Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/30457
Full metadata record
DC FieldValueLanguage
dc.creatorLacerda, Marta Calasans Costa-
dc.date.accessioned2020-11-19T21:56:57Z-
dc.date.available2020-11-19T21:56:57Z-
dc.date.issued2020-02-28-
dc.identifier.citationLACERDA, Marta Calasans Costa. DASH sobre OpenFlow: estimando métricas de QoS a partir da rede. 2020. 83 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2020.305.pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/30457-
dc.description.abstractObtaining QoS metrics on the client is not trivial for most networked service providers. Recent work has indicated that, for OpenFlow networks, part of this information can be extracted from the network, using only aggregated traffic statistics as input data for machine learning methods capable of generating estimators. The objective of the research carried out and presented here was to proceed with this investigation, applying the same methodology to one of the most popular applications on the Internet, not yet investigated: video on demand applications with dynamically adaptable bit rates. For this, a test environment was implemented with a DASH service, whose communication between server and clients is carried out via the OpenFlow network, with physical switches. In this environment, data were collected to generate the models using two supervised machine learning methods: regression tree and random forest. The QoS metrics investigated were the frame rate per second (video component) and the \ textit {buffer} rate per second (audio component), which were evaluated according to the normalized mean absolute error (NMAE) and time training model. For the scenario under analysis, the results were extremely satisfactory with respect to the training time for the two QoS metrics investigated, staying in the order of milliseconds. With regard to the error, the audio metric showed better performance for the studied algorithms, staying around 13 \%, while the video metric had errors just above 16.5 \%. It was also found that the use of the ensemble method did not bring significant benefits to the results. In addition, the results revealed that the same knowledge about these metrics could be generated using predominantly aggregated data statistics from the switch that connects the client to the OpenFlow network. All of these results, however, need to be better investigated in future works that employ more data samples and bring the test environment closer to the real one.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectDASHpt_BR
dc.subjectAprendizagem de máquinapt_BR
dc.subjectHASpt_BR
dc.subjectOpenFlowpt_BR
dc.subjectSDNpt_BR
dc.subjectQoSpt_BR
dc.subjectMachine Learningpt_BR
dc.subjectComputaçãopt_BR
dc.titleDASH sobre OpenFlow: estimando métricas de QoS a partir da redept_BR
dc.title.alternativeDASH over OpenFlow: estimating QoS metrics from the networkpt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor1Pasquini, Rafael-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6428800770934048pt_BR
dc.contributor.referee1Miani, Rodrigo Sanches-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2992074747740327pt_BR
dc.contributor.referee2Verdi, Fábio Luciano-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9143186843657940pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6174702556649110pt_BR
dc.description.degreenameDissertação (Mestrado)pt_BR
dc.description.resumoObter métricas de QoS no cliente não é algo trivial para a maioria dos provedores de serviço em rede. Trabalhos recentes indicaram que, para redes OpenFlow, parte dessas informações podem ser extraídas da rede, utilizando-se apenas estatísticas de tráfego agregado como dados de entrada para métodos de aprendizagem de máquina capazes de gerar estimadores. O objetivo da pesquisa realizada e aqui apresentada foi prosseguir com essa investigação, aplicando a mesma metodologia a uma das aplicações de maior ascensão na Internet, ainda não investigada: as aplicações de vídeo sob demanda com taxa de bit dinamicamente adaptável. Para isso, foi implementado um ambiente de testes com um serviço DASH, cuja comunicação entre servidor e clientes é realizada via rede OpenFlow, com comutadores físicos. Nesse ambiente, foram coletados os dados para geração dos modelos empregando-se dois métodos de aprendizagem de máquinas supervisionada: árvore de regressão e floresta aleatória. As métricas de QoS investigadas foram a taxa de quadros por segundo (componente de vídeo) e a taxa de \textit{buffers} por segundo (componente de áudio), as quais foram avaliadas segundo o erro absoluto médio normalizado (NMAE) e o tempo de treinamento do modelo. Para o cenário em análise, os resultados foram extremamente satisfatórios com relação ao tempo de treinamento para as duas métricas de QoS investigada, ficando na ordem de milissegundos. No que se refere ao erro, a métrica de áudio apresentou desempenho melhor para os algoritmos estudados, ficando em torno de 13\%, enquanto que a de vídeo obteve erros pouco acima de 16,5\%. Também foi verificado que o emprego do método \textit{ensemble} não trouxe benefícios significativos aos resultados. Além disso, os resultados revelaram que o mesmo conhecimento sobre essas métricas poderia ser gerado empregando-se predominantemente estatísticas de dados agregadas do comutador que conecta o cliente à rede OpenFlow. Todos esses resultados, entretanto, precisam ser melhor investigados em trabalhos futuros que empreguem mais amostras de dados e tornem o ambiente de teste cada vez mais próximo do real.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-graduação em Ciência da Computaçãopt_BR
dc.sizeorduration83pt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.identifier.doihttp://doi.org/10.14393/ufu.di.2020.305pt_BR
dc.orcid.putcode83788133-
dc.crossref.doibatchid853d40d1-cca9-4588-868d-ce4953cff0ba-
dc.subject.autorizadoComputaçãopt_BR
Appears in Collections:DISSERTAÇÃO - Ciência da Computação

Files in This Item:
File Description SizeFormat 
DASHsobreOpenFlow.pdfDissertação ou Tese4.01 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons