Please use this identifier to cite or link to this item:
https://repositorio.ufu.br/handle/123456789/46464Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.creator | Silvério, Franklyn Xavier | - |
| dc.date.accessioned | 2025-07-23T13:40:09Z | - |
| dc.date.available | 2025-07-23T13:40:09Z | - |
| dc.date.issued | 2025-05-09 | - |
| dc.identifier.citation | SILVÉRIO, Franklyn Xavier. Resolução numérica de sistemas de equações diferenciais aplicada ao problema dos três corpos. 2025. 63 f. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de Uberlândia, Uberlândia, 2025. | pt_BR |
| dc.identifier.uri | https://repositorio.ufu.br/handle/123456789/46464 | - |
| dc.description.abstract | The three-body problem seeks to determine the motion of three point-mass objects that interact mutually through Newton’s gravitational force, given initial conditions for the velocity and position of each body. Due to the complexity of the interaction among the three bodies and the system’s high sensitivity to initial conditions, the model is non-linear and can only be approached analytically in specific cases. For all other situations, the only alternative is the application of numerical methods. However, these methods are based on approximations, which makes finding a numerical solution to the problem particularly challenging. In this work, numerical methods aimed at solving a system of nonlinear differential equations that model the three-body problem will be studied and implemented, with an analysis of the numerical stability and accuracy of these methods and results found in the literature. | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal de Uberlândia | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
| dc.subject | Problema dos Três Corpos | pt_BR |
| dc.subject | Métodos Numéricos | pt_BR |
| dc.subject | Sistema de Equações Di ferenciais Ordinárias Não Lineares | pt_BR |
| dc.subject | Three-Body Problem | pt_BR |
| dc.subject | Numerical Methods | pt_BR |
| dc.subject | Nonlinear System of Ordinary Diffe rential Equations | pt_BR |
| dc.title | Resolução numérica de sistemas de equações diferenciais aplicada ao problema dos três corpos | pt_BR |
| dc.type | Trabalho de Conclusão de Curso | pt_BR |
| dc.contributor.advisor1 | Rogenski, Josuel Kruppa | - |
| dc.contributor.advisor1Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4550804T6&tokenCaptchar=03AFcWeA7_zxguuLaRtzLTYKA9nPZQSsC1G67Kubp6ihc7XUEQyfchxdIwTxfr8zLJvQectW308hnWe4gJF2_cTtphaqZDGoNcioHwFA7WXkfKKCy6N6YEurRe79LxgzDn-SYN0k2OGgzcpGbeQx-s3ZNvisUpK5J-9jX3cfUUtDOKfNTHhXA3SwStcouPih7Je7SeGHHkcmB2KgvDNBoIVy9B8YBwhGcyAqRubFXO0yxWYp61YdnocAA18KcjPtqK-spCY7j8RTimu024bJ7DFF2JYiIGkWG5wd7C58tqP7hLdzBKuS84TySlyLKKKgu_uTlM-Ra9f1MyUDqFeH7xZWy11tnj6CrsJiuFap_caZHcb8_IrGNQs1sMg7fbt2U1ul2V1oQ_migOa-bNGvcgvk35HnMP4lUP67Ed0tUBMMM-qrUa7xzS1tdKKCxvbUeGq71UaJTcR2LqoXZsMpBmPqfvMYRMSuPx0CLFFoSL2cNeSQmM2eia-po1t-HOZ20itxrTcDWKwEu1TwPq7ds7VEQnAX1A1Hl2WdDq8VUYd_G4DJg650k9bzb8Ri7BmoreHaJYj5bNTn3BEcKjALO4aDEESoZ1Lq9vaKxj11W2f7YC8HQQJ2g7VeFlpy19D-oaTPUG0jY6dRx1HQA7GsLjgLAfIC0f0-EmzRZin7K3SGOkQQMW2KNDEzJ00qtiovZf1Fs-hmYaMOwRKvhLUkhotQwT9FrNjP9GUG1MOir_whNG244L5a_4-_rk5d3Knn6yZEcY3N6dprq_KxPkm8XLoawc5iOhHTeDZJatfreB-msxhTtO6l8Cz5woQnolb_O1OIW_kZd1InXSjXrn3R5L3OxSNkM7f1XBLycVxSjoFdlu7IxolwXYwqRqggjD1zpG_1oYbPAYAvWj55GMduAIepA7f8r-Qh_obQ6AZXawms1fvBrN8oYmwyrQYkJ8XyfdX3FDiysBRVFl | pt_BR |
| dc.contributor.referee1 | Figueiredo, Rafael Alves | - |
| dc.contributor.referee1Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4245187Z8&tokenCaptchar=03AFcWeA4lHDuVjA1cZ0l3RojnUSAdSPhJ6hfdCs-K6aK5PSW3-UUpvDS0u0UKrGAHF037qBYLbS5kExgH9iOnxvjzddUAUzd3TMtKH4l0RqbBwkJL-SEJgEj93ip__PRBlEhD-w1qPP7S8n9eMD7o-wOi-Il2LY2mfZ0zse-MNt8NeZEPOOBnNCXStBxGpLMSe5gK5_DgDodhSkSFP_cyktBrBYzNcY5lhFsw1AUqPuzRgA433HL2PkPyZhfXo6mXNoL_6_-Z9FYd8EUZPDkr0Lp_7vI5vBeQCVP-W_CfpM8A-8YpCIAtNKg2umbZ6p4r_eXeQOubwOumI6Ycqh4JK-68ljm0iypeiCGCvzrayg7aSNKUvbILRzQQ1d0_gPVI4YTEKIewoRz3iu-gigMClr1fXelzWWJutL2PdkLMmRU6bagXIQjPLkx4pYIn3h6qNHpBI-Ro8z3JvuFzezN6onqN4_Mz6HQqCCTW4CA9s7XWH4A9QJK7n-SSvp_H4kBNBLaLxyOXPe2C-VHt9WEPx_N9EAiy2NIEZHGE4ZqypXPIrVqt7FDHLcWcOj2wbhj8dI2tRaZaJn6ufrKAw4KgG9Vv90NQKVxfahDYvfuBNQWaHAuOs4uFufudcmNJA5lWASyXSsAJc1biwAx4mgX4NLydtuCazYreund5m8Ysh_SeY8T32MQYmb6rnjHghlZnzForAvRY9vZLP_GAr1yP_p02u-GSnpkOjr4L7q-RBmRBZ-Y_eO20C9NS1mJc6vDqXvN4MCLzSThnfdq-TB9OOAL1Ra4TQXZGmEWRBL9GLWj92sDOfx-z8qt_duMotDfc_Qolk4t2KIDWEDtZ2_MXc6lpZYNRWVmHjVkRqTT7l3s1s4DCvw2ge0LGnfkOiqIobWpznLDuTC0LBys8E5tzw-xT92VpGx-FtCfM2lprEYcoUeH4UzlC-52miWlq0CTD0uBj_WMWlJ5E | pt_BR |
| dc.contributor.referee2 | Remigio, Santos Alberto Enriquez | - |
| dc.contributor.referee2Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4556415U3&tokenCaptchar=03AFcWeA6Gx7ouQj5dhewfxqqacACTI5yEblTLuJj-zAivTEKIvRbPTXd3uonrgYrszTE1VdvNc9g38OaQsKtwKhqMG5w_DRtil4awIlZ0zllFrLITCiIEah6JEY3INfjQb9LNmg6_lht9bisq8f_7GKUsGuuqTrl_DuJ9RoZSOvTz1MBtBwzw6MaquhpC59xHMreD3Wv2HXIJBLYwARcisg-V9vVpQjW1_sOIUxuyDjx60c6cXfxXB0wXzlKZ5jgrwunx9N7Og6RhX3EWr_YfG6_j3Dpo9ju0mHUuWb1vyHE9Un_lpCj3AR1mmxH0NJpHb7f9DLTh4uAY7T5qcdgCQmmtB_Tu64-Cn-VYZD0XX88rDJMeN-RdHSb3MR58aQqHbY4ZCGg03mLeYhbxbk7hYYvUybT3r-aA8zVq05Dv_9GOsfJt_NTDKwkpUhuC2kKkTSL1ibO9KSTRDeZx2ahipqzRUc44VDA8yzSvt9fLIFHXiGD7XKJwq2590FPXdr3VDz7oiFERv7L6uuSOt29RfRhtnjPpWQmdN_Hstvbfk0ZCU2BR-o4HEDGJIR5tqRnbR71pccR4Dn0eD4luqXivn4ztbXyvTU8PX_pzWKUIm8tR7_5BaK37NdPTXYFoRCZ0dvG-SogPvwxaWT0JGJBLs65DrnlZXP6UQw8iXV_CLaiZDy0am98eDyj5VrJTMzndflRyMO61JPlhOYfN9gj_2owb7anC5TtoW7VfYp4s9vKjb0Muok5FEkffAa-OeGVedQhqsbtOFvAlrpEzRbHuGsNRVoTTqXM7g-QQEHQNjoQHdaxoc-ot5s8-GxPgZYUwW8xyL60kEygJmNh3zXC-qV6tprnpdrbS4TmPaBUxpGnG2Uxs3sA5CP8hcb9Eq1xTqwaX1OrVDBQbMRmt8SjOnyXuKAUwBheDG4Z-MzswdJJCFMmd3FX7O1u4sZ4aEQoIxp3eA2lGfZbv | pt_BR |
