
Aprendizado Ativo para ClassiĄcadores de

Fluxo de Dados Baseados em Agrupamento

Douglas Monteiro Cavalcanti

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2021

Douglas Monteiro Cavalcanti

Aprendizado Ativo para ClassiĄcadores de

Fluxo de Dados Baseados em Agrupamento

Dissertação de mestrado apresentada ao

Programa de Pós-graduação da Faculdade

de Computação da Universidade Federal de

Uberlândia como parte dos requisitos para a

obtenção do título de Mestre em Ciência da

Computação.

Área de concentração: Ciência da Computação

Orientador: Elaine Ribeiro de Faria

Coorientador: Ricardo Cerri

Uberlândia

2021

17/01/2022 14:32 SEI/UFU - 3198395 - Ata de Defesa - Pós-Graduação

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=3595992&infra_siste… 2/2

Documento assinado eletronicamente por Fabíola Souza Fernandes Pereira, Professor(a) do
Magistério Superior, em 26/11/2021, às 09:16, conforme horário oficial de Brasília, com fundamento
no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Elaine Ribeiro de Faria Paiva, Professor(a) do Magistério
Superior, em 26/11/2021, às 09:23, conforme horário oficial de Brasília, com fundamento no art. 6º,
§ 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Ricardo Cerri, Usuário Externo, em 26/11/2021, às 16:17,
conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.

A auten�cidade deste documento pode ser conferida no site
h�ps://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 3198395 e
o código CRC D40BE9B0.

Referência: Processo nº 23117.080222/2021-29 SEI nº 3198395

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Agradecimentos

Agradeço primeiramente à minha Orientadora Prof.ª Dr.ª Elaine Ribeiro de Faria e

ao meu Co-orientador Prof. Dr. Ricardo Cerri, que me ajudaram a formular as ideias por

trás deste trabalho. Agradeço ao Programa de Pós-Graduação em Ciência da Computação

da UFU pela oportunidade de participar do curso. Agradeço também aos meus amigos

Tiago e Junício, que sempre acompanharam com otimismo o progresso deste trabalho.

“I may be wrong and you may be right, and by an effort,

we may get nearer to the truth.”

(Karl Popper)

Resumo

O processo de atualização de classiĄcadores de Ćuxo de dados baseados em agrupa-

mento gera grupos a partir de instâncias de dados parcial ou totalmente não rotuladas.

Cada grupo é então categorizado como a extensão de uma classe conhecida ou como o

surgimento de uma nova, resumido e Ąnalmente adicionado ao modelo de classiĄcação.

Considerando o custo de aquisição do rótulo, quando comparadas a abordagens exclusiva-

mente supervisionadas, as estratégias baseadas em agrupamento apresentam a vantagem

de permitir o uso de dados não rotulados para atualização do modelo de classiĄcação. No

entanto, o ganho de informações sobre a distribuição das classes de dados por meio de da-

dos não rotulados está sujeito a suposições de como a distribuição dos atributos interage

com a distribuição das classes de dados. Por causa disso, o processo de atualização de clas-

siĄcadores de Ćuxo de dados baseados em agrupamento está sujeito a falhar à medida que

essa interação muda inesperadamente devido a característica não-estacionária do Ćuxo,

levando a erros de inferência de classe e, consequentemente, à categorização incorreta

de grupos, comprometendo a consistência do modelo de classiĄcação. Considerando este

problema, neste trabalho, propomos uma estratégia de aprendizagem ativa que seleciona

os grupos para os quais a categorização é mais incerta e então, para cada grupo escolhido,

consulta pelo rótulo das instâncias mais informativas no contexto da distribuição interna

do grupo. Ao dividir a responsabilidade da consulta de aprendizagem ativa entre duas

estratégias de consulta, uma para o nível dos grupos e outra para o nível das instâncias,

a estratégia garante um uso eĄciente e eĄcaz dos recursos de rótulo, adquirindo rótulos

apenas para grupos com maior probabilidade de precisar deles. Para testar a estratégia

de aprendizagem ativa proposta, ela foi aplicada a dois classiĄcadores de Ćuxo de dados

baseados em clustering da literatura: MINAS e ECHO. Nos resultados, a estratégia de

aprendizagem ativa recuperou um número signiĄcativo de categorizações incorretas de

cluster ao custo de poucas aquisições adicionais de rótulo.

Palavras-chave: Fluxo de Dados, Aprendizado Ativo, Agrupamento, Semi-supervisão.

Active Learning for Clustering-based Data

Stream ClassiĄers

Douglas Monteiro Cavalcanti

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2021

UNIVERSIDADE FEDERAL DE UBERLÂNDIA – UFU

FACULDADE DE COMPUTAÇÃO – FACOM

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA

COMPUTAÇÃO – PPGCO

The undersigned hereby certify they have read and recommend to the

PPGCO for acceptance the dissertation entitled “Active Learning for

Clustering-based Data Stream Classifiers” submitted byDouglas Mon-

teiro Cavalcanti as part of the requirements for obtaining the Master’s

degree in Computer Science.

Uberlândia, de de

Supervisor:

Prof.a Dr.a Elaine Ribeiro de Faria

Universidade Federal de Uberlândia

Cosupervisor:

Prof. Dr. Ricardo Cerri

Universidade Federal de São Carlos

Examining Committee Members:

Prof. Dr. Ronaldo Cristiano Prati

Universidade Federal do ABC

Prof.a Dr.a Fab́ıola Souza Fernandes Pereira

Universidade Federal de Uberlândia

Abstract

The update process of clustering-based data stream classiĄers generates clusters from

partially or fully unlabeled data instances. Each cluster is then categorized as the exten-

sion of a known class or as the emergence of a new one, summarized, and Ąnally added

to the classiĄcation model. Considering the cost of label acquisition, when compared to

exclusively supervised approaches, clustering-based strategies present the advantage of al-

lowing the use of unlabeled data to update the classiĄcation model. However, the gain of

information about the data classesŠ distribution through unlabeled data is subject to as-

sumptions of how the distribution of the features interacts with the distribution of the data

classes. Because of that, the updated process of clustering-based data stream classiĄers is

prone to fail as this interaction changes unexpectedly due to the streamŠs non-stationary

characteristic, leading to class inference errors and consequently the miscategorization of

clusters, compromising the consistency of the classiĄcation model. Considering this prob-

lem, in this work, we propose an active learning strategy that selects for the clusters for

which the categorization is more uncertain and then, for each chosen cluster, queries for

the label of the instances more informative in the context of the inner cluster distribution.

By dividing the active learning query responsibility among two query strategies, one for

the cluster-level and the other for the instance-level, the strategy guarantees an efficient

and effective use of label resources by acquiring labels only for the clusters more likely

to need it. To test the proposed active learning strategy, we applied it to two clustering-

based data stream classiĄers from the literature: MINAS and ECHO. In the results, the

active learning strategy recovered a signiĄcant number of cluster miscategorizations at

the cost of a few additional label acquisitions.

Keywords: Data Stream, Active Learning, Clustering, Semi-supervision.

List of Figures

Figure 1 Ű The general Ćow of the proposed two-level active learning strategy. . . 30

Figure 2 Ű General cluster categorization Ćow of a clustering-based data stream

classiĄer, Ąrst at its original form (a), and then after the integration of

the proposed framework (b). 33

Figure 3 Ű Meta-categorizersŠ threshold factor parameter analysis for MINAS . . . 52

Figure 4 Ű Meta-categorizersŠ threshold factor parameter analysis for ECHO . . . 53

List of Tables

Table 1 Ű Description of the main terms related to the proposed framework. . . . 32

Table 2 Ű All possible scenarios considering the different possible outputs from

each module involved in the cluster categorization. 34

Table 3 Ű Proposed meta-categorizers. 38

Table 4 Ű Categorization confusion matrix . 42

Table 5 Ű Committee agreement confusion matrix 43

Table 6 Ű Confusion matrix for the impact over the categorization of the queried

clusters . 44

Table 7 Ű Benchmark datasets . 46

Table 8 Ű MINASŠ parameters . 48

Table 9 Ű ECHOŠs paramaters . 50

Table 10 Ű Source code repositories . 50

Table 11 Ű MINASŠ baseline results . 51

Table 12 Ű ECHOŠs baseline results . 51

Table 13 Ű Meta-CategorizerŠs Cluster Query Performance for MINAS 54

Table 14 Ű Active-CategorizerŠs Categorization Performance for MINAS and NDNCR 55

Table 15 Ű Active-CategorizerŠs Framework Impact for MINAS and NDNCR 55

Table 16 Ű Meta-CategorizerŠs Cluster Query Performance for ECHO 56

Table 17 Ű Active-CategorizerŠs Categorization Performance for MINAS and NDNCR 56

Table 18 Ű Active-CategorizerŠs Framework Impact for MINAS and NDNCR 56

Table 19 Ű Tight Integration with MINAS using NDNCR and MKCN 57

Table 20 Ű Tight Integration with MINAS using NDNCR and MKR 57

Table 21 Ű Comparasion between MINAS baseline results and the results obtained

with the MINAS + Framwork approach: numbers of clusters 57

Table 22 Ű Comparasion between MINAS baseline results and the results obtained

with the MINAS + Framwork approach: labels and categorization per-

formance . 58

Contents

1 INTRODUCTION . 13

1.1 Motivation . 15

1.2 Objectives . 17

1.3 Hypothesis . 18

1.4 Contributions . 18

1.5 Thesis Organization . 18

2 FUNDAMENTALS . 21

2.1 Bayes classiĄer, Bayes error and Grouped Error Estimate . . . 21

2.2 Concept drift and evolution over data streams 23

2.3 Active learning . 23

2.3.1 Query-by-committee strategy . 24

2.3.2 Multiple-instance active learning . 24

2.4 Clustering-based Data Stream ClassiĄers 25

2.4.1 MINAS . 26

2.4.2 ECHO . 27

3 PROPOSAL . 29

3.1 Two-level active learning strategy 29

3.2 The proposed framework . 30

3.2.1 The meta-categorizer . 34

3.2.2 The active-categorizer . 39

3.2.3 Time complexity . 39

4 EXPERIMENTAL RESULTS 41

4.1 Framework integration with clustering-based classiĄers 41

4.1.1 Tight integration . 41

4.1.2 Loose integration . 42

4.2 Evaluation Measures . 42

4.2.1 Categorization Confusion Matrix . 42

4.2.2 Cluster Querying Confusion Matrix . 43

4.2.3 Framework Impact Confusion Matrix 44

4.3 Experiments . 45

4.3.1 Datasets . 46

4.3.2 Base classiĄers . 47

4.3.3 Source code . 50

4.3.4 Baseline results . 50

4.3.5 Meta-categorizersŠ threshold factor parameter analysis 51

4.3.6 Results of Loose Integration with MINAS 53

4.3.7 Results of Loose Integration with ECHO 55

4.3.8 Results of Tight Integration with MINAS 57

5 CONCLUSION . 59

BIBLIOGRAPHY . 61

I hereby certify that I have obtained all legal permissions from the owner(s) of each

third-party copyrighted matter included in my thesis, and that their permissions allow

availability such as being deposited in public digital libraries.

Douglas Monteiro Cavalcanti

12 LIST OF TABLES

13

Chapter 1

Introduction

Pattern Recognition concerns the discovery of regularities in data through computer

algorithms and, ultimately, the use of those regularities to automate decision-making

tasks (SVENSÉN; BISHOP, 2007). The process of classiĄer design is one of pattern

recognitionŠs primary goals (JAIN; DUIN; MAO, 2000). It aims to design a statistical

model to automate a classiĄcation task that lacks a deterministic model (SVENSÉN;

BISHOP, 2007; FUKUNAGA, 2013).

The process of classiĄer design involves using a computer algorithm to learn different

classes of data from a set of samples (FUKUNAGA, 2013). This set is referred to as the

training dataset. Each instance in the training dataset has its data class known in advance,

typically by inspecting them individually and hand-labeling (SVENSÉN; BISHOP, 2007).

The learning algorithm deĄnes a classiĄcation model by generalizing the discriminant

characteristics from the training data. In the application phase, the learned model is

used to classify new data with some accuracy (SVENSÉN; BISHOP, 2007; FUKUNAGA,

2013).

From a statistical perspective, the learning or training of a classiĄcation model can be

considered a problem of estimating the probability distribution of the data classes (JAIN;

DUIN; MAO, 2000). In this context, the 𝑛 attributes that characterize a data instance

deĄne a random vector, and a data class represents a distribution of this vector in the

𝑛-dimensional sample space. Thus, by estimating the distribution of each data class using

the labeled data instances, the learning algorithm can deĄne a discriminant function that

divides the sample space into the regions of the data classes (FUKUNAGA, 2013).

The most traditional approach for classiĄer design supposes that the data classes dis-

tribution is stationary, and for that reason, it only needs to be estimated once (SVENSÉN;

BISHOP, 2007; GAMA, 2010). In this setting, after processing the training dataset, the

learning algorithm outputs a static classiĄer, i.e., a classiĄer whose discriminant function

cannot be changed once deĄned. This approach is known as batch learning and has been

the main focus of classiĄer design research and practice in the last decades (GAMA, 2010).

The assumption that the data distribution will not change holds signiĄcantly for many

14 Chapter 1. Introduction

real-world problems, as evidenced by the reported success of the practical application of

many batch learning algorithms (SVENSÉN; BISHOP, 2007; GAMA, 2010). However,

the recent advance in data generation has led to more dynamic classiĄcation problems,

where the data distribution is non-stationary (GAMA, 2010).

In a non-stationary environment, given enough time for the distribution to change, a

static classiĄcation model will get outdated and underperform (GAMA, 2010). Consid-

ering that training a static model usually takes a signiĄcant amount of time, building a

new model may be unfeasible since the classiĄcation system would be offline during the

period. Beyond that, it may be impossible for the new model to be available on time,

as the distribution may suffer further changes during the modelŠs training (GAMA, 2010;

GAMA et al., 2014).

The issues faced by a traditional learning algorithm in non-stationary environments

imply switching from batch to incremental learning algorithms (GAMA, 2010). ClassiĄ-

cation models based on incremental learning can incorporate new data by adjusting their

discriminant function to changes in the data distribution. In this setting, the data is

better described as a transient stream Ćowing at high speed, continuously generated by

a non-stationary distribution (GAMA, 2010).

In a data stream environment, changes in the distribution of classes are referred to as

concept drift (GAMA et al., 2014). Another phenomenon related to the non-stationarity

of the data that may also be present in a data stream is the concept evolution, deĄned as

the emergence of hitherto unknown data classes in the stream (FARIA et al., 2016a). A

classiĄcation system for data stream must detect the occurrence of both phenomenons,

so the learning algorithm can be called on time to update the classiĄcation model.

The training data used to detect changes in the distribution and update the classi-

Ąer is collected over time during the entire classiĄer application lifetime (GAMA, 2010).

The most traditional approaches usually suppose unrestricted access to label informa-

tion (AGGARWAL et al., 2006; MASUD et al., 2010; LOSING; HAMMER; WERSING,

2016). Some more advanced ones selectively ask for the label of instances more likely to

provide information about the changes in the data distribution (ZHU et al., 2007; CHU

et al., 2011; LUGHOFER, 2012; ŽLIOBAITĖ et al., 2013; LUGHOFER; PRATAMA,

2017; MOHAMAD; SAYED-MOUCHAWEH; BOUCHACHIA, 2018; KSIENIEWICZ et

al., 2019; PARREIRA; PRATI, 2019; ZYBLEWSKI; KSIENIEWICZ; WOŹNIAK, 2020).

In any case, relying only on labeled data instances to update the classiĄcation model may

not be suitable for real-world applications, where labeled data is usually scarce, and man-

ual labeling is both costly and time-consuming (MASUD et al., 2008; KHEZRI et al.,

2020). This problem motivates learning approaches to detect and incorporate distribu-

tion changes to the classiĄcation model by recognizing patterns in unlabeled or partially

labeled data instances.

Clustering-based data stream classiĄers (MASUD et al., 2008; FARIA et al., 2016b;

1.1. Motivation 15

ABDALLAH et al., 2016; HAQUE; KHAN; BARON, 2016; HAQUE et al., 2016; GARCIA

et al., 2019) are examples of methods that keep track of concept drift and evolution

through unlabeled data. In these methods, the classiĄcation model is composed of a set

of labeled cluster summaries, used to map the sample space into the regions of the data

classes. A cluster refers to a group of samples expected to share the same data class. A

cluster summary refers to a set of parameters calculated from a cluster by assuming a

mathematical form for its inner distribution (AGGARWAL et al., 2003).

The update process of these classiĄers consists of adding new cluster summaries to the

model and removing old ones as new clusters of data are learned (MASUD et al., 2008;

FARIA et al., 2016b; ABDALLAH et al., 2016; HAQUE; KHAN; BARON, 2016; HAQUE

et al., 2016; GARCIA et al., 2019). The underlying learning algorithm builds new data

clusters from unlabeled or partially labeled data collected from the stream. The clustering

process is performed online or else over a small data buffer, so the time required for the

algorithm to execute does not signiĄcantly delay the model update. Once a cluster is made

available by the underlying clustering algorithm, an arbitrary decision rule infers its class.

In general, if the cluster is composed of partially labeled data, the labeled portion of the

data is used to infer the cluster class (MASUD et al., 2008; HAQUE; KHAN; BARON,

2016; HAQUE et al., 2016). If the cluster is fully unlabeled, it is categorized as the

extension of a known class or the emergence of a new one by being compared to the

cluster summaries kept in the model (FARIA et al., 2016b; ABDALLAH et al., 2016;

GARCIA et al., 2019). Once assimilated to a class or category, the cluster is summarized

and incorporated into the classiĄcation model.

1.1 Motivation

A necessary condition for learning from unlabeled or partially labeled data is that the

distribution of the random vector representing the 𝑛 attributes of the data instances must

contain information about the probability distribution of the data classes (ENGELEN;

HOOS, 2020). If the data meets this condition, a learning algorithm can use unlabeled

samples to gain information about the distribution of the attributes and thereby about

the distribution of the classes.

Assumptions on how the distribution of the data attributes interacts with the distri-

bution of the data classes are called semi-supervised assumptions (ENGELEN; HOOS,

2020). The most common semi-supervised assumptions are the following:

❏ Smoothness assumption: if two data instances are close in the sample space, they

should belong to the same data class;

❏ Low-density assumption: the decision boundary between two different data classes

should not pass through high-density areas of the sample space;

16 Chapter 1. Introduction

❏ Clustering assumption: instances belonging to the same cluster belong to the same

class, where a cluster is a set of instances that are more similar to each other than

to other instances from the feature space.

The updated process of clustering-based data stream classiĄers is subject to at least

one of these assumptions (MASUD et al., 2008; FARIA et al., 2016b; ABDALLAH et

al., 2016; HAQUE; KHAN; BARON, 2016; HAQUE et al., 2016; GARCIA et al., 2019).

Because of that, the updated process of clustering-based data stream classiĄer is prone

to fail as the semi-supervised assumption loses validity in the constantly changing data

distribution.

Consider, for example, a situation where the smoothness assumption fails, and conse-

quently, data instances of different classes end up close to each other in the sample space.

A clustering-based data stream classiĄer whose update process involves using a distance-

based clustering algorithm may end up adding unlabeled instances from different classes

to the same cluster. In this case, even if the cluster is partially labeled, the impurity

cannot be solved unless the labels contemplate the diverging data instances.

Now consider, for example, a situation where the low-density assumption fails in a way

that a cluster of unlabeled data maps to a region of the sample space densely populated

by clusters of a different class. Without prior information about the data class of the

instances inside the cluster, the update process will assimilate the cluster to the class

dominant in the region, misclassifying all the data instances within the cluster.

Since the update process of clustering-based data stream uses the obtained clusters to

update the classiĄcation model, the misclassiĄcation of the clusters will lead to an incon-

sistent model, compromising the accuracy of the classiĄer in explaining the data stream

instances. In this context, it is of great importance to ensure the correct categorization

of the clusters even in scenarios where the semi-supervised assumptions fail, making it

indispensable to rely on label information at some point.

Regarding the efficient obtaining of label information in data streams, recent studies

propose active learning strategies (ZHU et al., 2007; CHU et al., 2011; LUGHOFER,

2012; ŽLIOBAITĖ et al., 2013; LUGHOFER; PRATAMA, 2017; MOHAMAD; SAYED-

MOUCHAWEH; BOUCHACHIA, 2018; KSIENIEWICZ et al., 2019; PARREIRA; PRATI,

2019; ZYBLEWSKI; KSIENIEWICZ; WOŹNIAK, 2020). Active learning refers to a set of

algorithms that evaluates the information gain of unlabeled data in the context of classiĄer

learning (AGGARWAL et al., 2014; SETTLES, 2009). The objective of these strategies

is to provide the best training dataset for a classiĄer given a limited labeling resource.

Clustering-based data stream classiĄers use active learning strategies to select and label

the instances that provide more information about the distribution changes (HAQUE;

KHAN; BARON, 2016; HAQUE et al., 2016). In this way, the clustering performs by

also considering the class purity of the labeled instances within each cluster.

1.2. Objectives 17

In the context of the fail of the semi-supervised assumptions, clustering-based data

stream classiĄers that utilize an active learning and a semi-supervised clustering algorithm

may present an advantage over approaches that generate clusters over buffers of exclusively

unlabeled data. However, since the approach labels the instances before the clustering

process, thereŠs no guarantee that, after the clustering process, all the clusters requiring

label information will receive enough labeled instances.

In this context, although clustering-based data stream classiĄers represent a promising

approach for handling classiĄcation over non-stationary environments, further study may

be required to develop an update process that can actively ask for label information in

situations where the semi-supervised assumptions fail while avoiding it for cases where

the assumptions hold.

1.2 Objectives

The general objective of this work is to propose an active learning strategy to help in

the update process of clustering-based data stream classiĄers. Considering the computa-

tional and memory restrictions of the data stream scenario, it is also a general objective

that any procedure used by the proposed strategy presents low computational and mem-

ory complexities.

The speciĄc objectives of this work are:

❏ To propose a strategy to detect risky cluster categorizations by the update process

of a clustering-based data stream classiĄer;

❏ To propose a strategy to select which instances inside a cluster are more represen-

tative in terms of the cluster inner distribution;

❏ To integrate the strategies mentioned above in an active learning strategy that

Ąrst queries for clusters more likely to be miscategorized, and then queries for the

instances inside the cluster that are more likely to help in the cluster categorization;

❏ To implement the active learning strategy proposed for the speciĄc problem of dis-

tinguishing clusters representing concept drift from clusters representing concept

evolution in the update process of clustering-based data stream classiĄers;

❏ To apply the active learning strategy for the distinction of concept drift and evolu-

tion to two clustering-based data stream classiĄers, where one presents an update

process based on a buffer of fully unlabeled data, and the other presents an update

process based on a buffer of partially labeled data;

18 Chapter 1. Introduction

❏ To develop a strategy to evaluate the performance of the active learning strategy in

providing additional label information for all and only the clusters that the update

process is unable to categorize as concept drift or concept evolution correctly;

❏ To develop evaluation measures to compute the percentage of clusters miscategoriza-

tions avoided by a cluster-based data stream classiĄer by incorporating the active

learning strategy.

1.3 Hypothesis

The hypothesis of this work are the following:

❏ Clusters more likely to be miscategorized by the update process of a clustering-

based data stream classiĄer can be detected without impacting the computational

complexity of the update process.

❏ Once a cluster that would be miscategorized by the update process of a clustering-

based data stream classiĄer is detected, it can be correctly categorized by labeling

only a small portion of the clusterŠs data instances.

1.4 Contributions

The main contributions of this work are the following:

❏ DeĄnition of the two-level active learning strategy for clustering-based data stream

classiĄers;

❏ Implementation of an active learning framework based on a low computational cost

query-by-committee for distinguishing concept drift and evolution in clustering-

based data stream classiĄers;

❏ DeĄnition of a set of decision rules for categorizing a cluster as concept drift or

evolution;

❏ DeĄnition of an evaluation strategy to analyze the impact of integrating the frame-

work into existing clustering-based data stream classiĄers.

1.5 Thesis Organization

This work is organized as follows:

❏ Chapter 2 details the fundamental concepts related to this work;

1.5. Thesis Organization 19

❏ Chapter 3 details the proposal of this work;

❏ Chapter 4 presents the experiments made for this work;

❏ Chapter 5 concludes the work.

20 Chapter 1. Introduction

21

Chapter 2

Fundamentals

In this chapter, we present the main deĄnitions required to describe the proposed

approach. We start by explaining the deĄnition of the Bayes classiĄer, Bayes error, and

the Grouped Error Estimate (FUKUNAGA; HOSTETLER, 1975; FUKUNAGA; MAN-

TOCK, 1982). Those concepts form the base of the proposed meta-categorizers (modules

of the proposed framework for the distinction of concept drift and evolution, to be de-

scribed in Chapter 3) and also provide a formalization about classiĄcation probability and

classes density function, key deĄnitions for this work. In sequence, we formalize concept

drift and concept evolution over data streams. After that, we present the deĄnition of

active learning, query-by-committee, and multiple-instance active learning. Finally, we

describe the main clustering-based data stream classiĄers from the literature.

2.1 Bayes classiĄer, Bayes error and Grouped Error

Estimate

The input data of a classiĄer is an instance of a random vector 𝑋 (FUKUNAGA, 2013).

Each random variable of 𝑋 represents one of the 𝐷 features of the objects of classiĄcation.

Many instances of 𝑋 represent a distribution of the vector in the 𝐷-dimensional feature

space. The data classes are different distributions of 𝑋, and each one is characterized by

its density function. The probability density function that characterizes the distribution

of a class 𝑐i in the feature space is called the conditional density of class 𝑖 and is expressed

as 𝑝(𝑋♣𝑐i). The density function that considers all 𝑀 classes in the feature space is called

the unconditional density function of 𝑋, and is given by (FUKUNAGA; KESSELL, 1973;

FUKUNAGA, 2013):

M∑︁

j=1

𝑝(𝑋♣𝑐j) ≤ 𝑝(𝑐j),

where 𝑝(𝑐j) is the prior probability of class 𝑐j.

22 Chapter 2. Fundamentals

If we consider that the prior probability and the conditional density of all classes are

known, the real probability 𝑝(𝑐i♣𝑥) of an instance of 𝑥 belonging to a class 𝑐i can be

calculated by (FUKUNAGA, 2013):

𝑝(𝑐i♣𝑥) =
𝑝(𝑥♣𝑐i) ≤ 𝑝(𝑐i)

√︁M
j=1 𝑝(𝑥♣𝑐j) ≤ 𝑝(𝑐j)

(1)

A discriminant function calculated from an inequation of the real probabilities of the

different classes deĄnes the Bayes classiĄer (FUKUNAGA, 2013).

The classiĄcation risk of an instance 𝑥 can be calculated through 𝑟(𝑥) = 1 ⊗ 𝑝(𝑐♣𝑥),

where 𝑐 is the class with the highest probability for the instance. Taking the expectation

of the risk function 𝑟 with respect to the random vector 𝑋 gives the Bayes error, expressed

by 𝑅 (FUKUNAGA, 2013). Since in the Bayes classiĄer the density function of all classes

is known, the Bayes error is the minimum achievable error for any classiĄer. It is higher

than zero whenever there is a non-zero probability of an instance belonging to two or

more classes (FUKUNAGA, 2013; FUKUNAGA; KESSELL, 1973). For that reason, the

Bayes error is an optimum measure of system performance, and classiĄcation information

of subregions of the feature space (FUKUNAGA; KESSELL, 1973).

Unfortunately, for many classiĄcation problems, the density function of the classes

is unknown, and therefore, the Bayes error cannot be calculated. In this sense, several

suggestions have been proposed to provide a estimate of the Bayes error (FUKUNAGA;

KESSELL, 1973). One of the most basics and yet relevant in the context of this work is

the Grouped Error Estimate (FUKUNAGA; HOSTETLER, 1975; FUKUNAGA; MAN-

TOCK, 1982), proposed to estimate the classiĄcation information of a group of unlabeled

instances in scenarios where the instance labeling is costly (FUKUNAGA; HOSTETLER,

1975; FUKUNAGA; MANTOCK, 1982).

The Grouped Error Estimate, denoted by 𝑅̂, is calculated over a set of 𝑛 unlabeled

instances 𝑋 ′ by taking the mean of the classiĄcation risk of all instances 𝑥 ∈ 𝑋 ′ (FUKU-

NAGA; HOSTETLER, 1975). In scenarios where 𝑝(𝑐♣𝑋 ′) is unknown, a non-parametric

approximation 𝑟(𝑋 ′) of 𝑟(𝑋 ′) is used (FUKUNAGA; HOSTETLER, 1975; FUKUNAGA;

MANTOCK, 1982), resulting in the following formula for estimating 𝑅̂ (FUKUNAGA;

HOSTETLER, 1975):

𝑅̂ =
√︁n

i=1 𝑟(𝑥i)
𝑛

(2)

In this case, the randomness of 𝑅̂ comes from two sources: one from the estimate

𝑟(𝑋 ′) of 𝑟(𝑋 ′), and the other from 𝑋 ′(FUKUNAGA, 2013).

2.2. Concept drift and evolution over data streams 23

2.2 Concept drift and evolution over data streams

A data stream is an inĄnite sequence of instances 𝑥1, 𝑥2, . . . , 𝑥now, . . . in the 𝐷-dimensional

feature space (GAMA, 2010; FARIA et al., 2016a). 𝑥1 is the very Ąrst instance in the

stream, and 𝑥now is the last data instance that just arrived. Each data instance 𝑥i is

associated with an arrival timestamp 𝑡i. For simplicity, we consider 𝑡i+1 = 𝑡i + 1 and

𝑡1 = 1. Each instance 𝑥i is also associated with a data class 𝑐. In the context of this work,

the class of an instance is considered to be unknown, but can be obtained by querying an

external agent, human or not, at a speciĄc labeling cost (MASUD et al., 2010).

For dynamically changing environments, the data stream distribution is typically non-

stationary, which means that its underlying distribution can change dynamically over

time. The phenomenon where the distribution of the data changes is called concept

drift, and the general assumption is that a concept drift can occur unexpectedly and take

different forms, changing the input data characteristics or the relationship between the

input data and their respective classes (GAMA, 2010; GAMA et al., 2014).

The concept drift between two timestamps 𝑡i and 𝑡i+k, with 𝑘 > 0, can be formally

deĄned as (GAMA et al., 2014; LOSING; HAMMER; WERSING, 2016)

∃𝑋 : 𝑝t𝑖
(𝑋) ≤ 𝑝t𝑖

(𝑐♣𝑋) ̸= 𝑝t𝑖+k(𝑋) ≤ 𝑝t𝑖+k(𝑐♣𝑋), (3)

where 𝑝t(𝑋) is the distribution of features in the timestamp 𝑡, and 𝑝t(𝑐♣𝑋) is the posterior

probability of the class 𝑐 in the timestamp 𝑡.

Considering that the data is continuously generated, another phenomenon usually

present in problems involving data streams is the concept evolution (FARIA et al., 2016a),

deĄned as the emergence of classes unknown by the learner, where instances from a yet

unseen class appear in the stream (MASUD et al., 2010; FARIA et al., 2016a).

2.3 Active learning

Learning problems involving a classiĄcation task require a sufficient quantity of labeled

data for training purposes. However, it is known that for most classiĄcation problems, not

all instances from the feature space are equally important to achieve the most effective

training (AGGARWAL et al., 2014; SETTLES, 2009). For example, instances that clearly

belong to a speciĄc class may be helpful, but less so than instances that lie in boundaries

between different classes (AGGARWAL et al., 2014). This implies that, besides the

quantity, the quality of the labeled instances may also be of relevance when building a

training set. In this context, and considering that for many real-world problems, thereŠs a

cost for label acquisition, the active learning strategies are proposed to reduce the amount

of labeling required for an effective learning (SETTLES, 2009).

24 Chapter 2. Fundamentals

Every active learning system is composed of two primary components, the query sys-

tem, which is responsible for selecting for which instances to query the label, and the

oracle, responsible for responding to the underlying query (SETTLES, 2009). For most

active learning algorithms, the oracle is treated as a black box that is used directly (AG-

GARWAL et al., 2014). The active learning strategies for different scenarios diverge the

most in the query system when deĄning the framework of how the query is posed to the

learner (AGGARWAL et al., 2014).

For this work, the most relevant active learning related topics are the query-by-

committee query strategy (SEUNG; OPPER; SOMPOLINSKY, 1992; FREUND et al.,

1997) and multiple-instance active learning (SETTLES; CRAVEN; RAY, 2007), described

in sequence.

2.3.1 Query-by-committee strategy

Query-by-committee (SEUNG; OPPER; SOMPOLINSKY, 1992) is a theoretical ap-

proach to instance selection. In this approach, an ensemble of different hypotheses is

learned, and instances that cause maximum disagreement among the committee regard-

ing the predicted categorization are selected as the most informative ones. The approach

was Ąrst proposed for the incremental query learning paradigm (FREUND et al., 1997),

with a scope restricted to parametric learning models.

The general query-by-committee approach can be deĄned as an iterative process, where

at each iteration, a committee of classiĄers is trained based on the current training set and

used to select a set of unlabeled data with high expected informational value (FREUND et

al., 1997; AGGARWAL et al., 2014). The instances are selected according to the principle

of maximal disagreement, where the instances that maximize the disagreement among the

committee, with respect to the predicted label, are considered the most valuable. The

selected instances are added to the training set at the end of the iteration, and then

the algorithm is run again on the newly incremented training set, and so on (SEUNG;

OPPER; SOMPOLINSKY, 1992).

2.3.2 Multiple-instance active learning

The multiple-instance active learning is an approach for learning at mixed levels

of granularity in problems where instances are naturally organized into bags, and the

bags, instead of the individual instances, are labeled for training (AGGARWAL et al.,

2014; SETTLES; CRAVEN; RAY, 2007). In the target problems, referred to as multiple-

instance learning problems, it is possible to obtain labels at the bag level and directly at

the instance-level. However, getting labels at the instance-level is rather expensive. For

that reason, it is easier to label the whole bag and infer its label to all the instances inside

it. However, thereŠs no guarantee that all the instances inside a bag belong to the same

2.4. Clustering-based Data Stream Classifiers 25

class. Because of that, to label at the higher level of granularity may lead to inference

errors in the lower level of granularity. Labeing all the instances to avoid inference errors

is not a good solution either, given the cost for labeling at the instance-level. In this

sense, the multiple-instance active learning is proposed to reduce the burden of labeling

at the instance-level, by getting labels at the bag level of granularity, but also beneĄt

from selectively labeling some part of the instances inside the bag at the Ąner level of

granularity (SETTLES; CRAVEN; RAY, 2007).

2.4 Clustering-based Data Stream ClassiĄers

This section summarizes the main types of cluster categorization methods in clustering-

based data stream classiĄers. The objective is to highlight these methodsŠ theoretical

limitations and point out how the proposed two-level active learning strategy can cover

these limitations by asking for additional label information.

We divide the clustering-based data stream classiĄers between the ones that use a semi-

supervised clustering algorithm in their update process (MASUD et al., 2008; HAQUE;

KHAN; BARON, 2016; HAQUE et al., 2016), and the ones based on unsupervised nov-

elty detection algorithms (FARIA et al., 2016b; ABDALLAH et al., 2016; GARCIA et

al., 2019). Both approaches use labeled data in the initial training of the classiĄer, so

the distinction between semi-supervised and unsupervised refers only to the process of

detecting changes in the data stream distribution.

In the semi-supervised scenario, the clustering is performed over a buffer of partially

labeled data by minimizing the impurity among the labeled instances inside the same

cluster as well as the dispersion of the clusterŠs instances. If the clustering algorithm fails

at building a complete pure cluster in terms of labeled data, the approach assigns multiple

labels to it, weighting each label by its frequency within the cluster (MASUD et al., 2008;

HAQUE; KHAN; BARON, 2016; HAQUE et al., 2016).

In this scenario, the miscategorization of a cluster happens when the labeled portion of

the data does not represent the actual cluster distribution. If the clustering assumption

fails and instances from different classes get clustered together, the strategy can only

address the problem if each class in the cluster has at least one of its instances labeled.

Since the approach labels the instances before the clustering process, thereŠs no guarantee

that each cluster will contain enough labeled data to represent its inner distribution.

This scenario requires additional label information in the context of the clusters more

likely to be misrepresented. In this sense, the two-level active learning strategy might be

used to analyze each resulting cluster, querying the ones more likely to be misrepresented

and then querying for the label of instances more informative in the context of the inner

cluster distribution.

In the unsupervised scenario, a novelty detection procedure detects patterns in a

26 Chapter 2. Fundamentals

buffer of unlabeled instances. Some of those approaches can only detect one pattern at

a time, by using not a clustering algorithm but unsupervised indicators that search for

a single cohesive cluster in a buffer of unlabeled data (ABDALLAH et al., 2016). Other

approaches apply an unsupervised clustering algorithm over the buffer to detect multiple

patterns at once (FARIA et al., 2016b; GARCIA et al., 2019). Once a cluster is made

available, the strategy categorizes the cluster by comparing it to summaries kept by the

learning model, using an arbitrary similarity measure. If the cluster is similar enough to

one of the labeled cluster summaries, it is categorized as an extension of such summary.

If the cluster differs enough from the cluster summaries, the strategy categorizes it as the

emergence of a new class.

Without the label of the instances inside the clusters, the unsupervised strategies de-

pend fundamentally on the clustering, and low-density assumptions (ENGELEN; HOOS,

2020). Two main situations can occur when one of these assumption fails: (i) If the clus-

tering assumption fails, it results in impure clusters; (ii) if the low-density fails, it results

in clusters of different classes getting close to each other, or clusters of the same class being

apart by low-density regions of the feature space. In any of these situations, the similarity

between clusters alone may not be enough to ensure that two clusters belong to the same

class. In this sense, the two-level active learning strategy might be used to analyze the

resulting clusters, detecting clusters more likely to be miscategorized by the similarity

measures and providing label information in the context of their inner distribution.

To evaluated the proposed active learning strategy, we selected two different clustering-

based data stream classiĄers from the literature, MINAS (FARIA et al., 2016b) and

ECHO (HAQUE et al., 2016). MINAS relies exclusively on unsupervised novelty detection

algorithms to adjust its learning model. ECHO, on the other hand, utilizes a semi-

supervised clustering algorithm to adapt its learning model. Even though ECHO uses

labeled data, it also keeps a buffer of unlabeled data only, composed of instances that the

learning model could not explain. When this buffer reaches a speciĄc size, an unsupervised

novelty detection algorithm is applied over it to detect and declare the emergence of a

new class. In sequence, we deĄned in more detail the original approach for MINAS and

ECHO.

2.4.1 MINAS

Proposed in (FARIA et al., 2016b), MINAS is a data stream classiĄer that relies on an

unsupervised novelty detection procedure to detect not just new classes in the stream but

also changes in the concept of known classes. To do so, MINAS does not require true label

information. Instead, it maintains a buffer of unlabeled instances that the classiĄer could

not explain, and whenever the buffer reaches its maximum size, an unsupervised clustering

algorithm is applied. The resulting clusters are then categorized as the emergence of a

new class or the extension of a class already known.

2.4. Clustering-based Data Stream Classifiers 27

MINAS maintains a classiĄcation model composed of micro-clusters. When a new

instance arrives in the stream, the algorithm computes its distance to the centroids of

the micro-clusters. If the distance to the closest micro-cluster is lower than a threshold,

the algorithm classiĄes the instance with the class assigned to the micro-cluster. If the

distance is higher than the threshold, the algorithm sends the instance to a buffer. When

the buffer reaches its maximum size, MINAS executes the novelty detection procedure.

The novelty detection procedure applies an unsupervised clustering algorithm over the

buffer of unlabeled data. Once the clusters are available, MINAS categorizes each one

as concept drift or evolution by computing the distance between the clusterŠs centroid to

the centroids of the micro-clusters from the classiĄcation model. If the clusterŠs centroid

is close enough to a micro-cluster of a known class, the cluster is assigned to that class.

Otherwise, the cluster is categorized as belonging to a concept evolution and enumerated

as a new pattern. Once categorized, the cluster is summarized as a micro-cluster and

added to the classiĄcation model.

2.4.2 ECHO

Proposed in (HAQUE et al., 2016), ECHO is a semi-supervised approach for non-

stationary data stream classiĄcation. The classiĄer maintains an ensemble of k-NN like

classiĄcation models and uses change detection on classiĄer conĄdence to detect concept

drifts. New instances are classiĄed and stored in a dynamic window, along with the pre-

dicted class and a value representing its classiĄcation conĄdence. The algorithm expects

the classiĄcation conĄdence to reduce consistently whenever a concept drift occurs. In

this sense, the strategy searches over the window for any signiĄcant change in the con-

Ądence distribution at each new conĄdence value stored. If the change is detected, the

algorithm uses the data in the window to train a new model and update the ensemble.

ECHO uses an active learning strategy to select which instances in the training dataset

query for the label. If the classiĄcation conĄdence of an instance is below a parametrized

threshold, the strategy queries for the instanceŠs label. Otherwise, the algorithm labels

the instance with the class predicted by the classiĄer. Once every instance in the training

dataset is associated with a class, a semi-supervised clustering algorithm called MCI-

KMeans is applied over the training dataset. By relying on the class associated with

each instance, the MCI-KMeans minimizes the impurity among the labeled instances

inside the same cluster. The resulting clusters are summarized in a data structure called

pseudpointŮa pseudopoint stores the cluster centroid, the class frequency among the

instance, and the radius. The radius is computed by calculating the distance between

the centroid and the farthest instance. The obtained set of pseudopoints composes a new

model. New models are added to the ensemble by replacing the oldest model.

To classify an instance with a single model, the approach Ąnds the nearest neighbor

among the modelŠs pseudopoints by computing the distance between the instance and

28 Chapter 2. Fundamentals

the centroid of each pseudopoint. If the distance between the instance and the closest

pseudopoint is lower than the pseudopointŠs radius, the instance is classiĄed by the class

with high frequency in the pseudopoint. If the distance between the closest pseudopoint

is higher than the pseudopointŠs radius, the model cannot classify the instances. If no

model in the ensemble can classify an instance, it is marked as an outlier and sent to a

buffer. A novelty detection procedure is applied to the outliers buffer whenever it reaches

the maximum size.

ECHO declares the emergence of a new class whenever its novelty detection procedure

detects enough instances close to each other in the outlier buffer. It supposes that an

instance should be close to instances of the same class and farther apart from instances

from different classes. In this sense, to declare the emergence of a new class, the novelty

detection veriĄes if there are at least Q instances in the outliers buffer that met a silhouette

coefficient-based condition, where Q is a parameterized value. If the condition is met, the

subset of instances is removed from the buffer and declared as belonging to a new class.

ECHO assumes that only one novel class may appear at a time in the data stream.

29

Chapter 3

Two-level Active Learning for

Clustering-based Data Stream

Classifiers

In this chapter, we start by describing the two-level active learning strategy. After

that, we describe the implementation of the strategy for distinguishing concept drift and

evolution, the different modules of the resulting framework, and the time complexity of

the related procedures.

3.1 Two-level active learning strategy

Clustering-based data stream classiĄers use an arbitrary decision rule to categorize a

cluster as the extension of a known class or the emergence of a new one. Even though

this decision rule varies from one approach to another, it is a point in common among the

clustering-based data stream classiĄers, which we will refer to as the cluster categorization

hypothesis.

Considering that the clusters generated by the underlying clustering algorithm are

fully or partially composed by instances for which the true labels are unknown, to predict

the category of a cluster, the categorization hypothesis must rely on a semi-supervised

assumption to obtain information about the cluster category through the unlabeled data.

However, as known classes change and new classes emerge (see Section 2.2), the interaction

between the data distribution and the posterior probability of the classes also changes.

In consequence of that, some semi-supervised assumptions may not always be valid.

Situations in which a semi-supervised assumption fails may lead to an inaccurate

class inference for the unlabeled data, compromising the categorization hypothesis and,

consequently, the performance of the data stream classiĄer. For these situations, label

information may be necessary to provide more information about the interaction between

the cluster distribution and the posterior probability of the data classes.

30 Chapter 3. Proposal

Given the importance of the correct categorization of the clusters, we consider the

clustering-based data stream classiĄers as a multiple-instance setting (see Sections 2.3

and 2.3.2). In this context, we propose an active learning technique that Ąrst queries the

clusters for which the categorization is uncertain and then queries for the most informative

instances in terms of the inner distribution of each cluster. This approach presents the

advantage of focusing the labeling resource in the categorization of the cluster, whose

summaries are the blocks that compose the learning model. The general Ćow of the

proposed two-level active learning is presented in Fig. 1.

Data disposed

in cluster format

Queries for the

most uncertainty

clusters

Cluster-level

Query Strategy

For each cluster:

Queries for the

most informative

instances

Instance-level

Query Strategy

For each instance:

Provides the

true label

Oracle

Two-level Query Strategy

Figure 1 Ű The general Ćow of the proposed two-level active learning strategy.

As shown in Fig. 1, the proposed active learning structure queries the data Ąrst at the

cluster-level, and then, for each cluster selected, it queries for the data at the instance-

level. The combination of the two query strategies deĄnes the two-level query strategy.

We summarized the main questions that need to be considered to implement the two-

level active learning strategy in a clustering-based data stream classiĄer:

1. How to query for clusters for which the categorization hypothesis is more likely to

fail?

2. How to query for the instances that would provide more information about the

cluster distribution?

3. How to use the label information of the queried instances to improve the clustersŠ

categorization?

The strategy is expected to improve the base classiĄerŠs cluster categorization perfor-

mance by asking for the least possible number of labels.

3.2 The proposed framework

We propose a framework based on the two-level active learning strategy to improve

the performance of clustering-based data stream classiĄers in distinguishing concept drift

and evolution. The integration of the framework to a compatible classiĄer is performed

as follows:

3.2. The proposed framework 31

1. We add a different categorization hypothesis, alongside the pre-existent one, forming

a two-member committee (see Section 2.3.1). Whenever the committee disagrees

about the category of a cluster, we mark the categorization as unreliable.

2. Once an unreliable categorization is detected, we evaluate each instance in the

target cluster to Ąnd which one can provide more information about the clusterŠs

true category. We query the oracle for the label of the K most informative instances.

3. After querying the labels of the most informative instances, we re-categorize the

cluster by considering the new labels obtained and any previously available labeled

instances.

A clustering-based data stream classiĄer is compatible with the framework if it presents

the following characteristics:

❏ At some point of the Ćow of the classiĄer, a valid cluster of unlabeled or partially

labeled data is made available.

❏ A cluster categorization hypothesis decides if the cluster belongs to a new or a

known class. We refer to this categorization hypothesis as base-categorizer.

❏ The composition of the learning model of the classiĄer includes a set of cluster

summaries representing the known classes. We refer to this set as the data classes

summary.

When the cluster is assigned to a known class, we consider that the base-categorizer

categorized it as "known", otherwise as "novelty". Clusters categorized as something else,

like noise, are not considered. The category of a cluster indicates which distribution

change phenomenon it represents. If the cluster is categorized as "known", the update

procedure is assuming that the cluster represents the change in the concept of a class

already known, a concept drift. If the cluster is categorized as "novelty", the update

procedure is assuming that the cluster represents the emergence of a new class, a concept

evolution. We refer to the moment when the base-categorizer categorizes a cluster as the

interception point. The framework works as an interceptor, called at the interception

point. It receives as input the cluster, the category predicted by the base-categorizer, and

the data classes summary.

Two modules compose the framework: the meta-categorizer and the active-categorizer.

The meta-categorizer is a categorization hypothesis that utilizes the data classes summary

to predict the clusterŠs category. The meta-categorizer is the Ąrst module to be called. If

the category predicted by the meta-categorizer differs from the one predicted by the base-

categorizer, the cluster is queried. In the framework context, both the base-categorizer and

the meta-categorizer compose a categorization committee. For that reason, the approach

deĄnes a query-by-committee strategy for querying the data at the cluster-level.

32 Chapter 3. Proposal

If the base-categorizer and meta-categorizer agree about the clusterŠs category, the

framework Ąnishes the interception. However, if the committee disagrees, the active-

categorizer module is called.

The active-categorizer is responsible for querying the data at the instance-level and

categorizing the cluster using the obtained label information. The two-member committee

and the active-categorizerŠs query strategy both compose the two-level query strategy.

In Table 1 we summarize the the main terms related to the proposed framework.

Table 1 Ű Description of the main terms related to the proposed framework.

Term Description Belongs to

Data class summary
Set of cluster summaries representing

the classes known by the base
classiĄerŠs learning model.

Base classiĄer

Base-categorizer

Cluster categorization hypothesis that
decides if a cluster generated in

the base classiĄerŠs update process
belongs to a new or known class.

Base classiĄer

Meta-categorizer

Cluster categorization hypothesis that
utilizes the base classiĄerŠs data classes

summary to categorize a cluster as
"known" or "novelty".

Proposed
Framework

Active-categorizer

Cluster categorization hypothesis that
categorizes a cluster as "known" or "novelty"
by querying for the label of some instances

inside the cluster.

Proposed
Framework

Fig. 2 shows the base classiĄerŠs cluster categorization Ćow and how the modules of

the proposed framework integrate with the base classiĄerŠs modules. As shown in Fig.

2 (a), without the framework, the clustering-based data stream classiĄer relies only on

the base-categorizer to assimilate a category to the cluster and update the data classes

summary. In Fig. 2 (b), we demonstrate how the meta-categorizer and active-categorizer

are integrated into the base classiĄerŠs modules to improve the cluster categorization task.

3.2. The proposed framework 33

...
Data Stream

Clustering

Clusters

Base

Categorizer

Update

Class

Summary

(a) General cluster categorization flow.

...
Data Stream

Clustering

Clusters

Base

Categorizer

Meta

Categorizer

Committee

Agree?

Update

Class

Summary

Active

Categorizer

yes

no

Base classifier’s modules

Framework’s modules

(b) General cluster categorization flow after integration of the proposed framework.

Figure 2 Ű General cluster categorization Ćow of a clustering-based data stream classiĄer,
Ąrst at its original form (a), and then after the integration of the proposed
framework (b).

ItŠs important to notice that if the cluster is not queried, it does not mean the cat-

egorization is correct. The base-categorizer may miscategorize a cluster, and the meta-

categorizer may agree with it by also missing the correct category. In Table 2, we list all

the possible situations that can arise from an interception. In the table, the three Ąrst

columns represent the involved components. Each row represents a possible interception

situation, where the "HitŤ or "MissŤ values for the component columns represent if the

respective component correctly or wrongly categorized the cluster, respectively. The Ac-

curacy Impact column shows the impact that each situation has on the categorization

performance. The last column indicates which cases result in label consultation.

34 Chapter 3. Proposal

Table 2 Ű All possible scenarios considering the different possible outputs from each mod-
ule involved in the cluster categorization.

Categorizer

Base Meta Active Accuracy Impact Label Consultation

Hit Miss Hit Neutral Yes
Hit Miss Miss Negative Yes
Hit Hit - Neutral No
Miss Miss - Neutral No
Miss Hit Miss Neutral Yes
Miss Hit Hit Positive Yes

As shown in Table 2, the categorization accuracy of the base classiĄer is improved

when a miscategorization by the base-categorizer is contested by the meta-categorizer and

corrected by the active-categorizer. For the situations where the base-categorizer decision

is kept, that is, when the base-categorizer and meta-categorizer agree, the accuracy isnŠt

impacted. Of all the situations, the one that impacts the accuracy negatively is when the

base-categorizer correctly predicts the category, and both the meta-categorizer and the

active-categorizer get the category wrong.

To maximize the frameworkŠs positive impact over the base classiĄer, whenever the

base-categorizer miscategorizes a cluster, the meta-categorizer must be able to contest

the decision, and the active-categorizer must be able to correct it. To minimize the

labels consultations, the meta-categorizer must only contest the base-categorizerŠs mis-

categorizations. And to avoid negatively impacting the base classiĄer, it is expected

that, whenever the meta-categorizer contests the base-categorizer without necessity, the

active-categorizer is able to conĄrm the base-categorizer decision as the correct one.

The frameworkŠs performance in improving the base classiĄer categorization perfor-

mance depends fundamentally on the meta and active categorizers. In this sense, we

propose different approaches for both modules. More information about the inner behav-

ior and the different approaches of the modules are provided subsequently.

3.2.1 The meta-categorizer

The meta-categorizer is the module of the framework used to compose a two-member

committee alongside the base-categorizer. It receives this name because it does not main-

tain a model of its own. Instead, it uses the base classiĄerŠs data classes summary to

categorize clusters.

An implementation of the meta-categorizer receive as input the target cluster and the

data classes summary and outputs the predicted category for the cluster. Any decision rule

that is able to categorize a cluster as a concept evolution or as concept drift by utilizing the

data classes summary can be used as a meta-categorizer. The basic requirement is that

3.2. The proposed framework 35

the meta-categorizer does not utilize the same categorization hypothesis that constitutes

the base-categorizer. Otherwise, the committee will always agree. In this sense, the more

different the statistical approaches between the meta-categorizer and the base-categorizer

are, the better.

The meta-categorizers implemented for this work are based on a new proposed assump-

tion. The assumption states that, given 𝑟(𝑋 ′), an estimate of 𝑟(𝑋 ′) (See Section 2.1),

where 𝑋 ′ represents the instances of a cluster, if the Grouped Error Estimate 𝑅̂ is above

a parameterized threshold, the cluster is more likely to belong to a class yet unknown by

the current learning model than to a known class. The assumption comes from the fact

that if the Bayes error of a region of the feature space is high, the instances sampled from

this region will present less classiĄcation information than instances sampled from regions

of the feature space where the Bayes error is low (FUKUNAGA; KESSELL, 1973; FUKU-

NAGA; HOSTETLER, 1975; FUKUNAGA; MANTOCK, 1982; FUKUNAGA, 2013). In

this sense, if the data of a cluster does not carry enough classiĄcation information about

any of the known classes, we may assume that the cluster belongs to an unseen class.

This assumption allows us to categorize a cluster as "known" or "novelty" without requir-

ing label information of its instances.

Beyond the scenario of the emergence of a new class, a different situation may result in

a high value for the Grouped Error Estimate of a cluster, among which we can cite noise

data, the natural intersection between different density functions, an imprecise estimate

of the 𝑟(𝑋 ′) function and a set 𝑋 ′ with high variance. Another point to be considered

is that, in a clustering-based data stream classiĄer, the estimate of the classiĄcation

probability function is parametric as each cluster summary assumes a mathematical form

for the respective clusterŠs instances. To the authorsŠ knowledge, there are no studies

on the variance of the Grouped Error Estimate through a parametric estimate of the

density functions using cluster summaries. However, even in the face of these limitations,

we suppose that a categorizer based on a parametric Grouped Error Estimate can be a

good Ąt to compose the two-member committee as the categorization hypothesis of the

meta-categorizer.

To implement a meta-categorizer utilizing the Grouped Error Estimate, a classiĄcation

rule must be deĄned to provide an estimate of 𝑟(𝑋 ′) (See Section 2.1). The classiĄcation

rule used is the Ąrst nearest neighbor classiĄer (NN), where an instance is classiĄed by

the nearest instance in a set of labeled instances. In the context of the clustering-based

data stream classiĄer, to calculate the classiĄcation probability for a given instance, we

compute the nearest centroid in the data classes summary. Because of that, our estimate

of the risk function is parametric. We consider only one centroid per class, in this sense,

if more than one centroid is assigned to a class, only the one closest to the instance is

considered (in the event of a tie, we choose the centroid respective to the cluster summary

that was added to the decision model Ąrst). Following, we present the mathematical

36 Chapter 3. Proposal

development of the formula to calculate the Grouped Error Estimate of a cluster using

the NN of cluster summaries.

In the context of the NN classiĄcation rule, the estimate 𝑝(𝑥♣𝑐i) of the probability

𝑝(𝑥♣𝑐i) of an instance 𝑥 given a class 𝑐i is given by (FUKUNAGA; HOSTETLER, 1975;

FUKUNAGA; MANTOCK, 1982):

𝑝(𝑥♣𝑐i) =
1

𝐿i(𝑥)
(4)

Where 𝐿i(𝑥) is the volume of the hypersphere around the instance 𝑥, with radius

equals to the distance between 𝑥 and the closest centroid belonging to the class 𝑐i.

Accordingly with (FUKUNAGA; HOSTETLER, 1975; FUKUNAGA; MANTOCK,

1982), 𝐿i(𝑥) can be given by:

𝐿i(𝑥) =
2 ≤ 𝑑(𝑥, 𝑥i)D ≤ ÞD/2

𝐷 ≤ Γ(𝐷/2)
(5)

Where 𝑑 is the euclidean distance function, 𝐷 is the dimensionality of the feature

space, 𝑥i is the centroid representing the class 𝑐i, and Γ is the gamma function, deĄned

as Γ(𝑛) = (𝑛 ⊗ 1)!, case 𝑛 ∈ Z+, or else as Γ(𝑛) =
√︃

∞

0 𝑥n⊗1 ≤ 𝑒⊗x𝑑𝑥, case 𝑛 ∈ R+, where 𝑛

is the input value for the function.

The estimate 𝑝(𝑐i) of 𝑝(𝑐i) is given by (FUKUNAGA; HOSTETLER, 1975; FUKU-

NAGA; MANTOCK, 1982):

𝑝(𝑐i) =
1

𝑀
(6)

Where 𝑀 is the number of classes known by the data classes summary.

From equations 4, 5 and 6, we can develop the equation for estimating the uncondi-

tional density function (See Section 2.1) by:

M∑︁

j=1

(𝑝(𝑥♣𝑐j) ≤ 𝑝(𝑐j)) =
M∑︁

j=1

1
𝑀 ≤ 𝐿j(𝑥)

=
M∑︁

j=1

1
M ≤2≤d(x,x𝑗)𝐷≤π𝐷/2

D≤Γ(D/2)

=
M∑︁

j=1

𝐷 ≤ Γ(𝐷/2)
𝑀 ≤ 2 ≤ 𝑑(𝑥, 𝑥j)D ≤ ÞD/2

=
𝐷 ≤ Γ(𝐷/2)
𝑀 ≤ 2 ≤ ÞD/2

≤
M∑︁

j=1

1
𝑑(𝑥, 𝑥j)D

=
𝐷 ≤ Γ(𝐷/2)
𝑀 ≤ 2 ≤ ÞD/2

≤
M∑︁

j=1

𝑑⊗1(𝑥, 𝑥j)D (7)

Where 𝑑⊗1 is the inverse Euclidean distance function.

3.2. The proposed framework 37

Considering equations 1 and 7, the probability 𝑝(𝑐i♣𝑥) of a instance belonging to a

class 𝑐i can be estimated by:

𝑝(𝑐i♣𝑥) =
𝑝(𝑥♣𝑐i) ≤ 𝑝(𝑐i)

√︁M
j=1 𝑝(𝑥♣𝑐j) ≤ 𝑝(𝑐j)

=
D≤Γ(D/2)

M ≤2≤π𝐷/2
≤ 𝑑⊗1(𝑥, 𝑥i)D

D≤Γ(D/2)

M ≤2≤π𝐷/2
≤

√︁M
j=1 𝑑⊗1(𝑥, 𝑥j)D

=
𝑑⊗1(𝑥, 𝑥i)D

√︁M
j=1 𝑑⊗1(𝑥, 𝑥j)D

(8)

Finally, the classiĄcation risk 𝑟(𝑥) of a instance 𝑥 being classiĄed as 𝑐i can be estimated

by:

𝑟(𝑥) = 1 ⊗ 𝑝(𝑐i♣𝑥) (9)

From Equation 8, 9 and 2, we propose the Ąrst meta-categorizer, referred to as 1-NN

Average Risk (NNAR).

The NNAR technique calculates the Grouped Error Estimate of the cluster by com-

puting the distance of every instance in the cluster to every centroid in the data classes

summary, and then calculating 8 and 9 to obtain the classiĄcation risky of every instance.

The average risk is calculated using 2. If the estimate is above a parameterized threshold,

the cluster is categorized as "novelty" otherwise, as "known".

To calculate the Grouped Error Estimate, NNAR needs to compute the distance be-

tween points 𝑠 ≤ 𝑛 times, where 𝑠 is the number of centroids in the data classes summary,

and 𝑛 is the number of instances in the cluster. Even though this value isnŠt enough to

impact the computational complexity of the base classiĄer, we also propose an alterna-

tive method that requires fewer distance computations. The method conĄgures a new

meta-categorizer, referred to as 1-NN Centroid Risk (NNCR).

The NNCR technique calculates the Grouped Error Estimate of the target cluster by

computing the classiĄcation risk of its centroid. In this sense, only equations 8 and 9 are

necessary. This approach, of course, is far less precise as it assume 𝑟(𝑋 ′) = 𝑟(𝑥′), where

𝑥′ represents the centroid of 𝑋 ′. The approach, however, presents a lower computation

cost than NNAR, since it only computes the distance function 𝑠 times.

A variation for each, the NNAR and NNCR meta-categorizer, are also proposed. In

these variations, we change Equation 7 to consider not only the cluster summariesŠ cen-

troids but also the standard deviation of the clusters (the standard deviation is expected

to be stored in the cluster summary). To do so, we add the standard deviation respective

to the centroid multiplying the distance between the centroid and the target instance.

The resulting classiĄcation probability can be calculated as follows:

38 Chapter 3. Proposal

Table 3 Ű Proposed meta-categorizers.

Meta-Categorizer Description Equations

NNAR
Computes the Grouped Error Estimate
by calculating the NN classiĄcation risk

of every instance inside the cluster.
8, 9 and 2

NNCR
Computes the Grouped Error Estimate
by calculating the NN classiĄcation risk

of the clusterŠs centroid.
8 and 9

NDNAR
Computes the Grouped Error Estimate

by calculating the NDN classiĄcation risk
of every instance inside the cluster.

10, 9 and 2

NDNCR
Computes the Grouped Error Estimate

by calculating the NDN classiĄcation risk
of the clusterŠs centroid.

10 and 9

𝑝(𝑐i♣𝑥) =
[𝑑⊗1(𝑥, 𝑥i) * à⊗1

i]D
√︁M

j=1[𝑑⊗1(𝑥, 𝑥j) * à⊗1
j]D

(10)

Where à⊗1
i is the inverse of the standard deviation of the class 𝑐i.

The classiĄer represented by Equation 10 is referred to as First Denser Nearest Neigh-

bor (NDN), while the variations of NNAR and NNCR, are referred to NDN Average Risk

(NDNAR) and NDN Centroid Risk (NDNAR), respectively. The motivation behind the

utilization of the NDN is the low-density assumption. From this assumption, we may

expect clusters denser to be more likely to be far from the region where the decision

boundary between classes lies. Because of that, we expected clusters denser to better

characterize the class to which they were assigned before being summarized and added to

the data classes summary. The proposed meta-categorizers are summarized in Table 3.

3.2.1.1 The threshold parameter

The classiĄcation risk of an instance is a value in the interval (0, 1 ⊗ 1
M

). Since the

Grouped Error Estimate of a cluster is calculated by the mean of the classiĄcation risk

of its instances, the estimate will also be a value inside this interval. In this context,

the categorization threshold 𝑡 can be deĄned as 𝑡 = (1 ⊗ 1
M

) * 𝑓𝑎𝑐𝑡𝑜𝑟, where 𝑓𝑎𝑐𝑡𝑜𝑟 is a

parametrized value between 0 and 1 that deĄnes the threshold.

An important point to consider is the behavior of the estimate of the classiĄcation

probability (Eq. 8) in high-dimensional feature spaces. In the situations where an instance

is successfully classiĄed by a single class 𝑐i, the inverse distance 𝑑⊗1(𝑥, 𝑥i) of 𝑥 to the closest

centroid of 𝑐i is the highest value among 𝑑⊗1(𝑥, 𝑥j) for 𝑗 ∈ ♣𝑀 ♣. From this fact, it can be

shown that in these situations, limD⊃∞

d−1(x,x𝑖)
𝐷

√︁𝑀

𝑗=1
d−1(x,x𝑗)𝐷

= 1, meaning that, as D increases,

3.2. The proposed framework 39

the estimate of the classiĄcation probability tends to 1, and consequently, considering

Eq. 8, the classiĄcation risk tends to 0. Since the the Grouped Error Estimate is given

by the mean of the estimate classiĄcation risk of the instances in a cluster (Eq. 8), for

high-dimensional datasets, this estimate will be compressed close to zero, reducing the

interval where the threshold must be deĄned in order to effectively separate low and high

values of the estimate.

To avoid this problem, when using the equations 8 and 10, we reduce the effect of

the dimensionality over the estimate of the classiĄcation probability by replacing 𝐷 by

1. This allows us to consider the same range threshold values for datasets of different

dimensionality.

3.2.2 The active-categorizer

Whenever the base-categorizer and the meta-categorizer diverge about the category of

a cluster, the active-categorizer is called. The active-categorizer is responsible for querying

the data at the instance-level. The module is also responsible for categorizing the cluster

using the label information obtained.

We propose two different implementations for the active-categorizer. Both implemen-

tations select 𝐾 instances of the cluster to be labeled, where 𝐾 is a parameterized value.

After the instances are selected, the cluster is categorized by considering the majority

class among the labeled instances. If the majority belong to a known class, the clus-

ter is categorized as "known", otherwise as "novelty". The implementations are referred

to as the Majority of the 𝐾 Centroid Neighbors (MKCN) and the Majority of the 𝐾

Random (MKR). The implementations differ from each other by the way each one se-

lects the instances to be labeled. MKCN active-categorizer selects from the cluster the

𝐾 instances more close to the centroid to be labeled. MKR active-categorizer selects 𝐾

random instances in the cluster to be labeled.

The hypothesis for the MKCN active-categorizer is that instances more close to the

centroid of the cluster provide more information about the cluster distribution, and con-

sequently, are adequate for indicating the category that results in less inference error. The

hypothesis for the MKR is that all instances inside the cluster have the same informational

value.

3.2.3 Time complexity

To calculate the Grouped Error Estimate for a given cluster, the NNAR and NDNAR

meta-categorizers compute the euclidean distance of every clusterŠs instance to every

centroid obtained from the data classes summary. So, the time complexity of NNAR and

NDNAR is 𝑂(𝑛 × 𝑠 × 𝐷), where 𝑛 is the number of instances inside the cluster, 𝑠 is the

number of centroids in the classes summaries, and 𝐷 is the dimensionality of the data.

40 Chapter 3. Proposal

The NNCR and NDNCR meta-categorizers calculate the Grouped Error Estimate of

a given cluster by Ąrst computing the clusterŠs centroid and then computing the distance

of the obtained centroid to every centroid in the classes summaries. The time complexity

to compute the clusterŠs centroid is 𝑂(𝑛 × 𝐷), while the time complexity to compute the

distance of the obtained centroid to every centroid in the classes summaries is 𝑂(𝑠 × 𝐷).

So, the Ąnal time complexity of NNCR and NDNCR is 𝑂(𝐷 × (𝑠 + 𝑛)).

To select which clusterŠs instances to ask the oracle for the label, the MKCN active-

categorizer starts by computing the clusterŠs centroid. This procedure presents a time

complexity of 𝑂(𝑛 × 𝐷). After the centroid is computed, the method calculates the

distance of the centroid to every clusterŠs instance while keeping track of the 𝐾 closest

instances. The distances computation and the selection of the 𝐾 instances closer to the

centroid has a time complexity of 𝑂(𝑛 × (𝐾 + 𝐷)). After the 𝐾 instances are selected,

each one is labeled by the oracle. Considering that an instance labeling by the oracle

has the constant cost of 𝑂(1), the time complexity of labeling the 𝐾 selected instance is

𝑂(𝐾). So, the Ąnal time complexity of the MKCN active-categorizer is 𝑂(𝑛 × (𝐾 + 𝐷))

The MKR active-categorizer chooses at random 𝐾 clusterŠs instances to be labeled by

the oracle. Considering that choosing at random an instance has a constant cost 𝑂(1),

the time complexity of the MKR active-categorizer is 𝑂(𝐾).

41

Chapter 4

Experimental Results

In this chapter, we describe the evaluation strategy proposed for evaluating the frame-

work and its modules. We start by deĄning two different ways to integrate the framework

to the base classiĄer: the tight integration, which refers to the standard way of integrating

the framework to the classiĄer, and the loose integration, a non-intrusive way of integrat-

ing the framework, intended to evaluate the meta and active categorizers in the context

of the base classiĄer original behavior. Once both integrations settings are deĄned, we

present the evaluation measures used to evaluate the framework.

4.1 Framework integration with clustering-based clas-

siĄers

The framework can be integrated with a clustering-based data stream classiĄer in two

different manners: tight integration or loose integration.

4.1.1 Tight integration

Tight integration is the standard way to integrate the framework into a base classiĄer,

as shown in Figure 2. In this integration, the original behavior of the baseline classiĄer

is changed. Whenever the active-categorizer is called, the base-categorizer decision is

ignored, and the base classiĄerŠs behavior is adjusted, so the cluster is processed by

taking into account the category predicted by the active-categorizer. The objective of this

integration is to apply the framework to a compatible data stream classiĄer to improve

its performance in distinguishing concept drift and concept evolution. We assume that

tight integration with a compatible data stream classiĄer is justiĄed if good results are

obtained in a loose integration.

42 Chapter 4. Experimental Results

4.1.2 Loose integration

In the loose integration, the original behavior of the base classiĄer is not changed. The

results outputted by the active-categorizer are used only for evaluation purposes. The

correct category is calculated and compared with the categories predicted by the base-

categorizer, meta-categorizer and active-categorizer. The objective of the loose integration

is to evaluate and analyze the framework in the context of a classiĄer without changing

the classiĄerŠs original behavior or results. This analysis is done by counting how many

miscategorizations made by the base-categorizer can be detected and for how many of

them the active-categorizer can output the correct category.

After a cluster is made available, it is categorized by the base-classiĄer and meta-

categorizer. If the two modules disagree about the cluster category, the cluster is also

categorized by the active-categorizer. The categorizations are then sent to the module

responsible for calculating the evaluation measures. The loose integration allows us to

analyze the framework considering the base classiĄer original behavior.

4.2 Evaluation Measures

4.2.1 Categorization Confusion Matrix

We deĄne the cluster categorization as a binary classiĄcation task, where the "nov-

elty" category is considered the positive class and the "known" category is considered the

negative class. The categorization confusion matrix (Table 4) can be calculated for the

base-categorizer, meta-categorizer and active-categorizer.

The clusterŠs true category is deĄned in the context of the state of the learning model

at the interception point. If the majority of the cluster instances belong to one or more

classes known by the learning model, we state that the clusterŠs true category is "known".

If most of the instances belong to one or more classes unknown by the current learning

model, we state that the clusterŠs true category is "novelty".

Given the confusion matrix of predictions made by a categorizer over a set of clusters,

we calculate the categorization sensitivity (𝐶𝑆𝑒) and categorization speciĄcity (𝐶𝑆𝑝) as

shown in the equations 11 and 12, respectively.

Table 4 Ű Categorization confusion matrix

Predicted Category
Novelty Known

True
Category

Novelty 𝑇𝑟𝑢𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦 𝐹𝑎𝑙𝑠𝑒𝐾𝑛𝑜𝑤𝑛
Known 𝐹𝑎𝑙𝑠𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦 𝑇𝑟𝑢𝑒𝐾𝑛𝑜𝑤𝑛

𝐶𝑆𝑒 =
𝑇𝑟𝑢𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦

𝑇𝑟𝑢𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦 + 𝐹𝑎𝑙𝑠𝑒𝐾𝑛𝑜𝑤𝑛
(11)

4.2. Evaluation Measures 43

𝐶𝑆𝑝 =
𝑇𝑟𝑢𝑒𝐾𝑛𝑜𝑤𝑛

𝑇𝑟𝑢𝑒𝐾𝑛𝑜𝑤𝑛 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦
(12)

The 𝐶𝑆𝑒 and 𝐶𝑆𝑝 measures allow us to evaluate the performance of the base-categorizer,

and also the different approaches for the meta-categorizer and active-categorizer modules.

4.2.2 Cluster Querying Confusion Matrix

As described in Section 3, the query-by-committee strategy queries a cluster whenever

the meta-categorizer disagrees with the base-categorizer. In this sense, and considering

that there are only two possible categories, "known" or "novelty", if the strategy queries

a cluster, we may conclude that one of the two members of the committee missed the

clusterŠs true category.

Both the meta and base categorizers are expected to fail at some point. However, to

maximize the committeeŠs ability to detect miscategorizations, they must never fail at the

same time. Otherwise, the categorization error will pass unnoticed, negatively impacting

the frameworkŠs efficacy in detecting miscategorizations.

We also donŠt want the committee to always disagree. Otherwise, the active-categorizer

will be called for situations where, without additional label information, the base-categorizer

could correctly categorize the cluster, representing a waste of labeling resources.

In this sense, to evaluate the meta-categorizer, it is important to analyze in which

situations it has failed. For that reason, we deĄne the query-by-committee in terms of

a binary classiĄcation task, where an agreement is the positive class and a disagreement

the negative one. In this context, an 𝐺𝑜𝑜𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 represents an agreement where

both the meta and base-categorizer correctly predicted the clusterŠs true category and

a 𝐵𝑎𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 represents an agreement where both categorizers missed the clusterŠs

true category. While a 𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 represents a disagreement where the meta-

categorizer was the one to predict the clusterŠs category correctly, and a 𝐵𝑎𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

represents a disagreement where the meta-categorizer missed the true category. The clus-

ter querying confusion matrix is represented at Table 5.

Table 5 Ű Committee agreement confusion matrix

Meta Categorizer
Hit Miss

Base
Categorizer

Hit 𝐺𝑜𝑜𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝐵𝑎𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
Miss 𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝐵𝑎𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

Once the matrix is available, we use the summarized outcomes to calculate the query-

ing precision (𝑄𝑃𝑟) and querying sensitivity (𝑄𝑆𝑒) measures. The formula for theses

measures are presented in equations 14 and 13.

44 Chapter 4. Experimental Results

𝑄𝑃𝑟 =
𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 + 𝐵𝑎𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
(13)

𝑄𝑆𝑒 =
𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 + 𝐵𝑎𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
(14)

The 𝑄𝑃𝑟 and 𝑄𝑆𝑒 measures allow the evaluation of a meta-categorizer in the context

of the query-by-committee. The 𝑄𝑃𝑟 indicates how many of the queried clusters were

miscategorized by the base-categorizer. When this measure reaches its maximum value,

it means that the framework was able to only send to the active-categorizer the clusters

that the base-categorizers could not categorize. The 𝑄𝑆𝑒 indicates how many of the

clusters miscategorized by the base-categorizer were queried. When this measure reaches

its maximum value, it means that the framework was able to detect all miscategorizations

and send the respective clusters to the active-categorizer.

4.2.3 Framework Impact Confusion Matrix

If the query-by-committee queries all and only the clusters for which the base-categorizer

missed the correct category, and if the active-categorizer provides the correct category for

all the queried clusters, the framework reaches its maximum performance. To measure the

performance of the framework as a whole, we deĄne the framework in terms of a binary

classiĄcation task, where a 𝐺𝑜𝑜𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 represents a 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 categorization

if the active-categorizer outputs the correct category for the respective cluster and an

𝑈𝑛𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 categorization if the active-categorizer miscategorize the cluster. While a

𝐵𝑎𝑑𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 represents a 𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 categorization if the active-categorizer miscat-

egorizes the respective cluster and an 𝑈𝑛𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 categorization if the active-categorizer

outputs the correct category. The respective confusion matrix is represented at Table 6.

Table 6 Ű Confusion matrix for the impact over the categorization of the queried clusters

GoodDisagreement BadDisagreement
Active

Categorizer
Hit 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑈𝑛𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑

Miss 𝑈𝑛𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑

Once the matrix is available, we use the summarized outcomes to calculate the error

recovery rate (𝑅𝑒𝑐𝑅) and the corruption rate (𝐶𝑜𝑟𝑟𝑅) measures. The formula for calcu-

lating the measures given a framework impact confusion matrix is presented in equations

15 and 16, where the index 𝐵𝐶 indicates that the outcome refers to the categorization

confusion matrix calculated for the base-categorizer.

𝑅𝑒𝑐𝑅 =
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝐹𝑎𝑙𝑠𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦BC + 𝐹𝑎𝑙𝑠𝑒𝐾𝑛𝑜𝑤𝑛BC

(15)

4.3. Experiments 45

𝐶𝑜𝑟𝑟𝑅 =
𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑

𝑇𝑟𝑢𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦BC + 𝑇𝑟𝑢𝑒𝐾𝑛𝑜𝑤𝑛BC

(16)

Although it can be calculated for both tight and loose integration, in the loose inte-

gration setting, the 𝑅𝑒𝑐𝑅 and 𝐶𝑜𝑟𝑟𝑅 are only virtual measures, meaning that the errors

are not actually recovered or introduced since the base classiĄer does not consider the

decisions made by the framework in this setting.

