Use este identificador para citar ou linkar para este item: https://repositorio.ufu.br/handle/123456789/18143
Tipo do documento: Tese
Tipo de acesso: Acesso Aberto
Título: Uma nova abordagem de aprendizagem de máquina combinando elicitação automática de casos, aprendizagem por reforço e mineração de padrões sequenciais para agentes jogadores de damas
Autor(es): Castro Neto, Henrique de
Primeiro orientador: Julia, Rita Maria da Silva
Primeiro membro da banca: Hruschka Júnior, Estevam Rafael
Segundo membro da banca: Chaimowicz, Luiz
Terceiro membro da banca: Lopes, Carlos Roberto
Quarto membro da banca: Albertini, Marcelo Keese
Resumo: Agentes que operam em ambientes onde as tomadas de decisão precisam levar em conta, além do ambiente, a atuação minimizadora de um oponente (tal como nos jogos), é fundamental que o agente seja dotado da habilidade de, progressivamente, traçar um perĄl de seu adversário que o auxilie em seu processo de seleção de ações apropriadas. Entretanto, seria improdutivo construir um agente com um sistema de tomada de decisão baseado apenas na elaboração desse perĄl, pois isso impediria o agente de ter uma Şidentidade própriaŤ, o que o deixaria a mercê de seu adversário. Nesta direção, este trabalho propõe um sistema automático jogador de Damas híbrido, chamado ACE-RL-Checkers, dotado de um mecanismo dinâmico de tomada de decisões que se adapta ao perĄl de seu oponente no decorrer de um jogo. Em tal sistema, o processo de seleção de ações (movimentos) é conduzido por uma composição de Rede Neural de Perceptron Multicamadas e biblioteca de casos. No caso, a Rede Neural representa a ŞidentidadeŤ do agente, ou seja, é um módulo tomador de decisões estático já treinado e que faz uso da técnica de Aprendizagem por Reforço TD( ). Por outro lado, a biblioteca de casos representa o módulo tomador de decisões dinâmico do agente que é gerada pela técnica de Elicitação Automática de Casos (um tipo particular de Raciocínio Baseado em Casos). Essa técnica possui um comportamento exploratório pseudo-aleatório que faz com que a tomada de decisão dinâmica do agente seja guiada, ora pelo perĄl de jogo do adversário, ora aleatoriamente. Contudo, ao conceber tal arquitetura, é necessário evitar o seguinte problema: devido às características inerentes à técnica de Elicitação Automática de Casos, nas fases iniciais do jogo Ű em que a quantidade de casos disponíveis na biblioteca é extremamente baixa em função do exíguo conhecimento do perĄl do adversário Ű a frequência de tomadas de decisão aleatórias seria muito elevada, o que comprometeria o desempenho do agente. Para atacar tal problema, este trabalho também propõe incorporar à arquitetura do ACE-RLCheckers um terceiro módulo, composto por uma base de regras de experiência extraída a partir de jogos de especialistas humanos, utilizando uma técnica de Mineração de Padrões Sequenciais. O objetivo de utilizar tal base é reĄnar e acelerar a adaptação do agente ao perĄl de seu adversário nas fases iniciais dos confrontos entre eles. Resultados experimentais conduzidos em torneio envolvendo ACE-RL-Checkers e outros agentes correlacionados com este trabalho, conĄrmam a superioridade da arquitetura dinâmica aqui proposta.
Abstract: ake into account, in addition to the environment, the minimizing action of an opponent (such as in games), it is fundamental that the agent has the ability to progressively trace a proĄle of its adversary that aids it in the process of selecting appropriate actions. However, it would be unsuitable to construct an agent with a decision-making system based on only the elaboration of this proĄle, as this would prevent the agent from having its Şown identityŤ, which would leave it at the mercy of its opponent. Following this direction, this work proposes an automatic hybrid Checkers player, called ACE-RL-Checkers, equipped with a dynamic decision-making mechanism, which adapts to the proĄle of its opponent over the course of the game. In such a system, the action selection process (moves) is conducted through a composition of Multi-Layer Perceptron Neural Network and case library. In the case, Neural Network represents the ŞidentityŤ of the agent, i.e., it is an already trained static decision-making module and makes use of the Reinforcement Learning TD( ) techniques. On the other hand, the case library represents the dynamic decision-making module of the agent, which is generated by the Automatic Case Elicitation technique (a particular type of Case-Based Reasoning). This technique has a pseudo-random exploratory behavior, which makes the dynamic decision-making on the part of the agent to be directed, either by the game proĄle of the opponent or randomly. However, when devising such an architecture, it is necessary to avoid the following problem: due to the inherent characteristics of the Automatic Case Elicitation technique, in the game initial phases, in which the quantity of available cases in the library is extremely low due to low knowledge content concerning the proĄle of the adversary, the decisionmaking frequency for random decisions is extremely high, which would be detrimental to the performance of the agent. In order to attack this problem, this work also proposes to incorporate onto the ACE-RL-Checkers architecture a third module composed of a base of experience rules, extracted from games played by human experts, using a Sequential Pattern Mining technique. The objective behind using such a base is to reĄne and accelerate the adaptation of the agent to the proĄle of its opponent in the initial phases of their confrontations. Experimental results conducted in tournaments involving ACE-RL-Checkers and other agents correlated with this work, conĄrm the superiority of the dynamic architecture proposed herein.
Palavras-chave: Computação
Jogo de damas por computador
Teoria dos jogos
Aprendizado do computador
Aprendizagem de Máquina
Aprendizagem por Reforço
Método das Diferenças Temporais
Raciocínio Baseado em Casos
Elicitação Automática de Casos
Mineração de Padrões Sequenciais
Mineração de Dados
Computação Evolutiva
Algoritmo Genético
Game Theory
Machine Learning
Reinforcement Learning
Temporal Difference Methods
Case-Based Reasoning
Automatic Case Elicitation
Sequential Pattern Mining
Data Mining
Evolutionary Computation
Genetic Algorithm
Área(s) do CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editora: Universidade Federal de Uberlândia
Programa: Programa de Pós-graduação em Ciência da Computação
Referência: CASTRO NETO, Henrique de. Uma nova abordagem de aprendizagem de máquina combinando elicitação automática de casos, aprendizagem por reforço e mineração de padrões sequenciais para agentes jogadores de damas. 2016. 166 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2016. DOI http://doi.org/10.14393/ufu.te.2016.145
Identificador do documento: http://doi.org/10.14393/ufu.te.2016.145
URI: https://repositorio.ufu.br/handle/123456789/18143
Data de defesa: 21-Nov-2016
Aparece nas coleções:TESE - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
NovaAbordagemAprendizagem.pdfTese32.55 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.