Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufu.br/handle/123456789/32476
ORCID:  http://orcid.org/0000-0003-4519-4884
Tipo de documento: Trabalho de Conclusão de Curso
Tipo de acceso: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 United States
Título: Investigação do desempenho do planejador de trajetórias Motion Planning Networks
Título (s) alternativo (s): Investigation of the performance of the motion planner Motion Planning Networks
Autor: Moura, Jhonas Prado
Primer orientador: Julia, Rita Maria da Silva
Primer miembro de la banca: Gonçalves, Rogério Sales
Segundo miembro de la banca: Lopes, Carlos Roberto
Resumen: O presente trabalho busca investigar a aplicação de um planejador de trajetórias baseado em Aprendizado de Máquina na resolução de problemas em que é necessário planejar uma trajetória entre dois pontos de um ambiente, evitando possíveis colisões com obstáculos nele presentes. Os ambientes aqui utilizados são bidimensionais, estáticos e apresentam obstáculos com tamanhos iguais. A abordagem escolhida na resolução deste problema foi o planejador Motion Planning Networks. Neste algoritmo de planejamento, destacam-se os seguintes elementos: uma rede neural que sintetiza as informações provenientes do ambiente em uma representação compacta e eficiente; uma rede neural que gera gradativamente um conjunto de pontos candidatos à trajetória; um algoritmo otimizador que elimina pontos desnecessários deste conjunto; e, um replanejador que tenta corrigir eventuais falhas na trajetória planejada. A viabilidade desta abordagem foi avaliada por meio da análise dos seguintes parâmetros: taxa de sucesso em gerar uma trajetória válida e tempo de execução. Por meio de tal análise, concluiu-se que o algoritmo Motion Planning Networks é consistente em planejar trajetórias válidas para os referidos problemas, raramente apresentando falhas; bem como apresentou, frequentemente, tempos de execução abaixo de meio segundo. O tempo de execução do MPNet é significantemente menor do que o obtido utilizando o planejador RRT* para as mesmas trajetórias.
Abstract: This study aims to investigate the application of a Machine Learning-based motion planner for solving problems in which a path between two points must be planned, avoiding any collisions with obstacles present in the environment. The environments herein used are bidimensional, static and feature obstacles of the same size. The chosen approach for solving the said problem was the Motion Planning Networks algorithm. In this planning algorithm, the following elements are highlighted: a neural network that synthesizes the environment data in an embedded and efficient representation; a neural network that gradually processes a set of candidate points to the planned path; an optimizer algorithm, which removes unnecessary points from such set; and, a replanning algorithm which attempts to fix eventual mistakes in the planned path. The viability of this approach was evaluated through the analysis of the following parameters: success rate in planning a valid path and computation time. As a result of said analysis, it is concluded that the Motion Planning Networks algorithm is consistent in planning valid paths for said problems, rarely failing; besides, it regularly took less than half a second to plan a path. MPNet’s mean computation time is significantly lower than the one obtained using the RRT* planner for the same paths.
Palabras clave: Planejamento de trajetórias
Motion planning
Autoencoder
Autoencoder
Perceptron de múltiplas camadas
Multilayer perceptron
RRT*
RRT*
Motion planning networks
Motion planning networks
Aprendizado de máquina
Machine learning
Contractive autoencoder
Contractive autoencoder
Área (s) del CNPq: CNPQ::OUTROS::ENGENHARIA MECATRONICA
Idioma: por
País: Brasil
Editora: Universidade Federal de Uberlândia
Cita: MOURA, Jhonas Prado. Investigação do desempenho do planejador de trajetórias Motion Planning Networks. 2021. 71 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecatrônica) - Universidade Federal de Uberlândia, Uberlândia, 2021.
URI: https://repositorio.ufu.br/handle/123456789/32476
Fecha de defensa: 21-jul-2021
Aparece en las colecciones:TCC - Engenharia Mecatrônica

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
InvestigaçãoDesempenhoPlanejador.pdfTCC9.04 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons