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Resumo

A inferência causal busca identificar relações de causa e efeito, indo além da correlação

ao estimar como os resultados mudariam sob diferentes condições. Essa capacidade de

prever desfechos contrafactuais é fundamental em aplicações reais — como medicina,

finanças e ciências sociais — onde decisões confiáveis dependem de uma compreensão

causal dos fenômenos.

A avaliação sistemática de modelos de inferência causal ainda é limitada pela escassez

de conjuntos de dados de referência cujos mecanismos subjacentes sejam completamente

conhecidos. Nesse cenário, esta dissertação apresenta o Causal Synthetic Data Generator

(CSDG), uma ferramenta de código aberto capaz de gerar dados longitudinais sintéticos

governados por estruturas causais, com dinâmicas autorregressivas explícitas.

O CSDG permite controle detalhado sobre a intensidade dos efeitos das variáveis, das

intervenções no tratamento e dos níveis de ruído, oferecendo uma plataforma flexível e

independente de domínio para experimentação e avaliação de algoritmos de aprendizado

causal. A formalização proposta baseia-se em equações estruturais causais autorregressi-

vas, que integram relações de causa e efeito com dependências temporais, possibilitando

a geração de cenários factuais e contrafactuais sob diferentes estruturas causais.

Com o objetivo de validar a consistência dos dados gerados, este trabalho inclui uma

etapa de análise quantitativa e testes em uma tarefa de previsão de resultados. As ava-

liações realizadas demonstram que os dados sintéticos preservam propriedades esperadas

de correlação e resposta às intervenções e os resultados obtidos evidenciam a coerência

causal e o realismo estatístico dos dados gerados, confirmando a adequação do CSDG

como ferramenta de benchmarking e validação de modelos causais.

O código fonte do CSDG encontra-se disponível no repositório <https://github.com

/angeruzzi/causal-synthetic-data-gen>.

Palavras-chave: Benchmarks. Inferência Causal. Dados Longitudinais. Geração de

Dados Sintéticos. Séries Temporais.





Abstract

Causal inference seeks to identify cause-and-effect relationships, going beyond corre-

lation by estimating how outcomes would change under different conditions. This ability

to predict counterfactual outcomes is fundamental in real-world applications — such as

medicine, finance, and the social sciences — where reliable decisions depend on a causal

understanding of phenomena.

The systematic evaluation of causal inference models is still limited by the scarcity

of benchmark datasets whose underlying mechanisms are fully known. In this context,

this dissertation presents the Causal Synthetic Data Generator (CSDG), an open-source

tool capable of generating synthetic longitudinal data governed by causal structures with

explicit autoregressive dynamics.

The CSDG enables detailed control over the strength of variable effects, treatment

interventions, and noise levels, offering a flexible and domain-independent platform for

the experimentation and evaluation of causal learning algorithms. The proposed forma-

lization is based on autoregressive structural causal equations, integrating cause-effect

relationships with temporal dependencies and allowing the generation of both factual and

counterfactual scenarios under different causal structures.

To validate the consistency of the generated data, this work includes a quantitative

analysis stage and experiments on a prediction task. The evaluations show that the

synthetic data preserve expected properties of correlation and response to interventions,

and the results demonstrate both causal coherence and statistical realism, confirming the

suitability of the CSDG as a benchmarking and validation tool for causal models.

The CSDG source code is publicly available at <https://github.com/angeruzzi/cau

sal-synthetic-data-gen>.

Keywords: Benchmarks. Causal Inference. Longitudinal Data. Synthetic Data Genera-

tion. Time Series.





Lista de ilustrações

Figura 1 – Exemplos de Diagramas de Trajetória de Wright . . . . . . . . . . . . . 32

Figura 2 – Exemplo de Coeficiente de Trajetória . . . . . . . . . . . . . . . . . . . 32

Figura 3 – Factual x Contrafactual . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figura 4 – Estruturas Causais Gerais . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figura 5 – DAG de Estrutura Causal Direta . . . . . . . . . . . . . . . . . . . . . 50

Figura 6 – Exemplo gerado a partir da estrutura Direta com efeito não linear . . . 51

Figura 7 – DAG de Estrutura Causal em Cadeia . . . . . . . . . . . . . . . . . . . 51

Figura 8 – Exemplo gerado a partir da estrutura Cadeia com efeito não linear . . 52

Figura 9 – DAG de Estrutura Causal Confundidor . . . . . . . . . . . . . . . . . . 53

Figura 10 – Exemplo gerado a partir da estrutura Confundidor com efeito não linear 54

Figura 11 – Exemplo gerado de dado contrafactual . . . . . . . . . . . . . . . . . . 55

Figura 12 – Verificação de Pré-tendência . . . . . . . . . . . . . . . . . . . . . . . . 65

Figura 13 – Curvas ATE(t) — Pontual, Direta, Linear . . . . . . . . . . . . . . . . 66

Figura 14 – Curvas ATE(t) — Gradual, Direta, Linear . . . . . . . . . . . . . . . . 66

Figura 15 – Curvas ATE(t) — Contínua, Direta, Linear . . . . . . . . . . . . . . . 67

Figura 16 – Curvas ATE(t) — Pontual, Direta, Não Linear - G2 . . . . . . . . . . 68

Figura 17 – Curvas ATE(t) — Gradual, Confundidor, Não Linear - G2 . . . . . . . 69

Figura 18 – Curvas ATE(t) — Gradual, Cadeia, Não Linear - G2 . . . . . . . . . . 70

Figura 19 – Curvas ATE(t) — Contínua, Confundidor, Não Linear - G2 . . . . . . 71

Figura 20 – Curvas ATE(t) — Contínua, Cadeia, Não Linear - G2 . . . . . . . . . 71

Figura 21 – Curvas ATE(t) — Gradual, Confundidor, Não Linear - G3 . . . . . . . 72

Figura 22 – Curvas ATE(t) — Gradual, Cadeia, Não Linear - G3 . . . . . . . . . . 72

Figura 23 – Curvas ATE(t) — Contínua, Confundidor, Não Linear - G3 . . . . . . 73

Figura 24 – Curvas ATE(t) — Contínua, Cadeia, Não Linear - G3 . . . . . . . . . 74

Figura 25 – Monotonicidade por tipo - Direta, Linear - G1 . . . . . . . . . . . . . . 75

Figura 26 – Monotonicidade por tipo - Direta, Não Linear - G3 . . . . . . . . . . . 76

Figura 27 – Monotonicidade por tipo - Confundidor, Não Linear - G3 . . . . . . . . 76

Figura 28 – Monotonicidade por tipo - Cadeia Não Linear - G3 . . . . . . . . . . . 77



Figura 29 – Monotonicidade por faixa - Pontual, Direta, Não Linear - G3 . . . . . . 78

Figura 30 – Monotonicidade por faixa - Gradual, Direta, Não Linear - G3 . . . . . 79

Figura 31 – Monotonicidade por faixa - Contínua, Direta, Não Linear - G3 . . . . . 79

Figura 32 – Monotonicidade por faixa - Contínua, Cadeia, Não Linear - G3 . . . . . 80

Figura 33 – Correlação e Δr — Contínua, Confundidor, Linear - G1 . . . . . . . . 81

Figura 34 – Agregação temporal de Δr por tipo — Direta, Linear - G1 . . . . . . . 82

Figura 35 – Correlação e Δξ — Contínua, Direta, Não Linear - G2 . . . . . . . . . 83

Figura 36 – Correlação e Δξ — Contínua, Confundidor, Não Linear - G2 . . . . . . 84

Figura 37 – Correlação e Δξ — Contínua, Cadeia, Não Linear - G2 . . . . . . . . . 84

Figura 38 – Agregação temporal de Δξ por tipo — Direta, Não Linear - G2 . . . . 85

Figura 39 – Agregação temporal de Δξ por tipo — Cadeia, Não Linear - G2 . . . . 86

Figura 40 – Correlação e Δξ — Contínua, Direta, Não Linear - G3 . . . . . . . . . 87

Figura 41 – Correlação e Δξ — Contínua, Confundidor, Não Linear - G3 . . . . . . 87

Figura 42 – Correlação e Δξ — Contínua, Cadeia, Não Linear - G3 . . . . . . . . . 88

Figura 43 – Agregação temporal de Δξ por tipo — Direta, Não Linear - G3 . . . . 89

Figura 44 – Agregação temporal de Δξ por tipo — Cadeia, Não Linear - G3 . . . . 89

Figura 45 – Histórico e Horizonte de Predição . . . . . . . . . . . . . . . . . . . . . 92

Figura 46 – Arquitetura Encoder-Decoder . . . . . . . . . . . . . . . . . . . . . . . 93



Lista de tabelas

Tabela 1 – Componentes de um Modelo Causal Estrutural (SCM) . . . . . . . . . 34

Tabela 2 – Abordagens de geração de dados sintéticos com estrutura causal . . . . 41

Tabela 3 – Abordagens de geração de dados sintéticos longitudinais . . . . . . . . 43

Tabela 4 – Parâmetros definidos no arquivo de configuração YAML do CSDG . . . 56

Tabela 5 – Estrutura dos arquivos gerados: chaves, formas e descrição. . . . . . . 59

Tabela 6 – Parâmetros globais de geração dos dados. . . . . . . . . . . . . . . . . 63

Tabela 7 – Descrição dos datasets de análise. . . . . . . . . . . . . . . . . . . . . . 63

Tabela 8 – Dados médios de Correlação e Δr - G1 . . . . . . . . . . . . . . . . . . 81

Tabela 9 – Dados médios de Correlação e Δξ - G2 . . . . . . . . . . . . . . . . . . 83

Tabela 10 – Dados médios de Correlação e Δξ - G3 . . . . . . . . . . . . . . . . . . 86

Tabela 11 – Parâmetros de geração dos dados da prova de conceito. . . . . . . . . . 91

Tabela 12 – Hiperparâmetros utilizados nas redes neurais baseline. . . . . . . . . . 93

Tabela 13 – RMSE da predição factual . . . . . . . . . . . . . . . . . . . . . . . . . 94

Tabela 14 – PEHE das predições factual e contrafactual . . . . . . . . . . . . . . . 95





Lista de siglas

ANOVA Análise de Variância

ARIMA Auto-Regressive Integrated Moving Average

ATE Average Treatment Effect

BART Bayesian Additive Regression Trees

CATE Conditional Average Treatment Effect

CFRNet Counterfactual Regression Network

CRN Counterfactual Recurrent Network

CSDG Causal Synthetic Data Generator

DAG Directed Acyclic Graph

DONALD Dortmund Nutritional and Anthropometric Longitudinally Designed Study

G-Net G-Computation for Counterfactual Prediction

GANITE Generative Adversarial Nets in Individualized Treatment Effects

GANs Generative Adversarial Nets

GNNs Graph neural network

GRU Gated Recurrent Unit

ITE Individual Treatment Effect

LSTM Long Short-Term Memory

MITRA Mixed Synthetic Priors for Enhancing Tabular Foundation Models

MTS Multivariate Time Series

NPZ NumPy Zip

PEHE Precision in Estimation of Heterogeneous Effect

RCT Randomized Controlled Trials

RMSE Root Mean Square Error



RMSN Recurrent Marginal Structural Networks

RNN Recurrent Neural Network

SCM Structural Causal Model

TARNet Treatment-Agnostic Representation Network

TMLE Targeted Maximum Likelihood Estimation

VAMBN Variational Autoencoder Modular Bayesian Network

VAR Vector Auto-Regressive

VARMA Vector Auto Regressive Moving Average



Lista de símbolos

Yi(1), Yi(0) Resultados potenciais do indivíduo i, com e sem tratamento.
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Capítulo 1

Introdução

A inferência causal tem como objetivo identificar relações de causa e efeito entre

variáveis, estimando o impacto de uma variável sobre outra. Diferentemente da correlação,

que capta apenas associações estatísticas, a inferência causal permite prever desfechos

contrafactuais, cenários hipotéticos que descrevem o que teria ocorrido sob diferentes

condições ou intervenções. Essa capacidade é crucial em áreas como medicina, economia,

finanças e ciências sociais, onde a compreensão meramente correlacional não é suficiente

para fundamentar decisões confiáveis (CHENG et al., 2022).

Os ensaios controlados aleatorizados (Randomized Controlled Trials - RCTs) são am-

plamente reconhecidos como o padrão-ouro para a inferência causal. Contudo, sua apli-

cação muitas vezes é inviável devido a restrições financeiras, éticas ou logísticas. Diante

disso, métodos baseados em dados observacionais tornam-se essenciais.

Modelos de aprendizado de máquina têm alcançado resultados expressivos em tarefas

de previsão, contudo, em sua forma tradicional, são essencialmente associativos — cap-

turam correlações, mas não distinguem causa e efeito. Essa limitação compromete sua

aplicabilidade em cenários nos quais decisões dependem de estimativas contrafactuais,

como tratamentos médicos (KADDOUR et al., 2025).

Nos últimos anos surgiram diversos modelos de deep learning que tentam implementar

uma modelagem causal, porém, treinar e avaliar tais métodos representam um desafio

significativo. Em dados reais, os mecanismos geradores subjacentes são desconhecidos e

os contrafactuais verdadeiros, os possíveis resultados em condições que não ocorreram,

são, por definição, não observáveis (RUBIN, 1974).

Com isso temos uma escassez de dados reais e benchmarks padronizados para avali-

ação rigorosa de métodos de inferência causal. Essa lacuna constitui um dos principais

gargalos da área (KADDOUR et al., 2025) e é particularmente crítica em contextos lon-

gitudinais, onde os efeitos acumulam-se ao longo do tempo e a validação exige dados com

dependências temporais realistas e relações causais conhecidas (CHENG et al., 2022).

Dados sintéticos surgem como uma alternativa promissora para contornar essa limi-

tação, pois permitem controle experimental sobre a estrutura causal, o ruído e a comple-
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xidade das relações entre variáveis — algo frequentemente inviável em cenários reais —

criando cenários controlados.

Um exemplo recente no uso de dados sintéticos para o treino é o MITRA (ZHANG et

al., 2025), um Tabular Foundation Model desenvolvido pela Amazon, que demonstrou que

modelos podem alcançar forte poder de generalização mesmo quando pré-treinados exclu-

sivamente com dados sintéticos baseados em estruturas causais. Esse resultado reforça o

papel estratégico dos geradores sintéticos no avanço de métodos de aprendizado, ao evi-

denciar que o controle sobre as relações causais embutidas nos dados impacta diretamente

o desempenho em tarefas reais de previsão e análise.

Apesar desse potencial, os geradores existentes ainda apresentam limitações relevantes.

Abordagens baseadas em dados observacionais reais priorizam a preservação de proprie-

dades estatísticas e a proteção de privacidade (BUN et al., 2024; KÜHNEL et al., 2024),

mas não fornecem ground truth causal para testes comparativos. Por outro lado, biblio-

tecas de simulação como o CausalTables.jl oferecem suporte a intervenções em modelos

estruturais (BALKUS; HEJAZI, 2025), porém restritas a dados estáticos, sem conside-

rar dependências autorregressivas ou a evolução temporal de tratamentos e resultados.

Assim, permanece uma lacuna quanto a benchmarks sintéticos que combinem estrutura

causal explícita, dependência temporal e cenários contrafactuais sob diferentes regimes de

intervenção.

Este trabalho é motivado, portanto, em suprir a escassez de dados e benchmarks para

treino e validações de modelos de inferência causal no contexto longitudinal. Partindo

da premissa de que a ausência de conjuntos de dados longitudinais com estrutura causal

conhecida limita a validação empírica de modelos de inferência causal, torna-se essencial,

assim, investigar ferramentas para a geração de dados controlados, com estrutura causal

explícita e ruído parametrizável, que sirvam como base experimental para o avanço de

algoritmos de aprendizado causal.

Para enfrentar esse desafio, propõe-se o Causal Synthetic Data Generator (CSDG),

uma ferramenta projetada para gerar dados longitudinais sintéticos com controle explícito

sobre relações causais, dinâmica temporal, ruído e intervenções. Ao tornarem-se observá-

veis tanto resultados factuais quanto contrafactuais, o CSDG possibilita a construção de

cenários reprodutíveis e parametrizáveis para benchmarking de algoritmos de inferência

causal em dados longitudinais.

O objetivo geral deste trabalho foi investigar um método para a geração de dados

sintéticos longitudinais a partir de estruturas causais conhecidas, denominado CSDG,

visando assim, contribuir com uma ferramenta capaz de construir cenários reprodutíveis

e controlados, destinados especificamente ao benchmarking de modelos de inferência causal

em dados longitudinais.

De forma mais específica, buscou-se:

(i) investigar como diferentes estruturas causais — direta, em cadeia e com confundidor
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— podem ser formalizadas e simuladas em um contexto dinâmico;

(ii) gerar cenários factuais e contrafactuais reprodutíveis, controlando explicitamente os

parâmetros de causalidade, ruído e tipo de intervenção;

(iii) avaliar a coerência estatística e causal dos dados gerados por meio de métricas

formais, como o efeito médio do tratamento (ATE) e a mudança de associação

(Δr);

(iv) analisar, como prova de conceito, o desempenho de modelos de aprendizado temporal

causal aplicados a esses dados sintéticos, comparando a capacidade preditiva factual

e contrafactual de diferentes arquiteturas.

Suprir a ausência de benchmarks padronizados para validar métodos de inferência

causal em cenários longitudinais, envolveu três desafios principais. O primeiro diz res-

peito à formulação de equações estruturais capazes de representar relações causais sob

dependência temporal, garantindo que os efeitos propagassem ao longo da série de modo

consistente com o comportamento esperado das variáveis. Para isso, foram adotados mo-

delos autorregressivos explícitos, nos quais o resultado presente depende tanto de seus

valores passados quanto das variáveis causais associadas. O segundo concentrou-se em

assegurar o realismo estatístico dos dados simulados, equilibrando controle experimental

com variabilidade natural por meio da parametrização de funções lineares e não lineares,

além da introdução de ruído aleatório configurável. Por fim, foi necessário estabelecer me-

canismos para quantificar a qualidade causal dos dados gerados de forma independente

do modelo preditivo utilizado, o que motivou a definição de um protocolo de avaliação

baseado em métricas formais, além da aplicação prática do conjunto gerado em uma prova

de conceito com modelos de aprendizado temporal.

A mitigação desses desafios permitiu estabelecer uma base sólida para a geração de

dados longitudinais com estrutura causal conhecida, viabilizando a avaliação sistemática

da consistência estatística e dos efeitos das intervenções simuladas.

Como resultado, o CSDG foi projetado para produzir dados com coerência causal

e comportamentos estatísticos desejáveis, configurando um ambiente experimental para

avaliação da precisão factual e contrafactual de algoritmos de inferência causal. Assim,

este trabalho estabelece uma base para estudos sistemáticos de modelos causais aplicados

a dados longitudinais.

1.1 Hipótese

A hipótese central desta pesquisa é que o controle explícito da estrutura causal, da

dinâmica temporal e das intervenções permite que o gerador proposto — o CSDG —
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produza cenários sintéticos reprodutíveis e confiáveis, com variabilidade factual e contra-

factual adequada para o benchmarking de modelos de inferência causal em dados longi-

tudinais.

Parte-se do pressuposto de que equações estruturais autorregressivas podem represen-

tar de maneira consistente dinâmicas causais ao longo do tempo, resultando em dados

que preservam propriedades esperadas de correlação temporal, efeitos médios coerentes e

respostas monotônicas às intervenções. Assume-se, ainda, que esses dados são suficiente-

mente informativos para a avaliação da capacidade de modelos de aprendizado temporal

em estimar efeitos causais com precisão, tanto em cenários factuais quanto contrafactuais.

A validação experimental dessa hipótese fundamenta-se na análise estatística e na apli-

cação prática dos dados gerados, demonstrando que o CSDG pode atuar como ferramenta

de benchmarking para métodos de inferência causal longitudinal.

Com base nessa hipótese e na metodologia proposta, este trabalho oferece contri-

buições que avançam tanto no desenvolvimento de ferramentas quanto na avaliação de

métodos causais em dados longitudinais.

1.2 Contribuições

As contribuições deste trabalho concentram-se no desenvolvimento e avaliação de um

gerador de dados sintéticos longitudinais com estrutura causal explícita. Primeiramente,

propõe-se uma base formal para simulação a partir de Equações Estruturais Causais Au-

torregressivas, integrando dependências temporais e relações de causa e efeito em um

mesmo modelo. Com esse fundamento, foi formulado e implementado o CSDG, um gera-

dor capaz de produzir dados longitudinais com diferentes graus de complexidade funcio-

nal e parâmetros controláveis de ruído e intervenção, abrangendo tanto cenários factuais

quanto contrafactuais.

Adicionalmente, estabelece-se um protocolo sistemático de avaliação da coerência cau-

sal dos dados produzidos, combinando análises estatísticas, métricas de dependência e

experimentos com modelos de aprendizado temporal. Essa abordagem permitiu carac-

terizar quantitativamente a qualidade dos dados sintéticos, com base em propriedades

desejáveis, como variabilidade, previsibilidade e consistência causal — mensuradas por

métricas como efeito médio do tratamento (ATE) e mudança de associação (Δr). Como

prova de conceito, foi realizada uma análise comparativa do desempenho de modelos li-

neares e redes neurais recorrentes na estimação de efeitos causais em cenários sintéticos

controlados, explorando tanto predições factuais quanto contrafactuais.

Por fim, este trabalho discute diretrizes para a reprodutibilidade e padronização de

experimentos com dados sintéticos no contexto de inferência causal temporal, reforçando

o papel do CSDG como ferramenta aberta e adequada para benchmarking de métodos

causais. Dessa forma, a dissertação contribui conceitualmente e tecnicamente para a área,
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ao disponibilizar um ambiente experimental controlado para investigação e validação de

algoritmos de aprendizado causal em dados longitudinais.

1.3 Organização da Dissertação

Para apresentar de forma estruturada o desenvolvimento e os resultados desta pes-

quisa, a dissertação está estruturada em seis capítulos. O Capítulo 1 apresenta o contexto

da pesquisa, destacando a motivação, os objetivos, a hipótese e as contribuições alcan-

çadas. No Capítulo 2, são discutidos os fundamentos teóricos sobre inferência causal,

resultados potenciais, estruturas causais e dados longitudinais, além de uma revisão dos

principais trabalhos correlatos. O Capítulo 3 descreve a proposta metodológica, deta-

lhando a formulação do gerador de dados sintéticos CSDG, a estrutura causal adotada,

os cenários factuais e contrafactuais e o processo de geração dos dados longitudinais. Em

seguida, o Capítulo 4 apresenta a análise quantitativa dos dados simulados, incluindo as

métricas utilizadas e os resultados referentes à coerência estatística e causal dos cenários.

O Capítulo 5 traz a aplicação prática do gerador, por meio de uma prova de conceito com

modelos de aprendizado temporal, avaliando sua capacidade de previsão tanto factual

quanto contrafactual. Por fim, o Capítulo 6 sintetiza as conclusões, discute limitações

e aponta direções para pesquisas futuras, além de relatar as contribuições acadêmicas

decorrentes deste trabalho.
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Capítulo 2

Fundamentação Teórica

Este capítulo apresenta os fundamentos teóricos que embasam a presente pesquisa,

abordando os principais conceitos e métodos relacionados à inferência causal, resultados

potenciais, estruturas causais e dados longitudinais. O objetivo é oferecer uma visão

abrangente da evolução da área, desde os modelos clássicos até as abordagens recentes

baseadas em aprendizado profundo e geração de dados sintéticos.

2.1 Inferência Causal

Em Correlation and Causation, Wright (1921) apresentou métodos para distinguir cor-

relações espúrias de relações causais, estabelecendo as bases da área de inferência causal.

A correlação é uma medida estatística que descreve um grau de associação entre duas

variáveis — frequentemente restrita à relação linear no caso da correlação de Pearson. No

entanto, correlação não implica causalidade; duas variáveis podem apresentar associação

sem que uma seja a causa de outra, resultando em uma correlação espúria entre elas. Ao

identificar uma relação em que uma variável, a causa, influencia diretamente a outra, o

efeito, temos uma relação de causalidade.

Wright (1921) também introduziu a técnica estatística de Path Analysis, ou diagramas

de trajetória, para analisar relações causais entre um conjunto de variáveis; a técnica é

uma extensão da regressão múltipla e permite decompor correlações em componentes

diretos e indiretos.

Com os diagramas de trajetória (Figura 1) temos uma ferramenta poderosa para a

representação e interpretação de relações causais complexas, em que setas são utilizadas

para indicar uma relação causal direta de uma variável para outra. Foram introduzidos

também os Coeficientes de Trajetória (Figura 2), que quantificam a influência direta de

uma variável sobre a outra em um modelo causal.
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padrão de uso, principalmente em ensaios clínicos da área de saúde, mas também na pes-

quisa científica em geral para se estabelecer causalidade devido ao seu rigor metodológico.

O RCT é um tipo de estudo científico projetado para testar a eficácia de uma inter-

venção ou tratamento, como por exemplo a administração de um analgésico, e avaliar

o resultado, que neste caso seria a eficácia do medicamento contra uma dor de cabeça.

Embora o termo tratamento seja frequentemente associado a contextos médicos, ele pode

ser aplicado em diversos cenários. Por exemplo, na educação, pode-se avaliar a eficácia

de um novo método de ensino (tratamento) e observar se há uma melhora nas notas dos

alunos (resultado). Em ciências sociais, pode-se investigar se uma determinada política

(tratamento) melhora as condições de vida de uma população (resultado).

Uma base do RCT é o estabelecimento de um grupo de tratamento e um grupo de

controle. O grupo de tratamento recebe a intervenção a ser avaliada, enquanto o grupo

de controle não recebe a intervenção ou recebe um tratamento padrão ou placebo. Isso

permite a comparação dos resultados entre os grupos e a verificação da eficácia da inter-

venção.

A aleatorização é crucial no RCT, pois assegura que os indivíduos sejam distribuídos de

forma aleatória entre os grupos para evitar o viés de seleção. Outro conceito importante é o

mascaramento (blinding), que pode ser simples-cego, onde os indivíduos não sabem a qual

grupo pertencem, ao tratamento ou controle, evitando o viés de expectativa, ou duplo-

cego, onde tanto os participantes quanto os pesquisadores desconhecem a distribuição dos

grupos, prevenindo o viés de observação e interpretação.

Por fim, os dados do experimento devem ser analisados por meio de métodos estatísti-

cos, como a Análise de Variância (ANOVA), para determinar se os efeitos do tratamento

são significativos em comparação ao controle (MONTGOMERY, 2017).

Entre os principais desafios na utilização do RCT estão seus altos custos (RUBIN,

1974). Além disso, questões éticas frequentemente surgem, especialmente quando é ne-

cessário deixar de aplicar um tratamento potencialmente benéfico a um grupo controle.

Em outros casos, a natureza do problema pode impossibilitar a organização dos grupos

de forma adequada, por exemplo, em situações de desastres naturais como terremotos ou

inundações, onde não é possível escolher aleatoriamente quais comunidades serão expostas

ao evento para criar grupos de controle, ou mesmo em situações históricas, ou de políticas

amplamente aplicadas em uma população. Essas limitações requerem a consideração cui-

dadosa de alternativas metodológicas, como estudos observacionais bem planejados, que

possam fornecer evidências causais robustas em contextos onde o RCT não é viável.

Rubin (1974) preocupou-se em desenvolver um método para estimar efeitos causais

tanto em estudos randomizados quanto não randomizados, formalizando a ideia de resul-

tados potenciais e contrafactuais, que serão explorados na Seção 2.2.

Pearl (2009) trouxe uma contribuição significativa e uma abordagem moderna aos

problemas de Inferência Causal, como o Directed Acyclic Graph (DAG), o Structural
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Causal Model (SCM) e o do-calculus.

Os DAGs são grafos acíclicos usados para representar graficamente as relações de causa

e efeito entre variáveis; cada nó no grafo representa uma variável e as arestas direcionadas

indicam a direção da causalidade, ou seja, a influência de uma variável sobre a outra.

Diferentemente dos diagramas de trajetória de Wright modelando estritamente relações

de causalidade direta e de forma unidirecional, não permitindo ciclos e garantindo clareza

na direção dos efeitos.

O SCM foi desenvolvido como uma extensão do DAG, fornecendo uma base matemá-

tica para representar e analisar relações causais. Os Modelos Causais Estruturais têm

origem nos modelos de equações estruturais desenvolvidos em áreas como genética, eco-

nometria e ciências sociais (PETERS; JANZING; SCHÖLKOPF, 2017). O ferramental

causal proposto por Pearl incorporou a esses modelos uma semântica causal explícita,

baseada em grafos direcionados, intervenções e contrafactuais (PEARL, 2009).

Formalmente, conforme Peters, Janzing e Schölkopf (2017), um Modelo Causal Estru-

tural pode ser definido como a tupla

M = (U, V, F, P (U)). (1)

Cada variável endógena Vi ∈ V é determinada por uma equação estrutural da forma

Vi := fi(PAi, Ui), (2)

onde Ui ∈ U corresponde ao termo exógeno associado e PAi denota o conjunto de pais

causais de Vi no grafo causal, definido como

PAi := { Vj ∈ V | Vj → Vi }. (3)

A Tabela 1 resume os principais componentes que constituem um Modelo Causal

Estrutural.

Tabela 1 – Componentes de um Modelo Causal Estrutural (SCM)

Componente Descrição

U Variáveis exógenas (fatores não observados)
V Variáveis endógenas (variáveis observáveis)
F Conjunto de equações estruturais

P (U) Distribuição conjunta dos ruídos exógenos

Dessa forma, os SCMs combinam a representação gráfica com uma base quantitativa,

permitindo a simulação de intervenções (do-operations) e a análise de cenários contrafac-

tuais.

O do-calculus é uma ferramenta para manipular expressões causais e derivar conclusões

sobre intervenções. Ele estabelece um conjunto de regras para transformar probabilidades

condicionais observacionais em probabilidades intervencionais.
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2.3 Potential Outcomes Framework

Rubin (1978) foi pioneiro em criar um método baseado em estruturas de resultados

potenciais, trazendo o conceito de Potential Outcomes Framework, que passou a ser ampla-

mente utilizado em pesquisas subsequentes para novos métodos que se propõem à análise

de causalidade e estimativa de contrafactuais em estudos observacionais e experimentais

em diversas áreas e contextos.

Alguns métodos não-paramétricos foram propostos, como o de Xu, Xu e Saria (2016),

que apresenta uma abordagem bayesiana não-paramétrica para estimar curvas de resposta

ao tratamento a partir de séries temporais esparsas. As curvas de resposta ao tratamento

representam a relação funcional entre diferentes intensidades de tratamento e seus res-

pectivos resultados potenciais. Cada ponto da curva corresponde ao valor que o desfecho

apresentaria sob uma intervenção hipotética de intensidade específica, permitindo analisar

como o efeito causal varia de acordo com a dose ou trajetória do tratamento.

Schulam e Saria (2017) propõem modelos contrafactuais para suporte a decisões confiá-

veis, destacando a importância de modelos robustos e interpretáveis na inferência causal.

Soleimani, Subbaswamy e Saria (2017) discutem modelos de resposta ao tratamento para

raciocínio contrafactual com intervenções contínuas, ou seja, intervenções que variam

continuamente ao longo do tempo. Curth e Schaar (2021) propõem a estimativa não-

paramétrica de efeitos de tratamento heterogêneos, oferecendo uma abordagem teórica

sólida que se traduz em algoritmos de aprendizado eficientes.

Os métodos não-paramétricos oferecem uma abordagem flexível para a estimativa de

efeitos de tratamento sem assumir uma forma funcional específica para os dados e são

especialmente úteis quando os dados são esparsos ou apresentam estruturas complexas.

Quanto às propostas de métodos paramétricos, temos vários exemplos. Laan e Rubin

(2006) introduzem o aprendizado por máxima verossimilhança direcionada (Targeted Ma-

ximum Likelihood Estimation - TMLE), um método paramétrico para inferência causal

que combina modelagem estatística robusta com a flexibilidade de aprendizado de má-

quina. Chipman, George e McCulloch (2010) apresentam as Árvores de Regressão Aditiva

Bayesiana (Bayesian Additive Regression Trees - BART), uma metodologia poderosa para

inferência causal que utiliza técnicas bayesianas para construir modelos de previsão ro-

bustos e interpretáveis. Johansson, Shalit e Sontag (2016) discutem o aprendizado de

representações para inferência contrafactual, propondo um método paramétrico que me-

lhora a precisão da estimativa de efeitos de tratamento a partir de dados observacionais.

Kuzmanovic, Hatt e Feuerriegel (2023) tratam da estimativa de efeitos de tratamento mé-

dio condicional com informações de tratamento ausentes, abordando um desafio comum

em dados observacionais e propondo soluções paramétricas robustas.

Os métodos paramétricos assumem uma forma funcional específica para os dados e

oferecem uma estrutura mais rígida para a modelagem de efeitos causais. Eles são úteis

quando se tem uma boa compreensão da estrutura dos dados.
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Com uma abordagem diferente das clássicas, modelos de deep learning têm sido uti-

lizados em vários trabalhos de inferência causal também, permitindo a modelagem de

relações complexas em grandes conjuntos de dados. Johansson, Shalit e Sontag (2016)

propõem técnicas de aprendizado de representações que utilizam redes neurais profundas

para inferência contrafactual, destacando a capacidade do deep learning em lidar com

dados complexos e de alta dimensionalidade. Yoon, Jordon e Schaar (2018) introduziram

a Generative Adversarial Nets in Individualized Treatment Effects (GANITE), uma abor-

dagem inovadora que utiliza Generative Adversarial Nets (GANs) para estimar efeitos de

tratamento individualizados, demonstrando a eficácia das técnicas de deep learning na

inferência causal. Shalit, Johansson e Sontag (2017) apresentaram a Treatment-Agnostic

Representation Network (TARNet) e a Counterfactual Regression Network (CFRNet),

redes neurais profundas projetadas para inferência contrafactual, mostrando como o deep

learning pode ser aplicado para melhorar a precisão das estimativas de efeitos de trata-

mento.

Os métodos de deep learning permitem a modelagem de relações complexas em gran-

des conjuntos de dados, capturando padrões e estruturas latentes que outras abordagens

podem não detectar. Estas técnicas são especialmente úteis para dados complexos e de

alta dimensionalidade.

Um contexto comum na área médica é a ocorrência de uma sequência de tratamentos

ao longo de um período (ALLAM et al., 2021). Para a estimativa contrafactual desse tipo

temos como exemplos a Recurrent Marginal Structural Networks (RMSN) (LIM; ALAA;

SCHAAR, 2018), a Counterfactual Recurrent Network (CRN) (BICA et al., 2020) e a

G-Computation for Counterfactual Prediction (G-Net) (LI et al., 2021).

Ainda neste contexto, temos o Causal Transformer (MELNYCHUK; FRAUEN; FEU-

ERRIEGEL, 2022), que inova ao implementar uma arquitetura baseada em Transformer,

que empilha blocos de processamento, sendo que cada camada possui mecanismos de

cross-attention paralelos que associam diferentes entradas de dados longitudinais - trata-

mentos, resultados e covariáveis - variáveis no tempo, além de propor uma nova função

de perda chamada Counterfactual Domain Confusion loss (CDC loss).

Nichani, Damian e Lee (2024) demonstraram em seu trabalho sobre aprendizado de

estruturas causais que, através do gradiente descendente, um Transformer simplificado

de duas camadas codifica o grafo causal latente na primeira camada de atenção a partir

de sequências de dados gerados por cadeias de Markov, trazendo a perspectiva de que

Transformers são capazes de recuperar estruturas causais.

2.4 Estruturas Causais

Desde os primeiros estudos de Wright (1921), diagramas de trajetória passaram a ser

utilizados para representar de forma gráfica relações causais entre variáveis. No entanto, os
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2.5 Dados Longitudinais

Os dados longitudinais são medições repetidas de uma mesma unidade em diferentes

pontos de um domínio ordenado. Dentro desta categoria, o tipo mais comum encontrado

são as séries temporais, que se referem tipicamente a observações sequenciais de uma única

unidade ao longo do tempo, e os dados de painel, que envolvem observações de múltiplas

unidades nos mesmos ou diferentes períodos de tempo (DIGGLE et al., 2002).

A análise de dados longitudinais possui um longo histórico de aplicação em diversas

áreas de estudo e essa estrutura rica de dados permite investigar, por exemplo, a dinâmica

temporal de fenômenos, modelar trajetórias individuais e analisar os efeitos de variáveis

que mudam ao longo do tempo, controlando para heterogeneidade não observada entre

as unidades, tema central em delineamentos experimentais clássicos e modelos mistos

(MONTGOMERY, 2017).

Um dos modelos estatísticos fundamentais aplicados em séries temporais univariadas,

que frequentemente servem como base para modelos mais complexos, é o modelo Auto-

regressive Integrated Moving Average (ARIMA). Desenvolvido extensivamente por Box e

Jenkins (1970), um modelo ARIMA descreve uma variável dependente como uma função

de seus próprios valores passados (componente autorregressivo), dos erros de previsão

passados (componente de médias móveis) e da diferenciação dos dados para torná-los

estacionários (componente integrado).

A característica autorregressiva de séries temporais é um fator importante considerado

nos dados de diversos domínios, como em economia na análise de variáveis macroeconô-

micas e em finanças na modelagem de retornos, volatilidade e preços de ativos (ENDERS,

2010).

