Please use this identifier to cite or link to this item: https://repositorio.ufu.br/handle/123456789/12581
Full metadata record
DC FieldValueLanguage
dc.creatorOliveira, Tiago Prado-
dc.date.accessioned2016-06-22T18:32:33Z-
dc.date.available2015-05-20-
dc.date.available2016-06-22T18:32:33Z-
dc.date.issued2014-12-19-
dc.identifier.citationOLIVEIRA, Tiago Prado. Predição de tráfego, usando redes neurais artificiais, para gerenciamento adaptativo de largura de banda em roteadores. 2014. 199 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Uberlândia, Uberlândia, 2014. DOI https://doi.org/10.14393/ufu.di.2014.544por
dc.identifier.urihttps://repositorio.ufu.br/handle/123456789/12581-
dc.description.abstractSince the formation of computer networks, a considerable increase in its complexity and size has been seen. Furthermore, there is also an increase in the rate of data trans- mission across communication links. This may cause problems of unavailability due to network congestion. The resource allocation and congestion control methods can be used to handle network congestion, however, they are complex issues and have been the subject of much study. Therefore, to attend these issues and improve Quality of Service (QoS), this work presents an algorithm for a network management system, which allocates adap- tively the router bandwidth, based on the network tra_c prediction. This algorithm is called Bandwidth Predictive Management with Neural Networks (GPLNEURO). The bandwidth allocation occurs in the router interfaces and focuses on fairness allocation, each interface receives only the necessary resource, accordingly to the predicted tra_c, i.e., the bandwidth adapts to receive the future tra_c in each interface. The proposed GPLaB algorithm uses the SNMP to monitor the network tra_c data, collecting the time series to predict the future tra_c. The bandwidth of the router interfaces is controlled through the Hierarchical Token Bucket (HTB) queueing discipline and depends of the predicted tra_c. The network tra_c prediction methods, used in this paper, were based on Arti- _cial Neural Networks. Traditional neural networks were compared with deep learning neural networks, which popularity has greatly increased in recent years. The popularity of the new deep learning neural networks has increased in several areas, but there is a lack of studies regarding time series prediction, such as Internet tra_c. The two main contri- butions of this work is a (i) comparative study of traditional neural networks and deep learning ones for Internet tra_c prediction and the (ii) adaptive bandwidth management algorithm to be used as an aid for computer network performance management.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior-
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Uberlândiapor
dc.rightsAcesso Abertopor
dc.subjectAprendizagem profundapor
dc.subjectGerenciamento adaptativopor
dc.subjectLargura de bandapor
dc.subjectPrediçãopor
dc.subjectRedes neurais artificiaispor
dc.subjectSeries temporaispor
dc.subjectAdaptive managementeng
dc.subjectArtificial neural networkseng
dc.subjectBandwidtheng
dc.subjectComputer networkseng
dc.subjectDeep learningeng
dc.subjectPredictioneng
dc.subjectTime serieseng
dc.titlePredição de tráfego, usando redes neurais artificiais, para gerenciamento adaptativo de largura de banda em roteadorespor
dc.typeDissertaçãopor
dc.contributor.advisor-co1Soares, Alexsandro Santos-
dc.contributor.advisor-co1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795877Y2por
dc.contributor.advisor1Barbar, Jamil Salem-
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797664D7por
dc.contributor.referee1Silva, Flávio de Oliveira-
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4793414H6por
dc.contributor.referee2Misaghi, Mehran-
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4701151P7por
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4381158P2por
dc.description.degreenameMestre em Ciência da Computaçãopor
dc.description.resumoDesde a criação das redes de computadores, é presenciado um aumento de seu tamanho e complexidade. Além disso, também ocorre um aumento na taxa de transmissão de dados nos enlaces de comunicação, podendo trazer problemas de indisponibilidade, decorrentes de congestionamentos. Esses problemas podem ser tratados com métodos de alocação de recursos e controle de congestionamento, que são problemas complexos e bastante estudados. Portanto, para tratar esses problemas e aprimorar a Qualidade de Serviço (QoS), este trabalho apresenta um algoritmo de gerenciamento de redes de computadores, que aloca a largura de banda de forma adaptativa, baseada na previsão do tráfego de rede. Esse algoritmo foi chamado de Gerenciamento Preditivo de Largura de Banda usando Redes Neurais (GPLNEURO). O propósito é alocar da largura de banda, das interfaces de conexão de um roteador, de modo justo, onde cada interface recebe somente o recurso necessário para o tráfego previsto, ou seja, a largura de banda se adapta para receber o tráfego futuro em cada interface do roteador, de forma independente. O algoritmo GPLaB proposto, usa o protocolo SNMP para o monitoramento da rede de computadores, que coleta as séries temporais do tráfego que será previsto. A disciplina Hierarchical Token Bucket (HTB) é usada para controlar a largura de banda de cada interface de conexão do roteador. A largura de banda é alocada de acordo com o tráfego previsto. Os métodos usados para a predição do tráfego foram baseados nas Redes Neurais Arti_ciais (RNAs). Foram comparadas RNAs tradicionais com RNAs com aprendizagem profunda (RNAP), cuja popularidade aumentou bastante nos últimos anos. A popularidade das novas redes neurais com aprendizagem profundas vêm aumentado em muitas áreas, porém há uma falta de estudos em relação à predição de séries temporais, como o tráfego de Internet. As principais contribuições deste trabalho são o (i) estudo comparativo da predição de tráfego, usando RNAs e RNAP, e o (ii) algoritmo de gerenciamento adaptativo de largura de banda, que pode ser usado como ferramenta auxiliar no gerenciamento de desempenho de redes de computadores.por
dc.publisher.countryBRpor
dc.publisher.programPrograma de Pós-graduação em Ciência da Computaçãopor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpor
dc.publisher.departmentCiências Exatas e da Terrapor
dc.publisher.initialsUFUpor
dc.identifier.doihttps://doi.org/10.14393/ufu.di.2014.544por
dc.orcid.putcode81753094-
dc.crossref.doibatchida71e9400-5d7c-4fa7-9b9e-d11d8f6ee45b-
Appears in Collections:DISSERTAÇÃO - Ciência da Computação

Files in This Item:
File Description SizeFormat 
PredicaoTrafegoUsando.pdf8.67 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.