Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/38672
Full metadata record
DC FieldValueLanguage
dc.creatorOliveira, Kauê Lucas Silvério-
dc.date.accessioned2023-07-17T19:37:46Z-
dc.date.available2023-07-17T19:37:46Z-
dc.date.issued2023-06-22-
dc.identifier.citationOLIVEIRA, Kauê Lucas Silvério. Análise da influência de avaliações de críticos e usuários nas premiações do Oscar e do Globo de Ouro em 2023 usando aprendizado de máquina. 2023. 49 f. Trabalho de Conclusão de Curso (Graduação em Ciência da Computação) – Universidade Federal de Uberlândia, Uberlândia, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/38672-
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectOscarpt_BR
dc.subjectGlobo de Ouropt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectPrediçãopt_BR
dc.subjectMetacriticpt_BR
dc.titleAnálise da influência de avaliações de críticos e usuários nas premiações do Oscar e do Globo de Ouro em 2023 usando aprendizado de máquinapt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.contributor.advisor1Gabriel, Paulo Henrique Ribeiro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3181954061121790pt_BR
dc.contributor.referee1Nascimento, Marcelo Zanchetta do-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5800175874658088pt_BR
dc.contributor.referee2Miani, Rodrigo Sanches-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2992074747740327pt_BR
dc.description.degreenameTrabalho de Conclusão de Curso (Graduação)pt_BR
dc.description.resumoA indústria do cinema é extremamente relevante e vem recebendo cada vez mais atenção com a chegada dos serviços de vídeo sobre demanda na última década. Parte da repercus- são e visibilidade das obras lançadas anualmente é impulsionado por diversas premiações e cerimônias que ocorrem durante o ano. O objetivo desse trabalho é analisar a possível relação entre a aceitação do público, se baseando nas notas providas por críticos e usuários comuns dentro da plataforma Metacritic, e os ganhadores das premiações Oscar de melhor filme, Globo de Ouro de melhor drama e Globo de Ouro de melhor comédia no ano de 2023. Foi coletado todo o conjunto de dados dos filmes indicados às três cerimônias no pe- ríodo de 2007 a 2023, de onde foi extraído as características necessárias para realizar uma análise preliminar e treinar modelos de aprendizado de máquina com os algoritmos naive bayes, floresta aleatória e KNN com o intuito de prever os vencedores do último ano. Ini- cialmente foi separado uma base de treino e de teste,a partir dos dados anteriores a 2023, onde as métricas de acurácia, precisão, revocação e pontuação F1 foram medidas. Por fim os modelos foram treinados com os dados de 2007 a 2022 e o resultado da classificação dos indicados de 2023 foi comparando com o resultado real das premiações. Ao concluir o trabalho não foi possível perceber uma ligação clara entre as notas de cada obra e seu resultado nas cerimônias. O desempenho dos algoritmos, apenas considerando a base de teste, também não foi satisfatório apresentando métricas abaixo do esperado. A análise final não demonstrou nenhuma correlação clara entre os resultados das premiações do Oscar de melhor filme e Globo de Ouro de melhor drama com as avaliações apresentadas no Metacritic, apesar de apontar possíveis candidatos mostrando que os vencedores foram sim bem avaliados. O Globo de Ouro de melhor comédia apresentou um caso a parte onde de fato o ganhador era o indicado com maior média das notas de críticos porém com uma posição mais baixa em relação ao público geral, o que possivelmente fez com que não fosse escolhidos pelos modelos de aprendizagem como favorito.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.courseCiência da Computaçãopt_BR
dc.sizeorduration49pt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.orcid.putcode138861381-
Appears in Collections:TCC - Ciência da Computação

Files in This Item:
File Description SizeFormat 
AnalideDeInfluencia.pdfTCC1.47 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons