Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/43852
Full metadata record
DC FieldValueLanguage
dc.creatorGoncalves, Murillo Rodrigues-
dc.date.accessioned2024-11-14T10:53:26Z-
dc.date.available2024-11-14T10:53:26Z-
dc.date.issued2024-11-12-
dc.identifier.citationGONÇALVES, Murilo Rodrigues. Determinação da concentração de oxi e deoxihemoglobina a partir de imagens de luz difusa utilizando redes neurais artificiais e sfdi. 2024. 45 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica ) – Universidade Federal de Uberlândia, Uberlândia, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/43852-
dc.description.abstractSpatial frequency domain imaging (SFDI) is a technology that allows obtaining chromophore maps quickly, noninvasively and in a wide field. This method consists of illuminating a large area of the tissue with a spatially modulated light field. The light reflected by the tissue varies according to its optical properties, allowing its composition to be identified. In this work, we used a combination of Principal Component Analysis (PCA) and Artificial Neural Networks (ANN) to compute the concentrations of oxy and deoxyhemoglobin in skin tissues, from diffuse reflectance values obtained by SFDI. The database used was generated according to the parameters of human tissue and Monte Carlo simulations totaling 850,500 samples - distributed in training, test and validation sets in the proportion 70:15:15. To minimize the risk of overfitting during the training of the neural network, Bayesian regularization was applied, based on the Levenberg-Marquardt optimization. The results demonstrated that the developed model was able to predict the concentrations of oxyhemoglobin and deoxyhemoglobin with correlation coefficients of 0.997 and 0.982, respectively. The mean relative errors in relation to the expected values were 0.98% for oxyhemoglobin and 0.99% for deoxyhemoglobin, with 90% of the samples presenting mean relative errors below 4%. The model was also applied to an in vivo study to determine the hemoglobin concentrations in the hand of a volunteer. The results show that the developed model performs well in determining the concentrations of these chromophores, proving to be a promising tool for in vivo measurements and with potential to aid in diagnosis.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectredes neurais artificiais; aquisição de imagens no domínio das frequências espaciais.pt_BR
dc.subjectartificial neural networks; spatial frequency domain imaging.pt_BR
dc.titleDeterminação da concentração de oxi e deoxihemoglobina a partir de imagens de luz difusa utilizando redes neurais artificiais e sfdipt_BR
dc.title.alternativeDETERMINATION OF OXY AND DEOXYHEMOGLOBIN CONCENTRATION FROM DIFFUSE LIGHT IMAGES USING ARTIFICIAL NEURAL NETWORKS AND SFDIpt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.contributor.advisor1Cunha, Diego-
dc.contributor.advisor1Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4702087E6&tokenCaptchar=03AFcWeA5C_xVssQQeYICosM-YqP7vhhqgKADkq0bfUuh_9Ij9k5kfDEY55ZCxTo0Z_GzIB5bjye3PDiCuAj4g4BaTUtfsQ_QahOoACm1Na8RZY93KUwVLkIt3p0b7KNWh3sClsDUx6oEXS90Pd74FA_Fsn4u8f-w1PzKfrvcU2YXh9EWPPMzsJPrJa3yqoFRVjq5Oxx2jqZYlSLr6tmm5d_Om_i9KFOwgwBVzqSNApyAbFr4nqkKy6fgdzO9FMApoPLw8txz3NrF4la8yJNfMtXchv3wqKsnC4RVol1ev5msivQLMgiRK5JacyBMtqO0_kxkwz6gFxdlZDo82yy4k0G7Vugp4unYcZ106fFWxaHChrGXVNLCilKhOPdy_kSfXV7f24lMw2BhAH-wPdGYLHphBz7SIvraHX7Zxl3IJ5R0hDfXfxcIFbxVMSap4ismZg49RtpiGePZqhEppCYHCPYjaa4Ye9fTZ5loTb7XCv5dSCajU2UlBcYtWObQ5csK65PjLnjgbqMIxpdvoBaFg1ldeGgA9pUWpvwZB1rP5cmWNRIJylV1kXGZtb99TghFqMG8HysXECXXshibXY5HPykN_03XHNr5DTpFEaDsUG0AwciiyeabcjT6m2N-DVw4SuOVWgd8KSlSjM0pvtofifJJPaLqtSJx05LGXuw1pMNdOjF1V1uXChbUxu9247tbrRsFig3MJvCQopO3G6OXa3Dkt-WmsTKk-fYoxZfxcR2ObTdG4x5qbtZ_ywmHiu7yMTB2zyyqhGxDU2mCCuAWhhggbj47A6mtgLWinUDj8RQuvhFULKjq4AzMk5zw21JvdP56agVkGn2ubojivneudECCW4KuXIkAobaiKIb4LaTJd9xaCRYcgzoFs18z8pnMcDXBbwjEyFvJOwx3jzRTI6IV2M6nqYXPx3qXmt_4sns5KOViA8Fk8yiIpt_BR
dc.contributor.referee1dos Santos, Adamo-
dc.contributor.referee1Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797288Y6&tokenCaptchar=03AFcWeA6uP5ts71oq8wVVW8nZ7_tcubl92PnfVr61ti9Qlfs0IWePWiAbJgopLreYxWVZVhP3HMWJ5QIDW4S6S9SCUBeQA4GWE4JyI-8O-5g7JBl4aYdBsoJwmVsxvTWskqfn6w69qNCiobFa-9H0gE28MQ8bB7d1fUgegHUVtzgpFuxvS0Lrmmr4-o71a0rnyAb_LtvCM9FGSlQwlAslQ4OgMhGj7cVWmhIvXJuhCxHtBwCoTgyjxOaTFpVBglRBvUfeL6LVBGGAWWLGSzgw7AoNUA7Y70_CX43RjrlRdr6XTx5ZJFm027r_hhnBVDSRlaU-3TyVWfIKhnTdk-628iG9ZE2VYJfJGyTOZLNyXjEPVFkiHuXqNYFVpGj8U2tedv0t0vp4N5niD92s6OPsr-TAAU6oDm1pwguDicwDrZ9k3CR5uzESzIdRDwZzDUnaWryBBNcPMkxhogPEVWZqSLddBEMGmwja72WdHfMUqoNTGB8puH8CCfQCKevQHaq5fsWfNZfgHlP6i8RUO0fBRDwmL9kxZkTtDE5sAi-W9wvgLgwmqNWt1jwiK20ZGTI0O_yMu8VXjG69LT7-eVzKRTCKyqbMlM3ZDcpVMXqMo1OkWLyP-DxTcffPyWjoR-vb0J7N2IFGeKyJph9czrGbGUANyIH_gc7sDlNYhQ5h2vXEb-ceKdiuWjoG_PT03itI6_qfAQ32cOGxIjNmR7kLneuUzd2P4kx7Lywlvf9-Q3ulakCpeJFXGK3v8iHZTrLOBvqjG7bbKTOIEd3Lc6UH-P13RqQeEMI_hXQrMZGvFI6bKkoOijMGRvgCZy5dtCEHAwRmlcZT-OQxPPTrIWAJoOcNpCHop1AKl8JT3TVTLRfG1dE2pgXMqlT3mUdT9x2V3Lgt1ZWc1y-t1FWQj_dCw_eGfhwehZvchsVQ8jxYh5ZLAo4dFy8yPEQpt_BR
dc.contributor.referee2Ricardo, Sergio-
dc.contributor.referee2Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723655D3&tokenCaptchar=03AFcWeA7rEFqV20v5pFgjcfQfKceVw6Y7wVMJFh0NVepV0-p8JkJvUriPgHcLQeY2j9oWaj4MrotbncG-56WlS1akkYHiAKjqd51jBz5WHgStDvTZWwYNvc3P7CQoQ5zqBUz2W7i3_OMo3AIhzsDH3ypTFobGBA5lp2P0qd5yfBpFzug79q6X4jSjkAptlo-pcTu-CW3rWs0TlENyC1p9jogDhM8DwaNCdDspxSn-RmvWtG4PeqnrfFW-XAgt5gJZx4-fvm4dfFV39pjVDfKbQK-6DFJojrHlXUvimG3cfNXHVSoXDDyJmf-ZgcpPHs_y___Pb7BLjIEytCtJVvLTkYCErSYAX2ggti5n-5HYtk89EUCSPJcI3ZgsbzAbnv-wLm1NVQ2tO7F8GuUj3wJFUcTjF5NF5tRIhCnU01WOPF8w-7jVtW82BfkxkwSc3xwHSMp3WR98y94catEDgcxkC18q79ZMzlM9JwiXZO4ZJ4r2zLpkfH-F3OEizubJrBDK3rSf-vrE2zdjKMSQ2GjOQCk4FbflwT-Ya6kT2GGgkFwU2qRW02XZCSE2NGwK2yrc8_N0lvVV5P96f6AbJbt7v_WZBxjUz5Gx_neJt1qYPxNQlQyfhJzFmVdQeT79gC_zmyqEFfciJ8jdTbs1qhq3nPccZ7UrdDETs07qmQ9loBKk5DdSs6KCjQ-O8kXDRtHPonHaW4zxoLSWgb4WklSeDHaeYMNbP2hIDCN3xUrOBXekAXQCX1rEdSw5XVuXyP-24oGU9ydxyOq2YOlFH3qRM_3iEexZp-zBHIW5erpwXcMP62T97jDNszEhzrexycoRaRzmVH9X4ftye1gDusvj1PFfFWIt9CKL6W1e5I6w685eeaC1TEMGjYDgI-CRK2GT-vzDQCY5Ldz7AtDCJUtsEdZkuIWGbEzfl_cAggeJJxQTsXcWKycMz6Ipt_BR
