Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/46464
Full metadata record
DC FieldValueLanguage
dc.creatorSilvério, Franklyn Xavier-
dc.date.accessioned2025-07-23T13:40:09Z-
dc.date.available2025-07-23T13:40:09Z-
dc.date.issued2025-05-09-
dc.identifier.citationSILVÉRIO, Franklyn Xavier. Resolução numérica de sistemas de equações diferenciais aplicada ao problema dos três corpos. 2025. 63 f. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de Uberlândia, Uberlândia, 2025.pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/46464-
dc.description.abstractThe three-body problem seeks to determine the motion of three point-mass objects that interact mutually through Newton’s gravitational force, given initial conditions for the velocity and position of each body. Due to the complexity of the interaction among the three bodies and the system’s high sensitivity to initial conditions, the model is non-linear and can only be approached analytically in specific cases. For all other situations, the only alternative is the application of numerical methods. However, these methods are based on approximations, which makes finding a numerical solution to the problem particularly challenging. In this work, numerical methods aimed at solving a system of nonlinear differential equations that model the three-body problem will be studied and implemented, with an analysis of the numerical stability and accuracy of these methods and results found in the literature.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectProblema dos Três Corpospt_BR
dc.subjectMétodos Numéricospt_BR
dc.subjectSistema de Equações Di ferenciais Ordinárias Não Linearespt_BR
dc.subjectThree-Body Problempt_BR
dc.subjectNumerical Methodspt_BR
dc.subjectNonlinear System of Ordinary Diffe rential Equationspt_BR
dc.titleResolução numérica de sistemas de equações diferenciais aplicada ao problema dos três corpospt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.contributor.advisor1Rogenski, Josuel Kruppa-
dc.contributor.advisor1Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4550804T6&tokenCaptchar=03AFcWeA7_zxguuLaRtzLTYKA9nPZQSsC1G67Kubp6ihc7XUEQyfchxdIwTxfr8zLJvQectW308hnWe4gJF2_cTtphaqZDGoNcioHwFA7WXkfKKCy6N6YEurRe79LxgzDn-SYN0k2OGgzcpGbeQx-s3ZNvisUpK5J-9jX3cfUUtDOKfNTHhXA3SwStcouPih7Je7SeGHHkcmB2KgvDNBoIVy9B8YBwhGcyAqRubFXO0yxWYp61YdnocAA18KcjPtqK-spCY7j8RTimu024bJ7DFF2JYiIGkWG5wd7C58tqP7hLdzBKuS84TySlyLKKKgu_uTlM-Ra9f1MyUDqFeH7xZWy11tnj6CrsJiuFap_caZHcb8_IrGNQs1sMg7fbt2U1ul2V1oQ_migOa-bNGvcgvk35HnMP4lUP67Ed0tUBMMM-qrUa7xzS1tdKKCxvbUeGq71UaJTcR2LqoXZsMpBmPqfvMYRMSuPx0CLFFoSL2cNeSQmM2eia-po1t-HOZ20itxrTcDWKwEu1TwPq7ds7VEQnAX1A1Hl2WdDq8VUYd_G4DJg650k9bzb8Ri7BmoreHaJYj5bNTn3BEcKjALO4aDEESoZ1Lq9vaKxj11W2f7YC8HQQJ2g7VeFlpy19D-oaTPUG0jY6dRx1HQA7GsLjgLAfIC0f0-EmzRZin7K3SGOkQQMW2KNDEzJ00qtiovZf1Fs-hmYaMOwRKvhLUkhotQwT9FrNjP9GUG1MOir_whNG244L5a_4-_rk5d3Knn6yZEcY3N6dprq_KxPkm8XLoawc5iOhHTeDZJatfreB-msxhTtO6l8Cz5woQnolb_O1OIW_kZd1InXSjXrn3R5L3OxSNkM7f1XBLycVxSjoFdlu7IxolwXYwqRqggjD1zpG_1oYbPAYAvWj55GMduAIepA7f8r-Qh_obQ6AZXawms1fvBrN8oYmwyrQYkJ8XyfdX3FDiysBRVFlpt_BR
dc.contributor.referee1Figueiredo, Rafael Alves-
dc.contributor.referee1Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4245187Z8&tokenCaptchar=03AFcWeA4lHDuVjA1cZ0l3RojnUSAdSPhJ6hfdCs-K6aK5PSW3-UUpvDS0u0UKrGAHF037qBYLbS5kExgH9iOnxvjzddUAUzd3TMtKH4l0RqbBwkJL-SEJgEj93ip__PRBlEhD-w1qPP7S8n9eMD7o-wOi-Il2LY2mfZ0zse-MNt8NeZEPOOBnNCXStBxGpLMSe5gK5_DgDodhSkSFP_cyktBrBYzNcY5lhFsw1AUqPuzRgA433HL2PkPyZhfXo6mXNoL_6_-Z9FYd8EUZPDkr0Lp_7vI5vBeQCVP-W_CfpM8A-8YpCIAtNKg2umbZ6p4r_eXeQOubwOumI6Ycqh4JK-68ljm0iypeiCGCvzrayg7aSNKUvbILRzQQ1d0_gPVI4YTEKIewoRz3iu-gigMClr1fXelzWWJutL2PdkLMmRU6bagXIQjPLkx4pYIn3h6qNHpBI-Ro8z3JvuFzezN6onqN4_Mz6HQqCCTW4CA9s7XWH4A9QJK7n-SSvp_H4kBNBLaLxyOXPe2C-VHt9WEPx_N9EAiy2NIEZHGE4ZqypXPIrVqt7FDHLcWcOj2wbhj8dI2tRaZaJn6ufrKAw4KgG9Vv90NQKVxfahDYvfuBNQWaHAuOs4uFufudcmNJA5lWASyXSsAJc1biwAx4mgX4NLydtuCazYreund5m8Ysh_SeY8T32MQYmb6rnjHghlZnzForAvRY9vZLP_GAr1yP_p02u-GSnpkOjr4L7q-RBmRBZ-Y_eO20C9NS1mJc6vDqXvN4MCLzSThnfdq-TB9OOAL1Ra4TQXZGmEWRBL9GLWj92sDOfx-z8qt_duMotDfc_Qolk4t2KIDWEDtZ2_MXc6lpZYNRWVmHjVkRqTT7l3s1s4DCvw2ge0LGnfkOiqIobWpznLDuTC0LBys8E5tzw-xT92VpGx-FtCfM2lprEYcoUeH4UzlC-52miWlq0CTD0uBj_WMWlJ5Ept_BR
dc.contributor.referee2Remigio, Santos Alberto Enriquez-
dc.contributor.referee2Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4556415U3&tokenCaptchar=03AFcWeA6Gx7ouQj5dhewfxqqacACTI5yEblTLuJj-zAivTEKIvRbPTXd3uonrgYrszTE1VdvNc9g38OaQsKtwKhqMG5w_DRtil4awIlZ0zllFrLITCiIEah6JEY3INfjQb9LNmg6_lht9bisq8f_7GKUsGuuqTrl_DuJ9RoZSOvTz1MBtBwzw6MaquhpC59xHMreD3Wv2HXIJBLYwARcisg-V9vVpQjW1_sOIUxuyDjx60c6cXfxXB0wXzlKZ5jgrwunx9N7Og6RhX3EWr_YfG6_j3Dpo9ju0mHUuWb1vyHE9Un_lpCj3AR1mmxH0NJpHb7f9DLTh4uAY7T5qcdgCQmmtB_Tu64-Cn-VYZD0XX88rDJMeN-RdHSb3MR58aQqHbY4ZCGg03mLeYhbxbk7hYYvUybT3r-aA8zVq05Dv_9GOsfJt_NTDKwkpUhuC2kKkTSL1ibO9KSTRDeZx2ahipqzRUc44VDA8yzSvt9fLIFHXiGD7XKJwq2590FPXdr3VDz7oiFERv7L6uuSOt29RfRhtnjPpWQmdN_Hstvbfk0ZCU2BR-o4HEDGJIR5tqRnbR71pccR4Dn0eD4luqXivn4ztbXyvTU8PX_pzWKUIm8tR7_5BaK37NdPTXYFoRCZ0dvG-SogPvwxaWT0JGJBLs65DrnlZXP6UQw8iXV_CLaiZDy0am98eDyj5VrJTMzndflRyMO61JPlhOYfN9gj_2owb7anC5TtoW7VfYp4s9vKjb0Muok5FEkffAa-OeGVedQhqsbtOFvAlrpEzRbHuGsNRVoTTqXM7g-QQEHQNjoQHdaxoc-ot5s8-GxPgZYUwW8xyL60kEygJmNh3zXC-qV6tprnpdrbS4TmPaBUxpGnG2Uxs3sA5CP8hcb9Eq1xTqwaX1OrVDBQbMRmt8SjOnyXuKAUwBheDG4Z-MzswdJJCFMmd3FX7O1u4sZ4aEQoIxp3eA2lGfZbvpt_BR