| dc.creator.Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K2203928Y6&tokenCaptchar=03AFcWeA51_7MUECi2TL7E3X2Q09Mq9wLzz9sxS3escc-SVZkinOB7Ri2PtRuMaECbYWEPGwLhd5zoZP38Sc__0bT4I7fMY7lEdfVD1REhGPitfH1IGu3SCBuiQ9-TI6Ons64fO-JnwKZIaQ1KOV9_S_XNNwutt7M7TRwx_4yp31Ei871tWdRaVqBJiZ7EwHqVYrbpcwmPkb-mJUUxpmRu_UZ6pgU3Xqv088azbffP7Wls12Ab_jnMk9g_FHV5dDmM075ostCoLOPC-eKZe78lqn5ijcCUvjvxfZIw8GCgA2QKS2EZUxSVYoOswX7Q21sip6PGPgMXZFJFFqZxYKB1-rce1mWUXr9lhK5IQQQud1ENdOOJp4odfaQjYf5SsLs_p4ktG6aY_xrU8ZVpq3lM3fyuL9F7HsiBhu6yt9woSnR5hMw6FajV0uIhJCtn7wCy3fnCS9LQpddhKXxNtYJlemoyjXKUpkO2Bfn935r-_-QxsSlia2-I9gYMxCwWZz9gUYMGVsLvBMCaUFRya0DQruzcy8KCE7MtNzK2QSD_aWPtDCPxaPN4zSp1lIoMd_2tE1YXX1KoCoru8EQ0ElV_yDQ5mbnXbnfuKZlbaDvSQdtfYGQMwllRPd-FdgvftqklaAbVh0HJGmv0VCZHLS4B8JxRJ5WKPAVPClXre4QB0z4ry6hPWiUjD5kQ91LL7_Pr7r6KvcOQ35a03GiGJRB429osqAYyI90wnBXb8K1Xwks2EUVaPgz5XFcRO5QWF9Z7MxX5ITNvN8VMERrtFkoXD3rB8pGEXDv09JggQX-hX8JfwkxET3fOjduKG_JZdLAvQRr7C5yDow-FJlhiO4kxBfW-YhBFnqiuXtJ9LVXpWfPGQMBtb5Opm4HW7hqKVBzxW6LEhf7uovzipXSngnsmlUGFN_6nZXMD-sy7C9eYtnLGB32873Jq3R5pTUqyRCeqohh6eoXAKz9Q | pt_BR |
| dc.description.degreename | Trabalho de Conclusão de Curso (Graduação) | pt_BR |
| dc.description.resumo | O problema dos três corpos busca resolver o movimento de três objetos com massas pontuais que interagem mutuamente por meio da força gravitacional de Newton, dada uma condição inicial de velocidade e posição de cada corpo. Devido à complexidade da interação entre três corpos e à evolução do sistema ser muito sensível às condições iniciais, o modelo é não linear, sendo abordado analiticamente apenas para situações específicas. Para os demais casos, a única alternativa é a aplicação de métodos numéricos. Contudo, esses métodos trabalham com aproximações, o que torna desafiadora a solução numérica para o problema. Neste trabalho, serão estudados e implementados métodos numéricos voltados à solução de um sistema de equações diferenciais não lineares que modela o problema dos três corpos, analisando a estabilidade e precisão numérica desses métodos e resultados da literatura. | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.course | Matemática | pt_BR |
| dc.sizeorduration | 63 | pt_BR |
| dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA | pt_BR |
| dc.orcid.putcode | 188524716 | - |
| Appears in Collections: | TCC - Matemática | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| ResoluçãoNuméricaDeSistemas.pdf | TCC | 2.54 MB | Adobe PDF | ![]() View/Open |
This item is licensed under a Creative Commons License