dc.creator.Latteshttps://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K9414220U7&tokenCaptchar=03AFcWeA5vEoPzRfoZfKfjkqr5BwiILXyEgD5GoDduUUhwSdeFNRhErEUYJoBkgtaBRHAb38fXXFz6assug-2aqMhyyhriEjN7kzf0iEWkdgoHHCX5Cswwotbw2ZglIWnklU_UwWKvwwz-4MMIYMbVSLcflMwFkfR5_mqmE4jVNXDHpH0FYx6-47bLrJ2EwGXIrTuIs_aQBxD1hygNTZTN41KiTGgDIbilfVGj49gvBcLI3MCDO2gq84t0b7huE9eaaUG-q0lLuYlPlk3ed_6v58BfDBDd-M5HUVhoLmSDR18UrOu1zuwOx81I7QGRJpSBlZvKs35Cpo3ZtugC62JdtzW5WNIMsmo6LQLLVW4Lu6z7b3X5N5llf_diWzr2k-Y7bKWt_Tm9v9bjkeiACjo2CfkiGcMbWULl7VKv-2WHIapiWPP8VkgMUQ7Lw4rMKZGCvVPpHQMNkKyJJLWEne9GOmZYuf2q9A_isuqCdlSD5gDqd9EfM1duDIdi2gbPaPy52Uk2l8txvQW575lsjjpKEmuGmgadVpEkA7y_FB2MHZ5LMAJxmM1RaDbM4eL7Zn0psyUEw09k3i6gQA3fPRAXrhCTGknIBhEjQEEjo3hSTP9yxDY_GyJYTNxr2bDNixVWg2XJID5c7VPUYIV3zbc_AOoaXhv6io7fGWIkBnCL2RdHIGJ2a0NTXe-BCh3MwWcqk9Nm_XpC2Vz5UstxgEoS_HQnQz-k_ttRKpbF_2VkKx0z2uhwjUN_-iAtqcS44XxUJRj0qR9ywUWSN6uu5qSb04dJRwr1XA6IzXhrING2FBivdFa20gaTtmbzVI7MRtXUX3RJtrjDrx-8owJZ9-lJl05aoufBq51i1Gm-UNeWBrlRBK_v3hxfRpH85V0GWqCjljv9vclU4iMKeUV4-lTBDgvQtSZBeQ_j3fXzHbcZ2oXhpcxxNIc2kMgpt_BR
dc.description.degreenameTrabalho de Conclusão de Curso (Graduação)pt_BR
dc.description.resumoA aquisição de imagem de domínio de frequência espacial (SFDI) é uma tecnologia que possibilita a obtenção de mapas de cromóforos de forma rápida, não invasiva e em um campo amplo. Esse método consiste em iluminar uma área ampla do tecido com uma luz modulada espacialmente. A luz refletida pelo tecido varia conforme suas propriedades ópticas, permitindo identificar sua composição. Neste trabalho, empregamos uma combinação de Análise de Componentes Principais (PCA) e Redes Neurais Artificiais (RNA) para computar as concentrações de oxi e deoxihemoglobina em tecidos da pele, a partir de valores de reflectância difusa obtidos pelo SFDI. A base de dados utilizada foi gerada conforme os parâmetros do tecido humano e simulações de Monte Carlo, totalizando 850.500 amostras - distribuídas em conjuntos de treino, teste e validação na proporção 70:15:15. Para minimizar o risco de overfitting durante o treinamento da rede neural, aplicou-se regularização Bayesiana, baseada na otimização de Levenberg-Marquardt. Os resultados demonstraram que o modelo desenvolvido conseguiu prever as concentrações de oxi e deoxihemoglobina com coeficientes de correlação de 0,997 e 0,982, respectivamente. Os erros médios relativos em relação aos valores esperados foram de 0,98% para oxihemoglobina e 0,99% para deoxihemoglobina, sendo que a 90% das amostras apresentou erros médios relativos inferiores a 4%. O modelo também foi aplicado a um estudo in vivo para determinar as concentrações de hemoglobina na mão de um voluntário. Os resultados mostram que o modelo desenvolvido apresenta um bom desempenho na determinação das concentrações destes cromóforos, mostrando-se uma ferramenta promissora para medições in vivo e com potencial para auxiliar no diagnóstico.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.courseEngenharia Biomédicapt_BR
dc.sizeorduration45pt_BR
dc.subject.cnpqCNPQ::ENGENHARIASpt_BR
dc.orcid.putcode171784454-
Appears in Collections:TCC - Engenharia Biomédica

Files in This Item:
File Description SizeFormat 
TCC_MurilloGoncalves_Final.pdfTCC852.69 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons