Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufu.br/handle/123456789/12611
Tipo de documento: Dissertação
Tipo de acceso: Acesso Aberto
Título: Um modelo de recuperação de imagens por conteúdo através da quantização do espectro de Fourier
Autor: Ferreira, Marcio Junio Ribeiro
Primer orientador: Barcelos, Célia Aparecida Zorzo
Primer miembro de la banca: Berrera, Junior
Segundo miembro de la banca: Silva, Ilmério Reis da
Resumen: A recuperação de imagens é uma importante área de pesquisa em Processamento Digital de Imagens e Visão Computacional, que encontra aplicações nas mais variadas áreas, como diagnóstico de imagens médicas, prevenção ao crime, identificação pessoal (impressão digital), propriedade intelectual, etc. Os sistemas de recuperação de imagens por conteúdo (CBIR-Content-Based Image Retrieval ) têm como objetivo recuperar imagens armazenadas em coleções de imagens que sejam mais similares µa uma imagem consulta escolhida pelo usuário, com base nas características extraídas automaticamente das imagens. O surgimento de sistemas CBIR pode ser justificado pelo fato de que os métodos tradicionais de indexação de imagens baseados em texto consomem bastante tempo e requerem considerável esforço manual na indexação de grandes coleções. As características visuais mais exploradas em CBIR são a cor, a textura e a forma. Em relação à textura, existem três abordagens principais: a abordagem estatística, a estrutural e a espectral. A abordagem estatística considera a distribuição dos tons de cinza e o inter-relacionamento entre eles. As técnicas estruturais por outro lado, lidam com o arranjo espacial de primitivas estruturais, enquanto que a abordagem espectral é baseada em propriedades de espectros de freqüência, obtidos através de transformadas tais como a de Fourier e a de Wavelets. Seguindo as idéias apresentadas por Shapiro e Brady e por Carcassoni, Ribeiro e Hancock, neste trabalho explora-se como a estrutura modal dos padrões, tomados no espaço da freqüência das texturas, pode ser utilizada para fins de reconhecimento. Carcassoni, Ribeiro e Hancock apresentaram uma variação do método de correspondência modal de Shapiro e Brady, que visa realizar casamento entre conjuntos de pontos através da comparação dos autovetores da matriz que mede a inter-relação entre estes pontos (matriz proximidade). Carcassoni, Ribeiro e Hancock utilizaram um descritor de texturas baseado nos picos do espectro de potência da imagem, para representá-la. Neste trabalho foi utilizada uma variação da técnica de quantização de Lloyd, realizada à partir do espectro de potência da imagem, para obter a representação da mesma. Para comprovar a eficiência do método, diversos experimentos foram realizados em uma coleção de imagens regulares, não regulares, homogêneas e não homogêneas. A coleção é formada por imagens de tecidos, papéis de parede, paisagens, veículos, madeira, tijolos, construções, etc, extraídas de diversos bancos de dados. Os resultados obtidos pelo método proposto são comparados com o trabalho de Carcassoni et al. e com o método da matriz de co-ocorrência de níveis de cinza, de Haralick, que é um método de abordagem estatística bastante conhecido e utilizado na extração de padrões de textura. A performance dos três métodos comparados foi medida através de gráficos de precision e recall, que constituem uma importante ferramenta na análise de performance de sistemas de recuperação de informações.
Abstract: Image retrieval is an important research area in Digital Image Processing and Computa tional Vision that can be applied in many areas such as medical images diagnosis, crime prevention, personal identification (finger-print), intelectual property, etc. The content based image retrieval systems (CBIR) has as the main goal of retrieving images in image database that are more similar with a query image chosen by the user, based on the features automatically extracted from the images. The appearance of the CBIR systems can be justified by the fact that traditional indexation methods based on text, require much more time and efforts in the indexation process for huge images databases. The most explored visual features in CBIR are color, texture and shape. Concerning to texture, there are three main approaches: a statistical, a structural and a spectral one. The statistical approach considers the color distribution and their inter-relationship. The structural approach, by the other side, works with spatial arrange of structural primitives, while the spectral approach is based on the spectral frequency properties, obtained through transformations such as Fourier and Wavelets. Following the ideas presented by Shapiro and Brady and Carcassoni, Ribeiro and Hancock, this work explores how the modal structure of the pattern, taken in the textures' frequency space can be used for retrieval purposes. Carcassoni, Ribeiro and Hancock presented a variation of the correspondence method of Shapiro and Brady, that aims to match point sets by comparing the eigenvectors of a matrix that measures the inter-relationship between the pairwise points (proximity ma- trix). Carcassoni, Ribeiro and Hancock introduces a texture descriptor based on the image power spectrum peaks, with the aim of represent it. In this work, was used a variation of the Lloyd's quantization technique from the image power spectrum to represent it. With the aim of verifying the method e±ciency, several experiments were carried out using regular, non-regular, homogeneous and non-homogeneous textures. The image collection is composed of images such as tissue, fabric paper, landscapes, vehicles, wooden °oor, bricks, buildings images, etc, that were extracted from several images database. The results obtained by the proposed method are compared with the Carcassoni's method and also with the gray level co-occurrence matrix method of Haralick, that is a well-known and a method widely used for texture feature extraction. The performance of the three compared methods is measured by the commonly used retrieval performance measurement, precision and recall, which is considered one of the most important techniques for performance analysis of any retrieval systems.
Palabras clave: Recuperação de imagens por conteúdo
Quantização
Espectro de potência
Análise modal
Banco de dados de imagens
Content-based image retrieval
Quantization
Power spectrum -modal analysis
Image database
Processamento de imagens - Técnicas digitais
Equalização
Análise modal - Processamento de dados
Imagens por conteúdo - Banco de dados
Espectros de potência
Área (s) del CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: BR
Editora: Universidade Federal de Uberlândia
Sigla de la institución: UFU
Departamento: Ciências Exatas e da Terra
Programa: Programa de Pós-graduação em Ciência da Computação
Cita: FERREIRA, Marcio Junio Ribeiro. Um modelo de recuperação de imagens por conteúdo através da quantização do espectro de Fourier. 2005. 102 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Uberlândia, Uberlândia, 2005.
URI: https://repositorio.ufu.br/handle/123456789/12611
Fecha de defensa: 19-dic-2005
Aparece en las colecciones:DISSERTAÇÃO - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
ModeloRecuperacaoImagens.pdf6.52 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.