Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/16781
Document type: Dissertação
Access type: Acesso Aberto
Title: Métodos numéricos não oscilatórios aplicados às leis de conservação hiperbólicas unidimensionais
Alternate title (s): Aplication of numerical methods essentially non oscilatory conservation laws one dimensional
Author: Oliveira, Marta Helena de
First Advisor: Almeida, César Guilherme de
First member of the Committee: Bertone, Ana Maria Amarillo
Second member of the Committee: Ribeiro, Simone Sousa
Third member of the Committee: Kozakevicius, Alice de Jesus
Summary: A solução de uma lei de conservação pode desenvolver descontinuidades do tipo choque ou ondas de rarefação, mesmo que a condição inicial seja suave. Assim, é desejável o desenvolvimento de esquemas numéricos capazes de reproduzir esses comportamentos. Além de representar corretamente as descontinuidades, os esquemas possuem a tarefa de obter a solução correta conhecida como solução de entropia. O objetivo dessa dissertação é o estudo de métodos numéricos não-oscilatórios para aproximar soluções de leis de conservação hiperbólicas escalares unidimensionais. Para alcançar tal objetivo é preciso estudar alguns esquemas numéricos especiais, tais como esquemas upwind', esquemas TVD, esquemas conservativos e esquemas monótonos. Para critério de comparação entre os métodos numéricos será utilizada a solução clássica de equações conhecidas da literatura (Equação de Burgers e Equação de Advecção). Para o cálculo das soluções analíticas será empregada a teoria envolvendo as equações caracteríticas. A aproximação numérica da lei de conservação se divide em duas etapas: a aproximação no espaço e a aproximação no tempo. Para a aproximação no espaço, serão utilizados os esquemas ENO (Essentially Non-Oscillatory - essencialmente não oscilatório) e WENO (Weighted Essentially Non-Oscillatory - essencialmente não oscilatório ponderado); para a aproximação no tempo, será utilizado o método numérico Runge-Kutta TVD (Total Variation Dimishing).
Abstract: The solution of a conservation law may develop discontinuities like shocks and rarefactions waves, even if the initial condition is a smooth function. Then, numerical schemes should be able to generate ecient approximations in order to reproduce the same behavior as the analytic solution. Besides, these schemes have to capture the physically correct solution or entropy solution. The goal of this master dissertation is to study non-oscillatory schemes applied to one-dimensional scalar hyperbolic conservation laws. In order to reach the is objective, it is necessary to understand some special methods, such as, upwind scheme, TVD schemes, conservative schemes and monotone schemes. The eectiveness of the methods will be veried through the comparison with the well-known classical solutions exhibited in literature: Advection Equation and Burgers' Equation. The characteristic equations will be employed for getting analytic solutions of conservation laws. We will derive numerical approximations for conservation laws using ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for space discretization, and Runge-Kutta TVD (Total Variation Dimishing) for time discretization.
Keywords: Análise numérica
Leis de conservação
Métodos numéricos não-oscilatorios
ENO
WENO
Runge-Kutta TVD
Conservation laws
Numerical methods non-oscillatory
Runge- Kutta TVD
Area (s) of CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Language: por
Country: BR
Publisher: Universidade Federal de Uberlândia
Institution Acronym: UFU
Department: Ciências Exatas e da Terra
Program: Programa de Pós-graduação em Matemática
Quote: OLIVEIRA, Marta Helena de. Aplication of numerical methods essentially non oscilatory conservation laws one dimensional. 2010. 130 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Uberlândia, Uberlândia, 2010.
URI: https://repositorio.ufu.br/handle/123456789/16781
Date of defense: 1-Apr-2010
Appears in Collections:DISSERTAÇÃO - Matemática

Files in This Item:
File Description SizeFormat 
marta.pdf2.22 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.