Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/37195
Full metadata record
DC FieldValueLanguage
dc.creatorLopes, Anaísa Filmiano Andrade-
dc.date.accessioned2023-02-13T18:36:17Z-
dc.date.available2023-02-13T18:36:17Z-
dc.date.issued2022-10-27-
dc.identifier.citationLOPES, Anaísa Filmiano Andrade. Criação de um modelo matemático baseado em múltiplas variáveis ambientais para estimar mortalidade em saúde pública. 2022. 122 f. Tese (Doutorado em Ciências da Saúde) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2023.30pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/37195-
dc.description.abstractOne of the challenges that public management has been facing is to structure surveillance systems aimed at changing environmental contexts that represent risk situations and critical outcomes for human health. That said, this research aimed to create a mathematical model based on multiple environmental variables capable of estimating mortality in public health.To this end, a survey was carried out, selection and organization of multiple variables was carried out based on the Driving Force/Pressure/Situation/Exposure/Effect (FPSEE) model recommended by the World Health Organization. From the choice of environmental variables, the following statistical methods of multivariate analysis were used: Exploratory Factor Analysis (EFA), in order to find its latent structure and marker variables that were, finally, used to estimate the best mortality predictor model in public health, using the Stepwise Multiple Linear Regression Analysis technique. All statistical analyzes were processed using the IBM-SPSS Statistics software, version 22.0. The original database consisted of 853 observations that refer to the municipalities of Minas Gerais, southeastern region, Brazil and the data were obtained from public virtual information systems for the year 2017. Based on the underlying theoretical foundations, 130 variables were initially selected for analysis, grouped into 14 groups. From the FPSEE model, it was identified that 19.23% of the variables were classified as Driving Force; 6.9% as Pressure; 14.6% as Status; 21.5% as Exposure and 37.7% as Health Effect. After reviewing the literature and verifying the theoretical and statistical assumptions of the AFE, 54 variables were excluded as a result of repeated information, nature of the scale, missing cases and xaz\Saxz\partial correlations, leaving 76 variables suitable for factor analysis. The Spearman correlation matrix (ρ) showed 54.73% of significant linear correlations (α < 0.05), a percentage that increases to 59.17% when considering significant correlations at the level α < 0.10. The factorability of the variables was confirmed by the Bartlett sphericity test (p-value < 0.001) and the Kaiser-Meyer-Olkin (KMO) sample adequacy measure with a result equal to 0.952. From the rotated factor loading matrix (varimax) and based on the convergent results of the Scree Plot tests and the percentage of explained variance, 5 factors were extracted that, together, explain 59.78% of the total variance of the data. The first factor was labeled as socioenvironmental; the second as social vulnerability; the third as air quality; the fourth as mortality and the fifth as agrilivestock. The marker variables were, respectively: number of deaths from cancer; percentage of people enrolled in the Single Registry without adequate water supply; NO2 concentration; homicide mortality rate and finally, planted forest cover and natural vegetation cover. The variable with the highest factor loading in each factor and the variable with the second highest factor loading in the fifth factor were selected for the estimation of the best predictor model of mortality through Stepwise Multiple Linear Regression. The best model mathematical found by the RLM method ( = 0.126, p-value < 0.001) was Y= 7.655 + (-0.289 X1) + (0.132 X2) + (-0.109 X3), in which the variation of the variable dependent (gross mortality rate) is predicted by environmental variables: X1= percentage of natural vegetation cover ( = -0.289; p-value = 0.000), X2= homicide rate ( = 0.132; p-value = 0.000) and X3= percentage of coverage by planted forest ( = -0.109; p-value = 0.001). Through the EFA, 5 factors were identified and from them 6 marker variables were obtained capable of representing the entire initial set of variables with the least loss of information. From the variables selected by the AFE, it was possible to obtain a predictor model of mortality and determine which environmental variables best explain the behavior of mortality in public health. By clarifying the interrelationships between environmental variables and public health, it is possible to support decision-making in public management and mitigation of critical outcomes in human health.pt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Embargadopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectSaúde Ambientalpt_BR
dc.subjectSaúde Públicapt_BR
dc.subjectAnálise Fatorial Exploratóriapt_BR
dc.subjectRegressão Linear Múltiplapt_BR
dc.subjectAnálise Estatística Multivariadapt_BR
dc.subjectEnvironmental health.pt_BR
dc.subjectPublic healthpt_BR
dc.subjectExploratory Factor Analysispt_BR
dc.subjectMultiple Linear Regressionpt_BR
dc.subjectMultivariate Statistical Analysispt_BR
dc.titleCriação de um modelo matemático baseado em múltiplas variáveis ambientais para estimar mortalidade em saúde públicapt_BR
dc.title.alternativeCreation of a mathematical model based on multiple environmental variables to estimate mortality in public healthpt_BR
dc.typeTesept_BR
dc.contributor.advisor1Bernardino Neto, Morun-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1364859879844183pt_BR
dc.contributor.referee1Alcântra, Marco Aurélio Kondracki de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8028209380822628pt_BR
dc.contributor.referee2Limongi, Jean Ezequiel-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9652541311039940pt_BR
dc.contributor.referee3Paiva, Teresa Cristina Brazil de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6911128279457949pt_BR
dc.contributor.referee4Bacelar, Winston Kleiber de Almeida-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5773071274437469pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6894858067577538pt_BR
dc.description.degreenameTese (Doutorado)pt_BR
dc.description.resumoUm dos desafios que a gestão pública vem enfrentando é o de estruturar sistemas de vigilância voltados para a mudança de contextos ambientais que representem situações de risco e desfechos críticos à saúde humana. Diante disso, essa pesquisa teve como objetivo criar um modelo matemático baseado em múltiplas variáveis ambientais capaz de estimar mortalidade em saúde pública. Para tal, foi feito um levantamento, seleção e organização de múltiplas variáveis pautados no modelo Força Motriz/Pressão/Situação/Exposição/Efeito (FPSEE) recomendado pela Organização Mundial da Saúde. A partir da escolha das variáveis ambientais, foram empregados os seguintes métodos estatísticos de análise multivariada: Análise Fatorial Exploratória (AFE), a fim de encontrar sua estrutura latente e variáveis marcadoras que foram, por fim, usadas para estimar o melhor modelo preditor de mortalidade em saúde pública, por meio da técnica de Análise de Regressão Linear Múltipla (RLM) do tipo Stepwise. Todas as análises estatísticas foram processadas pelo software IBM-SPSS Statistics, versão 22.0. O banco de dados original foi composto por 853 observações que se referem aos municípios de Minas Gerais, região Sudeste, Brasil e os dados foram obtidos em sistemas públicos de informações virtuais para o ano de 2017. Com base nos fundamentos teóricos subjacentes, foram selecionadas, a princípio, 130 variáveis para análise, agrupadas em 14 grupos. A partir do modelo FPSEE identificou-se que 19,2% das variáveis foram classificadas como Força Motriz; 6,9% como Pressão; 14,6% como Situação; 21,5% como Exposição e 37,7% como Efeito à Saúde. Após a revisão bibliográfica e a verificação das suposições teóricas e estatísticas da AFE foram excluídas 54 variáveis como decorrência de informações repetidas, natureza da escala, casos omissos e correlações parciais, restando 76 variáveis apropriadas para a análise fatorial. A matriz de correlações de Spearman (ρ) apresentou 54,73% de correlações lineares significantes (α < 0,05), percentual que aumenta para 59,17% quando consideradas as correlações significantes a nível α < 0,10. A fatorabilidade das variáveis foi confirmada pelo teste de esfericidade de Bartlett (p-valor < 0,001) e a medida de adequação da amostra de Kaiser-Meyer-Olkin (KMO) com resultado igual a 0,952. A partir da matriz de cargas fatoriais rotacionada (varimax) e com base nos resultados convergentes dos testes Scree Plot e o percentual de variância explicada, foram extraídos 5 fatores que, juntos, explicam 59,78% da variância total dos dados. O primeiro fator foi rotulado como socioambiental; o segundo como vulnerabilidade social; o terceiro como qualidade do ar; o quarto como mortalidade e o quinto como agropecuária. As variáveis marcadoras foram respectivamente: número de óbitos por neoplasia; percentual de pessoas inscritas no Cadastro Único sem abastecimento de água adequado; concentração de NO2; taxa de mortalidade por homicídio e por fim, percentual de cobertura por floresta plantada e percentual de cobertura vegetal natural. A variável com maior carga fatorial em cada fator e a variável com a segunda maior carga fatorial do quinto fator foram selecionadas para a estimação do melhor modelo preditor de mortalidade por meio de Regressão Linear Múltipla Stepwise. O melhor modelo matemático encontrado pelo método de RLM ( = 0,126, p-valor < 0,001) foi Y= 7,655 + (-0,289 X1) + (0,132 X2) + (-0,109 X3), no qual, a variação da variável dependente (taxa bruta de mortalidade) é prevista pelas variáveis ambientais: X1= percentual de cobertura vegetal natural ( = -0,289; p-valor = 0,000), X2= taxa de homicídio ( = 0,132; p-valor = 0,000) e X3= percentual de cobertura por floresta plantada ( = -0,109; p-valor = 0,001). Por meio da AFE foram identificados 5 fatores e deles obtidas 6 variáveis marcadoras capazes de representar todo o conjunto inicial de variáveis com a menor perda de informação. A partir das variáveis selecionadas pela AFE, foi possível obter um modelo preditor de mortalidade e determinar quais são as variáveis ambientais que melhor explicam o comportamento de mortalidade em saúde pública. Ao esclarecer as inter-relações entre as variáveis ambientais e a saúde pública pode-se subsidiar tomada de decisão em gestão pública e mitigação dos desfechos críticos na saúde humana.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-graduação em Ciências da Saúdept_BR
dc.sizeorduration122pt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.embargo.termsSolicito acesso embargado uma vez que a tese está organizada de acordo com o modelo do Programa de Pós-Graduação em Ciências da Saúde (PPCSA-UFU), que permite a apresentação dos resultados da pesquisa na forma de artigos científicos. Portanto, como o estudo apresenta três artigos que ainda serão submetidos à revistas científicas peço, a princípio, a publicação parcial da tese.pt_BR
dc.identifier.doihttp://doi.org/10.14393/ufu.te.2023.30pt_BR
dc.orcid.putcode128702134-
dc.crossref.doibatchid071feb6c-9595-43f3-b115-6ce6ee5a508c-
dc.subject.autorizadoCiências médicaspt_BR
dc.subject.autorizadoSaúde ambientalpt_BR
dc.subject.autorizadoSaúde pública - Pesquisapt_BR
dc.description.embargo2025-01-23-
Appears in Collections:TESE - Ciências da Saúde

Files in This Item:
File Description SizeFormat 
CriaçãoModeloMatemático.pdf
  Until 2025-01-23
Tese2.52 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons