Organizing Maps for anomaly detection was presented, showing its

effectiveness in detecting variations when the component fails: uses case related to cyber-

physical system components (bearings and blades) were exploited. In Amruthnath and

Gupta (2018) the authors proposed the use of different methods of ML using vibration
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signals from a fan for unsupervised detection of incipient fault. The algorithms used were:

PCA T2 statistic, Hierarchical clustering, K-Means, Fuzzy C-Means clustering. Finally, they

presented a comparison of the models, showing the feasibility of implementing them in the

monitoring of machines. Other studies Zhang et al. (2019); Hasegawa et al. (2018, 2017)

propose anomaly detection approaches in the monitoring of rotating machinery based on

combinations of different techniques with variations of GMM. To the best of our knowledge,

the vast majority of state-of-the-art ML unsupervised anomaly detection, have never being

used, e.g., Isolation Forest (IF), Local Outlier Factor (LOF), Angle-Based Outlier Detection

(ABOD) etc.

Another important aspect in the field that has not been fully explored yet is the

one related to interpretability of ML-based monitoring solutions in equipment machinery:

as argued above, without providing explainable results to the user, even when ML-based

modules provide excellent results in historical data, AI models are unlikely to be applied in

real-world scenarios Molnar (2020). Moreover, as mentioned by Lei et al. (2020), collecting

labeled data from machines generates a high cost, and consequently unlabeled data is the

majority in engineering scenarios. Therefore, using an AD (anomaly detection) model that

works with unlabeled data and provides explainability is essential to enable large-scale

implementation of AI in the monitoring of rotating machinery.

Recently studies are being developed with a focus on Explainable Artificial

Intelligence (XAI). In order to explain black-box models, different methods can be used

according to the ML model in use Du et al. (2019). In general, the methods provide

information to understand how the model performs fault detection, which can be, for

example, a ranking of the most important features, the model weight relevance or the most

significant points in the underlying signals Doshi-Velez and Kim (2017). Despite the current

interest, the vast majority of studies are focused on explainability for DL models and mostly

on fault classification. More information can be found in the articles available on the topic

Lei et al. (2016); Zhang et al. (2017); Jia et al. (2018); Li, Zhao, Sun, Cheng, Chen, Yan and

Gao (2019); Abid et al. (2020); Li, Zhang and Ding (2019); Chen and Lee (2020); Grezmak

et al. (2019, 2020); Saeki et al. (2019). Among the references researched, only Saeki et al.

(2019); Hendrickx et al. (2020) address the explainability of the model in anomaly detection,



80

being Saeki et al. (2019) based on DL. Hendrickx et al. (2020) presented a methodology for

detecting anomalies in electric motors (voltage unbalance) using a set of similar equipment

through electrical and vibration signature. The authors use generic building blocks and

present advantages of not needing historical data, incorporating human knowledge. Despite

the interesting approach, it is noted that for its use it is necessary to have data from more

than one machine, so that they can be compared, making applications on single machines

unfeasible.

In this chapter, a new approach for fault detection and diagnosis in rotating

machinery is proposed. In the first part, the vibration features in the time and frequency

domains are extracted. Secondly, in the fault detection, the presence of fault is verified in

an unsupervised manner based on anomaly detection algorithms. Finally, in fault diagnosis,

Shapley Additive Explanations (SHAP), a technique to interpret black-box models, is used.

Through the feature importance ranking obtained by the model’s explainability, the fault

diagnosis is performed. Two approaches of diagnosis are proposed, namely: unsupervised

classification and root cause analysis. Due to the importance of rotors, bearings and gears

for rotating machinery and especially their respective faults, three datasets are proposed for

validation of the methodology, each one being related to a respective component and its

possible faults.

The main contributions of the proposed approach are: i) unsupervised

identification of the fault in rotating machinery through vibration analysis; ii) unsupervised

classification of the type of fault in rotating machinery, based on the analysis of the

features relevance; iii) possibility of performing root cause analysis when the features may

be related to more than one fault and the unsupervised classification is not feasible; iv) a

new contribution to the study of XAI and novel application in fault diagnosis for rotating

machinery is presented based on SHAP and Local-DIFFI; v) possibility to be applied in

different types of faults; vi) possibility to change models according to the dataset; vii)

industrial applications.

To the best of the authors’ knowledge, this is the first study to compare and

analyze unsupervised state-of-the-art anomaly detection algorithms for monitoring rotating

machinery. In addition to providing explainability about the ML models used and proposing
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a new approach to perform unsupervised classification or root causes analysis.

The remainder of this chapter starts with a brief explanation about the machine

learning and XAI methods used in Section 2. The proposed approach is presented in Section

3. Experimental procedure is shown in Section 4. Analysis of the experimental results are

given in Section 5. Finally, Section 6 concludes this chapter.

4.2 Background

4.2.1 Anomaly Detection Algorithms

In this sub-Section we will provide a brief overview on the data-driven unsupervised

Anomaly Detection (AD) algorithms compared in this work.

Anomaly detection (also known as outlier detection1) refers to the task of

identifying rare observations which differ from the general (’normal’) distribution of a data

at hand Zhao, Nasrullah and Li (2019). Anomaly Detection approaches have the capability

of summarizing the status of a multivariate systems with a unique quantitative indicator,

that is typically called Anomaly Score (AS)2: while many approaches provide guidelines on

how to define outliers based on the AS, the quantitative nature of the AS indeces allowed

to implement different strategies that allow to govern the trade-off between false positives

and false negatives depending on the application at hand. While no applications to the best

of our knowledge have been presented in the field of rotating machinery monitoring using

vibration data and state-of-art models (that will be introduced in the rest of the Section),

anomaly detection approaches have been successfully applied in various areas like biomedical

engineering Meneghetti et al. (2018), fraud detection Rai and Dwivedi (2020), oil and gas

Barbariol et al. (2020) and additive manufacturing Li et al. (n.d.).

Algorithms are arranged by increasing year of presentation. In view of the large

number of tested models, only the algorithms achieving the best performance in this study

are discussed. The mathematical formulation and details for Lightweight on-line detector of

anomalies (LODA), Angle-based Outlier Detector (ABOD) / Fast-ABOD and Cluster-based

1The terms ’Anomaly’ and ’Outlier’ will be treated in the same way in this work.
2Other authors refer to the concept of Anomaly Score with various names like for example Health Factor

or Deviance Index.
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Local Outlier Factor (CBLOF) can be retrieved at Pevn‘y (2016); Hans-Peter Kriegel and

Zimek (2008); He et al. (2003).

k-Nearest Neighbors (kNN)

k-nearest neighbor (kNN) is a simple and popular method used for supervised

tasks of classification and regression. In the context of AD, kNN can be also employed:

given a sample, the distance to its kth-nearest neighbor can be considered as AS Knorr and

Ng (1998). More formally, the anomaly score Ramaswamy and K.S. (2000) is then defined

in Equation 4.1.

skNN(x) = Dk(x) (4.1)

where Dk(x) denotes the distance of the kth nearest neighbor from observation x. The

distance function can be any metric distance function. The most common methods for

selecting distance function are: largest distance, where the distance to the kth neighbor is

used as the AS; mean distance, where the AS is the average of all k neighbors; median

distance, which uses the median of the distance to k neighbors as AS.

Minimum Covariance Determinant (MCD)

The minimum covariance determinant (MCD) is a robust estimator of multivariate

locations and its goal is to find n instances (out of N) whose covariance matrix has the lowest

determinant Rousseeuw and Driessen (1999). In the context of AD, MCD is used with

Mahalanobis distance (MD), a well-known distance metric of a point from a distribution:

first a minimum covariance determinant model is fitted and then the Mahalanobis distance

is used as AS. Since the parameters required by MD are unknown (mean and covariance

matrix), the MCD model is used to estimate them, and then the MD can be calculated as

follows, in Equation 4.2.

sMCD(x) = d(x, x̄, Cov(X)) =
√

(x− x̄)′Cov(X)−1(x− x̄) (4.2)
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where x̄ is the sample mean and Cov(X) is the sample covariance matrix. If data are assumed

centered not normalized, the robust location and covariance are directly computed with the

FastMCD algorithm without additional treatment. Otherwise, the support of the robust

location and the covariance estimate are computed, and a covariance estimate is recomputed

from it, without centering the data Zhao, Nasrullah and Li (2019).

Local Outlier Factor (LOF)

LOF Breunig et al. (2000) is a density-based approach for AD; such class of

approaches are based on the study of local neighborhoods of the data points under exam:

an observation is a dense region is considered as a normal data point (also referred in the

literature as an inlier), while observations in low-density regions are anomalies.

The LOF procedure involves two steps: (i) evaluating the so-called Local

Reachability Density; (ii) evaluating the AS sLOF. the Local Reachability Density of a

data point x in its k-neighborhood Nk(x) (the space where the k other data points closest

to x are living) is defined in Equation 4.3.

LRDk(x) =
k

∑

k(y ∈ Nk(x))rk(x, y)
(4.3)

where rx(x, y) = max{dk(x), d(x, y)} is the so-called reachability distance and dk(x) is the

distance from x of its k-th nearest neighbor. The reachability distance just defined is

used instead of the distance d(x, y) in order to reduce statistical fluctuations/noise in the

evaluation of the AS sLOF; the AS is in fact defined in Equation 4.4.

sLOF(x) =
1

k

∑

y∈Nk(x)

LRDk(y)

LRDk(x)
(4.4)

The above defined anomaly score can assume values between 0 and ∞, however, a value

around 1 (or lower than 1) indicates that the data point x is somehow similar to its neighbors

and it can be therefore considered as an inlier; a value of sLOF larger than 1 indicates instead

a case in which the data point under exam can be considered as an outlier. For more details

we refer the interest readers to Breunig et al. (2000). LOF is a classic approach to AD

and extended versions of the algorithms have been proposed over the years Kriegel et al.
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(2009); Schubert et al. (2012): in this work we also consider the popular Cluster-based LOF

(CBLOF) He et al. (2003).

One-class Support Vector Machines (OCSVM)

One-Class Support Vector Machine Schölkopf et al. (2001) is an extension for AD

of the popular approach for classification known as Support Vector Machine. The training

data is projected to a high-dimensional space and the hyperplane that best separates the

points from the origin is determined. When evaluating a new sample, if it lays within the

frontier-delimited subspace, it is considered to come from the same population and therefore

it is considered as an inlier; otherwise, the data point is considered as an anomaly by the

approach.

As in SVM, kernel functions are used to produce non-linear hyperplanes; different

kernels can be used: linear, polynomial, sigmoid, gaussian. In this work, the kernel coefficient

for gaussian, polynomial and sigmoid will be called gamma and the parameter to define an

upper bound on the fraction of training errors and a lower bound of the fraction of support

vectors, nu.

Feature Bagging (FB)

Feature Bagging is the combination of multiple outlier detection algorithms using

different set of features Lazarevic and Kumar (2005). Every outlier detection algorithm uses

a small subset of features that are randomly selected from the original feature set. Any AD

approach can be used as the base estimator. Using a cumulative sum approach, each AS

generated by each outlier detector used is combined in order to find a final AS and described

in Equation 4.5.

sfinal(x) =
T
∑

t=1

st(x) (4.5)

where the final anomaly score sfinal(x)is the sum of all anomaly scores st from all T iterations

on each outlier detector used. The number of base estimators in the ensemble and the number

of features to draw from X to train each base estimator can be adjusted. Moreover, the final
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combination of the AS can be performed by the averaging all models or taking the maximum

scores.

Isolation Forest (IF)

Isolation Forest (iForest or IF), Liu et al. (2008, 2012), uses the concept of isolation

instead of measuring distance or density to detect anomalies. The IF exploits a space

partitioning procedure: the main idea underlying the approach is that an outlier will require

less iterations than an inlier to be isolated, i.e., to find through the partitioning procedure a

region of the space where only such observation lies in.

The partitioning procedure used by the IF is achieved through the creation of

iTrees, binary trees that are the result of a random partitioning procedure obtained by

splitting the data based on one of their features at each iteration of the algorithm. Following

the above stated fundamental idea of IF, it is expected that the path to reach a leaf node

from the root of an iTree will be shorter for outliers than for inliers; the anomaly score

will be related to this path length: the shorter the more anomalous the data point. We

underline that this procedure is done randomly: to achieve fast computation the features

and the splitting points are chosen randomly; the drawback of this approach is that a single

tree can give an estimate of the path length that has high variance: thus, similar to the

popular Random Forest (that we remark is a supervised approach), an ensemble of T trees

is constructed in order to provide a low-variance estimation. More in detail, an iTree is built

as follows.

1. A subsample of data S ∈ X is randomly selected.

2. A feature v ∈ {1, . . . , p} is randomly selected: a node in the tree is created and at this

node the value of v is used;

3. A random threshold v̄ on v is chosen within the domain of the variable;

4. Two children nodes are generated: one associated to the points with values for variable

v below v̄ and one for those with value above;
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5. The points from 2 to 4 of this procedure are repeated until either a data point is

isolated or a threshold on the maximum tree length is reached.

After the iTrees are constructed, the AS score for a data point x, Equation 4.6.

sIF(x) = 2
−E(h(x))

c (4.6)

where h(x) is the length of the path for a data point from its leaf to the root, E(h(x)) is the

average of h(x) in iTrees collection of iTrees and c is an adjustment factor which is set to the

average path length of unsuccessful searches in a binary search tree procedure. Using the AS

just defined, if instances return sIF very close to 1, then they are tagged as anomalies; on

the other hand, values much smaller than 0.5 are quite safe to classify as normal instances,

and values close to 0.5 then the entire sample does not really have any distinct anomaly Liu

et al. (2012).

iForest works well in high dimensional problems which have a large number of

irrelevant attributes, and in situations where training set does not contain any anomalies.

Given its high performance and the possibility to parallelize its computation (thanks to

its ensemble structure), IF is probably the most popular AD approach: for this reason,

we will consider, as it will be detailed in Section 4.2.2, a dedicated approach for providing

interpretable traits to IF.

Histogram-based outlier score (HBOS)

HBOS is an AD approach based on histograms that was introduced for providing

fast computation of an AS w.r.t. previously proposed AD methods.

The HBOS algorithm can be summarized as follows: univariate histograms for

each single feature are computed (in case of numerical data a set of k bins of equal size are

used for each histograms). The number of bins k is an hyper-parameter that needs to be

tuned; histograms are normalized to [0, 1] for each single feature; frequency (relative amount)

of samples in a bin is used as density estimation; AS for each instance x is computed as a
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product of the inverse of the estimated density, Equation 4.7.

sHBOS(x) =

p
∑

i=0

log

(

1

histi(x)

)

(4.7)

where p is the number of features and histi(x) is the density estimation. With such definition

of the AS, with HBOS the outliers correspond to high values of sHOBS(x), while inliers to

low values. In this algorithm, two parameters are still employed and need to be tuned, being

α and the tolerance (tol). α is a regulation factor to avoid overfitting and tol adjusts the

flexibility while dealing the samples falling outside the bins.

Ensemble

The ensemble method combines different algorithms to obtain a single final result.

Knowing that ML models are sensitive to the types of data, ensemble methods are commonly

used to increase the efficiency and robustness of the final result. Being Hi the result of each

ith base model, the sum of the k selected ones is the final result (FR) of the ensemble method,

and the final decision (FD) is obtained by a majority voting, both described as:

FD =















1, if FR > k/2

0, otherwise.

, where FR =
k

∑

i=1

Hi (4.8)

Where in this case, 1 indicates that the sample is an anomaly and 0 that the

sample is normal.

4.2.2 Explainable Artificial Intelligence (XAI)

One of the main limitations of Machine Learning models application in real

situations is related to their lack of explainability. In many real-world applications it is

necessary to understand how the model made a certain decision, allowing the specialist to

trust the predicted result. For such reason, many XAI approaches have been presented in

the past recent years.

In order to explain black-box models, different methods can be used according to

the ML model in use Du et al. (2019). These methods can be classified according to various
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criteria. The first difference is whether the methods are intrinsic or post-hoc: in intrinsic

methods, explainability is performed by restricting the complexity of the model, while post-

hoc are methods that analyze the model after training. Another important concept is whether

the explainability models are model-specific or model-agnostic: model-specific approaches are

limited to a specific model, on the other hand, model-agnostic can be used on any machine

learning model and is applied after the model has been trained (post-hoc) Molnar (2020).