dc.creator.Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K2203928Y6&tokenCaptchar=03AFcWeA51_7MUECi2TL7E3X2Q09Mq9wLzz9sxS3escc-SVZkinOB7Ri2PtRuMaECbYWEPGwLhd5zoZP38Sc__0bT4I7fMY7lEdfVD1REhGPitfH1IGu3SCBuiQ9-TI6Ons64fO-JnwKZIaQ1KOV9_S_XNNwutt7M7TRwx_4yp31Ei871tWdRaVqBJiZ7EwHqVYrbpcwmPkb-mJUUxpmRu_UZ6pgU3Xqv088azbffP7Wls12Ab_jnMk9g_FHV5dDmM075ostCoLOPC-eKZe78lqn5ijcCUvjvxfZIw8GCgA2QKS2EZUxSVYoOswX7Q21sip6PGPgMXZFJFFqZxYKB1-rce1mWUXr9lhK5IQQQud1ENdOOJp4odfaQjYf5SsLs_p4ktG6aY_xrU8ZVpq3lM3fyuL9F7HsiBhu6yt9woSnR5hMw6FajV0uIhJCtn7wCy3fnCS9LQpddhKXxNtYJlemoyjXKUpkO2Bfn935r-_-QxsSlia2-I9gYMxCwWZz9gUYMGVsLvBMCaUFRya0DQruzcy8KCE7MtNzK2QSD_aWPtDCPxaPN4zSp1lIoMd_2tE1YXX1KoCoru8EQ0ElV_yDQ5mbnXbnfuKZlbaDvSQdtfYGQMwllRPd-FdgvftqklaAbVh0HJGmv0VCZHLS4B8JxRJ5WKPAVPClXre4QB0z4ry6hPWiUjD5kQ91LL7_Pr7r6KvcOQ35a03GiGJRB429osqAYyI90wnBXb8K1Xwks2EUVaPgz5XFcRO5QWF9Z7MxX5ITNvN8VMERrtFkoXD3rB8pGEXDv09JggQX-hX8JfwkxET3fOjduKG_JZdLAvQRr7C5yDow-FJlhiO4kxBfW-YhBFnqiuXtJ9LVXpWfPGQMBtb5Opm4HW7hqKVBzxW6LEhf7uovzipXSngnsmlUGFN_6nZXMD-sy7C9eYtnLGB32873Jq3R5pTUqyRCeqohh6eoXAKz9Qpt_BR
dc.description.degreenameTrabalho de Conclusão de Curso (Graduação)pt_BR
dc.description.resumoO problema dos três corpos busca resolver o movimento de três objetos com massas pontuais que interagem mutuamente por meio da força gravitacional de Newton, dada uma condição inicial de velocidade e posição de cada corpo. Devido à complexidade da interação entre três corpos e à evolução do sistema ser muito sensível às condições iniciais, o modelo é não linear, sendo abordado analiticamente apenas para situações específicas. Para os demais casos, a única alternativa é a aplicação de métodos numéricos. Contudo, esses métodos trabalham com aproximações, o que torna desafiadora a solução numérica para o problema. Neste trabalho, serão estudados e implementados métodos numéricos voltados à solução de um sistema de equações diferenciais não lineares que modela o problema dos três corpos, analisando a estabilidade e precisão numérica desses métodos e resultados da literatura.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.courseMatemáticapt_BR
dc.sizeorduration63pt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADApt_BR
dc.orcid.putcode188524716-
Appears in Collections:TCC - Matemática

Files in This Item:
File Description SizeFormat 
ResoluçãoNuméricaDeSistemas.pdfTCC2.54 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons