Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/36042
ORCID:  http://orcid.org/0000-0002-9457-2530
Document type: Trabalho de Conclusão de Curso
Access type: Acesso Aberto
Title: Modelagem do consumo de energia elétrica na região Sudeste com séries temporais e redes neurais artificiais
Alternate title (s): Modeling of electricity consumption in Brazil Southeast with Time Series and Artificial Neural Networks
Author: Silva, Mateus de Freitas
First Advisor: Biase, Nádia Giaretta
First member of the Committee: Lambert, Rodrigo
Second member of the Committee: Silva, Maria Imaculada de Sousa
Summary: A questão da energia elétrica, com seu complexo processo de produção, distribuição e consumo, sempre teve muita visibilidade, por questões ambientais, falhas de planejamento, apagões e viabilidade econômica. No Brasil, a região Sudeste é a principal consumidora de energia, e conta com uma matriz diversificada de produção. Por esse motivo, esta pesquisa aborda a série temporal mensal de consumo de energia elétrica na região, com o intuito de encontrar um modelo apto a fazer previsões para essa variável, e absorver o seu comportamento ao longo do tempo, sua tendência e sua sazonalidade. Foram empregadas técnicas de séries temporais, por meio da metodologia de Box-Jenkins, com modelos sazonais autorregressivos, do tipo SARIMA, e modelos de Redes Neurais Recorrentes do tipo LSTM (Long Short Term Memory). O critério utilizado para tomar uma decisão analítica sobre qual modelo é o melhor foi a Raiz do Erro Quadrático Médio, cuja sigla em inglês é RMSE, de modo que o modelo escolhido, em todos os casos, foi aquele com menor valor para o RMSE. Com base nisso, verificou-se que, para previsões a curto prazo, com realimentação de dados, o modelo de Redes Neurais se mostrou bastante eficaz. Por outro lado, se a intenção é desenvolver previsões a longo prazo, projetando o consumo para os 12 meses seguintes, de uma só vez, o modelo SARIMA é o mais adequado, evitando erros muito acentuados em alguns meses.
Abstract: The electricity issue, with its complex production, distribution and consumption process, has always had a lot of visibility, for environmental issues, planning failures, blackouts and economic viability. In Brazil, the Southeast region is the main consumer of energy, and has a diversified production matrix. For this reason, this research approaches the monthly time series of electricity consumption in the region, in order to find a model capable of making predictions for this variable, and absorb its behavior over time, its trend and its seasonality. Time series techniques were used using the Box-Jenkins methodology, with autorregressive seasonal models of type SARIMA, and models of Recurrent Neural Networks of type LSTM (Long Short Term Memory). The criterion used to make an analytical decision on which model is best was the Root Mean Squared Error, called by RMSE, so that the chosen model, in all cases, was the one with the lowest value for the RMSE. Based on this, it was found that, for short-term predictions, with data feedback, the Neural Networks model proved to be quite effective. On the other hand, if the intention is to develop long-term forecasts, projecting consumption for the next 12 months, at once, the SARIMA model is the most appropriate, avoiding very sharp errors in certain months.
Keywords: Sarima
Autoregressive
Autorregressivo
Forecast
LSTM
RMSE
Previsão
Area (s) of CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Language: por
Country: Brasil
Publisher: Universidade Federal de Uberlândia
Quote: SILVA, Mateus de Freitas. Modelagem do consumo de energia elétrica na região sudeste com séries temporais e redes neurais artificiais. 2022. 70 f. Trabalho de Conclusão de Curso (Graduação em Estatística) – Universidade Federal de Uberlândia, Uberlândia, 2022.
URI: https://repositorio.ufu.br/handle/123456789/36042
Date of defense: 8-Aug-2022
Appears in Collections:TCC - Estatística

Files in This Item:
File Description SizeFormat 
ModelagemConsumoEnergia.pdfTCC638.27 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.