Model-specific approaches in general access the structure of the ML models or their weights

to make inferences, while model-agnostic techniques usually works by analyzing the input

features and their respective outputs of the ML model.

Local and global explanations are other different approaches to XAI. Global

explainability is usually used to describe the something regarding the model as a whole,

while local explainability aims to understand the reason behind the result obtained for a

specific condition/observation.

In this subsection the XAI approaches adopted in this work are revised.

Shapley Additive Explanations (SHAP)

Shapley Additive Explanations, M and Su-In (2017) is a state-of-art and model-

agnostic (it can be applied to any algorithm) for interpreting ML predictions, both in

unsupervised and supervised tasks.

Based on Shapley values from coalitional game theory, SHAP provides a feature

importance ranking which can be used to explain the ML model to the individual data point

level: in the context of anomaly detection, having an ordered list of features can be really

helpful for domain expert to enable an effective troubleshooting. The feature importance

ranking is the result of the contribution of each feature to the final prediction of the model.

Since the Shapley values are expensive to obtain, SHAP approximates them

of a conditional expectation function of the original model. The detailed mathematical

formulation of SHAP can be retrieved at M and Su-In (2017).
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Local Depth-based Feature Importance for the Isolation Forest (Local-DIFFI)

Given the increased interest and popularity of IF, we chose to consider in this work

also a model-specific approach for providing, like in SHAP, a feature importance ranking.

Local Depth-based Feature Importance for the Isolation Forest is the first model-

specific method for interpretability in IF Carletti et al. (2020). While IF is one of the most

commonly adopted AD algorithms, its structure and prediction lack in interpretability. To

overcome this problem the Local-DIFFI method proposes an effective and computationally

inexpensive approach to define local feature importance (LFI) in IF, Equation 4.9.

LFI =
Io
Co

, (4.9)

where Co is the features counter for the single predicted outlier xo and Io is updated by

adding the quantity Carletti et al. (2020) while iterating over all the trees in the forest,

Equation 4.10.

∆ =
1

ht(Xo)
−

1

hmax

(4.10)

The model is a post-hoc method, which, due to its operation, preserves the performance of an

established and effective AD algorithm (IF). An interesting property of Local-DIFFI is that,

while achieving comparable results w.r.t. SHAP, its computing time is orders of magnitudes

smaller than SHAP. The method proposes to provide additional information about a trained

instance of the IF model with the main objective of increasing the users’ confidence in the

result obtained. Besides the local feature importance provided by Local-DIFFI, the method

can also be used to provide global feature importance, namely DIFFI.

4.3 Proposed Approach

The proposed methodology is depicted in Fig. 4.1 and it is divided into three

parts: 1) Feature extraction; 2) Fault detection: Anomaly Detection; 3) Fault diagnosis:

Unsupervised classification / Root cause analysis. The vibration features are initially

extracted based on the type of monitored component. The extracted features are divided
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into a training and testing group, and the hyperparameters of the anomaly detection models

are tuned. The samples are evaluated in the fault detection part: if a fault (anomaly) is not

detected, the analysis is completed; on the other hand, if the sample is a fault (anomaly),

the most relevant features used to generate the result are evaluated through the model’s

explainability. In the fault diagnosis part, the features that indicate only the presence of

fault, but do not indicate the type / location are disregarded (called general features, e.g.,

rms and kurtosis). For components that have unique fault specific features (e.g., bearing,

gearbox), it is possible to perform an unsupervised classification based on the most relevant

feature for the result. On the other hand, for analysis where the features may be related

to more than one fault (e.g., misalignment and mechanical looseness), the most relevant

features (feature ranking) for identifying the sample as an anomaly are presented, allowing

the specialist to analyze the problem in more detail, namely root cause analysis.

Dataset
Yes

No

Is the new
sample an
anomaly?

Unsupervised classification

Based on the most important
features obtained by the XAI
model and their relationship
to the respective fault Can the features 

be related with
different faults?

Root Cause Analysis

Based on the feature
importance ranking obtained
by the XAI model

No

Yes

Unsupervised
classification

Root Cause Analysis

Normal

Feature extraction Fault Detection

XAI | Feature
ImportanceFault Diagnosis

Fault

Figure 4.1: General framework of the proposed methodology.

4.3.1 Feature extraction

One of the main reasons for the wide use of DL models in many tasks is that DL

approaches implicitly implement a feature extraction procedure due to the DL architectures

ability to learn discriminating features through non-linear relations performed within the

model: avoiding the time consuming task of feature extraction is a captivating property

for ML technologies developers. However, in the domain of rotating machinery, the vast

majority of faults have already been studied and ad-hoc defined features that are informative
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for fault detection (that can be computed directly on the raw signals or after dedicated signal

processing filters) have been developed by researchers over the years. For this reason, we

have decided to base our approach on ’classic’ ML techniques exploiting the wide knowlegde

of filtering approaches and feature definitions provided by the literature.

Among the sensors used for monitoring rotating machinery, the vibration-based

diagnostic method is the most popular and researched. The interest is justified by the

fact that the vibration signals directly represent the dynamic behavior of the equipment

Ciabattoni et al. (2018); Samuel and Pines (2005); Dalvand et al. (2017); Wei et al. (2019)

and are a non-invasive technique. The features to detect faults in rotating machinery

using vibration signals are commonly extracted from the time, frequency and time-frequency

domains Lei et al. (2020).

(i) Among the most used in the time domain are: mean, standard deviation,

rms (root mean square), peak value, peak-to-peak value. According to Lei et al. (2007,

2010), these features can be affected by the speed and load of the machines, therefore, other

features are also commonly used to fill this gap: shape indicator, skewness, kurtosis, crest

factor, clearance indicator, etc., which are robust to the machine’s operating conditions.

(ii) The features in the frequency domain are extracted from the frequency

spectrum, for example: mean frequency, central frequency, energy in frequency bands, etc.

Different information can be obtained that is not found or is hardly extracted in the time

domain Lei et al. (2020).

(iii) For the time-frequency domain, features such as entropy are usually extracted

by Wavelet Transform, Wavelet Packet Transform and empirical model decomposition. These

features are capable of reflecting the machine’s health states in non-stationary operating

conditions Lei et al. (2020).

In this study, two approaches were combined in relation to the types of features.

Firstly, general features were selected to indicate the presence of system fault and

degradation. This approach does not allow the identification / location of the fault, but

it allows to detect variations in the system in a global way, avoiding that a fault is not

identified. Secondly, specific features commonly associated with the type of defect in the

respective components were used to enable the identification / location of the fault. During
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the extraction of specific features, it must be defined whether the features are related to

different faults or are unique, enabling the fault diagnosis through unsupervised classification

or root cause analysis. The choice of the selected features for this study was based on those

most used industrially in predictive maintenance, in order to provide a better understanding

and to enable future applications without the need for deep signal processing. It is worth

mentioning that different features (for example the ones proposed in Sánchez et al. (2020,

2018)) can also be applied in the proposed framework, that has also the advantage of allowing

for a certain flexibility in the features choice.

4.3.2 Fault detection: Anomaly detection

Identifying the fault is extremely important for production processes, and even

more important when performed in an unsupervised manner, that is, without the presence

of labeled data related to the fault modes in training set. In this part, the extracted features

are divided into a training and testing group, and the hyperparameters of each AD model

are adjusted. The samples are evaluated in unsupervised manner and identified as normal

or fault (anomaly). If an anomaly is not considered, the analysis is completed. On the other

hand, if the sample is an anomaly, the root cause analysis or fault classification based on the

model’s explainability is performed.

Different models used in the field of AD were studied. As is common knowledge,

the performance of AD models are strongly related to the type of data available. While we

report in the following the best approaches in our studies, the approach is generic and the

user can modify the AD model in use if the expected performance is not achieved, without

affecting its structure.

The different AD algorithms evaluated were the ones reported in Section 5.2.2:

Clustering Based Local Outlier Factor (CBLOF), Local Outlier Factor (LOF), Isolation

Forest (IF), Lightweight on-line detector of anomalies (LODA), Histogram-based Outlier

Detection (HBOS), k-Nearest Neighbors (kNN), Fast - Angle-based Outlier Detector

(FastABOD), Outlier Detection with Minimum Covariance Determinant (MCD), One-Class

Support Vector Machine (OCSVM), Feature Bagging (FB) and Ensemble (combination of

all models) available in Zhao, Nasrullah and Li (2019).
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4.3.3 Fault diagnosis: Unsupervised Classification / Root Cause Analysis

Despite the advances in ML applications for fault diagnosis in rotating machines,

the vast majority of methods are performed in a supervised manner. In other words, the

methods use labeled data in the training to ensure that the model is able to distinguish

between different classes of faults. The proposed methodology presents an approach where

no training labels are necessary. The fault diagnosis is performed in an unsupervised manner

based on the importance ranking obtained by the model explainability. Two different analysis

are possible depending on the type of component being monitored, namely: unsupervised

classification and root cause analysis. For faults that have unique characteristic features (e.g.,

bearings, gearbox) unsupervised classification can be performed directly. On the other hand,

for analysis where the features may be related to more than one fault (e.g., misalignment

and mechanical looseness), the most relevant features (feature ranking) to identifying the

sample as an anomaly are presented, allowing the specialist to analyze the problem in more

detail, called root cause analysis.

The methodology is based on the feature importance ranking for each new sample

identified as an anomaly, as presented in Algorithm 1 and Fig.4.2. After identifying the

anomaly in the previous part, the most relevant features are analyzed through the model’s

explanability. SHAP is used to obtain the feature importance ranking. The general features

that only indicate the presence of a fault, but do not indicate the type / location are

disregarded (e.g. rms and kurtosis). A new ranking of importance is obtained using only the

specific features. As each specific feature is related to a potential unique type/location

of component fault, the most relevant feature is considered as the type/location of the

fault present in the system. For root cause analysis, since the features may be related

to more than one fault, the feature importance ranking is presented, assisting the specialist

in identifying the type of fault. For example, assuming that based on the importance score

calculated by SHAP, the most relevant features in order are: rms, Ball Pass Frequency Outer

(BPFO), Ball Pass Frequency Inner (BPFI), kurtosis, Ball Spin Frequency (BSF). Applying

the methodology, the new ranking of importance would be: BPFO, BPFI and BSF. After

that, according to the type of procedure applied, the result is obtained. For unsupervised
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Figure 4.2: Specific framework of the proposed methodology for Unsupervised Classification
/ Root Cause Analysis.

classification, the specific features are analyzed, and the fault is classified based on the feature

most relevant to the result. In other cases, where the features are related to more than one

fault, root cause analysis is performed and the feature importance ranking is presented.

The methodology is applicable for the other types of rotating machinery, where the only

modification is the type of feature to be analyzed. In the case of the gearbox, for example,

instead of BPFO, BPFI and BSF, the specific features would be the gear mesh frequency

and its harmonics for each stage, 1xGMF (Gear Mesh Frequency), 2xGMF, 3xGMF, 4xGMF

(1stStage), 1xGMF, 2xGMF (2nd Stage) and for the case of mechanical faults (rotor), the

features would be: 1xfr (rotating frequency), 2xfr, 3xfr and 4xfr. It is important to highlight

that other features can be used according to the knowledge related to the problem under

study.

Understanding which features the model uses to identify the anomaly is essential

to perform root cause analysis/classification. In other words, through explainability it is

possible to mimic human knowledge. Without the use of an explainability algorithm such as

SHAP and Local-DIFFI, it is not possible to carry out the analysis, since the models used

do not present explanations of how the final results were obtained. Thus, the association of

state-of-the-art models to identify anomalies in the signals with algorithms that perform the

explanability, allows the proposition of the new methodology.

Even though it is the state-of-the-art in explainability and model-agnostic, SHAP

presents a high computational cost in relation to model-specific solutions. Therefore, a

comparison was made using the recent proposed explainability algorithmic, Local-DIFFI
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for the Isolation Forest model. As stated above, the choice of model-specific Local-DIFFI

is due to the fact that Isolation Forest presents excellent results in the literature and good

robustness in relation to the variation of hyperparameters. Moreover, in general, Local-DIFFI

presents very similar results to SHAP, as shown in Carletti et al. (2020). The similarity of

the models was verified through Kendall-Tau rank distance, a metric commonly used for

evaluation between two ranking lists.

Algorithm 1 Pseudo-Code

1: procedure Unsupervised Classification

2: Type: specific analysis / specific feature related to a single fault
3: Input: new sample
4: Output: fault classification (most important specific feature)
5:

6: if new sample = anomaly then
7: feature importance ranking← shap or local-diffi(new sample)

8: feature importance ranking.drop(general features)
9: feature importance ranking← sort(feature importance ranking)
10: most important feature← feature importance ranking[0]
11: print(’The fault is located in: ’, most important feature)

12:

13: procedure Root Cause Analysis

14: Type: general analysis / specific feature related to different faults
15: Input: new sample
16: Output: root causes (most important specific features)
17:

18: if new sample = anomaly then
19: feature importance ranking← shap or local-diffi(new sample)

20: feature importance ranking.drop(general features)
21: feature importance ranking.← sort(feature importance ranking)
22: print(’The root causes are related to: ’, feature importance ranking)

4.4 Experimental procedure

4.4.1 Data description

Three datasets were used to address different faults found in rotating machinery.

As showed in Lei (2017) even though the rotating machinery is diversified, some common

essential rotating parts are: rotors, rolling element bearings, and gears. Due to the

importance of each component and its respective fault for mechanical systems and

consequently for industrial production, the proposed datasets were chosen. The faults
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analyzed were: defects in bearing and gearbox, misalignment, unbalance, mechanical

looseness and combined faults. The use of different datasets, with different monitoring

approaches, aims to validate the proposed methodology in different scenarios.

Case 1: Bearing Dataset

The first dataset considered (publicly available Qiu et al. (2006)), namely Bearing

Dataset, is composed by three run-to-failure tests with four bearings in each test. The

rotation speed was kept constant at 2,000 rpm by an AC motor coupled to the shaft via

rub belts. A radial load of 6,000 lb was applied to the shaft and bearing by a spring

mechanism. Rexnord ZA-2115 double row bearings were installed on the shaft. PCB 353B33

accelerometers were installed on the bearings housing. All failures occurred after exceeding

the projected bearing life, which is more than 100 million revolutions Qiu et al. (2006). For

the study, bearing 01 of test 02 was used. Each test consists of individual files of vibration

signals recorded at specific intervals. Each file consists of 20,480 points with the sampling

rate set at 20 kHz. NI DAQ Card 6062E was used for collection.

The dataset consists of run-to-failure tests, therefore no labels are available

indicating the fault start: the only information provided is the type of fault present at the

end of each test. To assess the efficiency of the AD model, the data was manually labeled.

In the analysis, it was considered that after starting the defect, all subsequent observations

correspond to a faulty bearing. It is worth mentioning that the labels were used only to

evaluate the efficiency of the methodology and they were not used by the AD model.

The test has 984 observations, with the first 531 observations labeled as normal and

the last 453 as anomalies (fault). The fault was identified in the outer race. The features used

were: kurtosis, rms, BPFI, BPFO and BSF, which are widely used in bearing fault detection

Bolón Canedo et al. (2013); Zhang et al. (2011, 2018); Lei and Zuo (2009); Li, Yang, Li, Xu

and Huang (2017); Singh and Shaik (2019). Specific features are those that indicate the type

of fault (BPFI, BPFO and BSF) and general features are those that indicate the presence

of a defect (kurtosis and rms). The bearing fault frequencies are important to assess the

type of defect and confirm its existence, which is not always noticed by other features. It is

also important mentioning that there are cases where the fault does not present the classic
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defect behavior with the deterministic bearing frequencies in evidence Smith and Randall

(2015), which makes it important to use other features. Knowing that bearing faults are

generally associated with impacts, kurtosis is a relevant feature for the study. Finally, the

rms value represents the global behavior of the system, indicating a general degradation and

accentuation of the defect. The purpose of using this dataset, in addition to identifying the

presence of the fault in a real monitoring situation, is to classify the type of fault using the

proposed methodology. It is important to highlight that other datasets (as in Wang et al.