In the tight integration, beyond calculating the 𝑅𝑒𝑐𝑅 and 𝐶𝑜𝑟𝑟𝑅 measures, we are

also interested in calculating the Ąnal categorization sensitivity and speciĄcity considering

the cluster miscategorizations recovered by the framework and also any eventual catego-

rization corruption. These measures allow us to compare, in terms of cluster categoriza-

tion performance, the original base classiĄer and the approach resultant of integrating the

framework to the base classiĄer. The equation for both measures, referred to as 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒

and 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝 are presented in equations 17 and 18 respectively, where the indexes 𝑁

and 𝐾 indicate when the 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and 𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 outcomes refer to the actual "known"

clusters, or the actual "novelty" cluster, respectively.

𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒 =
𝑇𝑟𝑢𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦BC + (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑N ⊗ 𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑N)

𝑇𝑟𝑢𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦BC + 𝐹𝑎𝑙𝑠𝑒𝐾𝑛𝑜𝑤𝑛BC

(17)

𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝 =
𝑇𝑟𝑢𝑒𝐾𝑛𝑜𝑤𝑛BC + (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑K ⊗ 𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑K)

𝑇𝑟𝑢𝑒𝐾𝑛𝑜𝑤𝑛BC + 𝐹𝑎𝑙𝑠𝑒𝑁𝑜𝑣𝑒𝑙𝑡𝑦BC

(18)

The 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒 and 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝 are only calculated for the tight integration setting as

it measures the Ąnal categorization performance of the base classiĄer after incorporating

the framework.

4.3 Experiments

In this section we analyze the framework in the context of two different clustering-based

data stream classiĄers from the literature: MINAS and ECHO. We start by describing

the benchmark datasets used in the experiments. Then, we describe the base-categorizer,

data classes summary, interception point, and baseline results of both MINAS and ECHO.

After that, we present an analysis of the NNAR, NNCR, NDNAR, and NDNCR threshold

factor parameter. In sequence, we evaluate the framework by setting up a loose integra-

tion experiment for each base classiĄer. Finally, we tightly integrate the framework to

MINAS and show the difference in performance between the original classiĄer and the

tight integration approach in terms of cluster categorization performance and the number

of labels required.

46 Chapter 4. Experimental Results

4.3.1 Datasets

To execute the experiments, we used a set of four benchmark datasets, listed in Table

7. MOA and SynEDC are synthetic datasets, while KDD99 and covtype are real-world

datasets. In the table, the Training and Test columns indicate the portion of the data used

in the base classiĄerŠs initial training and testing phase, respectively. The #𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

columns indicate the number of instances used in the training and test. The total number

of classes is indicated in the testŠs #𝐶𝑙𝑎𝑠𝑠𝑒𝑠 column, while the number of classes present

in the training is indicated in the trainingŠs #𝐶𝑙𝑎𝑠𝑠𝑒𝑠 column.

Table 7 Ű Benchmark datasets

Training Test

Dataset Dimensionality #𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 #𝐶𝑙𝑎𝑠𝑠𝑒𝑠 #𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 #𝐶𝑙𝑎𝑠𝑠𝑒𝑠

MOA3 4 10000 2 90000 4
SynEDC 40 40000 7 360000 20
KDD99 34 48993 2 444619 5
covtype 54 47045 2 522911 7

The portion of the data used in the training is respective to 10% of the datasetŠs total

(FARIA et al., 2016b). Futher details about the datasets are provided following.

4.3.1.1 MOA3

This synthetic dataset was created using the MOA (Massive Online Analysis) software

(BIFET et al., 2010), and used by (FARIA et al., 2016a). Normal-like distributions

generated the datasetŠs instances. Each distribution is represented by a 4-dimensional

hypersphere that moves in the hyperspace, generating changes in the classesŠ distributions.

The stream starts with two classes, and two more appears during the stream, totalizing

four classes in the dataset. The attribute values are between 0 and 1. The dataset contains

100.000 instances, of which the Ąrst 10% were used as training data.

4.3.1.2 SynEDC

This synthetic dataset was used by (MASUD et al., 2010), (AL-KHATEEB et al.,

2012a), (AL-KHATEEB et al., 2012b) and (FARIA et al., 2016a). It contains both concept

drift and concept evolution. The instances are generated by Gaussian distributions in the

40-dimensional space, with different means (-5.0 to +5.0) and variances (0.5 to 6) per

class. Beyond that, some classes appear and disappear during the stream. The attribute

values are between 0 and 1. The dataset contains 400.000 instances, of which the Ąrst

10% were used as training data.

4.3. Experiments 47

4.3.1.3 KDD99

This dataset in its original format can be found at the UCI dataset repository (FRANK;

ASUNCION et al., 2011). It refers to the real problem of real-time automatic detection

of cyberattacks. Each instance of the dataset represents the information about a network

connection, classiĄed as normal, or one of the 22 different types of attack, that can be

condensed into Ąve classes. The version of the dataset used in this work corresponds to the

10% version of the original dataset. Only the numeric attributes of the original dataset

were considered, totalizing 34 attributes normalized to the range [0, 1]. The attribute

values are between 0 and 1. The resulting dataset contains 494.021 instances, of which

the Ąrst 10% corresponds to the training data. In order to keep only two classes in the

training (classes "dos" and "normal"), we removed 409 instances from the training data.

4.3.1.4 covtype

This dataset in its original format can be found at the UCI dataset repository (FRANK;

ASUNCION et al., 2011). It refers to a real problem of predicting the forest cover type

from cartographic information such as elevation, slope, soil type, etc. The dataset con-

tains instances with a total of 7 different types of forest cover. Each sample has 54 numeric

attributes. All attributes were used and normalized to the [0, 1] interval. The dataset

contains 581.012 instances, of which the Ąrst 10% corresponds to the training data. In

order to keep only two classes in the training, we removed 11.056 instances from the

training data.

4.3.2 Base classiĄers

The base-categorizer, data classes summary, and interception point of both MINAS

and ECHO are described in more detail in sequence. We also present the classiĄersŠ pa-

rameter conĄguration used in the experiments. The parameters conĄguration were deĄned

by taking into account the experiments made in the papers where MINAS (FARIA et al.,

2016a), and ECHO (HAQUE et al., 2016) were proposed as well empirical evaluations of

the performance of the classiĄers in the implementations made for this work.

4.3.2.1 MINAS

The data classes summary of MINAS is deĄned as the set of all micro-cluster assigned

to a known class in its classiĄcation model in a given moment. Its base-categorizer is

deĄned as follows: If a cluster is assigned to a known class by the novelty detection

procedure, it is categorized as "known", otherwise, as "novelty". Finally, we deĄne the

interception point as the moment after the cluster is categorized.

In the executed experiments, the parameters of MINAS were conĄgured as follows.

For all datasets, the number of instances to execute the novelty detection procedure

48 Chapter 4. Experimental Results

(𝑀𝑎𝑥𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒) was deĄned as 2000, the number of clusters generated in the nov-

elty detection procedure (𝑁𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠) was deĄned as 100, the minimum number of

instances in a cluster (𝑀𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒) was deĄned as 20 and the window size to forget

outdated instances (𝑊𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝐹𝑜𝑟𝑔𝑒𝑡) was deĄned as 4000. The window size to send

micro-clusters from the decision model to the sleeping memory (𝑊𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝑆𝑙𝑒𝑒𝑝) was

deĄned as 4000 for MOA3, SynEDC, and covtype, and as 1000 for KDD99. We choose

not to update the micro-clusters at each new instance explained by the model for all

datasets. The clustering algorithm used in the offline phase was CluStream (AGGAR-

WAL et al., 2003; FARIA et al., 2016b), and the K-Means++ for the online phase. The

seed used by the random procedures of the K-Means++ algorithm was Ąxed for all runs.

The parameters are listed in Table 8.

Table 8 Ű MINASŠ parameters

Parameter Value
𝑀𝑎𝑥𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 2000
𝑁𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 100
𝑀𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 20
𝑊𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝐹𝑜𝑟𝑔𝑒𝑡 4000
𝑊𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝑆𝑙𝑒𝑒𝑝 4000 (1000 for KDD99)
𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑖𝑐𝑟𝑜 False
𝑂𝑓𝑓𝑙𝑖𝑛𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 CluStream
𝑂𝑛𝑙𝑖𝑛𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 KMeans++

The decision rule to verify if a micro-cluster explains an instance was deĄned as follows:

if the distance between the instance 𝑥 and the centroid 𝑥i of the micro-cluster 𝑖 is lower

than two times the standard deviation ài of the micro-cluster 𝑖, the instance is classiĄed.

In order words, if the condition 𝑑(𝑥, 𝑥i) < 2 ≤ ài is true, the instance 𝑥 is classiĄed with

the class of the micro-cluster 𝑖, where 𝑑 is the euclidean distance function.

The decision rule to verify if a target micro-cluster 𝑖 is the extension of another micro-

cluster 𝑗 was deĄned as follows: if the distance between the centroids 𝑥i and 𝑥j is lower

than the sum of the standard deviations ài and àj, the target micro-cluster 𝑖 is said to be

an extension of the micro-cluster 𝑗. In order words, if the condition 𝑑(𝑥i, 𝑥j) < ài + àj is

true, the micro-cluster 𝑖 is considered an extension of the micro-cluster 𝑗.

4.3.2.2 ECHO

The data classes summary of ECHO is deĄned as the set of all pseudopoints of all

models kept in the ensemble in the current timestamp. Its base-categorizer is deĄned

as follows: If a cluster results from the outlier buffer, it is categorized as "novelty". If

a cluster results from the partially labeled window, it is categorized as "known" if the

class with the highest frequency among the clusterŠs labeled instances is known by the

data classes summary in its current state. If a cluster results from the partially labeled

4.3. Experiments 49

window, it is categorized as "novelty" if the class with the highest frequency among the

clusterŠs labeled instances isnŠt known by the data classes summary in its current state.

A class is known by the data classes summary if at least one pseudopoint where the class

appears with the highest frequency.

ECHO presents two interception points. The Ąrst interception is deĄned as the mo-

ment soon before a cohesive cluster is detected in the outlier buffer. The second inter-

ception point is deĄned as the moment soon before a cluster resultant from the partially

labeled window is summarized in a pseudopoint and used to build a new model. For both

interception points, the cluster and its instance, the data classes summary in its current

state, and the category deĄned by the base-categorizer compose the information to be

intercepted by the framework.

Since originally ECHO could only detect one new class at a time, we needed to adapt

the ECHO novelty detection algorithm to utilize the same benchmark datasets for MINAS

and ECHO. When ECHOŠs outlier buffer reaches its maximum size, instead of Ąnding one

cohesive cluster of unlabeled instances, we modiĄed the procedure to apply a K-Means++

clustering algorithm over the buffer. Each of the resulting clusters is then categorized as a

different novelty pattern added to the separated decision model. If an instance cannot be

explained by ECHOŠs ensemble, before sending it to the outlier buffer, we try to classify

the instance using the novelty pattern decision mode, using the same nearest neighbor

approach used by the pre-existing decision rule for classiĄcation using the ensemble.

In the executed experiments, the parameters of ECHO were conĄgured as follows.

The radius of a pseudopoint (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠) was set as two times the standard devi-

ation of the respective cluster. For all datasets, the maximum size of the outlier buffer

(𝑀𝑎𝑥𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒) was deĄned as 2000, the number of clusters generated over the buffer

(𝑁𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠) was deĄned as 25, the value of the gamma parameter (𝐺𝑎𝑚𝑚𝑎) was

deĄned as 0.5, the active learning threshold (𝐴𝐿𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) was deĄned as 0.4, the value

of the sensitivity parameter (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) was deĄned as 0.001, the conĄdence threshold

(𝐶𝑜𝑛𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) was set to 0.7, the size of the ensemble (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑆𝑖𝑧𝑒) was deĄned as

5. The chunk (𝐶ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒) and window size (𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒) were deĄned as the number

of training instance (#𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) divided by the ensemble size for each dataset. The seed

used by the random procedures of the K-Means++ and MCIKmeans algorithms was Ąxed

for all executions. The parameters are listed in Table 9.

50 Chapter 4. Experimental Results

Table 9 Ű ECHOŠs paramaters

Paramaters Value
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑅𝑎𝑑𝑖𝑢𝑠 2 ≤ à
𝑀𝑎𝑥𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 2000
𝑁𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 25
𝐺𝑎𝑚𝑚𝑎 0.5
𝐴𝐿𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.4
𝐶𝑜𝑛𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.7
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 0.001
𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑆𝑖𝑧𝑒 5
𝐶ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 #T raining

EnsembleSize

𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 #T raining
EnsembleSize

4.3.3 Source code

The source code developed for the experiments can be found at the repositories listed

in Table 10. The commit short hash indicate the state of the respective repository at

the point in history where the experiments were performed. New changes may be done

in the repositories in order to improve the codeŠs readability and also the outputŠs and

variableŠs nomenclature, so it matches better the terms used in this work. More details

about each repository can be found at the README.md Ąle at the repository root. The

pcf-workspace repository contains the source code of all other repositories already com-

piled, as well the datasets used in the experiments and Ąles containing the experimentŠs

conĄgurations. Suggestions, doubts, or bugs can be reported in the "Issues" section of

each repository.

Table 10 Ű Source code repositories

Repository URL Commit Short Hash

pcf https://github.com/douglas444/pcf 85aeba1
minas https://github.com/douglas444/minas d2235cc
echo https://github.com/douglas444/echo 7773687

pcf-categorizers https://github.com/douglas444/pcf-categorizers 5ee3a1f
streams https://github.com/douglas444/streams 72600cb

pcf-workspace https://github.com/douglas444/pcf-workspace df30211

4.3.4 Baseline results

In this section, we provide the baseline results for both ECHO and MINAS. These

results refer to the execution of both algorithms over the benchmark datasets without the

intervention of the framework.

Table 11 summarizes MINASŠ baseline results, and Table 12 summarizes ECHOŠs

baseline results. The #𝑁𝑜𝑣𝑒𝑙𝑡𝑦 column indicates the number of true novelty clusters

4.3. Experiments 51

generated by the underlying clustering strategy. Analogously, the #𝐾𝑛𝑜𝑤𝑛 column in-

dicates the amount of true known clusters generated. The #𝐿𝐶 column indicates the

number of labels consultations made by the classiĄerŠs update process (the counting does

not include labels used in the initial training phase). The 𝐶𝑆𝑒 and 𝐶𝑆𝑝 columns indicate

the performance of the base-categorizer in categorizing the clusters generated during the

classiĄer execution.

Table 11 Ű MINASŠ baseline results

#𝑁𝑜𝑣𝑒𝑙𝑡𝑦 #𝐾𝑛𝑜𝑤𝑛 #𝐿𝐶 𝐶𝑆𝑒 𝐶𝑆𝑝

MOA3 108 367 0 100% 0.54%
SynEDC 25 9 0 56% 100%
KDD99 43 926 0 90.69% 41.46%
covtype 203 1040 0 88.66% 29.61%

Table 12 Ű ECHOŠs baseline results

#𝑁𝑜𝑣𝑒𝑙𝑡𝑦 #𝐾𝑛𝑜𝑤𝑛 #𝐿𝐶 𝐶𝑆𝑒 𝐶𝑆𝑝

MOA3 44 9411 10435 100% 100%
SynEDC 6 4810 5456 100% 99.95%
KDD99 1 483 19847 100% 96.27
covtype 13 833 83755 100% 87.99%

4.3.5 Meta-categorizersŠ threshold factor parameter analysis

In this section, we analyze the meta-categorizersŠ threshold factor parameter to select

a suitable threshold factor conĄguration for use in all the experiments. To do so, we

execute both ECHO and MINAS in a loose integration scenario with two benchmark

datasets: MOA3 and covtype. For each meta-categorizer, each classiĄer is executed once

for a different threshold factor value. The threshold factor varies in the interval between

0.1 and 1 in steps of 0.1. For each execution, we register the meta-categorizer 𝐶𝑆𝑝

and 𝐶𝑆𝑒. The obtained results are plotted in the Fig. 3, for MINAS, and Fig. 4, for

ECHO. For both Ągures, the subĄgures (a), (b), (c) and (d) refer to the application of

the base classiĄer to the MOA3 dataset, and the subĄgures (e), (f), (g) and (h) refer to

the application of the base classiĄer to the covtype dataset.

