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Resumo

A inferéncia causal busca identificar relagoes de causa e efeito, indo além da correlacao
ao estimar como os resultados mudariam sob diferentes condigoes. Essa capacidade de
prever desfechos contrafactuais é fundamental em aplicacdes reais — como medicina,
financas e ciéncias sociais — onde decisdes confiaveis dependem de uma compreensao
causal dos fenomenos.

A avaliacao sistematica de modelos de inferéncia causal ainda é limitada pela escassez
de conjuntos de dados de referéncia cujos mecanismos subjacentes sejam completamente
conhecidos. Nesse cendrio, esta dissertacao apresenta o Causal Synthetic Data Generator
(CSDG), uma ferramenta de codigo aberto capaz de gerar dados longitudinais sintéticos
governados por estruturas causais, com dinamicas autorregressivas explicitas.

O CSDG permite controle detalhado sobre a intensidade dos efeitos das variaveis, das
intervengoes no tratamento e dos niveis de ruido, oferecendo uma plataforma flexivel e
independente de dominio para experimentacao e avaliacdo de algoritmos de aprendizado
causal. A formalizagdo proposta baseia-se em equagoes estruturais causais autorregressi-
vas, que integram relagoes de causa e efeito com dependéncias temporais, possibilitando
a geracao de cenarios factuais e contrafactuais sob diferentes estruturas causais.

Com o objetivo de validar a consisténcia dos dados gerados, este trabalho inclui uma
etapa de andlise quantitativa e testes em uma tarefa de previsao de resultados. As ava-
liacoes realizadas demonstram que os dados sintéticos preservam propriedades esperadas
de correlacao e resposta as intervencoes e os resultados obtidos evidenciam a coeréncia
causal e o realismo estatistico dos dados gerados, confirmando a adequacao do CSDG
como ferramenta de benchmarking e validacao de modelos causais.

O cddigo fonte do CSDG encontra-se disponivel no repositério <https://github.com

/angeruzzi/causal-synthetic-data-gen>.

Palavras-chave: Benchmarks. Inferéncia Causal. Dados Longitudinais. Geragao de

Dados Sintéticos. Séries Temporais.






Abstract

Causal inference seeks to identify cause-and-effect relationships, going beyond corre-
lation by estimating how outcomes would change under different conditions. This ability
to predict counterfactual outcomes is fundamental in real-world applications — such as
medicine, finance, and the social sciences — where reliable decisions depend on a causal
understanding of phenomena.

The systematic evaluation of causal inference models is still limited by the scarcity
of benchmark datasets whose underlying mechanisms are fully known. In this context,
this dissertation presents the Causal Synthetic Data Generator (CSDG), an open-source
tool capable of generating synthetic longitudinal data governed by causal structures with
explicit autoregressive dynamics.

The CSDG enables detailed control over the strength of variable effects, treatment
interventions, and noise levels, offering a flexible and domain-independent platform for
the experimentation and evaluation of causal learning algorithms. The proposed forma-
lization is based on autoregressive structural causal equations, integrating cause-effect
relationships with temporal dependencies and allowing the generation of both factual and
counterfactual scenarios under different causal structures.

To validate the consistency of the generated data, this work includes a quantitative
analysis stage and experiments on a prediction task. The evaluations show that the
synthetic data preserve expected properties of correlation and response to interventions,
and the results demonstrate both causal coherence and statistical realism, confirming the
suitability of the CSDG as a benchmarking and validation tool for causal models.

The CSDG source code is publicly available at <https://github.com/angeruzzi/cau
sal-synthetic-data-gen>.

Keywords: Benchmarks. Causal Inference. Longitudinal Data. Synthetic Data Genera-

tion. Time Series.
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CAPITULO

Introducao

A inferéncia causal tem como objetivo identificar relacoes de causa e efeito entre
variaveis, estimando o impacto de uma variavel sobre outra. Diferentemente da correlacao,
que capta apenas associagoes estatisticas, a inferéncia causal permite prever desfechos
contrafactuais, cendrios hipotéticos que descrevem o que teria ocorrido sob diferentes
condi¢oes ou intervengoes. Essa capacidade é crucial em areas como medicina, economia,
finangas e ciéncias sociais, onde a compreensao meramente correlacional nao é suficiente
para fundamentar decisdes confidveis (CHENG et al., 2022).

Os ensaios controlados aleatorizados (Randomized Controlled Trials - RCTs) sdo am-
plamente reconhecidos como o padrao-ouro para a inferéncia causal. Contudo, sua apli-
cagao muitas vezes é inviavel devido a restrigoes financeiras, éticas ou logisticas. Diante
disso, métodos baseados em dados observacionais tornam-se essenciais.

Modelos de aprendizado de maquina tém alcancado resultados expressivos em tarefas
de previsao, contudo, em sua forma tradicional, sdo essencialmente associativos — cap-
turam correlagoes, mas nao distinguem causa e efeito. Essa limitacdo compromete sua
aplicabilidade em cenarios nos quais decisoes dependem de estimativas contrafactuais,
como tratamentos médicos (KADDOUR et al., 2025).

Nos tltimos anos surgiram diversos modelos de deep learning que tentam implementar
uma modelagem causal, porém, treinar e avaliar tais métodos representam um desafio
significativo. Em dados reais, os mecanismos geradores subjacentes sao desconhecidos e
os contrafactuais verdadeiros, os possiveis resultados em condigdes que nao ocorreram,
sdo, por definigdo, ndo observaveis (RUBIN, 1974).

Com isso temos uma escassez de dados reais e benchmarks padronizados para avali-
acao rigorosa de métodos de inferéncia causal. Essa lacuna constitui um dos principais
gargalos da drea (KADDOUR et al., 2025) e é particularmente critica em contextos lon-
gitudinais, onde os efeitos acumulam-se ao longo do tempo e a validagao exige dados com
dependéncias temporais realistas e relagoes causais conhecidas (CHENG et al., 2022).

Dados sintéticos surgem como uma alternativa promissora para contornar essa limi-

tagao, pois permitem controle experimental sobre a estrutura causal, o ruido e a comple-
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xidade das relagoes entre variaveis — algo frequentemente inviavel em cendarios reais —
criando cenarios controlados.

Um exemplo recente no uso de dados sintéticos para o treino é o MITRA (ZHANG et
al., 2025), um Tabular Foundation Model desenvolvido pela Amazon, que demonstrou que
modelos podem alcangar forte poder de generalizagao mesmo quando pré-treinados exclu-
sivamente com dados sintéticos baseados em estruturas causais. Esse resultado reforca o
papel estratégico dos geradores sintéticos no avang¢o de métodos de aprendizado, ao evi-
denciar que o controle sobre as rela¢oes causais embutidas nos dados impacta diretamente
o desempenho em tarefas reais de previsao e analise.

Apesar desse potencial, os geradores existentes ainda apresentam limitagoes relevantes.
Abordagens baseadas em dados observacionais reais priorizam a preservacao de proprie-
dades estatisticas e a protecao de privacidade (BUN et al., 2024; KUHNEL et al., 2024),
mas nao fornecem ground truth causal para testes comparativos. Por outro lado, biblio-
tecas de simulagdo como o CausalTables.jl oferecem suporte a intervencdes em modelos
estruturais (BALKUS; HEJAZI, 2025), porém restritas a dados estaticos, sem conside-
rar dependéncias autorregressivas ou a evolucao temporal de tratamentos e resultados.
Assim, permanece uma lacuna quanto a benchmarks sintéticos que combinem estrutura
causal explicita, dependéncia temporal e cendrios contrafactuais sob diferentes regimes de
intervencao.

Este trabalho é motivado, portanto, em suprir a escassez de dados e benchmarks para
treino e validagoes de modelos de inferéncia causal no contexto longitudinal. Partindo
da premissa de que a auséncia de conjuntos de dados longitudinais com estrutura causal
conhecida limita a validagdo empirica de modelos de inferéncia causal, torna-se essencial,
assim, investigar ferramentas para a geracao de dados controlados, com estrutura causal
explicita e ruido parametrizavel, que sirvam como base experimental para o avanco de
algoritmos de aprendizado causal.

Para enfrentar esse desafio, propoe-se o Causal Synthetic Data Generator (CSDG),
uma ferramenta projetada para gerar dados longitudinais sintéticos com controle explicito
sobre relacoes causais, dindmica temporal, ruido e intervenc¢des. Ao tornarem-se observa-
veis tanto resultados factuais quanto contrafactuais, o CSDG possibilita a construcao de
cenarios reprodutiveis e parametrizaveis para benchmarking de algoritmos de inferéncia
causal em dados longitudinais.

O objetivo geral deste trabalho foi investigar um método para a geragdo de dados
sintéticos longitudinais a partir de estruturas causais conhecidas, denominado CSDG,
visando assim, contribuir com uma ferramenta capaz de construir cenarios reprodutiveis
e controlados, destinados especificamente ao benchmarking de modelos de inferéncia causal
em dados longitudinais.

De forma mais especifica, buscou-se:

(i) investigar como diferentes estruturas causais — direta, em cadeia e com confundidor
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— podem ser formalizadas e simuladas em um contexto dindmico;

(ii) gerar cendrios factuais e contrafactuais reprodutiveis, controlando explicitamente os

parametros de causalidade, ruido e tipo de intervencao;

(iii) avaliar a coeréncia estatistica e causal dos dados gerados por meio de métricas

formais, como o efeito médio do tratamento (ATE) e a mudanga de associagao

(Ar);

(iv) analisar, como prova de conceito, o desempenho de modelos de aprendizado temporal
causal aplicados a esses dados sintéticos, comparando a capacidade preditiva factual

e contrafactual de diferentes arquiteturas.

Suprir a auséncia de benchmarks padronizados para validar métodos de inferéncia
causal em cendrios longitudinais, envolveu trés desafios principais. O primeiro diz res-
peito a formulacao de equacgoOes estruturais capazes de representar relagoes causais sob
dependéncia temporal, garantindo que os efeitos propagassem ao longo da série de modo
consistente com o comportamento esperado das variaveis. Para isso, foram adotados mo-
delos autorregressivos explicitos, nos quais o resultado presente depende tanto de seus
valores passados quanto das variaveis causais associadas. O segundo concentrou-se em
assegurar o realismo estatistico dos dados simulados, equilibrando controle experimental
com variabilidade natural por meio da parametrizacao de fungoes lineares e nao lineares,
além da introducao de ruido aleatorio configuravel. Por fim, foi necessario estabelecer me-
canismos para quantificar a qualidade causal dos dados gerados de forma independente
do modelo preditivo utilizado, o que motivou a definicao de um protocolo de avaliacao
baseado em métricas formais, além da aplicacao pratica do conjunto gerado em uma prova
de conceito com modelos de aprendizado temporal.

A mitigacao desses desafios permitiu estabelecer uma base solida para a geracao de
dados longitudinais com estrutura causal conhecida, viabilizando a avaliacao sistematica
da consisténcia estatistica e dos efeitos das intervengoes simuladas.

Como resultado, o CSDG foi projetado para produzir dados com coeréncia causal
e comportamentos estatisticos desejaveis, configurando um ambiente experimental para
avaliagdo da precisao factual e contrafactual de algoritmos de inferéncia causal. Assim,
este trabalho estabelece uma base para estudos sisteméaticos de modelos causais aplicados

a dados longitudinais.

1.1 Hipobtese

A hipotese central desta pesquisa é que o controle explicito da estrutura causal, da

dindmica temporal e das intervengoes permite que o gerador proposto — o CSDG —
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produza cenarios sintéticos reprodutiveis e confiaveis, com variabilidade factual e contra-
factual adequada para o benchmarking de modelos de inferéncia causal em dados longi-
tudinais.

Parte-se do pressuposto de que equacoes estruturais autorregressivas podem represen-
tar de maneira consistente dindmicas causais ao longo do tempo, resultando em dados
que preservam propriedades esperadas de correlacao temporal, efeitos médios coerentes e
respostas monotonicas as intervengoes. Assume-se, ainda, que esses dados sao suficiente-
mente informativos para a avaliacao da capacidade de modelos de aprendizado temporal
em estimar efeitos causais com precisao, tanto em cenarios factuais quanto contrafactuais.

A validacao experimental dessa hipétese fundamenta-se na analise estatistica e na apli-
cacao pratica dos dados gerados, demonstrando que o CSDG pode atuar como ferramenta
de benchmarking para métodos de inferéncia causal longitudinal.

Com base nessa hipotese e na metodologia proposta, este trabalho oferece contri-
buigdes que avangam tanto no desenvolvimento de ferramentas quanto na avaliacdo de

métodos causais em dados longitudinais.

1.2 Contribuicoes

As contribuigoes deste trabalho concentram-se no desenvolvimento e avaliagdo de um
gerador de dados sintéticos longitudinais com estrutura causal explicita. Primeiramente,
propoe-se uma base formal para simulacao a partir de Equacoes Estruturais Causais Au-
torregressivas, integrando dependéncias temporais e relacbes de causa e efeito em um
mesmo modelo. Com esse fundamento, foi formulado e implementado o CSDG, um gera-
dor capaz de produzir dados longitudinais com diferentes graus de complexidade funcio-
nal e pardmetros controldveis de ruido e intervencao, abrangendo tanto cenérios factuais
quanto contrafactuais.

Adicionalmente, estabelece-se um protocolo sistematico de avaliagao da coeréncia cau-
sal dos dados produzidos, combinando anélises estatisticas, métricas de dependéncia e
experimentos com modelos de aprendizado temporal. Essa abordagem permitiu carac-
terizar quantitativamente a qualidade dos dados sintéticos, com base em propriedades
desejaveis, como variabilidade, previsibilidade e consisténcia causal — mensuradas por
métricas como efeito médio do tratamento (ATE) e mudanca de associacao (Ar). Como
prova de conceito, foi realizada uma analise comparativa do desempenho de modelos li-
neares e redes neurais recorrentes na estimacao de efeitos causais em cenarios sintéticos
controlados, explorando tanto predigoes factuais quanto contrafactuais.

Por fim, este trabalho discute diretrizes para a reprodutibilidade e padronizacao de
experimentos com dados sintéticos no contexto de inferéncia causal temporal, refor¢cando
o papel do CSDG como ferramenta aberta e adequada para benchmarking de métodos

causais. Dessa forma, a dissertacdo contribui conceitualmente e tecnicamente para a area,
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ao disponibilizar um ambiente experimental controlado para investigacao e validagao de

algoritmos de aprendizado causal em dados longitudinais.

1.3 Organizacao da Dissertacao

Para apresentar de forma estruturada o desenvolvimento e os resultados desta pes-
quisa, a dissertagao esta estruturada em seis capitulos. O Capitulo 1 apresenta o contexto
da pesquisa, destacando a motivacao, os objetivos, a hipotese e as contribuicoes alcan-
cadas. No Capitulo 2, sdo discutidos os fundamentos tedricos sobre inferéncia causal,
resultados potenciais, estruturas causais e dados longitudinais, além de uma revisao dos
principais trabalhos correlatos. O Capitulo 3 descreve a proposta metodolégica, deta-
lhando a formulacao do gerador de dados sintéticos CSDG, a estrutura causal adotada,
os cenarios factuais e contrafactuais e o processo de geracao dos dados longitudinais. Em
seguida, o Capitulo 4 apresenta a analise quantitativa dos dados simulados, incluindo as
métricas utilizadas e os resultados referentes a coeréncia estatistica e causal dos cenarios.
O Capitulo 5 traz a aplicacao pratica do gerador, por meio de uma prova de conceito com
modelos de aprendizado temporal, avaliando sua capacidade de previsao tanto factual
quanto contrafactual. Por fim, o Capitulo 6 sintetiza as conclusoes, discute limitacoes
e aponta diregoes para pesquisas futuras, além de relatar as contribuicoes académicas

decorrentes deste trabalho.



30

Capitulo 1.

Introducao




31

CAPITULO

Fundamentacao Teorica

Este capitulo apresenta os fundamentos tedricos que embasam a presente pesquisa,
abordando os principais conceitos e métodos relacionados a inferéncia causal, resultados
potenciais, estruturas causais e dados longitudinais. O objetivo é oferecer uma visao
abrangente da evolucao da &area, desde os modelos classicos até as abordagens recentes

baseadas em aprendizado profundo e geracao de dados sintéticos.

2.1 Inferéncia Causal

Em Correlation and Causation, Wright (1921) apresentou métodos para distinguir cor-
relagoes espurias de relagoes causais, estabelecendo as bases da area de inferéncia causal.
A correlacao é uma medida estatistica que descreve um grau de associagdo entre duas
variaveis — frequentemente restrita a relagao linear no caso da correlagdo de Pearson. No
entanto, correlagao nao implica causalidade; duas variaveis podem apresentar associagao
sem que uma seja a causa de outra, resultando em uma correlagao espiria entre elas. Ao
identificar uma relagdo em que uma variavel, a causa, influencia diretamente a outra, o

efeito, temos uma relacao de causalidade.

Wright (1921) também introduziu a técnica estatistica de Path Analysis, ou diagramas
de trajetoria, para analisar rela¢oes causais entre um conjunto de varidveis; a técnica é
uma extensao da regressao multipla e permite decompor correlagoes em componentes

diretos e indiretos.

Com os diagramas de trajetéria (Figura 1) temos uma ferramenta poderosa para a
representacao e interpretacao de relacoes causais complexas, em que setas sao utilizadas
para indicar uma relacao causal direta de uma variavel para outra. Foram introduzidos
também os Coeficientes de Trajetéria (Figura 2), que quantificam a influéncia direta de

uma variavel sobre a outra em um modelo causal.
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Figura 1 — Exemplos de Diagramas de Trajetéria de Wright. Em (a) temos um diagrama simples de
causa e efeito, onde X é determinado por A e O; em (b) temos um sistema em que a varigvel
X é determinada por M e N, que sdo determinadas de forma independente por A e C e sdo
relacionadas por B; em (¢) temos um diagrama que mostra que duas varidveis X e Y estao
relacionadas por ambas serem determinadas pelas varidaveis independentes B e C. Fonte:
Wright (1921).

Neyman (1923) introduziu conceitos fundamentais para o planejamento de experi-
mentos, incluindo a distribuicdo de amostragem e a importancia da aleatorizacao. A
distribuicao de amostragem ¢é essencial para compreender a variabilidade dos estimado-
res, o que permite realizar inferéncias estatisticas validas. Neyman também destacou a
importancia da aleatorizagao na conducao de experimentos, pois ela garante a comparabi-
lidade entre os grupos experimentais, eliminando vieses e confundidores. Vieses referem-se
a distorc¢oes sistematicas que podem levar a resultados errdneos, enquanto confundido-
res sao variaveis externas que podem influenciar tanto a variavel independente quanto a
dependente, distorcendo a verdadeira relagdo entre elas. A aleatorizacao assegura que
quaisquer diferencas observadas entre os grupos possam ser atribuidas aos tratamentos

aplicados e nao a fatores externos.

Figura 2 — Exemplo de Coeficiente de Trajetéria. Os coeficientes de trajetéria aplicado em um diagrama
quantificam a relacdo causal entre as varidveis. Fonte: Wright (1921)

Os conceitos trazidos por Neyman foram fundamentais para a criacao do Randomized

Controlled Trial (RCT), que foi formalizado mais tarde por Fisher (1935) e tornou-se o



2.1. Inferéncia Causal 33

padrao de uso, principalmente em ensaios clinicos da area de satde, mas também na pes-

quisa cientifica em geral para se estabelecer causalidade devido ao seu rigor metodolégico.