(2020)) were tested to validate the methodology, but due to the similarity of the results, it

was decided to present only this one.

Case 2: Gearbox Dataset

The second dataset considered, the Gearbox Dataset, was presented in Cao et al.

(2018) and it is used to evaluate faults in gearbox. A 32-tooth pinion and an 80-tooth gear

were installed on the first stage input shaft. The second stage consists of a 48-tooth pinion

and 64-tooth gear. The data were recorded using an accelerometer through a dSPACE

DS1006 system, with sampling frequency of 20 KHz. Nine different gear conditions were

introduced to the pinion on the input shaft, including healthy condition, missing tooth, root

crack, spalling, and chipping tip with five different levels of severity. For each gear condition,

104 observations were collected resulting in a total of 936 observations.

It is common knowledge that general gear problems tend to increase the energy of

the sidebands spaced from the rotation frequency around the Gear Mesh Frequency (GMF)

and their respective harmonics. Thus, simulating a real condition, the features used were:

kurtosis, rms, 1xGMF, 2xGMF, 3xGMF, 4xGMF (1stStage), 1xGMF, 2xGMF (2nd Stage).

Due to non-stationary issues and the uncertainty caused by speed varying, instead of using

the energy value in each GMF and respective side bands, the energy in the GMF band +/-

4*(nominal rotation frequency) was calculated. In addition to being able to detect the fault

(AD), the use of this fault dataset aims to identify the location of the fault in the gearbox

(first or second stage) and not to classify the type of fault (missing tooth, root crack, spalling

and chipping tip).
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Case 3: Mechanical Fault Dataset

The last dataset, Mechanical Fault Dataset, was developed by one of the authors

Brito and Pederiva (2002, 2003): the dataset contains different electrical and mechanical

faults which were inserted in a experimental test rig, where one of the components is a rotor;

in this work we will consider the following faults: unbalance, misalignment, looseness and

combined faults (being the combination of the previous ones). Six accelerometers were used

to acquire the vibration signals, in the horizontal, vertical and axial positions, three in the

fan-end side and three in the drive-end side.

The rotation speed was kept constant at 1717.5 rpm. The observations were labeled

according to the fault introduced in the test rig, and later analysis of the vibration spectrum.

Each file consists of 3,200 points with df = 0.125 Hz. The dataset contains 5 conditions with

a total of 1418 observations (532 normal, 557 unbalance, 283 misalignment, 28 mechanical

looseness and 18 combined fault).

In general, the unbalance is commonly identified in the vibration signal by

increasing the energy in 1 x fr (rotating frequency). It is noteworthy that other faults

can also appear in 1 x fr as structural problems and even mechanical looseness. The most

common types of misalignment and mechanical looseness show an increase in energy level

in 2 x and 3 x fr, and therefore may have similar characteristics. The mechanical looseness

can still have multiple and sub-harmonics of fr. Considering the types of faults and the

respective behaviors, the following features were used: rms, energy level in 1 x fr, 2 x fr, 3 x

fr and 4 x fr.

In addition to the basic objective of identifying the fault, the use of this dataset

aims to evaluate the classification methodology with a focus on root cause analysis, when

the features are correlated with more than one type of fault. The dataset also provides the

possibility to study isolated and combined faults that, although known, have been little used

in studies involving fault detection and new techniques of artificial intelligence compared to

bearings and gearboxes.
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4.4.2 Analysis approaches

Two approaches were used to define 3 different scenarios [Case 1, 2, 3] that can be

found in real-world monitoring applications.

In the first approach, a dynamic condition was considered with the data collected

in sequence, where a temporal relationship and fault evolution is presented [Case 1]. For

the study, a sliding window was used, where the training group was updated with each

new sample, in case it was considered normal. 100 samples were initially used for the

training group in order to ensure stability in the models. For this situation, as the model

was started together with the machine under normal conditions (e.g.: after maintenance

or a new machine), there are no anomalies in the training group. It is worth noting that

this approach can also be used if there are anomalies in the training group (e.g.: cases of

continuous monitoring where the machine was repaired after a fault, and it is desired to use

all the signals to increase the amount of data in the model).

In the second approach, a static condition was considered, where the signals do

not have a temporal correlation with each other [Case 2 and 3]. This approach simulates

when historical data are available for the machine without labels. They also refer to different

types of faults and normal conditions, however not necessarily collected in sequence. It is

important to highlight that although Cases 2 and 3 represent the same condition called

static condition, the types of faults studied are different in each case. The data were divided

into training and test groups. Due to the number of observations available, the size of the

training group is limited by the number of normal samples and the rest designated as a test.

The training group consisted of 80% of samples of normal condition and 20% of anomalies

selected at random. The proportion has been defined as a machine in operation is mostly

in normal condition, and few situations with faults. Such an approach also shows that it

is possible to implement the proposed methodology even with the presence of anomalies in

training set.
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4.4.3 Hyperparameter tuning

The hyperparameters for each model were adjusted based on the training group

to obtain the best performance and are shown in Table 4.1. A cross-validation procedure

was applied, using a Leave P Out (LPO) approach for the dynamic condition, where 5%

of the training samples were removed in each new update of the training group. For

the static condition, a cross-validation method was also applied but, in this case, using

random permutations (shuffle and split), where the signals were randomly chosen for the

test and training group at each iteration of the model. The hyperparameters are presented

in relation to the library used Zhao, Nasrullah and Li (2019). As the models did not show

significant differences in the final result in relation to the hyperparameters for each case, the

hyperparameters were kept the same for all analysis.

Table 4.1 – Hyperparameter selected using cross-validation for each model

Model and Hyperparameter

kNN n neighbors=5, method=largest, metric=’minkowski’
MCD assume centered=False
LOF n neighbors=16
CBLOF n clusters=6, alpha=0.8, beta=4
OCSVM kernel=’rbf’, gamma=0.2, nu=0.7
FB base estimator=LOF, n estimators=10, max features=1.0, combination=’average’
FastABOD n neighbors=5
IF n estimators=100, max samples=128
HBOS n bins=5, alpha=0.1, tol=0.5
LODA n bins=5, n random cuts=50

4.4.4 Evaluation metrics

For the fault detection part, as an unsupervised methodology, at the end of the

test the anomaly score is calculated, where samples with high anomaly score values are

usually anomalies. To verify the performance of the proposed methodology, threshold values

were defined based on the training group. For the bearing dataset (Case 1) the threshold was

defined based on the assumption that the training group is composed of only signals in normal

condition (considering that the initial signals correspond to the start of operation of the

bearing). As the gearbox dataset (Case 2) and mechanical fault (Case 3), the contamination

ratio is known, its value was used to define the threshold. It is also worth mentioning

that, due to the knowledge about the fault characteristics and respective behavior, the user
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can adjust the contamination rate of the methodology during the application, based on a

preliminary analysis of the training data.

For the static condition, each test was performed 100 times to show the stability of

the model. The signals were randomly chosen for the test and training group at each iteration

of the model. For the dynamic condition, in each new update of the training group, 5% of

the samples were randomly excluded to also assess the stability of the model. As the update

occurred more than 400 times in the tested dataset, the complete test was performed 10

times. In addition to the variation of the dataset, each iteration of the model was performed

with different random seeds.

The results are presented using the F1-Score, PR-AUC (Precision-Recall Area

Under the Curve) and average confusion matrix of the iterations with respective standard

deviations. The metrics were chosen due to the greater interest in correctly identifying

samples referring to faults (anomalies). Although it is a problem to have false positives in

the final result, failing to acknowledge a fault is even worse as it can result in the machine

breakdown. Moreover, these metrics are also important when dealing with unbalanced

dataset (common situation in the real scenario).

For the fault diagnosis using the unsupervised classification approach (Case 1 and

2), each sample identified as anomaly is classified in relation to the type / location of the

fault. As the classification was performed only for the anomalies identified, accuracy was

used as an evaluation metric. For the root cause analysis (Case 3), the feature importance

ranking is presented. Kendall Tau distance was used to compare SHAP and Local-DIFFI.

The tests were performed using 2.2 GHz Intel Core i7 Dual-Core, 8 GB 1600 MHz DDR3,

Intel HD Graphics 6000 1536 MB.

4.5 Results and discussion

4.5.1 Data Exploration

In this subsection the data used in this work for Case 1-3 are analyzed and

discussed.
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For the reasons mentioned above, the classification of such faults includes the

analysis of signals in other positions and complementary techniques. Therefore, for this

case, the proposed classification methodology will provide only the most relevant features

for the identification of the fault, assisting the specialists in the search for the root cause of

the problem.

(a) Normal (b) Unbalance (c) Misalignment

(d) Looseness (e) Combined Faults

Figure 4.5: Examples of vibration signals for different faults present in the dataset.

4.5.2 Fault detection: Anomaly Detection

Using the proposed methodology, the results obtained for the fault detection are

presented in Table 4.2. Table 4.2 also shows the average time spent for training and testing

(a new sample). The top three results for each metric are shown in bold. It can be seen

in Table 4.2 for Case 1 and 3, that the models that had better identification of the faults

through the F1-Score were: MCD, HBOS and IF. For Case 2, although HBOS had a very

close performance, the models that showed the best results were: MCD, kNN and IF.

In order to evaluate the general efficiency of the model, regardless of the defined

threshold, the PR-AUC value was calculated. The results show that by modifying the

threshold, the models can present even better results. It is noteworthy that the threshold

used for comparison and calculation of the F1-Score was defined based on the previous

analysis of the training group, simulating a real condition where the data for testing are
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Table 4.2 – Fault detection results

Metric kNN MCD LOF CBLOF OCSVM FB FastABOD IF HBOS LODA Ensemble

Case 1
F1-Score 63.21 99.45 57.94 60.87 60.78 61.99 88.17 97.19 98.43 39.12 70.20

(1.04) (0.03) (0.71) (0.48) (0.17) (2.93) (1.34) (1.06) (0.79) (10.82) (1.40)
PR AUC 96.45 99.91 92.02 93.55 93.28 94.35 98.80 99.92 99.91 94.23 98.85

(0.04) (0.00) (0.12) (0.21) (0.02) (0.19) (0.08) (0.01) (0.01) (0.81) (0.08)
Time [s] 0.0041 0.3066 0.0058 0.0835 0.0101 0.0555 0.1081 0.3671 0.0049 0.0307 1.3435
Case 2

F1-Score 99.82 99.84 99.26 99.06 89.68 99.64 97.16 99.71 99.49 90.14 99.70
(0.08) (0.08) (0.39) (0.69) (2.21) (0.20) (1.80) (0.21) (0.18) (6.42) (0.05)

PR-AUC 99.97 99.99 99.98 99.95 99.74 99.99 99.88 99.99 99.95 99.83 99.99
(0.02) (0.00) (0.01) (0.04) (0.71) (0.01) (0.12) (0.01) (0.04) (0.11) 0.01

Time [s] 0.1706 0.0807 0.0165 0.0575 0.0073 0.1119 1.0303 0.4121 0.0101 0.0434 1.9404
Case 3

F1-Score 96.27 98.15 92.01 94.83 95.62 92.35 95.76 97.20 99.22 97.16 97.10
(0.00) (0.01) (0.00) (0.15) (0.00) (0.33) (0.00) (0.27) (0.00) (0.39) (0.12)

PR-AUC 99.60 99.91 98.76 99.38 99.50 98.83 99.51 99.74 99.96 99.69 99.53
(0.00) (0.00) (0.00) (0.03) (0.00) (0.04) (0.00) (0.05) (0.00) (0.20) (0.00)

Time [s] 0.1721 0.6172 0.0251 0.1030 0.0209 0.1808 0.6227 0.4195 0.0361 0.0411 2.2384

not yet available. For this reason, it was decided to present the F1-Score value based on

the defined threshold instead of the optimum value that could be obtained by adjusting

the threshold in the complete dataset. Nevertheless, it can also be analyzed that, despite

the improvement in the results, in general, the models that showed better performance in

relation to PR-AUC were the same ones with highest F1-Score value: IF, HBOS and MCD.

Although in general HBOS, MCD and IF presented good results for the three cases,

it can be seen that depending on the dataset, other models can obtain better performance,

such as kNN in Case 1 and 2. The good results obtained in Table 4.2 for the three cases

show that it is possible to detect faults in rotating machinery through the models studied in

an unsupervised way.

Among the models with the best results, HBOS presented the lowest computational

time. In general, LOF and OCSVM also presented low values. On the other hand,

FastABOD, MCD and IF demanded more computational time in relation to the other models

(in a general analysis, excluding Ensemble). The low average time for most models in training

and testing a sample allow implementation in an industrial environment focused on predictive

maintenance.

For the proposed comparison between SHAP and Local-DIFFI, and due to the good

overall performance of Isolation Forest, the details of the methodology results are presented

for the model. The average values for the confusion matrix are presented in Table 4.3 (the
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sample quantities were rounded up because they are integer values). The confusion matrix

allows a better visualization of the results in relation to the distribution of the signals in the

respective classes. The results are presented both in percentage and in quantity of signals.

The results present in Table 4.3 for Case 1, show that the samples of the normal group

Table 4.3 – Confusion Matrix

Case 1 Normal2 Fault2 Case 2 Normal2 Fault2 Case 3 Normal2 Fault2

Normal1
48.75 % (0%) 0 % (0%)

Normal1
2.63 % (0.23%) 0.24 % (0.11%)

Normal1
10.05 % (0.36%) 3.06 % (0.36%)

431 (0) 0 (0) 22 (2) 2 (1) 82 (3) 25 (3)

Fault1
2.82 % (1.13%) 48.41 % (1.01%)

Fault1
0.24 % (0.23%) 96.89 % (0.35%)

Fault1
1.84 % (0.24%) 85.05 % (0.24%)

25 (10) 428 (9) 2 (2) 810 (3) 15 (2) 694 (2)

1 True Label, 2 Predicted Label

were all correctly classified. The anomalies had an average classification error of 25 samples

in a total of 453 anomalies, confirming the good performance of the model. For Case 2,

on average, 2 anomalies of 812 were classified incorrectly, and 2 normal samples of 24 were

classified as anomalies. For Case 3, 694 of 709 anomalies were classified correctly and 82 of

107 normal samples were also classified correctly. As in Case 1 and 2, the results show the

good performance of the model.

Such performances in a real application, will allow not to intervene in the machine

unnecessarily (which is also a big problem, considering the need to stop the production

and high cost of some components that could be replaced without need). Moreover, the

model was able to correctly identify most anomalies, including those at an early stage of

fault, allowing the maintenance team to schedule the machine shutdown without directly

interfering in the production process.

Keeping in mind that the essence of anomaly detection methods is unsupervised,

that is, without defining even the threshold value (in addition to not having labelled data

in training), the normalized anomaly scores are presented for the entire test, Fig. 4.6. The

anomalies identified in the Fig. 4.6 are presented based on the defined threshold. The x-axis

values refer to the test samples only. Fig. 4.6 shows the evolution of the anomaly score

with the development of the fault. It is possible to notice the gradual increase near the

region identified as the beginning of an incipient defect, sample 531, as shown in Fig. 4.3b.

Subsequently, there is an increase in the anomaly score in relation to the normal condition,

indicating a permanent change in the behavior of the equipment, and consequently, a fault.
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(a) Case 1 - Bearing Dataset. (b) Case 2 - Gearbox Dataset. (c) Case 3 - Mechanical Fault
Dataset.

Figure 4.6: Anomaly scores for Isolation Forest.

For Case 2 and 3, the anomaly score value does not show the evolution of the

fault, since the analysis was performed in a static way. Analyzing Case 2, it is noted that

the scores for samples considered anomalies are higher than the normal group (first 24

samples), enabling identification. The samples were grouped in sequence with respect to

the equipment condition to allow comparison between the faults (healthy condition, missing

tooth, root crack, spalling, chipping tip 1, chipping tip 2, chipping tip 3, chipping tip 4,

chipping tip 5). It can be seen that similar faults with similar condition have similar anomaly

scores. Thus, in a real monitoring situation, if the anomaly score changes suddenly, it can

be concluded that a possible new fault is occurring or that the severity of the current fault

has been accentuated.

