Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/41119
ORCID:  http://orcid.org/0009-0009-2429-3243
Document type: Dissertação
Access type: Acesso Aberto
Title: Algoritmos Genéticos Para Obtenção de Modelo de Parâmetros para Módulos Fotovoltaicos de 1, 2 e 3 Diodos
Alternate title (s): Genetic algorithms to obtain model parameters for photovoltaic modules
Author: Couto, Lara Cristina Resende Silva
First Advisor: Camacho, José Roberto
First member of the Committee: Yamanaka, Keiji
Second member of the Committee: Peretta, Igor Santos
Third member of the Committee: Ferreira, Jacson Hudson Inácio
Summary: Dentre as técnicas computacionais, os algoritmos genéticos têm sido amplamente utilizados na otimização de sistemas e na modelagem de problemas. Este trabalho visa utilizar algoritmos genéticos para obter os parâmetros de modelos de 1, 2 e diodos para módulos fotovoltaicos. Esta pesquisa é motivada pela dificuldade em obter, através de métodos numéricos, os parâmetros de modelos de módulos fotovoltaicos com 2 e 3 diodos. Este modelo possui duas exponenciais em sua equação, o que dificulta a convergência do método iterativo, devido a sua expressão com características rígidas com um passo de solução numérica que atende as exponenciais duplas. Em trabalhos anteriores, o uso de métodos de região de confiança e algoritmos genéticos foi proposto com sucesso como condição inicial para o método de Newton Raphson obter parâmetros de modelo com 1 diodo de módulos fotovoltaicos. Nesta pesquisa, os modelos com 2 e 3 diodos não convergiram para o método de Newton Raphson devido às características especiais das equações dos modelos. Com o intuito de simplificar esta tarefa, a proposta é utilizar algoritmos genéticos para obtenção destes parâmetros, sem a necessidade de utilizar métodos numéricos específicos mais complexos citados na literatura que sejam adequados para convergência. Apesar dos algoritmos genéticos não convergirem para os mesmos resultados para cada solução do mesmo problema, observou-se que a diferença é muito pequena e não compromete a obtenção dos parâmetros para diferentes soluções. Uma das principais formas de melhorar a eficiência das células fotovoltaicas é ajustar seus parâmetros de funcionamento, como tensão, corrente e resistência elétrica. Isso pode ser feito por meio de técnicas de otimização, que buscam encontrar os valores ideais desses parâmetros para cada tipo de célula. No entanto, a busca por esses valores pode ser um processo demorado e complexo, pois envolve a avaliação de múltiplos parâmetros e sua interação com as propriedades dos materiais utilizados. Utilizando dados com curvas obtidas através de medições diretas realizadas em um módulo fotovoltaico e comparando com dados via Algoritmos Genéticos (AG) para obter parâmetros para 1, 2 e 3 diodos, concluiu-se que os parâmetros via AG podem ser utilizados, pois ficaram muito próximos das curvas reais. A dissertação descreve as equações para módulos com 1, 2 e 3 diodos e as simulações via parâmetros obtidos por AG e resultados de medição direta.
Abstract: Among computational techniques, genetic algorithms have been widely used in system optimization and problem modeling. This work aims to use genetic algorithms to obtain the parameters of models of 1, 2 and 3 diodes for photovoltaic modules. This research is motivated by the difficulty in obtaining, through numerical methods, the parameters of models of photovoltaic modules with 2 and 3 diodes. This model has two exponentials in its equation, which hinders the convergence of the iterative method, due to its expression with rigid characteristics with a numerical solution step that meets the double exponentials. In previous work, the use of trust region methods and genetic algorithms was successfully proposed as an initial condition for the Newton Raphson method to obtain model parameters with 1 diode of photovoltaic modules. In this research, the models with 2 and 3 diodes did not converge to the Newton Raphson method due to the special characteristics of the equations in the models. In order to simplify this task, the proposal is to use genetic algorithms to obtain these parameters, without the need to use more complex specific numerical methods cited in the literature that are suitable for convergence. Although the genetic algorithms do not converge to the same results for each solution of the same problem, it was observed that the difference is very small and does not compromise obtaining the parameters for different solutions. One of the main ways to improve the efficiency of photovoltaic cells is to adjust their operating parameters, such as voltage, current and electrical resistance. This can be done through optimization techniques, which seek to find the ideal values of these parameters for each type of cell. However, the search for these values can be a time-consuming and complex process, as it involves the evaluation of multiple parameters and their interaction with the properties of the materials used. Using data with curves obtained through direct measurements performed on a photovoltaic module and comparing with data via Genetic Algorithms (GA) to obtain parameters for 1, 2 and 3 diodes, it was concluded that the parameters via GA can be used, as they were very close to the real curves. The dissertation describes the equations for modules with 1, 2 and 3 diodes and the parameters obtained through GA and direct measurement results.
Keywords: Algoritmos genéticos
Módulos fotovoltaicos
Determinação de parâmetros
Genetic algorithms
Photovoltaic m o dules
Parameter determination
Area (s) of CNPq: CNPQ::ENGENHARIAS
Language: por
Country: Brasil
Publisher: Universidade Federal de Uberlândia
Program: Programa de Pós-graduação em Engenharia Elétrica
Quote: COUTO, Lara Cristina Resende Silva. Algoritmos Genéticos Para Obtenção de Modelo de Parâmetros para Módulos Fotovoltaicos de 1, 2 e 3 Diodos. 74fl. 2024. Dissertação (mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia/MG, 2023. http://doi.org/10.14393/ufu.di.2023.8075
Document identifier: http://doi.org/10.14393/ufu.di.2023.8075
URI: https://repositorio.ufu.br/handle/123456789/41119
Date of defense: 30-Jun-2023
Sustainable Development Goals SDGs: ODS::ODS 7. Energia limpa e acessível - Garantir acesso à energia barata, confiável, sustentável e renovável para todos.
Appears in Collections:DISSERTAÇÃO - Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
AlgoritmosGenéticosObtenção .pdf2.42 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.