Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/30697
Full metadata record
DC FieldValueLanguage
dc.creatorLadeira, Guênia Mara Vieira-
dc.date.accessioned2020-12-18T12:35:45Z-
dc.date.available2020-12-18T12:35:45Z-
dc.date.issued2020-12-09-
dc.identifier.citationLADEIRA, Guênia Mara Vieira. Análises da arritmia sinusal respiratória. 2020. 157 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.te.2020.802pt_BR
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/30697-
dc.description.abstractHeart rate variability is essential for maintaining the homeostatic balance of the body. It is controlled by the autonomic nervous system. Human biological systems have standard basic characteristics, but varieties of construction and functioning due to genetics, age, sex, and also disease impairment. In addition, they have a complex relationship between systems, such as the nervous system and the cardiorespiratory system. Further analysis of a complex system reveals causes and consequences of its functioning, and helps to detect problems and solve them. Motivated by a better understanding of this relationship I will deepen the analysis of the systems to contribute to the research in this area. The efficiency of the autonomic regulation can be verified by means of respiratory sinus arrhythmia tests observed through electrocardiogram signals ECG and the response of the nervous system can be perceived by electroencephalogram EEG. In this work I present some approaches in the analysis of complex systems such as biological ones. The most relevant contributions of the research are prepared from the knowledge of the cardiorespiratory and nervous biological systems, and the direct relationship between them. The work was concerned with the quality of the instrumentation for biological signal collection and pre-processing for analysis. This stage generated the construction of electrocardiogram equipment. Then, ECG signals were collected from the paralympic boccia team, while the athletes performed their usual breathing exercises to improve concentration and alter heart rates. The electrocardiograms were analysed through the techniques of quantification of recurrence observing the details of the alterations during the exercises. Another approach of the research was the mathematical models of the electrocardiogram. The ECG models were studied and the Kaplan oscillator was chosen, whose model was analysed through bifurcation diagrams and improved in its results. How the athletes change the pattern of the heart and increase the concentration with the exercises. The work passed the EEG analysis stage. Several analyses were performed by linear and non-linear techniques, comparing the signals between the participant with open eyes and closed eyes. A new recurrence analysis technique in the frequency spectrum was generated in this part. The technique presented relevant results to better characterize the signals, can be used to characterize case of depression, and other diseases affecting the central nervous system. Data collection in set of ECG and EEG performing the breathing exercise were performed, the data were analysed by already established techniques and by the recurrence technique created here, we showed that there is a relationship between the heart and brain signals in performing the breathing exercises. All the stages of the work have generated articles which have been published, the first in congresses and the last in specialized journals.pt_BR
dc.description.sponsorshipPesquisa sem auxílio de agências de fomentopt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Uberlândiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAnálise de sistemas complexospt_BR
dc.subjectAnálise de recorrência do espectro de frequênciapt_BR
dc.subjectSinais elétricos do coraçãopt_BR
dc.subjectSinais elétricos do sistema nervoso centralpt_BR
dc.subjectAnalysis of complex systemspt_BR
dc.subjectAnalysis of recurrence of the frequency spectrumpt_BR
dc.subjectElectrical signals from the heartpt_BR
dc.subjectElectrical signals from the heartpt_BR
dc.titleAnálises da arritmia sinusal respiratóriapt_BR
dc.title.alternativeAnalyses of respiratory sinus arrhythmiapt_BR
dc.typeTesept_BR
dc.contributor.advisor1Destro Filho, João Batista-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4173410222083256pt_BR
dc.contributor.referee1Tusset, Ângelo Marcelo-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1204232509410955pt_BR