For Case 3, due to the presence of different fault conditions in each group, it is

not possible to distinguish the type of fault through visual analysis of the anomaly score.

However, the variation between normal samples (first 107 samples) and those considered to

be fault still differ, even if less than the other cases.

Despite the defined threshold value for comparison of the models, it is possible to

notice the difference between normal and faulty samples, even for where the fault is incipient.

This difference allows the user to correctly identify anomalies present in the monitoring. The

importance of anomalies detected in the incipient period is emphasized, as it is a stage where

it is not easily identified by visual analysis or variation of the time signal energy trend (often

used as a metric to define maintenance alarm levels based on standards).

The difference in the anomaly score values also prove that the faults studied for

rotating machinery behave as anomalies / outliers. In other words, they are samples that

have values so different from other observations that they are capable of raising suspicions
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about the mechanism from which they were generated Hawkins (1980). As the samples share

this basic principle, it is concluded that the use of AI models based on anomaly detection

allows to identify faults in rotating machinery in a satisfactory and unsupervised way.

4.5.3 Fault Diagnosis: Unsupervised Classification / Root Cause Analysis

The results obtained using the proposed methodology for the unsupervised

classification are presented in the Table 4.4. The definition of the type of fault diagnosis to

be used is performed during the extraction of features based on the premise of the features

being related to different types of fault or not.

Case 1 and 2 present specific features related to a single type of fault / location,

which allow the identification of the type of fault and the location, respectively. Therefore,

the proposed Unsupervised Classification can be performed. For Case 1, it can be noted

Table 4.4 – Fault Diagnosis: Unsupervised Classification

Case kNN MCD LOF CBLOF OCSVM FB FastABOD IF HBOS LODA Ensemble

Case 1 BSF BPFO BPFO BSF BSF BPFO BPFO BPFO BPFO BPFO BPFO
Accuracy 39.46 82.23 85.44 4.95 7.74 95.43 75.22 99.57 99.38 88.82 83.80

Std (7.60) (1.08) (1.71) (1.06) (0.69) (0.99) (1.84) (0.58) (0.19) (3.05) (3.38)
Time [s] 2.6094 0.0968 0.2912 0.1913 0.2571 0.9428 4.3812 0.2890 0.1564 0.2190 9.7058
Case 2 1stStage 1stStage 1stStage 1stStage 1stStage 1stStage 1stStage 1stStage 1stStage 1stStage 1stStage

Accuracy 96.47 58.13 84.90 93.42 69.18 91.09 88.91 86.12 86.84 89.83 96.72
Std (0.77) (12.64) (2.88) (2.19) (3.61) (3.27) (3.83) (3.06) (3.88) (8.31) (1.11)

Time [s] 2.3111 0.1774 0.3556 0.1998 0.2033 0.9097 7.2525 0.2538 0.1939 0.2644 12.6619

that IF, HBOS and FB models had better results. Using IF as an example, in 99.57%

of the samples analyzed, the specific feature BPFO was considered the most relevant, and

consequently, correctly classifying the type of fault. Analyzing the results obtained in the

previous stage of fault detection, IF and HBOS are good models for the methodology,

since they showed good ability to detect and diagnose the fault. FB on the other hand,

notwithstanding a good result in diagnosis, presented a low fault detection rate, which in

this case would fail to identify some anomalies in the equipment. Some models such as

CBLOF, kNN and OCSVM classified the fault as BSF instead of BPFO, being considered

an error. The other models, despite having correctly classified the type of bearing fault, had

a lower hit rate than those mentioned above, both in the fault detection stage and in the

unsupervised classification.

For Case 2, the fault was classified in relation to the location in the gearbox. The
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most relevant features were associated according to their stage. In other words, using the

Ensemble model as an example, in 96.72% of the samples analyzed, the most relevant feature

was related to fault in the first stage. The models with the highest hit rate were CBLOF,

kNN and Ensemble. The models showed good results for both fault detection and diagnosis.

It is worth mentioning that for the dataset under analysis, most models showed good results

in detecting faults, possibly because they have well-characterized behaviors. IF and HBOS

which presented good results for the fault detection in all cases, showed inferior performance,

erroneously classifying approximately 15% of the fault as present in the second stage. In

general, the MCD that showed good results for fault detection, was not as effective in the

fault diagnosis part.

For Case 3, the features may be related to more than one fault, therefore, it is not

possible to perform the unsupervised classification directly. In this case, the general analysis,

using the Root Cause Analysis procedure is applied, Table 4.5.

Table 4.5 – Fault Diagnosis: Root Cause Analysis results

Case kNN MCD LOF CBLOF OCSVM FB FastABOD IF HBOS LODA Ensemble

Case 3.11 3xfr 2xfr 3xfr 3xfr 1xfr 4xfr 4xfr 1xfr 3xfr 2xfr 1xfr
33.17 36.29 46.90 36.00 62.60 42.61 49.64 55.83 50.85 41.29 27.22
(0.00) (5.10) (0.00) (6.07) (0.00) (4.47) (0.00) (6.49) (0.00) (14.92) (2.54)

Time [s] 1.6272 0.1075 0.2681 0.1389 0.1981 0.8740 4.3299 0.3905 0.1301 0.2256 8.3899
Case 3.22 3xfr 3xfr 3xfr 2xfr 3xfr 2xfr 3xfr 2xfr 3xfr 3xfr 3xfr

44.09 35.28 49.74 49.84 68.25 34.13 39.80 45.24 61.08 53.00 43.13
(0.00) (4.93) (0.00) (3.27) (0.00) (10.21) (0.00) (7.94) (0.00) (11.11) (3.14)

Time [s] 1.3873 0.1207 0.2199 0.1373 0.2021 0.8537 4.3308 0.3436 0.1136 0.1607 8.0897
Case 3.33 2xfr 1xfr 4xfr 2xfr 1xfr 2xfr 2xfr 2xfr 2xfr 1xfr 2xfr

56.52 47.36 39.78 42.55 66.67 51.26 60.86 45.53 47.82 49.70 25.73
(0.00) (0.00) (0.00) (13.83) (0.00) (27.57) (0.00) (19.51) (0.00) (19.21) (7.02)

Time [s] 1.3114 0.1210 0.1941 0.1212 0.1799 0.8174 3.6984 0.2489 0.1136 0.1557 7.1616
Case 3.44 2xfr 3xfr 1xfr 2xfr 2xfr 1xfr 4xfr 2xfr 4xfr 4xfr 1xfr

66.66 64.28 46.66 38.53 73.33 41.20 66.66 42.93 86.66 43.94 50.00
(0.00) (0.00) (0.00) (10.77) (0.00) (15.18) (0.00) (28.14) (0.00) (20.13) (10.34)

Time [s] 1.5150 0.1303 0.2225 0.1144 0.1740 0.8191 3.8296 0.2812 0.1198 0.1586 7.5644
1 Unbalance, 2 Misalignment, 3 Mechanical Looseness, 4 Combined Faults

For better visualization, the results are presented based on the most relevant

feature obtained by the methodology. A sub-division for each type of fault was carried

out in order to provide more details on the method. An example of the complete results is

presented for the IF and Case 3.1, Table 4.6.

The unbalance fault is presented in Case 3.1 and the results are shown in Table 4.5

and Table 4.6. Due to the unbalance behavior predominantly manifesting in 1xfr, it is

expected that this features will show greater relevance for the analysis, as presented in the IF
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and OCSVM models. On the other hand, as the features are directly or indirectly related to

more than one fault, the model can use the relationship with another feature, instead of what

is expected. For example: it is known that unbalance manifests itself in 1xfr, however, if the

energy in 2xfr is greater than 1xfr, possibly the sample presents a misalignment (excluding

other fault possibilities just for example). Thus, assuming an unbalanced sample, the model

can use 2xfr, as a basis to know if it is less or greater than 1xfr and thus 2xfr becomes the

most relevant feature, even if the fault is an unbalance. In addition to the aforementioned

justification, the type of fault introduced was considered to label the samples. Thus, in some

cases the fault behavior was not evident in the signal, which justifies the model to identify

other features as more relevant. For example: for a small unbalance, the acquired signal is

considered to be unbalanced, even if it does not significantly increase the amplitude in 1xfr.

Table 4.6 shows that in 55.83 % of the samples, 1xfr was classified as the most

relevant feature. Subsequently, the features 2x and 3xfr are the most important. Such

features are related to the way of identifying an unbalance in a vibration signal, and therefore

they can be used by the specialist to analyze the root cause of the fault. It is also noted

that the 4xfr feature in most cases was classified as less relevant, since the feature (for the

case under study) is not so important for identifying or distinguishing this fault. In Case

Table 4.6 – Fault Diagnosis: Root Cause Analysis full ranking

Feature/Position 1st 2nd 3rd 4th

1xfr 55.83 (6.50) 20.16 (1.86) 16.00 (4.92) 8.01 (3.66)
2xfr 15.97 (3.20) 45.89 (10.14) 27.83 (9.09) 10.31 (2.82)
3xfr 19.50 (5.40) 26.87 (9.57) 35.88 (9.54) 17.75 (4.78)
4xfr 8.70 (2.32) 7.08 (1.86) 20.29 (4.07) 63.93 (5.08)

3.2 the misalignment is presented. Usually this type of fault is identified by the analysis of

2xfr and 3xfr. All models presented, as the most important feature, the same one used by

the human specialist.

The mechanical looseness, Case 3.3, as well as the combination of faults, Case 3.4,

can present energy in all extracted features. Thus, the variation of the features selected by

each model is acceptable, since all features are relevant. It is noteworthy that the variation

between the models is due to the different approaches present in each algorithm.

The importance of root cause analysis is to eliminate features that are not relevant



111

to the analysis, helping the specialist to identify the problem. Thus, in an application where

different features and faults are present, the methodology provides a better direction to the

specialist about the current fault.

The standard deviation presented in some analysis in Case 3, can be justified by

the random selection of samples at each iteration. As mentioned earlier, in addition to the

different possibilities of the model in relating the features to the faults, the samples can also

present different behaviors, even within the same type of faults, resulting in different selected

features. As some models have stochastic behavior, they are more sensitive to variation. Note

that for Cases 1 and 2, where there are no major variations in relation to the type of fault,

the models have low standard deviations.

The models with the lowest computational costs for the fault diagnosis

methodology were: CBLOF, HBOS and MCD, with HBOS being one of the fastest also

for fault detection.

Through the explainability of the artificial intelligence models used, it can be

concluded that the proposed methodology is able to assist the specialist in identifying the

root cause of the problem or even to classify the type of fault present in the equipment in

an unsupervised way.

4.5.4 XAI: SHAP and Local-DIFFI

As presented in the methodology, the unsupervised classification/root cause

analysis is performed through the ranking of importance of the specific features obtained

by the model’s explainability. To study the possibility of the methodology in working with

different explainable models and the feasibility of implementing a computationally faster

model, in Table 4.7 is shown a comparison for the complete relevance rankings obtained by

SHAP and Local-DIFFI. As the main goal is to compare the two methods, the values for Case

3 were calculated for all faults. From Table 4.7, the time taken to perform the explainability

was higher using SHAP than Local-DIFFI. As a model-specific, Local-DIFFI presents a

superior performance of approximately 6.5-8.0x in relation to SHAP, being extremely relevant

in applications where the execution time is essential.

The comparison made through Kendall-Tau distance shows that the models have
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Table 4.7 – XAI: SHAP vs. Local-DIFFI

Metric/Case Case 1 Case 2 Case 3

Kendall-Tau
Distance

0.348 0.127 0.455

SHAP: Time [s] 0.2890 0.2538 0.3012
Local-DIFFI: Time

[s]
0.0361 0.0365 0.0453

similarities in the rankings of relevance, visually presented in Fig. 4.7. Since the main

objective is to compare the two models, all the features used by the models for fault detection

are considered, without excluding the general features proposed in the application of the fault

diagnosis part. It can be seen in Fig. 4.7, for Case 1, that the most relevant feature for both

(a) Case 1 - SHAP (b) Case 2 - SHAP (c) Case 3 - SHAP

(d) Case 1 - Local-DIFFI (e) Case 2 - Local-DIFFI (f) Case 3 - Local-DIFFI

Figure 4.7: SHAP and Local-DIFFI feature importance ranking.

models is precisely BPFO, allowing the unsupervised classification to achieve good results.

For Local-DIFFI, some samples presented BPFI and BSF as the most important specific

feature, leading the methodology to misclassify the type of fault. Case 2 presented the

lowest relationship between the rankings. Among the most relevant features, SHAP showed

less occurrence of the features related to the second stage than Local-DIFFI, leading the

model to make fewer errors during the application of the proposed methodology. Despite the

minor similarity, the main feature (1xGMF 1st) was also the same in both models. For Case
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3, the most relevant feature for both models is 1xfr with a good similarity for positions 3, 4

and 5. Thus, through the analysis of the Kendall-Tau distance, it is possible to verify that

the rankings show similar behaviors. Because it is a model-specific method, Local-DIFFI is

subject to noise due to the stochasticity of the IF, which can reduce its result. Finally, the

choice of the explainability model to be used is based on a trade-off between response time

and precision.

4.6 Conclusions

This chapter proposes a new approach for fault detection and diagnosis in rotating

machinery. A three-stage scheme is adopted 1) Feature extraction; 2) Fault detection:

Anomaly Detection; 3) Fault diagnosis: Unsupervised classification / Root cause analysis.

The vibration features in the time and frequency domains were extracted based on human

knowledge already available. In the fault detection, the presence of fault was verified in an

unsupervised manner based on anomaly detection algorithms. Finally, in fault diagnosis,

through the feature importance ranking obtained by the model’s explainability, the fault

diagnosis was performed, being: unsupervised classification or root cause analysis.

The results show that the proposed methodology allows the unsupervised fault

detection in rotating machinery. And, in addition to providing explainability about the

models used, the methodology provides relevant information for root cause analysis, or even

unsupervised fault classification.

In general, the results obtained can be summarized as follows: i) for anomaly

detection, in Case 1, a maximum F1-Score value of 99.45% was obtained, with the three main

models being MCD, HBOS and IF. In Case 2, a maximum value of 99.84% was obtained,

and the best models were: MCD, kNN and IF. In Case 3, the maximum value obtained

was 99.22%, and the main models being: HBOS, IF and MCD. ii) For the unsupervised

classification, in Case 1 a maximum accuracy of 99.57% was obtained using IF, and having

HBOS and FB as main models. For Case 2, a maximum value of 96.72% was reached, with

the Ensemble, kNN and CBLOF models having the best results. For the root cause analysis,

the features that most correlate with the fault under study are presented, as for example in

the case of unbalance, where 55.83% of the samples indicated 1xfr as the most important
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features, in line with the fault behavior, which helps the specialist to eliminate features that

are not related to the fault. iii) The comparison between Local-DIFFI and SHAP showed

greater similarity for all cases, especially for Case 3, with a Kendall-Tau Distance value equal

to 0.455. In terms of computational performance, Local-DIFFI presented a superiority of

approximately 6.5-8.0x over SHAP.

Different state-of-the-art ML algorithms in anomaly detection were studied

showing the possibility to change models according to the dataset. The new approach can be

applied to different types of faults just by modifying the extracted features associated with

a potential fault as shown for the 3 datasets studied. Since the approach does not require

previously labeled data, and only knowledge currently available on fault detection through

vibration analysis, the methodology has many possible industrial applications. Future work

will focus on domain adaptation and transfer learning associated with methods for model

interpretability to improve the applicability of the proposed approach in different industrial

scenarios.



CHAPTER V

AN EXPLAINABLE ARTIFICIAL INTELLIGENCE APPROACH FOR FAULT

DIAGNOSIS BASED ON TRANSFER LEARNING FROM AUGMENTED

SYNTHETIC DATA TO REAL ROTATING MACHINERY

Due to the growing interest for increasing productivity and cost reduction in

industrial environment, new techniques for monitoring rotating machinery are emerging.