The results obtained for MINAS over the MOA3 datataset (Fig. 3 (a), (b), (c) and

(d)) show that for all the meta-categorizers, the 𝐶𝑆𝑒 measure kept the performance of

1 from the threshold value of 0 to 0.8, and then started to decrease at the threshold

value of 0.9 until reaching the performance of 0 at the threshold value of 1. This result

implies that all the meta-categorizers can correctly categorize all the true novelty clusters

generated by MINAS for the MOA3 dataset if the threshold factor is set to 0.8 or lower

value. The graphics also show that the 𝐶𝑆𝑝 grows almost linearly, meaning that the

52 Chapter 4. Experimental Results

Grouped Error Estimate of the true known clusters is almost equally distributed over the

range of possible values. In consequence of that, the greater the value of the threshold,

the better the 𝐶𝑆𝑝 performance.

The results obtained for MINAS over the covtype dataset (Fig. 3 (e), (f), (g) and (h))

show that for all the meta-categorizers, the 𝐶𝑆𝑒 continuously decreased as the threshold

factor increased. The decrease of 𝐶𝑆𝑒 got more signiĄcant after the threshold value of

0.8 for the NNCR and NNAR, and 0.9 for the NDNCR and NDNAR. On the other hand,

the 𝐶𝑆𝑝 increased in an accelerated way as the threshold value increased.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

a
n
ce

(a) NNCR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) NNAR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) NDNCR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) NDNAR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

P
er
fo
rm

a
n
ce

(e) NNCR covtype

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

(f) NNAR covtype

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

(g) NDNCR covtype

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

(h) NDNAR covtype

CSp

CSe

Figure 3 Ű Meta-categorizersŠ threshold factor parameter analysis for MINAS

The results obtained for ECHO over the MOA3 datataset (Fig. 4 (a), (b), (c) and (d))

shows that in the interval between 0.4 and 0.8, for all meta-categorizers, both 𝐶𝑆𝑒 and

𝐶𝑆𝑝 reached perfect performance. For the NNCR and NNAR applied to ECHO over the

covtype dataset (Fig. 4 (e) and (f)), any threshold factor value in the interval between

0.4 and 0.8 is also suitable, although only 𝐶𝑆𝑒 reached maximum performance, with 𝐶𝑆𝑝

variating between the performance values of 0.8 and 0.9. For the NDNCR and NDNAR

applied to ECHO over the covtype dataset (Fig. 4 (g) and (h)), the best threshold factor

would be 0.3 since, after this point, the 𝐶𝑆𝑒 falls drastically.

4.3. Experiments 53

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
P
er
fo
rm

a
n
ce

(a) NNCR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) NNAR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) NDNCR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) NDNAR MOA3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

P
er
fo
rm

a
n
ce

(e) NNCR covtype

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

(f) NNAR covtype

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

(g) NDNCR covtype

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold factor

(h) NDNAR covtype

CSp

CSe

Figure 4 Ű Meta-categorizersŠ threshold factor parameter analysis for ECHO

From the analysis of the threshold factor parameter in the context of both MINAS

and ECHO, we may conclude that the threshold factor value of 0.8 is a suitable setting for

the NNCR and NNAR. As for the NDNCR and NDNAR, a better value for the threshold

factor is 0.9, even though the experiments with ECHO and the covtype dataset point

out an exception. The main conclusions used to base this conĄguration were two: (i)

the higher the value for the threshold factor, the better the 𝐶𝑆𝑝 performance; (ii) in

general, the biggest decrease in the 𝐶𝑆𝑒 performance occurs after the threshold factor of

0.8 for the NNCR and NNAR meta-categorizer, and after the threshold factor of 0.9 for

the NDNCR and NDNAR meta-categorizers.

In the remaining experiments, we will conĄgure the threshold factor of NNCR and

NNAR to 0.8, and the threshold factor of NDNCR and NDNAR to 0.9.

4.3.6 Results of Loose Integration with MINAS

This section presents the results obtained for the loose integration with MINAS for

each benchmark dataset. Table 13 shows the querying performance (See Section 4.2.2) of

the query-by-committee strategy by meta-categorizer. The cells in bold indicate the best

performance value for the dataset.

The table shows that the NDNAR presented the highest values for the 𝑄𝑃𝑟 and 𝑄𝑆𝑒

measures except for the 𝑄𝑃𝑟 in the MOA3 and KDD99 datasets. From this result, we

may conclude that the NDNAR is the best meta-categorizer to compose the committee

together with the base-categorizer.

54 Chapter 4. Experimental Results

Even though the NDNAR presented the best results, it is important to consider that

the meta-categorizer presents higher computational complexity than the NDNCR and

NNCR meta-categorizers. In this sense, the better results obtained by the NDNAR may

not justify its use as the NNCR and NDNCR were able to reach a similar performance

presenting a lower computational complexity. Compared to the NDNCR, the NNCR

performed better for the 𝑄𝑃𝑟 in MOA3 and KDD99 datasets and the 𝑄𝑆𝑒 in the SynEDC

dataset. Other than that, NDNCR performed better than NNCR. Because of that, we

chose NDNCR as the default meta-categorizer for the following experiments involving

MINAS.

Table 13 Ű Meta-CategorizerŠs Cluster Query Performance for MINAS

NNCR NNAR NDNCR NDNAR

𝑄𝑆𝑒 𝑄𝑃𝑟 𝑄𝑆𝑒 𝑄𝑃𝑟 𝑄𝑆𝑒 𝑄𝑃𝑟 𝑄𝑆𝑒 𝑄𝑃𝑟

MOA3 63.28% 100% 63.01% 100% 87.12% 95.20% 87.12% 95.20%
SynEDC 90.90% 100% 100% 55% 45.45% 100% 90.90% 100%
KDD99 93.39% 91.61% 93.39% 92.5% 98.05% 89.53% 98.44% 91.35%
covtype 54.03% 67.66% 53.50% 66.55% 68.6% 79.93% 69.80% 80.45%

Tables 14 and 15 presents the comparison between both, the MKCN and MKR active-

categorizer, where Table 14 presents the categorization measures (See Section 4.2.1), and

Table 15 presents framework impact measures (See Section 4.2.3). The cells in bold

indicate the best performance value for the dataset. The experiments were performed

using NDNCR as meta-categorizer. In the Table 14, some cells are marked with "Ű", which

indicates that the fractionŠs denominator of the equation for calculating the respective

measure assumed the zero value. In the case of the 𝐶𝑆𝑝 measure, a zero denominator

means that no known cluster was presented to the categorizer, so it is not possible to

evaluate the categorizerŠs performance in detecting known clusters.

The tables indicate that the MKCN and MKR active-categorizer presented similar per-

formance, but the MKCN performed slightly better for the KDD99 and covtype datasets.

Both active-categorizers presented a 𝐶𝑜𝑟𝑟𝑅 higher than 0 for the covtype dataset. Both

active-categorizer obtained some improvement by going from K = 1 to K = 3. The per-

formance gain, however, may not justify triplicating the number of labeled data instances

required.

4.3. Experiments 55

Table 14 Ű Active-CategorizerŠs Categorization Performance for MINAS and NDNCR

MKCN MKR

𝐾 = 1 𝐾 = 3 𝐾 = 1 𝐾 = 3

𝐶𝑆𝑒 𝐶𝑆𝑝 𝐶𝑆𝑒 𝐶𝑆𝑝 𝐶𝑆𝑒 𝐶𝑆𝑝 𝐶𝑆𝑒 𝐶𝑆𝑝

MOA3 100% 100% 100% 100% 100% 100% 100% 100%
SynEDC 100% Ű 100% Ű 100% Ű 100% Ű
KDD99 100% 100% 100% 100% 97.43% 100% 100% 100%
covtype 91.35% 98.41% 93.82% 98.58% 91.35% 98.41% 93.82% 99.29%

Table 15 Ű Active-CategorizerŠs Framework Impact for MINAS and NDNCR

MKCN MKR

𝐾 = 1 𝐾 = 3 𝐾 = 1 𝐾 = 3

𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅

MOA3 87.12% 0% 87.12% 0% 87.12% 0% 87.12% 0%
SynEDC 45.45% 0% 45.45% 0% 45.45% 0% 45.45% 0%
KDD99 96.70% 0% 96.70% 0% 96.70% 0.23% 96.70% 0%
covtype 67.28% 0.79% 67.41% 0.52% 67.28% 0.79% 67.94% 0.52%

4.3.7 Results of Loose Integration with ECHO

This section presents the results obtained for the loose integration with ECHO for each

benchmark dataset. Table 16 shows the querying performance of the query-by-committee

strategy by meta-categorizer. The cells in bold indicate the best performance value for

the dataset.

In the table, some cells are marked with "Ű". In the case where 𝑄𝑃𝑟 is marked with

"Ű", it means that the committee agreed on all cluster categorizations. While in the case

where 𝑄𝑆𝑒 is marked with "Ű", it means that the base-categorizer correctly categorized all

clusters. In the cases where both the 𝑄𝑃𝑟 and 𝑄𝑆𝑒 are marked with "Ű", it means that

the base-categorizer and meta-categorizer both agreed for all categorization and correctly

categorized all clusters, so no clusters were queried by the committee.

From this table, we may conclude that the NDNAR is the best meta-categorizer to

compose the committee together with the base-categorizer since the NDNAR presented

the highest values for the 𝑄𝑃𝑟 and 𝑄𝑆𝑒 measures except for the 𝑄𝑃𝑟 in the SynEDC

dataset. However, NDNCR reached a very similar performance, and since it has lower

computational complexity, we choose NDNCR as the default meta-categorizer for the

following experiments involving ECHO.

56 Chapter 4. Experimental Results

Table 16 Ű Meta-CategorizerŠs Cluster Query Performance for ECHO

NNCR NNAR NDNCR NDNAR

𝑄𝑆𝑒 𝑄𝑃𝑟 𝑄𝑆𝑒 𝑄𝑃𝑟 𝑄𝑆𝑒 𝑄𝑃𝑟 𝑄𝑆𝑒 𝑄𝑃𝑟

MOA3 Ű Ű Ű Ű Ű 0% Ű 0%
SynEDC 50% 1.33% 0% 0% 50% 3.57% 100% 1.29%
KDD99 0% 0% 0% 0% 100% 66.66% 100% 66.66%
covtype 0% 0% 0% 0% 100% 82.64% 100% 84.03%

Tables 17 and 18, presents the comparison between both, the MKCN and MKR active-

categorizer, where Table 17 presents the categorization measures, and Table 18 presents

framework impact measures. The cells in bold indicate the best performance value for

the dataset. The experiments were performed using NDNCR as meta-categorizer. In the

tables, some cells are marked with "Ű". In the case of the 𝑅𝑒𝑐𝑅 measure, a cell marked

with "Ű" indicates that the base-categorizer categorized all clusters correctly, so thereŠs no

error to be recovered.

As indicated in the tables, the MKCN and MKR active-categorizer presented similar

performance, but the MKCN performed slightly better for the SynEDC, KDD99 and

covtype datasets. Both active-categorizers presented a 𝐶𝑜𝑟𝑟𝑅 higher than 0 for the

covtype dataset. The performance of MKCN decreased from K = 1 to K = 3, while the

performance of MKR increased.

Table 17 Ű Active-CategorizerŠs Categorization Performance for MINAS and NDNCR

MKCN MKR

𝐾 = 1 𝐾 = 3 𝐾 = 1 𝐾 = 3

𝐶𝑆𝑒 𝐶𝑆𝑝 𝐶𝑆𝑒 𝐶𝑆𝑝 𝐶𝑆𝑒 𝐶𝑆𝑝 𝐶𝑆𝑒 𝐶𝑆𝑝

MOA3 100% Ű 100% Ű 100% Ű 100% Ű
SynEDC 100% 98.70% 100% 96.29% 100% 96.29% 100% 96.29%
KDD99 100% 100% 100% 100% 100% 100% 100% 100%
covtype 100% 99.07% 92.30% 98.14% 84.61% 98.14% 92.30% 96.29%

Table 18 Ű Active-CategorizerŠs Framework Impact for MINAS and NDNCR

MKCN MKR

𝐾 = 1 𝐾 = 3 𝐾 = 1 𝐾 = 3

𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅

MOA3 Ű 0% Ű 0% Ű 0% Ű 0%
SynEDC 0% 0% 0% 0% 0% 0% 0% 0%
KDD99 100% 0% 100% 0% 100% 0% 100% 0%
covtype 99% 0% 98% 1% 98% 2% 98% 0%

4.3. Experiments 57

4.3.8 Results of Tight Integration with MINAS

In this section, we present the results of the tight integration of the framework with

MINAS. Table 19 present the results of the tight integration using the NDNCR meta-

categorizer and MKR active-categorizer. Table 20 present the results of the tight integra-

tion using the NDNCR meta-categorizer and MKR active-categorizer.

The MKCN and MKR setting for the framework presented almost identical results,

differing only for the covtype dataset, where the MKCN setting performed slightly better.

The integration of the framework into MINAS presented excellent results, with a 𝑅𝑒𝑐𝑅

higher than 90% for all datasets, by the cost of acquiring very few labels considering the

total of instances in the test phase.

Table 19 Ű Tight Integration with MINAS using NDNCR and MKCN

#𝑁𝑜𝑣𝑒𝑙𝑡𝑦 #𝐾𝑛𝑜𝑤𝑛 #𝐿𝐶 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝

MOA3 2 473 157 100% 0% 100% 100%
SynEDC 19 15 7 100% 0% 100% 100%
KDD99 3 966 169 99.40% 0% 66.66% 100%
covtype 3 1512 613 93.59% 0% 100% 97.28%

Table 20 Ű Tight Integration with MINAS using NDNCR and MKR

#𝑁𝑜𝑣𝑒𝑙𝑡𝑦 #𝐾𝑛𝑜𝑤n #𝐿𝐶 𝑅𝑒𝑐𝑅 𝐶𝑜𝑟𝑟𝑅 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝

MOA3 2 473 157 100% 0% 100% 100%
SynEDC 19 15 7 100% 0% 100% 100%
KDD99 3 966 169 99.40% 0% 66.66% 100%
covtype 5 1510 611 93.40% 0.22% 60% 97.21%

Tables 21 and 22 presents a comparasion between the baseline results of MINAS

and the results obtained by tightly integrating the framework in the MKCN setting into

MINAS, where Table 21 present the number of true novelty (#𝑁𝑜𝑣𝑒𝑙𝑡𝑦) and true known

(#𝐾𝑛𝑜𝑤𝑛) clusters, and Table 22 present the results in the categorization of theses

clusters (𝐶𝑆𝑒 and 𝐶𝑆𝑝 for original MINAS and 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒 and 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝 for MINAS +

Framwork) as well the number of labels queried (#𝐿𝐶).

