Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/43564
ORCID:  http://orcid.org/0009-0004-9509-7446
Document type: Trabalho de Conclusão de Curso
Access type: Acesso Aberto
Title: Mineração de Textos: Análise de sentimentos de tweets sobre o Projeto de Lei n° 2630/2020
Alternate title (s): Text Mining: Sentiment analysis of tweets about Bill No. 2630/2020
Author: Corrêa, Christopher
First Advisor: Couto, Leandro Nogueira
First member of the Committee: Lopes, José Eduardo Ferreira
Second member of the Committee: Santos, Fernanda Maria da Cunha
Summary: A internet está inserida em diversos aspectos da vida humana, facilitando a comuni cação e a troca de informações. No âmbito político, as redes sociais são utilizadas para transmitir decisões e informações governamentais, aumentando o acesso dos indivíduos à política. Parlamentares e cidadãos recorrem a essas plataformas para expressar posições e influenciar questões sociais e políticas. No entanto, o uso inadequado das mídias sociais pode intensificar a polarização política e disseminar desinformação, ameaçando o regime democrático. Este trabalho tem como finalidade realizar a análise dos sentimentos expressos pelos usuários da rede social Twitter/X em relação o Projeto de Lei nº 2630/2020, de autoria do Senado Federal brasileiro. Para isso, dados provenientes dessa rede foram coletados e, então, as etapas da Análise de Sentimentos foram realizadas. Diferentes algoritmos de classificação de textos foram aplicados à base de dados, antes e após a etapa de pré processamento do texto. Após avaliar o desempenho dos classificadores, ficou evidente a melhora de performance quando aplicado o pré-processamento aos dados. Além disso, o SVM Linear foi o classificador que obteve a maior acurácia. A partir dos resultados, notou-se que eventos do cotidiano que envolvem a dissemi nação de notícias falsas nas redes sociais colaboram para o aumento de tweets sobre o Projeto de Lei 2630/2020, sendo estes, predominantemente, negativos. Ademais, foi pos sível perceber que parlamentares que estão a direita do eixo político apresentam maior engajamento nas redes sociais.
Abstract: The internet is embedded in various aspects of human life, facilitating communica tion and information exchange. In the political realm, social media platforms are used to disseminate governmental decisions and information, enhancing individuals’ access to politics. Both lawmakers and citizens turn to these platforms to express opinions and influence social and political issues. However, the misuse of social media can escalate political polarization and spread misinformation, posing a threat to democratic regime. This work aims to analyze the sentiments expressed by users on the Twitter/X so cial network regarding Brazilian Senate Bill No. 2630/2020. To achieve this, data from this network were collected, and Sentiment Analysis steps were performed. Multiple text classification algorithms were applied to the dataset, both before and after text preproces sing. The performance evaluation of classifiers revealed a significant improvement when text preprocessing was applied. Additionally, Linear SVM was chosen as the classifier algorithm with the highest accuracy. The results indicated that everyday events involving the dissemination of fake news on social media contribute to increased tweets about Bill 2630/2020, which were predo minantly negative. Furthermore, it was observed that right-leaning legislators exhibit greater engagement on social media.
Keywords: Mineração de Dados
Sentiment Analysis
Análise de Sentimentos
Data Mining
Redes Sociais
Text Classification
Classificação de Textos
Social Media
Area (s) of CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
Language: por
Country: Brasil
Publisher: Universidade Federal de Uberlândia
Quote: CORREA, Christopher Gabriel Fidelis de Oliveira. Mineração De textos: Análise de sentimentos de tweets sobre o Projeto de Lei N° 2630/2020. 2024. 61 f. Trabalho de Conclusão de Curso (Graduação em Gestão da Informação) – Universidade Federal de Uberlândia, Uberlândia, 2024.
URI: https://repositorio.ufu.br/handle/123456789/43564
Date of defense: 29-Apr-2024
Appears in Collections:TCC - Gestão da Informação

Files in This Item:
File Description SizeFormat 
MineracaoTextosAnalise.pdf13.66 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons