Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/14290
Full metadata record
DC FieldValueLanguage
dc.creatorParreira, Fábio José
dc.date.accessioned2016-06-22T18:37:53Z-
dc.date.available2006-07-18
dc.date.available2016-06-22T18:37:53Z-
dc.date.issued2006-05-30
dc.identifier.citationPARREIRA, Fábio José. Detection of epileptic crises starting from signs of electroencephalogram. 2006. 200 f. Tese (Doutorado em Engenharias) - Universidade Federal de Uberlândia, Uberlândia, 2006.por
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/14290-
dc.description.abstractThe epilepsy is not a recent phenomenon, even its has being approached and Inves- tigated, this area still demands several researches and it is far away from being totally explained. The obtaining of the primordial features to di®erentiate the epileptic events of the others, in coming signs EEG of scalp, it represents a great challenge, since exist to many artifacts, and these are confused with epileptic events. In this sense, this study presents the development of architectures destined to detect events of epilepsy in coming signs EEG of scalp, capable to aid the professionals of the health in the study of this pathology To accomplish the objectives, ¯rstly was developed an application capable to visualize EEG and to segment the electroencephalogram plan to form the base of data Concerning to the detection of the pathological signs, four architectures were proposed. The architecture with analysis multi-resolution used the \ wavelet " (WT) for extraction of features, as well as neural networks and specialist system for recognition. For that architecture the best gotten results obtained a rate of 71,6 % of success, with 28,3 % of error. The sensibility was around 83,3 %, the speci¯city 70,5 % and the precision 76,9 %. The statistical architecture is directly composed of tools for features extraction of the sign. The best success rate was around 85,3 %, the obtained error was of 14,3 % and the inde¯nite ones around 1 %. The sensibility was of 97,4 %, the speci¯city 82,1 % and the precision 89,75 %. The architecture of analysis multi-resolution and AR possesses two stages for extraction of feature: the \ wavelet ", following by the AR models. For that architecture they used two AR models . The best success rate for the \ Yule-Walker"model was around 87,9 %, with order 10. Already in the results of the \ Burg"model, the best success rate was of 88,5 % with order 7. For the last architecture is a hybrid model with several tools of extraction of features in the domain of the time, frequency (FFT) and time-frequency (WT). In that architecture the success rate was in 95,1 %, the error 4,1 % the inde¯nite ones 5,5 %. The speci¯city was of 91,5 %, the obtained sensibility was of 90,5 % and the precision around 91,1 %. Therefore all of the developed systems presented quite coherent results among the phenomena demarcated by the professionals of the medical area and those revealed by the architectures, mainly for the case of the hybrid architecture that presented the best rates.eng
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Uberlândiapor
dc.rightsAcesso Abertopor
dc.subjectEletroencefalogramapor
dc.subjectEpilepsiapor
dc.subjectWaveletpor
dc.subjectFFTpor
dc.subjectModelo auto-regressivopor
dc.subjectRedes neuraispor
dc.subjectDetecçãopor
dc.subjectElectroencephalogrameng
dc.subjectEpilepsyeng
dc.subjectWavelet transformeng
dc.subjectAutoregressive model (AR)eng
dc.subjectNeural networkseng
dc.subjectDetectioneng
dc.subjectEngenharia biomédicapor
dc.subjectEletroencefalografiapor
dc.titleDetecção de crises epilépticas a partir de sinais eletroencefalográficospor
dc.title.alternativeDetection of epileptic crises starting from signs of electroencephalogrameng
dc.typeTesepor
dc.contributor.advisor-co1Destro Filho, João Batista
dc.contributor.advisor-co1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799766Y6por
dc.contributor.advisor1Yamanaka, Keiji
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798494D8por
dc.contributor.referee1Ballester, Gerson
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764141H6por
dc.contributor.referee2Nomura, Shigueo
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723707A0por
dc.contributor.referee3Pereira, Wilson Felipe
dc.contributor.referee3Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785832P5por
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4559579A2por
dc.description.degreenameDoutor em Ciênciaspor
dc.description.resumoA identificação de fenômenos epileptogênicos por meio de registros eletroencefalográficos (EEG) não invasivos se constitui numa área de pesquisa que apresenta grandes desafios devido µa presença de diversos distúrbios (artefatos) que dificultam a análise destes registros. Tal tarefa é de extrema importância uma vez que o diagnóstico e o tratamento da epilepsia requer uma avaliação clínica baseada no EEG do paciente. Neste contexto, este trabalho apresenta alguns sistemas para melhorar a identificação dos sinais de crise epilépticas baseados em técnicas de processamento de sinais e de inteligência artificial. Estas propostas são baseadas em uma plataforma que permite a visualização e análise dos arquivos de EEG. Para a detecção de eventos patológicos, são propostas quatro arquiteturas. Na arquitetura com análise multi-resolução foram utilizadas duas famílias wavelet (WT) para a extração de características, redes neurais artificiais e sistema especialista para o reconhecimento dos sinais de crise. Com essa arquitetura, o melhor resultado conseguido foi uma taxa de acerto de 71,6% no reconhecimento dos sinais patológicos. A sensibilidade ficou em torno de 83,3%, a especificidade 70,5% e a precisão 76,9%. Já a arquitetura estatística é composta de ferramentas para extração de características diretamente do sinal. A melhor taxa de acerto ficou em torno de 85,3%, o erro obtido foi de 14,3% e os indefinidos em torno de 1%. A sensibilidade foi de 97,4%, a especificidade 82,1% e a precisão 89,75%. A arquitetura de análise multi-resolução com modelo auto-regressivo (AR) possui duas etapas para extração de características: a \wavelet" (WT), seguida do modelo AR. Para essa arquitetura foram utilizados dois modelos AR. A melhor taxa de acerto para o modelo \Yule-Walker" ficou em torno de 87,9%, com ordem 10. Já para os resultados do modelo\Burg", a melhor taxa de acerto foi de 88,5% com ordem 7. A última arquitetura é um modelo híbrido com várias ferramentas de extração de características no domínio do tempo, freqüência (FFT) e tempo-freqüência (WT). Nessa arquitetura a taxa de acerto ficou em 95,1%, o erro em 4,1% e os indefinidos em 5,5%. A especificidade foi de 91,5%, a sensibilidade obtida foi de 90,5% e a precisão em torno de 91,1%. Todos os sistemas desenvolvidos apresentaram resultados coerentes com os fenômenos demarcados pelos eletroencefalografistas e aqueles revelados pelas arquiteturas. Dentre as propostas, a arquitetura híbrida apresentou o melhor desempenho.por
dc.publisher.countryBRpor
dc.publisher.programPrograma de Pós-graduação em Engenharia Elétricapor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApor
dc.publisher.departmentEngenhariaspor
dc.publisher.initialsUFUpor
dc.orcid.putcode81755229-
Appears in Collections:TESE - Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
FJParreira1TESPRT.pdf1.45 MBAdobe PDFThumbnail
View/Open
FJParreira2TESPRT.pdf1.68 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.