O RCT ¢ um tipo de estudo cientifico projetado para testar a eficacia de uma inter-
vencao ou tratamento, como por exemplo a administracdo de um analgésico, e avaliar
o resultado, que neste caso seria a eficicia do medicamento contra uma dor de cabeca.
Embora o termo tratamento seja frequentemente associado a contextos médicos, ele pode
ser aplicado em diversos cenarios. Por exemplo, na educacao, pode-se avaliar a eficacia
de um novo método de ensino (tratamento) e observar se ha uma melhora nas notas dos
alunos (resultado). Em ciéncias sociais, pode-se investigar se uma determinada politica

(tratamento) melhora as condigoes de vida de uma populagio (resultado).

Uma base do RCT ¢é o estabelecimento de um grupo de tratamento e um grupo de
controle. O grupo de tratamento recebe a intervencao a ser avaliada, enquanto o grupo
de controle ndo recebe a intervengao ou recebe um tratamento padrao ou placebo. Isso
permite a comparacao dos resultados entre os grupos e a verificacao da eficacia da inter-
vencao.

A aleatorizagao é crucial no RCT, pois assegura que os individuos sejam distribuidos de
forma aleatéria entre os grupos para evitar o viés de selecao. Outro conceito importante é o
mascaramento (blinding), que pode ser simples-cego, onde os individuos nao sabem a qual
grupo pertencem, ao tratamento ou controle, evitando o viés de expectativa, ou duplo-
cego, onde tanto os participantes quanto os pesquisadores desconhecem a distribuicao dos

grupos, prevenindo o viés de observacao e interpretacao.

Por fim, os dados do experimento devem ser analisados por meio de métodos estatisti-
cos, como a Andlise de Varidncia (ANOVA), para determinar se os efeitos do tratamento
sao significativos em comparacao ao controle (MONTGOMERY, 2017).

Entre os principais desafios na utilizagdo do RCT estao seus altos custos (RUBIN,
1974). Além disso, questoes éticas frequentemente surgem, especialmente quando é ne-
cessario deixar de aplicar um tratamento potencialmente benéfico a um grupo controle.
Em outros casos, a natureza do problema pode impossibilitar a organizagao dos grupos
de forma adequada, por exemplo, em situacoes de desastres naturais como terremotos ou
inundacoes, onde nao ¢é possivel escolher aleatoriamente quais comunidades serao expostas
ao evento para criar grupos de controle, ou mesmo em situacoes histéricas, ou de politicas
amplamente aplicadas em uma populacdo. Essas limitacoes requerem a consideragao cui-
dadosa de alternativas metodologicas, como estudos observacionais bem planejados, que
possam fornecer evidéncias causais robustas em contextos onde o RCT nao é viavel.

Rubin (1974) preocupou-se em desenvolver um método para estimar efeitos causais
tanto em estudos randomizados quanto nao randomizados, formalizando a ideia de resul-
tados potenciais e contrafactuais, que serao explorados na Secao 2.2.

Pearl (2009) trouxe uma contribuigdo significativa e uma abordagem moderna aos

problemas de Inferéncia Causal, como o Directed Acyclic Graph (DAG), o Structural
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Causal Model (SCM) e o do-calculus.

Os DAGs sao grafos aciclicos usados para representar graficamente as relagoes de causa
e efeito entre variaveis; cada né no grafo representa uma variavel e as arestas direcionadas
indicam a direcao da causalidade, ou seja, a influéncia de uma variavel sobre a outra.
Diferentemente dos diagramas de trajetéria de Wright modelando estritamente relagoes
de causalidade direta e de forma unidirecional, nao permitindo ciclos e garantindo clareza
na diregdo dos efeitos.

O SCM foi desenvolvido como uma extensao do DAG, fornecendo uma base matema-
tica para representar e analisar relacoes causais. Os Modelos Causais Estruturais tém
origem nos modelos de equagoes estruturais desenvolvidos em areas como genética, eco-
nometria e ciéncias sociais (PETERS; JANZING; SCHOLKOPF, 2017). O ferramental
causal proposto por Pearl incorporou a esses modelos uma semantica causal explicita,
baseada em grafos direcionados, intervengoes e contrafactuais (PEARL, 2009).

Formalmente, conforme Peters, Janzing e Schélkopf (2017), um Modelo Causal Estru-

tural pode ser definido como a tupla
M= (U, V, F, P(U)). (1)
Cada variavel endégena V; € V é determinada por uma equacao estrutural da forma
Vi = fi(PA;, Uy), (2)

onde U; € U corresponde ao termo exégeno associado e PA; denota o conjunto de pais

causais de V; no grafo causal, definido como
PA; ={V,e V|V, >V} (3)

A Tabela 1 resume os principais componentes que constituem um Modelo Causal

Estrutural.

Tabela 1 — Componentes de um Modelo Causal Estrutural (SCM)

Componente Descrigao

U Varidveis exdgenas (fatores ndo observados)
\% Varidveis enddgenas (variaveis observaveis)
F Conjunto de equacoes estruturais

P(U) Distribui¢do conjunta dos ruidos exégenos

Dessa forma, os SCMs combinam a representagao grafica com uma base quantitativa,
permitindo a simulagao de intervengoes (do-operations) e a andlise de cendrios contrafac-
tuais.

O do-calculus é uma ferramenta para manipular expressoes causais e derivar conclusoes
sobre intervencgoes. Ele estabelece um conjunto de regras para transformar probabilidades

condicionais observacionais em probabilidades intervencionais.
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2.2 Resultados Potenciais e Contrafactuais

O conceito de resultados potenciais foi estabelecido por Rubin (1974) e sdo os pos-
siveis resultados que podem ser observados em um individuo durante um experimento.
Por exemplo, em um experimento para avaliar um medicamento para o tratamento de
hipertensao, podemos observar o resultado caso o paciente receba o medicamento ou o
resultado caso o paciente nao receba o medicamento. Formalmente dizemos que Y;(1) é

Wy
1

o resultado que seria observado se o paciente “i” recebesse o tratamento e Y;(0) caso nao

recebesse.

Apesar de podermos observar diferentes resultados entre os individuos de um ex-
perimento, podemos observar apenas um tunico resultado por individuo. Ou seja, ou o
individuo recebeu o tratamento Y;(1) ou o individuo nao recebeu o tratamento Y;(0). Este
¢ um problema fundamental na inferéncia causal, pois nao conseguimos observar todos
os resultados potenciais no mesmo individuo. Nos estudos randomizados, esse problema
¢ contornado garantindo a comparabilidade entre os grupos de tratamento e controle.
Em estudos nao randomizados, técnicas como pareamento, estratificacdo e ajuste por

pontuacao de propensao sao usadas para criar grupos comparaveis.

O resultado potencial nao observado em um individuo durante o experimento é cha-
mado de contrafactual. Na Figura 3 podemos observar que, para o individuo que recebeu
o tratamento 7' = 1 temos o resultado factual observado Y (1), o cendrio contrafactual

seria o resultado caso nao tivesse recebido o tratamento 7' = 0, ou seja, Y (0).
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Figura 3 — Factual x Contrafactual. Exemplificacio do cenério Factual T=1, paciente recebe o trata-
mento, que resulta em Y(1) e do cendrio contrafactual T=0, paciente ndo recebe o trata-
mento, que resultado em Y(0).

Ao tornarem-se observaveis tanto Y;(0) quanto Y;(1), é possivel avaliar de forma direta
a capacidade dos algoritmos em estimar efeitos causais - seja em nivel individual, por
meio do Individual Treatment Effect (ITE), nivel médio com o Average Treatment Effect
(ATE) ou condicional com o Conditional Average Treatment Effect (CATE) (CHENG et
al., 2022).
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2.3 Potential Outcomes Framework

Rubin (1978) foi pioneiro em criar um método baseado em estruturas de resultados
potenciais, trazendo o conceito de Potential Outcomes Framework, que passou a ser ampla-
mente utilizado em pesquisas subsequentes para novos métodos que se propdoem a analise
de causalidade e estimativa de contrafactuais em estudos observacionais e experimentais
em diversas areas e contextos.

Alguns métodos nao-paramétricos foram propostos, como o de Xu, Xu e Saria (2016),
que apresenta uma abordagem bayesiana nao-paramétrica para estimar curvas de resposta
ao tratamento a partir de séries temporais esparsas. As curvas de resposta ao tratamento
representam a relacado funcional entre diferentes intensidades de tratamento e seus res-
pectivos resultados potenciais. Cada ponto da curva corresponde ao valor que o desfecho
apresentaria sob uma intervencao hipotética de intensidade especifica, permitindo analisar
como o efeito causal varia de acordo com a dose ou trajetéria do tratamento.

Schulam e Saria (2017) propoem modelos contrafactuais para suporte a decisdes confia-
veis, destacando a importancia de modelos robustos e interpretaveis na inferéncia causal.
Soleimani, Subbaswamy e Saria (2017) discutem modelos de resposta ao tratamento para
raciocinio contrafactual com intervencdes continuas, ou seja, interveng¢oes que variam
continuamente ao longo do tempo. Curth e Schaar (2021) propoem a estimativa nao-
paramétrica de efeitos de tratamento heterogéneos, oferecendo uma abordagem teodrica
solida que se traduz em algoritmos de aprendizado eficientes.

Os métodos nao-paramétricos oferecem uma abordagem flexivel para a estimativa de
efeitos de tratamento sem assumir uma forma funcional especifica para os dados e sao
especialmente 1teis quando os dados sdo esparsos ou apresentam estruturas complexas.

Quanto as propostas de métodos paramétricos, temos varios exemplos. Laan e Rubin
(2006) introduzem o aprendizado por maxima verossimilhanga direcionada ( Targeted Ma-
zimum Likelihood Estimation - TMLE), um método paramétrico para inferéncia causal
que combina modelagem estatistica robusta com a flexibilidade de aprendizado de ma-
quina. Chipman, George e McCulloch (2010) apresentam as Arvores de Regressao Aditiva
Bayesiana (Bayesian Additive Regression Trees - BART), uma metodologia poderosa para
inferéncia causal que utiliza técnicas bayesianas para construir modelos de previsao ro-
bustos e interpretaveis. Johansson, Shalit e Sontag (2016) discutem o aprendizado de
representacoes para inferéncia contrafactual, propondo um método paramétrico que me-
lhora a precisdo da estimativa de efeitos de tratamento a partir de dados observacionais.
Kuzmanovic, Hatt e Feuerriegel (2023) tratam da estimativa de efeitos de tratamento mé-
dio condicional com informacoes de tratamento ausentes, abordando um desafio comum
em dados observacionais e propondo solugoes paramétricas robustas.

Os métodos paramétricos assumem uma forma funcional especifica para os dados e
oferecem uma estrutura mais rigida para a modelagem de efeitos causais. Eles sao uteis

quando se tem uma boa compreensao da estrutura dos dados.
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Com uma abordagem diferente das classicas, modelos de deep learning tém sido uti-
lizados em varios trabalhos de inferéncia causal também, permitindo a modelagem de
relagdes complexas em grandes conjuntos de dados. Johansson, Shalit e Sontag (2016)
propoem técnicas de aprendizado de representacoes que utilizam redes neurais profundas
para inferéncia contrafactual, destacando a capacidade do deep learning em lidar com
dados complexos e de alta dimensionalidade. Yoon, Jordon e Schaar (2018) introduziram
a Generative Adversarial Nets in Individualized Treatment Effects (GANITE), uma abor-
dagem inovadora que utiliza Generative Adversarial Nets (GANSs) para estimar efeitos de
tratamento individualizados, demonstrando a eficicia das técnicas de deep learning na
inferéncia causal. Shalit, Johansson e Sontag (2017) apresentaram a Treatment-Agnostic
Representation Network (TARNet) e a Counterfactual Regression Network (CFRNet),
redes neurais profundas projetadas para inferéncia contrafactual, mostrando como o deep
learning pode ser aplicado para melhorar a precisdo das estimativas de efeitos de trata-
mento.

Os métodos de deep learning permitem a modelagem de relagoes complexas em gran-
des conjuntos de dados, capturando padroes e estruturas latentes que outras abordagens
podem nao detectar. Estas técnicas sao especialmente uteis para dados complexos e de
alta dimensionalidade.

Um contexto comum na area médica é a ocorréncia de uma sequéncia de tratamentos
ao longo de um periodo (ALLAM et al., 2021). Para a estimativa contrafactual desse tipo
temos como exemplos a Recurrent Marginal Structural Networks (RMSN) (LIM; ALAA;
SCHAAR, 2018), a Counterfactual Recurrent Network (CRN) (BICA et al., 2020) e a
G-Computation for Counterfactual Prediction (G-Net) (LI et al., 2021).

Ainda neste contexto, temos o Causal Transformer (MELNYCHUK; FRAUEN; FEU-
ERRIEGEL, 2022), que inova ao implementar uma arquitetura baseada em Transformer,
que empilha blocos de processamento, sendo que cada camada possui mecanismos de
cross-attention paralelos que associam diferentes entradas de dados longitudinais - trata-
mentos, resultados e covariaveis - variaveis no tempo, além de propor uma nova funcao
de perda chamada Counterfactual Domain Confusion loss (CDC loss).

Nichani, Damian e Lee (2024) demonstraram em seu trabalho sobre aprendizado de
estruturas causais que, através do gradiente descendente, um Transformer simplificado
de duas camadas codifica o grafo causal latente na primeira camada de atencdo a partir
de sequéncias de dados gerados por cadeias de Markov, trazendo a perspectiva de que

Transformers sao capazes de recuperar estruturas causais.

2.4 Estruturas Causais

Desde os primeiros estudos de Wright (1921), diagramas de trajetéria passaram a ser

utilizados para representar de forma grafica relagdes causais entre variaveis. No entanto, os
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avancos propostos por Judea Pearl, por meio dos DAGs e dos SCMs, que se consolidou uma
estrutura formal e poderosa para a representacao e analise de sistemas causais complexos
(PEARL, 2000).

Adotamos neste trabalho definicbes consolidadas na literatura de inferéncia causal,
segundo as quais diferentes tipos de variaveis desempenham papéis especificos nas relagoes
causais. Varidveis mediadoras sdo aquelas que se interpdem entre a causa (tratamento)
e o efeito (resultado), atuando como o mecanismo pelo qual a intervengao exerce sua
influéncia. As confundidoras sao variaveis que afetam simultaneamente tanto o tratamento
quanto o resultado, podendo gerar associacoes espurias que distorcem a estimativa do
efeito causal real. Essas variaveis, muitas vezes nao observaveis, costumam aparecer em
diagramas causais como causas comuns de ambas as variaveis principais.

E fundamental também compreender as estruturas de juncéo causal (PEARL, 2018),
que servem como base para a analise de dependéncias e independéncias condicionais.
Como exemplificado na Figura 4, na estrutura de cadeia (A — B — C), a variavel inter-
medidria B transmite o efeito de A para C, e condicionar em B rompe essa dependéncia.
Na bifurcagdo (A <~ B — C), B é um fator comum que influencia A e C; ao condicionar
em B, elimina-se a correla¢ao esptria entre elas. Por fim, na configuragao de colisor (A —
B + C), A e C influenciam conjuntamente B, e, diferentemente dos casos anteriores, con-
dicionar em B — ou em qualquer um de seus descendentes — introduz uma dependéncia

artificial entre A e C.

B — » C

a

0

. e

C C

b c

B

Figura 4 — Estruturas Causais Gerais. Na DAG (a) exemplificagdo de uma estrutura de cadeia, em (b)
estrutura de bifurcacio e em (c) uma estrutura de coliséo.

Em contextos longitudinais, as relagoes causais podem ser representadas nao apenas
por grafos estaticos, mas também por equagoes estruturais com dependéncia temporal.
Nesses casos, cada variavel ¢ influenciada tanto por suas causas contemporaneas quanto
por valores passados de si mesma ou de outras variaveis do sistema, caracterizando uma
estrutura causal autorregressiva. Esse formalismo permite a simulagao de processos dina-

micos e constitui a base da modelagem adotada neste trabalho.
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2.5 Dados Longitudinais

Os dados longitudinais sao medi¢oes repetidas de uma mesma unidade em diferentes
pontos de um dominio ordenado. Dentro desta categoria, o tipo mais comum encontrado
sao as séries temporais, que se referem tipicamente a observacoes sequenciais de uma tnica
unidade ao longo do tempo, e os dados de painel, que envolvem observagoes de miltiplas
unidades nos mesmos ou diferentes periodos de tempo (DIGGLE et al., 2002).

A anadlise de dados longitudinais possui um longo histérico de aplicagao em diversas
areas de estudo e essa estrutura rica de dados permite investigar, por exemplo, a dinamica
temporal de fenomenos, modelar trajetorias individuais e analisar os efeitos de varidveis
que mudam ao longo do tempo, controlando para heterogeneidade nao observada entre
as unidades, tema central em delineamentos experimentais classicos e modelos mistos
(MONTGOMERY, 2017).

Um dos modelos estatisticos fundamentais aplicados em séries temporais univariadas,
que frequentemente servem como base para modelos mais complexos, é o modelo Auto-
regressive Integrated Moving Average (ARIMA). Desenvolvido extensivamente por Box e
Jenkins (1970), um modelo ARIMA descreve uma varidvel dependente como uma fungao
de seus préprios valores passados (componente autorregressivo), dos erros de previsao
passados (componente de médias moveis) e da diferenciacdo dos dados para torna-los
estacionarios (componente integrado).

A caracteristica autorregressiva de séries temporais € um fator importante considerado
nos dados de diversos dominios, como em economia na analise de variaveis macroecono-
micas e em finangas na modelagem de retornos, volatilidade e pregos de ativos (ENDERS,
2010).

Outro contexto de estudo também crescente que envolve séries temporais é o Multi-
variate Time Series (MTSs). Em MTSs sao analisadas as correlagbes existentes entre
séries temporais de duas ou mais variaveis, como por exemplo a andalise da relagao en-
tre variaveis macroeconomicas, onde podem ser aplicadas ferramentas estatisticas como
o Vector Auto-Regressive (VAR) e o Vector Auto Regressive Moving Average (VARMA)
(LUTKEPOHL, 2005).

A érea de forecasting com MTSs tem testemunhado um aumento significativo de tra-
balhos explorando modelos de deep learning avangados, como Graph Neural Networks
(GNNSs) e arquiteturas baseadas em Transformers, visando aprimorar a acurédcia das pre-
visoes (MENDIS; WICKRAMASINGHE; MARASINGHE, 2024).

Apesar das diversas ferramentas existentes para abordar problemas com dados lon-
gitudinais, ao tratarmos de andlise causal temos desafios inicos, como a necessidade de
modelar a dependéncia temporal e controlar a heterogeneidade nao observada. Méto-
dos tradicionais como Diferenca em Diferencas e Variaveis Instrumentais em Painel tém
sido amplamente utilizados e o aumento recente de pesquisas tem permitido o desen-

volvimento de novos métodos estatisticos para estimar efeitos causais, particularmente
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com intervengoes binarias, usando observacoes de miiltiplas unidades ao longo do tempo
(ARKHANGELSKY; IMBENS, 2024).

Solugoes de deep learning também tém sido exploradas em problemas de causal dis-
covery em dados longitudinais (KADDOUR et al., 2025), que é o processo de aprender
relacoes de causa e efeito entre variaveis diretamente a partir de dados, sem conhecimento

prévio da estrutura causal, com isso oferecendo novas perspectivas para a area.

2.6 Dados Sintéticos Causais

Nos tltimos anos, o uso de dados sintéticos para treinamento de modelos tem ga-
nhado destaque especialmente em cenérios onde ha limitacao de dados rotulados e custos
elevados de coleta e anota¢do. Um avango recente nesse sentido é o MITRA (ZHANG
et al., 2025), um Tabular Foundation Model desenvolvido no laboratério de pesquisa da
Amazon Web Services, que foi pré-treinado exclusivamente com dados sintéticos gerados
a partir de uma mistura de priors projetados para maximizar diversidade, desempenho e
distintividade; um prior é uma distribuicao geradora ou um mecanismo gerador de dados
propriamente dito, que sera utilizado para fornecer os dados de treino para um modelo.
O estudo demonstra que a eficacia de modelos tabulares depende nao apenas da arquite-
tura, mas, sobretudo, das propriedades estatisticas e estruturais dos geradores utilizados
no pré-treino do modelo. Mecanismos geradores baseados em Structural Causal Models
(SCM) apresentaram desempenho superior em tarefas reais e contribuiram para melhor
capacidade de generalizacao, reforcando a relevancia de modelos com estrutura causal
explicita para representar distribui¢oes observadas em aplicagoes praticas.

Apesar de o foco do MITRA néao ser a disponibilizagao dos dados sintéticos gerados,
ele traz um ponto diretamente relacionado ao objetivo do CSDG: ao colocar a curadoria
de geradores sintéticos como fator central no desenvolvimento de modelos, o trabalho
evidencia a importancia de investigar como diferentes dindmicas causais e complexidades
funcionais podem impactar o desempenho final do modelo em tarefas especializadas.

De forma similar, o CausalTables.jl (BALKUS; HEJAZI, 2025) representa um avango
relevante na simulagdo de dados sintéticos com estrutura causal explicita; essa biblioteca
desenvolvida para a linguagem Julia oferece funcionalidades para simulagao e armazena-
mento de dados causais em formato tabular, disponibilizando uma interface para defini¢ao
de modelos causais via SCMs, suporte para operacoes de intervengao e acesso a quantida-
des de ground truth, como distribui¢oes condicionais e estimativas causais do tipo ATE.
Essas funcionalidades tornam a ferramenta uma importante base para o desenvolvimento
e avaliacdo controlada de estimadores causais em dados tabulares. Contudo, assim como
em outras abordagens de geracao de dados sintéticos, o CausalTables.jl restringe-se a
cenarios estaticos, sem incorporar dependéncia temporal entre observacoes ou relagoes

dindmicas entre tratamento e resultado. Dessa forma, apesar de sua utilidade para a ava-
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liacao de métodos causais em dados nao sequenciais, ele nao contempla efeitos acumulados
ou contrafactuais sequenciais, aspectos centrais em aplica¢oes longitudinais. A metodolo-
gia proposta neste trabalho complementa esse ecossistema ao possibilitar a simulagao de
dados longitudinais com estrutura causal explicita, permitindo o estudo de algoritmos de
inferéncia causal em cenarios realistas onde intervengoes, resultados e covariaveis evoluem
ao longo do tempo.

A Tabela 2 sintetiza essa comparacao, destacando a lacuna existente no estado da arte

quanto ao suporte simultaneo a estrutura causal e dinamica temporal.

Tabela 2 — Comparagao entre abordagens de geracao sintética com estrutura causal.

MITRA CausalTables.jl

CSDG

Caracteristica

(ZHANG et al.,
2025)

(BALKUS;
HEJAZI, 2025)

(este trabalho)

Tipo de dado gerado

Estrutura causal explicita

Dependéncia temporal
Evolugao de tratamento e resposta
Cenarios contrafactuais sequenciais

Controle de ruido e da funcao de efeito

Acesso a ground truth causal

Aplicacdo principal

Dominios exemplares

Tabular estatico
Sim (via priors
diversos)
Nao
Nao
Nao
Parcial

Parcial

Pré-treinamento
e generalizacao

Aprendizado
tabular

Tabular estatico

Sim (via SCMs)
Nao
Nao
Parcial
Parcial

Sim (condicional e
estimandos)

Avaliacao de
estimadores

Causal Tabular

Séries
longitudinais

Sim (via SCM
autorregressivo)

Sim

Sim

Sim

Sim
Sim (factual e
contrafactual)

Benchmarking

Causal
Longitudinal

A tabela destaca a lacuna existente ao que se refere a geragao de cenarios sintéticos com estrutura causal,
aspecto que o CSDG busca preencher ao permitir intervengdes e efeitos acumulados ao longo do tempo
para avaliagdo de métodos de inferéncia causal em dados longitudinais.

Além das abordagens baseadas em estrutura causal sintética, trabalhos recentes tém
explorado a geracao de dados longitudinais a partir de dados reais, com foco em utilidade
estatistica e preservacao de privacidade.

No estudo de Bun et al. (2024) vemos uma proposta de geracao de dados sintéticos
longitudinais a partir de dados médicos reais de pacientes, ao passo que o objetivo ¢é
preservar a privacidade dos individuos, capturando propriedades estatisticas importantes
dos dados que devem ser mantidas e assegurando consisténcia temporal das trajetérias
individuais em estudos observacionais. Apesar desses avancos, tais métodos nao mode-

lam explicitamente relagoes de causa e efeito, nem permitem o controle paramétrico de
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intervengoes e contrafactuais — limitagoes que restringem seu emprego em benchmarking
causal.

Kiihnel et al. (2024) também abordam a geragao de dados sintéticos longitudinais a
partir de dados reais, com foco em estudos nutricionais. Os autores utilizam o método
Variational Autoencoder Modular Bayesian Network (VAMBN) e o estendem com uma
camada de uma rede Long Short-Term Memory (LSTM) para modelar dados longitudi-
nais do estudo Dortmund Nutritional and Anthropometric Longitudinally Designed Study
(DONALD), que é um estudo alemao que acompanha informagoes sobre dieta e saude
de criangas ao longo do tempo. Essa extensao com LSTM permite ao modelo capturar
caracteristicas de autorregressao nos dados, melhorando a reproducao de dependéncias
temporais. O trabalho de Kiihnel et al. (2024) compartilha com a proposta deste tra-
balho o interesse na geracao de dados sintéticos longitudinais; porém, da mesma forma
que em Bun et al. (2024), diferenciam-se por focar na preservacao de propriedades esta-
tisticas para reproduzir analises do mundo real, enquanto este trabalho concentra-se na
geracao de dados para avaliacao de algoritmos de inferéncia causal. As diferencas dessas
abordagens estao explicitadas na Tabela 3.

Em sintese, embora existam iniciativas relevantes tanto na geragao de dados sintéticos
para pré-treinamento quanto na construcao de bases longitudinais sintéticas para preser-
vacao de privacidade, permanece sem solu¢ao um componente crucial: a geracao de dados
longitudinais com mecanismo causal explicito e controle de intervencoes para validacao
empirica de estimadores causais.

Nesse contexto, o presente trabalho diferencia-se ao oferecer a capacidade de especifi-
car mecanismos causais autorregressivos, gerando dados que preservam tanto a dinamica
temporal quanto a coeréncia causal subjacente, aspectos essenciais para avaliagao rigorosa

de algoritmos de inferéncia causal em dados longitudinais.

2.7 Meétricas

Em inferéncia causal, é essencial quantificar nao apenas o impacto de uma intervengao,
mas também como essa intervencao altera a associacao estatistica entre tratamento (T)
e resultado (Y). Para isso, adotamos duas métricas fundamentadas no arcabougo dos
resultados potenciais: o Average Treatment Effect (ATE) (RUBIN, 1974), que mensura
o efeito causal médio em nivel populacional, e a variagdo de associagdo Ar (MENG;
ROSENTHAL; RUBIN, 1992), que captura mudancas estruturais na relagdo T+<>Y apos
intervencoes no tratamento.

Neste trabalho também avaliamos a capacidade de modelos em estimar trajetorias
factuais e contrafactuais ao longo do tempo. Nesse contexto, utilizamos o RMSE para
mensurar a acuracia preditiva no cendrio factual, e o Precision in FEstimation of Hete-
rogeneous Effect (PEHE) (HILL, 2011), que avalia a qualidade da estimativa de efeitos

individuais do tratamento.
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Tabela 3 — Comparacao entre abordagens de geracao de dados sintéticos longitudinais.

Bun et al. (2024) csSDG
Caracteristica Kiihnel et al. (2024) (este trabalho)
Origem / mecanismo gerador gerados a partir de bases gerados a partir de estruturas
observacionais reais causais autorregressivas
Finalidade principal Privacidade de dados e Avaliagdo causal (benchmarking)
preservacgao de propriedades de estimadores
estatisticas
Modelo causal explicito Nao Sim
Controle de intervengdes Nao Sim
Cenarios contrafactuais Nao Sim
Dependéncia temporal Sim Sim
Reprodutibilidade experimental Limitada Alta
Acesso ao ground truth causal Nao Sim

A tabela contrasta métodos longitudinais baseados em dados reais, focados em privacidade e preservacao
de propriedades estatisticas, com a abordagem sintética causal proposta neste trabalho, que combina
dindmica temporal com mecanismos causais explicitos para avaliacdo de métodos de inferéncia causal.

Nesta secao, apresentamos as métricas citadas que serao utilizadas ao longo deste
trabalho para a avaliacdo dos dados sintéticos gerados e dos modelos aplicados sobre

esses dados.

2.7.1 Efeito médio de Tratamento (ATE)

O efeito médio do tratamento (ATE) quantifica, em média, a influéncia do tratamento
T sobre o resultado Y em uma populacgao. Seu cédlculo parte do conceito fundamental de
Efeito Individual do Tratamento (ITE), definido no arcabougo de resultados potenciais

COIMo:

ITE, = Y(1) - ¥;(0), (4)

em que Y;(1) representa o resultado observado ou simulado para o individuo i sob o
tratamento, e Y;(0) o resultado contrafactual caso o mesmo individuo nao tivesse recebido
o tratamento. Em dados observacionais reais, apenas um desses resultados é observavel;
nos dados sintéticos gerados pelo CSDG, ambos sdo conhecidos, o que permite estimar
diretamente o ITE e, por consequéncia, o ATE.

O ATE é entao definido como a média dos efeitos individuais:

1 N
ATE = 5 > _(Yi(1) = Yi(0)), ()
i=1

onde N é o numero de individuos. Essa métrica reflete a diferenca média esperada no

resultado entre os cenarios com e sem intervencao e constitui a medida classica de efeito
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causal em nivel populacional.

Para os dados longitudinais gerados, o calculo é realizado em cada instante temporal ¢
e apds a intervencao ti,, considerando-se as séries de resultados factuais e contrafactuais.
Assim, obtemos um perfil temporal do efeito médio, representado como ATE(t), que
permite observar a evolugao do impacto do tratamento ao longo do tempo.

Ainda no nosso contexto, é necessario realizar o calculo para cada cenario contrafactual

k e tempo t. Definimos, portanto, o efeito médio no corte transversal como:

ATE(N® = E,[ Vi - v ] (6)

onde o termo a direita representa a média, sobre os individuos ¢, da diferenca entre os
resultados contrafactuais e factuais no tempo t para o cenario k.

Os valores de ATE(t)(k) sao posteriormente agregados por tipo de intervencao no
tratamento e intensidade (0), possibilitando a comparacao entre diferentes regimes de
tratamento e niveis de efeito. A partir de ATE(#)*), calculamos trés medidas comple-

mentares:

a) o ATE médio pés-intervengao no cendrio k:

ATEY = 1 3" ATE()® (7)
H i

b) o ATE final, correspondente a t =S — 1;

¢) o ATE acumulado (soma dos efeitos no periodo pds-intervencao), utilizados como

visoes complementares da magnitude do efeito.

Avaliamos a relacao dose-resposta por tipo de intervencao por meio da correlacao de
Spearman entre a intensidade da intervencao () e o efeito médio pés-intervengao (m(k)).
Essa escolha decorre do fato de Spearman medir a monotonicidade da relagao entre duas
variaveis de maneira nao paramétrica, independentemente da forma funcional. Como o
CSDG pode gerar tanto padroes monotonicos quanto nao monotonicos — especialmente
em fungoes nao lineares como senoides — a correlagao de Spearman é apropriada por

capturar relagoes ordinais mesmo quando ha inversoes locais.

2.7.2 Mudanga de associagao (Ar)

Em dados longitudinais, a relacao entre variaveis pode ser analisada sob duas dimen-
soes complementares: a temporal, que descreve a dependéncia entre observagoes sucessivas
de uma mesma unidade, e a transversal, que expressa a associacao entre diferentes uni-
dades observadas em um mesmo instante. Conforme discutido por Shen et al. (2023),
essas duas perspectivas — denominadas regressao horizontal e regressao vertical — repre-
sentam formas equivalentes de avaliacao de inferéncia causal em painéis, diferenciando-se

apenas quanto a fonte de variacdo explorada: a primeira utiliza padroes de correlacao no
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tempo para o mesmo individuo, enquanto a segunda baseia-se em padroes de correlacao
transversal entre individuos no mesmo tempo.

Nesta dissertacao, o calculo de r(t) = corr(7T3,Y;) adota precisamente essa perspectiva
transversal, permitindo examinar como a associagao contemporanea entre tratamento e
resultado se comporta ao longo do tempo. Essa abordagem estd em consondncia com a
nogao de correlagao transversal apresentada por Baltagi, Kao e Peng (2016), que enfatizam
a importancia de considerar a dependéncia cruzada entre unidades em um mesmo periodo
para garantir inferéncias validas em modelos de painel com correlagao serial.

A diferenga Ar(t) expressa, assim, a variacdo na dependéncia entre 7' e Y apéds a
intervencao, revelando possiveis mudancas no grau de associacao causal. Dessa forma, a
métrica Ar(t) é interpretada aqui como um indicador dinAmico da intensidade e estabili-
dade da associacao causal entre tratamento e resultado.

Para quantificar como as intervencoes alteram a associagao entre T e Y no conjunto de
individuos, calculamos as correlagoes do cendrio factual r¢ e dos cendrios contrafactuais

res no corte transversal, para cada tempo t:

ry(t) = Corr(Tt(f Ly )), rﬁ'}) (t) = COrr(Tt(cf *) yt(cf,k)) ®)

e definimos a mudanca na correlacdo Ar causada pelas intervengoes como:

Ar®(ty = () —rs(t), (9)

k
onde 7¢(t) e réf)

(t) sao calculados sobre as mesmas unidades amostrais, caracterizando
correlagoes dependentes no sentido discutido por Meng, Rosenthal e Rubin (1992). Assim,
Ar) (t) expressa a variagdo na dependéncia 7' <+ Y no tempo ¢, entre os cendrios factual
e contrafactual k. A série Ar(*)(t) permite identificar os momentos em que a associacao
T <> Y se altera em funcao do tratamento.

Ao agregamos por tipo de intervencao - pontual, gradual ou continua - e intensidade
0, obtemos medidas resumidas como a média no pés-intervencao definida na Equagao 10:

A = m1| 3 A1) (10)
teH

Essa medida sintetiza o efeito da intervencao na dependéncia contemporanea entre T
e Y, permitindo comparar regimes de intervencao e estruturas causais.

Nos cenarios com efeitos causais lineares, a correlagdo de Pearson é a escolha natural
para quantificar a dependéncia entre T; e Y;, pois mede precisamente a forca da relacao
linear entre duas varidveis aleatérias. Sua interpretacao ¢ direta, simétrica e compativel
com os efeitos lineares impostos pelo gerador, justificando seu uso exclusivo nesses casos.

Nos cenarios com efeitos causais nao lineares utilizamos a correlacao de Chatterjee &

(CHATTERJEE, 2021). O coeficiente ¢ ¢ uma medida de dependéncia monotonica nao

paramétrica, ele quantifica quao bem X ordena os valores de Y e possui propriedades
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cruciais para este trabalho: (i) vale 0 se e somente se T" e Y sdo independentes; (ii)
vale 1 se e somente se Y é fungdo de 7', ndo necessariamente linear; (iii) ¢ invariante
a transformagbes monotdnicas marginais; (iv) detecta relagbes monotonicas mesmo em
presenca de forte distorcao nao linear.

Essas caracteristicas tornam ¢ particularmente adequado para os cenéarios do CSDG,
nos quais a dependéncia entre tratamento e resultado pode assumir formas altamente nao
lineares, preservando apenas a monotonicidade estrutural.

Bucher e Dette (2024) apresentam criticas ao método e demonstram que o coeficiente
& nao ¢ continuo sob convergéncia fraca e que, por consequéncia, testes de independéncia e
intervalos de confianga uniformes baseados em ¢ tendem a ter comportamento estatistico
inadequado. Esses resultados, porém, nao se aplicam ao uso adotado nesta dissertacao,
pelas seguintes razoes: (i) Neste trabalho £ é empregado como medida descritiva de associ-
agao em dados sintéticos, ndo como estatistica de teste. (ii) A estrutura causal verdadeira
é conhecida e controlada pelo gerador, afastando o uso inferencial criticado no artigo.
(iii) A aplicacdo foca exclusivamente em mudancas de associa¢do factual-contrafactual.
Isso se enquadra exatamente no tipo de dependéncia monotonica que & foi projetado para
medir. (iv) Os cendrios sao gerados de modo deterministico e controlado, evitando os
casos patologicos usados por Bucher e Dette (2024).

Portanto, mesmo reconhecendo essas limitacoes tedricas, a correlagao de Chatterjee
continua sendo a métrica ideal para mensurar alteragoes de associagao nos cenarios nao

lineares construidos pelo CSDG.

2.7.3 Root Mean Square Error (RMSE)

A qualidade das previsoes nos cenarios factuais, sem intervencao no tratamento, foi
avaliada utilizando o RMSE, visto ser uma métrica comum para avaliagdo neste contexto
(CHENG et al., 2022), calculado entre os valores de referéncia Y e os preditos Y ao longo
do horizonte de previsao. Fixamos a origem do horizonte no instante de intervencao t;,;
e expressamos o tempo por 7 =t — ty,, com 7 > 0. O RMSE factual por defasagem é

dado por:

1 Y A 2
RMSE(f) (T) = \J N Z (}/;E{i)nt"‘T - Y;;ytint""r) ) T>0 (11)

i=1

2.7.4 Precision in Estimation of Heterogeneous Effect (PEHE)

Para os cendrios contrafactuais, utilizamos o PEHE (HILL, 2011), que avalia o erro
na estimativa do efeito individual do tratamento comparando, para cada individuo, a
diferenca entre os resultados sob tratamento e nao tratamento com a diferenca que o
modelo estima para esses dois mundos. Na forma classica, sem indice temporal, o PEHE

é definido por:
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1 N N 2
emm::N;xp«w—m@}—{mn—n@H (12)
Como o problema ¢é longitudinal, introduzimos a noc¢ao de ITE ao longo do tempo,
indexando os resultados por defasagem 7 =t — t;;,; em relacao ao instante da intervencao
ting. Para cada 7 > 0 (pés-intervengao), definimos o ITE verdadeiro do individuo i no
instante t;,; + 7 como:

ITE,(7) = Y.\ — v (13)

%, tint +T %, tint +T

onde Y é o resultado factual (sem intervencao aplicada naquele individuo e tempo)
e Y% ¢ o resultado contrafactual sob o cendrio k (tipo de intervencio e dose §). O ITE

estimado pelo modelo é:

ITE(r) = Vi, = Vil o (14)

Com isso, obtemos a versao temporal do PEHE por defasagem 7, escrita diretamente
em termos dos [TEs:
1 X — 2
epenn(T) = 53 {ITE;(r) — TTEi(7)},  7>0 (15)

=1

2.8 Consideracoes Finais

Este capitulo apresentou os fundamentos tedéricos que sustentam o desenvolvimento
do CSDG e os experimentos conduzidos neste trabalho. Iniciamos revisando os principios
da Inferéncia Causal, destacando desde as primeiras formulacoes de Wright e Neyman até
a consolidagdo moderna dos modelos causais estruturais (SCMs) e dos diagramas acicli-
cos dirigidos (DAGs). Em seguida, discutimos o arcabougo dos Resultados Potenciais e
o Potential Outcomes Framework, enfatizando sua relevancia para definir efeitos contra-
factuais e formalizar estimandos como ITE, ATE e CATE, essenciais para analise causal
tanto tedrica quanto empirica.

A se¢do seguinte apresentou um panorama das principais abordagens para estima-
cao de efeitos causais em dados observacionais, abrangendo métodos nao paramétricos,
modelos estatisticos classicos, técnicas bayesianas, métodos baseados em arvores e avan-
¢os recentes que empregam arquiteturas de deep learning, com destaque para modelos
recorrentes e abordagens baseadas em Transformers. Abordamos também modelos dedi-
cados a predicao contrafactual ao longo do tempo, como RMSN, CRN, G-Net e o Causal
Transformer, destacando seus avancgos e limitagoes.

Posteriormente, discutimos diferentes estruturas causais, evidenciando como distintos
padroes estruturais afetam a propagacgao de efeitos e a interpretagao causal. Essa discus-

sao forneceu a base conceitual necessaria para compreender o comportamento dindmico
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adotado no CSDG. Na sequéncia, apresentamos a natureza dos dados longitudinais e sin-
tetizamos como dados reais e sintéticos diferem em termos de controle causal, dependéncia
temporal e disponibilidade de ground truth, destacando a importancia de mecanismos au-
torregressivos para cenarios realistas.

Finalmente, detalhamos as métricas utilizadas ao longo da pesquisa: o ATE e a mu-
danca de associacao Ar, que permitem avaliar diretamente os efeitos das intervengoes nos
sistemas causais simulados; e as métricas RMSE e PEHE, fundamentais para mensurar a
capacidade preditiva e a qualidade das estimativas contrafactuais dos modelos. A escolha
das correlagoes de Spearman, Pearson e Chatterjee foi justificada conforme a natureza
estrutural dos cenarios — respectivamente testes de monotonicidade, efeitos lineares e
nao lineares — assegurando coeréncia entre o mecanismo gerador e a medida estatistica
empregada.

Em conjunto, os elementos apresentados neste capitulo estabelecem o arcabouco con-
ceitual necessario para compreender o processo de geracao dos dados sintéticos e os méto-
dos utilizados para avalia-los. Eles constituem o alicerce tedrico sobre o qual os resultados

experimentais do restante da dissertacao foi desenvolvido e interpretado.
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CAPITULO

Causal Synthetic Data Generator

A proposta apresentada neste trabalho consiste em um gerador que simula fontes de
dados com relagao causal entre si a partir de equagoes estruturais causais autorregressivas
que modelam o comportamento dessas variaveis ao longo do tempo.

As estruturas causais disponiveis para geracao foram definidas com base em padroes
disponiveis na literatura, e a saida do gerador é composta pelas séries sintéticas que

incluem tratamentos e resultados e que podem incluir covariaveis e contrafactuais.

3.1 Composicao da Estrutura de Geracao

As varidveis T e Y s@o modeladas como processos autorregressivos, nos quais o valor
atual depende do valor observado no periodo anterior, controlado por um coeficiente
temporal ® e um termo de erro aleatorio. Essa modelagem captura a dindmica temporal

comum em séries longitudinais reais:
Y, =0yY, 1 +... (16)

As fungoes f(-) e g(-) determinam a natureza da relagdo entre varidveis. Quando a
relagdo é linear, temos f(z) = x. Para relagoes nao lineares, podem ser utilizadas fun¢oes
como quadritica 2%, oscilatéria sin(x) ou logaritmica log(1 + %) com crescimento suave,
definidas por parametrizagao ou atribuidas aleatoriamente no momento da geracao dos
dados.

Todos os termos de erro € sao amostrados de uma distribuicao probabilistica definida
pelo usuario, podendo ser Normal ou Uniforme, conforme parametrizacao do gerador. As-
sim, a distribui¢ao do ruido é selecionada externamente e aplicada de forma independente

a cada iteragao:

N(0,0%), se noise_dist = "normal",

Uniform(a,b), se noise_dist = "uniform".
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Onde a e b sao, respectivamente, os limites inferior e superior da distribui¢do uniforme,
enquanto o representa a variancia da distribuicao normal. Esses parametros sao definidos
no arquivo de configuragao e determinam a amplitude ou a dispersao do ruido aplicado.
Em ambos os casos, o ruido é amostrado de forma independente para cada individuo,

variavel e instante temporal.

3.2 Estruturas Causais Implementadas

A seguir, sao descritas as estruturas causais implementadas, cada uma com suas res-
pectivas equagoes geradoras. As variaveis de tratamento (7') e resultado (Y') possuem
em comum em todas as estruturas uma dindmica temporal autorregressiva, porém sao

influenciadas de forma diferente.

3.2.1 Estrutura Causal Direta

O tratamento (7') ndo é influenciado por outras varidveis no modelo, enquanto o
resultado (V) é influenciado diretamente por 7', caracterizando a estrutura causal 7' — Y
como visto na Figura 5. Um exemplo que poderia ser modelado por essa estrutura seria o
efeito da dose de um medicamento (7") sobre a pressao arterial (Y'), sem considerar outros

fatores.

™ (v
Figura 5 — DAG de Estrutura Causal Direta.

O comportamento do tratamento nessa estrutura é modelado pela Equacgao 18. Nela, o
coeficiente temporal ®7 atua sobre o valor do tratamento no passo anterior, determinando
o grau de dependéncia temporal do processo. O termo de erro €7, representa as variagoes
aleatorias nao explicadas pelo modelo.

O resultado é descrito pela Equacao 19. O primeiro termo, ponderado por ®y, reflete a
componente autorregressiva de Y;, enquanto o segundo termo expressa a influéncia causal
do tratamento sobre o resultado, sendo Sry o coeficiente que controla a intensidade dessa
relagdo e f(T;) a funcdo que define a complexidade do efeito do tratamento. Por fim, o

termo de erro ey, representa o ruido associado a variavel de resultado.

Ty = ®7T;1 + e, (18)

Y, =@yY,1 + Bry f(T}) + ey, (19)
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A estrutura causal do tipo Direta gera duas séries, uma de tratamento e outra de

resultado como pode ser visto no exemplo na Figura 6.

—8— Tratamento (T)
—#— Resultado (Y)

0.8 1

0.6 1

0.4 1

Valor

—0.4 1

—0.6 1

-0.8 T T T T T T
0 2 4 6 8 10 12 14 16 18 20

Tempo

Figura 6 — Exemplo gerado a partir da estrutura Direta com efeito ndo linear.

3.2.2 Estrutura Causal Cadeia

Assim como na estrutura anterior, o tratamento (7) nao sofre outras influéncias,
porém o tratamento influencia o resultado (Y') por meio de uma covaridvel mediadora
(X), formando a estrutura causal T — X — Y vista na Figura 7. Como exemplo,
podemos ter o efeito da pratica de atividade fisica (7') sobre o nivel de colesterol (Y),

mediado pela perda de peso (X).

X) ly

Figura 7 — DAG de Estrutura Causal em Cadeia.

Nesta estrutura, o tratamento descrito na Equacao 20 também evolui no tempo de
forma autorregressiva, com o coeficiente temporal & capturando a persisténcia de T;
a partir do valor imediatamente anterior, enquanto o termo de erro 7, representa as
variacoes aleatérias nao modeladas.

A covariavel mediadora X; é determinada pelo tratamento contemporaneo, conforme
a Equacao 21. O coeficiente fSrx controla a intensidade do efeito causal de T, sobre
X, enquanto f(7}) define a complexidade da associagdo. O termo de erro €x, agrega as
variacoes nao modeladas em X;.

O resultado Y; combina uma componente autorregressiva, ponderada por ®y, com a

influéncia do tratamento mediada por X;, como expresso na Equacao 22. Nessa equacio,
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Bxy quantifica a for¢a do efeito de X; sobre Y; e f(X;) descreve a complexidade dessa

associacao, enquanto €y, resume as perturbacoes aleatérias do resultado.

T, = ®rTi 1 + e, (20)
Xy = Brx f(T}) +ex, (21)
Y, = @yY, 1+ Bxy f(Xy) + ey, (22)

Na estrutura causal Cadeia temos trés séries, a de tratamento, a de resultado e a da

covariavel no papel de mediadora, como pode ser visto no exemplo da Figura 8.

—8— Tratamento (T)

1.0 —m— Resultado (Y)
\ —&— Covariavel (X)
0.8 . C
0.6 A
s
S
0.4 A
0.2
0.0 A1
0 2 4 6 8 10 12 14 16 18 20
Tempo

Figura 8 — Exemplo gerado a partir da estrutura Cadeia com efeito nao linear.

3.2.3 Estrutura Causal Confundidor

Nesta estrutura, uma varidvel (X), gerada aleatoriamente e de forma independente
a partir de uma distribuicao uniforme, atua como um confundidor, influenciando tanto
o tratamento (7") quanto o resultado (Y'), introduzindo um viés de confundimento na
associacao observada entre essas variaveis. O tratamento também influencia diretamente
o resultado, resultando na estrutura X — 7T — Y, X — Y como visto na Figura 9.
Um exemplo seria o nivel de estresse didrio (X), que pode influenciar tanto a decisao de
praticar exercicios (T) quanto a qualidade do sono (Y'), sendo que a qualidade do sono

também ¢é influenciada pela pratica de exercicios.
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‘X.

Figura 9 — DAG de Estrutura Causal Confundidor.

A variavel confundidora X; é gerada conforme a Equagao 23, sendo amostrada de uma
distribui¢ao uniforme U(a,b), o que representa uma fonte externa de variagdo indepen-

dente no tempo.

O tratamento T}, descrito pela Equacao 24, possui componente autorregressivo pon-
derado por @7, refletindo sua persisténcia temporal, e um termo adicional Sxrf(X;) que
expressa a influéncia causal exercida por X; sobre o tratamento. O termo de erro 7,

representa as variagoes aleatorias nao explicadas pelo modelo.

O resultado Y}, definido pela Equagao 25, combina quatro componentes: (i) uma parte
autorregressiva ponderada por ®y; (ii) o efeito do confundidor X, controlado por Sxy e
mediado pela fun¢ao f(X;); (iii) o efeito direto do tratamento 7T}, controlado por fBry e
modelado pela fungéo g(73); e (iv) o termo de erro ey,, que representa o ruido associado

a variavel de resultado.

X, ~ Ula.h) ()
T, = ®rT—1 + Bxr f(Xy) + e, (24)
Y, = &yY, 1 + Bxy f(Xy) + Bryg(Th) + ey, (25)

Na estrutura Confundidor também temos trés séries, a de tratamento, a de resultado
e a da covariavel que agora assume o papel de confundidora, como pode ser visto no

exemplo da Figura 10.
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—8— Tratamento (T)
0.5 1 —m— Resultado (Y)
—A— Covariavel (X)
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(]
= 0.1
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Figura 10 — Exemplo gerado a partir da estrutura Confundidor com efeito nio linear.

3.3 Cenarios Contrafactuais

Para permitir a avaliagdo de métodos em cendrios contrafactuais, o gerador simula
mudancas no tratamento a partir de um ponto de intervencao no tempo t;,;, criando

trajetorias alternativas de tratamento e resultado.

Na estrutura causal Direta por exemplo, as variaveis contrafactuais sao geradas a

partir da Equacao 26 para o tratamento e da Equacao 27 para o resultado:

T = o7 Tf) +er, + 6, (26)

Y, set <t
Y;cf _ t int (27)
OyY | + Bry F(T) + ey, set >t

O resultado contrafactual thf ¢ idéntico ao resultado factual até o ponto de interven-
¢ao, sendo alterado apenas a partir de ¢;,;, quando o tratamento passa a ser modificado

pela intervencao d;. Um exemplo de dado contrafactual gerado pode ser visto na Figura 11.
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1.25 4 D o
4 ~
1.00 A
0.75 A
0.50 A
s
K 0.25
0.00
—0.25 A —8— Tratamento (T)
. —#— Resultado (Y)
------- Intervencgao (t=10)
—0.50 A
—¢- Tratamento (T¢F)
- - CF
—0.75 A ®- Resultado (Y<F)
0 2 4 6 8 10 12 14 16 18 20
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Figura 11 — Exemplo gerado de dado contrafactual. Cenario contrafactual de um individuo de uma
estrutura Direta; em ¢;,;=10 é realizada uma intervencao no Tratamento, gerando a partir
desse ponto um tratamento e um resultado contrafactual que divergem do dado factual.

O gerador suporta diferentes tipos de intervencao, descritos a seguir.
Intervencao Pontual. A intervencao é aplicada apenas no instante t;,;, onde ¢
assume um valor a que é a intensidade da intervencao a ser aplicada; nos demais periodos

0 é 0, nao sendo entao aplicadas novas intervengoes:

a, set=t;
(5t _ int (28)
07 se t 7£ t’int

Intervencao Continua. A intervencao é aplicada a partir de t;,; continuamente, ou

seja, 0 assume o valor « a partir de t;,; até o fim da série:

0, set <ty
a, set >ty

Intervencao Gradual. A intervencao é aplicada gradualmente a partir de t;,;, ou
seja, inicialmente ¢ assume uma fragao de «, e a cada periodo é incrementado, atingindo

valor maximo de « apenas no fim da série:

0, se t <t

a%? se t'int S t
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3.4 (Geracao dos Dados

O processo de geracao dos dados sintéticos no CSDG é controlado por meio de um ar-

quivo de configuracao no formato YAML, que define todos os parametros necessarios para

a execucao do gerador. Essa abordagem declarativa garante reprodutibilidade e flexibi-

lidade, permitindo que diferentes cenarios sejam simulados apenas informando o arquivo

de configuracao no momento da execucgao, sem necessidade de alteragoes no codigo-fonte.

Os parametros disponiveis para configuracao no arquivo estao listados na Tabela 4.

Tabela 4 — Parametros definidos no arquivo de configuragao YAML do CSDG

Parametro Descricao

name Referéncia do dataset na saida

seed Semente de aleatoriedade

n Ntmero de individuos (séries independentes)
t Comprimento temporal das séries
structure__type Estrutura causal (direct, chain, confounder)
nonlinear Uso de fungoes nao lineares nas relagoes causais
normalize Normalizagao temporal (z-score)

effects.ty Funcao de efeito de T — Y

effects.tx Funcao de efeito de T' — X

effects.xt Funcao de efeito de X — T

effects.xy Funcao de efeito de X — Y

phi_ T Persisténcia temporal do tratamento

phi_ Y Persisténcia temporal do resultado

betas.ty Coeficiente causal T — Y

betas.tx Coeficiente causal T — X

betas.xy Coeficiente causal X — Y

betas.xt Coeficiente causal X — T

noise__dist Tipo da distribui¢do do ruido (uniform ou normal)
sigma_ T Desvio padrao do ruido de T (se normal)
sigma_ Y Desvio padrao do ruido de Y (se normal)
sigma_ X Desvio padrao do ruido de X (se normal)

noise_T range
noise__ Y range
noise_X__range
confounder__mode
phi_ X
nterventions
split.train

split.val

split.test

Intervalo do ruido de T (se uniforme)

Intervalo do ruido de Y (se uniforme)

Intervalo do ruido de X (se uniforme)

Tipo de geragao da covariavel X (iid ou arl)
Persisténcia temporal de X (se confounder mode=arl)
Lista de intervengoes (tipo, tempo e intensidade)
Proporcao destinada ao treino

Proporcao destinada a validacao

Proporcao destinada ao teste

O arquivo é composto por blocos de parametros agrupados conforme suas finalidades:

1 Dados principais: definem o nome do dataset (name), o nuimero de individuos

(n) e o comprimento das séries (t). O campo structure_type seleciona a es-

trutura causal desejada, direct, chain ou confounder. Os parametros nonlinear e
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normalize controlam, respectivamente, a inclusao de nao-linearidades nas equagoes

e a normalizacao dos valores gerados.

[ Funcoes de efeito (effects): os termos ty, tx, xy e xt indicam quais fungoes
serdao utilizadas na aplicacdo do efeito entre as varidveis. As opgoes sao: linear
- linear -, quadratic - quadrado - , sine - seno - e logarithmic - logaritmo
natural. As funcoes especificadas sao utilizadas caso nonlinear=True, se nao forem

especificadas sao sorteadas aleatoriamente.

[ Coeficientes autorregressivos: os termos phi_T e phi_Y correspondem aos coe-
ficientes autorregressivos das variaveis de tratamento e resultado. Caso nao sejam
especificados, sao sorteados aleatoriamente dentro de intervalos predefinidos, garan-

tindo variabilidade entre instancias.

0 Coeficientes causais (betas): determinam as forgas de causalidade entre as va-
riaveis, variando conforme a estrutura selecionada. Por exemplo, em uma estrutura
Direta, apenas o parametro ty (efeito de T} sobre Y;) é utilizado, enquanto nas es-
truturas chain e confounder os termos adicionais tx, xy e xt sao ativados conforme

o grafo causal correspondente.

(1 Configuracao dos ruidos: o parametro noise_dist define a distribuicao probabi-
listica dos termos de erro (g7, €y;, €x, ). Pode-se escolher entre distribui¢do uniforme
ou normal, com intensidade controlada pelos pardmetros sigma ou pelos intervalos
noise_range. Essa configuragao influencia diretamente o sinal-ruido (SNR) do sis-

tema gerado.

(1 Modo de geracao do confundidor: quando a estrutura envolve uma variavel
confundidora X, o pardmetro confounder mode define se a série sera independente
e identicamente distribuida (iid) ou autorregressiva de primeira ordem (ar1). O

coeficiente phi_X controla a persisténcia temporal nesse ultimo caso.

1 Intervencgoes: o bloco interventions especifica o conjunto de intervengoes apli-
cadas ao tratamento T;. Cada elemento define o tipo de intervencdo (pontual,
gradual ou continua), o instante de aplicagdo (t_interv) e a intensidade da mu-
danga (delta_T). Essa parametrizagdo permite explorar o comportamento do sis-
tema sob diferentes magnitudes e duragoes de intervengao, o que é fundamental para

avaliar a resposta causal e a relagdo dose—efeito.

1 Divisao dos dados: a chave split define as proporgoes destinadas aos conjuntos
de treino, validacao e teste, garantindo consisténcia experimental nas etapas de

modelagem e anélise.



58 Capitulo 3. Causal Synthetic Data Generator

Durante a execugao, o gerador 1é o arquivo YAML, inicializa o estado aleatério con-
forme a semente (seed), instancia as equagoes estruturais conforme a estrutura causal
definida e aplica as intervencgoes configuradas.