Artificial Intelligence (AI) is one of the approaches that has been proposed to analyze

the collected data (e.g., vibration signals) providing a diagnosis of the asset’s operating

condition. It is known that models trained with labeled data (supervised) achieve excellent

results, but two main problems make their application in production processes difficult:

(i) impossibility or long time to obtain a sample of all operational conditions (since faults

seldom happen) and (ii) high cost of experts to label all acquired data. Another limitating

factor for the applicability of AI approaches in this context is the lack of interpretability of

the models (black-boxes), which reduces the confidence of the diagnosis and trust/adoption

from users. To overcome these problems, a new generic and interpretable approach for

classifying faults in rotating machinery based on transfer learning from augmented synthetic

data to real rotating machinery is here proposed, namelly FaultD-XAI (Fault Diagnosis using

eXplainable AI). Synthetic vibration signals are created by mimicking the characteristic

behavior of faults in operation. To enable transfer learning, the real machine signal is used

as a reference. The data are augmented by increasing the number of samples for training the

model used, 1D Convolutional Neural Network (1D CNN). With the signals in the frequency



116

domain, the model is trained, and the classification performed. Subsequently, the application

of Gradient-weighted Class Activation Mapping (Grad-CAM) allows the interpretation of

results, supporting the user in decision making. The proposed approach not only obtained

promising diagnostic performance, but was also able to learn characteristics used by experts

to identify conditions in a source domain and apply them in another target domain. The

experimental results obtained on three datasets containing different mechanical faults suggest

the method offers a promising approach on exploiting transfer learning, synthetic data and

explainable artificial intelligence for fault diagnosis. Lastly, the dataset developed by the

authors will be available.

5.1 Introduction

Currently, with the great need to increase the amount of final product

manufactured, the industry has been looking for ways to monitor its assets in order to

avoid unexpected breaks that can directly impact production Brito et al. (2022). Due to the

growing demand, searches for alternatives in the monitoring of rotating machinery have been

commonplace, leading to a large amount of information and research being generated: from

the definition of informative signals to the development of smart data processing techniques,

from new sensors to new best practice in data acquisition and monitoring.

The increase in information generates a need for experts to achieve quick analysis

and effective diagnosis. Thus, artificial intelligence models have been proposed to assist in

the diagnosis and monitoring of assets.

Kumar and Hati (2020) present a review of the main Machine Learning (ML) and

Deep Learning (DL) techniques applied in the monitoring of induction motors, aiming to

detect faults such as: broken bars, bearings failures, stator failures and eccentricity. Liu

et al. (2018) also present a review on artificial intelligence for fault detection in rotating

machinery, in which more than 100 cited references refer mostly to fault classification (fault

diagnosis). More recently, Lei et al. (2020) presented a comprehensive review with more

than 400 citations, focused on Artificial Intelligence (AI) applications for fault diagnosis,

providing a historical overview, in addition to current developments and future prospects.

Further details on the state-of-the-art in Artificial Intelligence (AI) for fault diagnosis in
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rotating machinery can be found in Hoang and Kang (2019); Duan et al. (2018); Khan and

Yairi (2018); Zhao, Yan, Chen, Mao, Wang and Gao (2019); Saufi et al. (2019).

By analysing the aforementioned studies, it can be noted that, for the task

of monitoring rotating machinery, AI models have high accuracy rates when trained in

supervised condition, ie. in the presence of labeled data Lei et al. (2020) representing both

normal and faulty conditions. Unfortunately, the supervised scenario is difficult to be applied

in real world industrial settings, for two main reasons Yang et al. (2019):

i) Faults rarely happen in real world : by design, equipment are made to be ideally

operating all the time in a normal condition, therefore not providing sample labels for faulty

conditions. When a fault manifests itself, the MCP (Maintenance Planning and Control)

team schedules as soon as possible the corrective maintenance for repair or replacement,

which results in a low number of acquired signals of fault conditions. In most conventional AI

models, unbalanced datasets are associated with many issues, like for example low capability

of prediction the least rapresented class, as the model tends to learn more about the condition

that is most presented to it;

ii) High cost to obtain and label data: with the development of AI approaches in the

industry, more complex and sophisticated models are being used, like DL approaches; this is

due to the fact that DL techniques can, among other things, automatically extract features

from raw signals and can achieve high performance. This reduces the expert’s intervention in

feature engineering, a fundamental process for using conventional machine learning models.

However, for successful training, such models require great amount of data, which is time

consuming to obtain or not always feasible. To label the acquired data, experts are typically

required: although the vast majority of faults have their characteristic behaviors known, the

analysis requires specific knowledge that is not always available within the team.

Fortunately, transfer learning Li, Zhang, Qin and Estupinan (2020) approaches

can overcome such weaknesses by applying the knowledge learned from one task (or multiple

tasks) to new, related, ones. Pan and Yang (2010); Lei et al. (2020); Zhuang et al. (2021)

present some approaches developed with a focus on transfer learning, showing that transfer-

learning theories can alleviated the lacking labeled samples and enhancing the applications of

Intelligent Fault Diagnosis (IFD) in industry, in such works several approaches are considered,
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namely: feature-based approaches Yang et al. (2019), generative adversarial network (GAN)

based approaches Guo et al. (2019), instance-based approaches Shen et al. (2015), and

parameter-based approaches Hasan and Kim (2018). Despite the promising studies, the

vast majority of approaches are based on obtaining at least the Source Domain (samples on

which the models will be trained) with real and labeled signals, which does not fully solve

the aforementioned problems.

In order to reduce the need for labeled real data, a few recent studies propose the

use of synthetically generated data from numerical and physical models Chen et al. (2013);

Khan et al. (2021); Handikherkar and Phalle (2021); Gecgel et al. (2021); Sobie et al. (2018).

Among the studies, stands out the methodology presented in Sobie et al. (2018). In the study,

a simlutation-driven machine learning for bearing classification is proposed where training

signals were generated from high resolution simulations in Siemens LMS Imagine. Lab

Amesim simulation software using the one-dimensional 3-DOF model Sassi et al. (2007). As

with the other works, despite the satisfactory results obtained, the approaches are limited in

terms of adjustment of boundary conditions, element properties, definition of solvers, model

complexity, and application to only one type of failure (in this case, bearing fault), which

can limit large-scale industrial applications.

Similarly to the problem of obtaining a complete and labeled training set, the

adoption of AI models in the industry comes up against its interpretability Li, Zhang and

Ding (2019). Called Explainable Artificial Intelligence (XAI), the area has been showing

great interest by researchers, and is identified as one of the solutions to bridge the gap between

AI researches and engineering applications Lei et al. (2020). Many models are considered

as black boxes, that is, the user responsible for receiving the diagnosis does not know how

the model reached the final conclusion. By not knowing exactly how or which features

of the signal the model was based on for decision making, the reliability of the diagnosis

is compromised, implying even the non-use of the model. To solve this problem, studies

have been developed to explain why the model obtained the final classification. Among

the techniques that provide visual explanation, the state-of-the-art technique in post-hoc

methods is Gradient-weighted Class Activation Mapping (Grad-CAM). As faults in IFD

using vibration are generally identified through a visual analysis of the signal in the frequency
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domain, it is interesting to provide a heatmap overlaid on the input signal, identifying the

most relevant frequencies for the classification. Despite the wide application in other areas,

at present, Grad-CAM algorithm is seldom used in AI models for fault diagnosis Feng et al.

(2020); Lin and Jhang (2021); Yu et al. (2022); Saeki et al. (2019).

To overcome the problems presented, a new interpretable approach for classifying

faults in rotating machinery based on transfer learning from augmented synthetic data to

real rotating machinery is proposed. The approach starts from the concept where, transfer

learning models focus on storing knowledge gained while solving one problem and applying it

to a different but related problem. However, instead of working on fine-tuning, or retraining

the model, the approach focuses on synthetic creation of the source domain: in this way

the trained model learns features, which allow the transfer knowledge through the shared

features of the source and target domain.

In the proposed approach, called FaultD-XAI (Fault Diagnosis using eXplainable

AI), we propose to train the AI model with synthetic signals. The signals are generated from

the knowledge about different faults in rotating machinery combined with the original signal

of the machine under analysis, avoiding the use of complex mechanical models. The original

signal is used only as a reference to create the synthetic signals, not requiring samples of

all possible failures, which solves the problem of lack of labeled data in training set and

enables engineering applications. To increase the variability of the training dataset, and

consequently the robustness of the AI model, signals are generated using data augmentation

techniques. To avoid the need to perform featuring engineering, reduce the computational

cost, and enable the model’s interpretability through the use of Grad-CAM, 1D Convolutional

Neural Network (1D CNN) is used. Vibration signals in frequency domain are used, bringing

the analysis as close as possible to that performed by experts. Due to the importance of

rotors, bearings and gears for rotating machinery and especially their respective faults, three

datasets are used for validation of the methodology, each one being related to a respective

component and its possible faults.

The use of synthetic data makes it possible to apply the AI model in different

rotating machinery even without having real signals in all operating conditions. Such ability

can be seen as a transfer learning approach, since the proposal can be used in any type
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of machine, just by modifying the reference signal. In addition, the model is trained with

a dataset belonging to the source domain, which, in turn, presents a difference from the

signals present in the target domain. The data augmentation of the data allows the model

to be implemented quickly, since few collections are enough to generate the training data.

Finally, the interpretability of the approach allows the user to have reliability and confirm

the diagnosis, enabling its implementation, and even, for the person responsible for the

development of the model, to verify the coherence of the learning during the training phase,

allowing adjustments if necessary.

The main contributions of FaultD-XAI are: i) a new transfer learning classification

approach based on a synthetic dataset, without the need to have signals of real fault

conditions; ii) possibility of interpreting the way in which the final result was obtained

by the model, supporting decision making (a new contribution to the study of XAI in fault

diagnosis); iii) a generic and simple way to generate synthetic fault data for training, based

on the knowledge available in vibration analysis, without the need for complex models;

iv) possibility of generating varied training datasets of different sizes (data augmentation -

targeting deep learning applications); v) new dataset, publicly available, to study failures

such as: unbalance, misalignment and looseness; vi) possibility of application in different

types of faults; vii) faster deployment of the model in production; viii) industrial application

on real world datasets.

The remainder of this chapter starts with a brief explanation about the 1D CNN

and Grad-CAM. The proposed approach is presented in Section 3. Experimental procedure

is shown in Section 4. Results and discussion are given in Section 5. Finally, Section 6

concludes this chapter by drawing conclusions and discussing potential future works.

5.2 Background

5.2.1 1D Convolutional Neural Network (1D CNN)

Convolutional Neural Networks (CNNs) have become the de facto standard for

various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial

Neural Networks (ANNs) with alternating convolutional and subsampling layers Kiranyaz
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et al. (2021). The high efficiency of CNNs and the ability to extract features from the

raw signal without the need for feature extraction or engineering make them basic tools in

many 2D applications such as images and videos. The fact of being able to extract features

automatically from the raw signal, avoids a lot of analysis and signal processing that need

to be done when working with other techniques, such as those shown in Brito et al. (2021).

Recently, several research works involving vibration signals and deep 2D CNNs

were carried out, where researchers adopted signal processing strategies to convert the

original 1D signal to 2D, and thus be able to use the architecture Lu et al. (2017); Ding and

He (2017); Appana et al. (2017); Li, Liu, Tang, Lu and Hu (2017). Despite the good results

obtained, such techniques need to perform a dimension modification and can considerably

increase the computational cost, in addition to the one already present in 2D CNN, making

the applications sometimes unfeasible.

To solve this problem, 1D CNNs were proposed Kiranyaz et al. (2016); Avci et al.

(2018); Abdeljaber et al. (2017); Ince et al. (2016); Kiranyaz et al. (2018), and quickly became

state-of-the-art in applications such as: biomedical data classification and early diagnosis,

structural health monitoring, anomaly detection and identification in power electronics and

electrical motor fault detection. In the area of fault detection in rotating machines, some

studies involving 1D CNN are Zhang et al. (2017); H.Chen et al. (2019); Yibing et al. (2019);

Wang, Mao and Li (2021); Chuya-Sumba et al. (2022); Eren et al. (2019).

Among the main advantages of using 1D CNNs, the following stand out: i)

significant computational cost reduction; ii) more compact networks (with 1-2 hidden CNN

layers and configurations with networks having less than 10K parameters Kiranyaz et al.

(2021)); iii) possibility of training on any CPU; iv) possibility of being used for real-time

and low-cost applications due to its low computational cost.

Basically, the configuration of a 1D CNN consists of: i) Hidden CNN and

Multilayer perceptron (MLP) layers/neurons; ii) Filter (kernel); iii) Subsampling factor;

iv) Pooling and activation functions.

The input layer receives the raw 1D signal, while the output layer is an MLP layer

with a number of neurons equal to the number of classes. A kernel function moves in one

direction: it first performs a sequence of convolutions, the sum of which is passed through
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the activation function, followed by the sub-sampling operation. The features are extracted,

and used by the MLP layer to perform the classification. For more details on how 1D CNN

works, please refer to Kiranyaz et al. (2021).

5.2.2 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM Selvaraju et al. (2017) is an improvement on traditional CAM Zhou

et al. (2016). Studies show the use of the method in the monitoring of rotating machinery,

as in Lin and Jhang (2021) that used 1D CNN and 1D LeNet-51 (I1DLeNet) to prove the

efficiency of the proposed method SBDS (smart bearing diagnosis system), which uses a

gradient diagnosis -weighted class activation mapping (Grad-CAM) - based convolutional

neuro-fuzzy network (GC-CNFN). Proving that the method is not only capable of correctly

classifying bearing faults, but also helping the user to understand the result.

Kim and Kim (2020) used Grad-CAM and Acoustic Emission Signals to detect

bearing faults, again providing the user interpretability regarding the frequencies used by

the model to obtain the result. Feng et al. (2020) applied the methodology in the monitoring

of bearings and validated it in a gear fault dataset, showing that it is possible to use the

methodology to identify the most attentive part of the model in relation to each type of fault.

Yu et al. (2022) used Grad-CAM and eigenvector-based class activation map (Eigen-CAM)

to interpret the ResNet06 (a popular CNN architecture He et al. (2016)) in 4 databases,

3 bearing and 1 gearbox dataset. In order to interpret the effectiveness of the method,

Grad-CAM is applied to localize the regions in the input that contribute the most to the

network’s prediction. The proposed method is validated by a motor bearing dataset and an

industrial hydro turbine dataset Wu et al. (2021).

Grad-CAM uses the gradients of any target concept flowing into the final

convolutional layer to produce a coarse localization map highlighting the important regions in

the image for predicting the concept Selvaraju et al. (2017). The signal is forward propagated

by the CNN part of the model and then processed to obtain the raw score for the category.

Gradients are reset for all classes except the class under analysis, set to 1. The signal is then

backpropagated to the rectified convolutional feature maps of interest, which is combined

1LeNet is classic CNN architecture Lecun et al. (1998)
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The real signal is fundamental to generate the synthetic dataset, enabling transfer

learning between the source domain (synthetic signals) and target domain (real fault signals).

Through the real signal of the machine under analysis, it is possible to generate a dataset that

presents similar characteristics, favoring the learning of the model. It is worth mentioning

that the real signal used is the current operating condition of the machine, not requiring a

sample of each condition.

5.3.2 Signal Generation

Engineering applications involve a major limitation regarding the data available

for training the AI model. In the vast majority of cases, we do not have real and labeled

samples of all possible operating conditions, since faults seldom happen. In applications

where data is available, it takes a lot of time and cost with experts to label and analyze all

signals. A strategy to overcome this problem is to create the training dataset synthetically,

since the vast majority of faults in rotating machines have known characteristic patterns.

Different approaches can be used to model faults in rotating machinery, such

as: Digital Twin, where through equations of motion, numerical models, optimization and

support software, the machine is created virtually, and through modifications in its conditions

it is possible to verify the signal response, identifying a fault or a new operational condition.

Despite the available approaches, modeling a rotating machinery is not always

an easy task or a low computational cost, which can make some industrial applications

unfeasible. Therefore, we chose to model the faults, in a simple way, through the equation of a

waveform, with a sine function, considering that the faults are mostly related to deterministic

frequencies or characteristic behaviors in the signal.

In general, the most common faults found in the industry are related to bearing

defects, classic problems such as unbalance, misalignment, looseness, as well as problems in

gears, and for this reason they were chosen for analysis of the proposed approach. It is worth

mentioning that the way the approach is proposed, other faults can be modeled and added,

without changing its functioning (e.g., cavitation, electrical defects, oil whirl and oil whip

etc). It is up to the specialist to determine the synthetic faults that will be created referring

to the machine under analysis. It is also important to highlight that the methodology applies
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to stationary operating conditions, considering that the faults are created as a function of

certain frequencies, which are mostly associated with the rotation frequency of the machine.

The representation of the oscillatory signal x(t) used to generate the faults

(unbalance, misalignment, looseness and gear fault) is defined Equation 5.1.

x(t) = Asin(2π ft + θ ) (5.1)

Where A indicates the peak amplitude of the signal, f frequency [Hz], t time vector

[s] and θ phase [rad]. As accelerometers and no tachometer are used, the phase reference

was not applied, although it can help in the identification of some faults.

The amplitudes were randomly generated so that the synthetic fault signal

presented an approximate variation of at least 3 dB in the characteristic frequencies of

the fault in relation to the normal signal. Since, according to ISO (2009) and the experience

of experts in vibration analysis, a variation of less than 3 dB does not represent a significant

change in the behavior of the machine in terms of predictive maintenance or failure. The

amplitudes are randomly generated to represent different stages of fault, and improve the

robustness of the AI model (greater variability in the training group). It is worth mentioning

that, depending on the fault, minor variations can be significant, and it is up to the specialist

to determine when assembling the model.

The unbalance occurs predominantly at 1 x fr (Rotation Frequency), so a signal

was generated with a frequency equal to the rotation frequency. It is worth mentioning

again that the phase is not being taken into account to differentiate the faults, only the

characteristic frequencies of the signal.

Misalignment presents high vibration values at 1x, 2x and 3x rpm, and can be

angular, parallel or mixed (when the two are combined). In that case, Eq. (5.1) was used

three times, being the final signal the sum of each equation with a respective frequency (1x,

2x and 3x rpm).

The looseness caused by loose pillow block bolts, cracks in frame structure or

in bearing pedestal, or by improper fit between components parts, causes harmonics and
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sub-harmonics of the rotation frequency. The signal will present multiples of the rotation

frequency as: 1x, 2x, 3x, ... Nx and sub-harmonics: 0.5x, 1.5x, 2.5x, ... N/2x, where N is

the multiple of the rotation. As well as the misalignment, the final signal was composed of

the sum of harmonics and sub-harmonics.

Gear faults are usually related to Gear Mesh Frequency (GMF) and its harmonics.

GMF is the product of the number of teeth on the gear (nteeth) multiplied by the running

speed of the gear (gfr), described in Equation 5.2.

GMF = nteeth ∗ gfr (5.2)

Defects such as wear, misalignment or eccentricity and backlash in gears may not

only cause a significant increase in 1x GMF. In many cases, there is an increase in the

amplitude of its harmonics as 2x GMF and 3x GMF. Such defects not only cause variation

in the GMF and its harmonics, but in general, also present sidebands of the rotating speed of

the defective gear. Therefore, the faults were simulated using Eq.(5.2) where, the frequency

for each signal is given by GMF and its harmonics (1x, 2x, 3x GMF) and by the sidebands

(GMF +/- rotating speed of the defective gear). The final signal was composed by the sum

of each signal generated.

The faults in rolling element bearings are related to their components: inner race,

balls or rollers, cage and outer race. Deterioration will cause characteristic frequencies

in the signal allowing fault identification. The four frequencies are: i) BPFO (Ball Pass

Frequency Outer); ii) BPFI (Ball Pass Frequency Inner); BSF (Ball Spin Frequency); iv)

FTF (Fundamental Train Frequency). The calculation basically takes into account: the

number of elements, internal and external diameter, contact angle, and its equation can be

easily found in vibration analysis software, supplier catalogs and existing literature.

High frequency resonances between the bearing and the response transducer are

excited when the rolling elements strike a local fault on the outer or inner race, or a fault

on a rolling element strikes the outer or inner race Randall and Antoni (2011).

The impact frequency depends directly on the machine components and their
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natural frequencies, however, as the interest is to evaluate the characteristic fault frequencies,

this value can be arbitrarily defined in the signal modeling. The impact signal can be

modelled using Eq.(5.1) where A indicates the peak amplitude of the signal, f impact

frequency [Hz], t time vector of impact [s]. To make the impact periodic, it is convoluted

with a Comb function, where the non-null values (periodic peaks) correspond to the fault

frequencies of the elements. The Comb is a sum of time shifted Dirac Delta, that is, it is

defined to be zero at alternate time points.

After creating the synthetic faults, the original signal is added to represent the

dynamic behavior of the machine, allowing the transfer knowledge. Due to the types of faults

under study, at the end of the process, each original signal will result in 7 signals, being:

normal condition, outer race fault (BPFO), inner race fault (BPFI), unbalanced, misaligned,

mechanical looseness and gear fault (due to their common usage, the terms BPFO and BPFI

will also be used to identify the type of fault under analysis, that is, fault in the outer and

inner races, respectively.). Although the inner race fault (BPFI) was not present in any

of the cases studied, it was introduced to increase the complexity of the training and also

validating the approach.

5.3.3 Data Augmentation

Data augmentation is a widely used practice in ML when it is desired to increase

the relevance of the dataset under study, mainly for image classification, natural language

understanding, semantic segmentation and also in fault diagnosis Khan et al. (2021); Li,

Zhang, Ding and Sun (2020); D.S.Alves et al. (2020); Tang et al. (2020). In addition to

increasing the amount of data for training, it is possible to insert small variations that, do

not change the general context of the sample (although they exist). Some popular techniques

are: flip, rotation, scale, crop, translation, gaussian noise. This makes the model able to

correctly classify the sample, even if it presents noise, translations, different size, lighting

etc. Performing augmentation can prevent the model from learning irrelevant patterns and

consequently improve overall performance.

Just as the image of an object can be obtained from different perspectives by

varying the context, but not the object under analysis, the same can be observed in the
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vibration signal of a rotating machinery. In an industrial plant, machines are subject

to process variations, human interference, disturbances from nearby machines that can

introduce extra information into the signal. Therefore, a robust classification model should

be irrelevant to such variations, focusing only on identifying the operating condition of the

asset under analysis.

In addition to improving data variability, data augmentation contributes to

increasing data in the training set, enabling the implementation of more complex and deep

learning models.

For the proposed approach, each synthetic signal is augmented, randomly varying

the method variables. The methods presented in Li, Zhang, Ding and Sun (2020) were used.

It is worth mentioning that other methodologies can also be used. The proposed methods

are:

i) Gaussian Noise: apply random noise to the raw signal, Equation 5.3.

x̄ = x + αgaussG, G ∼ N(0, 1) (5.3)

where αgauss > 0 is the Gaussian noise coefficient, x̄ is the augmented data, x is

the raw signal and G the gaussian noise.

ii) Masking Noise: an alternative way to apply random noise, where a fraction

αmask of the elements in x are randomly selected and set to 0.

iii) Signal Translation: the signal is randomly shifted forward and backward, with

the data gap resulting from the translation complete with zeros, maintaining the original

size of the signal.

iv) Amplitude Shifting: Moderate variations in signal amplitude are common, and

do not significantly alter the machine’s operating state. Therefore, performing modifications

of this nature tends to enrich the dataset. Amplitude shifting is implemented through a

scaling factor (αscal), Equation 5.4.

x̄ = αscal ∗ x (5.4)
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v) Time Stretching: The signal is stretched along the time axis by a stretching

factor (αstre > 0). A sample with Naug values in the range of [1, αstre] if αstre ≥1 or [ αstre,1]

is obtained. The sample is centered and stretching is applied. Points outside the dimensions

are clipped out and gaps filled with zeros.

At the end of the data augmentation process, each signal will generate five new

signals, and the process can be repeated n times. In summary, the entire process of creating

synthetic signals and augmentation from one original signal will result in 35 new signals (7

synthetic signal * 5 augmented signal). The number of times (qaug) the procedure needs to

be executed to obtain a total of n signals (ntotal) in the training group can be calculated in

Equation 5.5.

qaug =
ntotal

7 ∗ 5 ∗ nr

(5.5)

where, ntotal is the desired amount of samples in the training set, 7 is the amount

of synthetic signals, 5 is the amount of augmented signals and nr the amount of real signals

used. When the relationship does not result in an integer, the value is rounded up to the

nearest integer, and the excess is randomly selected and discarded.

5.3.4 Signal Processing

DL models are able to extract features from raw signals and learn characteristic

behaviors without the need for feature engineering as in classic ML models.

Although the raw signal (time domain) presents relevant information, due to the

amount of frequencies present, the analysis often becomes complex. Therefore, it is common

to perform analysis in the frequency domain. As one of the goals of the work is to provide

interpretability of the result, the input signal was used in the frequency domain instead of

the time domain.

The signal was normalized using Z-score normalization, and finally, cut to reduce

the number of points, and consequently the computational cost of the model. For the cut, the

maximum frequencies at which the fault could manifest and their harmonics were analyzed,
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so according to the monitored asset, the size of the signal used may vary. As the dataset

under analysis present constant speed, it is not necessary to perform order tracking or other

method as a pre-processing step to remove the effect of shaft speed variations.

5.3.5 Fault Diagnosis

CNN are present in several applications due to their main characteristics: i)

possibility to learn features directly from raw signal in training; ii) are immune to small

transformations/disturbances in the input data; iii) can adapt to different sizes; iv) excellent

computational cost compared to conventional fully-connected Multi-Layer Perceptrons

(MLP) networks (CNN neurons are sparsely-connected with tied weights Kiranyaz et al.

(2021)).

Since AlexNet’s proposal Krizhevsky et al. (2012), when it achieved 16.4% error

rate in the ImageNet benchmark dataset (this was about 10% lower than the second top

method), several deep 2D CNNs have been used. However, there are certain drawbacks and

limitations of using such deep CNNs: i) high computational cost and special hardware for

training; ii) requires massive size dataset for training to achieve reasonable generalization

capability Kiranyaz et al. (2021). Factors that are not always available when it comes

to industrial applications involving vibration signals. In addition, vibration signals are

in 1D, which would make it necessary to modify their dimension, further increasing the

computational cost and need for pre-processing. On the other hand, 1D CNN makes it

possible to use the vibration signal in its original dimension. It has low computational cost

compared to 2D CNN and is well-suited for real-time and low-cost applications especially

on mobile or hand-held devices Kiranyaz et al. (2021). For these reasons, it was used in the

study.

In this part, the synthetically generated and augmented signals are used to train

the model (1D CNN) and adjust the hyperparameters. It is worth mentioning that no real

fault signals are used in the training. The test group consists of other real machine signals

under different operating conditions. After training, the model is ready to perform the

classification.
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5.3.6 Explainable Artificial Intelligence (XAI)

Explaining the results obtained by the AI model is essential to ensure its use

in the industry, since it is associated with increased trust. Vibration signals are preferably

analyzed in the frequency domain in order to facilitate the correlation between the highlighted

frequency/behavior and the fault pattern. In this way, applying a method that evaluates the

points of relevance in the signal used for the classification, allows the end user to understand

and validate the result obtained. For this purpose, the Gradient-weighted Class Activation

Mapping (Grad-CAM) approach was used.

After classifying the sample by CNN 1D, the method is applied, returning a

heatmap with the most relevant frequencies for the model. The heatmap obtained helps

the specialist in decision making, allowing the validation of the classification determined by

the model.

5.4 Experimental procedure

5.4.1 Data description

Three datasets were used to address different faults found in rotating machinery,

two of which were publicly available Qiu et al. (2006); Cao et al. (2018) and one developed

by the author for the study. As shown in Lei (2017) even though the rotating machinery

is diversified, some common essential rotating parts are: rotors, rolling element bearings,

and gears Brito et al. (2022). Therefore, the datasets were chosen and developed to address

the main faults present in rotating machinery components, namely: defects in bearing and

gearbox, misalignment, unbalance and mechanical looseness. The use of different datasets

aims to validate the proposed methodology in different scenarios. As they are publicly

available datasets and already explored in Brito et al. (2022), Case 1: Bearing Dataset and

Case 2: Gearbox Dataset will be briefly discussed. For more details, please refer to Qiu et al.

(2006); Cao et al. (2018); Brito et al. (2022). All datasets are vibration signals collected using

accelerometers.
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Case 1: Bearing dataset

The dataset Qiu et al. (2006) is composed of remaining useful life (RUL) bearing

tests, each file consisting of 20,480 points with the sampling rate set at 20 kHz. As this is a

run-to-failure test, no labels are available (the only information provided is the type of fault

present at the end of each test). Therefore, the data were analyzed and labeled manually.

For the study the bearing 01 of test 02 was used. The test presents 984 observations, with the

first 531 observations labeled as normal and the last 453 as fault in the outer race (BPFO).

Case 2: Gearbox dataset

To evaluate faults in gears, the dataset Cao et al. (2018) was used. Nine different

gear conditions were introduced to the pinion on the input shaft, including healthy condition,

missing tooth, root crack, spalling, and chipping tip with five different levels of severity. For

each gear condition, 104 observations were collected resulting in a total of 936 observations

with sampling frequency of 20 kHz. For the test, the samples were considered as: 104 normal

and 832 gear fault.

Case 3: Mechanical faults dataset

The last dataset was developed by the authors, aiming to address classic faults in

rotating machines such as: unbalance, misalignment and mechanical looseness, in addition

to the normal operating condition.

The faults were introduced on a test bench, Fig. 5.1, being: motor, frequency

inverter, bearing house, two bearings, two pulleys, belt and rotor (disc).
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Figure 5.2: Bench test.

- Motor: Three-phase induction motor, B56 B4, Manufacturer Eberle, nominal

speed 1650 rpm, power 0.09 kW, voltage 220 V, current 0.70 A, bearings 6200 ZZ.

- Frequency Inverter: Vector Inverter, model CFW300, manufacturer WEG.

- Driven Pulley (Disc Side): model A80, external diameter 80 mm, internal

diameter 53 mm.

- Motor Pulley (Motor Side): model A60, external diameter 60 mm, internal

diameter 37 mm.

- Belt: model V - A23, top width 12.7 mm, outer perimeter 630 mm, inner

perimeter 580 mm.

- Rotor (Disc): diameter 149 mm, 36 holes, thickness 6.5 mm.

- Bearings 1205, bearing house SN505, bushing H305.

For the acquisition of the signals were used: 04 accelerometers PCB 352C33 (2 in

each bearing), mounted in the vertical and horizontal positions (y- and x-axes), 01 Power

Supply PCB 482A20, 01 acquisition board Hi-Speed USB Carrier, NI USB-9162. A Python

language program was developed to collect the data. All accelerometer sensitivities were

adjusted according to the calibration chart. The rotation was kept constant with a value

measured on the shaft of approximately 1238 rpm.

20 tests were performed, 5 for each condition (normal, unbalance, misaligment

and looseness). Each test consists of 4 sets of 420 signals collected continuously, each

file consisting of 25,000 points with the sampling rate set at 25 kHz (420 signals per
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accelerometer). Resulting in the end of all tests, in a total of 8400 signals per accelerometer.

The sequence of tests was randomly defined. Before starting any test, the bench

was dismantled and returned to normal operating condition, to later introduce the fault.

The experimental procedure allows variations to occur, making the tests closer to industrial

reality. All data used in this study will be made available.

To increase the randomness of the tests in the fault classification (AI), and to

validate the robustness of the model, only 3 tests per condition were used in the analyses,

resulting in 12 tests in total (5040 signals). Since the fault classification was performed 10

times, at each new run of the model, 3 tests were randomly selected for each class of fault.

As it is a small bench test, the measurement points are close, and in order to reduce

the computational cost, only the signals from the horizontal position of the accelerometer

present in the bearing (near the pulley) were used in the analyses.

5.4.2 Hyperparameter tuning and evaluation metrics

The hyperparameters were adjusted based on the training set to obtain the best

performance and stability in the model. The cross-validation method was used, where the

signals were randomly chosen between the training and validation group, being 90% for

training and 10% for validation. It is worth mentioning that the training group is composed

only of synthetic signals, and therefore does not contain any real fault signals. The test set

is composed of all signals excluding the normal signals that were used for generating the

synthetic signals.

The model was composed of a 1D CNN layer, followed by a dropout layer for

regularization, then a pooling layer. The objective of using only 1 layer is to reduce the

complexity and computational cost of the model. As CNN has high learning capacity, the

dropout layer was used to slow down the learning process and hopefully avoid overfitting.

Pooling learning reduces the amount of learned features by consolidating them and keeping

only the essential ones, which prevents the network from learning features uncorrelated with

the condition.

The learned features are flattended into a single long vector and passed to the fully

connected layer before the output layer used to make a prediction. The fully connected layer
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provides a buffer between learned features and the output with the intention of interpreting

learned features before making a prediction.

For the model, 32 parallel feature maps and kernel size of 5 were used. ReLu

activation function and Adam optimizer were also used. To automate the training, the model

was trained with a variable number of epochs, based on the Early Stopping technique, with a

patience of 8 and a variation of 0.001 in relation to the validation accuracy. Batch size of 32

samples was used. Categorical cross entropy loss function and Softmax (activation function)

were used as it is a multi-class classification problem.

The model was trained to classify 7 conditions, regardless of whether the case

under analysis presents the fault or not, being: normal condition, BPFO, BPFI, unbalance,

misalignment, looseness and gear fault. This simulates a condition where different faults

may appear on rotating machinery, and the model will be prepared to identify them. In

addition, it increases the complexity of the analyses.

Neural networks are stochastic, so at each new training a different model will

be obtained, even if using the same dataset. It is worth mentioning that, in addition

to the stochasticity of the networks, there is also the randomness in the generation and

augmentation of the signals. To ensure that the model is stable and robust to variations in

both network training and signal generation, the analyzes were repeated 10 times. At each

analysis, new synthetic signals were randomly generated and the model trained. As in all

dataset, the number of samples per condition were approximately equal, accuracy was used.

For Case 2 where the test data are imbalanced, despite the use of accuracy, the confusion

matrix is shown. To measure the variability after the 10 analyses, the standard deviation

was calculated. The tests were performed using 2.2 GHz Intel Core i7 Dual-Core, 8 GB 1600

MHz DDR3, Intel HD Graphics 6000 1536 MB.

5.4.3 Analysis approaches

The success of an AI model is directly related to the quality and quantity of training

data. On the other hand, a large amount of data implies acquisition costs, as well as a low

quality implies a reduction in the model’s accuracy. Being able to reduce the amount of real

data needed, and generate data varied enough to make the model robust, is a solution to
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enable the implementation of AI in the industrial application.

Besides the main objective of verifying the possibility of using a model trained

with synthetic and augmented data to evaluate real signals and their explainability, other

analyzes were performed.

First, the augmented data are analyzed, verifying if the behavior of the synthetic

signal in the frequency domain, matches the available knowledge about fault detection in

rotating machinery using vibration analysis. Subsequently, in order to reduce the amount

of real data needed to generate the synthetic data, the minimum viable amount of data was

analyzed to obtain a stable and robust model. This approach can be seen as an analogy of

the study area called Few-Shot Learning, where few samples are used to train the model.

Another analysis performed is in relation to the total amount of real samples needed in

the training group to ensure the stability and robustness of the model. In addition, the

possibility of working with 100% synthetic samples was analyzed, that is, where synthetic

data are generated without dependence on the real sample. For comparison between training

forms, supervised training was performed, using only real signals, which were divided into

70% for training and 30% for testing. Finally, the data obtained through XAI are analyzed

to verify if the features learned by the model are capable of providing relevant information

to the expert for decision making.

5.5 Results and discussion

5.5.1 Data exploration

In this section the synthetic samples for Case 1-3 are analyzed, discussed and

compared with the real samples. One sample per condition from the training database

was randomly selected. Due to the randomness of the proposed approach, variations in

signals may occur, being important to observe whether the deterministic characteristics of

the conditions remain similar.

As the objective is only to visualize the signal characteristic, df = 1 hz was used,

with the exception of Case 2, where df = 5.5 hz due to data limitation. For BPFO, BPFI

and Gear Fault conditions, the full signal is presented to highlight the fault characteristic
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at high frequency. In Unbalance, Misalignment, Looseness, a zoom was performed in the

range from 0 to 500 hz to facilitate the visualization of the characteristic frequencies. For

the normal condition, the complete signal is displayed.

Case 1 - Bearing Fault

In Fig. 5.3 the original signals for the two conditions (Normal and BPFO) and

the synthetic signals for the seven created conditions (Normal, BPFO, BPFI, Unbalance,

Misalignment, Looseness and Gear Fault) from Case 1 are presented.

(a) Real - Normal (b) Real - BPFO (c) Synthetic - Normal

(d) Synthetic - BPFO (e) Synthetic - BPFI (f) Synthetic - Unbalance

(g) Synthetic - Misalignment (h) Synthetic - Looseness (i) Synthetic - Gear Fault

Figure 5.3: Examples of vibration signals for Case 1, real and synthetic.

The real normal condition signal, Fig.5.3a does not present any frequency related

to faults, showing only the characteristic behavior of the machine. On the other hand, in

Fig. 5.3b there is the appearance of frequencies in the region of 3000 to 6000 Hz, related to

excitation of the natural frequencies, caused by the fault in the outer race.
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Analyzing the synthetic signals, it can be noted that for bearing faults, the impacts

due to a small defect tend to excite the races natural frequencies (at high frequency) Fig.5.3d

e 5.3e, being the fundamental frequency corresponding to the damaged element, BPFO =

236.4 hz and BPFI = 296.9 hz. For the unbalance, Fig.5.3f, there is a predominant increase

in amplitude by 1 x fr (rotation frequency). In misalignment, there is an increase in 2 and

3 x fr, with emphasis on 2 x fr, Fig.5.3g. Finally, for the mechanical looseness, there is

an increase in harmonics and the appearance of some sub-harmonics of fr, Fig.5.3h. Gear

defect, Fig.5.3i show an appearance of frequencies related to GMF, hypothetically placed at

711 hz and its harmonics, since this dataset does not have gears.

Comparing the synthetic and original (real) signals for the conditions present in

the dataset (normal and BPFO), the similarity of the fundamental characteristics is noted,

ensuring that the model learns the behavior of the signal in relation to each operating

condition of the equipment.

Case 2 - Gear Fault

In Fig. 5.4 the original signals for the two conditions (Normal and Gear Fault)

and the synthetic signals for the seven created conditions (Normal, BPFO, BPFI, Unbalance,

Misalignment, Looseness and Gear Fault) from Case 2 are presented.
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(a) Real - Normal (b) Real - Gear Fault (c) Synthetic - Normal

(d) Synthetic - BPFO (e) Synthetic - BPFI (f) Synthetic - Unbalance

(g) Synthetic - Misalignment (h) Synthetic - Looseness (i) Synthetic - Gear Fault

Figure 5.4: Examples of vibration signals for Case 2, real and synthetic.

The real normal condition signal, Fig.5.4a shows evidence of 1 and 2 x GMF,

which is normal when monitoring gearboxes. On the other hand, the original faulty signal,

Fig.5.4b already presents, in addition to 1 and 2 x GMF, harmonics in 3 and 4 x GMF, and

side bands, characterizing the appearance and progression of the fault.

Regarding the synthetic signals, the same analysis performed for Case 1 is valid

for Fig.5.4, with the exception of Fig.5.4i which has GMF equal to 711 hz, being the real

frequency of the gearbox. It can be noted that the behavior of the real and synthetic signals

for each condition is similar, as proposed by the approach.

Case 3 - Mechanical Faults

In Fig. 5.5 the original signals for the four conditions (Normal, Unbalance,

Misalignment and Looseness) and the synthetic signals for the seven created conditions
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(Normal, BPFO, BPFI, Unbalance, Misalignment, Looseness and Gear Fault) from Case 3

are presented.

Note, in Fig. 5.5, that even for the normal condition, there is evidence of

highlighted frequencies up to 2000 hz, which may be related to lack of precision in the

adjustment, assembly and lubrication of the bearings, improper adjustment (tensioning)

and/or wear of the pulleys, noise generated by the frequency inverter etc. The condition was

purposely chosen to simulate an industrial situation. It is known that, not all companies

have enough specialized technicians to carry out an assembly and adjustment within the

World Class Maintenance (WCM) standards. Also, there is a lack of specialized equipment

to perform laser alignment, dynamic balancing etc. Moreover, due to the need for quick

intervention to release the equipment for operation, maintenance cannot be performed with

the desired precision. Because of these problems, the vibration signal can present a series of

frequencies and/or noises, which make it difficult for the predictive maintenance specialist

to analyze the main condition.

Even in a scenario where the signal is heavily polluted, technicians are usually able

to perform an accurate diagnosis, based on field experience. Thus, it was decided to keep the

bench in the presented condition, to make the test closer to the industrial reality, instead of

completely adjusting the bench to eliminate noise and other sources of excitation that are

not related to the defects. Allowing, to assess whether the proposed methodology is capable

of imitating human behavior, accurately identifying the operating conditions of the asset.

Again, analysis performed for Case 1 and 2 in relation to synthetic data is valid

for Fig. 5.5, with the exception of Fig. 5.5f and 5.5g being the fundamental frequency

corresponding to the damaged element, BPFO = 107.09 hz and BPFI = 155.7 hz.

As in the other cases, it can be noted that the described fault characteristics are

evident in all the synthetically generated signals and in the original signals. This shows

that the data augmentation process was able to increase the diversity of the dataset without

losing its fundamental characteristics.
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(a) Real - Normal (b) Real - Unbalance (c) Real - Misalignment

(d) Real - Looseness (e) Synthetic - Normal (f) Synthetic - BPFO

(g) Synthetic - BPFI (h) Synthetic - Unbalance (i) Synthetic - Misalignment

(j) Synthetic - Looseness (k) Synthetic - Gear Fault

Figure 5.5: Examples of vibration signals for Case 3, real and synthetic.
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5.5.2 Number of total samples for training

To evaluate the influence of the total number of signals in the training group, 10

sets were created containing: 1050, 2100, 3150, 4200, 5250, 6300, 7350, 8400, 9450, 10500

signals.

As the objective was not to evaluate the efficiency of the model, but to compare

the result obtained in relation to the amount of signals in the training group, 30 original

signals were selected to perform the data augmentation step, and the results for accuracy

and standard deviation are shown in Fig. 5.6.

Figure 5.6: Results for each case varying the total amount of signals in the training set.

Analyzing Fig.5.6, it can be noted that there is no significant variation in relation

to the amount of data used, with the exception of Case 3 in the set of 1050 signals. Such

variation may have occurred due to the greater complexity of the signal present in the dataset,

requiring a greater amount of signals in training for learning.

Note that there was no significant gain in the accuracy and stability of the

model (less standard deviation) in increasing the number of signals above 5250 signals, and

therefore, the amount was selected for the other analyses.

5.5.3 Number of real samples for training

Based on the previous analysis, 5250 signals were used in the training, aiming to

balance the computational cost and the efficiency of the model.

Unlike the previous analysis, the number of real signals to generate the total

amount of training was varied. The goal is to analyze whether, through zero or few data

acquisitions, it is possible to train a model robust enough for fault diagnosis.
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11 conditions were tested, using 0, 1, 2, 3, 5, 10, 15, 25, 30, 50 and 75 real signals

to generate the 5250 signals in the training. The values were selected so that the number of

times the signals were augmented resulted in integer values, with no need to discard excess

signals. As Case 2 has only 104 real signals per condition, the range was set from 1 to 75

signals. The results obtained for accuracy and standard deviation are shown in Fig. 5.7.

Figure 5.7: Results for each case varying the amount of real signals used to create the training
set.

Unlike the other conditions, in the first test, all signals for the training group

were generated synthetically, without performing the combination with the real signal (zero

number of real signal). It can be seen in Fig.5.7, that with zero real signal the lowest

performing test was achieved. This result was expected, since the signals were created,

basically containing the machine rotation frequency, white noise and random frequencies with

amplitude close to the noise. This characteristic does not represent the dynamic behavior of

the machine, resulting in the lowest value obtained. Therefore, it can be concluded that using

the chosen strategy, it is not possible to train a model using only synthetic data without the

combination with the real signal. It is worth mentioning that, despite not being the focus of

the work, other strategies, such as more complex modeling, can be tested to overcome this

problem.

Analyzing Fig.5.7, it can also be seen that using up to two real signals to create

the entire training dataset, the average accuracy is significantly lower than the others, and

the model has a large standard deviation. This occurs because if one of the selected signals

presents some noise or excitation not related to the dynamic behavior of the machine, such

pattern will be replicated for at least 50% of the training set signals, leading the model to
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error.

The increase in the number of signals tends to contribute to the improvement in

the performance of the model, although it does not mean a linearly increasing behavior. It

is noted that, in general, there is a stabilization of accuracy and standard deviation after 15

signals. In view of the computational and acquisition cost, and the results obtained with the

increase in the amount of real data, it is suggested to be between 15 and 30 signals, a good

working range for the proposed approach.

The maximum accuracy value reached in Case 1 was 98.1% and standard deviation

of 1.2% with 15 signals. For Case 2, the maximum accuracy value was 92.5% and standard

deviation of 5.5% with 25 signals. Case 3 obtained the highest accuracy value with 15

signals, being 95.5% and standard deviation of 2.1%. Smaller values of standard deviation

were obtained for other amounts of signals, however none of them had a difference greater

than 0.5% in relation to those presented.

The differences in accuracy and standard deviation obtained between each case are

in accordance with what was expected in the study. Case 1 is a bearings remaining useful life

test, where data were collected continuously, without the bench being dismantled to insert

the defects. As there were no changes in the test bench, variations in the dynamic behavior

of the machine are not expected, other than those caused by the wear of the components

(since it is isolated). This makes the fault identification simpler for the model.

On the other hand, in Case 2 and 3, the benches were dismantled to insert the

faults. Therefore, small changes in relation to the real signal used as a reference for generating

the synthetic data may occur during assembly and adjustment, generating a reduction in

accuracy. This condition represents a situation where the system was trained with a machine

signal in a similar condition, but not identical to the current one (which is a transfer learning

problem definition).

The two analyzes are extremely interesting, and show the applicability of the

system in the industrial scenario. In Case 1, it addresses the monitoring of a machine, where

the system was installed, trained, and over time was able to identify a fault in the asset. In

Case 2 and 3, the model was initially installed and trained. Hypothetically, the machine

underwent some corrective maintenance, and the same model, without being retrained,
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continued to monitor the asset, and was able to identify the faults present. The fact that

there is no need to retrain the model for small changes in the asset or reestablish the operating

condition through corrective maintenance, overcomes a major problem in applications that

is retraining. It is worth mentioning that for major interventions or changes in projects that

modify the dynamic behavior of the machine, the model will tend to reduce its accuracy if

not retraining.

The confusion matrix for the best values obtained in Case 1 is presented, containing

the number of signals per class and the standard deviation for the 10 tests, in addition to

the value in percentage, Table 5.1. Where in the column are the True Labels and in the row

are the Predicted Labels.

