Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufu.br/handle/123456789/34035
Tipo de documento: Dissertação
Tipo de acceso: Acesso Aberto
Título: Aprendizado ativo para classificadores de fluxo de dados baseados em agrupamento
Título (s) alternativo (s): Active learning for clustering-based data stream classifiers
Autor: Cavalcanti, Douglas Monteiro
Primer orientador: Paiva, Elaine Ribeiro de Faria
Primer coorientador: Cerri, Ricardo
Primer miembro de la banca: Prati, Ronaldo Cristiano
Segundo miembro de la banca: Pereira, Fabíola Souza Fernandes
Resumen: O processo de atualização de classificadores de fluxo de dados baseados em agrupamento gera grupos a partir de instâncias de dados parcial ou totalmente não rotuladas. Cada grupo é então categorizado como a extensão de uma classe conhecida ou como o surgimento de uma nova, resumido e finalmente adicionado ao modelo de classificação. Considerando o custo de aquisição do rótulo, quando comparadas a abordagens exclusivamente supervisionadas, as estratégias baseadas em agrupamento apresentam a vantagem de permitir o uso de dados não rotulados para atualização do modelo de classificação. No entanto, o ganho de informações sobre a distribuição das classes de dados por meio de dados não rotulados está sujeito a suposições de como a distribuição dos atributos interage com a distribuição das classes de dados. Por causa disso, o processo de atualização de classificadores de fluxo de dados baseados em agrupamento está sujeito a falhar à medida que essa interação muda inesperadamente devido a característica não-estacionária do fluxo, levando a erros de inferência de classe e, consequentemente, à categorização incorreta de grupos, comprometendo a consistência do modelo de classificação. Considerando este problema, neste trabalho, propomos uma estratégia de aprendizagem ativa que seleciona os grupos para os quais a categorização é mais incerta e então, para cada grupo escolhido, consulta pelo rótulo das instâncias mais informativas no contexto da distribuição interna do grupo. Ao dividir a responsabilidade da consulta de aprendizagem ativa entre duas estratégias de consulta, uma para o nível dos grupos e outra para o nível das instâncias, a estratégia garante um uso eficiente e eficaz dos recursos de rótulo, adquirindo rótulos apenas para grupos com maior probabilidade de precisar deles. Para testar a estratégia de aprendizagem ativa proposta, ela foi aplicada a dois classificadores de fluxo de dados baseados em clustering da literatura: MINAS e ECHO. Nos resultados, a estratégia de aprendizagem ativa recuperou um número significativo de categorizações incorretas de cluster ao custo de poucas aquisições adicionais de rótulo.
Abstract: The update process of clustering-based data stream classifiers generates clusters from partially or fully unlabeled data instances. Each cluster is then categorized as the extension of a known class or as the emergence of a new one, summarized, and finally added to the classification model. Considering the cost of label acquisition, when compared to exclusively supervised approaches, clustering-based strategies present the advantage of allowing the use of unlabeled data to update the classification model. However, the gain of information about the data classes’ distribution through unlabeled data is subject to assumptions of how the distribution of the features interacts with the distribution of the data classes. Because of that, the updated process of clustering-based data stream classifiers is prone to fail as this interaction changes unexpectedly due to the stream’s non-stationary characteristic, leading to class inference errors and consequently the miscategorization of clusters, compromising the consistency of the classification model. Considering this problem, in this work, we propose an active learning strategy that selects for the clusters for which the categorization is more uncertain and then, for each chosen cluster, queries for the label of the instances more informative in the context of the inner cluster distribution. By dividing the active learning query responsibility among two query strategies, one for the cluster-level and the other for the instance-level, the strategy guarantees an efficient and effective use of label resources by acquiring labels only for the clusters more likely to need it. To test the proposed active learning strategy, we applied it to two clustering-based data stream classifiers from the literature: MINAS and ECHO. In the results, the active learning strategy recovered a significant number of cluster miscategorizations at the cost of a few additional label acquisitions.
Palabras clave: Fluxo de Dados
Data Stream
Aprendizado Ativo
Active Learning
Agrupamento
Clustering
Semi-supervisão
Semi-supervision
Área (s) del CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Tema: Ciência da Computação
Inteligência Artificial
Fluxo de dados (Computadores)
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Ciência da Computação
Cita: CAVALCANTI, Douglas Monteiro. Aprendizado ativo para classificadores de fluxo de dados Baseados em agrupamento. 2021. 78 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2021.673
Identificador del documento: http://doi.org/10.14393/ufu.di.2021.673
URI: https://repositorio.ufu.br/handle/123456789/34035
Fecha de defensa: 25-nov-2021
Aparece en las colecciones:DISSERTAÇÃO - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AprendizadoAtivoClassificadores.pdf1.95 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.