Os dados gerados pelo CSDG sao armazenados no formato NumPy Zip (NPZ), um
contéiner compactado que agrupa miltiplos arrays nomeados e metadados em um tnico
arquivo. Esse formato oferece (i) eficiéncia de entrada e saida (I/O), (ii) compressao
transparente via zip, e (iii) portabilidade direta dentro do ecossistema Python, sendo
suportado nativamente por bibliotecas como NumPy, SciPy, Scikit-learn, PyTorch e Ten-
sorFlow. Dessa forma, cada particdo do conjunto de dados — train, val e test — é
salva como um arquivo .npz contendo tanto os arrays principais (treatments, outcomes,
covariates) quanto suas versoes contrafactuais e respectivos metadados de configuragao.

Além de sua eficiéncia e compatibilidade, o NPZ preserva os tipos numéricos e as
formas (shape) dos arrays, evitando ambiguidades comuns em formatos tabulares como
CSV, em que pode ocorrer perda de precisdo, ordenagao ou cabecgalhos inconsistentes.
A estrutura em chaves nomeadas também simplifica o acesso seletivo a subconjuntos
especificos de dados — como séries factuais, contrafactuais ou varidveis auxiliares —
mantendo, no mesmo contéiner, os parametros e condi¢oes experimentais responsaveis
pela geragao do dataset. Essa caracteristica é fundamental para garantir reprodutibilidade
e rastreabilidade dos experimentos.

Por fim, embora o NPZ seja um formato nativo do NumPy, sua utilizacao é ampla-
mente compativel com outras linguagens e ambientes cientificos. Em Julia, pode ser lido
diretamente via o pacote NPZ.jl; em R ou MATLAB, o acesso pode ser realizado por
meio de bindings Python, como reticulate e MATLAB Engine. Em cenarios onde o su-
porte direto nao esta disponivel, os arquivos podem ser convertidos de forma simples para
formatos intercambidveis como CSV ou Parquet, preservando a estrutura e o contetdo

dos dados originais.

Convencao de nomes

Os arquivos sao gravados seguindo o padrao:
{name} {structure} {nonline} {t}p_{n}n_ {split}.npz

onde:

0 name: identificador do dataset (ex.: syntheticl);

O structure: estrutura causal (direct, chain, confounder);
[ nonlin: indicacdo de linearidade (linear ou nonlinear);

[ t: nimero de passos temporais, com sufixo p (ex.: 20p = ¢ = 20);
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[ n: nimero de individuos, com sufixo n (ex.: 2560n = n = 250);
0 split: partigdo (train, val ou test).

Esse esquema torna o arquivo auto-descritivo: apenas pelo nome é possivel identificar a

estrutura causal, a presenca de nao-linearidades, os tamanhos (n,t) e a particao.

Estrutura interna

A funcao de geragao retorna um diciondrio cujas chaves sao serializadas no NPZ. A
Tabela 5 resume os principais campos, suas formas (dimensionalidade) e significado. O
primeiro bloco contém as chaves com os dados gerados e o segundo os metadados de

geragao.

Tabela 5 — Estrutura dos arquivos gerados: chaves, formas e descricao.

Chave Forma Descrigao

(shape)
treatments (n, t) Tratamento factual 7'
outcomes (n, t) Resultado factual Y.
covariates (n, t) Covariavel X;
treatments_cf (k,n, t) Tratamento contrafactual.
outcomes_cf (k, n, t) Resultado contrafactual.
covariates_cf (k, n, t) Covariavel contrafactual.

interventions lista de tuplas  Especificagao das intervencoes.
phi T, phi Y, phi X decimal Coeficientes autorregressivos.
betas_ty, betas_tzx, decimal Coeficientes causais.

betas_zxzt, betas_zy

notse_dist string Distribuicao dos ruidos.

sigma_T, sigma_Y, decimal Intensidades do ruido para normal.
sigma_X

noise_T_range, pares (£, u) Intervalos do ruido para uniform.
noise_Y_range,

noise_X_range

structure_type string Estrutura causal.

normalize booleanos Sinaliza normalizacao.

nonlinear booleanos Sinaliza nao linearidade nos efeitos.
effect_ty, effect_tz, string Funcgoes de efeito de cada relagao causal.
effect_zt, effect_zy

confounder_mode string iid ou arl.

seed inteiro Semente para reprodutibilidade.

Observacoes importantes:

1 k é o nimero de intervencgoes definidas em config["interventions"]; cada fatia

[i, :, :] em _cf corresponde a um cenario distinto.
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( As formas (n, t) e (k, n, t) facilitam operagoes vetorizadas para métricas por

individuo ou por cenario.

O Quando normalize=true, a normalizacao ¢ aplicada de modo consistente entre

factual e contrafactual.

3.4.1 Consideracgoes finais

O gerador proposto neste capitulo consolida uma abordagem formal, flexivel e repro-
dutivel para a criacao de dados sintéticos longitudinais com estrutura causal explicita.
Ao integrar dependéncias temporais autorregressivas, efeitos causais contemporaneos e
diferentes formas funcionais entre tratamento, resultado e covariaveis, o CSDG permite
simular, de forma controlada, cenarios compativeis com dindmicas reais observadas em
processos longitudinais. As trés estruturas causais implementadas — Direta, Cadeia e
Confundidor — abrangem padroes fundamentais da literatura, possibilitando investigar
efeitos diretos, mediadores e confundidores ao longo do tempo. Exemplos graficos apresen-
tados ao longo do capitulo ilustram que o gerador produz trajetorias realistas e coerentes
com as propriedades esperadas de cada estrutura, conforme visto nas Figuras 6, 8 e 10.

A capacidade de gerar trajetérias factuais e contrafactuais, aliada ao suporte para
diferentes tipos de intervengao - pontual, gradual e continua - estabelece um ambiente
experimental rico para avaliar algoritmos de inferéncia causal sob miiltiplas condig¢oes
estruturais. O uso de fungdes de efeito configuraveis, coeficientes autorregressivos e in-
tensidades de intervencao permite ajustar a complexidade do sistema simulado, tornando
o gerador aplicavel tanto a estudos exploratérios quanto a experimentos metodolégicos
mais exigentes.

A se¢ao dedicada ao processo de geragao descreveu ainda o papel do arquivo de con-
figuragdo YAML, que oferece uma interface declarativa e reprodutivel para controle de
todos os elementos do gerador, desde coeficientes autoregressivos e funcoes de efeito até
ruidos estruturais e faixas de variabilidade. Essa abordagem amplia a flexibilidade experi-
mental, permitindo que cenarios diversos sejam produzidos sem necessidade de alteracoes
diretas no cédigo.

Em sintese, essas contribuigoes reforcam o papel do CSDG como uma ferramenta
aberta, reprodutivel e metodologicamente fundamentada para experimentacao causal em
contextos longitudinais. O gerador permite a criagdo de cenérios realistas com ground
truth causal conhecido e oferece um ambiente controlado para testar e comparar algorit-
mos de aprendizado causal. Ao integrar estruturas causais explicitas, dindmicas autor-
regressivas e diferentes regimes de intervencao, o CSDG estabelece uma base consistente
para estudos que exigem controle rigoroso das relagoes causais e do comportamento tem-

poral das variaveis.
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CAPITULO

Analise do CSDG

Neste capitulo temos como objetivo demonstrar que o CSDG produz dados que respei-
tam principios de consisténcia causal, realismo estatistico e reprodutibilidade de efeitos
esperados sob manipulagao das variaveis.

Buscou-se observar empiricamente o comportamento dindmico dos efeitos do trata-
mento sob diferentes tipos e intensidades de intervencao, e foram verificados se as propri-
edades estatisticas e causais dos cenarios simulados se comportam conforme o esperado a
partir das estruturas definidas.

Essa etapa ¢ essencial para validar a coeréncia do gerador e confirmar se as relagoes
causais impostas pelas estruturas e pelos parametros se traduzem em padroes observaveis

de efeito médio e de associagao entre variaveis ao longo do tempo.

4.1 Método de Analise

Analisamos os diferentes cenarios de dados sintéticos gerados pelo CSDG sob duas
perspectivas complementares: (i) o efeito médio do tratamento sobre o resultado (ATE)
e (ii) a mudanga de associagao entre tratamento e resultado provocada pelas intervengoes
(A,). O objetivo é verificar se as estruturas causais e fungoes de efeito especificadas no
gerador se manifestam de forma consistente nas propriedades observadas dos dados.

Em todas as andlises, alinhamos o tempo em 7 = t — t;;;, definindo a defasagem
temporal relativa a interven¢ao, de modo que 7 = 0 representa o instante da intervencao,
7 < 0 indica periodos anteriores e 7 > 0 periodos posteriores.

Padronizamos T" e Y por tempo utilizando z-score, onde para cada instante ¢ subtrai-
mos a média e dividimos pelo desvio-padrao calculados sobre todos os individuos. Essa
etapa garante comparabilidade entre periodos, elimina efeitos de escala e assegura que as
medidas de dependéncia reflitam exclusivamente a covariacao relativa entre individuos.

As analises foram estratificadas por tipo de intervencao e por intensidade aplicada
(0). No estudo da mudanca de associagdo Ar, utilizamos métricas de dependéncia esco-

lhidas de acordo com o carater funcional dos cenarios. Correlacao de Pearson foi aplicado
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aos cenarios lineares, por medir com precisao a variagdo na componente linear da asso-
ciagdo e correlagdo de Chatterjee foi aplicado aos cenarios nao lineares, por responder
adequadamente as transformacoes introduzidas pelos mecanismos funcionais empregados.

A mudanca de associacao foi avaliada comparando-se diretamente as curvas de de-
pendéncia factual e contrafactual ao longo da defasagem temporal, permitindo observar
como a intervencao altera a relacao entre 7' e Y em cada cenario. Apresentamos também
a média temporal E[Ar(7)] acompanhada de intervalos de confianga obtidos por reamos-
tragem, a fim de sintetizar o comportamento agregado apds a intervengao sempre que
essa representacao contribui para a interpretagao dos resultados.

Por convencao, valores positivos de Ar*)(t) indicam aumento da associagdo T ¢+ Y
no contrafactual em comparacao ao factual, enquanto valores negativos indicam reducao

dessa dependéncia.

4.2 Dados e cenarios analisados

A avaliacao conduzida neste capitulo baseia-se em um conjunto ampliado de dados sin-
téticos gerados pelo CSDG, contemplando multiplas combinagoes estruturais e funcionais,
com intuito de investigar como diferentes mecanismos causais e formas de nao-linearidade
influenciam o comportamento das métricas de interesse. Foram construidos nove conjun-
tos de dados, variando-se (i) a estrutura causal subjacente, (ii) a complexidade funcional
dos efeitos entre as varidveis e (iii) o tipo de func¢do nao linear empregada.

Todos os datasets compartilham a mesma configuragao factual: cada individuo possui
uma série temporal de T = 20 periodos, com intervencao aplicada em t;,; = 10, e po-
pulacao total de N = 250 individuos. Para cada individuo sao gerados k = 30 cenarios
contrafactuais, correspondentes as combinagoes dos trés tipos de intervencao com dez
intensidades ¢ variando de 0,1 a 1,0 em incrementos de 0,1.

Os parametros de geracao foram mantidos fixos entre todos os conjuntos de dados,
conforme a Tabela 6, de modo a isolar o efeito das estruturas causais e das fungoes de
efeito.

Os coeficientes temporais foram definidos como ¢ = ¢y = 1.0, produzindo séries
totalmente persistentes. Essa escolha elimina a influéncia de componentes autorregressivas
e faz com que qualquer variacao observada ao longo do horizonte decorra exclusivamente
das relacoes causais especificadas. Dessa forma, as diferencas entre cenarios passam a
refletir diretamente os mecanismos estruturais e as fung¢oes de efeito, e ndo dinamicas
temporais intrinsecas as séries.

Além disso, os coeficientes fry e fSrx foram mantidos iguais em todas as estruturas,
assegurando que o tratamento conserve a mesma forga causal na relagao com Y e com X,

independentemente da estrutura causal.



4.2. Dados e cendrios analisados 63

Tabela 6 — Parametros globais de geracao dos dados empregados nos nove datasets.

Coeficientes temporais ¢ = 1.0, ¢y = 1.0

Coeficientes causais Bry = 1.2, Brx = 1.2, Bxy = 0.9, Bx7 = 0.6

Ruido (distribuigao) uniform
Intervalos do ruido T,X,Y :[-0.1,0.1]

Os nove datasets foram organizados em trés grupos conforme descrito na Tabela 7. O
grupo 1 (G1) utiliza relagoes estritamente lineares entre as varidveis e os grupos 2 (G2)
e 3 (G3) empregam fungoes nao lineares. No grupo 2 (G2), o efeito do tratamento é
intensificado por fungoes quadraticas aplicadas a T'— Y e T' — X, enquanto a combi-
nacao X — T com funcao logaritmica introduz confundimento ao tratamento. No grupo
3 (G3), a fungao senoide associada ao tratamento produz efeitos oscilatérios, permitindo
avaliar cenarios em que o efeito causal varia ao longo do tempo. Em ambos os grupos nao
lineares, o efeito X — Y é modelado pela fun¢ao logaritmica, comprimindo a resposta de
Y as variagoes de X; na estrutura Cadeia, isso reduz a influéncia mediada do tratamento,

enquanto na estrutura Confundidor modera a influéncia direta de X sobre Y.

Tabela 7 — Descricao dos nove datasets de analise, agrupados por estrutura causal, tipo
de complexidade e grupo funcional.

Dataset Estrutura Complexidade Grupo
Direta—Linear Direta Linear
Confundidor-Linear Confundidor Linear G1
Cadeia—Linear Cadeia Linear

Direta-Nao Linear (G2) Direta Nao linear
Confundidor-Nao Linear (G2) Confundidor Nao linear G2
Cadeia—-Nao Linear (G2) Cadeia Nao linear

Direta-Nao Linear (G3) Direta Nao linear
Confundidor-Nao Linear (G3) Confundidor Nao linear G3
Cadeia—Nao Linear (G3) Cadeia Nao linear

Fungoes de efeito aplicadas em cada um dos grupos:
Grupol (G1): T—- X, T—Y,X - T, X - Y = Linear.
Grupo 2 (G2): T — X, T — Y = Quadrética ; X — T, X — Y = Logaritmica.
Grupo 3 (G3): T — X, T — Y = Senoidal ; , X - T, X — Y = Logaritmica.

Essa configuragdo experimental permite observar, de maneira sistemética, como a
estrutura causal, a complexidade e as fungoes de efeito influenciam o comportamento das

métricas discutidas nas proximas sec¢oes, incluindo o ATE, a mudanga de associacdo Ar

e demais indicadores analisados ao longo deste capitulo.
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4.3 Resultados — Efeito médio (ATE)

Nesta secao analisamos o efeito médio dos tratamentos (ATE), caracterizando de que
forma os cendrios contrafactuais modificam os resultados e como essas alteragoes variam
entre tipos e intensidades de intervencao. A andlise contempla quatro aspectos comple-
mentares: a verificacdo das pré-tendéncias para estabelecer a equivaléncia das trajetérias
iniciais; a descricao das curvas temporais do ATE no periodo pés-intervencao; o estudo
da monotonicidade associada ao tipo de intervencao; e a avaliacao da monotonicidade por

faixas de intensidade, com foco na modulagao introduzida pelos diferentes valores de 9.

4.3.1 Pré-tendéncias

Antes de analisar os efeitos pods-intervencao, é fundamental verificar a auséncia de
tendéncia prévia entre os cenarios factual e contrafactual.

Em estudos de inferéncia causal, a hipétese de pré-tendéncia nula estabelece que,
para 7 < 0, as trajetérias dos resultados devem evoluir de forma paralela, de modo que
eventuais diferencgas observadas apds a intervencao possam ser atribuidas ao tratamento,
e nao a discrepancias pré-existentes.

No contexto deste trabalho, avaliamos a pré-tendéncia por meio do comportamento
do efeito médio alinhado no tempo, esperando que, no periodo pré-intervencao, esse valor
seja proximo de zero. Desvios sisteméaticos de zero no pré-interven¢ao indicariam que
factual e contrafactual ndo sdo equivalentes antes do tratamento — o que caracteriza um
viés indesejado na construgao das séries.

A Figura 12 ilustra o caso de referéncia Direta—Linear. Observa-se que, no periodo pré-
intervencao, as médias de AT E(t) permanecem préximas de zero, confirmando a auséncia
de pré-tendéncia. O mesmo comportamento foi verificado nos demais cenarios analisados,
reforcando a consisténcia das séries simuladas e garantindo que as diferencas observadas

no poés-intervencao reflitam exclusivamente o impacto causal das intervencgoes.

4.3.2 Curvas temporais do ATE

Apéds confirmada a auséncia de pré-tendéncia, analisamos a evolucao temporal do
efeito médio AT'E(t), alinhado em 7 = ¢ — t;,;, com o objetivo de caracterizar a dindmica
do impacto das intervencoes ao longo do tempo. As curvas representam a diferenca
média entre os resultados factual e contrafactual em cada instante, permitindo identificar
respostas imediatas, efeitos acumulados e a evolucao temporal do impacto do tratamento
em cada cenario.

As Figuras 13—24 apresentam as curvas temporais de AT'E(t) estratificadas por tipo
de intervencao, estrutura causal e complexidade funcional. Em cada grafico, as linhas

representam diferentes intensidades de intervengao (). O periodo 7 = —1 corresponde ao
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Figura 12 — Verificacdo de Pré-tendéncia. Na verificagio de pré-tendéncia no cendrio Direta—Linear, as
médias de AT E(t) permanecem préximas de zero antes da intervengdo (7 < 0), indicando
auséncia de viés temporal entre os cendrios factual e contrafactual.

instante imediatamente anterior a intervencao, enquanto a linha tracejada azul em 7 =0

marca o momento exato da aplicacao do tratamento contrafactual.

Datasets Lineares - Grupo 1

Nos datasets do grupo G1, com efeitos lineares, as curvas de AT E(t) apresentam com-
portamentos muito semelhantes entre as trés estruturas causais, sendo que as diferencas
mais relevantes aparecem entre os tipos de intervencao. Assim, as Figuras 13 a 15, re-
ferentes a estrutura Direta—Linear, sdo representativas do padrao observado também nas
demais estruturas lineares.

Na intervencao pontual, que pode ser vista na Figura 13, observa-se um aumento
imediato do AT E(t) logo apés 7 = 0. A partir desse ponto, o efeito cresce de maneira
aproximadamente linear ao longo do tempo, refletindo a propagacao direta do choque
aplicado ao tratamento. Ha distincao clara entre as intensidades de intervencao: curvas
com maior § apresentam inclinagdes proporcionalmente maiores, mantendo uma separacao
ordenada e monotonica entre si.

Nos cenarios com intervencao gradual, observado na Figura 14, a resposta ao tra-
tamento é discreta nos periodos iniciais e se intensifica ao longo do tempo, resultando
em uma curva de crescimento acelerado. Esse comportamento decorre do acimulo pro-
gressivo dos incrementos no tratamento, produzindo uma trajetoria suavemente curvada,
caracteristica de um crescimento polinomial, aproximadamente quadratico. Assim como

na intervencao pontual, observa-se uma separacao clara entre as intensidades de inter-
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Figura 13 — Curvas AT E(t) — intervengao Pontual, estrutura Direta, Linear - G1. Para cinco intensi-
dades de intervengao § distintas.

ven¢ao, mas com valores finais mais elevados em razao do maior volume cumulativo de

tratamento aplicado ao longo do tempo.

254 ¥
6=0.2
6=0.4
6=0.6
6=0.8
6=1

20 4

AEXR

15 A

ATE(t)

10 -

Figura 14 — Curvas ATE(t) — intervencio Gradual, estrutura Direta, Linear - G1. Para cinco inten-
sidades de intervencao § distintas.

No cenario de intervencao continua, ilustrado na Figura 15, observa-se um crescimento
acelerado do AT E(t) ao longo do tempo. Esse formato curvo decorre do efeito cumulativo
do tratamento, que é aplicado em todos os periodos pods-intervencao, de modo que cada
incremento adicional propaga-se ao longo da dindmica autorregressiva do resultado. O
padrao resultante ¢ uma trajetoria suavemente curvada, tipica de um crescimento poli-

nomial, mais acentuada que na intervencao gradual devido ao maior volume acumulado
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de tratamento. Assim como nos demais cendarios, as curvas exibem separacao clara entre
as intensidades de intervencao, com valores finais proporcionalmente maiores para doses

mais elevadas.
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Figura 15 — Curvas ATE(t) — intervengao Continua, estrutura Direta, Linear - G1. Para cinco inten-
sidades de intervencao § distintas.

Datasets Nao Lineares - Intervencao Pontual

A Figura 16 apresenta as curvas ATE representativa dos cenarios nao lineares sob
intervencao pontual. Apesar das diferencas de fungoes de efeito entre os grupos G2 e G3,
observou-se um padrao comum em todos os experimentos, inclusive entre as estruturas
causais distintas: as curvas temporais de ATE ao longo de 7 exibem uma trajetéria
essencialmente linear em todos os cendrios analisados, variando apenas a inclinagao e com
ATEs finais distintos.

Embora as fun¢oes que mapeiam o tratamento para o resultado possam ser quadraticas
ou senoidais, o esperado para a intervencao pontual nestes cenarios é que as trajetérias
contrafactuais evoluam como uma versao consistentemente inclinada da trajetéria fac-
tual. Como o ATE representa a diferenca entre essas duas trajetorias, o resultado é um
incremento aproximadamente constante a cada periodo, o que gera uma curva linear no
tempo. Em termos praticos, o ATE reflete a acumulag¢ao incremental produzida pela
interven¢do, mesmo quando a relagdo 7' — Y ¢é nao linear, deslocamentos repetidos e de
baixa amplitude em T tendem a produzir diferencas quase lineares entre as trajetorias
factual e contrafactual.

Embora a linearidade seja um padrao comum, surgem diferencas claras entre grupos
e estruturas. Os cenarios do grupo G2, que utiliza efeitos quadraticos, apresentam ATEs

finais mais elevados e curvas mais inclinadas em comparacio aos cenarios do grupo G3,
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que utiliza efeitos senoidais. Isso ocorre porque a func¢ao quadratica amplifica incrementos
no tratamento conforme o valor de T cresce, fazendo com que a intervencao produza
diferencas progressivamente maiores ao longo do tempo. No caso das fungoes senoidais,
o efeito marginal é suavizado devido ao comportamento oscilatorio do seno, o que limita

a intensidade acumulada do impacto da intervencao.

ATE(t)

Figura 16 — Curvas ATE(t) — intervenc¢io Pontual, estrutura Direta, Nao Linear - G2. Para cinco
intensidades de intervengao § distintas.

Além dessas diferencas entre grupos, ha também um padrao consistente entre estrutu-
ras causais. A estrutura Confundidora apresenta os maiores valores de ATE, seguida pela
estrutura Direta, enquanto a estrutura em Cadeia apresenta os menores valores. FEssas
diferencas refletem o papel da covariavel X em cada cenario. Na estrutura Confundidora,
o tratamento e o resultado compartilham uma influéncia comum, o que intensifica simul-
taneamente dois caminhos causais e aumenta o efeito acumulado. Na estrutura Direta,
o tratamento afeta apenas o resultado, com efeitos de magnitude intermediaria. Na es-
trutura em Cadeia, o efeito de T é mediado por X antes de alcancar Y, o que suaviza a

propagacao da intervencao e reduz o efeito incremental por periodo.

Em conjunto, os resultados mostram que, embora a forma funcional influencie a mag-
nitude dos efeitos e a estrutura causal determine a eficiéncia com que a intervencao ¢é
transmitida, a dinamica temporal de ATE sob intervencao pontual permanece linear em
todos os cenarios analisados. Esse comportamento é explicado pela natureza incremental
e persistente do deslocamento introduzido no tratamento, que se traduz em diferencas

acumuladas uniformemente ao longo do tempo.
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Datasets Nao Lineares - Grupo G2 - Intervencao Gradual e Continua

Nos cenéarios nao lineares com intervencao gradual do grupo G2 apresentados nas Fi-
guras 17 e 18, observa-se que o efeito médio do tratamento cresce de forma acelerada ao
longo do tempo, formando curvas de crescimento acelerado e formato convexa. Esse com-
portamento decorre do actiimulo progressivo da intervencao no tratamento, uma vez que
os aumentos sucessivos geram incrementos cada vez maiores no resultado quando combi-
nados com fung¢oes quadraticas e logaritmicas que amplificam a propagacao temporal do
efeito.

Os ATEs das estruturas direta e confundidora, Figura 17, possuem comportamentos
muito similares, pois o efeito dominante ocorre pela acao direta do tratamento sobre o
resultado, ainda que a confundidora inclua um caminho adicional via variavel latente. A
estrutura em cadeia, Figura 18, apresenta valores finais inferiores e inclinagoes reduzidas,
resultado da suavizacao introduzida pelo caminho mediado, no qual o tratamento modi-
fica primeiro a variavel intermediaria e s6 entao influencia o resultado, produzindo uma

acumulagao mais lenta do efeito ao longo do tempo.
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Figura 17 — Curvas ATE(t) — intervengdao Gradual, estrutura Confundidor, Nao Linear - G2. Para
cinco intensidades de intervencao ¢ distintas.

Nos cenarios com intervengao continua descritos nas Figuras 19 e 20, o comportamento
altera-se de forma marcante. Como o tratamento recebe incrementos sucessivos a cada
periodo, o efeito sobre o resultado passa a ser acumulado de maneira progressiva, e as
curvas tornam-se aceleradas e crescentemente convexas. Esse crescimento mais rapido
ocorre porque o acumulo das intervencoes no tratamento amplifica o impacto das fungoes
quadraticas associadas ao caminho que conecta 7" — Y no grupo dois, o que produz

valores finais de ATE significativamente mais elevados.
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Figura 18 — Curvas ATE(t) — intervengao Gradual, estrutura Cadeia, Nao Linear - G2. Para cinco
intensidades de intervencao ¢ distintas.

Assim como no caso da intervencao pontual, as estruturas direta e confundidora, Fi-
gura 19, exibem curvas de ATE quase idénticas, refletindo novamente a predominancia do
efeito direto do tratamento sobre o resultado. A estrutura em cadeia, Figura 20, continua
apresentando valores consideravelmente menores, pois a presenca do efeito logaritmico em
sequéncia ao tratamento reduz o efeito deste ao longo do sistema e mantém a evolugao
do ATE mais suave e menos inclinada. Dessa forma, a diferenca entre as trés estruturas
fica mais acentuada quando a intervencao é continua, uma vez que o actimulo prolon-
gado das intervencgoes potencializa a separacao entre trajetorias amplificadas diretamente

e trajetérias amortecidas pela mediacao.

Datasets Nao Lineares - Grupo G3 - Intervencao Gradual e Continua

Nos cenarios nao lineares com intervencao gradual do grupo G3, ilustrados nas Figu-
ras 21 e 22, observa-se que o efeito médio do tratamento nao cresce de forma continua
ou acelerada ao longo do tempo, mas exibe trajetérias inicialmente ascendentes que, apés
certo ponto, tendem a desaceleracao e até a reversao, indicando um comportamento de na-
tureza oscilatoria. Esse padrao surge devido ao efeito senoidal do tratamento, fazendo com
que o impacto de incrementos graduais nao seja constante ao longo do tempo: conforme
o sistema atravessa regidoes de maior ou menor sensibilidade da func¢ao seno, o acimulo
do efeito pode se intensificar ou dissipar, interrompendo a monotonicidade esperada em
intervencoes crescentes.

A estrutura confundidora sob intervencao gradual, apresentada na Figura 21, repre-
senta também o comportamento da estrutura direta, uma vez que ambas exibem curvas

de efeito médio muito semelhantes ao longo de todo o horizonte temporal. O efeito domi-
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Figura 19 — Curvas ATE(t) — intervengdo Continua, estrutura Confundidor, Nao Linear - G2. Para
cinco intensidades de intervencao ¢ distintas.
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Figura 20 — Curvas ATE(t) — intervengao Continua, estrutura Cadeia, Nao Linear - G2. Para cinco
intensidades de intervencao ¢ distintas.

nante nesses casos € transmitido pelo caminho principal do tratamento até o resultado,
de modo que as oscilagoes introduzidas pela fun¢ao senoidal produzem perfis temporais
semelhantes. As curvas crescem nos primeiros periodos, mas perdem inclinacao a medida
que o tratamento atravessa regioes menos sensiveis da fun¢ao seno, entrando em fases
de estabilizagdo ou declinio, mais visivel em 6 maiores, o que explica a auséncia de um
crescimento convexo persistente.

A estrutura em cadeia com intervencao gradual, mostrada na Figura 22, apresenta um
comportamento distinto e aparentemente mais instavel. Nesse caso, o tratamento afeta

inicialmente a variavel intermediaria, que por sua vez influencia o resultado, de modo que
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Figura 21 — Curvas ATE(t) — intervengdo Gradual, estrutura Confundidor, Nao Linear - G3. Para
cinco intensidades de intervencao ¢ distintas.

o efeito passa por duas transformacoes nao lineares sucessivas. Essa dupla passagem in-
tensifica a alternancia entre regioes de sensibilidade alta e baixa, produzindo curvas mais
irregulares e com inversoes mais acentuadas, nas quais o aumento do tratamento pode
resultar em redugoes temporarias do ATE. Assim, mesmo sob doses crescentes de inter-
vencao, o efeito acumulado pode oscilar ou mesmo diminuir em determinados periodos,
refletindo a natureza faseada da funcao senoidal e a desaceleracao adicional introduzida

pela funcao logaritmica.
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Figura 22 — Curvas ATE(t) — intervenc¢io Gradual, estrutura Cadeia, Nao Linear - G3. Para cinco
intensidades de intervencdo § distintas.

Nos cenérios de intervencao continua, apresentados nas Figuras 23 e 24, o tratamento
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cresce de forma ininterrupta ao longo do tempo devido as intervengoes, mas o efeito médio
resultante mantém o mesmo padrao qualitativo observado no caso gradual. Embora as
curvas exibam um crescimento mais prolongado nos periodos iniciais, o sistema rapida-
mente alcanga regioes da funcao senoidal em que o efeito marginal do tratamento diminui,
visto que a sensibilidade da func¢ao varia de acordo com sua fase. Essa oscilagdo na res-
posta impede a sustentagao de um crescimento convexo e causa trechos de desaceleracao

mesmo sob uma intervencao continuamente crescente.

A estrutura confundidora sob intervenc¢ao continua, mostrada na Figura 23, novamente
representa também a estrutura direta, dada a semelhanca entre suas curvas ATE. O
comportamento observado reflete a acao direta do tratamento sobre o resultado, modulada
pelas oscilagoes senoidais e pela suavizacao logaritmica, produzindo curvas que sobem de
maneira ordenada nos primeiros periodos, mas que reduzem sua inclinacao a medida que

o tratamento adentra regides de menor sensibilidade.
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Figura 23 — Curvas ATE(t) — intervengdo Continua, estrutura Confundidor, Nao Linear - G3. Para
cinco intensidades de intervencao ¢ distintas.

Por fim, a estrutura em cadeia com intervencao continua, ilustrada na Figura 24,
apresenta comportamento distinto dos demais cenarios. Embora as curvas ATE exibam
tendéncia de crescimento, o efeito do tratamento ¢ modulado pela fun¢ao senoidal no
caminho para a variavel intermediaria e depois desacelerado pela fungao logaritmica na
transicao desta para o resultado. O efeito acumulado perde monotonicidade e tende a
exibir oscilagbes mais pronunciadas. Assim, mesmo com a intervencao continua elevando
o tratamento de forma estavel ao longo do tempo, o ATE pode apresentar regioes de
crescimento fraco, estabilizagdo ou declinio, refletindo a interacao entre as func¢des nao

lineares e o efeito mediado da estrutura em cadeia.
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Figura 24 — Curvas ATE(t) — intervencio Continua, estrutura Cadeia, Nao Linear - G3. Para cinco
intensidades de intervencao ¢ distintas.

4.3.3 Monotonicidade por tipo

A relagao dose-resposta foi examinada para cada tipo de intervencao por meio da
correlagao de Spearman entre a intensidade § e o efeito médio poés-intervencao ATE™.
Essa medida permite avaliar se aumentos na dose de intervengao estao associados a efeitos
também crescentes, caracterizando uma relacao monotonica positiva entre intervencao e

resultado.

Coeficientes préximos de zero indicam a auséncia de uma relacao ordenada entre dose
e efeito, sugerindo que variagoes em ¢ nao se traduzem em mudancas sisteméticas no
ATE. Coeficientes negativos revelam um padrao inverso, no qual intensidades maiores
da intervencao tendem a gerar efeitos menores, caracterizando uma resposta oposta a

esperada em um regime monotonico crescente.

A analise da monotonicidade revelou um comportamento bastante estavel nos grupos
G1 e G2, cujo padrao é bem representado pelo cenario mostrado na Figura 25. Em todos
esses casos, a correlagao de Spearman entre § e o AT F médio permanece perfeita e posi-
tiva para os trés tipos de intervencgoes, com coeficiente igual a um e valor de p préximo
de zero, indicando uma relacao estritamente monotonica em que aumentos na intensidade
da intervencao produzem aumentos ordenados no efeito médio. Mesmo na intervencao
continua, onde as curvas apresentam maior variabilidade temporal, o coeficiente perma-
nece positivo e estatisticamente significativo, o que demonstra que, apesar das diferencas
no formato das trajetorias ao longo do tempo, a relagao entre dose e efeito preserva a

consisténcia da ordenacao monotonica.
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Figura 25 — Monotonicidade por tipo de intervengao na estrutura Direta, Linear - G1. Cada barra
representa o coeficiente de Spearman entre a intensidade da intervengdo é e o ATE médio
para o respectivo tipo de intervencao. O valor indicado no topo de cada barra corresponde
ao p-valor do teste de monotonicidade, que avalia a significAncia estatistica da relagao
monotonica entre § e o ATE.

No grupo G3, as fungoes nao lineares senoidais produzem um comportamento quali-
tativamente distinto do observado nos grupos anteriores.

A estrutura direta, ilustrada na Figura 26, e a estrutura confundidora, apresentada na
Figura 27, exibem correlacao positiva e praticamente perfeita no cenéario pontual, e de cor-
relacdo elevada no cenario gradual. Esses resultados mostram que, apesar das oscilagoes
locais do ATE ao longo do tempo, a ordenacao global dos efeitos permanece alinhada ao
aumento de 0 nesses dois tipos de intervengao. A intervencao continua rompe esse padrao,
tendo uma correlagao fortemente negativa e estatisticamente significativa, indicando que,
sob dinamica senoidal, o aumento progressivo de ¢ nao preserva a monotonicidade e altera
de maneira substancial o comportamento global do efeito médio.

A estrutura em cadeia, apresentada na Figura 28, exibe padrao distinto daquele das
estruturas direta e confundidora do grupo G3 e aproxima-se do observado nos grupos G1
e G2. A relacao entre § e o ATE médio permanece monotonica e positiva nos trés tipos de
intervencao. Nos cenarios pontual e gradual, a monotonicidade é perfeita, com coeficiente
igual a um e p-valor zero. No cenario continuo, embora o coeficiente seja menor, observa-se
correlacao positiva e estatisticamente significativa, indicando preservacao da ordenacao
dos efeitos. Nesse caso, a variavel mediadora suaviza as oscilagoes introduzidas pelas
funcoes nao lineares, reduzindo a intensidade da monotonicidade sem provocar inversao
do sinal. A estrutura em cadeia, portanto, modula o impacto das nao linearidades e

impede a perda total de monotonicidade observada na estrutura direta do grupo G3.
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Figura 26 — Monotonicidade por tipo de intervengdo, estrutura Direta, Nao Linear - G3. Cada barra
representa o coeficiente de Spearman entre a intensidade da intervengdo é e o ATE médio
para o respectivo tipo de intervengao. O valor indicado no topo de cada barra corresponde
ao p-valor do teste de monotonicidade, que avalia a significAncia estatistica da relagdo
monotonica entre § e o ATE.
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Figura 27 — Monotonicidade por tipo de intervencdo, estrutura Confundidor, Nao Linear - G3. Cada
barra representa o coeficiente de Spearman entre a intensidade da intervencdo § e o ATE
médio para o respectivo tipo de interven¢do. O valor indicado no topo de cada barra
corresponde ao p-valor do teste de monotonicidade, que avalia a significdncia estatistica
da relagdo monotonica entre § e o ATE.
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Figura 28 — Monotonicidade por tipo de intervencio, estrutura Cadeia, Nao Linear - G3. Cada barra
representa o coeficiente de Spearman entre a intensidade da intervengdo é e o ATE médio
para o respectivo tipo de intervencao. O valor indicado no topo de cada barra corresponde
ao p-valor do teste de monotonicidade, que avalia a significAncia estatistica da relagao
monotonica entre § e o ATE.

4.3.4 Monotonicidade por faixas

Avaliamos o comportamento local da relacao dose-resposta por meio da correlacao
de Spearman calculada em faixas discretas de intensidade. Essa abordagem, denominada
analise piecewise, permite identificar variacoes nao lineares, regides de saturacao do efeito,
inversao de tendéncia ou mudancas na sensibilidade ao tratamento nas quais incrementos
adicionais da dose deixam de produzir aumentos proporcionais no efeito médio. Para isso,
o dominio das doses foi dividido em dois intervalos sucessivos, um para doses menores
ou iguais a 0,5 e outro para doses iguais ou superiores a 0,6, sendo as correlacoes locais
calculadas separadamente em cada faixa. Essa estratégia possibilita verificar se a resposta
ao tratamento preserva uma relacdo monotonica em todo o espectro de intensidades ou
se ha pontos em que o efeito se estabiliza ou muda de direcao.

A maioria dos cendrios apresentou comportamento consistente com uma relacdo mo-
notodnica positiva em ambas as faixas de intensidade, como ilustrado na Figura 29 no cena-
rio pontual direto nao linear. Nesse padrao predominante, tanto para doses baixas quanto
altas, a correlagao local permanece elevada e estatisticamente significativa, indicando que
incrementos de dose geram aumentos sistematicos no efeito médio independentemente da
intensidade. A divisao por faixas, portanto, nao altera a conclusao qualitativa da analise
global de monotonicidade, sugerindo que a resposta ao tratamento ¢ estavel e continua

crescendo mesmo quando a dose entra em regioes superiores do dominio.
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Figura 29 — Monotonicidade por faixa de intensidade de intervencio pontual, estrutura Direta, Nio
linear - G3. Calculado em duas faixas, a primeira para o intervalo de intensidades de
tratamento 4 de 0.1 a 0.5 e a segunda para o intervalo de 0.6 a 1.0. O valor p indicado em
cada barra corresponde ao p-valor do teste, que avalia a significAncia estatistica da relagao
monotonica entre e o ATE e a faixa correspondente.