Outro contexto de estudo também crescente que envolve séries temporais é o Multi-

variate Time Series (MTSs). Em MTSs são analisadas as correlações existentes entre

séries temporais de duas ou mais variáveis, como por exemplo a análise da relação en-

tre variáveis macroeconômicas, onde podem ser aplicadas ferramentas estatísticas como

o Vector Auto-Regressive (VAR) e o Vector Auto Regressive Moving Average (VARMA)

(LÜTKEPOHL, 2005).

A área de forecasting com MTSs tem testemunhado um aumento significativo de tra-

balhos explorando modelos de deep learning avançados, como Graph Neural Networks

(GNNs) e arquiteturas baseadas em Transformers, visando aprimorar a acurácia das pre-

visões (MENDIS; WICKRAMASINGHE; MARASINGHE, 2024).

Apesar das diversas ferramentas existentes para abordar problemas com dados lon-

gitudinais, ao tratarmos de análise causal temos desafios únicos, como a necessidade de

modelar a dependência temporal e controlar a heterogeneidade não observada. Méto-

dos tradicionais como Diferença em Diferenças e Variáveis Instrumentais em Painel têm

sido amplamente utilizados e o aumento recente de pesquisas tem permitido o desen-

volvimento de novos métodos estatísticos para estimar efeitos causais, particularmente
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com intervenções binárias, usando observações de múltiplas unidades ao longo do tempo

(ARKHANGELSKY; IMBENS, 2024).

Soluções de deep learning também têm sido exploradas em problemas de causal dis-

covery em dados longitudinais (KADDOUR et al., 2025), que é o processo de aprender

relações de causa e efeito entre variáveis diretamente a partir de dados, sem conhecimento

prévio da estrutura causal, com isso oferecendo novas perspectivas para a área.

2.6 Dados Sintéticos Causais

Nos últimos anos, o uso de dados sintéticos para treinamento de modelos tem ga-

nhado destaque especialmente em cenários onde há limitação de dados rotulados e custos

elevados de coleta e anotação. Um avanço recente nesse sentido é o MITRA (ZHANG

et al., 2025), um Tabular Foundation Model desenvolvido no laboratório de pesquisa da

Amazon Web Services, que foi pré-treinado exclusivamente com dados sintéticos gerados

a partir de uma mistura de priors projetados para maximizar diversidade, desempenho e

distintividade; um prior é uma distribuição geradora ou um mecanismo gerador de dados

propriamente dito, que será utilizado para fornecer os dados de treino para um modelo.

O estudo demonstra que a eficácia de modelos tabulares depende não apenas da arquite-

tura, mas, sobretudo, das propriedades estatísticas e estruturais dos geradores utilizados

no pré-treino do modelo. Mecanismos geradores baseados em Structural Causal Models

(SCM) apresentaram desempenho superior em tarefas reais e contribuíram para melhor

capacidade de generalização, reforçando a relevância de modelos com estrutura causal

explícita para representar distribuições observadas em aplicações práticas.

Apesar de o foco do MITRA não ser a disponibilização dos dados sintéticos gerados,

ele traz um ponto diretamente relacionado ao objetivo do CSDG: ao colocar a curadoria

de geradores sintéticos como fator central no desenvolvimento de modelos, o trabalho

evidencia a importância de investigar como diferentes dinâmicas causais e complexidades

funcionais podem impactar o desempenho final do modelo em tarefas especializadas.

De forma similar, o CausalTables.jl (BALKUS; HEJAZI, 2025) representa um avanço

relevante na simulação de dados sintéticos com estrutura causal explícita; essa biblioteca

desenvolvida para a linguagem Julia oferece funcionalidades para simulação e armazena-

mento de dados causais em formato tabular, disponibilizando uma interface para definição

de modelos causais via SCMs, suporte para operações de intervenção e acesso a quantida-

des de ground truth, como distribuições condicionais e estimativas causais do tipo ATE.

Essas funcionalidades tornam a ferramenta uma importante base para o desenvolvimento

e avaliação controlada de estimadores causais em dados tabulares. Contudo, assim como

em outras abordagens de geração de dados sintéticos, o CausalTables.jl restringe-se a

cenários estáticos, sem incorporar dependência temporal entre observações ou relações

dinâmicas entre tratamento e resultado. Dessa forma, apesar de sua utilidade para a ava-
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liação de métodos causais em dados não sequenciais, ele não contempla efeitos acumulados

ou contrafactuais sequenciais, aspectos centrais em aplicações longitudinais. A metodolo-

gia proposta neste trabalho complementa esse ecossistema ao possibilitar a simulação de

dados longitudinais com estrutura causal explícita, permitindo o estudo de algoritmos de

inferência causal em cenários realistas onde intervenções, resultados e covariáveis evoluem

ao longo do tempo.

A Tabela 2 sintetiza essa comparação, destacando a lacuna existente no estado da arte

quanto ao suporte simultâneo a estrutura causal e dinâmica temporal.

Tabela 2 – Comparação entre abordagens de geração sintética com estrutura causal.

Característica
MITRA

(ZHANG et al.,
2025)

CausalTables.jl
(BALKUS;

HEJAZI, 2025)

CSDG
(este trabalho)

Tipo de dado gerado Tabular estático Tabular estático
Séries

longitudinais

Estrutura causal explícita
Sim (via priors

diversos)
Sim (via SCMs)

Sim (via SCM
autorregressivo)

Dependência temporal Não Não Sim

Evolução de tratamento e resposta Não Não Sim

Cenários contrafactuais sequenciais Não Parcial Sim

Controle de ruído e da função de efeito Parcial Parcial Sim

Acesso a ground truth causal Parcial
Sim (condicional e

estimandos)
Sim (factual e
contrafactual)

Aplicação principal
Pré-treinamento
e generalização

Avaliação de
estimadores

Benchmarking

Domínios exemplares
Aprendizado

tabular
Causal Tabular

Causal
Longitudinal

A tabela destaca a lacuna existente ao que se refere a geração de cenários sintéticos com estrutura causal,
aspecto que o CSDG busca preencher ao permitir intervenções e efeitos acumulados ao longo do tempo
para avaliação de métodos de inferência causal em dados longitudinais.

Além das abordagens baseadas em estrutura causal sintética, trabalhos recentes têm

explorado a geração de dados longitudinais a partir de dados reais, com foco em utilidade

estatística e preservação de privacidade.

No estudo de Bun et al. (2024) vemos uma proposta de geração de dados sintéticos

longitudinais a partir de dados médicos reais de pacientes, ao passo que o objetivo é

preservar a privacidade dos indivíduos, capturando propriedades estatísticas importantes

dos dados que devem ser mantidas e assegurando consistência temporal das trajetórias

individuais em estudos observacionais. Apesar desses avanços, tais métodos não mode-

lam explicitamente relações de causa e efeito, nem permitem o controle paramétrico de
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intervenções e contrafactuais — limitações que restringem seu emprego em benchmarking

causal.

Kühnel et al. (2024) também abordam a geração de dados sintéticos longitudinais a

partir de dados reais, com foco em estudos nutricionais. Os autores utilizam o método

Variational Autoencoder Modular Bayesian Network (VAMBN) e o estendem com uma

camada de uma rede Long Short-Term Memory (LSTM) para modelar dados longitudi-

nais do estudo Dortmund Nutritional and Anthropometric Longitudinally Designed Study

(DONALD), que é um estudo alemão que acompanha informações sobre dieta e saúde

de crianças ao longo do tempo. Essa extensão com LSTM permite ao modelo capturar

características de autorregressão nos dados, melhorando a reprodução de dependências

temporais. O trabalho de Kühnel et al. (2024) compartilha com a proposta deste tra-

balho o interesse na geração de dados sintéticos longitudinais; porém, da mesma forma

que em Bun et al. (2024), diferenciam-se por focar na preservação de propriedades esta-

tísticas para reproduzir análises do mundo real, enquanto este trabalho concentra-se na

geração de dados para avaliação de algoritmos de inferência causal. As diferenças dessas

abordagens estão explicitadas na Tabela 3.

Em síntese, embora existam iniciativas relevantes tanto na geração de dados sintéticos

para pré-treinamento quanto na construção de bases longitudinais sintéticas para preser-

vação de privacidade, permanece sem solução um componente crucial: a geração de dados

longitudinais com mecanismo causal explícito e controle de intervenções para validação

empírica de estimadores causais.

Nesse contexto, o presente trabalho diferencia-se ao oferecer a capacidade de especifi-

car mecanismos causais autorregressivos, gerando dados que preservam tanto a dinâmica

temporal quanto a coerência causal subjacente, aspectos essenciais para avaliação rigorosa

de algoritmos de inferência causal em dados longitudinais.

2.7 Métricas

Em inferência causal, é essencial quantificar não apenas o impacto de uma intervenção,

mas também como essa intervenção altera a associação estatística entre tratamento (T)

e resultado (Y). Para isso, adotamos duas métricas fundamentadas no arcabouço dos

resultados potenciais: o Average Treatment Effect (ATE) (RUBIN, 1974), que mensura

o efeito causal médio em nível populacional, e a variação de associação Δr (MENG;

ROSENTHAL; RUBIN, 1992), que captura mudanças estruturais na relação T↔Y após

intervenções no tratamento.

Neste trabalho também avaliamos a capacidade de modelos em estimar trajetórias

factuais e contrafactuais ao longo do tempo. Nesse contexto, utilizamos o RMSE para

mensurar a acurácia preditiva no cenário factual, e o Precision in Estimation of Hete-

rogeneous Effect (PEHE) (HILL, 2011), que avalia a qualidade da estimativa de efeitos

individuais do tratamento.
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Tabela 3 – Comparação entre abordagens de geração de dados sintéticos longitudinais.

Característica

Bun et al. (2024)

Kühnel et al. (2024)
CSDG

(este trabalho)

Origem / mecanismo gerador gerados a partir de bases
observacionais reais

gerados a partir de estruturas
causais autorregressivas

Finalidade principal Privacidade de dados e
preservação de propriedades

estatísticas

Avaliação causal (benchmarking)
de estimadores

Modelo causal explícito Não Sim

Controle de intervenções Não Sim

Cenários contrafactuais Não Sim

Dependência temporal Sim Sim

Reprodutibilidade experimental Limitada Alta

Acesso ao ground truth causal Não Sim

A tabela contrasta métodos longitudinais baseados em dados reais, focados em privacidade e preservação
de propriedades estatísticas, com a abordagem sintética causal proposta neste trabalho, que combina
dinâmica temporal com mecanismos causais explícitos para avaliação de métodos de inferência causal.

Nesta seção, apresentamos as métricas citadas que serão utilizadas ao longo deste

trabalho para a avaliação dos dados sintéticos gerados e dos modelos aplicados sobre

esses dados.

2.7.1 Efeito médio de Tratamento (ATE)

O efeito médio do tratamento (ATE) quantifica, em média, a influência do tratamento

T sobre o resultado Y em uma população. Seu cálculo parte do conceito fundamental de

Efeito Individual do Tratamento (ITE), definido no arcabouço de resultados potenciais

como:

ITEi = Yi(1) − Yi(0), (4)

em que Yi(1) representa o resultado observado ou simulado para o indivíduo i sob o

tratamento, e Yi(0) o resultado contrafactual caso o mesmo indivíduo não tivesse recebido

o tratamento. Em dados observacionais reais, apenas um desses resultados é observável;

nos dados sintéticos gerados pelo CSDG, ambos são conhecidos, o que permite estimar

diretamente o ITE e, por consequência, o ATE.

O ATE é então definido como a média dos efeitos individuais:

ATE =
1

N

N∑

i=1

(Yi(1) − Yi(0)), (5)

onde N é o número de indivíduos. Essa métrica reflete a diferença média esperada no

resultado entre os cenários com e sem intervenção e constitui a medida clássica de efeito
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causal em nível populacional.

Para os dados longitudinais gerados, o cálculo é realizado em cada instante temporal t

e após a intervenção tint, considerando-se as séries de resultados factuais e contrafactuais.

Assim, obtemos um perfil temporal do efeito médio, representado como ATE(t), que

permite observar a evolução do impacto do tratamento ao longo do tempo.

Ainda no nosso contexto, é necessário realizar o cálculo para cada cenário contrafactual

k e tempo t. Definimos, portanto, o efeito médio no corte transversal como:

ATE(t)(k) = Ei

[
Y

(cf,k)
i,t − Y

(f)
i,t

]
(6)

onde o termo à direita representa a média, sobre os indivíduos i, da diferença entre os

resultados contrafactuais e factuais no tempo t para o cenário k.

Os valores de ATE(t)(k) são posteriormente agregados por tipo de intervenção no

tratamento e intensidade (δ), possibilitando a comparação entre diferentes regimes de

tratamento e níveis de efeito. A partir de ATE(t)(k), calculamos três medidas comple-

mentares:

a) o ATE médio pós-intervenção no cenário k:

ATE
(k)

=
1

|H|

∑

t∈H

ATE(t)(k) (7)

b) o ATE final, correspondente a t = S − 1;

c) o ATE acumulado (soma dos efeitos no período pós-intervenção), utilizados como

visões complementares da magnitude do efeito.

