
UNIVERSIDADE FEDERAL DE UBERLÂNDIA 

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA BIOMÉDICA 

JOÃO LUDOVICO MAXIMIANO BARBOSA 

PLATAFORMA COMPUTACIONAL PARA 

ANÁLISE DE SINAIS EEG BASEADA EM PYTHON 

APLICADA A INDIVÍDUOS EM COMA E 

ESTIMULAÇÃO MUSICAL DE INDIVÍDUOS 

NORMAIS 

UBERLÂNDIA – MG 

2025



   

JOÃO LUDOVICO MAXIMIANO BARBOSA 

 

 

 

 

 

 

PLATAFORMA COMPUTACIONAL PARA ANÁLISE 

DE SINAIS EEG BASEADA EM PYTHON APLICADA 

A INDIVÍDUOS EM COMA E ESTIMULAÇÃO 

MUSICAL DE INDIVÍDUOS NORMAIS 

 
 
Tese apresentada ao Programa de Pós-
Graduação em Engenharia Biomédica da 
Universidade Federal de Uberlândia, como 
requisito parcial para obtenção do título de 
Doutor em Ciências. 
 
Área de Concentração: Engenharia 
Biomédica 
 
Linha de Pesquisa: Sistemas 
Computacionais e Dispositivos Aplicados à 
Saúde 

 

Orientador: Dr. João Batista Destro Filho 
Coorientador: Dr. Murillo G. Carneiro 
 

 

 

 

 

 

 

UBERLÂNDIA – MG 

2025  



com dados informados pelo(a) próprio(a) autor(a).
Ficha Catalográfica Online do Sistema de Bibliotecas da UFU

Barbosa, João Ludovico Maximiano, 1991-B238
2025 Plataforma computacional para análise de sinais EEG baseada

em python aplicada a indivíduos em coma e estimulação musical
de indivíduos normais [recurso eletrônico] / João Ludovico
Maximiano Barbosa. - 2025.

Orientador: João Batista Destro Filho.
Coorientador: Murillo Guimarães Carneiro.
Tese (Doutorado) - Universidade Federal de Uberlândia,

Doutorado em Engenharia Biomédica.
Modo de acesso: Internet.

CDU: 62:61

DOI http://doi.org/10.14393/ufu.te.2025.724
Inclui bibliografia.
Inclui ilustrações.

1. Engenharia biomédica. I. Destro Filho, João Batista ,1970-,
(Orient.). II. Carneiro, Murillo Guimarães,1988-, (Coorient.).  III.
Universidade Federal de Uberlândia. Doutorado em Engenharia
Biomédica. IV. Título.

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:
Gizele Cristine Nunes do Couto - CRB6/2091

Nelson Marcos Ferreira - CRB6/3074



UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Coordenação do Programa de Pós-Graduação em Engenharia

Biomédica
Av. João Naves de Ávila, 2121, Bloco 3N, Sala 115 - Bairro Santa Mônica, Uberlândia-MG,

CEP 38400-902
Telefone: (34) 3239-4761 - www.ppgeb.feelt.ufu.br - ppegb@feelt.ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de
Pós-
Graduação
em:

Engenharia Biomédica

Defesa de: Tese; 015, PPGEB
Data: onze de dezembro de

dois mil e vinte e cinco Hora de início: 15:30 Hora de
encerramento: 19:00

Matrícula do
Discente: 11923EBI005
Nome do
Discente: João Ludovico Maximiano Barbosa
Título do
Trabalho:

Plataforma computacional para análise de sinais EEG baseada em python
aplicada a indivíduos em coma e estimulação musical de indivíduos normais

Área de
concentração: Engenharia Biomédica
Linha de
pesquisa: Tecnologias em Radiações, Imagens Médicas e Biológicas
Projeto de
Pesquisa de
vinculação:

Estudo do efeito da estimulação musical baseado em eletroencefalografia

Reuniu-se via plataforma Teams, a Banca Examinadora, designada pelo Colegiado
do Programa de Pós-graduação em Engenharia Biomédica, assim composta:
Professores Doutores: Aurélia Aparecida de Araújo Rodrigues - IME/UFU; Milena
Bueno Pereira Carneiro - FEELT/UFU; Renato Tinós - FFCL-
USP/Ribeirão Preto; Francisco Fambrini - Univesp/SP; João Batista Destro Filho -
PPGEB/UFU orientador do candidato.
Iniciando os trabalhos o presidente da mesa, Dr. João Batista Destro
Filho, apresentou a Comissão Examinadora e o candidato, agradeceu a presença do
público, e concedeu ao Discente a palavra para a exposição do seu trabalho. A
duração da apresentação do Discente e o tempo de arguição e resposta foram
conforme as normas do Programa.
A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos
examinadores, que passaram a arguir o candidato. Ultimada a arguição, que se
desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o
resultado final, considerando o(a) candidato(a):

Aprovado.

Esta defesa faz parte dos requisitos necessários à obtenção do título de Doutor.
O competente diploma será expedido após cumprimento dos demais requisitos,
conforme as normas do Programa, a legislação pertinente e a regulamentação
interna da UFU.

Ata de Defesa - Pós-Graduação 30 (6958225)         SEI 23117.090218/2025-01 / pg. 1



 
Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente
ata que após lida e achada conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por João Batista Destro Filho,
Professor(a) do Magistério Superior, em 26/01/2026, às 16:40, conforme
horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de
8 de outubro de 2015.
Documento assinado eletronicamente por Milena Bueno Pereira Carneiro,
Professor(a) do Magistério Superior, em 27/01/2026, às 00:58, conforme
horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de
8 de outubro de 2015.

Documento assinado eletronicamente por Renato Tinós, Usuário Externo, em
27/01/2026, às 08:09, conforme horário oficial de Brasília, com fundamento no art.
6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Francisco Fambrini, Usuário
Externo, em 27/01/2026, às 11:06, conforme horário oficial de Brasília, com
fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Aurelia Aparecida de Araújo
Rodrigues, Professor(a) do Magistério Superior, em 27/01/2026, às 15:32,
conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código
verificador 6958225 e o código CRC 27175AD3.

Referência: Processo nº 23117.090218/2025-01 SEI nº 6958225

Ata de Defesa - Pós-Graduação 30 (6958225)         SEI 23117.090218/2025-01 / pg. 2

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0


Dedico este trabalho aos meus queridos 
familiares, cujo amor, apoio e incentivo 
foram fundamentais para a realização 
deste sonho, que também é de vocês. A 
todos os professores e amigos que 
contribuíram para meu desenvolvimento 
acadêmico e científico, meu sincero 
agradecimento por me inspirarem a buscar 
sempre o conhecimento. Aos que 
acreditaram em mim e estiveram ao meu 
lado em todos os momentos, deixo minha 
eterna gratidão. E a mim mesmo, pela 
persistência e dedicação ao longo dessa 
jornada; que este esforço seja apenas o 
início de muitas conquistas. 



AGRADECIMENTOS 

Concluir esta tese representa não apenas o encerramento de uma etapa 

acadêmica, mas também a celebração de uma jornada repleta de desafios, 

descobertas e crescimento pessoal. Muitas pessoas foram fundamentais nesse 

percurso, e é com profunda gratidão que registro aqui meu reconhecimento. 

Ao professor João Batista Destro Filho, meu orientador, agradeço por ter 

aceitado caminhar ao meu lado desde o início, enfrentando comigo os altos e baixos 

dessa trajetória. Sua escuta atenta, sua postura ética e seu olhar humano foram 

essenciais para que eu me mantivesse firme. Mais do que um orientador, foi um 

verdadeiro guia, cuja competência e generosidade deixaram marcas profundas na 

minha formação. 

Ao professor Murillo Guimarães Carneiro, meu coorientador, sou grato pela 

parceria intelectual e pela troca constante de ideias. Sua dedicação, disponibilidade e 

entusiasmo foram fundamentais para o desenvolvimento dos artigos, para as 

participações em congressos e para o amadurecimento da pesquisa. Aprendi muito 

com sua forma de pensar e fazer ciência. 

À minha mãe, Maria Barbosa da Silva, minha maior fonte de força e 

inspiração. Sua presença constante, mesmo nos momentos em que tudo parecia 

desmoronar, foi o que me sustentou. Seu amor, suas palavras de incentivo e sua fé 

em mim foram o combustível que me manteve em movimento. Esta conquista também 

é sua. 

Ao Programa de Pós-Graduação em Engenharia Biomédica (PPGEB) da 

Universidade Federal de Uberlândia, agradeço pela estrutura acadêmica, pelo corpo 

docente comprometido e pelas oportunidades de aprendizado que me foram 

oferecidas. Aos funcionários da UFU, especialmente ao Edson, secretário do PPGEB, 

deixo meu reconhecimento pelo apoio prestativo e pela atenção em momentos 

decisivos. O cuidado com os estudantes faz toda a diferença. 

Ao Jaime Dos Reis Leles Junior, meu coordenador de trabalho, sou 

profundamente grato pela compreensão e pelo incentivo constante. Sua sensibilidade 

em permitir que eu me dedicasse à tese em momentos cruciais foi determinante para 

que eu pudesse concluir este ciclo. 



   

Aos meus amigos e familiares, que compreenderam minhas ausências, meu 

silêncio e minha dedicação quase exclusiva à pesquisa. Obrigado por respeitarem 

meu tempo, por torcerem por mim e por nunca deixarem de acreditar que tudo isso 

valeria a pena. 

A todos que, de alguma forma, contribuíram direta ou indiretamente para a 

realização deste trabalho, meu sincero agradecimento. 

Por fim, agradeço a mim mesmo, pela persistência, pela coragem de seguir 

mesmo quando tudo parecia difícil, e por nunca perder de vista o propósito que me 

trouxe até aqui. 

  



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Eu sei que a vida é curta pra viver 
Mas tem tanto tempo pra aprender 
Tanto tempo pra se jogar 
 
Quanto tempo até você perceber? 
Que os seus sonhos só 
Dependem de você!!! 
 

Kélvin Vieira  



RESUMO 

O eletroencefalograma (EEG) permite o registro não invasivo da dinâmica elétrica 

cerebral a partir do escalpo, sendo crucial para investigar processos cerebrais. No 

entanto, a complexidade dos sinais e a necessidade de ampliar o acesso às análises 

motivaram a migração de um software de processamento originalmente desenvolvido 

em uma plataforma computacional para Python, uma linguagem openSource. 

Durante a transcrição foram incorporadas melhorias funcionais, incluindo rotinas 

customizadas de pré-processamento, critérios para descarte de canais ruidosos, 

seleção de quantificadores e parâmetros ajustáveis, além do desenvolvimento de uma 

interface gráfica que facilitou a adoção e o treinamento de pesquisadores com 

diferentes níveis de experiência. 

Embora a versão da plataforma computacional tenha apresentado desempenho 

superior na etapa de pré e processamento, chegando a ser cerca de 60 vezes mais 

rápida, e tenha gerado arquivos de dados processados cinco vezes menores, a versão 

em Python garantiu equivalência funcional nos quantificadores calculados, com erro 

relativo irrelevante (da ordem de 10−12), exceto para o quantificador de coerência, que 

possui um algoritmo ligeiramente distinto. Foram desenvolvidas rotinas estatísticas 

para avaliar efeitos da estimulação musical, nas quais o quantificador porcentagem 

de contribuição de potência (PCP), especialmente nas bandas delta e alfa, revelou-se 

mais informativo que a frequência mediana (FM). 

Ao aplicar técnicas de inteligência artificial para classificar sinais em tarefas clínicas e 

musicais. Na base de dados do prognóstico do coma, obteve-se F1 Score (macro) de 

90%; para a classificação da etiologia do coma, 63% de acurácia, que aumentou para 

70% ao remover exames da categoria “outros”; e na classificação de estímulos 

musicais, com 67% de precisão. 

Este trabalho contribui para a disseminação de ferramentas abertas e reprodutíveis 

em análise de sinais neurofisiológicos e abre caminhos para futuras melhorias e 

pesquisas na área. 

Palavras-chave: EEG, Processamento, Estimulação Sonora, Reconhecimento de 

Padrões, Inteligência Artificial. 



   

ABSTRACT 

The electroencephalogram (EEG) allows the non-invasive recording of brain electrical 

dynamics from the scalp, being crucial for investigating cerebral processes. However, 

the complexity of the signals and the need to broaden access to analyses motivated 

the migration of a processing software originally developed on a computational 

platform to Python, an openSource programming language. 

During the transcription, functional improvements were incorporated, including 

customized preprocessing routines, criteria for discarding noisy channels, selection of 

quantifiers, adjustable parameters, and the development of a graphical interface that 

facilitated adoption and training for researchers with different levels of experience.  

Although the computational platform version presented superior performance in the 

preprocessing and processing stages, being about 60 times faster, and generated 

processed data files five times smaller, the Python version guaranteed functional 

equivalence in the calculated quantifiers, with negligible relative error (on the order of 

10−12), except for the coherence quantifier, which has a slightly different algorithm. 

Statistical routines were developed to evaluate the effects of musical stimulation, in 

which the percentage of power contribution (PCP) quantifier, especially in the delta 

and alpha bands, proved to be more informative than the median frequency. 

Artificial intelligence techniques were applied to classify signals in clinical and musical 

tasks. In the coma prognosis database, a macro F1 Score of 90% was obtained; for 

coma etiology classification, 63% accuracy was achieved, increasing to 70% after 

removing exams in the "others" category; and in musical stimulus classification, 67% 

accuracy was reached. 

This work contributes to the dissemination of open and reproducible tools in 

neurophysiological signal analysis and paves the way for future improvements and 

research in the field. 

 

Keywords: EEG, Processing, Sound Stimulation, Pattern Recognition, Artificial 

Intelligence.  
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CAPÍTULO 1 - INTRODUÇÃO 

Este capítulo introdutório apresenta uma visão dos conceitos e contextos 

relacionados ao eletroencefalograma (EEG), um método essencial para o estudo da 

atividade elétrica cerebral. Além disso, discute-se a interação entre EEG e 

estimulação musical, ressaltando avanços recentes que associam padrões neurais a 

estímulos sonoros. Por fim, são abordadas as aplicações de técnicas de inteligência 

artificial no processamento e análise dos sinais de EEG, destacando seu potencial 

para a extração de informações relevantes e para o desenvolvimento de novos 

métodos diagnósticos. 

1.1 CONTEXTUALIZAÇÃO 

A etimologia da palavra eletroencefalograma (EEG) deriva de três termos de 

origem grega: eletro (élektron), que significa eletricidade; encéfalo (egképhalos), que 

se refere ao cérebro; grama (grámma), que significa registro ou escrita (ROSA, 

LAUCSEN DA, 2009). Dessa forma, o EEG consiste no registro da atividade do 

cérebro, originada pela soma dos potenciais das células nervosas (neurônios), 

refletindo os processos funcionais cerebrais. 

As bases da eletroencefalografia remontam aos experimentos pioneiros 

realizados no final do século XIX, quando Richard Caton detectou sinais elétricos no 

cérebro de animais (NIEDERMEYER; SILVA, 2004). Entre 1875 e 1877, utilizando um 

galvanômetro, Caton posicionou sensores na substância cinzenta do cérebro e crânio, 

observando variações na tensão ao longo do tempo. Através de uma agulha acoplada 

ao galvanômetro, que vibrava conforme essas variações, foi possível registrar as 

oscilações elétricas em uma folha de papel em movimento contínuo, originando assim 

o conceito do eletroencefalograma (EEG) (ROSA, LAUCSEN DA, 2009). 

Em 6 de julho de 1924, o psiquiatra alemão Hans Berger realizou o primeiro 

registro de eletroencefalograma (EEG) em um ser humano, um jovem de 17 anos 

submetido a uma neurocirurgia realizada pelo neurocirurgião Nikolai (İNCE; ADANIR; 

SEVMEZ, 2021). Inicialmente, Berger explorava a base fisiológica dos fenômenos 
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psíquicos, mas os resultados levaram-no a concentrar-se na atividade elétrica do 

cérebro. Sua técnica evoluiu de registros invasivos, com eletrodos posicionados 

diretamente no periósteo após aplicação de anestesia local, para a técnica não 

invasiva atual, com eletrodos acoplados ao couro cabeludo (İNCE; ADANIR; 

SEVMEZ, 2021). Este avanço marcou o início de uma nova era na neurociência 

clínica, possibilitando o estudo sistemático da atividade cerebral humana. 

Com os avanços tecnológicos na aquisição e interpretação dos sinais de EEG, 

sua aplicação expandiu-se significativamente para diversas áreas do conhecimento. 

Atualmente, o EEG desempenha um papel essencial na prática clínica, sendo 

amplamente empregado no diagnóstico e prognóstico de doenças neurológicas. Além 

disso, tem se consolidado como uma ferramenta indispensável em pesquisas 

neurocientíficas, permitindo uma compreensão mais aprofundada da dinâmica 

cerebral. No campo da tecnologia, o EEG impulsiona o desenvolvimento de interfaces 

cérebro-máquina (BCI), viabilizando novas formas de interação entre humanos e 

dispositivos eletrônicos. Outro avanço relevante é sua utilização no monitoramento 

contínuo de pacientes internados em unidades de terapia intensiva (UTI), 

possibilitando a avaliação em tempo real da função cerebral. 

1.1.1 EEG e Estimulação musical 

Os sinais de EEG e magnetoencefalografia (MEG) são frequentemente 

definidos em faixas de frequência específicas, como ondas lentas (<0,2 Hz), delta (0,2 

a 3,5 Hz), teta (4 a 7,5 Hz), alfa (8 a 13 Hz), beta (14 a 30 Hz), gama (30 a 90 Hz) e 

oscilações de alta frequência (>90 Hz), embora esses limites tenham sido 

estabelecidos de forma arbitrária e sem base direta em mecanismos neurofisiológicos 

conhecidos (LOPES DA SILVA, 2013).  

Entretanto, a riqueza desses sinais eletrofisiológicos tem permitido analisar 

como estímulos externos complexos, como a música, podem modular a atividade 

cerebral. Pesquisas recentes indicam que diferentes características musicais, como o 

tempo e o modo, afetam as bandas de frequência do EEG, particularmente nas faixas 

alfa, teta e beta, relacionadas a estados emocionais e atenção. Por exemplo, (YANG 

et al., 2025) observaram que tempos musicais lentos aumentam a potência das ondas 

teta e alfa na região frontal, promovendo relaxamento, enquanto tempos rápidos 
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elevam a atividade beta e gama, associadas a estados de alerta e excitação. Esses 

achados indicam o potencial da música em regular a atividade cerebral e seus 

possíveis usos terapêuticos. 

Dessa forma, a musicoterapia tem se destacado como uma intervenção 

promissora no cuidado de pacientes oncológicos, contribuindo significativamente para 

a redução de sintomas como dor, ansiedade e estresse, além de promover o bem-

estar emocional e melhorar a qualidade de vida desses pacientes (BRADT et al., 

2016). Revisões sistemáticas recentes indicam que a terapia musical ativa áreas 

cerebrais envolvidas no processamento emocional e influencia positivamente a 

percepção da dor, revelando-se uma ferramenta valiosa no tratamento integrado do 

câncer. Embora sejam necessários estudos adicionais para consolidar as evidências, 

os resultados atuais apontam para melhorias significativas no enfrentamento dos 

efeitos adversos do tratamento quimioterápico, abrindo caminho para perspectivas 

terapêuticas mais eficazes (RODRIGUES et al., 2025). 

1.1.2 EEG e Inteligência Artificial 

A aplicação da inteligência artificial (IA) na análise de sinais de 

eletroencefalografia (EEG) tem representado um avanço significativo na neurociência 

clínica. Modelos avançados de aprendizado profundo vêm sendo aplicados para 

interpretar padrões complexos no EEG com alta precisão, permitindo diagnósticos 

mais rápidos e acurados de distúrbios neurológicos como epilepsia (ALKHALDI et al., 

2024), demência (REZAEI et al., 2025) e distúrbios do sono (TRANG et al., 2025). 

Estudos indicam que algoritmos de IA superam métodos tradicionais na detecção 

automática de anomalias em EEG, ampliando o potencial diagnóstico em contextos 

clínicos com menor necessidade de intervenção humana. 

Além disso, a integração da IA aos sinais de EEG tem viabilizado aplicações 

inovadoras em interfaces cérebro-computador (BCI), monitoramento em tempo real e 

prognóstico de doenças neurológicas. Estudos recentes evidenciam que sistemas 

baseados em IA podem analisar dados de EEG com alta precisão para detectar 

padrões associados a condições neurológicas e melhorar a interação entre o cérebro 

e dispositivos externos, como demonstrado por avanços em BCI que possibilitam 

controle motor e comunicação assistida (BARBERA et al., 2025; ZHANG et al., 2020). 



28 

Esses progressos promovem uma abordagem personalizada e eficaz no cuidado em 

saúde, aprimorando a detecção, o monitoramento e a intervenção terapêutica em 

tempo real. 

1.2 JUSTIFICATIVA 

O eletroencefalograma (EEG) capta a atividade elétrica do cérebro por meio 

de sensores posicionados no couro cabeludo, produzindo sinais brutos que, 

isoladamente, possuem pouca relevância clínica. Contudo, a análise detalhada 

desses dados, especialmente a identificação de oscilações em diferentes faixas de 

frequência e sua localização em regiões específicas do cérebro, transforma o EEG 

em uma ferramenta essencial para investigações neurológicas. Quando associados a 

informações biológicas e clínicas adicionais, esses dados potencializam a 

compreensão dos processos cerebrais, aprimorando a precisão no diagnóstico e na 

previsão de condições neurológicas. 

Sua portabilidade e os custos acessíveis fazem do EEG uma ferramenta 

amplamente utilizada em pesquisas multicêntricas e na formação de bases de dados 

(LEVIN et al., 2018). Essa técnica pode ser aplicada em grupos de indivíduos 

saudáveis e clínicos de diferentes faixas etárias, com relativa facilidade na aquisição 

dos dados. No entanto, a análise desses sinais exige conhecimentos técnicos 

especializados e ferramentas que facilitem o processamento e a identificação das 

informações relevantes. 

Muitos dos software utilizados para processar dados de EEG são pagos ou 

estão disponíveis em plataformas comerciais, o que gera a demanda por alternativas 

de código aberto para essas tarefas. Além disso, o desenvolvimento de scripts e 

pipelines1 analíticos para EEG é complexo e desafiador, devido a variáveis como o 

formato dos arquivos de entrada, a taxa de amostragem, o posicionamento dos 

 
1 pipeline – consiste em um conjunto de passos para processar o EEG, onde se torna 

necessário chamar várias rotinas de software, cada uma com sua função delimitada onde o resultado 
de uma função é entrada de outra função até se cumprir o objetivo proposto. Exemplo de pipeline para 
separar o EEG por bandas de frequência: inicialmente faz a leitura do arquivo de EEG, converte o 
mesmo para matrizes, separa épocas/segmentos, converte no domínio da frequência, separa em 
bandas de frequência. 
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eletrodos, além da presença de ruídos de linha e artefatos de movimento, fatores que 

dificultam a padronização e a comparação dos resultados (LEVIN et al., 2018). 

Durante a análise do EEG, muitos registros e coletas são frequentemente 

descartados devido à alta presença de ruídos ou outros fatores que comprometem a 

qualidade dos dados. Essa situação muitas vezes ocorre pela falta de especialistas 

qualificados ou pela indisponibilidade de ferramentas de ciência de dados, que 

geralmente possuem custos elevados. Entretanto, caso a validação dos dados possa 

ser automatizada por meio de plataformas acessíveis e de fácil utilização, o 

treinamento de profissionais de saúde e cientistas de dados poderá ser otimizado, 

minimizando a perda de informações valiosas (RAMACHANDRAN et al., 2018). 

A automação na análise dos dados de EEG não apenas torna essa tecnologia 

mais acessível, como também amplia seu uso na exploração de fenômenos 

neurocientíficos complexos. Um campo de especial interesse é a investigação da 

relação entre estímulos sonoros e emoções, motivada pelo impacto significativo que 

a música e outros estímulos auditivos exercem sobre a atividade cerebral. Essa linha 

de pesquisa tem despertado grande atenção por sua relevância clínica e experimental, 

possibilitando avanços importantes na compreensão dos mecanismos neurais 

subjacentes às respostas emocionais. 

É amplamente reconhecido que os sons desempenham um papel 

fundamental na regulação das emoções. Ao ouvir o rugido de um predador, como um 

leão ou uma onça, o corpo interpreta rapidamente o som como uma ameaça, 

desencadeando uma resposta fisiológica associada ao medo. Da mesma forma, a 

exposição a uma música apreciada pode ativar diversas emoções, como alegria, 

felicidade e memória afetiva. Além disso, algumas abordagens terapêuticas sugerem 

que a estimulação musical pode acelerar o processo de recuperação em 

determinados tratamentos de saúde. Nesse contexto, torna-se essencial investigar 

como a música influencia as emoções e quais áreas cerebrais são ativadas, 

considerando que um mesmo estímulo sonoro pode gerar respostas emocionais 

distintas em cada indivíduo. 

Para compreender essas relações com maior precisão, é necessário um 

aprofundamento na análise dos sinais cerebrais. No entanto, a identificação precisa 
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dos padrões cerebrais requer técnicas avançadas de análise, visto que os sinais de 

EEG são altamente dinâmicos e complexos. 

Nesse sentido, a aplicação de inteligência artificial (IA) tem se mostrado uma 

abordagem promissora para a classificação automática dos exames, permitindo 

detectar padrões sutis nos sinais elétricos do cérebro e associá-los tanto a diferentes 

estados emocionais quanto a possíveis condições patológicas. Essa abordagem não 

apenas facilita a interpretação dos dados, como também amplia as possibilidades de 

diagnóstico precoce, monitoramento de distúrbios neurológicos e personalização de 

tratamentos, tornando a análise do EEG uma ferramenta ainda mais acessível e 

eficiente para diversas aplicações clínicas e terapêuticas. 

1.3 OBJETIVOS 

1.3.1 Objetivo Geral 

Desenvolver uma plataforma computacional de código aberto para o 

processamento de sinais neurofisiológicos e análise estatística, possibilitando a 

realização de avaliações quantitativas automatizadas por meio de técnicas de 

aprendizado de máquina. 

Aplicar essa plataforma a bases de dados de estimulações cognitivas, 

abrangendo tanto indivíduos saudáveis quanto pacientes com condições 

neurológicas, a fim de identificar padrões característicos de atividade cerebral, 

investigar correlações entre estímulos e respostas neurais e contribuir para avanços 

no diagnóstico, monitoramento e prognóstico de patologias. 

1.3.2 Objetivos Específicos 

Para alcançar o objetivo geral proposto, este trabalho visa atender aos 

seguintes objetivos específicos: 

• Desenvolver uma pipeline computacional em código aberto capaz de realizar o 

processamento de sinais neurofisiológicos, integrando técnicas de filtragem, 

segmentação e normalização para garantir a qualidade dos dados analisados. 
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• Implementar algoritmos de aprendizado de máquina para a classificação 

automatizada de padrões neurais, explorando modelos supervisionados e não 

supervisionados para aprimorar a detecção de assinaturas eletrofisiológicas 

associadas a estímulos cognitivos. 

• Criar um módulo de análise estatística avançada para investigar relação entre 

atividade cerebral e estímulos externos, possibilitando a extração de métricas 

quantitativas que auxiliem na interpretação dos resultados. 

• Aplicar a plataforma a bases de dados de EEG, tanto de indivíduos saudáveis 

quanto pacientes com condições neurológicas, avaliando a eficácia da ferramenta na 

distinção de padrões neurais específicos em diferentes cenários clínicos. 

• Otimizar a escalabilidade e acessibilidade da plataforma, garantindo que o 

código desenvolvido seja modular, de fácil reprodução e compatível com diferentes 

conjuntos de dados e configurações experimentais. 

• Validar a metodologia proposta por meio de experimentos comparativos, 

analisando o desempenho da plataforma em relação a abordagens tradicionais e 

verificando sua aplicabilidade em estudos neurocientíficos e clínicos. 

1.4 ORGANIZAÇÃO DO DOCUMENTO 

Esta tese está organizada da seguinte forma: 

• Capítulo 1 – Apresenta uma introdução ao tema, destacando a relevância do 

EEG para a ciência e a sociedade, além da justificativa para a escolha do tema e da 

definição dos objetivos; 

• Capítulo 2 – Discute o estado da arte, abordando os principais software 

utilizados no processamento de EEG, acompanhados de uma comparação sucinta 

dessas ferramentas sob a perspectiva de desenvolvimento e implementação. 