Table 21 Ű Comparasion between MINAS baseline results and the results obtained with
the MINAS + Framwork approach: numbers of clusters

Original MINAS MINAS + Framwork

#𝑁𝑜𝑣𝑒𝑙𝑡𝑦 #𝐾𝑛𝑜𝑤𝑛 #𝑁𝑜𝑣𝑒𝑙𝑡𝑦 #𝐾𝑛𝑜𝑤𝑛

MOA3 108 367 2 473
SynEDC 25 9 19 15
KDD99 43 926 3 966
covtype 203 1040 3 1512

58 Chapter 4. Experimental Results

Table 22 Ű Comparasion between MINAS baseline results and the results obtained with
the MINAS + Framwork approach: labels and categorization performance

Original MINAS MINAS + Framework

#𝐿𝐶 𝐶𝑆𝑒 𝐶𝑆𝑝 #𝐿𝐶 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑒 𝐹𝑖𝑛𝑎𝑙𝐶𝑆𝑝

MOA3 0 100% 0.54% 157 100% 100%
SynEDC 0 56% 100% 7 100% 100%
KDD99 0 60.69% 41.46% 169 66.66% 100%
covtype 0 88.66% 29.61% 613 100% 97.28%

The results in Table 22 show the improvement of categorization performance obtained

by MINAS by incorporating the framework. It is also interesting to notice that there

are fewer novelty clusters in the approach that includes the framework. This result is

expected since, by labeling instances, we give MINAS information about classes that it

didnŠt know yet.

59

Chapter 5

Conclusion

In this work, we proposed an active learning strategy that queries the data Ąrst at the

cluster-level and then at the instance-level to provide label information to a clustering-

based data stream classiĄer in the context of the clusters used to update its classiĄcation

model. We also proposed the implementation of this strategy for the task of distinguishing

clusters representing concept drift from the ones representing concept evolution. This im-

plementation was presented in the format of a framework. We described how to integrate

the framework into a compatible clustering-based data stream classiĄer.

The framework relies on a query-by-committee approach to query for clusters, where

a two-member committee is formed by adding a second cluster categorizer alongside the

one already present in the base classiĄer. Different categorizers were proposed to compose

the committee; none of them required an additional learning model. Instead, they use

the cluster summaries already kept by the base classiĄcation model. By doing this, the

framework avoids the computational cost of maintaining an extra learning model. The

categorizer proposed was based on the assumption that relates the Group Error Estimate

of a cluster to the concept change it is more likely to be representing, drift or evolution.

To evaluate the framework, we proposed an evaluation strategy capable of measur-

ing the performance of each frameworkŠs module in the context of the base classiĄerŠs

original behavior and the context of the behavior resultant of the full integration of the

framework to it. In the experiments, we evaluate the framework considering two different

clustering-based data stream classiĄers from the literature: MINAS, which relies exclu-

sively on unsupervised novelty detection algorithms to adjust its learning model, and

ECHO, which utilizes a semi-supervised clustering algorithm to adapt its learning model.

Four datasets were used in the experiments, being two of them real-world datasets. The

analysis of the framework over the clusters generated by MINAS and ECHO during their

application phase shows that the framework can effectively detect cluster miscategoriza-

tion and categorize it correctly by asking for just one label per cluster.

After testing the framework without intervening in the original results of the base

classiĄers, we proposed a full integration of the framework to MINAS. We then com-

60 Chapter 5. Conclusion

pared the resulting approach with the original MINAS in terms of cluster categorization

performance. In the results, the approach integrating the framework to MINAS reached

superior cluster categorization performance by asking for a few labels.

Future works include the following topics:

❏ Analyze the frameworkŠs impact over the accuracy of the base classiĄer in classifying

the instances of the stream;

❏ Test the performance of the framework using datasets with more instances, so more

clusters are generated, increasing the statistic relevance of the results;

❏ Evaluate the variance of the Group Error Estimate through the clustering-based es-

timate of the data classes distributions towards the actual Bayes error in simulation

datasets where at any timestamp of the stream, the Bayes error is known;

❏ Analyze the use of the Group Error Estimate for the categorization of clusters as

concept drift or evolution as the base decision rule for a clustering-based data stream

classiĄer;

❏ Further investigate other settings for the framework by proposing and testing meta-

categorizers other than the ones based on the Group Error Estimate, proposing

and testing more active-categorizers, testing a query-by-committee with more than

two members, and integrating the proposed framework into more clustering-based

data stream classiĄers, including approaches that use cluster algorithms other than

partitional clustering;

❏ Implement the Group Error Estimate as an incremental measure to turn the pro-

posed framework compatible with clustering-based data stream classiĄer that clus-

ters the data online;

❏ Implement the two-level active learning strategy for distinguishing clusters between

different classes, rather than between the known and novelty category only;

❏ Study the development of a two-level active learning strategy for parametric data

stream classiĄer where the blocks of the incremental learning model is a structure

other than a cluster.

61

Bibliography

ABDALLAH, Z. S. et al. Anynovel: detection of novel concepts in evolving data
streams. Evolving Systems, Springer, v. 7, n. 2, p. 73Ű93, 2016. Disponível em:
<https://doi.org/10.1007/s12530-016-9147-7>.

AGGARWAL, C. C. et al. A framework for on-demand classiĄcation of evolving data
streams. IEEE Transactions on Knowledge and Data Engineering, IEEE, v. 18,
n. 5, p. 577Ű589, 2006. Disponível em: <https://doi.org/10.1109/TKDE.2006.69>.

. Active learning: A survey. In: Data ClassiĄcation: Algorithms and
Applications. [S.l.]: CRC Press, 2014. p. 571Ű605.

. A framework for clustering evolving data streams. In: ELSEVIER.
Proceedings 2003 VLDB conference. 2003. p. 81Ű92. Disponível em: <https:
//doi.org/10.1016/B978-012722442-8/50016-1>.

AL-KHATEEB, T. et al. Stream classiĄcation with recurring and novel class detection
using class-based ensemble. In: IEEE. 2012 IEEE 12th International Conference
on Data Mining. 2012. p. 31Ű40. Disponível em: <https://doi.org/10.1109/ICDM.
2012.125>.

AL-KHATEEB, T. M. et al. Cloud guided stream classiĄcation using class-based
ensemble. In: IEEE. 2012 IEEE Fifth International Conference on Cloud
Computing. 2012. p. 694Ű701. Disponível em: <https://doi.org/10.1109/CLOUD.2012.
127>.

BIFET, A. et al. Moa: Massive online analysis, a framework for stream classiĄcation
and clustering. In: PMLR. Proceedings of the First Workshop on Applications
of Pattern Analysis. [S.l.], 2010. p. 44Ű50.

CHU, W. et al. Unbiased online active learning in data streams. In: Proceedings
of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. [s.n.], 2011. p. 195Ű203. Disponível em: <https:
//doi.org/10.1145/2020408.2020444>.

ENGELEN, J. E. V.; HOOS, H. H. A survey on semi-supervised learning.
Machine Learning, Springer, v. 109, n. 2, p. 373Ű440, 2020. Disponível em:
<https://doi.org/10.1007/s10994-019-05855-6>.

62 Bibliography

FARIA, E. R. et al. Novelty detection in data streams. ArtiĄcial Intelligence
Review, Springer, v. 45, n. 2, p. 235Ű269, 2016. Disponível em: <https:
//doi.org/10.1007/s10462-015-9444-8>.

FARIA, E. R. de et al. Minas: multiclass learning algorithm for novelty detection in data
streams. Data mining and knowledge discovery, Springer, v. 30, n. 3, p. 640Ű680,
2016. Disponível em: <https://doi.org/10.1007/s10618-015-0433-y>.

FRANK, A.; ASUNCION, A. et al. Uci machine learning repository, 2010. URL
http://archive. ics. uci. edu/ml, v. 15, p. 22, 2011.

FREUND, Y. et al. Selective sampling using the query by committee algorithm.
Machine learning, Springer, v. 28, n. 2, p. 133Ű168, 1997. Disponível em:
<https://doi.org/10.1023/A:1007330508534>.

FUKUNAGA, K. Introduction to statistical pattern recognition. [S.l.]: Elsevier,
2013.

FUKUNAGA, K.; HOSTETLER, L. K-nearest-neighbor bayes-risk estimation. IEEE
Transactions on Information Theory, IEEE, v. 21, n. 3, p. 285Ű293, 1975. Disponível
em: <https://doi.org/10.1109/TIT.1975.1055373>.

FUKUNAGA, K.; KESSELL, D. Nonparametric bayes error estimation using unclassiĄed
samples. IEEE Transactions on Information Theory, IEEE, v. 19, n. 4, p. 434Ű440,
1973. Disponível em: <https://doi.org/10.1109/TIT.1973.1055049>.

FUKUNAGA, K.; MANTOCK, J. M. A nonparametric two-dimensional display for
classiĄcation. IEEE transactions on pattern analysis and machine intelligence,
IEEE, n. 4, p. 427Ű436, 1982. Disponível em: <https://doi.org/10.1109/TPAMI.1982.
4767276>.

GAMA, J. Knowledge discovery from data streams. CRC Press, 2010. Disponível
em: <https://doi.org/10.1201/EBK1439826119>.

GAMA, J. et al. A survey on concept drift adaptation. ACM computing surveys
(CSUR), ACM New York, NY, USA, v. 46, n. 4, p. 1Ű37, 2014. Disponível em:
<https://doi.org/10.1145/2523813>.

GARCIA, K. D. et al. Online clustering for novelty detection and concept drift in data
streams. In: SPRINGER. EPIA Conference on ArtiĄcial Intelligence. 2019. p.
448Ű459. Disponível em: <https://doi.org/10.1007/978-3-030-30244-3_37>.

HAQUE, A.; KHAN, L.; BARON, M. Sand: Semi-supervised adaptive novel class
detection and classiĄcation over data stream. In: Proceedings of the AAAI
Conference on ArtiĄcial Intelligence. [S.l.: s.n.], 2016. v. 30, n. 1.

HAQUE, A. et al. Efficient handling of concept drift and concept evolution
over stream data. In: IEEE. 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). 2016. p. 481Ű492. Disponível em: <https:
//doi.org/10.1109/ICDE.2016.7498264>.

JAIN, A. K.; DUIN, R. P. W.; MAO, J. Statistical pattern recognition: A review. IEEE
Transactions on pattern analysis and machine intelligence, Ieee, v. 22, n. 1, p.
4Ű37, 2000. Disponível em: <https://doi.org/10.1109/34.824819>.

Bibliography 63

KHEZRI, S. et al. Stds: self-training data streams for mining limited labeled data in
non-stationary environment. Applied Intelligence, Springer, p. 1Ű20, 2020. Disponível
em: <https://doi.org/10.1007/s10489-019-01585-3>.

KSIENIEWICZ, P. et al. Data stream classiĄcation using active learned neural
networks. Neurocomputing, Elsevier, v. 353, p. 74Ű82, 2019. Disponível em:
<https://doi.org/10.1016/j.neucom.2018.05.130>.

LOSING, V.; HAMMER, B.; WERSING, H. Knn classiĄer with self adjusting
memory for heterogeneous concept drift. In: IEEE. 2016 IEEE 16th international
conference on data mining (ICDM). 2016. p. 291Ű300. Disponível em:
<https://doi.org/10.1109/ICDM.2016.0040>.

LUGHOFER, E. Single-pass active learning with conĆict and ignorance. Evolving
Systems, Springer, v. 3, n. 4, p. 251Ű271, 2012. Disponível em: <https://doi.org/10.
1007/s12530-012-9060-7>.

LUGHOFER, E.; PRATAMA, M. Online active learning in data stream regression
using uncertainty sampling based on evolving generalized fuzzy models. IEEE
Transactions on fuzzy systems, IEEE, v. 26, n. 1, p. 292Ű309, 2017. Disponível em:
<https://doi.org/10.1109/TFUZZ.2017.2654504>.

MASUD, M. et al. ClassiĄcation and novel class detection in concept-drifting
data streams under time constraints. IEEE Transactions on Knowledge
and Data Engineering, IEEE, v. 23, n. 6, p. 859Ű874, 2010. Disponível em:
<https://doi.org/10.1109/TKDE.2010.61>.

MASUD, M. M. et al. A practical approach to classify evolving data streams:
Training with limited amount of labeled data. In: IEEE. 2008 Eighth IEEE
International Conference on Data Mining. 2008. p. 929Ű934. Disponível em:
<https://doi.org/10.1109/ICDM.2008.152>.

MOHAMAD, S.; SAYED-MOUCHAWEH, M.; BOUCHACHIA, A. Active learning for
classifying data streams with unknown number of classes. Neural Networks, Elsevier,
v. 98, p. 1Ű15, 2018. Disponível em: <https://doi.org/10.1016/j.neunet.2017.10.004>.

PARREIRA, P.; PRATI, R. Aprendizagem ativa em Ćuxo de dados com latência
intermediária. In: SBC. Anais do XVI Encontro Nacional de Inteligência
ArtiĄcial e Computacional. 2019. p. 365Ű376. Disponível em: <https://doi.org/10.
5753/eniac.2019.9298>.

SETTLES, B. Active learning literature survey. University of Wisconsin-Madison
Department of Computer Sciences, 2009.

SETTLES, B.; CRAVEN, M.; RAY, S. Multiple-instance active learning. Advances in
neural information processing systems, v. 20, p. 1289Ű1296, 2007.

SEUNG, H. S.; OPPER, M.; SOMPOLINSKY, H. Query by committee. In:
Proceedings of the Ąfth annual workshop on Computational learning theory.
[s.n.], 1992. p. 287Ű294. Disponível em: <https://doi.org/10.1145/130385.130417>.

SVENSÉN, M.; BISHOP, C. M. Pattern recognition and machine learning. [S.l.]:
Springer Cham, Switzerland, 2007.

64 Bibliography

ZHU, X. et al. Active learning from data streams. In: IEEE. Seventh IEEE
International Conference on Data Mining (ICDM 2007). 2007. p. 757Ű762.
Disponível em: <https://doi.org/10.1109/ICDM.2007.101>.

ŽLIOBAITĖ, I. et al. Active learning with drifting streaming data. IEEE transactions
on neural networks and learning systems, IEEE, v. 25, n. 1, p. 27Ű39, 2013.
Disponível em: <https://doi.org/10.1109/TNNLS.2012.2236570>.

ZYBLEWSKI, P.; KSIENIEWICZ, P.; WOŹNIAK, M. Combination of active and random
labeling strategy in the non-stationary data stream classiĄcation. In: SPRINGER.
International Conference on ArtiĄcial Intelligence and Soft Computing. 2020.
p. 576Ű585. Disponível em: <https://doi.org/10.1007/978-3-030-61401-0_54>.

	d0e20dafec9975a500055018c98f27a9e1c65a68463dae5a0f861e6c1dee0574.pdf
	Title page

	1cf3df952190d64dc6c9b759fa7eeea49f01a6cd91ed39e6cb4ef6308bd67c77.pdf
	d0e20dafec9975a500055018c98f27a9e1c65a68463dae5a0f861e6c1dee0574.pdf
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Objectives
	Hypothesis
	Contributions
	Thesis Organization

	Fundamentals
	Bayes classifier, Bayes error and Grouped Error Estimate
	Concept drift and evolution over data streams
	Active learning
	Query-by-committee strategy
	Multiple-instance active learning

	Clustering-based Data Stream Classifiers
	MINAS
	ECHO

	Proposal
	Two-level active learning strategy
	The proposed framework
	The meta-categorizer
	The threshold parameter

	The active-categorizer
	Time complexity

	Experimental Results
	Framework integration with clustering-based classifiers
	Tight integration
	Loose integration

	Evaluation Measures
	Categorization Confusion Matrix
	Cluster Querying Confusion Matrix
	Framework Impact Confusion Matrix

	Experiments
	Datasets
	MOA3
	SynEDC
	KDD99
	covtype

	Base classifiers
	MINAS
	ECHO

	Source code
	Baseline results
	Meta-categorizers' threshold factor parameter analysis
	Results of Loose Integration with MINAS
	Results of Loose Integration with ECHO
	Results of Tight Integration with MINAS

	Conclusion
	Bibliography