Avaliamos a relação dose–resposta por tipo de intervenção por meio da correlação de

Spearman entre a intensidade da intervenção (δ) e o efeito médio pós-intervenção (ATE
(k)

).

Essa escolha decorre do fato de Spearman medir a monotonicidade da relação entre duas

variáveis de maneira não paramétrica, independentemente da forma funcional. Como o

CSDG pode gerar tanto padrões monotônicos quanto não monotônicos — especialmente

em funções não lineares como senoides — a correlação de Spearman é apropriada por

capturar relações ordinais mesmo quando há inversões locais.

2.7.2 Mudança de associação (Δr)

Em dados longitudinais, a relação entre variáveis pode ser analisada sob duas dimen-

sões complementares: a temporal, que descreve a dependência entre observações sucessivas

de uma mesma unidade, e a transversal, que expressa a associação entre diferentes uni-

dades observadas em um mesmo instante. Conforme discutido por Shen et al. (2023),

essas duas perspectivas — denominadas regressão horizontal e regressão vertical — repre-

sentam formas equivalentes de avaliação de inferência causal em painéis, diferenciando-se

apenas quanto à fonte de variação explorada: a primeira utiliza padrões de correlação no
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tempo para o mesmo indivíduo, enquanto a segunda baseia-se em padrões de correlação

transversal entre indivíduos no mesmo tempo.

Nesta dissertação, o cálculo de r(t) = corr(Tt, Yt) adota precisamente essa perspectiva

transversal, permitindo examinar como a associação contemporânea entre tratamento e

resultado se comporta ao longo do tempo. Essa abordagem está em consonância com a

noção de correlação transversal apresentada por Baltagi, Kao e Peng (2016), que enfatizam

a importância de considerar a dependência cruzada entre unidades em um mesmo período

para garantir inferências válidas em modelos de painel com correlação serial.

A diferença Δr(t) expressa, assim, a variação na dependência entre T e Y após a

intervenção, revelando possíveis mudanças no grau de associação causal. Dessa forma, a

métrica Δr(t) é interpretada aqui como um indicador dinâmico da intensidade e estabili-

dade da associação causal entre tratamento e resultado.

Para quantificar como as intervenções alteram a associação entre T e Y no conjunto de

indivíduos, calculamos as correlações do cenário factual rf e dos cenários contrafactuais

rcf no corte transversal, para cada tempo t:

rf (t) = corr
(
T

(f)
t , Y

(f)
t

)
, r

(k)
cf (t) = corr

(
T

(cf,k)
t , Y

(cf,k)
t

)
(8)

e definimos a mudança na correlação Δr causada pelas intervenções como:

Δr(k)(t) = r
(k)
cf (t) − rf (t), (9)

onde rf (t) e r
(k)
cf (t) são calculados sobre as mesmas unidades amostrais, caracterizando

correlações dependentes no sentido discutido por Meng, Rosenthal e Rubin (1992). Assim,

Δr(k)(t) expressa a variação na dependência T ↔ Y no tempo t, entre os cenários factual

e contrafactual k. A série Δr(k)(t) permite identificar os momentos em que a associação

T ↔ Y se altera em função do tratamento.

Ao agregamos por tipo de intervenção - pontual, gradual ou contínua - e intensidade

δ, obtemos medidas resumidas como a média no pós-intervenção definida na Equação 10:

Δr
(k)

=
1

|H|

∑

t∈H

Δr(k)(t) (10)

Essa medida sintetiza o efeito da intervenção na dependência contemporânea entre T

e Y, permitindo comparar regimes de intervenção e estruturas causais.

Nos cenários com efeitos causais lineares, a correlação de Pearson é a escolha natural

para quantificar a dependência entre Tt e Yt, pois mede precisamente a força da relação

linear entre duas variáveis aleatórias. Sua interpretação é direta, simétrica e compatível

com os efeitos lineares impostos pelo gerador, justificando seu uso exclusivo nesses casos.

Nos cenários com efeitos causais não lineares utilizamos a correlação de Chatterjee ξ

(CHATTERJEE, 2021). O coeficiente ξ é uma medida de dependência monotônica não

paramétrica, ele quantifica quão bem X ordena os valores de Y e possui propriedades
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cruciais para este trabalho: (i) vale 0 se e somente se T e Y são independentes; (ii)

vale 1 se e somente se Y é função de T , não necessariamente linear; (iii) é invariante

a transformações monotônicas marginais; (iv) detecta relações monotônicas mesmo em

presença de forte distorção não linear.

Essas características tornam ξ particularmente adequado para os cenários do CSDG,

nos quais a dependência entre tratamento e resultado pode assumir formas altamente não

lineares, preservando apenas a monotonicidade estrutural.

Bucher e Dette (2024) apresentam críticas ao método e demonstram que o coeficiente

ξ não é contínuo sob convergência fraca e que, por consequência, testes de independência e

intervalos de confiança uniformes baseados em ξ tendem a ter comportamento estatístico

inadequado. Esses resultados, porém, não se aplicam ao uso adotado nesta dissertação,

pelas seguintes razões: (i) Neste trabalho ξ é empregado como medida descritiva de associ-

ação em dados sintéticos, não como estatística de teste. (ii) A estrutura causal verdadeira

é conhecida e controlada pelo gerador, afastando o uso inferencial criticado no artigo.

(iii) A aplicação foca exclusivamente em mudanças de associação factual–contrafactual.

Isso se enquadra exatamente no tipo de dependência monotônica que ξ foi projetado para

medir. (iv) Os cenários são gerados de modo determinístico e controlado, evitando os

casos patológicos usados por Bucher e Dette (2024).

Portanto, mesmo reconhecendo essas limitações teóricas, a correlação de Chatterjee

continua sendo a métrica ideal para mensurar alterações de associação nos cenários não

lineares construídos pelo CSDG.

2.7.3 Root Mean Square Error (RMSE)

A qualidade das previsões nos cenários factuais, sem intervenção no tratamento, foi

avaliada utilizando o RMSE, visto ser uma métrica comum para avaliação neste contexto

(CHENG et al., 2022), calculado entre os valores de referência Y e os preditos Ŷ ao longo

do horizonte de previsão. Fixamos a origem do horizonte no instante de intervenção tint

e expressamos o tempo por τ = t − tint, com τ ≥ 0. O RMSE factual por defasagem é

dado por:

RMSE(f)(τ) =

√√√√ 1

N

N∑

i=1

(
Y

(f)
i, tint+τ − Ŷi, tint+τ

)2
, τ ≥ 0 (11)

2.7.4 Precision in Estimation of Heterogeneous Effect (PEHE)

Para os cenários contrafactuais, utilizamos o PEHE (HILL, 2011), que avalia o erro

na estimativa do efeito individual do tratamento comparando, para cada indivíduo, a

diferença entre os resultados sob tratamento e não tratamento com a diferença que o

modelo estima para esses dois mundos. Na forma clássica, sem índice temporal, o PEHE

é definido por:
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εPEHE =
1

N

N∑

i=1

{[
Yi(1) − Yi(0)

]
−

[
Ŷi(1) − Ŷi(0)

]}2
(12)

Como o problema é longitudinal, introduzimos a noção de ITE ao longo do tempo,

indexando os resultados por defasagem τ = t − tint em relação ao instante da intervenção

tint. Para cada τ ≥ 0 (pós-intervenção), definimos o ITE verdadeiro do indivíduo i no

instante tint + τ como:

ITEi(τ) = Y
(cf,k)

i, tint+τ − Y
(f)

i, tint+τ (13)

onde Y (f) é o resultado factual (sem intervenção aplicada naquele indivíduo e tempo)

e Y (cf,k) é o resultado contrafactual sob o cenário k (tipo de intervenção e dose δ). O ITE

estimado pelo modelo é:

ÎTEi(τ) = Ŷ
(cf,k)

i, tint+τ − Ŷ
(f)

i, tint+τ (14)

Com isso, obtemos a versão temporal do PEHE por defasagem τ , escrita diretamente

em termos dos ITEs:

εPEHE(τ) =
1

N

N∑

i=1

{
ITEi(τ) − ÎTEi(τ)

}2
, τ ≥ 0 (15)

2.8 Considerações Finais

Este capítulo apresentou os fundamentos teóricos que sustentam o desenvolvimento

do CSDG e os experimentos conduzidos neste trabalho. Iniciamos revisando os princípios

da Inferência Causal, destacando desde as primeiras formulações de Wright e Neyman até

a consolidação moderna dos modelos causais estruturais (SCMs) e dos diagramas acícli-

cos dirigidos (DAGs). Em seguida, discutimos o arcabouço dos Resultados Potenciais e

o Potential Outcomes Framework, enfatizando sua relevância para definir efeitos contra-

factuais e formalizar estimandos como ITE, ATE e CATE, essenciais para análise causal

tanto teórica quanto empírica.

A seção seguinte apresentou um panorama das principais abordagens para estima-

ção de efeitos causais em dados observacionais, abrangendo métodos não paramétricos,

modelos estatísticos clássicos, técnicas bayesianas, métodos baseados em árvores e avan-

ços recentes que empregam arquiteturas de deep learning, com destaque para modelos

recorrentes e abordagens baseadas em Transformers. Abordamos também modelos dedi-

cados à predição contrafactual ao longo do tempo, como RMSN, CRN, G-Net e o Causal

Transformer, destacando seus avanços e limitações.

Posteriormente, discutimos diferentes estruturas causais, evidenciando como distintos

padrões estruturais afetam a propagação de efeitos e a interpretação causal. Essa discus-

são forneceu a base conceitual necessária para compreender o comportamento dinâmico
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adotado no CSDG. Na sequência, apresentamos a natureza dos dados longitudinais e sin-

tetizamos como dados reais e sintéticos diferem em termos de controle causal, dependência

temporal e disponibilidade de ground truth, destacando a importância de mecanismos au-

torregressivos para cenários realistas.

Finalmente, detalhamos as métricas utilizadas ao longo da pesquisa: o ATE e a mu-

dança de associação Δr, que permitem avaliar diretamente os efeitos das intervenções nos

sistemas causais simulados; e as métricas RMSE e PEHE, fundamentais para mensurar a

capacidade preditiva e a qualidade das estimativas contrafactuais dos modelos. A escolha

das correlações de Spearman, Pearson e Chatterjee foi justificada conforme a natureza

estrutural dos cenários — respectivamente testes de monotonicidade, efeitos lineares e

não lineares — assegurando coerência entre o mecanismo gerador e a medida estatística

empregada.

Em conjunto, os elementos apresentados neste capítulo estabelecem o arcabouço con-

ceitual necessário para compreender o processo de geração dos dados sintéticos e os méto-

dos utilizados para avaliá-los. Eles constituem o alicerce teórico sobre o qual os resultados

experimentais do restante da dissertação foi desenvolvido e interpretado.
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Capítulo 3

Causal Synthetic Data Generator

A proposta apresentada neste trabalho consiste em um gerador que simula fontes de

dados com relação causal entre si a partir de equações estruturais causais autorregressivas

que modelam o comportamento dessas variáveis ao longo do tempo.

As estruturas causais disponíveis para geração foram definidas com base em padrões

disponíveis na literatura, e a saída do gerador é composta pelas séries sintéticas que

incluem tratamentos e resultados e que podem incluir covariáveis e contrafactuais.

3.1 Composição da Estrutura de Geração

As variáveis T e Y são modeladas como processos autorregressivos, nos quais o valor

atual depende do valor observado no período anterior, controlado por um coeficiente

temporal Φ e um termo de erro aleatório. Essa modelagem captura a dinâmica temporal

comum em séries longitudinais reais:

Yt = ΦY Yt−1 + . . . (16)

As funções f(·) e g(·) determinam a natureza da relação entre variáveis. Quando a

relação é linear, temos f(x) = x. Para relações não lineares, podem ser utilizadas funções

como quadrática x2, oscilatória sin(x) ou logarítmica log(1 + x2) com crescimento suave,

definidas por parametrização ou atribuídas aleatoriamente no momento da geração dos

dados.

Todos os termos de erro ε são amostrados de uma distribuição probabilística definida

pelo usuário, podendo ser Normal ou Uniforme, conforme parametrização do gerador. As-

sim, a distribuição do ruído é selecionada externamente e aplicada de forma independente

a cada iteração:

ε ∼





N (0, σ2), se noise_dist = “normal”,

Uniform(a, b), se noise_dist = “uniform”.

(17)
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3.4 Geração dos Dados

O processo de geração dos dados sintéticos no CSDG é controlado por meio de um ar-

quivo de configuração no formato YAML, que define todos os parâmetros necessários para

a execução do gerador. Essa abordagem declarativa garante reprodutibilidade e flexibi-

lidade, permitindo que diferentes cenários sejam simulados apenas informando o arquivo

de configuração no momento da execução, sem necessidade de alterações no código-fonte.

Os parâmetros disponíveis para configuração no arquivo estão listados na Tabela 4.

Tabela 4 – Parâmetros definidos no arquivo de configuração YAML do CSDG

Parâmetro Descrição
name Referência do dataset na saída
seed Semente de aleatoriedade
n Número de indivíduos (séries independentes)
t Comprimento temporal das séries
structure_type Estrutura causal (direct, chain, confounder)
nonlinear Uso de funções não lineares nas relações causais
normalize Normalização temporal (z-score)
effects.ty Função de efeito de T → Y
effects.tx Função de efeito de T → X
effects.xt Função de efeito de X → T
effects.xy Função de efeito de X → Y
phi_T Persistência temporal do tratamento
phi_Y Persistência temporal do resultado
betas.ty Coeficiente causal T → Y
betas.tx Coeficiente causal T → X
betas.xy Coeficiente causal X → Y
betas.xt Coeficiente causal X → T
noise_dist Tipo da distribuição do ruído (uniform ou normal)
sigma_T Desvio padrão do ruído de T (se normal)
sigma_Y Desvio padrão do ruído de Y (se normal)
sigma_X Desvio padrão do ruído de X (se normal)
noise_T_range Intervalo do ruído de T (se uniforme)
noise_Y_range Intervalo do ruído de Y (se uniforme)
noise_X_range Intervalo do ruído de X (se uniforme)
confounder_mode Tipo de geração da covariável X (iid ou ar1 )
phi_X Persistência temporal de X (se confounder_mode=ar1)
interventions Lista de intervenções (tipo, tempo e intensidade)
split.train Proporção destinada ao treino
split.val Proporção destinada à validação
split.test Proporção destinada ao teste

O arquivo é composto por blocos de parâmetros agrupados conforme suas finalidades:

❏ Dados principais: definem o nome do dataset (name ), o número de indivíduos

(n) e o comprimento das séries (t). O campo structure_type seleciona a es-

trutura causal desejada, direct, chain ou confounder. Os parâmetros nonlinear e
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normalize controlam, respectivamente, a inclusão de não-linearidades nas equações

e a normalização dos valores gerados.

❏ Funções de efeito (effects): os termos ty, tx, xy e xt indicam quais funções

serão utilizadas na aplicação do efeito entre as variáveis. As opções são: linear

- linear -, quadratic - quadrado - , sine - seno - e logarithmic - logaritmo

natural. As funções especificadas são utilizadas caso nonlinear=True , se não forem

especificadas são sorteadas aleatoriamente.

❏ Coeficientes autorregressivos: os termos phi_T e phi_Y correspondem aos coe-

ficientes autorregressivos das variáveis de tratamento e resultado. Caso não sejam

especificados, são sorteados aleatoriamente dentro de intervalos predefinidos, garan-

tindo variabilidade entre instâncias.

❏ Coeficientes causais (betas): determinam as forças de causalidade entre as va-

riáveis, variando conforme a estrutura selecionada. Por exemplo, em uma estrutura

Direta, apenas o parâmetro ty (efeito de Tt sobre Yt) é utilizado, enquanto nas es-

truturas chain e confounder os termos adicionais tx, xy e xt são ativados conforme

o grafo causal correspondente.

❏ Configuração dos ruídos: o parâmetro noise_dist define a distribuição probabi-

lística dos termos de erro (εTt
, εYt

, εXt
). Pode-se escolher entre distribuição uniforme

ou normal, com intensidade controlada pelos parâmetros sigma ou pelos intervalos

noise_range. Essa configuração influencia diretamente o sinal-ruído (SNR) do sis-

tema gerado.

❏ Modo de geração do confundidor: quando a estrutura envolve uma variável

confundidora Xt, o parâmetro confounder_mode define se a série será independente

e identicamente distribuída (iid) ou autorregressiva de primeira ordem (ar1). O

coeficiente phi_X controla a persistência temporal nesse último caso.

❏ Intervenções: o bloco interventions especifica o conjunto de intervenções apli-

cadas ao tratamento Tt. Cada elemento define o tipo de intervenção (pontual,

gradual ou contínua), o instante de aplicação (t_interv) e a intensidade da mu-

dança (delta_T). Essa parametrização permite explorar o comportamento do sis-

tema sob diferentes magnitudes e durações de intervenção, o que é fundamental para

avaliar a resposta causal e a relação dose–efeito.

❏ Divisão dos dados: a chave split define as proporções destinadas aos conjuntos

de treino, validação e teste, garantindo consistência experimental nas etapas de

modelagem e análise.
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Durante a execução, o gerador lê o arquivo YAML, inicializa o estado aleatório con-

forme a semente (seed ), instancia as equações estruturais conforme a estrutura causal

definida e aplica as intervenções configuradas.

Os dados gerados pelo CSDG são armazenados no formato NumPy Zip (NPZ), um

contêiner compactado que agrupa múltiplos arrays nomeados e metadados em um único

arquivo. Esse formato oferece (i) eficiência de entrada e saída (I/O), (ii) compressão

transparente via zip, e (iii) portabilidade direta dentro do ecossistema Python, sendo

suportado nativamente por bibliotecas como NumPy, SciPy, Scikit-learn, PyTorch e Ten-

sorFlow. Dessa forma, cada partição do conjunto de dados — train , val e test — é

salva como um arquivo .npz contendo tanto os arrays principais (treatments , outcomes ,

covariates ) quanto suas versões contrafactuais e respectivos metadados de configuração.

Além de sua eficiência e compatibilidade, o NPZ preserva os tipos numéricos e as

formas (shape ) dos arrays, evitando ambiguidades comuns em formatos tabulares como

CSV, em que pode ocorrer perda de precisão, ordenação ou cabeçalhos inconsistentes.

A estrutura em chaves nomeadas também simplifica o acesso seletivo a subconjuntos

específicos de dados — como séries factuais, contrafactuais ou variáveis auxiliares —

mantendo, no mesmo contêiner, os parâmetros e condições experimentais responsáveis

pela geração do dataset. Essa característica é fundamental para garantir reprodutibilidade

e rastreabilidade dos experimentos.

Por fim, embora o NPZ seja um formato nativo do NumPy, sua utilização é ampla-

mente compatível com outras linguagens e ambientes científicos. Em Julia, pode ser lido

diretamente via o pacote NPZ.jl; em R ou MATLAB, o acesso pode ser realizado por

meio de bindings Python, como reticulate e MATLAB Engine. Em cenários onde o su-

porte direto não está disponível, os arquivos podem ser convertidos de forma simples para

formatos intercambiáveis como CSV ou Parquet, preservando a estrutura e o conteúdo

dos dados originais.

Convenção de nomes

Os arquivos são gravados seguindo o padrão:

{name}_{structure}_{nonline}_{t}p_{n}n_{split}.npz

onde:

❏ name : identificador do dataset (ex.: synthetic1);

❏ structure : estrutura causal (direct , chain , confounder );

❏ nonlin: indicação de linearidade (linear ou nonlinear );

❏ t: número de passos temporais, com sufixo p (ex.: 20p ⇒ t = 20);
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❏ n: número de indivíduos, com sufixo n (ex.: 250n ⇒ n = 250);

❏ split : partição (train , val ou test ).

Esse esquema torna o arquivo auto-descritivo: apenas pelo nome é possível identificar a

estrutura causal, a presença de não-linearidades, os tamanhos (n, t) e a partição.

Estrutura interna

A função de geração retorna um dicionário cujas chaves são serializadas no NPZ. A

Tabela 5 resume os principais campos, suas formas (dimensionalidade) e significado. O

primeiro bloco contém as chaves com os dados gerados e o segundo os metadados de

geração.

Tabela 5 – Estrutura dos arquivos gerados: chaves, formas e descrição.

Chave Forma
(shape)

Descrição

treatments (n, t) Tratamento factual T .
outcomes (n, t) Resultado factual Y .
covariates (n, t) Covariável X;
treatments_cf (k, n, t) Tratamento contrafactual.
outcomes_cf (k, n, t) Resultado contrafactual.
covariates_cf (k, n, t) Covariável contrafactual.
interventions lista de tuplas Especificação das intervenções.

phi_T, phi_Y, phi_X decimal Coeficientes autorregressivos.
betas_ty , betas_tx ,
betas_xt , betas_xy

decimal Coeficientes causais.

noise_dist string Distribuição dos ruídos.
sigma_T, sigma_Y,
sigma_X

decimal Intensidades do ruído para normal .

noise_T_range ,
noise_Y_range ,
noise_X_range

pares (`, u) Intervalos do ruído para uniform .

structure_type string Estrutura causal.
normalize booleanos Sinaliza normalização.
nonlinear booleanos Sinaliza não linearidade nos efeitos.
effect_ty , effect_tx ,
effect_xt , effect_xy

string Funções de efeito de cada relação causal.

confounder_mode string iid ou ar1.
seed inteiro Semente para reprodutibilidade.

Observações importantes:

❏ k é o número de intervenções definidas em config["interventions"]; cada fatia

[i, :, :] em _cf corresponde a um cenário distinto.
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❏ As formas (n, t) e (k, n, t) facilitam operações vetorizadas para métricas por

indivíduo ou por cenário.

❏ Quando normalize =true , a normalização é aplicada de modo consistente entre

factual e contrafactual.

3.4.1 Considerações finais

O gerador proposto neste capítulo consolida uma abordagem formal, flexível e repro-

dutível para a criação de dados sintéticos longitudinais com estrutura causal explícita.

Ao integrar dependências temporais autorregressivas, efeitos causais contemporâneos e

diferentes formas funcionais entre tratamento, resultado e covariáveis, o CSDG permite

simular, de forma controlada, cenários compatíveis com dinâmicas reais observadas em

processos longitudinais. As três estruturas causais implementadas — Direta, Cadeia e

Confundidor — abrangem padrões fundamentais da literatura, possibilitando investigar

efeitos diretos, mediadores e confundidores ao longo do tempo. Exemplos gráficos apresen-

tados ao longo do capítulo ilustram que o gerador produz trajetórias realistas e coerentes

com as propriedades esperadas de cada estrutura, conforme visto nas Figuras 6, 8 e 10.

A capacidade de gerar trajetórias factuais e contrafactuais, aliada ao suporte para

diferentes tipos de intervenção - pontual, gradual e contínua - estabelece um ambiente

experimental rico para avaliar algoritmos de inferência causal sob múltiplas condições

estruturais. O uso de funções de efeito configuráveis, coeficientes autorregressivos e in-

tensidades de intervenção permite ajustar a complexidade do sistema simulado, tornando

o gerador aplicável tanto a estudos exploratórios quanto a experimentos metodológicos

mais exigentes.

A seção dedicada ao processo de geração descreveu ainda o papel do arquivo de con-

figuração YAML, que oferece uma interface declarativa e reprodutível para controle de

todos os elementos do gerador, desde coeficientes autoregressivos e funções de efeito até

ruídos estruturais e faixas de variabilidade. Essa abordagem amplia a flexibilidade experi-

mental, permitindo que cenários diversos sejam produzidos sem necessidade de alterações

diretas no código.

Em síntese, essas contribuições reforçam o papel do CSDG como uma ferramenta

aberta, reprodutível e metodologicamente fundamentada para experimentação causal em

contextos longitudinais. O gerador permite a criação de cenários realistas com ground

truth causal conhecido e oferece um ambiente controlado para testar e comparar algorit-

mos de aprendizado causal. Ao integrar estruturas causais explícitas, dinâmicas autor-

regressivas e diferentes regimes de intervenção, o CSDG estabelece uma base consistente

para estudos que exigem controle rigoroso das relações causais e do comportamento tem-

poral das variáveis.
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Capítulo 4

Análise do CSDG

Neste capítulo temos como objetivo demonstrar que o CSDG produz dados que respei-

tam princípios de consistência causal, realismo estatístico e reprodutibilidade de efeitos

esperados sob manipulação das variáveis.

Buscou-se observar empiricamente o comportamento dinâmico dos efeitos do trata-

mento sob diferentes tipos e intensidades de intervenção, e foram verificados se as propri-

edades estatísticas e causais dos cenários simulados se comportam conforme o esperado a

partir das estruturas definidas.

Essa etapa é essencial para validar a coerência do gerador e confirmar se as relações

causais impostas pelas estruturas e pelos parâmetros se traduzem em padrões observáveis

de efeito médio e de associação entre variáveis ao longo do tempo.

4.1 Método de Análise

Analisamos os diferentes cenários de dados sintéticos gerados pelo CSDG sob duas

perspectivas complementares: (i) o efeito médio do tratamento sobre o resultado (ATE)

e (ii) a mudança de associação entre tratamento e resultado provocada pelas intervenções

(Δr). O objetivo é verificar se as estruturas causais e funções de efeito especificadas no

gerador se manifestam de forma consistente nas propriedades observadas dos dados.

Em todas as análises, alinhamos o tempo em τ = t − tint, definindo a defasagem

temporal relativa à intervenção, de modo que τ = 0 representa o instante da intervenção,

τ < 0 indica períodos anteriores e τ > 0 períodos posteriores.

Padronizamos T e Y por tempo utilizando z-score, onde para cada instante t subtraí-

mos a média e dividimos pelo desvio-padrão calculados sobre todos os indivíduos. Essa

etapa garante comparabilidade entre períodos, elimina efeitos de escala e assegura que as

medidas de dependência reflitam exclusivamente a covariação relativa entre indivíduos.

As análises foram estratificadas por tipo de intervenção e por intensidade aplicada

(δ). No estudo da mudança de associação Δr, utilizamos métricas de dependência esco-

lhidas de acordo com o caráter funcional dos cenários. Correlação de Pearson foi aplicado
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aos cenários lineares, por medir com precisão a variação na componente linear da asso-

ciação e correlação de Chatterjee foi aplicado aos cenários não lineares, por responder

adequadamente às transformações introduzidas pelos mecanismos funcionais empregados.

A mudança de associação foi avaliada comparando-se diretamente as curvas de de-

pendência factual e contrafactual ao longo da defasagem temporal, permitindo observar

como a intervenção altera a relação entre T e Y em cada cenário. Apresentamos também

a média temporal E[Δr(τ)] acompanhada de intervalos de confiança obtidos por reamos-

tragem, a fim de sintetizar o comportamento agregado após a intervenção sempre que

essa representação contribui para a interpretação dos resultados.

Por convenção, valores positivos de Δr(k)(t) indicam aumento da associação T ↔ Y

no contrafactual em comparação ao factual, enquanto valores negativos indicam redução

dessa dependência.

4.2 Dados e cenários analisados

A avaliação conduzida neste capítulo baseia-se em um conjunto ampliado de dados sin-

téticos gerados pelo CSDG, contemplando múltiplas combinações estruturais e funcionais,

com intuito de investigar como diferentes mecanismos causais e formas de não-linearidade

influenciam o comportamento das métricas de interesse. Foram construídos nove conjun-

tos de dados, variando-se (i) a estrutura causal subjacente, (ii) a complexidade funcional

dos efeitos entre as variáveis e (iii) o tipo de função não linear empregada.

Todos os datasets compartilham a mesma configuração factual: cada indivíduo possui

uma série temporal de T = 20 períodos, com intervenção aplicada em tint = 10, e po-

pulação total de N = 250 indivíduos. Para cada indivíduo são gerados k = 30 cenários

contrafactuais, correspondentes às combinações dos três tipos de intervenção com dez

intensidades δ variando de 0,1 a 1,0 em incrementos de 0,1.

Os parâmetros de geração foram mantidos fixos entre todos os conjuntos de dados,

conforme a Tabela 6, de modo a isolar o efeito das estruturas causais e das funções de

efeito.

Os coeficientes temporais foram definidos como φT = φY = 1.0, produzindo séries

totalmente persistentes. Essa escolha elimina a influência de componentes autorregressivas

e faz com que qualquer variação observada ao longo do horizonte decorra exclusivamente

das relações causais especificadas. Dessa forma, as diferenças entre cenários passam a

refletir diretamente os mecanismos estruturais e as funções de efeito, e não dinâmicas

temporais intrínsecas às séries.

Além disso, os coeficientes βT Y e βT X foram mantidos iguais em todas as estruturas,

assegurando que o tratamento conserve a mesma força causal na relação com Y e com X,

independentemente da estrutura causal.
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Tabela 6 – Parâmetros globais de geração dos dados empregados nos nove datasets.

Coeficientes temporais φT = 1.0, φY = 1.0

Coeficientes causais βT Y = 1.2, βT X = 1.2, βXY = 0.9, βXT = 0.6

Ruído (distribuição) uniform

Intervalos do ruído T, X, Y : [−0.1, 0.1]

Os nove datasets foram organizados em três grupos conforme descrito na Tabela 7. O

grupo 1 (G1) utiliza relações estritamente lineares entre as variáveis e os grupos 2 (G2)

e 3 (G3) empregam funções não lineares. No grupo 2 (G2), o efeito do tratamento é

intensificado por funções quadráticas aplicadas a T → Y e T → X, enquanto a combi-

nação X → T com função logarítmica introduz confundimento ao tratamento. No grupo

3 (G3), a função senoide associada ao tratamento produz efeitos oscilatórios, permitindo

avaliar cenários em que o efeito causal varia ao longo do tempo. Em ambos os grupos não

lineares, o efeito X → Y é modelado pela função logarítmica, comprimindo a resposta de

Y às variações de X; na estrutura Cadeia, isso reduz a influência mediada do tratamento,

enquanto na estrutura Confundidor modera a influência direta de X sobre Y .

Tabela 7 – Descrição dos nove datasets de análise, agrupados por estrutura causal, tipo
de complexidade e grupo funcional.

Dataset Estrutura Complexidade Grupo

Direta–Linear Direta Linear
Confundidor–Linear Confundidor Linear G1
Cadeia–Linear Cadeia Linear

Direta–Não Linear (G2) Direta Não linear
Confundidor–Não Linear (G2) Confundidor Não linear G2
Cadeia–Não Linear (G2) Cadeia Não linear

Direta–Não Linear (G3) Direta Não linear
Confundidor–Não Linear (G3) Confundidor Não linear G3
Cadeia–Não Linear (G3) Cadeia Não linear

Funções de efeito aplicadas em cada um dos grupos:

Grupo 1 (G1): T → X, T → Y , X → T , X → Y = Linear.

Grupo 2 (G2): T → X, T → Y = Quadrática ; X → T , X → Y = Logarítmica.

Grupo 3 (G3): T → X, T → Y = Senoidal ; , X → T , X → Y = Logarítmica.

Essa configuração experimental permite observar, de maneira sistemática, como a

estrutura causal, a complexidade e as funções de efeito influenciam o comportamento das

métricas discutidas nas próximas seções, incluindo o ATE, a mudança de associação Δr

e demais indicadores analisados ao longo deste capítulo.
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4.3 Resultados — Efeito médio (ATE)

Nesta seção analisamos o efeito médio dos tratamentos (ATE), caracterizando de que

forma os cenários contrafactuais modificam os resultados e como essas alterações variam

entre tipos e intensidades de intervenção. A análise contempla quatro aspectos comple-

mentares: a verificação das pré-tendências para estabelecer a equivalência das trajetórias

iniciais; a descrição das curvas temporais do ATE no período pós-intervenção; o estudo

da monotonicidade associada ao tipo de intervenção; e a avaliação da monotonicidade por

faixas de intensidade, com foco na modulação introduzida pelos diferentes valores de δ.

4.3.1 Pré-tendências

Antes de analisar os efeitos pós-intervenção, é fundamental verificar a ausência de

tendência prévia entre os cenários factual e contrafactual.

Em estudos de inferência causal, a hipótese de pré-tendência nula estabelece que,

para τ < 0, as trajetórias dos resultados devem evoluir de forma paralela, de modo que

eventuais diferenças observadas após a intervenção possam ser atribuídas ao tratamento,

e não a discrepâncias pré-existentes.

No contexto deste trabalho, avaliamos a pré-tendência por meio do comportamento

do efeito médio alinhado no tempo, esperando que, no período pré-intervenção, esse valor

seja próximo de zero. Desvios sistemáticos de zero no pré-intervenção indicariam que

factual e contrafactual não são equivalentes antes do tratamento — o que caracteriza um

viés indesejado na construção das séries.

A Figura 12 ilustra o caso de referência Direta–Linear. Observa-se que, no período pré-

intervenção, as médias de ATE(t) permanecem próximas de zero, confirmando a ausência

de pré-tendência. O mesmo comportamento foi verificado nos demais cenários analisados,

reforçando a consistência das séries simuladas e garantindo que as diferenças observadas

no pós-intervenção reflitam exclusivamente o impacto causal das intervenções.

4.3.2 Curvas temporais do ATE

Após confirmada a ausência de pré-tendência, analisamos a evolução temporal do

efeito médio ATE(t), alinhado em τ = t − tint, com o objetivo de caracterizar a dinâmica

do impacto das intervenções ao longo do tempo. As curvas representam a diferença

média entre os resultados factual e contrafactual em cada instante, permitindo identificar

respostas imediatas, efeitos acumulados e a evolução temporal do impacto do tratamento

em cada cenário.

As Figuras 13–24 apresentam as curvas temporais de ATE(t) estratificadas por tipo

de intervenção, estrutura causal e complexidade funcional. Em cada gráfico, as linhas

representam diferentes intensidades de intervenção (δ). O período τ = −1 corresponde ao
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4.5 Conclusão da Análise

A análise conduzida ao longo deste capítulo evidenciou que os dados sintéticos produ-

zidos pelo CSDG reproduzem de maneira consistente os comportamentos esperados para

cada um dos cenários causais definidos. As medidas avaliadas — efeitos médios, curvas

contrafactuais, correlações factuais e contrafactuais e deltas de correlação — apresenta-

ram padrões compatíveis tanto com a estrutura causal quanto com o tipo de intervenção

aplicada, confirmando que o gerador é capaz de produzir dinâmicas coerentes com os

mecanismos que lhe deram origem.

Nos cenários lineares, observou-se um comportamento mais estável, com variações su-

aves ao longo do tempo e diferenças reduzidas entre factual e contrafactual. Esses cenários

servem, portanto, como um baseline natural, útil para validar implementações, calibrar

métodos e verificar se métricas e testes são sensíveis às mudanças mais elementares na

estrutura dos dados. A previsibilidade desses cenários também facilita identificar com-

portamentos anômalos, pois qualquer variação inesperada tende a indicar inconsistências

no processo de geração ou análise, e não um efeito legítimo do cenário.

Os cenários não lineares introduziram oscilações mais expressivas, mudanças acentua-

das na associação entre tratamento e resultado e efeitos pós-intervenção mais persistentes.

Nessas condições, as diferenças entre factual e contrafactual tornam-se mais pronunciadas

e heterogêneas, refletindo maior sensibilidade às interações entre variáveis e aos graus de

complexidade especificados nos parâmetros. Tais cenários representam um desafio mais

realista e exigente para modelos de inferência causal e, por isso, são especialmente adequa-

dos para benchmarking, testes de robustez e avaliação da capacidade de capturar efeitos

dinâmicos e não lineares.

A intervenção gradual e a contínua destacaram-se por amplificar diferenças temporais,

sobretudo em cadeias e cenários com confundidores. Isso demonstra que o gerador é

capaz de representar modificações acumuladas no tempo, algo essencial para estudos

longitudinais realistas. As intervenções pontuais mantiveram proporções mais baixas

de tempos significativos, como esperado em perturbações de curta duração.

De forma geral, os resultados mostram que o CSDG oferece variabilidade suficiente

de estruturas, intensidades de efeitos e regimes de intervenção, permitindo que diferentes

níveis de complexidade sejam explorados de acordo com o objetivo experimental. A

coerência observada entre o comportamento empírico dos dados e os mecanismos causais

que os geraram confirma a adequação do gerador como ferramenta de estudo, simulação

e benchmark para métodos de inferência causal em séries longitudinais.

Assim, concluímos que a análise apresentada valida tanto a confiabilidade quanto a

flexibilidade do CSDG, reforçando sua utilidade como base experimental para o desenvol-

vimento, comparação e avaliação de modelos que buscam estimar efeitos causais dinâmicos

em contextos com diferentes formas de não linearidade, interação e intervenção.
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Capítulo 5

Aplicação: Prova de Conceito com

Aprendizado Temporal Causal

Este capítulo apresenta um experimento como prova de conceito de uso dos dados ge-

rados pelo CSDG. O experimento proposto é baseado no aprendizado de estrutura causal

a partir de dados observacionais históricos e estimativa de resultados potenciais a partir

de tratamentos futuros definidos, ou seja, modelos de resultados potenciais. Compara-se o

desempenho de modelos de regressão linear - tomado como uma baseline - e redes neurais

recorrentes na predição factual e contrafactual, utilizando as métricas RMSE e PEHE.

Assim, a prova de conceito busca demonstrar a utilidade dos dados sintetizados pelo

CSDG para a avaliação de algoritmos de resultados potenciais, destacando a capacidade

do gerador em fornecer cenários adequados para comparação de métodos.

5.1 Dados Utilizados

Cada instância representa um indivíduo com as sequências temporais das variáveis de

tratamento (T ) e resultado (Y ) ao longo de t = 20 períodos. As séries foram geradas

utilizando a estrutura causal direta com relação linear e com os parâmetros definidos na

Tabela 11. Uma intervenção pontual foi aplicada no tratamento no período t = 10, com

intensidade δt = 0.5, de modo que os resultados contrafactuais são gerados a partir do

período tint = 10.

Tabela 11 – Parâmetros de geração dos dados da prova de conceito.

Coeficientes temporais φT = 0.8, φY = 0.7

Coeficientes causais βty = 1.5

Ruído (distribuição) uniform

Intervalos do ruído T : [−0.1, 0.1], Y : [−0.1, 0.1]

Para fins de avaliação, dividimos a sequência de cada indivíduo em duas partes: histó-
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5.3 Resultados

Esta seção apresenta e discute os resultados obtidos na prova de conceito. Os experi-

mentos tiveram como objetivo avaliar o desempenho de diferentes modelos de aprendizado

temporal na predição factual e contrafactual, considerando métricas complementares de

erro e consistência causal. As subseções a seguir estão organizadas conforme o tipo de

avaliação realizada, seguidas de uma síntese interpretativa dos achados e suas implicações.

5.3.1 Predição factual

A Tabela 13 apresenta os resultados da predição factual em termos de RMSE. Observa-

se que a Regressão Linear apresenta aumento progressivo de erro conforme o horizonte

τ se distancia do tempo atual, o que indica sua limitação em capturar as dependências

temporais presentes nos dados. Em contraste, as arquiteturas recorrentes (RNN, LSTM

e GRU) mantêm desempenho estável mesmo em horizontes mais longos, refletindo maior

capacidade de modelar relações dinâmicas e acumular informação ao longo do tempo.

Tabela 13 – RMSE da predição factual após 5 execuções para τ passos (média ± desvio
padrão).

Modelo τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
Regressão Linear 0,548 0,683 0,727 0,832 0,915 1,023
RNN 0,136 ± 0,007 0,162 ± 0,011 0,168 ± 0,010 0,171 ± 0,010 0,152 ± 0,010 0,145 ± 0,008
LSTM 0,127 ± 0,004 0,142 ± 0,002 0,144 ± 0,002 0,152 ± 0,001 0,136 ± 0,001 0,132 ± 0,001
GRU 0,122 ± 0,002 0,140 ± 0,002 0,145 ± 0,002 0,152 ± 0,001 0,139 ± 0,001 0,135 ± 0,001

Nota-se também que os modelos recorrentes apresentam desvios padrão pequenos, o

que indica alta estabilidade entre execuções. As arquiteturas LSTM e GRU obtêm erros

ligeiramente menores que a RNN simples, mas, dado o número de execuções e a proximi-

dade entre as médias, não é possível afirmar estatisticamente que uma arquitetura supera

consistentemente a outra em horizontes curtos. Assim, LSTM e GRU podem ser inter-

pretadas como apresentando desempenho equivalente nesse cenário, ambas capturando de

forma eficiente as relações temporais subjacentes ao processo factual.

5.3.2 Predição contrafactual

A Tabela 14 apresenta os resultados da métrica PEHE, que avalia a precisão das

estimativas contrafactuais. Os valores mostram diferenças expressivas entre a abordagem

estatística e as redes neurais. A Regressão Linear apresenta valores superiores a 1.0 em

todos os horizontes, indicando incapacidade de capturar a heterogeneidade dos efeitos e

o comportamento dinâmico dependente do histórico.

Em contraste, as arquiteturas recorrentes exibem PEHE muito baixas — da ordem de

10−2 — representando erros substancialmente inferiores e alcançando valores próximos de
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zero a partir dos primeiros passos do horizonte de previsão, especialmente nas arquiteturas

LSTM e GRU.

Tabela 14 – PEHE das predições factual e contrafactual após 5 execuções para τ passos
(média ± desvio padrão).

Modelo τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
Regressão Linear 1,048 1,257 1,339 1,314 1,224 1,102
RNN 0,023 ± 0,012 0,043 ± 0,025 0,049 ± 0,027 0,043 ± 0,024 0,032 ± 0,019 0,023 ± 0,013
LSTM 0,027 ± 0,015 0,018 ± 0,008 0,015 ± 0,004 0,012 ± 0,003 0,008 ± 0,002 0,006 ± 0,002
GRU 0,017 ± 0,003 0,021 ± 0,004 0,018 ± 0,004 0,014 ± 0,003 0,011 ± 0,002 0,009 ± 0,003

Entre as arquiteturas recorrentes, a GRU apresenta o menor erro em τ = 0, mas

a LSTM demonstra desempenho consistentemente superior para τ ≥ 1, com diferenças

entre médias que superam os desvios padrão, indicando vantagem estatisticamente signi-

ficativa mesmo com cinco execuções. Assim, a LSTM destacou-se, neste contexto, como

a arquitetura mais eficaz para capturar efeitos individuais em horizontes mais distantes.

5.3.3 Síntese e perspectivas

De forma geral, as arquiteturas LSTM e GRU apresentaram os melhores resultados

tanto em predição factual quanto contrafactual, confirmando a hipótese de que modelos

com mecanismos de memória são mais adequados para capturar relações causais dinâ-

micas em séries longitudinais. Esses resultados sustentam a utilização do CSDG como

ferramenta de avaliação controlada e reprodutível, capaz de evidenciar diferenças entre

modelos sob condições experimentais conhecidas.

Como trabalhos futuros, há oportunidade de ampliar as análises para estruturas não

lineares e cenários com confundimento, além de avaliar modelos baseados em Transfor-

mers, como o Causal Transformer, de modo a investigar a capacidade desses modelos em

capturar dependências causais de longo prazo.
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Conclusão

O método de geração de dados proposto neste trabalho permite a criação de dados

longitudinais sintéticos com estrutura causal controlada, sendo útil para avaliação de

algoritmos de inferência causal em diversos contextos. Entre as aplicações possíveis,

destacam-se: aprendizado de estrutura causal, estimativa de efeitos médios e individuais,

e simulação de resultados potenciais. O uso de covariáveis também é versátil, permitindo

simular cenários com variáveis observáveis, ocultas ou com papel causal conhecido.

6.1 Principais Contribuições

As principais contribuições desta pesquisa estão associadas ao desenvolvimento de uma

abordagem formal e experimental para a geração, análise e validação de dados sintéticos

longitudinais com estrutura causal explícita. O trabalho apresenta avanços conceituais,

metodológicos e empíricos que, em conjunto, consolidam um novo referencial para estu-

dos de inferência causal temporal. A seguir, são descritas as contribuições centrais e os

resultados que as sustentam.

Uso de Equações Estruturais Causais Autorregressivas. Foi proposto um

formalismo matemático que integra dependências causais e temporais em um mesmo

modelo, permitindo a representação explícita das relações entre tratamento (Tt),

resultado (Yt) e covariáveis (Xt) ao longo do tempo. Essa formulação, descrita no

Capítulo 3, com as Equações 18–22, constitui a base teórica do gerador e diferencia-

se de abordagens tradicionais por capturar simultaneamente efeitos contemporâneos

e dinâmicos. Essa estrutura fornece controle sobre a intensidade das dependências

autorregressivas (Φ) e dos efeitos causais (β), o que possibilita simulações mais

realistas de processos longitudinais.

Desenvolvimento do gerador Causal Synthetic Data Generator (CSDG).

A partir desse formalismo, foi implementado o CSDG, um gerador de dados sin-

téticos longitudinais com estrutura causal explícita, descrito no Capítulo 3. O
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sistema permite definir o número de indivíduos, o tamanho das séries, o tipo de

estrutura causal - Direta, Cadeia ou Confundidor - e o regime de intervenção -

pontual, gradual ou contínua. Além disso, possibilita a geração de dados factu-

ais e contrafactuais, permitindo o estudo empírico de cenários de intervenção con-

trolada. Exemplos ilustrativos de dados gerados são apresentados nas Figuras 6,

8 e 10, demonstrando a flexibilidade do método em capturar diferentes padrões

de causalidade e complexidade funcional. O CSDG está disponível no repositório

<https://github.com/angeruzzi/causal-synthetic-data-gen> em licença open-

source.

Definição de um protocolo de avaliação da coerência causal. Foi proposto

um protocolo sistemático para quantificar a coerência causal dos dados gerados,

combinando métricas de efeito médio do tratamento (ATE) e mudança de correlação

(Δr) combinado com intervalos de confiança obtidos por bootstrap. Esse protocolo,

detalhado na Seção 2.7 e aplicado no Capítulo 4 aos nove datasets gerados apre-

sentados na Tabela 7, permitiu avaliar de forma padronizada o comportamento das

intervenções e a consistência temporal dos efeitos.

Em conjunto, essas contribuições reforçam o papel do CSDG como uma ferramenta

aberta, reprodutível e metodologicamente fundamentada para experimentação causal em

contextos longitudinais. O gerador permite a criação de cenários realistas com ground

truth causal conhecido e oferece um ambiente controlado para testar e comparar algoritmos

de aprendizado causal.

6.2 Trabalhos Futuros

Um avanço relevante na estrutura do gerador seria permitir que o usuário informe uma

estrutura causal personalizada por meio de uma matriz de adjacência, um SCM ou outra

notação compatível. Essa abordagem tornaria o gerador ainda mais flexível, possibili-

tando a simulação de cenários específicos com múltiplos caminhos causais, tratamentos

simultâneos ou estruturas híbridas, conforme as necessidades de diferentes experimentos.

A simulação de cenários com interferência entre indivíduos, que representa um dos

casos mais desafiadores na área de inferência causal, também seria um adendo impor-

tante, permitindo avaliar métodos robustos a violações da suposição de estabilidade dos

tratamentos.

A expansão experimental da prova de conceito, incorporando outras estruturas cau-

sais, relações não lineares de maior complexidade e cenários mistos de intervenções, pode

não apenas tornar a avaliação do CSDG mais abrangente, como também estabelecer um

benchmark útil para pesquisas futuras.
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Outra direção promissora é o desenvolvimento de benchmarks temáticos, com caracte-

rísticas específicas de domínios reais, como avaliação de políticas públicas, análises econô-

micas ou modelagem da movimentação de ativos financeiros. Esses conjuntos sintéticos

orientados ao domínio podem apoiar a comparação padronizada de modelos e algoritmos.

Os modelos avaliados no contexto de resultados potenciais também podem ser amplia-

dos, incluindo adaptações de técnicas utilizadas em contextos análogos — como o Causal

Transformer — a fim de investigar sua capacidade de capturar dependências causais de

longo prazo em sistemas dinâmicos e heterogêneos.

Por fim, uma direção promissora consiste em expandir o escopo das análises realiza-

das, utilizando os dados gerados pelo CSDG para abordar outras classes de problemas de

inferência causal, indo além do paradigma de resultados potenciais explorado neste traba-

lho. Em particular, os dados sintéticos podem ser empregados em estudos de identificação

causal, cuja meta é determinar, a partir de um grafo causal ou de hipóteses estruturais,

se e como um efeito causal pode ser identificado unicamente a partir da distribuição ob-

servada. Diferentemente da estimativa de contrafactuais — que parte da suposição de

identificabilidade e busca predizer resultados potenciais individuais — os problemas de

identificação focam em derivar expressões formais para quantidades causais por meio de

regras de cálculo causal, como o do-calculus. Assim, um trabalho futuro relevante é in-

vestigar como modelos e algoritmos voltados à identificação causal se comportam quando

avaliados em dados gerados pelo CSDG, especialmente em cenários com variáveis latentes,

mediadores não observados ou estruturas parcialmente especificadas.

6.3 Contribuições em Produção Bibliográfica

Os resultados parciais desta dissertação originaram uma publicação científica apre-

sentada no evento KDMiLe 2025 – Symposium on Knowledge Discovery, Mining and

Learning, realizado em Fortaleza, Ceará, no contexto do Simpósio Brasileiro de Banco de

Dados (SBBD 2025).

O artigo intitulado “Longitudinal Synthetic Data Generation from Causal

Structures” apresenta a proposta inicial do gerador Causal Synthetic Data Generator

(CSDG), descrevendo suas equações estruturais causais autorregressivas e o experimentos

de validação. A publicação está disponível em acesso aberto no portal da Sociedade

Brasileira de Computação (SBC) por meio do DOI: <https://doi.org/10.5753/kdmile.2

025.247519> .
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