Também aborda o estudo da estimulação musical relacionada à neurociência e 

apresenta a aplicação da inteligência artificial na classificação dos sinais de EEG; 

• Capítulo 3 – Descreve a transcrição do software de processamento de EEG 

desenvolvido pelo grupo de pesquisa para a linguagem Python, incluindo as melhorias 

implementadas em relação a versão anterior e a criação de uma interface gráfica para 

facilitar o uso da ferramenta; 
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• Capítulo 4 – Propõe um mecanismo para a extração de atributos destinado à 

análise de padrões nos sinais de EEG sob estimulação musical; 

• Capítulo 5 – Explora a aplicação de técnicas de inteligência artificial e 

aprendizado de máquina na classificação das bases de dados, avaliando o 

desempenho de diferentes abordagens computacionais; 

• Capítulo 6 – Apresenta as conclusões do estudo e sugere direções para 

trabalhos futuros, discutindo as principais contribuições e possíveis desdobramentos 

da pesquisa.  
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CAPÍTULO 2 - ESTADO DA ARTE 

O avanço das tecnologias para o processamento de sinais de 

eletroencefalografia (EEG) tem impulsionado significativamente a pesquisa e as 

aplicações clínicas na neurociência. Diversos software, tanto de código aberto quanto 

comerciais, oferecem ferramentas especializadas que permitem a análise detalhada 

dos dados brutos, facilitando desde o pré-processamento até a extração de padrões 

complexos. Paralelamente, a exploração dos efeitos da estimulação musical sobre a 

atividade cerebral, capturada pelo EEG, tem revelado conexões importantes entre 

estímulos auditivos e respostas neurofisiológicas. Adicionalmente, a incorporação de 

técnicas de inteligência artificial no processamento e análise de EEG tem ampliado a 

capacidade de detectar e interpretar padrões neurais, promovendo melhorias nos 

diagnósticos e no entendimento dos fenômenos cerebrais. Este capítulo revisa o 

estado da arte nessas três áreas. 

2.1 ELETROENCEFALOGRAMA (EEG) 

O eletroencefalograma (EEG) é um método não invasivo que registra a 

atividade elétrica cerebral por meio de eletrodos posicionados no couro cabeludo, 

captando os impulsos gerados pelos neurônios do córtex cerebral (SCHOMER; 

LOPES DA SILVA, 2017). Cada eletrodo corresponde a um canal, permitindo o 

registro simultâneo dos sinais provenientes de diferentes regiões do cérebro. 

Para a coleta do EEG, a Sociedade Brasileira de Neurofisiologia Clínica 

(SBNC) recomenda o uso do Sistema Internacional 10-20, que consiste em 21 

eletrodos cuja colocação segue critérios bem definidos (MARINHO, 2017). O 

posicionamento dos eletrodos é realizado com base em medidas específicas dos 

pontos de referência do crânio, buscando adequação ao tamanho e formato individual 

de cada paciente. 

A nomenclatura dos eletrodos reflete as áreas cerebrais subjacentes, 

facilitando a interpretação por profissionais de diferentes áreas e a padronização entre 

laboratórios. Cada eletrodo é identificado por uma letra, que indica a região cerebral 

coberta (Fp: fronto-polar, F: frontal, C: central, P: parietal, T: temporal, O: occipital), e 
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por um número, que representa a lateralização. Os números ímpares correspondem 

ao hemisfério esquerdo e pares ao direito. Os eletrodos da linha média são 

identificados com a letra Z (Fz, Cz, Pz). 

O posicionamento dos eletrodos no sistema 10-20 é baseado em medidas 

proporcionais ao tamanho do crânio, utilizando pontos de referência como násio, ínion 

e pontos pré-auriculares. As distâncias entre os eletrodos são definidas de modo que 

o espaçamento corresponde a 10% ou 20% das dimensões totais do crânio, tanto na 

direção antero-posterior quanto na transversal. O primeiro eletrodo é colocado a 10% 

da distância total entre dois pontos de referência, e os demais são dispostos a 

intervalos de 20%, garantindo cobertura adequada e padronização entre diferentes 

indivíduos (RECOMMENDATIONS FOR THE PRACTICE OF CLINICAL 

NEUROPHYSIOLOGY: GUIDELINES OF THE INTERNATIONAL FEDERATION OF 

CLINICAL NEUROPHYSIOLOGY, 1999). 

A Figura 1 ilustra a disposição dos eletrodos de acordo com o sistema 10-20, 

evidenciando as posições das medidas de 10% e 20% ao longo do crânio, conforme 

os pontos de referência utilizados. Essa representação facilita a compreensão da 

distribuição dos eletrodos e reforça a importância do método para a padronização dos 

registros de EEG.  

 

Figura 1 - Sistema Internacional de montagem de eletrodos 10-20 
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O traçado do EEG representa a variação da atividade elétrica cerebral ao longo 

do tempo, registrada simultaneamente em múltiplos canais (eletrodos). Esse traçado 

exibe oscilações de diferentes frequências e amplitudes, que refletem os padrões de 

atividade neural em repouso ou durante tarefas específicas. A análise visual do 

traçado permite identificar características como ritmos dominantes, artefatos e 

eventos transientes, sendo fundamental para a interpretação clínica e pesquisa em 

neurociência. Na Figura 2, é apresentado um exemplo de traçado de EEG, ilustrando 

a disposição dos sinais registrados pelos diferentes eletrodos ao longo do tempo. 

 

Figura 2 - Exemplo de traçado de EEG 

Caracterizado por sua complexidade, o registro de EEG apresenta variações 

dinâmicas ao longo do tempo e entre diferentes regiões cerebrais. Para facilitar a 

análise, o sinal é frequentemente dividido em janelas temporais menores, conhecidas 

como épocas, que permitem isolar segmentos de interesse relacionados a eventos 

específicos ou estados cognitivos. A partir dessas épocas, são aplicadas diversas 

técnicas de análise de sinais, como transformadas de Fourier, wavelets e o cálculo de 

quantificadores espectrais, incluindo a Porcentagem de Contribuição de Potência 

(PCP), Frequência Mediana (FM) e a Coerência, com o objetivo de extrair informações 

relevantes e facilitar a interpretação dos dados obtidos. 

2.1.1 Porcentagem de Contribuição de Potência (PCP) 

A Porcentagem de Contribuição de Potência (PCP) é um quantificador que 

mensura, de maneira relativa, a potência presente em cada ritmo cerebral em relação 
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à potência total do espectro, informando a contribuição que cada ritmo tem perante a 

época/segmento avaliada (RAMOS et al., 2018). Este parâmetro é particularmente útil 

na análise de sinais de EEG, pois permite avaliar como a energia do sinal está 

distribuída entre as diferentes bandas de frequência. 

O cálculo do PCP inicia-se com a determinação da potência total do sinal na 

época/segmento, sendo definido como a Equação 1 abaixo: 

 𝑷𝒏 =  ∫  | 𝑺𝒙𝒏(𝒇)|𝟐 𝒅𝒇 (1) 

Onde: 

𝑃𝑛 - Potência total do sinal na época/segmento n 

𝑆𝑥𝑛 - 
Densidade espectral de potência do sinal EEG na 
época/segmento n. 

𝑛 - Época/segmento selecionada 

Em seguida realiza-se o cálculo do PCP (Equação 2): 

 
𝑷𝑪𝑷𝒏_𝒓𝒊𝒕𝒎𝒐 =  

∫|𝑺𝒙𝒏(𝒇)|𝟐 𝒅𝒇

𝑷𝒏
 (2) 

Onde: 

𝑃𝐶𝑃𝑛_𝑟𝑖𝑡𝑚𝑜 - 
Contribuição de potência do ritmo específico em relação a 
potência total do sinal 

Pn - Potência total do sinal na época/segmento n 

|𝑆𝑥𝑛(𝑓)|2 - 
Densidade espectral de potência do ritmo especifico na 
época/segmento n 

n - Época/segmento selecionada 

2.1.2 Frequência Mediana (FM) 

A Frequência Mediana (FM) é um parâmetro fundamental na análise espectral 

de sinais de EEG, representando o valor de frequência que divide o espectro de 

potência em duas partes iguais. Conforme indicado na Equação 3, a FM é definida 

como o valor de frequência em que 50% da potência calculada está concentrada nas 

frequências mais baixas e 50% nas frequências mais altas (RAMOS et al., 2016). 

 
𝑭𝒎𝒆𝒅𝒊𝒂𝒏𝒂 =

∑ |𝒙(𝒌)|𝒇(𝒌)𝒏
𝒌=𝟎

∑ |𝒙(𝒌)|𝒏
𝒌=𝟎

 (3) 
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Onde: 

|𝑥(𝑘)| - Módulo obtido pela Transformada Discreta de Fourier 

𝑓(𝑘) - Vetor de frequências 

n - Número de amostras do sinal |x(k)| 

 

Em indivíduos acordados e neurologicamente normais, a FM geralmente está 

em torno de 12 Hz (TONNER; BEIN, 2006). No entanto, estudos piloto com voluntários 

saudáveis mostraram que, dependendo da região cerebral analisada, a FM pode 

variar entre 20 e 30 Hz, predominando o ritmo Beta da atividade cerebral (RAMOS et 

al., 2016). A distribuição da FM varia conforme os eletrodos das regiões cerebrais, 

com médias de 25 Hz (frontal), 24 Hz (central), 27 Hz (temporal), 23 Hz (parietal) e 22 

Hz (occipital), conforme reportado por (RAMOS et al., 2016). Essa distribuição indica 

que as regiões anteriores apresentam frequências medianas mais elevadas, com 

maior presença de ritmos de alta frequência (Beta e Gama), enquanto as regiões 

posteriores exibem predominância de ritmos mais lentos (Delta, Teta e Alfa). 

A FM também possui aplicações clínicas relevantes, como na monitorização 

da profundidade anestésica. Durante a anestesia, a FM desloca-se para valores mais 

baixos, atingindo cerca de 2 a 3 Hz em estados de anestesia profunda, sendo que 

valores menores indicam maior profundidade anestésica (TONNER; BEIN, 2006). 

2.1.3 Coerência 

A coerência, conforme definida na Equação 4, quantifica a consistência da 

diferença de fase entre dois sinais de EEG, refletindo o grau de sincronia entre eles 

(RAMOS, 2017). Esse parâmetro é especialmente valioso para avaliar a simetria 

funcional entre os hemisférios cerebrais direito e esquerdo, revelando relações de 

conectividade entre diferentes regiões corticais. 

 

|𝜞𝒙𝒚(𝒆𝒋𝝎)|
𝒊

𝟐
=

|𝑺𝒙𝒚(𝒆𝒋𝝎)|
𝟐

𝑺𝒙(𝒆𝒋𝝎) ⋅ 𝑺𝒚(𝒆𝒋𝝎)
 (4) 
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Onde: 

Sxy - Densidade espectral de potência cruzada 

Sx - Densidade espectral do sinal X 

Sy - Densidade espectral do sinal Y 

i - Segmento considerado 

 

A Equação 5 estabelece uma propriedade fundamental da coerência 

delimitando seus valores entre 0 e 1. 

 𝟎 ≤ |𝜞𝒙𝒚(𝒆𝒋𝝎)|
𝟐

≤ 𝟏 (5) 

Valores próximos a zero indicam que os componentes de frequência dos 

sinais são linearmente independentes, sugerindo baixa ou nenhuma sincronia entre 

as regiões cerebrais analisadas (WANG et al., 2015). Em contraste, valores próximos 

a um revelam forte correlação linear, indicando alta sincronização entre as áreas 

cerebrais correspondentes. 

A coerência é baseada principalmente na consistência de fase entre os sinais, 

não necessariamente em suas amplitudes, o que significa que dois sinais podem ter 

fases diferentes, mas apresentar alta coerência quando se a diferença de fase 

permanecer constante (SRINIVASAN et al., 2007). Esta característica torna a 

coerência uma métrica valiosa para avaliar o nível de conectividade funcional cortical. 

Na análise da simetria interhemisférica, são utilizados 8 pares de eletrodos 

simétricos (FP1-FP2, F7-F8, F3-F4, T3-T4, C3-C4, T5-T6, P3-P4, O1-O2) para avaliar 

a atividade elétrica cerebral entre os hemisférios direito e esquerdo. Essa abordagem 

permite identificar assimetrias funcionais que podem estar associadas a condições 

neurológicas específicas. Estudos anteriores demonstraram que diferentes pares de 

eletrodos podem apresentar níveis variados de coerência, com eletrodos occipitais 

frequentemente exibindo maior coerência em comparação com pares temporais mais 

amplamente separados (FRENCH, 1982). 

A alta coerência entre regiões homólogas indica cooperação neuronal 

eficiente e maior transmissão de informação entre as áreas cerebrais 

correspondentes. Por definição matemática, sinais idênticos apresentam coerência 
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igual a 1,0, enquanto a presença de componentes de frequência não relacionados em 

um dos sinais reduzirá proporcionalmente o valor da coerência. 

2.2 SOFTWARE DE PROCESSAMENTO DE EEG 

Cada instante de medição do sinal de EEG é registrado em um vetor 𝐗𝐭, que 

corresponde a uma amostra temporal distribuída ao longo de 𝐘𝒄𝒉 canais, 

representando as posições dos eletrodos no couro cabeludo. Essa configuração 

caracteriza uma amostragem discreta de um campo elétrico contínuo, evidenciando a 

natureza espaço-temporal do EEG (VON WEGNER; LAUFS, 2018). Cada elemento 

da matriz que representa o sinal de EEG, de dimensão (𝐗𝐭, 𝐘𝒄𝒉), contém um valor 

numérico em ponto flutuante correspondente ao potencial elétrico captado por cada 

eletrodo, sendo esse valor altamente suscetível a ruídos e interferências provenientes 

de outros sinais. A complexidade inerente ao EEG torna a análise direta um desafio, 

requerendo o uso de software especializados para o pré-processamento, a remoção 

de ruídos e a interpretação precisa dos dados. 

Os sinais de EEG são caracterizados por sua alta variabilidade e 

suscetibilidade a ruídos, tornando essencial o uso de software especializados que 

processam as 𝐗𝐭 amostras para extrair informações adicionais, reduzir a 

complexidade dos sinais e mitigar a influência de artefatos. Esses software 

desempenham um papel fundamental ao automatizar a aquisição, o pré-

processamento, a extração de características e a visualização dos sinais elétricos 

cerebrais. Dependendo da situação, eles podem ser projetados para atender a 

diferentes objetivos, como a remoção de artefatos, a segmentação de dados ou a 

análise de padrões espaciais e temporais. 

Dessa forma, existem diversas ferramentas desenvolvidas para o 

processamento de EEG, cada uma com finalidades específicas. Algumas são focadas 

na análise clínica, auxiliando no diagnóstico de distúrbios neurológicos, enquanto 

outras são voltadas para pesquisa e desenvolvimento de aplicações em neurociência 

e interfaces cérebro-computador, conforme descrito em (BARBOSA, 2019). 
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A seguir, é apresentada a Tabela 1 que sintetiza as principais características 

dos software analisados por (BARBOSA, 2019), permitindo uma visão comparativa de 

suas especificidades. A Tabela 1 contém as seguintes colunas: 

• Software – Nome da ferramenta analisada; 

• Linguagem – A principal linguagem de programação utilizada no 

desenvolvimento do software; 

• Interface Gráfica – Indica se a ferramenta possui uma interface gráfica (GUI) 

ou se é baseada em scripts; 

• Licença de Uso – Tipo de licenciamento, informando se o software é de código 

aberto, gratuito para pesquisa ou comercial; 

• Características – Principais funcionalidades e aplicações, como suporte a 

EEG e MEG, métodos de análise, visualização e integração com outras 

ferramentas. 

Essa comparação possibilita uma visão abrangente das diferentes 

ferramentas disponíveis para processamento e análise de dados EEG e MEG, 

auxiliando na escolha do software mais adequado conforme as necessidades 

específicas do usuário. 

Tabela 1 Características básicas dos software de processamento de EEG pesquisados 
adaptado de (BARBOSA, 2019) 

Software Lingua-
gem 

Interface 
Gráfica 

Licença de Uso Características 

EEGLAB Matlab® Sim GNU General Public 
License 

Funções: 400  

Linhas de código: 50000 

Plataforma: Multi 

ERPLAB Matlab® Sim Creative Commons 
Attribution License 
(CC BY) 

Número de downloads do software: 
7000 

FIELDTRIP Matlab® Não GNU General Public 
License 

Plataforma: Multi 

Funções alto nível: 108 

Funções baixo nível: 858 

Linhas de código: 103227 

MNE-Python Python Não BSD licenced Linhas de Código em Python: 44000 

Linhas de comentário: 22000 

Documentação: 35% 

Está entre os mais bem documentado 
projetos Python 

PyEEG Python Não Open Source  

Brain Vision 
Analyser 

- Sim 100 euros por 2 
meses de teste 

Recursos facilmente expansíveis 
(MATLAB®) e compatíveis com outros 
software de análise (BESA) 
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Software Lingua-
gem 

Interface 
Gráfica 

Licença de Uso Características 

Brainstorm Matlab® Sim GNU General Public 
License 

Usuários registrados: > 20000 

EMEGS Matlab® Sim GNU General Public 
License 

Memória RAM necessária: > 2 GB 

Aceleradores gráficos são bem-vindos 
para montagem de visões 3D. 

BRAINVISA Python Sim  Plataforma: Multi 

Memória RAM: 2 Gb 

Espaço em disco: 1.5 Gb 

 

ELAN C Sim  Plataforma: Linux 

Memória RAM necessária: > 128 MB 

Memória RAM recomendada: 4 GB 

 

BIOSIG Matlab®/C Sim GNU General Public 
License 

 

ASA  Sim Paga Plataforma: Windows 

Processador (CPU): > 2.2 GHz 

Memória RAM: > 1024 MB 

Internet Explorer: > 6.0.26 

DirectX: > 9.0 c 

CARTOOL C++ Sim Gratuito para 
pesquisas sem fins 
lucrativos 

Plataforma: Windows 

Usuários cadastrados: 650 

Memória RAM recomendada: 8 GB 

Tela de resolução recomendada: 
1600x1200 pixels 

BEAPP Matlab® Sim GNU General Public 
License 

Rastreia a saída e os parâmetros de 
cada etapa da análise, permitindo a 
revisão de etapas anteriores ou a 
execução novamente de uma parte da 
análise com novos parâmetros quando 
necessário. 

Analise 
Geral 

50% 
Matlab®, 
22% 
Python, 

28% 
Outros 

78% 
Sim, 
22% Não 

 

71% Gratuito,  

15% Pago, 

14% Não 
especificado 

Apenas 36% especifica os 
requerimentos de sistema para 
utilização.  

21% Multiplataforma, 

15% Windows, 

7% Linux, 

57% Não especificado 

A análise dos software para processamento de EEG revela que metade deles 

são desenvolvidos em Matlab®, evidenciando a popularidade dessa plataforma entre 

pesquisadores e desenvolvedores. Além disso, a grande maioria 78% dos software 

oferece interfaces gráficas que facilitam a interação do usuário, e alguns permitem 

alternar entre uso via interface gráfica e linha de comando, ampliando a flexibilidade 

para diferentes perfis de usuário (BARBOSA, 2019). 

Outro dado importante é que 71% dessas ferramentas são gratuitas e de 

código aberto, o que promove um ambiente colaborativo e acessível para a 

comunidade científica, beneficiando especialmente o meio acadêmico 
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(COMBRISSON et al., 2017). Contudo, muitos desses software, embora abertos, 

dependem da plataforma proprietária Matlab® para sua execução. Além disso, apenas 

uma parte menor, cerca de 36%, fornece informações detalhadas sobre os requisitos 

computacionais necessários para sua operação, o que pode ser um obstáculo, visto 

que o processamento de dados de EEG frequentemente demanda recursos 

computacionais elevados, especialmente em estudos que envolvem grandes volumes 

de dados. 

Em relação à reprodutibilidade das análises, observa-se que ainda há 

limitações significativas devido à falta de padronização na documentação e 

compartilhamento dos códigos usados. Para mitigar isso, alguns software incluem 

registros detalhados dos parâmetros e operações realizadas, promovendo maior 

transparência e facilitando a replicação dos estudos (BARBOSA, 2019). Também é 

perceptível uma tendência crescente na utilização de software e dispositivos portáteis 

para monitoramento em tempo real, sobretudo em contextos de neurofeedback e 

interfaces cérebro-computador, favorecendo a usabilidade em ambientes extraclinicos 

e aumentando a aplicabilidade prática dessas tecnologias (BLUM et al., 2017). 

Diante do exposto, esta tese propõe a tradução do software de 

processamento de EEG desenvolvido pelo grupo de pesquisa do Professor Doutor 

João Batista Destro Filho, dedicado aos estudos de eletroencefalograma, para a 

linguagem Python, uma linguagem de programação de código aberto que permite uso 

e distribuição livres, sem custos associados. Tal mudança justifica-se pela substituição 

da versão corrente em uma plataforma computacional que possui algumas despesas. 

Além disso, baseado no levantamento dos software existentes, planeja-se a criação 

de uma interface gráfica integrada, visando facilitar a utilização da ferramenta por 

novos pesquisadores do grupo e ampliar seu potencial de aplicação. 

2.3 ESTIMULAÇÃO MUSICAL E NEUROCIÊNCIA 

A música está presente no cotidiano e possui o poder de influenciar os 

sentidos e os processos cognitivos. Grande parte desses estímulos são processados 

pelo córtex auditivo, desencadeando atividades cerebrais que vão desde a ativação 

da memória até a modulação do estado emocional, podendo gerar sensações como 
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alegria, amor, tristeza e angústia (MAGUIRE, 2012). Dessa forma, a música pode ser 

compreendida como uma combinação harmoniosa de sons, capaz de gerar 

experiências sensoriais significativas para o ser humano. 

Estudos como o de (MOORE, 2013) buscam compreender como a 

estimulação musical influencia as estruturas neurais envolvidas na regulação 

emocional, investigando suas possíveis implicações clínicas. Esses achados 

permitem identificar características musicais e experiências associadas a diferentes 

padrões de ativação neural, dependendo do contexto musical. Ao ouvir músicas 

preferidas ou familiares, cantar ou improvisar, observa-se um padrão específico de 

ativação. Por outro lado, quando a música introduz maior complexidade, dissonância 

ou eventos musicais inesperados, a ativação neural pode seguir um padrão distinto, 

refletindo diferentes mecanismos de regulação emocional. 

O EEG possibilita a associação entre o estado físico e mental do paciente 

durante o exame, com base na frequência das ondas cerebrais registradas pelos 

eletrodos. Ondas de baixa frequência (Delta: 0,5 – 3,5 Hz; Teta: 3,5 – 7,5 Hz; Alfa:  

7,5 – 12,5 Hz) estão associadas ao sono profundo e ao estado de vigília. Por outro 

lado, ondas de maior frequência (Beta: 12,5 – 30 Hz; Gama: 30 – 80 Hz; Supergama: 

80 – 120 Hz) estão relacionadas a atividades cognitivas, como percepção, atenção e 

memória (FREEMAN; QUIROGA, 2013). 

Com base em dados de EEG, diversos estudos investigam a relação entre a 

estimulação sonora e as faixas de frequência observadas nos exames de EEG. Por 

exemplo, o estudo de (CHEN; YAO; JIANG, 2017) identificou que a faixa de 20 a 35 

Hz (Beta e Gama) na região do córtex frontal apresentou destaque durante a audição 

de músicas e a imaginação musical. Essa mesma relação foi evidenciada no estudo 

de (WILL; BERG, 2007), que apontou que os efeitos de sincronização na faixa de 13 

a 44 Hz (Beta e Gama) influenciam funções cognitivas como aprendizagem e 

memória. 

O estudo de (MAITY et al., 2015) destacou a ativação das faixas Alfa e Teta 

na região frontal durante a estimulação musical com drones de tampura (instrumento 

de corda indiano), em comparação ao mesmo paciente sem estímulo musical.  

Da mesma forma, (TANDLE et al., 2016) enfatizou que a potência da faixa 

Teta no hemisfério esquerdo apresenta um comportamento distinto do hemisfério 
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direito durante a estimulação musical. Observou-se um aumento da atividade Teta em 

voluntários que apreciaram a música, evocando emoções positivas e/ou agradáveis, 

enquanto aqueles que não apreciaram a estimulação apresentaram uma redução 

nessa atividade. Além disso, (TSENG et al., 2013) também identificou um destaque 

na faixa Teta e apontou a assimetria na atividade Alfa ao longo da estimulação 

musical. 

Conforme (FOLGIERI; BERGOMI; CASTELLANI, 2014), a relação entre 

estímulos musicais agradáveis e desagradáveis e a atividade neural em diferentes 

regiões frontais apresenta padrões distintos. Os resultados indicaram que músicas 

classificadas como agradáveis apresentam maior relevância na região frontal 

esquerda, com predominância das faixas Teta e Gama em comparação às faixas Alfa 

e Beta. Em contrapartida, estímulos sonoros considerados desagradáveis mostraram 

maior ativação na região frontal direita, com destaque para as faixas Alfa e Beta, 

quando comparadas a Teta e Gama. 

Pesquisas como a de (KOELSCH, 2011) buscam identificar as áreas cerebrais 

envolvidas na percepção musical e na memória associada à música. No entanto, 

essas investigações enfrentam desafios significativos para obter dados conclusivos, 

evidenciando que essa ainda é uma temática em desenvolvimento, que demanda 

estudos mais aprofundados e fundamentação adicional. 

O que se evidencia em todos os estudos envolvendo música e EEG é que a 

atividade cerebral sofre alterações significativas durante a estimulação musical, 

refletindo padrões distintos no traçado do exame. Além disso, essas alterações podem 

se manifestar de maneira específica em diferentes regiões cerebrais, dependendo das 

características do estímulo aplicado. 

Dessa forma, a literatura revisada demonstra que a relação entre música e 

atividade neural é um campo de estudo promissor, mas ainda em desenvolvimento. 

Embora os avanços permitam identificar padrões de ativação cerebral associados à 

estimulação musical, os desafios metodológicos e a variabilidade individual dos 

participantes reforçam a necessidade de investigações mais aprofundadas e 

metodologias mais padronizadas.  

Esta tese investiga a análise dos sinais de EEG submetidos à estimulação 

musical, com o objetivo de comparar diferentes tipos de estímulos e identificar padrões 
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distinguíveis em suas respostas cerebrais. A continuidade dessas pesquisas é 

fundamental para aprofundar o entendimento dos efeitos da música sobre a atividade 

cerebral, contribuindo para avanços em áreas como neurociência, reabilitação e 

promoção do bem-estar. 

2.4 INTELIGÊNCIA ARTIFICIAL E EEG 

A inteligência artificial (IA) constitui um campo proeminente da ciência da 

computação, voltado ao desenvolvimento de sistemas capazes de desempenhar 

funções cognitivas complexas, abrangendo, entre outras, aprendizado, raciocínio, 

percepção, compreensão de linguagem natural e tomada de decisão. Esse campo tem 

encontrado ampla aplicação em diversas áreas, como saúde (BAJWA et al., 2021), 

finanças (RAMEZANI et al., 2023), transporte (WILBUR et al., 2023) e segurança 

(KOMMRUSCH, 2019), transformando a interação cotidiana com tecnologias 

(MARTINS, 2023). No núcleo desses avanços, destacam-se as redes neurais 

profundas e os modelos de aprendizado de máquina, que possibilitam a construção 

de soluções cada vez mais precisas e eficientes, capacitando sistemas a processar 

grandes volumes de dados e extrair informações relevantes de maneira autônoma 

(ORACLE, [s.d.]). 

No contexto da neurociência e da interação homem-máquina, a inteligência 

artificial (IA) exerce um papel crucial, sobretudo em sistemas de interface cérebro-

computador (BCI). Essas tecnologias viabilizam a conexão direta entre o cérebro 

humano e dispositivos externos por meio de sinais, como os obtidos pelo 

eletroencefalograma (EEG). Esse registro da atividade elétrica cerebral fornece uma 

fonte rica de dados para a aplicação de algoritmos de aprendizado profundo e outras 

abordagens de IA (GU et al., 2021). 