Entretanto, alguns cenarios nao lineares no grupo G3 evidenciaram que essa relacao
monotonica perde-se parcialmente em intensidades mais altas. Nos cenarios gradual direto
e gradual confundidor, representados na Figura 30, observa-se que a faixa de doses mais
baixas mantém correlacao positiva, embora fraca e nao significativa, enquanto a faixa
de doses acima de 0,6 apresenta correlacao negativa estatisticamente significativa. Esse
comportamento indica que, apds certo limiar, aumentos sucessivos de dose deixam de
elevar o efeito médio e passam a produzir respostas decrescentes, sugerindo uma mudanca
na sensibilidade do sistema possivelmente associada a combinacao entre o efeito senoidal
no tratamento e a saturagao local induzida pela estrutura das fun¢des nao lineares.

Um padrao semelhante, porém mais pronunciado, aparece nos cenarios continuo direto
e continuo confundidor, nos quais a correlagao local é fortemente negativa na faixa de doses
mais altas, como demonstrado na Figura 31. Apesar de doses baixas ainda apresentarem
tendéncia positiva, o regime de doses elevadas reverte completamente o comportamento
esperado de uma relagdo dose-resposta, com aumentos de intensidade gerando efeitos
médios consistentemente menores. Esse resultado reforca a presenca de regioes de inversao
decorrentes das oscilacoes senoidais, que tornam-se mais relevantes quando a intervencao
cresce continuamente ao longo do tempo.

Por fim, o cenéario continuo em cadeia, mostrado na Figura 32, também apresenta
perda de monotonicidade em doses altas, embora preserve uma correlacao positiva esta-
tisticamente significativa na faixa de doses menores. A combinagao entre o efeito senoidal
na primeira etapa da propagacao e o efeito logaritmico na etapa seguinte faz com que

incrementos de dose gerem respostas positivas apenas até certo ponto, apos o qual a sen-
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sibilidade marginal se reduz de forma acentuada, levando a correlagoes negativas na faixa
superior. Essa interacao mediada acentua a instabilidade tipica das func¢oes nao lineares

e amplia a propensao a inversao de tendéncia em doses maiores.
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Figura 30 — Monotonicidade por faixa de intensidade de intervencdo gradual, estrutura Direta, Ndo
linear - G3. Calculado em duas faixas, a primeira para o intervalo de intensidades de
tratamento ¢ de 0.1 a 0.5 e a segunda para o intervalo de 0.6 a 1.0.
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Figura 31 — Monotonicidade por faixa de intensidade de intervencio continua, estrutura Direta, Nio
Linear - G3. Calculado em duas faixas, a primeira para o intervalo de intensidades de
tratamento é de 0.1 a 0.5 e a segunda para o intervalo de 0.6 a 1.0. O valor p indicado em
cada barra corresponde ao p-valor do teste, que avalia a significAncia estatistica da relagao
monotonica entre e o ATE e a faixa correspondente.
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Figura 32 — Monotonicidade por faixa de intensidade de intervencio continua, estrutura Cadeia, Nao
linear - G3. Calculado em duas faixas, a primeira para o intervalo de intensidades de
tratamento 0 de 0.1 a 0.5 e a segunda para o intervalo de 0.6 a 1.0. O valor p indicado em
cada barra corresponde ao p-valor do teste, que avalia a significincia estatistica da relagdo
monotonica entre e o ATE e a faixa correspondente.

4.4 Resultados — Mudancga de associagao (Ar)

Nesta secao apresentamos os resultados referentes a mudanca na associagao entre tra-
tamento (7) e resultado (Y'), quantificada por Ar, que compara a dependéncia observada
nos cenarios factual e contrafactual ao longo do tempo. Como detalhado na Secao 4.1,
utilizamos correlagao de Pearson nos cenarios lineares e correlacao de Chatterjee nos nao
lineares. Por essa razao, adotamos a notagdo Ar(t) de forma geral e para os casos em que
a dependéncia é medida por Pearson, enquanto A{(t) é utilizada quando a associagao é
avaliada pela correlacao de Chatterjee. Assim, a métrica expressa, conforme o cenério, a
mudanca linear ou a mudanca monotonica na relacao 7' <> Y em cada instante ¢.

Para complementar essa visao global, analisamos também o comportamento temporal
de E[Ar(7)], com bandas de confianga obtidas por reamostragem, o que evidencia a
persisténcia ou dissipagao dos efeitos ao longo do horizonte poés-intervencao.

No restante desta secao, descrevemos como as diferentes estruturas causais, comple-
xidades funcionais e tipos de intervencao influenciam o sinal, a magnitude e a dindmica
temporal de Ar, destacando padroes consistentes e excecoes observadas nas nove confi-

guracoes analisadas.

4.4.1 Grupo G1 - Datasets Lineares

Nos datasets do grupo G1, que adotam relagoes estritamente lineares entre as variaveis,

foram obtidos coeficientes de correlacao de Pearson elevados e praticamente idénticos nos
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cendarios factual e contrafactual em todas as estruturas, como mostrado na Tabela 8. Os
valores médios de Ar permanecem extremamente proximos de zero, indicando que a inter-
vencao — independentemente do tipo — nao altera de forma mensuravel a dependéncia

linear entre T' e Y.

Tabela 8 — Médias temporais das correlacoes de Pearson dos dados factuais (77), contra-
factuais (7z7) e das diferencas (Ar) ao longo dos periodos pds-intervencao, no

grupo G1.
Estrutura Ty dp Ter £ dp Ar +dp
Direta 0.974+0.004 0.97+0.004 (7,23 x 10719) £ (2,80 x 107?)
Cadeia 0.98 £0.005 0.98+0.005 (7,23 x 10719) £ (2,80 x 107?)

Confundidor 0.98 4 0.005 0.98 £0.005 (—6,91 x 1071) £ (2,76 x 107?)

77 : Média dos r(7) da curva de correlacdo factual do dataset, N=10 (7 = 10). 75 : Média dos 7“((2];)(7')
das curvas de correlagdo contrafactual, N=300 ( k& = 30, 7 = 10).

A Figura 33 exemplifica esse comportamento para a estrutura Confundidora. No painel
inferior, observa-se que a diferenga Ar(t) oscila apenas na ordem de 107%, de modo que as
curvas 77(t) e r.;(t) exibidas no painel superior tornam-se praticamente sobrepostas. Esse
padrao confirma que, em sistemas totalmente lineares, a intervencao modifica os valores

das séries, mas nao afeta a covariagao relativa entre individuos no corte transversal.
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Figura 33 — Correlagiao e Ar — Continua, Confundidor, Linear, § = 1.0 - G1. Painel superior: Curvas
de 7y e rcy ao longo de 7. Painel inferior: diferenga Ar(7). Observa-se que Ar(7) per-
manece préximo de zero, com escala da ordem de 1078, indicando mudanca minima na
associacao.
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A Figura 34 apresenta a evolugao temporal das médias de Ar(7) com intervalos de
confianca via bootstrap. As curvas oscilam muito préximo de zero e os intervalos fre-
quentemente cruzam o eixo nulo, reafirmando que a associacao entre T' e Y permanece
estavel ao longo de todo o periodo poés-intervencao. Pequenas oscilagoes positivas e nega-

tivas refletem apenas variagoes estocasticas, sem qualquer tendéncia ou sinal de alteracao

estrutural.
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Figura 34 — Agregacio temporal de Ar por tipo de intervengdo — Direta, Linear - G1. Curvas médias
E[Ar(7)] com intervalos de confianca obtidos por bootstrap. As trés tipologias de interven-
¢do apresentam comportamento oscilante em torno de zero, com variagoes na ordem de
109, sem tendéncia significativa.

4.4.2 Grupo G2 - Datasets Nao Lineares

Os datasets do grupo G2 empregam fungoes quadraticas para modelar os efeitos do
tratamento sobre as variaveis e fungoes logaritmicas para os caminhos mediados ou de
confundimento. Esse conjunto de transformagoes introduz dependéncias monotdnicas
nao lineares, cuja intensidade aumenta a medida que o tratamento se afasta de sua regiao
basal. Por essa razao, utilizamos a correlacao de Chatterjee, apropriada para quantificar
dependéncias nao lineares.

A Tabela 9 apresenta as médias temporais das correlagoes factuais e contrafactuais ao
longo dos periodos pés-intervencao. Observa-se que, em todas as estruturas, a dependén-
cia factual situa-se em niveis moderados &; € [0.52, 0.60]. No contrafactual, verifica-se
uma tendéncia média de maior dependéncia &; € [0.62, 0.68], produzindo diferencas mé-
dias A¢ ~ 0,09-0,10. Contudo, os desvios-padrao relativamente elevados revelam que
esse aumento nao ocorre de maneira uniforme, refletindo heterogeneidade substancial en-

tre cenarios e periodos.
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Tabela 9 — Médias em 7 (periodos pés-intervencdo) das correlagdes de Chatterjee dos
dados factuais (;), contrafactuais (£.f) e diferencas (A£), no grupo G2.

Estrutura &+ dp EpEdp A&+ dp
Direta 0.59 £0.022 0.68 £0.093 0.09 £ 0.099
Cadeia 0.52+0.017 0.62+£0.068 0.10 £ 0.069

Confundidor 0.60 £0.033 0.68 £0.092 0.09 £ 0.102

&+ Média dos &;(7) da curva de correlagio factual do dataset, N=10 (7 = 10). &.; : Média dos 537)(7')
das curvas de correlagdo contrafactual, N=300 ( k& = 30, 7 = 10).

As Figuras 35-37 ilustram exemplos representativos das correlagoes das trés estrutu-
ras. Para fins de visualizacao, foram selecionados os casos de maior amplitude entre as
replicagoes, onde as diferengas A&(7) atingem seus valores mais elevados ap6s a inter-
venc¢ao, geralmente associados a intervengoes continuas com valores elevados de 6. Em
contraste com o comportamento linear do grupo anterior, observa-se aqui uma separacao
clara entre as curvas factual e contrafactual, com &.;(7) crescendo de forma mais acentu-
ada ap6és a intervengao. A diferenca A¢(7) apresenta trajetoria ascendente e estabiliza-se
em valores entre 0,15 e 0,30, indicando que o tratamento intensifica progressivamente a

dependéncia monotonica entre tratamento e resultado.
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Figura 35 — Correlagio e A¢ — Continua, Direta, Nao Linear, § = 1.0 - G2. Painel superior: Curvas
de &5 e &5 ao longo de 7. Painel inferior: diferenga A&(7). Observa-se um aumento con-
sistente da dependéncia no cendrio contrafactual, com A&(t) crescendo apés a intervengao,
refletindo o efeito quadratico do tratamento..
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— Correlagdo e A — Continua, Confundidor, Nao Linear, § = 1.0 - G2. Painel superior:

Curvas de & e & ao longo de 7. Painel inferior: diferenca A&(7). A estrutura com
confundidor exibe amplificagdo monotdnica semelhante & da estrutura direta, com A&(T)
crescendo de forma progressiva apés a intervencao.
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Figura 37 — Correlagdo e A§ — Continua, Cadeia, Nao Linear, 6 = 0.4 - G2. Painel superior: &; e
&5 ao longo de 7. Painel inferior: A¢(7). O aumento da dependéncia é menos acentuado
nos primeiros instantes, mas torna-se pronunciado a partir de 7 /& 5, refletindo a mediac¢ao

logaritmica no caminho T'— X — Y.
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A agregacao temporal sintetiza os padroes observados nos cenarios. As estruturas
Direta e Confundidor, com representacao na Figura 38, exibem comportamento muito
semelhante: em ambas, as curvas médias E[AL(T)] crescem de forma gradual ao longo
da defasagem, mantendo intervalos de confianca relativamente compactos e trajetérias
suaves. Esse paralelismo é consistente com o fato de que, nas duas estruturas, o efeito
quadratico atua diretamente sobre o resultado, produzindo aumento progressivo da de-

pendéncia monotonica.

—&— pontual
gradual
—e— continua

0.30

0.25 A

0.20 A

0.15 ~

E[AE] = IC (bootstrap)

0.05 - M

0.00

Figura 38 — Agregacio temporal de A por tipo de intervengao — Direta, Nao Linear - G2. As cur-
vas exibem crescimento progressivo da dependéncia monotdnica, com trajetérias suaves e
intervalos de confianca relativamente compactos. A intervengdo continua produz efeitos
maiores, seguida da gradual e da pontual, atingindo valores acima de 0.25 em 7 mais ele-
vados.

A estrutura Cadeia, observada na Figura 39, apresenta crescimento mais irregular e
intervalos de confianca mais amplos, refletindo a maior heterogeneidade introduzida pela
propagacao do efeito via variavel mediadora X. Em todos os casos, a intervencao continua
¢ a mais pronunciada, alcancando valores superiores a 0.20-0.25 no final da série, seguida
pela gradual e pela pontual, evidenciando o cardter cumulativo da funcao quadratica.

Esses resultados demonstram que, quando o sistema possui relagoes quadraticas e
logaritmicas, intervengoes em 1" nao alteram apenas a média do resultado, mas modificam
substancialmente sua ordenacao entre os individuos — e esse efeito é capturado de maneira

consistente pela correlagdo de Chatterjee.

4.4.3 Grupo G3 - Datasets Nao Lineares

O Grupo G3 combina efeitos senoidais do tratamento com efeitos mediados modelados

por funcao logaritmica. Essa combinacao produz padroes temporais mais dinamicos, com
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Figura 39 — Agregacio temporal de A¢ por tipo de intervencio — Cadeia, Nao Linear - G2. As
curvas exibem crescimento mais irregular e ICs mais amplos do que nos casos Direta
e Confundidor, refletindo a heterogeneidade adicional introduzida pela mediagdo via X.
A interven¢do continua permanece a mais intensa, alcangando valores préximos a 0.20,
seguida da gradual e da pontual.

oscilagoes na associacao monotonica entre tratamento e resultado, e respostas comprimi-
das nos caminhos mediados. A Tabela 10 resume as médias temporais das correlacoes
factual, contrafactual e da diferenca AE, revelando que todas as estruturas apresentam

uma tendéncia de redugao média da associacao factual-contrafactual.

Tabela 10 — Médias em 7 (periodos pés-intervengdo) das correlagdes de Chatterjee dos
dados factuais ({f), contrafactuais (&.r) e diferengas (A¢), no grupo G3.

Estrutura 5 + dp @ + dp A&+ dp
Direta 0.79£0.014 0.76 £0.058 —0.04 £ 0.051
Cadeia 0.58£0.013 0.51+£0.072 —0.06 £ 0.069

Confundidor 0.79£0.013 0.75£0.063 —0.04 +0.057

&; : Média dos £7(7) da curva de correlagdo factual do dataset, N=10 (7 = 10). & : Média dos 583)(7')
das curvas de correlagdo contrafactual, N=300 ( k& = 30, 7 = 10).

Nas Figuras 40-42, observa-se que as curvas contrafactuais tendem a decair mais
rapidamente do que as factuais ao longo de 7, sendo essa diferenca mais pronunciada nas
estruturas Cadeia e Confundidor. Em todos os casos, A¢(t) apresenta tendéncia negativa,
crescendo em magnitude com 7, o que indica perda gradual da associagdo monotonica

T <+ Y apos a intervencao.
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Figura 40 — Correlagio e A¢ — Continua, Direta, Nao Linear, § = 0.4 - G3. Painel superior: Curvas
de &y e &5 ao longo de 7. Painel inferior: diferenca A¢(7). O factual mantém correlagoes
elevadas e estdveis, o contrafactual exibe queda moderada ao longo de 7. A diferenga A&(T)
torna-se gradualmente negativa, mas permanece de baixa magnitude, indicando impacto
limitado da intervencao.
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Figura 41 — Correlagio e A¢ — Continua, Confundidor, Nao Linear, § = 0.5 - G3. Painel superior:
Curvas de & e &5 ao longo de 7. Painel inferior: diferenga A&(7). O factual apresenta
queda suave, o contrafactual sofre reducao mais acentuada, refletindo o efeito amplificador
do confundidor logaritmico. A diferenca A&(T) cresce negativamente com 7, indicando
perda consistente da associagao.
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Figura 42 — Correlagao e A¢ — Continua, Cadeia, Nao Linear, § = 0.3 - G3. Painel superior: Curvas
de &5 e &.f ao longo de 7. Painel inferior: diferenca A&(7). A mediagdo via X intensifica o
efeito da intervencdo: {.; decai mais rapidamente e atinge os valores mais baixos entre as
estruturas. A diferenca A{(7) apresenta o declive negativo mais pronunciado, sugerindo
forte sensibilidade aos efeitos acumulados da intervencao.

As Figuras 43 ¢ 44 mostram as curvas médias E[A{(T)] e seus intervalos de confi-
anca. Nos trés cenarios estruturais, observa-se um padrao consistente: intervencoes con-
tinuas produzem quedas progressivas de A¢, intervencoes graduais apresentam declinio
intermediario, enquanto intervengoes pontuais permanecem proximas de zero em toda a

defasagem.

A estrutura Confundidora apresenta comportamento muito semelhante ao da estrutura
Direta, reforcando que, sob modulagdo senoidal, apenas intervencoes prolongadas sao
capazes de alterar a dependéncia monotonica de forma sistematica. O comportamento
mais acentuado ocorre na estrutura Cadeia, na qual o declinio de A&(7) é mais rapido e
profundo, aproximando-se de um padrao quase linear até 7 ~ 8, refletindo a amplificagao

causada pelo caminho mediado T"— X — Y.

Esses resultados mostram que, em sistemas com efeitos senoidais e compressao loga-
ritmica, intervenc¢oes em T nao apenas deslocam o resultado ao longo do tempo, mas
também alteram progressivamente a ordenacao relativa entre os individuos — sobretudo
em intervengoes graduais e continuas — um comportamento capturado de forma sensivel

pela correlacao de Chatterjee.
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Figura 43 — Agregacio temporal de A€ por tipo de intervengao — Direta, Nao Linear — G3. Nas inter-
vengoes pontuais permanece proximas de zero ao longo de toda a defasagem, enquanto nas
intervencgoes graduais apresenta leve declinio. Nas intervengoes continuas exibe redugoes
mais claras, ainda que moderadas, com intervalos de confianca estreitos indicando baixa
variabilidade entre replicagoes.
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Figura 44 — Agregacio temporal de A& por tipo de intervengio — Cadeia, Ndo Linear — G3. Esta

estrutura apresenta as redugoes mais intensas de A& dentre as trés, especialmente sob
intervengoes continuas, que exibem declinio quase linear ao longo da defasagem. O caminho
mediado T' — X — Y amplifica o impacto das oscilacoes senoidais aplicadas ao tratamento,
resultando em efeitos acumulativos mais pronunciados.
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4.5 Conclusao da Analise

A anélise conduzida ao longo deste capitulo evidenciou que os dados sintéticos produ-
zidos pelo CSDG reproduzem de maneira consistente os comportamentos esperados para
cada um dos cenarios causais definidos. As medidas avaliadas — efeitos médios, curvas
contrafactuais, correlacoes factuais e contrafactuais e deltas de correlagao — apresenta-
ram padroes compativeis tanto com a estrutura causal quanto com o tipo de intervencao
aplicada, confirmando que o gerador é capaz de produzir dinamicas coerentes com os
mecanismos que lhe deram origem.