Table 5.1 – Confusion Matrix - Case 1

Case 1 Normal BPFO BPFI Unbalance Misalignment Looseness Gear Fault

Normal
52.01 % (0.51%) 0.72 % (0.41%) 0 % (0%) 0 % (0%) 0.41 % (0.51%) 0.10 % (0.10%) 0 % (0%)

504 (5) 7 (4) 0 (0) 0 (0) 4 (5) 1 (1) 0 (0)

BPFO
0.62 % (0.92%) 46.03 % (0.92%) 0 % (0%) 0 % (0%) 0 % (0%) 0.10 % (0.10%) 0 % (0%)

6 (9) 446 (9) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

BPFI
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Unbalance
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Misalignment
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Looseness
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Gear Fault
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

In Table 5.1, it can be seen that the model confused normal signals with BPFO,

misalignment and looseness. On the other hand, the faulted signals (BPFO) were confused

with the normal condition and looseness only. The confusion between normal and BPFO

may still be acceptable, due to the run to failure test feature and manual label. Therefore,

signals referring to the beginning of the fault may present similar characteristics. The other

classifications were model errors. Analyzing the result only by class, the normal signals were

classified correctly 97.67% of the time, and faulty signals (BPFO) 98.45%. The confusion

matrix for Case 2 is shown in Table 5.2.
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Table 5.2 – Confusion Matrix - Case 2

Case 2 Normal BPFO BPFI Unbalance Misalignment Looseness Gear Fault

Normal
7.90 % (0.98%) 0 % (0%) 0 % (0%) 0.11 % (0.11%) 0.11 % (0.11%) 0.11 % (0.11%) 0.44 % (0.76%)

72 (9) 0 (0) 0 (0) 1 (1) 1 (1) 1 (1) 4 (7)

BPFO
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

BPFI
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Unbalance
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Misalignment
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Looseness
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Gear Fault
5.49 % (3.29%) 0 % (0%) 0 % (0%) 0.88 % (2.19%) 0.22 % (0.32%) 0.11 % (0.11%) 84.63 % (7.68%)

50 (30) 0 (0) 0 (0) 8 (20) 2 (3) 1 (1) 771 (70)

In Case 2, Table 5.2, normal condition and gear fault were confused with unbalance,

misalignment, looseness and gear defect. As the gear fault characteristics are different from

the errors presented, it can be concluded that there is a model error, despite the low amount.

Analyzing by class, normal signals were classified correctly 91.14% of the time, and faulty

signals 92.67%. The confusion matrix for Case 3 is shown in Table 5.3.

Table 5.3 – Confusion Matrix - Case 3

Case 3 Normal BPFO BPFI Unbalance Misalignment Looseness Gear Fault

Normal
24.54 % (0.17%) 0.04 % (0.09%) 0.02 % (0.02%) 0.06 % (0%) 0.04 % (0%) 0.02 % (0.02%) 0.06 % (0.09%)

1223 (9) 2 (5) 1 (1) 3 (0) 2 (0) 1 (1) 3 (5)

BPFO
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

BPFI
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Unbalance
0.08 % (0.04%) 0.02 % (0.02%) 0 % (0%) 24.82 % (0.39%) 0 % (0%) 0.16 % (0.39%) 0 % (0%)

4 (2) 1 (1) 0 (0) 1247 (20) 0 (0) 8 (20) 0 (0)

Misalignment
0.62 % (0.65%) 0 % (0%) 0 % (0%) 0.02 % (0%) 22.71 % (2.46%) 1.71 % (2.40%) 0.02 % (0%)

31 (33) 0 (0) 0 (0) 1 (0) 1141 (124) 86 (121) 1 (0)

Looseness
0 % (0%) 0 % (0%) 0 % (0%) 1.53 % (0.85%) 0.10 % (0.13%) 23.44 % (0.75%) 0 % (0%)

0 (0) 0 (0) 0 (0) 77 (43) 5 (7) 1178 (38) 0 (0)

Gear Fault
0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%) 0 % (0%)

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 5.3 presents the results obtained for Case 3. The normal signals were

confused with all types of faults, despite the low amount. The unbalance signals were

confused with normal condition, BPFO and looseness. Misalignment was confused with

normal condition, unbalance, looseness and gear fault. Finally, looseness was confused only

with unbalance and misalignment. Among the classes, the normal condition was the one
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with the highest accuracy rate with 99.04%. The misalignment showed the highest error,

resulting in 90.56%. The unbalance showed 98.97% and looseness 93.49%. The results show

the greatest difficulty in classifying misalignment and looseness, which was expected, since

some harmonics (such as: 2x and 3x) can be highlighted in both condition, making the

analysis difficult.

5.5.4 Supervised training with real signals only

A comparative analysis was performed to verify the difference in accuracy and

robustness of the model using the proposed approach and with supervised training using

only real data.

In supervised training, all samples have labels and the signals used for each class

refer to real fault conditions. Although in general, it presents excellent results, it is necessary

to have samples of all fault conditions and they need to be previously labeled. Assumptions

that often make industrial applications unfeasible.

The real signals were divided into 70% training and 30% testing, and as in the

proposed approach, they were executed 10 times due to the randomness of the model. All

available signals were used. The accuracy and standard deviation for each test were: 98.1%

(0.53%), 98.9% (0.86%) and 99.8% (0.11%), for Case 1, 2 and 3 respectively.

The result obtained for Case 1 it was the same using the two types of training

(supervised with real signals and proposed approach). The only difference was lower the

standard deviation (0.53% compared to 1.2% in the proposed methodology). It is believed

that the results were similar due to the lower complexity of the dataset, and consequently

ease of identification of the fault. Moreover, the faults have more specific pattern compared

to the other cases.

In Cases 2 and 3, supervised training with real data obtained higher results and

lower standard deviation than the proposed approach, as expected. In Case 2 the precision

was improved from 92.5% to 98.9% and the standard deviation decreased from 5.5% to 0.86%.

In Case 3, the accuracy was 95.5% with the proposed approach becoming 99.8% using only

the real signals, and the standard deviation went from 2.1% to 0.11%.

The results confirm the expected superiority of supervised training with only real
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data. On the other hand, it is worth mentioning that obtaining real and labeled data of all

faults can be a complex and time-consuming task in the industrial applications, problems

that are overcome by the proposed approach.

5.5.5 Explainable Artificial Intelligence (XAI)

Understanding how the AI model arrived at the end result is critical to its

application in the industry. The models need a minimum of interpretability, so that users

can trust in the predictions.

In addition to allowing us to understand the most relevant parameters used by the

model for the final classification, the analysis also allows us to evaluate the learning of the

model.

The model’s interpretability makes it possible to understand which were the most

relevant features used for the prediction, and also to evaluate the model’s learning.

The gradients used by the Grad-CAM method after the classification of the sample

by the 1D CNN are evaluated. The heat map with the most relevant frequencies for the

prediction are presented. A random sample was selected for each type of classification in

each case, to exemplify the most relevant features, and validate if they are in accordance

with the available literature on faults in vibration analysis of rotating machines. The results

obtained for Case 1 are shown in Fig.5.8.
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(a) Normal

(b) BPFO

Figure 5.8: XAI analysis - Case 1

Analyzing Fig.5.8a, it is verified that the normal signal uses several frequencies of

the signal, not having a specific frequency or region. This was to be expected, as no faults are

present, the entire signal referring to a normal machine condition. In the faulty condition,

Fig.5.8b, the high frequency regions are excited, since it is a bearing fault. Consequently, the

model uses the frequencies associated with the BPFO as the most relevant for indicating the

defect. The analysis corresponds to a manual analysis performed by a rotating machinery

specialist.

The results obtained for Case 2 are shown in Fig.5.9.





151

(a) Normal

(b) Unbalance

(c) Misalignment

(d) Looseness

Figure 5.10: XAI analysis - Case 3

For the normal condition, Fig.5.10a, the model did not identify a specific frequency

as expected. On the other hand, in Fig.5.10b, there is unbalance, where normally 1 x fr is

dominant in the signal. Once again, the model presented the same analysis by an expert,
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indicating 1 x fr as the most relevant frequency. In Fig.5.10c, the most relevant frequency is

2 x fr, which is exactly one of the misalignment characteristics, where 2 x fr is greater than 1

x fr, and there may or may not be harmonics of 3x, 4x, 5x etc. The mechanical looseness can

present itself in some ways, being one of them the excitation of the fr harmonics. In Fig.5.10d

it is noted that the model used the rotation harmonics as a reference, with emphasis on 3 x

fr, again confirming the analysis based on human knowledge.

5.6 Conclusions

This chapter presents a new generic and interpretable approach to classifying faults

in rotating machinery based on transfer learning from augmented synthetic data to real

rotating machinery, namely FaultD-XAI (Fault Diagnosis using eXplainable AI).

The six-stage scheme is adopted: i) Data Acquisition; ii) Signal Generation; iii)

Data Augmentation; iv) Signal Processing; v) Fault Diagnosis; vi) Explainable Artificial

Intelligence (XAI). From the acquired vibration signals, the synthetic faults are generated

and augmented. Subsequently, they are transformed to the frequency domain, and used to

train the AI model. After training, the model is able to classify real fault signals, without

them having been used in training. Finally, explainability allows analyzing the predictions

obtained.

The results show that it is possible to train a model for fault diagnosis in rotating

machinery, without having labeled data for all faults, overcoming this major problem in

industrial applications. In addition, the proposed approach makes it possible to identify the

most relevant features used by the model to perform the prediction, overcoming another

major problem, which is to trust the result obtained by black-box models.

In summary, the best results (accuracy and standard deviation) reached in Case

1, 2 and 3 were: 98.1% (1.2%), 92.5% (5.5%) and 95.5% (2.1%), respectively. Using the

traditional supervised training method and real data, the results obtained were: 98.1%

(0.53%), 98.9% (0.86%) and 99.8% (0.11%), for Case 1, 2 and 3 respectively. Therefore,

comparing both results, it can be concluded that the approach presents a promissory proposal

for fault diagnosis. Moreover, the model’s explainability analysis shows that it was able to

learn the most relevant characteristics of each condition, and that the proposed approach is
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capable of supporting the expert’s final decision-making.

As FaultD-XAI does not require labeled data of all possible machine operating

conditions, and only knowledge currently available on fault diagnosis through vibration

analysis, the methodology has many possible engineering applications. Future work will

explore the approach to remaining useful life (RUL) estimation of rotating machinery

components (fault prognosis Susto et al. (2014)), using synthetic data, transfer learning

and XAI.



CHAPTER VI

CONCLUSIONS

This thesis presented the study and development of different methodologies for

monitoring rotating machinery based on explainable artificial intelligence and vibration

analysis.

The methodologies applied made it possible to use synthetic and real experimental

data and analyze them quickly and with low computational cost, making the applications

viable for the industrial reality. In addition to creating a new dataset to study defects such

as misalignment, unbalance and mechanical looseness, which will be publicly available for

further research.

The results and discussions show the feasibility of applying the proposed

methodologies in the monitoring of rotating machinery.

6.1 Main Conclusions

The main conclusions about the work are presented below.

■ The results show that it is possible to use vibration signals for unsupervised fault

detection in rotating machinery. Furthermore, the feature extraction process is

fundamental for the success of ML models. Techniques to reduce the size of input

features have been proposed, showing their feasibility.

■ A new approach that allows to automatically select the relevant frequency bands for
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an analysis of rotating machinery signals, and to obtain the respective ranking of

importance is presented. Through the analysis of the entropy and rms value of the

signal, the BRF is obtained allowing the classification of relevance of the band. In

automatic systems (e.g., Artificial Intelligence frameworks) the use of the method allows

analyzing only bands that contain relevant information, and in manual analyses, it

provides the vibration specialist with guidance on the main focuses of the analysis.

■ The explainable artificial intelligence approach proposed allows the unsupervised fault

detection in rotating machinery. And, in addition to providing explainability about the

models used, the methodology provides relevant information for root cause analysis, or

even unsupervised fault classification.

■ The results for FaultD-XAI, show that it is possible to train a model for fault diagnosis

in rotating machinery, without having labeled data for all faults, overcoming this

major problem in industrial applications. In addition, the proposed approach makes

it possible to identify the most relevant features used by the model to perform the

prediction, overcoming another major problem, which is to trust the result obtained

by black-box models.

6.2 Other Conclusions

In addition to the main conclusions mentioned above, the following conclusions

can be highlighted.

■ Among the studied techniques, PCA had the best performance, being second only

to the manual selection of features based on the expert’s knowledge. The raw signal

can also be reduced in size, and later used in ML models for fault detection. It is

noteworthy, however, that the amount of principal components needed to represent

the problem tends to be greater, which can lead to a reduction in the robustness and

assertiveness of the system. Feature trend analysis is an interesting tool to visually

verify variations in the system and can be used by the specialist in conjunction with

the anomaly score obtained by the model for monitoring.
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The work avoids the introduction of irrelevant or correlated features in ML models,

reducing data storage space and computational time to train the models. This, allows

the specialist to monitor the features in a summarized manner, which is not always

possible when there are many monitoring variables. Thus, decision-making is supported

by solid indicators, essential for application in an industrial scenario.

■ The results obtained for the different dataset show that the BRF is able to identify

the relevance of bands both for synthetically generated data, with and without the

presence of noise, and for two real dataset.

Due to its unsupervised characteristic, the methodology can be applied within

frameworks as a pre-feature extraction method in data analytics and artificial

intelligence applications, avoiding extracting features from irrelevant bands of the

signal. It can also be used to verify the correct operation of sensors (quality of the

acquired signal), contributing to the reliability of wireless/remote and IoT (Internet of

Things) monitoring systems.

■ In general, the results obtained for anomaly detection, can be summarized as follows:

i) for AD, in Case 1, a maximum F1-Score value of 99.45% was obtained, with the

three main models being MCD, HBOS and IF. In Case 2, a maximum value of 99.84%

was obtained, and the best models were: MCD, kNN and IF. In Case 3, the maximum

value obtained was 99.22%, and the main models being: HBOS, IF and MCD. ii)

For the unsupervised classification, in Case 1 a maximum accuracy of 99.57% was

obtained using IF, and having HBOS and FB as main models. For Case 2, a maximum

value of 96.72% was reached, with the Ensemble, kNN and CBLOF models having

the best results. For the root cause analysis, the features that most correlate with

the fault under study are presented, as for example in the case of unbalance, where

55.83% of the samples indicated 1xfr as the most important features, in line with the

fault behavior, which helps the specialist to eliminate features that are not related

to the fault. iii) The comparison between Local-DIFFI and SHAP showed greater

similarity for all cases, especially for Case 3, with a Kendall-Tau Distance value equal

to 0.455. In terms of computational performance, Local-DIFFI presented a superiority
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of approximately 6.5–8.0x over SHAP.

Different state-of-the-art ML algorithms in anomaly detection were studied showing

the possibility to change models according to the dataset. The new approach can be

applied to different types of faults just by modifying the extracted features associated

with a potential fault as shown for the 3 datasets studied. Since the approach does

not require previously labeled data, and only knowledge currently available on fault

detection through vibration analysis, the methodology has many possible industrial

applications.

■ In summary, the best results for fault diagnosis (accuracy and standard deviation)

reached in Case 1, 2 and 3 were: 98.1% (1.2%), 92.5% (5.5%) and 95.5% (2.1%),

respectively. Using the traditional supervised training method and real data, the

results obtained were: 98.1% (0.53%), 98.9% (0.86%) and 99.8% (0.11%), for Case

1, 2 and 3 respectively. Therefore, comparing both results, it can be concluded that

FaultD-XAI presents a promissory proposal for fault diagnosis. Moreover, the model’s

explainability analysis shows that it was able to learn the most relevant characteristics

of each condition, and that the proposed approach is capable of supporting the expert’s

final decision-making.

As FaultD-XAI does not require labeled data of all possible machine operating

conditions, and only knowledge currently available on fault diagnosis through vibration

analysis, the methodology has many possible engineering applications.

6.3 Future Works

■ Future works will explore the possibility of using the BRF value as an anomaly detection

/ drift concept detection method. Considering the variation in the classification of

a band from relevant to irrelevant during a time series may indicate variations or

anomalies in the system. Or suggesting that the model needs to be retrained due to a

new distribution of the data.

■ In addition, the BRF will be studied as a monitoring feature over time (trend analysis)

in order to assess its sensitivity as an indicator of the component’s end-of-life. Future
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developments also include studying the behavior of the method in time series of different

applications (e.g., electroencephalogram (EEG) etc).

■ New studies will also focus on understanding how the model relates input features with

significance to perform anomaly detection, and thus be able to work on dimensionality

reduction in a more optimized way.

■ Other possibilities are to explore the study of remaining useful life (RUL) estimation

of rotating machinery components (fault prognosis), using synthetic data, transfer

learning and XAI.

■ And finally, to study the domain adaptation and transfer learning associated with

methods for model interpretability to improve the applicability of the proposed

approaches in different industrial scenarios.
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