Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufu.br/handle/123456789/45287
ORCID:  http://orcid.org/0009-0002-6259-2876
Tipo de documento: Trabalho de Conclusão de Curso
Tipo de acceso: Acesso Aberto
Título: Machine learning application in sexual dimorphism analysis through zygomatic bone dimensions
Autor: Neto, Lelis da Costa
Primer orientador: Beaini, Thiago Leite
Primer miembro de la banca: Paranhos, Luiz Renato
Segundo miembro de la banca: Oliveira, João Edson Carmo
Resumen: Forensic anthropology (FA) aims to study the human body to aid justice. The human skull is recognized as a structure that houses a series of characteristics subject to individual variability which can occur due to the biological sex of the individuals, genetic action of ancestry, or age. Volumetric examinations allow the observer to assess morphology in a differentiated manner, and volume is one of the ways to represent this topography. However, there is a gap in studies in this field, as various structures can aid in forensic analysis, especially in the context of searching for missing persons. To evaluate the individualizing capacity of the zygomatic bone in studying sexual dimorphism and human identification. The pilot study included 36 anonymous cone-beam computed tomography (CBCT), divided between 18 male and 18 female. The DICOM files were imported into Blender with OrthogOnBlender addon to reconstruct the bone tissues and export it into .stl files. In the Freeform software, using a haptic device to precisely select the zygomatic bone at its borders with the temporal, sphenoid, frontal, and maxillary bones. Tests showed normality in distribution. T-tests demonstrated a statistically significant difference (p=<0.05) in the variables Volume (p=0.033) and Height (z) (p=0.004). The volumetric analysis of the zygomatic bone proves to be a promising tool for sex estimation in human identification services.
Palabras clave: Forensic Anthropology
Antropologia Forense
Zygomatic Bone
Osso zigomático
Sexual Dimorphism
Dimorfismo Sexual
Cone- Beam Computed Tomography
Tomografia Computadorizada de Feixe Cônico
Área (s) del CNPq: CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
Idioma: eng
País: Brasil
Editora: Universidade Federal de Uberlândia
Cita: NETO, Lelis da Costa. Machine learning application in sexual dimorphism analysis through zygomatic bone dimensions. 2025. 13 f. Trabalho de Conclusão de Curso (Graduação em Odontologia)- Universidade Federal de Uberlândia, Uberlândia, 2025.
URI: https://repositorio.ufu.br/handle/123456789/45287
Fecha de defensa: 1-abr-2025
Aparece en las colecciones:TCC - Odontologia

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Machinelearningapplication.pdfTrabalho de Conclusão de Curso977.98 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.