Nos cenérios lineares, observou-se um comportamento mais estavel, com variagoes su-
aves ao longo do tempo e diferencas reduzidas entre factual e contrafactual. Esses cenarios
servem, portanto, como um baseline natural, util para validar implementacoes, calibrar
métodos e verificar se métricas e testes sao sensiveis as mudancas mais elementares na
estrutura dos dados. A previsibilidade desses cenarios também facilita identificar com-
portamentos anémalos, pois qualquer variagao inesperada tende a indicar inconsisténcias
no processo de geracao ou analise, e ndo um efeito legitimo do cenario.

Os cenérios nao lineares introduziram oscila¢oes mais expressivas, mudancas acentua-
das na associagao entre tratamento e resultado e efeitos pos-intervencao mais persistentes.
Nessas condigoes, as diferencas entre factual e contrafactual tornam-se mais pronunciadas
e heterogéneas, refletindo maior sensibilidade as interagoes entre variaveis e aos graus de
complexidade especificados nos parametros. Tais cendrios representam um desafio mais
realista e exigente para modelos de inferéncia causal e, por isso, sao especialmente adequa-
dos para benchmarking, testes de robustez e avaliagdo da capacidade de capturar efeitos
dinamicos e nao lineares.

A intervencao gradual e a continua destacaram-se por amplificar diferencas temporais,
sobretudo em cadeias e cenarios com confundidores. Isso demonstra que o gerador é
capaz de representar modificagoes acumuladas no tempo, algo essencial para estudos
longitudinais realistas. As intervenc¢des pontuais mantiveram proporg¢des mais baixas
de tempos significativos, como esperado em perturbagoes de curta duracao.

De forma geral, os resultados mostram que o CSDG oferece variabilidade suficiente
de estruturas, intensidades de efeitos e regimes de intervenc¢ao, permitindo que diferentes
niveis de complexidade sejam explorados de acordo com o objetivo experimental. A
coeréncia observada entre o comportamento empirico dos dados e os mecanismos causais
que os geraram confirma a adequacao do gerador como ferramenta de estudo, simulacao
e benchmark para métodos de inferéncia causal em séries longitudinais.

Assim, concluimos que a analise apresentada valida tanto a confiabilidade quanto a
flexibilidade do CSDG, reforcando sua utilidade como base experimental para o desenvol-
vimento, comparacao e avaliagdo de modelos que buscam estimar efeitos causais dindmicos

em contextos com diferentes formas de nao linearidade, interacao e intervencao.
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CAPITULO

Aplicacao: Prova de Conceito com

Aprendizado Temporal Causal

Este capitulo apresenta um experimento como prova de conceito de uso dos dados ge-
rados pelo CSDG. O experimento proposto é baseado no aprendizado de estrutura causal
a partir de dados observacionais histéricos e estimativa de resultados potenciais a partir
de tratamentos futuros definidos, ou seja, modelos de resultados potenciais. Compara-se o
desempenho de modelos de regressao linear - tomado como uma baseline - e redes neurais
recorrentes na predigdo factual e contrafactual, utilizando as métricas RMSE e PEHE.
Assim, a prova de conceito busca demonstrar a utilidade dos dados sintetizados pelo
CSDG para a avaliagdo de algoritmos de resultados potenciais, destacando a capacidade

do gerador em fornecer cenarios adequados para comparacao de métodos.

5.1 Dados Utilizados

Cada instancia representa um individuo com as sequéncias temporais das variaveis de
tratamento (7") e resultado (YY) ao longo de ¢ = 20 periodos. As séries foram geradas
utilizando a estrutura causal direta com relacao linear e com os pardmetros definidos na
Tabela 11. Uma intervencao pontual foi aplicada no tratamento no periodo t = 10, com
intensidade 9, = 0.5, de modo que os resultados contrafactuais sao gerados a partir do

periodo t;,; = 10.

Tabela 11 — Parametros de geracao dos dados da prova de conceito.

Coeficientes temporais ¢ = 0.8, ¢y = 0.7

Coeficientes causais By = 1.5
Ruido (distribuigao) uniform
Intervalos do ruido T: [-0.1,0.1], Y: [-0.1,0.1]

Para fins de avaliacao, dividimos a sequéncia de cada individuo em duas partes: histo-
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rico e horizonte de predigao. Definimos t;,9 como o tempo que marca o inicio do horizonte,
a origem a partir da qual as previsoes sao avaliadas; adotamos t,y = ti,; para alinhar a
avaliagdo ao marco da interven¢do. Usamos a defasagem 7 = ¢t — ¢, assim o histérico
t < tpo corresponde a 7 < 0, e o0 horizonte t > t,y a 7 > 0, sendo 7 = 0 o primeiro passo
do horizonte. No nosso experimento definimos t¢;,; = 10, portanto o histérico vai de t =0
at =19 e o horizonte de t = 10 a t = 19, e nos dados contrafactuais, o periodo pos-
intervenc¢ao no tratamento coincide com o horizonte de predigao. A Figura 45 exemplifica

um individuo com o corte dos dados em histérico e horizonte de predicao.

a5 b —a— Tratamento (T)
0.8 4 A B | #— Resultado (Y)
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Histér Horizonte de
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Figura 45 — Histérico e Horizonte de Predi¢do. Exemplo de dado factual utilizado no experimento,
onde temos tpg = 10, sendo entdo o histérico definido pelo periodot = 0 at =9 e o
horizonte de predicdo de t =10 a t = 19.

5.2 Modelos

Foram utilizados modelos de Regressao Linear e variantes de redes neurais recorrentes
para modelar dependéncias temporais e causais em dados sequenciais. As redes utilizadas
foram: Recurrent Neural Network (RNN) (ELMAN, 1990), Long Short-Term Memory
(LSTM) (HOCHREITER; SCHMIDHUBER, 1997) e Gated Recurrent Unit (GRU) (CHO
et al., 2014).

Todas as trés redes neurais foram estruturadas na arquitetura Encoder-Decoder, con-
forme proposta para redes LSTM por Sutskever, Vinyals e Le (2014), com o objetivo de
capturar a dinamica temporal e as dependéncias causais presentes nas séries sintéticas
geradas. Nesta arquitetura, o encoder recebe as sequéncias T, X e Y do histérico e gera

uma representacao latente da evolugao temporal e da estrutura causal. Essa representacao
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¢ passada ao decoder, que utiliza as variaveis T' e X do horizonte de previsao para estimar,

de forma autorregressiva, os proximos valores de Y, como estao ilustrado na Figura 46.

Y
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Encoder ——— Decoder

I |

Y T

| | |

Horizonte Predicao

Historico

Figura 46 — Arquitetura Encoder-Decoder. Diagrama simplificado da arquitetura implementada para
as redes neurais. A camada de encoder tem como entrada dados histéricos de Tratamento
e Resultado do individuo, o decoder recebe a repesentagido gerada pelo encoder e o Trata-
mento futuro, gerando o resultado futuro como predigao.

Os parametros de configuragdo das redes neurais pode ser consultado na Tabela 12.
Para cada combinagao de estrutura de dados sintéticos e arquitetura (RNN, GRU, LSTM),

executamos 5 repeticoes independentes, variando a semente aleatoria.

Tabela 12 — Hiperparametros utilizados nas redes neurais baseline.

Parametro Valor
Dimensao oculta (dp,) 32
Nimero de camadas (ED) 4
Dropout 0.10
Otimizador Adam
Taxa de aprendizado 0.01
Weight decay 0.0
Gradient clipping 1.0 (norma)
Batch size (treino) 250
Batch size (validagao) 125
Niumero maximo de épocas 300

Early stopping

patience = 30
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5.3 Resultados

Esta secao apresenta e discute os resultados obtidos na prova de conceito. Os experi-
mentos tiveram como objetivo avaliar o desempenho de diferentes modelos de aprendizado
temporal na predigdo factual e contrafactual, considerando métricas complementares de
erro e consisténcia causal. As subsegoes a seguir estdo organizadas conforme o tipo de

avaliacao realizada, seguidas de uma sintese interpretativa dos achados e suas implicagoes.

5.3.1 Predicao factual

A Tabela 13 apresenta os resultados da predigao factual em termos de RMSE. Observa-
se que a Regressao Linear apresenta aumento progressivo de erro conforme o horizonte
7 se distancia do tempo atual, o que indica sua limitagao em capturar as dependéncias
temporais presentes nos dados. Em contraste, as arquiteturas recorrentes (RNN, LSTM
e GRU) mantém desempenho estavel mesmo em horizontes mais longos, refletindo maior

capacidade de modelar relagoes dinamicas e acumular informacgao ao longo do tempo.

Tabela 13 — RMSE da predigao factual apés 5 execugoes para 7 passos (média + desvio

padrao).
Modelo 7=0 T=1 T=2 T=3 T=4 T=25
Regressao Linear 0,548 0,683 0,727 0,832 0,915 1,023
RNN 0,136 + 0,007 0,162 + 0,011 0,168 + 0,010 0,171 + 0,010 0,152 £+ 0,010 0,145 + 0,008
LSTM 0,127 + 0,004 0,142 + 0,002 0,144 + 0,002 0,152 + 0,001 0,136 + 0,001 0,132 £ 0,001
GRU 0,122 &+ 0,002 0,140 + 0,002 0,145 + 0,002 0,152 + 0,001 0,139 £ 0,001 0,135 =+ 0,001

Nota-se também que os modelos recorrentes apresentam desvios padrao pequenos, o
que indica alta estabilidade entre execucoes. As arquiteturas LSTM e GRU obtém erros
ligeiramente menores que a RNN simples, mas, dado o nimero de execucgoes e a proximi-
dade entre as médias, ndo é possivel afirmar estatisticamente que uma arquitetura supera
consistentemente a outra em horizontes curtos. Assim, LSTM e GRU podem ser inter-
pretadas como apresentando desempenho equivalente nesse cenario, ambas capturando de

forma eficiente as rela¢oes temporais subjacentes ao processo factual.

5.3.2 Predicao contrafactual

A Tabela 14 apresenta os resultados da métrica PEHE, que avalia a precisao das
estimativas contrafactuais. Os valores mostram diferencas expressivas entre a abordagem
estatistica e as redes neurais. A Regressao Linear apresenta valores superiores a 1.0 em
todos os horizontes, indicando incapacidade de capturar a heterogeneidade dos efeitos e
o comportamento dinamico dependente do histérico.

Em contraste, as arquiteturas recorrentes exibem PEHE muito baixas — da ordem de

10~2 — representando erros substancialmente inferiores e alcancando valores préximos de
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zero a partir dos primeiros passos do horizonte de previsao, especialmente nas arquiteturas
LSTM e GRU.

Tabela 14 — PEHE das predigoes factual e contrafactual apds 5 execugdes para T passos
(média £ desvio padrao).

Modelo 7=0 T=1 T=2 T=3 T=4 T=5
Regressao Linear 1,048 1,257 1,339 1,314 1,224 1,102
RNN 0,023 + 0,012 0,043 + 0,025 0,049 + 0,027 0,043 + 0,024 0,032 £+ 0,019 0,023 + 0,013
LSTM 0,027 + 0,015 0,018 £+ 0,008 0,015 + 0,004 0,012 + 0,003 0,008 & 0,002 0,006 =+ 0,002
GRU 0,017 £ 0,003 0,021 + 0,004 0,018 &+ 0,004 0,014 £+ 0,003 0,011 £+ 0,002 0,009 + 0,003

Entre as arquiteturas recorrentes, a GRU apresenta o menor erro em 7 = 0, mas
a LSTM demonstra desempenho consistentemente superior para 7 > 1, com diferencas
entre médias que superam os desvios padrao, indicando vantagem estatisticamente signi-
ficativa mesmo com cinco execugoes. Assim, a LSTM destacou-se, neste contexto, como

a arquitetura mais eficaz para capturar efeitos individuais em horizontes mais distantes.

5.3.3 Sintese e perspectivas

De forma geral, as arquiteturas LSTM e GRU apresentaram os melhores resultados
tanto em predicao factual quanto contrafactual, confirmando a hipétese de que modelos
com mecanismos de memoéria sao mais adequados para capturar relagoes causais dina-
micas em séries longitudinais. Esses resultados sustentam a utilizagdo do CSDG como
ferramenta de avaliacao controlada e reprodutivel, capaz de evidenciar diferencas entre
modelos sob condigoes experimentais conhecidas.

Como trabalhos futuros, ha oportunidade de ampliar as analises para estruturas nao
lineares e cenarios com confundimento, além de avaliar modelos baseados em Transfor-
mers, como o Causal Transformer, de modo a investigar a capacidade desses modelos em

capturar dependéncias causais de longo prazo.
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CAPITULO 6

Conclusao

O método de geracao de dados proposto neste trabalho permite a criacao de dados
longitudinais sintéticos com estrutura causal controlada, sendo 1util para avaliagao de
algoritmos de inferéncia causal em diversos contextos. FKEntre as aplicacdes possiveis,
destacam-se: aprendizado de estrutura causal, estimativa de efeitos médios e individuais,
e simulacao de resultados potenciais. O uso de covariaveis também é versatil, permitindo

simular cenarios com variaveis observaveis, ocultas ou com papel causal conhecido.

6.1 Principais Contribuicoes

As principais contribui¢oes desta pesquisa estao associadas ao desenvolvimento de uma
abordagem formal e experimental para a geracao, andlise e validag¢ao de dados sintéticos
longitudinais com estrutura causal explicita. O trabalho apresenta avangos conceituais,
metodoldgicos e empiricos que, em conjunto, consolidam um novo referencial para estu-
dos de inferéncia causal temporal. A seguir, sdo descritas as contribuicoes centrais e os

resultados que as sustentam.

Uso de Equagoes Estruturais Causais Autorregressivas. Foi proposto um
formalismo matematico que integra dependéncias causais e temporais em um mesmo
modelo, permitindo a representagao explicita das relagoes entre tratamento (73),
resultado (Y;) e covaridveis (X;) ao longo do tempo. Essa formulagao, descrita no
Capitulo 3, com as Equagoes 18-22, constitui a base tedrica do gerador e diferencia-
se de abordagens tradicionais por capturar simultaneamente efeitos contemporaneos
e dindmicos. Essa estrutura fornece controle sobre a intensidade das dependéncias
autorregressivas (®) e dos efeitos causais (), o que possibilita simulagoes mais

realistas de processos longitudinais.

Desenvolvimento do gerador Causal Synthetic Data Generator (CSDG).
A partir desse formalismo, foi implementado o CSDG, um gerador de dados sin-

téticos longitudinais com estrutura causal explicita, descrito no Capitulo 3. O



98 Capitulo 6. Conclusao

sistema permite definir o nimero de individuos, o tamanho das séries, o tipo de
estrutura causal - Direta, Cadeia ou Confundidor - e o regime de intervencao -
pontual, gradual ou continua. Além disso, possibilita a geracao de dados factu-
ais e contrafactuais, permitindo o estudo empirico de cenarios de intervenc¢ao con-
trolada. Exemplos ilustrativos de dados gerados sao apresentados nas Figuras 6,
8 e 10, demonstrando a flexibilidade do método em capturar diferentes padroes
de causalidade e complexidade funcional. O CSDG esta disponivel no repositorio
<https://github.com/angeruzzi/causal-synthetic-data-gen> em licenga open-

source.

Definicao de um protocolo de avaliagao da coeréncia causal. Foi proposto
um protocolo sistematico para quantificar a coeréncia causal dos dados gerados,
combinando métricas de efeito médio do tratamento (ATE) e mudanga de correlagao
(Ar) combinado com intervalos de confianga obtidos por bootstrap. Esse protocolo,
detalhado na Secao 2.7 e aplicado no Capitulo 4 aos nove datasets gerados apre-
sentados na Tabela 7, permitiu avaliar de forma padronizada o comportamento das

intervengoes e a consisténcia temporal dos efeitos.

Em conjunto, essas contribui¢oes reforcam o papel do CSDG como uma ferramenta
aberta, reprodutivel e metodologicamente fundamentada para experimentagao causal em
contextos longitudinais. O gerador permite a criagdo de cendrios realistas com ground
truth causal conhecido e oferece um ambiente controlado para testar e comparar algoritmos

de aprendizado causal.

6.2 Trabalhos Futuros

Um avanco relevante na estrutura do gerador seria permitir que o usuario informe uma
estrutura causal personalizada por meio de uma matriz de adjacéncia, um SCM ou outra
notagao compativel. Essa abordagem tornaria o gerador ainda mais flexivel, possibili-
tando a simulagao de cendarios especificos com multiplos caminhos causais, tratamentos
simultaneos ou estruturas hibridas, conforme as necessidades de diferentes experimentos.

A simulagao de cenarios com interferéncia entre individuos, que representa um dos
casos mais desafiadores na area de inferéncia causal, também seria um adendo impor-
tante, permitindo avaliar métodos robustos a violagoes da suposicao de estabilidade dos
tratamentos.

A expansao experimental da prova de conceito, incorporando outras estruturas cau-
sais, relacoes nao lineares de maior complexidade e cenarios mistos de intervencoes, pode
nao apenas tornar a avaliagdo do CSDG mais abrangente, como também estabelecer um

benchmark 1til para pesquisas futuras.
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Outra dire¢ao promissora é o desenvolvimento de benchmarks tematicos, com caracte-
risticas especificas de dominios reais, como avaliacao de politicas publicas, analises econo-
micas ou modelagem da movimentacao de ativos financeiros. Esses conjuntos sintéticos
orientados ao dominio podem apoiar a comparacao padronizada de modelos e algoritmos.

Os modelos avaliados no contexto de resultados potenciais também podem ser amplia-
dos, incluindo adaptacgoes de técnicas utilizadas em contextos andlogos — como o Causal
Transformer — a fim de investigar sua capacidade de capturar dependéncias causais de
longo prazo em sistemas dinamicos e heterogéneos.

Por fim, uma direcao promissora consiste em expandir o escopo das anélises realiza-
das, utilizando os dados gerados pelo CSDG para abordar outras classes de problemas de
inferéncia causal, indo além do paradigma de resultados potenciais explorado neste traba-
lho. Em particular, os dados sintéticos podem ser empregados em estudos de identificagao
causal, cuja meta é determinar, a partir de um grafo causal ou de hipdteses estruturais,
se e como um efeito causal pode ser identificado unicamente a partir da distribuicao ob-
servada. Diferentemente da estimativa de contrafactuais — que parte da suposicao de
identificabilidade e busca predizer resultados potenciais individuais — os problemas de
identificacdo focam em derivar expressoes formais para quantidades causais por meio de
regras de cédlculo causal, como o do-calculus. Assim, um trabalho futuro relevante é in-
vestigar como modelos e algoritmos voltados a identificacao causal se comportam quando
avaliados em dados gerados pelo CSDG@G, especialmente em cenarios com varidveis latentes,

mediadores nao observados ou estruturas parcialmente especificadas.

6.3 Contribuicoes em Producao Bibliografica

Os resultados parciais desta dissertacdo originaram uma publicagdo cientifica apre-
sentada no evento KDMiLe 2025 — Symposium on Knowledge Discovery, Mining and
Learning, realizado em Fortaleza, Ceara, no contexto do Simposio Brasileiro de Banco de
Dados (SBBD 2025).

O artigo intitulado “Longitudinal Synthetic Data Generation from Causal
Structures” apresenta a proposta inicial do gerador Causal Synthetic Data Generator
(CSDG), descrevendo suas equagoes estruturais causais autorregressivas e o experimentos
de validacdo. A publicagdo esta disponivel em acesso aberto no portal da Sociedade
Brasileira de Computagio (SBC) por meio do DOIL: <https://doi.org/10.5753 /kdmile.2
025.247519> .
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