Use este identificador para citar ou linkar para este item: https://repositorio.ufu.br/handle/123456789/38758
ORCID:  http://orcid.org/0000-0003-2117-415X
Tipo do documento: Dissertação
Tipo de acesso: Acesso Aberto
Título: Go-Ahead: melhorando heurísticas prior-knowledge através de informações extraídas das simulações play-out
Título(s) alternativo(s): Go-Ahead: improving prior-knowledge heuristics through Information extracted from play-out simulations
Autor(es): Santos, Gabriel Machado
Primeiro orientador: Julia, Rita Maria da Silva
Primeiro membro da banca: Oliveira, Gina Maira Barbosa de
Segundo membro da banca: Chaimowicz, Luiz
Resumo: Apesar de muito antigo, originado provavelmente na China há 4000 anos atrás, o jogo de Go é um dos maiores desaĄos na área de Inteligência ArtiĄcial. Neste trabalho de Mestrado é descrito o agente Go-Ahead: um jogador automático para o jogo de Go que utiliza uma técnica inovadora a Ąm de melhorar a acuidade dos valores pré-estimados para movimentos candidatos a serem introduzidos na clássica árvore de busca Monte Carlo (MCTS) utilizada por vários agentes de ponta na cena de Computer-Go. Go-Ahead foi desenvolvido sobre o conjunto de bibliotecas de um desses agentes: o conhecido jogador automático de código aberto Fuego, no qual tais valores pré-estimados são obtidos através de uma heurística chamada Prior-Knowledge. Go-Ahead contribui para a redeĄnição da função que gera tais estimativas através de uma técnica que realiza uma combinação balanceada entre a heurística Prior-Knowledge e conhecimento relevante extraído das inúmeras simulações Play-Out que são repetidamente executadas durante o processo de busca do algoritmo MCTS. Com tal estratégia, Go-Ahead provê duas contribuições distintas: primeiramente, apri- mora a habilidade do agente no processo de escolha de movimentos apropriados; como segunda contribuição, através do balanço efetuado na combinação do Prior-Knowledge com o conhecimento extraído dos Play-Outs, - o qual é obtido através de um parâmetro ajustável - provê uma alternativa interessante para a atenuação do caráter supervisionado do processo de pré-avaliação de nós inerente aos agentes baseados no MCTS. Tal ganho é resultado da redução do impacto das heurísticas de Prior-Knowledge possibilitado pela inserção de novos conhecimentos recuperados durante a busca. Os resultados obtidos em torneios contra o agente Fuego conĄrmam os benefícios e as contribuições oferecidas através desta abordagem.
Abstract: Despite being a very ancient game, probably originated in China about 2000 BCE, the game of Go is one of the greatest challenges in the Ąeld of ArtiĄcial Intelligence. In this thesis is described the agent Go-Ahead: an automatic Go player that uses a new technique to improve the accuracy of the pre-estimated values of the moves which are candidate to be introduced into the classical Monte Carlo Tree Search (MCTS) algorithm used by many current top agents for Go. Go-Ahead is built upon the framework of one of these agents: the well known open- source automatic player Fuego, in which these pre-estimated values are obtained by means of a heuristic called prior-knowledge. Go-Ahead copes with the task of reĄning the calculus of these values through a new technique that performs a balanced combination between the prior-knowledge heuristic and some relevant information retrieved from the numerous play-out simulation phases that are repeatedly executed throughout the Monte Carlo search. With such a strategy, Go-Ahead provides two distinct contributions: Ąrst, it enables the agent to enhance the process of choosing appropriate moves. Second, the balancing in the combination of the prior-knowledge and the play-out information - which is obtained by means of an adjustable parameter - represents an interesting alternative to attenuate the supervised character of the calculus of the node evaluations in MCTS based agents, since it allows to reduce the impact of the prior-knowledge heuristic by strengthening the impact of this information. The results obtained in tournaments against Fuego conĄrm the beneĄts and the con- tributions provided by this approach.
Palavras-chave: Computer-Go
MCTS Go
Prior-Knowledge
Play-Outs
Go
MCTS
Área(s) do CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Assunto: Computação
Simulação (Computadores digitais)
Jogos eletrônicos
Inteligência artificial
Idioma: por
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Ciência da Computação
Referência: SANTOS, Gabriel Machado. Go-Ahead: melhorando heurísticas prior-knowledge através de informações extraídas das simulações play-out. 2015. 104 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2015. DOI http://doi.org/10.14393/ufu.di.2023.7078.
Identificador do documento: http://doi.org/10.14393/ufu.di.2023.7078
URI: https://repositorio.ufu.br/handle/123456789/38758
Data de defesa: 24-Abr-2015
Aparece nas coleções:DISSERTAÇÃO - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
GoAheadMelhorandoHeuristicas.pdf10.01 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.