dc.contributor.referee2Balthazar, José Manoel-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9728054402919622pt_BR
dc.contributor.referee3Lopes, Luís Cláudio Oliveira-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9971842873202479pt_BR
dc.contributor.referee4Finzi Neto, Roberto Mendes-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3792275882221002pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6803258192983484pt_BR
dc.description.degreenameTese (Doutorado)pt_BR
dc.description.resumoA variabilidade da frequência cardíaca é essencial à manutenção do equilíbrio homeostáticos do corpo. Esta é controlada pelo sistema nervoso autônomo. Os sistemas biológicos humano têm características básicas padrão, mas variedades de construção e funcionamento devido à genética, à idade, ao sexo, e também comprometimentos por doenças. Além de terem relação complexa entre os sistemas, como acontece entre o sistema nervoso e o cardiorrespiratório. A análise mais aprofundada de um sistema complexo revela causas e consequências de seu funcionamento, e auxilia detectar problemas e solucioná-los. Motivada pela melhor compreensão desta relação vou aprofundar as análises dos sistemas para contribuir com as pesquisas desta área. A eficiência da regulação autonômica pode ser verificada por meio de testes de arritmia sinusal respiratória observada através dos sinais de eletrocardiograma ECG e a resposta do sistema nervoso pode ser percebida pelo eletroencefalograma EEG. Neste trabalho apresento algumas abordagens na análise de sistemas complexos como os biológicos. As contribuições mais relevantes da pesquisa são preparadas partindo do conhecimento dos sistemas biológico cardiorrespiratório e nervoso, e da relação direta entre eles. No trabalho houve a preocupação com a qualidade da instrumentação para coleta de sinais biológicos e do pré-processamento para análise. Esta etapa gerou a construção de um equipamento de eletrocardiograma. E então foram coletados sinais de ECG da equipe paralimpica de bocha, enquanto os atletas realizavam seus habituais exercícios respiratórios para melhorar a concentração e que alteram a frequências cardíacas. Os eletrocardiogramas foram analisados através das técnicas análises de quantificação de recorrência observando os detalhes das alterações durante os exercícios. Outra abordagem da pesquisa foram os modelos matemáticos do eletrocardiograma. Os modelos de ECG foram estudados e foi escolhido o oscilador de Kaplan, cujo modelo foi analisado através de diagramas de bifurcação e melhorado em seus resultados. Como os atletas alteram o padrão do coração e aumentam a concentram com os exercícios. O trabalho passou a etapa de análise do EEG. Foram realizadas diversas análises por técnicas lineares e não lineares, comparando os sinais entre o participante com olhos abertos e olhos fechados. Nesta parte foi gerada uma nova técnica de análise de recorrência no espectro de frequências. A técnica apresentou resultados relevantes para melhor caracterizar os sinais, poderá ser utilizada para caracterizar caso de depressão, e outras doenças que afetam o sistema nervoso central. Coletas de dados em conjunto de ECG e EEG realizando o exercício respiratório foram realizadas, os dados foram analisados por técnicas já consagradas e pela técnica de recorrência aqui criada, mostramos que existe uma relação entre os sinais do coração e do cérebro na execução dos exercícios respiratórios. Todas as etapas do trabalho geraram artigos que foram publicados, os primeiros em congressos e os últimos em revistas especializadas.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-graduação em Engenharia Elétricapt_BR
dc.sizeorduration157pt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICApt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::MEDIDAS ELETRICAS, MAGNETICAS E ELETRONICAS INSTRUMENTACAO::INSTRUMENTACAO ELETRONICApt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISEpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIApt_BR
dc.identifier.doihttp://doi.org/10.14393/ufu.te.2020.802pt_BR
dc.orcid.putcode85528199-
dc.crossref.doibatchida2f35f52-b27b-44f8-9b2a-3e8becca9c8b-
dc.subject.autorizadoSistema nervosopt_BR
dc.subject.autorizadoHomeostasept_BR
dc.subject.autorizadoRespiraçãopt_BR
dc.subject.autorizadoCardiotocografiapt_BR
Appears in Collections:TESE - Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
AnalisesArritmiaSinusal.pdfTese78.9 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.