Os sinais de EEG caracterizam-se por desafios notáveis, como a elevada 

variabilidade interindividual, a susceptibilidade a ruídos e sua natureza não 

estacionária (KAMRUD; BORGHETTI; SCHUBERT KABBAN, 2021). Para contornar 

essas limitações, técnicas de inteligência artificial (IA), como redes neurais 

convolucionais (CNNs) e redes neurais recorrentes (RNNs), têm sido amplamente 

utilizadas (LAM; LUI, 2023). Esses métodos possibilitam a identificação de padrões 
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relevantes, aprimorando o desempenho em tarefas como a classificação de emoções, 

a detecção de imaginação motora e a previsão de prognósticos clínicos (CARNEIRO 

et al., 2023; LAM; LUI, 2023; QIAN et al., 2022; YAO et al., 2024). 

Adicionalmente, algumas aplicações de IA têm integrado sinais de 

eletroencefalograma (EEG) a outros dados fisiológicos, como a resposta galvânica da 

pele e os batimentos cardíacos, em abordagens multimodais. Essas integrações 

contribuem para o desenvolvimento de sistemas mais robustos, com aplicações em 

saúde, entretenimento e neurociência (FU et al., 2022). Por exemplo, no âmbito da 

avaliação emocional, estudos demonstraram que a combinação de EEG com sinais 

periféricos permite identificar estados afetivos com maior precisão, resultando em 

classificações mais acuradas (BALDO JÚNIOR, 2023; FU et al., 2022). 

A inteligência artificial (IA) segue transformando o campo das BCI, expandindo 

as possibilidades de interação entre humanos e máquinas. Desde o controle de 

dispositivos por indivíduos com deficiências motoras até o diagnóstico de condições 

neurológicas, a IA oferece soluções inovadoras que redefinem a integração entre 

tecnologia e saúde (WILLETT et al., 2023; ZHANG et al., 2024). 

Entre as inovações mais marcantes no campo da IA destaca-se o surgimento 

dos modelos baseados em Transformers. Introduzidos por (VASWANI et al., 2017) no 

artigo “Attention is All You Need”, publicado pela equipe do Google Research, os 

Transformers revolucionaram o processamento de linguagem natural (NLP, na sigla 

em inglês) ao propor um mecanismo de atenção que captura eficientemente relações 

de longo alcance em sequências de dados. Diferentemente das arquiteturas 

tradicionais, como redes neurais recorrentes (RNNs) e convolucionais (CNNs), que 

processam sequências de forma iterativa ou local, os Transformers utilizam 

exclusivamente o mecanismo de atenção, possibilitando o processamento paralelo 

dos dados e alcançando maior eficiência computacional (VASWANI et al., 2017). 

A arquitetura dos Transformers constitui a base de modelos amplamente 

reconhecidos, como o GPT (Generative Pre-trained Transformer) e o BERT 

(Bidirectional Encoder Representations from Transformers), e tem sido aplicada em 

áreas além do processamento de linguagem natural (NLP), como visão 

computacional, biologia computacional e, mais recentemente, o desenvolvimento de 

sistemas multimodais. Sua capacidade de processar grandes volumes de dados e de 
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se adaptar a diferentes tipos de tarefas a posiciona como uma das tecnologias mais 

promissoras no campo da IA (ISLAM et al., 2023). 

A principal inovação dos Transformers reside em sua capacidade de 

processar dados paralelamente, diferentemente do processamento sequencial 

característico das redes neurais recorrentes (RNNs) (VASWANI et al., 2017). Esse 

avanço proporciona ganhos expressivos em eficiência computacional, especialmente 

em aplicações que demandam o manejo de grandes volumes de dados, como o 

processamento de linguagem natural (NLP) e a análise de sinais cerebrais. Na análise 

de EEG, essa característica permite que os Transformers integrem informações 

temporais e espaciais de forma eficiente, aprimorando a precisão das classificações 

em tarefas complexas (YAO et al., 2024). 

Recentemente, os Transformers têm sido adaptados para tarefas específicas 

na análise de EEG, como o reconhecimento de emoções e a classificação de 

imaginação motora. Modelos como o EEGformer integram convoluções 

unidimensionais (1D-CNNs) para extrair características locais com camadas de 

Transformer que capturam dependências globais, alcançando resultados superiores 

em comparação com outras arquiteturas de aprendizado profundo (WAN et al., 2023). 

Além disso, arquiteturas híbridas que integram Transformers a redes neurais 

convolucionais (CNNs) têm se revelado promissoras. Estudos recentes, por exemplo, 

empregaram Transformers para detectar padrões complexos em sinais de EEG, 

utilizando mecanismos de atenção que destacam regiões cerebrais relevantes 

enquanto mantêm as características temporais do sinal (LIU et al., 2024; LU; MA; TAN, 

2023). Essas abordagens têm sido aplicadas com êxito em áreas como diagnóstico 

clínico, reconhecimento de emoções e controle de dispositivos assistivos. 

Em síntese, os Transformers revolucionaram o aprendizado profundo ao 

estabelecer um novo paradigma para a análise de dados sequenciais e espaciais. Sua 

flexibilidade e eficiência o consolida como uma ferramenta essencial em aplicações 

que abrangem desde a neurociência até a inteligência artificial geral. Contudo, sua 

utilização na análise de EEG permanece pouco explorada, sobretudo em tarefas 

voltadas à avaliação de pacientes em coma. 

Nesta tese, explorou-se a aplicação de diversos modelos de inteligência 

artificial (IA) ao treinamento de bases de dados de EEG, com o objetivo de aprimorar 
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a análise e interpretação dos sinais cerebrais. Para tanto, empregou-se arquiteturas 

de aprendizado profundo como redes neurais convolucionais (CNNs), redes de 

memória de longo curto prazo (LSTMs), perceptrons multicamadas (MLPs) e 

Transformers, além de modelos híbridos. Essa seleção diversificada visa avaliar 

sistematicamente o desempenho em diferentes tarefas, que incluem o prognóstico 

clínico, a identificação da etiologia do coma e a análise da resposta à estimulação 

musical. 
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CAPÍTULO 3 - PROCESSAMENTO DO EEG 

O processamento do EEG é uma etapa fundamental para a extração de 

informações relevantes a partir dos sinais cerebrais. Esse processo envolve 

diversas técnicas, como filtragem, segmentação, extração de características e 

análise estatística, possibilitando a interpretação e a aplicação dos dados em 

diferentes contextos científicos e clínicos.  

Neste capítulo, será apresentado o funcionamento do software de 

processamento de EEG, destacando sua implementação tanto na plataforma 

computacional corrente, quanto em sua versão transcrita para Python. A 

transcrição do código visa proporcionar maior acessibilidade e flexibilidade, uma 

vez que o Python é uma linguagem de código aberto amplamente utilizada na 

comunidade científica. A seguir, serão descritos os principais aspectos do 

processamento, comparando as abordagens adotadas em cada linguagem e suas 

respectivas funcionalidades. 

3.1 MATERIAIS E MÉTODOS 

Esta seção apresenta e descreve as tecnologias e metodologias 

empregadas no processamento do EEG, destacando os recursos utilizados para 

a implementação do software na plataforma computacional e em linguagem 

Python. Serão abordadas as ferramentas computacionais, bibliotecas e algoritmos 

empregados, bem como os critérios adotados para a extração, filtragem e análise 

dos sinais cerebrais. 

A seguir, são detalhados os materiais utilizados e os procedimentos 

metodológicos aplicados no desenvolvimento deste estudo. 

3.1.1 Tecnologias utilizadas 

Para a implementação e processamento dos sinais de EEG, diversas 

tecnologias foram empregadas ao longo do desenvolvimento deste estudo. Estas 

ferramentas foram selecionadas com base em sua eficiência, compatibilidade e 
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relevância científica, permitindo um fluxo de trabalho organizado e reprodutível. A 

seguir, são apresentadas as principais tecnologias utilizadas, juntamente com suas 

funções e aplicações dentro do projeto. 

3.1.1.1 GIT 

O GIT é um sistema de controle de versão distribuído que facilita o 

gerenciamento de arquivos e o rastreamento de alterações, registrando cada 

modificação realizada no projeto. Sua utilização permite que múltiplos 

desenvolvedores trabalhem simultaneamente no mesmo conjunto de arquivos, 

evitando o risco de sobrescrita de alterações e garantindo a integridade do código 

(SCHMITZ, 2015). 

Uma das principais funcionalidades do GIT é a criação de branches, que 

consistem em cópias do projeto em um determinado estado. Essas ramificações 

permitem o desenvolvimento de novas funcionalidades de forma paralela à evolução 

do projeto principal, sem interferir diretamente na versão estável. Somente após 

serem testadas e validadas, as novas implementações são integradas novamente ao 

projeto principal, garantindo maior segurança e organização no desenvolvimento 

(SCHMITZ, 2015). 

O versionamento de arquivos GIT segue um conjunto abrangente de regras, 

garantindo controle e organização no desenvolvimento de projetos. Diversas 

empresas adotam essas diretrizes e oferecem serviços baseados em GIT, como o 

Bitbucket e o GitHub, que permitem o armazenamento, a colaboração e o 

gerenciamento remoto de repositórios de código. 

Mantido pela Atlassian, o Bitbucket oferece suporte a um número ilimitado de 

repositórios privados, sendo gratuito para equipes pequenas de até cinco 

desenvolvedores. Para equipes maiores ou em expansão, há planos pagos, como o 

Padrão (US$ 3 por usuário/mês) e o Premium (US$ 6 por usuário/mês) (BITBUCKET, 

2021). 

Adquirido pela Microsoft, o GitHub é uma das plataformas de controle de 

versão mais populares, oferecendo suporte a repositórios públicos e privados. O 

serviço é gratuito para usuários individuais e pequenas equipes, permitindo a criação 

de repositórios privados sem custo. Para equipes maiores ou com demandas 
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corporativas, o GitHub disponibiliza planos pagos, como o Team (US$ 4 por 

usuário/mês) e o Enterprise (US$ 21 por usuário/mês), que oferecem recursos 

adicionais de segurança e gerenciamento (GITHUB, 2024). 

Para garantir o versionamento e a rastreabilidade das diferentes versões do 

código-fonte, o GIT foi empregado ao longo do desenvolvimento deste projeto. A 

ferramenta permitiu o controle eficiente das modificações, possibilitando a 

organização das alterações, o acompanhamento da evolução do software e a 

colaboração entre diferentes versões. Além disso, o uso de repositórios remotos, 

como GitHub e Bitbucket, proporcionou maior segurança no armazenamento do 

código e facilitou a recuperação de versões anteriores quando necessário. 

3.1.1.2 Plataforma computacional 

A plataforma computacional é um ambiente interativo de computação 

científica, utilizado para cálculo numérico, processamento de sinais e visualização de 

dados. Sua popularidade deve-se, em grande parte, à sua capacidade otimizada para 

manipulação de matrizes e vetores, facilitando a implementação de algoritmos 

complexos e a análise de dados em diversas áreas, como engenharia, neurociência e 

aprendizado de máquina. Além disso, a plataforma computacional oferece uma ampla 

variedade de ferramentas e bibliotecas especializadas, que permitem a execução 

eficiente de simulações, modelagem matemática e processamento avançado de 

sinais. 

3.1.1.3 Python 

O Python é uma linguagem de programação de alto nível, amplamente adotada para 

análises e processamento de dados, estando em constante evolução e 

aprimoramento. Atualmente, é considerada uma das principais ferramentas para 

ciência de dados, aprendizado de máquina, computação científica e desenvolvimento 

de software (GRAMFORT et al., 2013). Sua versatilidade permite sua aplicação em 

diversas áreas, sendo utilizada em diferentes tipos de software, desde sistemas 

embarcados até plataformas avançadas de inteligência artificial. 
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3.1.1.4 CSV 

O CSV (Comma-Separated Values – Valores Separados por Vírgula) é um 

formato de arquivo amplamente utilizado para armazenar e organizar dados de forma 

tabular. Esse tipo de arquivo pode ser criado ou editado em software como Microsoft 

Excel ou em qualquer editor de texto, pois trata-se de um arquivo de texto simples, 

onde os valores são separados por vírgulas (ou, em algumas configurações, por ponto 

e vírgula). Cada vírgula representa uma separação entre colunas, permitindo que os 

dados sejam interpretados corretamente por diferentes programas e linguagens de 

programação (MICROSOFT, [s.d.]). 

3.1.2 Metodologia 

Dando continuidade ao projeto desenvolvido na dissertação de mestrado 

(BARBOSA, 2019), iniciou-se um levantamento de linguagens de programação que 

atendessem a dois critérios essenciais: serem de código aberto (open source) ou não 

exigirem o pagamento de licença de uso. Além disso, a escolha da linguagem levou 

em consideração a familiaridade do grupo de pesquisa do Professor Doutor João 

Batista Destro Filho, dedicado aos estudos de eletroencefalograma, de modo a facilitar 

a implementação e manutenção do código. 

Entre as linguagens analisadas, destacaram-se Python, Octave e Scilab. A 

opção pelo Python foi motivada por dois fatores principais: a expertise prévia do 

coorientador da tese nessa linguagem e a adoção crescente do Python pelo grupo de 

pesquisa, que já vinha desenvolvendo outros projetos utilizando essa tecnologia. 

Após a definição da linguagem, foi realizado um estudo aprofundado sobre 

suas melhores práticas e sintaxe, com base em documentação oficial, materiais 

didáticos, vídeos educacionais e cursos especializados na plataforma Alura 

(plataforma de cursos online). Esse estudo teve como objetivo garantir uma 

implementação estruturada, padronizada e alinhada com as diretrizes mais eficientes 

para desenvolvimento em Python. 

Concluída essa etapa, foi realizada a transcrição do software original, 

previamente implementado na plataforma computacional, para Python. Essa 

conversão mostrou-se necessária devido às restrições da plataforma computacional, 
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que limitavam tanto o acesso quanto a reprodutibilidade do software original dentro do 

grupo de pesquisa. A adoção do Python, por ser uma linguagem de código aberto e 

amplamente utilizada na comunidade científica, proporcionou maior acessibilidade, 

flexibilidade e escalabilidade ao projeto. 

Para assegurar a confiabilidade e robustez do código transcrito, foi 

desenvolvida uma suíte de testes unitários, um processo essencial para a validação 

automatizada das funcionalidades implementadas. Os testes unitários têm como 

principal objetivo verificar individualmente cada módulo ou função do código, 

garantindo que operem corretamente de forma isolada antes de serem integrados ao 

sistema completo. 

A aplicação dessa metodologia foi fundamental para identificar rapidamente 

eventuais falhas, assegurar a equivalência entre as versões do software original e 

Python, garantindo a reprodutibilidade dos resultados. Além disso, a implementação 

dos testes unitários permitiu um desenvolvimento mais seguro e eficiente, reduzindo 

a ocorrência de erros sistêmicos e facilitando manutenções futuras no código. 

A transcrição preservou a lógica e a funcionalidade do software original, 

mantendo-se alinhada à proposta apresentada na dissertação de mestrado 

(BARBOSA, 2019). O fluxo de processamento pode ser descrito da seguinte forma: 

1. O software recebe um arquivo no formato .CSV, contendo os parâmetros de 

entrada para o processamento de cada EEG. 

2. Para cada linha do arquivo CSV (correspondente a um EEG), o sistema executa 

as rotinas definidas e gera um arquivo de saída, contendo os quantificadores 

extraídos e/ou calculados. 

Essa abordagem visa garantir acessibilidade, flexibilidade e reprodutibilidade 

na análise de EEG, ampliando a aplicabilidade do software para diferentes contextos 

de pesquisa. 

3.2 SOFTWARE NA PLATAFORMA COMPUTACIONAL 

O software desenvolvido na plataforma computacional tem sua 

implementação fundamentada no trabalho apresentado na dissertação de mestrado 
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de (BARBOSA, 2019), na qual foi originalmente concebido. Nesse trabalho, o software 

foi projetado para o processamento de sinais de EEG, permitindo a extração e análise 

de quantificadores específicos a partir dos dados registrados. Sua estrutura segue 

uma organização modular, garantindo maior reprodutibilidade e escalabilidade. 

Nessa dissertação, todo o código-fonte foi versionado e armazenado em um 

repositório privado no Bitbucket, acessível exclusivamente pelos desenvolvedores do 

grupo de pesquisa do Professor Doutor João Batista Destro Filho. Esse controle de 

versão permite o rastreamento das alterações, assegurando a organização, 

segurança e integridade do desenvolvimento do software. 

A documentação detalhada das funções desenvolvidas no software pode ser 

encontrada no APÊNDICE A, onde cada função é descrita em termos de sua 

finalidade, parâmetros de entrada e saída, além de seu papel no processamento dos 

sinais de EEG. Complementarmente, no APÊNDICE B, está o detalhamento completo 

das variáveis geradas durante a execução do software, incluindo suas definições e 

formatos. 

3.3 EVOLUÇÃO DO SOFTWARE NA PLATAFORMA COMPUTACIONAL 

No início deste trabalho, foi solicitado pelos membros do grupo de pesquisa 

do Professor Doutor João Batista Destro Filho o aprimoramento do software de 

processamento de sinais, com o objetivo de agregar novas funcionalidades e 

simplificar o processamento dos EEGs pela equipe. As melhorias realizadas buscaram 

atender às necessidades específicas do grupo, otimizando tanto a eficiência quanto a 

usabilidade da ferramenta. A seguir, são detalhadas as principais modificações 

implementadas. 

3.3.1 Remoção de colunas do arquivo .CSV de entrada 

Durante o processo de melhorias no software de processamento, uma das 

alterações realizadas foi a remoção de colunas específicas do arquivo de entrada no 

formato .CSV. Essa modificação visou simplificar a estrutura do arquivo e garantir que 

os dados processados fossem estritamente os necessários para as análises. As 

colunas removidas, bem como suas respectivas descrições, estão listadas abaixo: 



55 

• Coluna N (Qtd Ruidosos): Quantidade de canais ruidosos indicado 

pelo médico; 

• Coluna O a Q (Canal ruidoso X): Nome do canal ruidoso informado 

pelo médico, podendo ser: FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, 

C4, T4, T5, P3, PZ, P4, T6, O1, OZ, O2; 

• Coluna R (Normal/Coma): Se o valor "Normal" for encontrado nesta 

coluna, o filtro passa baixa será ajustado para 100 Hz; caso o valor seja 

"COMA", o filtro será ajustado para 30 Hz; e 

• Coluna S (Filtro): Filtro passa baixa. 

3.3.2 Adição das seguintes colunas do arquivo .CSV de entrada 

Como parte das melhorias implementadas no software, foram adicionadas 

novas colunas ao arquivo .CSV de entrada, com o objetivo de expandir as 

funcionalidades e permitir maior flexibilidade no processamento dos sinais EEG. A 

descrição das colunas introduzidas, juntamente com suas respectivas funções, é 

apresentada a seguir: 

• Coluna B (Função Filtro): Define o nome da função responsável pelo filtro 

do sinal; 

o Essa função deve estar localizada no mesmo diretório que os 

arquivos de script da plataforma computacional utilizados para processar 

os PLGs. O nome do arquivo deve ser idêntico ao da função; 

o A função deve obrigatoriamente receber uma matriz de 

dimensões (𝑋 × 𝑌) como entrada e retornar o sinal filtrado com dimensões 

(𝑋1 × 𝑌1). 

• Coluna C (Limiar de erro): Indica o limiar de erro aceitável para 

determinar se um canal será zerado. O valor padrão é 0.7; 

o Utiliza-se o ponto, e não a vírgula, para números decimais;  

o Os valores representam: 

▪ 0 representa 0%; 

▪ 0.5 representa 50%; e 

▪ 1 representa 100%. 
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o Um canal é considerado ruidoso se o valor máximo da potência 

na faixa de ruído (58 a 62 Hz) ultrapassar o Limiar de erro (errorThreshold) 

em relação à potência máxima da faixa do sinal. 

• Coluna P (Medico Canais Ruidosos): Lista os canais ruidosos 

identificados pelo médico. Exames com mais de 3 canais ruidosos deverão 

ser descartados; 

o Os canais devem ser separados por vírgula. Exemplo: 

FP1,FP2,F7,F3,FZ,F4,F8,T3,C3,CZ,C4,T4,T5,P3,PZ,P4,T6,O1,OZ,O2. 

• Coluna Q (Filtro Passa Baixa): Define a frequência máxima de 

processamento do exame em Hertz; 

o Valor padrão: 100 Hz para indivíduos saudáveis; 

o Recomenda-se 35 Hz para exames realizados na Unidade de 

Terapia Intensiva (UTI). 

• Coluna R (Quantificadores): Determina os quantificadores a serem 

calculados ou processados (PCP, FM, COERENCIA, PSNG, PSNE, VPN, 

TODOS); 

o Os valores devem ser separados por vírgula. Se a palavra 

"TODOS" estiver presente, todos os quantificadores serão processados 

• Coluna S (Parametros): Especifica os parâmetros para o cálculo dos 

quantificadores. Deve-se usar o formato nome do parâmetro seguido do 

operador de igual e posteriormente o valor que se deseja que ele assuma, 

como no exemplo: 

o taumax=300; 

o Valor padrão: 𝑡𝑎𝑢𝑚𝑎𝑥 = 𝑓𝑖𝑥(1.67 ∗ 𝑓𝑎); 

o Atenção: o software diferencia maiúsculas e minúsculas, sendo 

essencial respeitar o padrão indicado. 

• Coluna T (Canais a Processar): Define os canais utilizados no cálculo 

dos quantificadores.  

o Devem ser separados por vírgula. Exemplo: 

FP1,F8,T3,C3,CZ,T4,T5,OZ,O2; 

o Caso nenhum canal seja informado, o sistema utilizará os 

seguintes canais presentes: FP1,FP2,F7,F3,FZ,F4,F8,T3,C3, 

CZ,C4,T4,T5,P3,PZ,P4,T6,O1,OZ,O2. 
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3.3.3 Alteração de ordem de coluna 

Em continuidade às adaptações realizadas no software, foi necessária a 

reorganização da ordem de determinadas colunas no arquivo .CSV de entrada. Com 

essas mudanças, a coluna 'Nome Saida' passou a ocupar a última posição, 

identificada como Coluna V, enquanto o campo 'Gerar Excel' foi reposicionado para a 

penúltima posição, agora definida como Coluna U. Essas alterações promovem uma 

estruturação mais lógica e funcional dos dados. 

3.3.4 Customização da coluna “QTD EPOCAS” 

A coluna “QTD EPOCAS” foi customizada para permitir maior flexibilidade no 

processamento dos sinais EEG. Quando esta coluna apresentar o conteúdo 

𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐼𝐴𝐿 = 𝑋, onde 𝑋 é um número inteiro, o software utilizará os dados 

presentes no campo 𝐸𝑝1 para gerar 𝑋 épocas. Neste contexto, uma época é definida 

como um segmento contínuo do sinal EEG, delimitado por um intervalo de tempo 

específico, geralmente utilizado para análise de eventos ou estímulos. Essas épocas 

serão criadas com base no tempo especificado no referido campo e terão uma 

duração equivalente ao valor definido na coluna D. 

3.3.5 Considerações 

As alterações priorizaram a reorganização estrutural e a inserção de novas 

colunas no arquivo CSV de entrada. Embora essas mudanças tenham sido 

significativas, as funcionalidades essenciais do software original foram preservadas, 

enquanto as personalizações oriundas das novas colunas incrementaram sua 

flexibilidade operacional e aplicabilidade clínica (ver APÊNDICE E). 

Como produto complementar, desenvolveu-se um manual de operação 

detalhado para orientar usuários no processamento de exames EEG com a evolução 

do software original. Para validação, foi conduzido um teste de regressão rigoroso, 

comparando 100 exames do grupo controle (indivíduos saudáveis) com 100 exames 

de pacientes com condições neurológicas, ambos analisados nas versões original e 

aprimorada do software. Os achados demonstraram consistência nos resultados 

mesmo após as modificações, confirmando a estabilidade do software. 
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3.4 SOFTWARE EM PYTHON 

O processamento de sinais EEG é uma área complexa na neurociência, 

permitindo a análise detalhada da atividade cerebral. Com o objetivo de expandir a 

acessibilidade e a flexibilidade dessas análises, o software original desenvolvido na 

plataforma computacional foi traduzido para Python. Essa migração aproveita as 

vantagens do Python, como sua ampla comunidade de desenvolvedores, bibliotecas 

avançadas para processamento de dados (como NumPy e SciPy), e a capacidade de 

integração com outras ferramentas científicas. 

A escolha do Python para essa tradução foi motivada pela sua eficiência em 

lidar com grandes conjuntos de dados, além de sua facilidade de uso e manutenção. 

Além disso, o Python permite uma maior interoperabilidade com outras linguagens e 

plataformas, facilitando a colaboração entre pesquisadores de diferentes áreas. Neste 

item, detalhamos o processo de desenvolvimento do software em Python, destacando 

as principais características, desafios enfrentados e soluções implementadas durante 

a tradução. 

3.4.1 Versionamento 

Para garantir a consistência e a rastreabilidade das modificações realizadas 

durante a tradução do software original da plataforma computacional para Python, foi 

adotado um esquema de versionamento compatível com o utilizado no projeto original. 

Uma pasta intitulada "Python" foi criada dentro do projeto, contendo todos os códigos 

relacionados à transcrição para Python. Este esquema permite que as atualizações e 

melhorias sejam facilmente identificadas e gerenciadas, mantendo a integridade do 

desenvolvimento do software. 

3.4.2 Detalhes da Implementação 

A adoção do paradigma de programação orientada a objetos (POO) foi uma 

decisão consciente do autor, motivada pela familiaridade e experiência prévia com 

essa abordagem. A escolha do POO foi guiada pela necessidade de garantir 

modularidade e extensibilidade no desenvolvimento do software em Python, aspectos 

essenciais para um sistema que requer flexibilidade e manutenção contínua. 
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A decisão de utilizar o POO foi justificada por várias razões: 

• Encapsulamento e Modularidade: O POO permite encapsular dados e 

comportamentos relacionados em unidades lógicas (classes), facilitando a 

organização do código e a manutenção futura. Isso foi crucial para o 

desenvolvimento de um sistema que lida com dados complexos de EEG, onde a 

clareza e a estruturação são fundamentais; 

• Extensibilidade: A capacidade de criar classes que podem ser facilmente 

estendidas ou modificadas foi essencial para permitir a inclusão de novas 

funcionalidades sem comprometer a estabilidade do sistema existente. Isso foi 

particularmente importante, pois o software precisava ser adaptável a diferentes 

tipos de análises e processamentos de sinais EEG; 

• Reutilização de Código: O POO facilita a reutilização de código, uma vez que as 

classes podem ser compartilhadas entre diferentes partes do sistema ou até 

mesmo em outros projetos. Essa característica foi vital para otimizar o 

desenvolvimento, reduzindo o tempo e o esforço necessários para implementar 

funcionalidades semelhantes; 

• Legibilidade e Manutenção: A estruturação do código em classes e objetos 

melhora significativamente a legibilidade, tornando mais fácil para outros 

desenvolvedores entenderem e contribuírem para o projeto. Além disso, a 

modularidade facilita a identificação e correção de erros, reduzindo o tempo de 

manutenção. 

Foram desenvolvidas duas classes principais, EegRecord e Epoch, com 

papéis complementares no processamento dos dados de EEG. Essas classes foram 

projetadas para mapear os exames e gerenciar as épocas do sinal, aproveitando 

plenamente os princípios da Programação Orientada a Objetos (POO), o que 

assegura um sistema robusto, flexível e escalável. 

• EegRecord: responsável pelo mapeamento do exame de EEG. Seu 

diagrama de classe é apresentado na Figura 3; 

• Epoch: encarregada de gerenciar as épocas do exame de EEG, com seu 

diagrama de classe ilustrado na Figura 4. 
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Figura 3 - Diagrama de Classe EegRecord 

 

Figura 4 - Diagrama de Classe Epoch 

Nota-se que essas duas classes refletem, em essência, as mesmas 

funcionalidades presentes no software na plataforma computacional. Para validar sua 

implementação, foram desenvolvidas duas suítes de testes correspondentes, uma 

para cada classe: 
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• EegRecordTest: suíte de testes destinada à classe EegRecord, cujo 

diagrama de classe é apresentado na Figura 5; 

• EpochTest: suíte de testes associada à classe Epoch, com seu diagrama 

de classe ilustrado na Figura 6. 

 

Figura 5 - Diagrama de Classe EegRecordTest 

 

Figura 6 - Diagrama de Classe EpochTest 

Os testes foram desenvolvidos com dados significativamente menores do que 

aqueles encontrados na prática, uma escolha intencional devido à simplicidade 

desejada para os testes unitários. O uso de dados excessivamente volumosos tornaria 

a comparação dos resultados demasiadamente extensa e complexa. Assim, foi criada 

uma unidade de teste adicional, dedicada à comparação entre os resultados gerados 
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em Python e aqueles obtidos com o software original na plataforma computacional, os 

quais serão detalhados na sequência. 

3.4.3 Interface gráfica 

A criação de uma interface gráfica visou facilitar o uso do software de 

processamento de EEG, especialmente para usuários que não possuem 

conhecimentos avançados em programação. Para isso, foi utilizada a biblioteca 

Tkinter, padrão do Python para desenvolvimento de interfaces gráficas, compatível 

com os principais sistemas operacionais, como Windows, Linux e MacOS. A interface 

permite que o usuário execute funcionalidades complexas do software por meio de 

uma plataforma visual intuitiva, eliminando a necessidade de lidar diretamente com o 

prompt de comandos ou instalar manualmente as dependências, etapas que 

costumam ser desafiadoras para iniciantes. 

Dessa forma, a interface apresenta um ponto de entrada acessível, onde 

basta executar um arquivo para que a janela principal seja exibida, disponibilizando 

menus e opções organizados para conduzir o usuário durante o processamento dos 

dados. Essa abordagem não só torna o software mais amigável para novos 

pesquisadores do grupo, como também contribui para a padronização e repetibilidade 

das análises realizadas, potencializando a disseminação e o uso da ferramenta em 

diferentes contextos. 

Para facilitar a utilização, a interface gráfica foi projetada para ser executada 

por meio de um arquivo executável único, que abre diretamente a janela principal do 

software, conforme ilustrado na Figura 7. Essa janela dispõe dos seguintes menus: 

• Processar EEG (arquivo .CSV): permite ao usuário selecionar um arquivo 

no formato .CSV, conforme especificado anteriormente, para o 

processamento dos dados de EEG; 

• Topografia: oferece a possibilidade de inserir um vetor contendo 20 

números reais, que serão utilizados para gerar mapas topográficos da 

atividade cerebral; 

• Change Theme!: possibilita ao usuário alterar o tema visual da interface 

gráfica, modificando as cores e proporcionando uma experiência 

personalizada durante o uso. 
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Figura 7 - Tela inicial da interface gráfica do software em python 

Ao selecionar o primeiro menu, é exibida a tela ilustrada na Figura 8. Nesta 

interface, o usuário pode escolher o arquivo .CSV para processamento clicando no 

botão “Select” ou digitando o caminho do arquivo no campo “File:”. Em seguida, o 

processamento é iniciado ao clicar no botão “Process” e os detalhes do 

processamento são exibidos em tempo real na área “Logs”. Ao término do processo, 

um modal informa o sucesso da operação, conforme mostrado na Figura 9, enquanto 

uma mensagem de erro é exibida em caso de falha, ilustrada na Figura 10. 
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Figura 8 - Tela de processamento do EEG 

 

Figura 9 - Tela de sucesso do processamento 

 

 

Figura 10 - Tela de falha do processamento 
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Já o menu "Topografia" abre a janela ilustrada na Figura 11, onde o usuário 

pode inserir os dados em formato de vetor contendo 20 posições. Ao clicar no botão 

"Preencher", os valores correspondentes aos eletrodos localizados no lado esquerdo 

da tela são automaticamente preenchidos. Em seguida, ao acionar o botão 

"Generate", situado no canto inferior esquerdo, a topografia é gerada e exibida no 

centro da tela. Caso o usuário deseje customizar ou realçar a imagem, pode selecionar 

um dos padrões de cores disponíveis no menu "Colors", que utiliza esquemas já 

estabelecidos pela linguagem Python para destacar diferentes efeitos visuais. Por fim, 

há um checkbox no canto inferior direito que permite ativar ou desativar a exibição da 

escala na topografia. 

 

Figura 11 - Tela para geração topográfica 

Por fim, o menu "Change Theme!" permite ao usuário alternar a interface 

gráfica para um tema escuro (dark mode), conforme ilustrado na Figura 12. O modo 

escuro reduz a emissão de luz da tela, proporcionando maior conforto visual em 

ambientes com pouca iluminação e minimizando a fadiga ocular durante o uso 
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prolongado. Além disso, o tema dark traz uma estética mais moderna e sofisticada à 

interface, aprimorando a experiência do usuário. 

 

Figura 12 - Tela com alteração de tema da interface gráfica 

Assim, a interface gráfica representa um diferencial para o software de 

processamento de EEG desenvolvido em Python pelo grupo de pesquisa, uma vez 

que simplifica a interação do usuário com a ferramenta. Com a interface, torna-se 

possível adequar o uso do software para pesquisadores com diferentes níveis de 

conhecimento em programação, eliminando barreiras técnicas e proporcionando uma 

experiência mais intuitiva e eficaz. Essa facilidade de uso contribui não só para ampliar 

o acesso às análises de EEG, mas também para aumentar a produtividade e a 

confiabilidade dos resultados obtidos. 
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3.5 TESTES DE REGRESSÃO PARA COMPARAÇÃO ENTRE O 

SOFTWARE ORIGINAL E A VERSÃO EM PYTHON 

Para realizar os testes de regressão, optou-se pela plataforma computacional, 

uma vez que a versão do software descrita na dissertação de (BARBOSA, 2019) já 

continha códigos para comparação entre versões, permitindo o reaproveitamento 

parcial desse material. O teste de regressão empregado consistiu na comparação do 

comportamento e dos resultados gerados pelo software original e pela versão em 

Python, assegurando que esta última não introduziu falhas em funcionalidades já 

validadas (BASTOS et al., 2012). Esse tipo de teste é amplamente utilizado no 

desenvolvimento de software para garantir a integridade e consistência dos resultados 

após alterações no código. Nesse contexto, gerou-se, em Python, um arquivo no 

formato da plataforma computacional por meio de bibliotecas existentes, que foi 

posteriormente importado pela plataforma computacional.  

Devido a particularidades do arquivo produzido em Python, foram necessárias 

algumas adaptações antes de executar a rotina de comparação previamente 

elaborada. Para avaliar os resultados gerados por ambos os software (original e em 

Python), utilizou-se uma função de cálculo do erro relativo, desenvolvida 

anteriormente e expressa na Equação 6. 

 
𝑬𝒓𝒓 =  |

𝑽𝒄𝒂𝒍𝒄 −  𝑽𝒆𝒔𝒑𝒆𝒓

𝑽𝒆𝒔𝒑𝒆𝒓
| (6) 

Onde: 

Err - Erro relativo. 

Vcalc - Valor calculado 

Vesper - Valor esperado 

 

As variáveis geradas pelos software e comparadas foram: PCP, FM e 

COR_PairsOfElectrodes, as quais já foram descritas anteriormente. 
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3.6 RESULTADOS 

Esta seção apresenta os resultados obtidos a partir do processamento e da 

análise dos dados de EEG, com foco na validação do software Python em comparação 

com o software original na plataforma computacional. Os experimentos realizados 

buscaram avaliar a consistência das saídas geradas por ambos os software, bem 

como identificar eventuais discrepâncias decorrentes da transcrição do código. Os 

detalhes do processamento, incluindo as revisões realizadas e os exames utilizados, 

são descritos nas subseções a seguir. 

3.6.1 Processamento dos PLGs 

Durante a transcrição do código, foi conduzida uma revisão tanto teórica 

quanto prática das rotinas previamente desenvolvidas, o que permitiu identificar um 

erro no cálculo da função de autocorrelação programada, especificamente no 

processo de normalização dos resultados.  

Para verificar se o software transcrito em Python produzia resultados idênticos 

aos da versão original, foram selecionados 10 exames de EEG, coletados seguindo o 

padrão 10-20 de montagem dos eletrodos. Esses exames foram processados por 

ambos os software (original e em Python), sendo cinco referentes a indivíduos 

saudáveis e cinco a pacientes com condições neurológicas. 

Para a comparação dos tempos de execução das etapas de processamento 

do software, foi utilizado um notebook Itautec InfoWay, modelo W7545, equipado com 

o sistema operacional Windows 10, processador Intel Core i3-2350M de 2,30 GHz e 

8 GB de memória RAM.  

A Figura 13 apresenta a comparação dos tempos de processamento para 

cada etapa. Devido a uma significativa discrepância, as etapas de pré-processamento 

e processamento foram separadas e detalhadas na Figura 14. 
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Figura 13 - Tempo de processamento em todas as etapas analisadas. 

 

Figura 14 - Etapa de Pré-Processamento e Processamento dos dados. 

O software original na plataforma computacional, ao concluir o processamento 

dos exames e/ou registros, armazena os resultados em um arquivo especifico. No 

software em Python, os resultados são salvos em um arquivo com extensão .pkl. A 

Tabela 2 apresenta uma comparação do tamanho dos arquivos gerados por ambos 

os software. 

 

 

Plat 

Plat 
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Tabela 2 - Comparação entre o tamanho dos arquivos gerados pelos processamentos na 
plataforma computacional e Python 

Nome PLG 
Plataforma 

(kBytes) 
Python 
(kBytes) 

COMA_1 4.767 22.233 

COMA_2 4.644 23.421 

COMA_3 3.885 18.920 

COMA_4 4.115 20.519 

COMA_5 4.589 20.519 

NORMAL1 10.398 52.185 

NORMAL2 9.330 49.088 

NORMAL3 9.886 50.672 

NORMAL4 8.958 44.660 

NORMAL5 9.945 46.676 

Observou-se que o software em Python performou mais rapidamente nas 

etapas de Leitura PLG, PCP, FM e Coerência. Em contrapartida, o software original 

na plataforma computacional demonstrou melhor desempenho nas etapas de 

Separação de Épocas, pré-processamento e processamento. Verificou-se que, nas 

fases de Leitura PLG e Separação de Épocas, as duas versões exibiram 

desempenhos complementares, compensando-se mutuamente. 

Contudo, nas etapas de pré-processamento e processamento, o software em 

Python revelou-se quase 60 vezes mais lento que o software original. Essa 

discrepância pode estar associada à forma como os objetos foram criados seguindo 

o paradigma da programação orientada a objetos, sugerindo a necessidade de uma 

investigação mais aprofundada para identificar as causas dessa diferença tão 

expressiva. 

Com relação aos arquivos gerados a partir do processamento dos registros 

e/ou exames, constatou-se que os arquivos produzidos pelo software em Python 

apresentaram um tamanho quase cinco vezes maior que os gerados pelo software 

original na plataforma computacional. Entretanto, é importante destacar que, nesse 
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tipo de arquivo, ainda é possível aplicar algoritmos de compressão, como gzip, ou 

utilizar outros formatos, como HDF5, que oferece suporte a compressão nativa e 

desempenho otimizado para grandes volumes de dados. 

3.6.2 Execução dos testes de regressão 

A execução dos testes comparativos segue um procedimento semelhante 

ao do teste de regressão já disponível no software anterior, exigindo a criação de 

um arquivo CSV com duas colunas. A primeira coluna deve conter o nome do 

arquivo gerado pela versão na plataforma computacional, utilizado como 

referência. A segunda coluna deve indicar o nome do arquivo produzido pela 

versão em Python. Na interface de comandos da plataforma computacional, o 

usuário deve executar a função testErrorPlatAndPython, e, em seguida, será 

exibida a janela apresentada na Figura 15, permitindo a seleção do arquivo CSV 

pelo usuário. 

 

Figura 15 - Seleção do CSV para execução do teste de comparação de versão do software 

Após a seleção do arquivo CSV, o software inicia a comparação das variáveis, 

calculando o erro relativo para cada linha do arquivo. As variáveis em análise são 

testErrorPlatAndPython 
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exibidas na interface de comandos (Figura 16), permitindo ao usuário acompanhar a 

execução do programa e identificar em que etapa ele se encontra. 

 

Figura 16 - Janela de comandos durante a execução do testErrorPlatAndPython 

Após a execução da função testErrorPlatAndPython, é gerado um arquivo 

CSV com o prefixo "ResultErrorRelative_" (APÊNDICE F), seguido do nome do 

arquivo CSV de entrada. Esse arquivo contém as mesmas informações do CSV de 

entrada, acrescidas dos resultados da comparação para cada variável (PCP, FM e 

Coerência). 

A Tabela 3 apresenta os resultados do cálculo do erro relativo para os 10 

exames e/ou registros de EEG mencionados anteriormente. Ressalta-se que as 

variáveis comparadas são multidimensionais, com três dimensões, e o valor de erro 

exibido na tabela corresponde a um único valor por exame e/ou registro. Esse valor 

foi obtido por meio da média dos erros calculados em cada matriz multidimensional, 

sendo o desvio padrão calculado da mesma forma para esses dados. 

Tabela 3 - Erro Relativo comparação Plataforma Computacional x Python 

Nome 
PLG 

PCP 
Media 
ERRO 

PCP 
Desvio 
Padrão 

FM 
Media 
ERRO 

FM 
Desvio 
Padrão 

COERENCIA 
Media ERRO 

COERENCIA 
Desvio 
padrão 

COMA_1 1,24E-15 2,22E-15 2,36E-16 4,75E-16 167,8058 1,51E+04 

COMA_2 2,72E-15 5,69E-15 3,16E-16 5,87E-16 13 721 

COMA_3 1,68E-15 3,53E-15 2,71E-16 5,68E-16 174,1348 1,63E+04 

COMA_4 4,84E-15 6,42E-15 5,18E-16 5,87E-12 Dif. Tamanho Dif. Tamanho 

COMA_5 3,02E-15 4,05E-15 4,61E-16 5,47E-16 Dif. Tamanho Dif. Tamanho 

testErrorPlatAndPython 
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Nome 
PLG 

PCP 
Media 
ERRO 

PCP 
Desvio 
Padrão 

FM 
Media 
ERRO 

FM 
Desvio 
Padrão 

COERENCIA 
Media ERRO 

COERENCIA 
Desvio 
padrão 

NORMAL1 2,83E-14 5,69E-14 1,12E-15 2,31E-15 83,0848 7,08E+03 

NORMAL2 3,75E-14 8,54E-14 1,31E-15 2,48E-15 193,514 1,88E+04 

NORMAL3 2,07E-14 3,54E-14 7,89E-16 1,03E-15 10,8543 122,7668 

NORMAL4 2,47E-14 4,87E-14 9,01E-16 1,53E-15 11,9667 196,962 

NORMAL5 2,91E-14 5,73E-14 1,27E-15 2,06E-15 9,7615 178,4611 

Ao analisar a Tabela 3, verifica-se que o erro relativo é bastante reduzido, 

apresentando diferença apenas na décima terceira casa decimal. Contudo, para a 

variável Coerência, o erro revelou-se significativamente elevado.  

Diante da expressiva discrepância observada para a Coerência, constatou-se 

que os algoritmos utilizados pelas funções mscohere da plataforma computacional e 

scipy.signal.coherence do Python são distintos. Para minimizar essa diferença, foi 

realizado um estudo aprofundado dessas funções, envolvendo engenharia reversa 

dos processos e depuração dos objetos, a fim de identificar o ponto exato em que os 

dois algoritmos divergem. 

Inicialmente, constatou-se que os parâmetros padrão (default) de cada 

aplicação eram distintos, especialmente no que diz respeito ao número de pontos da 

transformada de Fourier, ao número de janelas e à técnica de janelamento. No Python, 

utiliza-se a janela Hann, enquanto a plataforma computacional emprega-se a janela 

Hamming. Após a equalização dos parâmetros de entrada, obtiveram-se resultados 

bastante semelhantes. 

Essa semelhança pode ser observada nos histogramas de diferença entre as 

duas plataformas, gerados para um exame de EEG com cinco épocas. Nesses 

histogramas, a diferença entre as épocas foi inferior a 0,04%, conforme ilustrado na 

Figura 17. 
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Figura 17 - Histograma diferenças Coerência 

Com o objetivo de identificar com maior clareza a distribuição das diferenças, 

foi plotada a curva dos resultados de coerência para ambas as plataformas em uma 

única imagem. Essa visualização revelou que a maior divergência ocorre nas 

frequências iniciais ou finais, conforme exibido na Figura 18. 

 

Figura 18 - Comparação Coerência Python x Plataforma Computacional 

Na tentativa de obter resultados ainda mais próximos dos exibidos pela 

plataforma computacional, foi identificada a biblioteca matplotlib.mlab.cohere do 

Python. Segundo sua documentação (HUNTER et al., 2021), essa função segue os 

Plat (3) 
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mesmos procedimentos das implementações da plataforma computacional. Contudo, 

ao utilizá-la com os mesmos parâmetros de entrada em ambas as plataformas, 

constatou-se um problema. 

Esse problema está relacionado aos parâmetros de entrada. A função em 

Python restringe o número de pontos da transformada de Fourier (FFT) com base no 

número de pontos do sinal fornecido como argumento, respeitando o teorema da 

amostragem de Nyquist, segundo o qual o número de pontos da FFT não pode 

exceder a metade do número de amostras do sinal analisado. Na plataforma 

computacional, essa validação não é aplicada, o que resulta em divergências entre os 

cálculos das duas plataformas. 

3.7 CONSIDERACAÕES FINAIS 

Diante do exposto, constatou-se que a plataforma computacional se 

mostrou mais veloz em comparação com a versão em Python. Contudo, é 

importante destacar que a transcrição para o Python foi realizada de maneira 

simplificada. Para trabalhos futuros, pretende-se aprofundar o estudo da 

linguagem e dos recursos disponíveis no Python, a fim de avaliar se é possível 

alcançar um desempenho semelhante ao observado na plataforma 

computacional. 

É importante destacar que a interface gráfica criada não apenas simplifica 

o uso do software, mas também desempenha um papel crucial na aceleração do 

aprendizado e na integração de novos pesquisadores ao grupo. Ao eliminar a 

necessidade de conhecimentos avançados em programação, a interface torna o 

processo mais acessível e menos intimidante, o que contribui para uma curva de 

aprendizado mais rápida. Além disso, a usabilidade aprimorada promove maior 

autonomia e confiança dos usuários, resultando em uma aplicação mais eficaz 

das ferramentas de processamento de EEG e um avanço mais consistente nas 

pesquisas desenvolvidas pelo grupo. 

O desenvolvimento dos testes unitários e do teste de regressão para 

comparação entre as duas versões revelou-se extremamente útil. Esses testes 

auxiliaram na transcrição do código ao identificar erros de implementação, 
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especialmente por compararem duas plataformas distintas. Assim, pode-se 

afirmar que a versão em Python apresentou diferenças reduzidas em relação à 

versão na plataforma computacional. 

No entanto, para o cálculo da coerência, ainda não se obteve o resultado 

esperado com uma taxa de erro suficientemente baixa. O grupo de pesquisa 

segue investigando abordagens alternativas para comparar a coerência, como a 

realização da média para cada banda de frequência (Delta, Teta, Alfa, Beta, 

Gama, Supergama e Ruído) e a subsequente comparação dos resultados entre 

as duas plataformas.  
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CAPÍTULO 4 - ANÁLISE DE PADRÕES DE ESTIMULAÇÃO 

MUSICAL 

Este capítulo tem como objetivo apresentar e discutir os mecanismos e as 

ferramentas empregados na extração e análise de atributos derivados de sinais 

de eletroencefalograma (EEG), com foco na identificação de padrões relevantes 

para o escopo desta pesquisa. A análise de padrões em EEG constitui uma etapa 

fundamental para compreender fenômenos neurofisiológicos, sendo amplamente 

reconhecida na literatura por sua capacidade de revelar informações sobre 

estados cognitivos e patológicos (KLIMESCH, 1999). Assim, este capítulo detalha 

as abordagens técnicas e metodológicas adotadas, estabelecendo uma base 

sólida para os resultados subsequentes. 

4.1 MATERIAIS E MÉTODOS 

Este subitem dedica-se a descrever, de maneira concisa e sistemática, os 

materiais, as tecnologias e as metodologias empregados no desenvolvimento das 

análises apresentadas neste capítulo. A escolha desses recursos fundamenta-se 

em sua capacidade de garantir a robustez e a reprodutibilidade dos 

procedimentos, aspectos essenciais em estudos envolvendo sinais de EEG 

(PERNET et al., 2020). Aqui, são abordados desde os equipamentos utilizados na 

aquisição dos dados até as técnicas computacionais aplicadas no processamento 

e na extração de atributos, proporcionando uma visão integrada do fluxo 

metodológico adotado. 

4.1.1 Métodos Estatísticos, Ferramentas de Análise e Visualização de Dados 

4.1.1.1 Média 

A média constitui uma das medidas estatísticas fundamentais empregadas 

para determinar um valor central em um conjunto de dados amostrais. Seu cálculo é 

obtido pela soma de todos os valores amostrais dividida pelo número total de 
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elementos considerados, conforme expresso na Equação 7 (MORETTIN; BUSSAB, 

2024). Essa medida é amplamente utilizada na análise de sinais de EEG para 

sumarizar características temporais ou espaciais dos dados, como a amplitude média 

em uma janela de tempo específica, oferecendo uma representação simplificada de 

tendências centrais. 

 
𝑴 =  

∑ 𝑿𝒊
𝑵
𝒊=𝟏

𝑵
 (7) 

Onde: 

M - Resultado da média 

Xi - i-ésimo elemento amostral 

N - Quantidade de elementos amostrais 

4.1.1.2 Mediana  

A mediana é uma medida estatística utilizada para determinar o valor central 

de um conjunto de dados amostrais, sendo definida como o elemento que ocupa a 

posição central após a ordenação dos valores em sequência crescente ou 

decrescente (MORETTIN; BUSSAB, 2024). Quando o número de amostras é par, 

calcula-se a mediana como a média aritmética dos dois elementos centrais. Essa 

medida é particularmente útil na análise de sinais de EEG, pois, ao contrário da média, 

é menos sensível a valores extremos ou ruídos, como os causados por artefatos 

musculares ou piscadas, oferecendo uma representação robusta das tendências 

centrais dos dados. 

4.1.1.3 Desvio Padrão 

O desvio padrão constitui uma medida estatística essencial aplicada a um 

conjunto de dados amostrais, destinada a quantificar o grau de dispersão dos valores 

em relação à média (MORETTIN; BUSSAB, 2024). Quanto mais próximo de zero for 

seu valor, menor é a variabilidade dos dados, indicando maior consistência em torno 

do valor central. Na análise de sinais de EEG, o desvio padrão é frequentemente 

utilizado para avaliar a estabilidade de características como a amplitude ou a potência 

espectral ao longo do tempo, sendo particularmente útil para detectar variações 
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anormais causadas por ruídos ou eventos neurofisiológicos. Seu cálculo é dado pela 

Equação 8, apresentada a seguir. 

 

𝑫𝑷 =  √
∑ (𝑿𝒊 − 𝑴)𝟐𝑵

𝒊=𝟏

𝑵
 

(8) 

Onde: 

DP - Desvio Padrão 

Xi - i-ésimo elemento amostral 

N - Quantidade de elementos amostrais 

M - Média do conjunto amostral 

4.1.1.4 Teste de Friedman 

O teste de Friedman é um método estatístico não paramétrico empregado 

para comparar diferenças entre grupos em experimentos com blocos randomizados, 

especialmente quando os dados amostrais são vinculados, isto é, quando cada bloco 

é submetido a múltiplas avaliações, testes ou condições (CORDER; FOREMAN, 

2014).  

Diferentemente de testes paramétricos, ele não utiliza os valores numéricos 

brutos diretamente, mas sim os postos (ou ranks) atribuídos aos dados após sua 

ordenação dentro de cada bloco separadamente. O teste avalia a hipótese nula de 

que a soma dos postos é igual entre os grupos, rejeitando-a caso haja diferenças 

significativas (CORDER; FOREMAN, 2014). Na análise de sinais de EEG, o teste de 

Friedman é particularmente útil para comparar características extraídas (como 

potência espectral ou amplitude) em diferentes condições experimentais ou janelas 

temporais, especialmente quando os dados não atendem aos pressupostos de 

normalidade. 

O teste de Friedman trabalha com duas hipóteses:  

• 𝐻0: as distribuições dos k experimentos são semelhantes; 

• 𝐻1: as distribuições se diferem na localização. 

O critério de decisão é rejeitar a hipótese nula (𝐻0) quando o valor-p for menor 

que o nível de significância estabelecido (geralmente 𝛼 = 0,05). Assim, um resultado 
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significativo indica que existe diferença estatisticamente relevante entre os grupos 

analisados. 

4.1.1.5 Variação Percentual (VAP) 

A variação percentual (VAP) é uma medida empregada para quantificar a 

diferença relativa entre duas situações ou condições, utilizando os valores das 

medianas correspondentes como base para o cálculo. O procedimento consiste em 

subtrair a mediana da primeira situação da mediana da segunda situação, dividir o 

resultado pelo maior valor de mediana entre as duas e, posteriormente, multiplicar o 

quociente por 100 para expressar o resultado em porcentagem.  

Na análise de sinais de EEG, a VAP é particularmente útil para comparar 

variações em características extraídas, como a potência de ritmos cerebrais (ex.: alfa, 

beta, teta), entre diferentes estados ou períodos experimentais, oferecendo uma 

métrica quantitativa para avaliar mudanças relativas. Esse cálculo é realizado para 

cada ritmo, conforme detalhado na Equação 9 (LIMA, 2020), apresentada a seguir. 

 𝑽𝑨𝑷𝒔𝒊𝒕𝒖𝒂çã𝒐  =  |
𝑿 − 𝒀

𝑴𝒂𝒙(𝑿, 𝒀)
| 𝒙 𝟏𝟎𝟎% (9) 

Onde: 

VAPsituação - Variação percentual entre duas situações 

X - Mediana da primeira situação 

Y - Mediana da segunda situação 

Max(X, Y) - Maior valor entre X e Y 

4.1.1.6 Histograma 

O histograma é uma ferramenta visual que possibilita a representação gráfica 

da distribuição de frequências de um conjunto de dados amostrais, evidenciando a 

repetição dos elementos dentro desse conjunto. Essa técnica permite identificar a 

concentração predominante dos dados, destacando regiões de maior densidade. 

Comumente, a visualização é realizada por meio de um gráfico de barras, no qual: 

• eixo X corresponde aos valores ou intervalos de valores presentes no 

conjunto amostral; 
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• eixo Y indica a frequência absoluta, ou seja, o número de ocorrências de 

cada valor ou intervalo no conjunto. 

Na análise de sinais de EEG, o histograma é amplamente empregado para 

examinar a distribuição de atributos como amplitude ou potência espectral, auxiliando 

na detecção de padrões ou anomalias, como assimetrias causadas por artefatos ou 

eventos neurofisiológicos. Um exemplo dessa aplicação pode ser observado na Figura 

19, que ilustra um histograma típico, revelando que a maior parte dos dados se 

concentra entre os valores 0,6 e 0,9. 

 

Figura 19 - Exemplo de histograma 

4.1.1.7 Arquivo Excel 

O arquivo Excel é um formato de planilha digital gerado pelo software 

Microsoft Excel, desenvolvido e mantido pela Microsoft. Essa ferramenta organiza 

dados em tabelas estruturadas, compostas por linhas e colunas, possibilitando a 

realização de cálculos, a manipulação de informações e a apresentação visual de 

resultados.  

Na análise de sinais de EEG, o uso de arquivos Excel é frequente para o 

armazenamento e o pré-processamento inicial de dados amostrais, como valores de 

amplitude ou potência espectral extraídos de experimentos, bem como para a 

aplicação de fórmulas estatísticas básicas, a exemplo da média ou do desvio padrão. 

Sua versatilidade e acessibilidade o tornam uma escolha comum em etapas 

preliminares de organização e análise de dados antes da utilização de software mais 

especializados.  
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4.1.2 Metodologia 

Para o desenvolvimento do software destinado à geração de insights para o 

reconhecimento de padrões em sinais de EEG, foi realizada, inicialmente, uma 

reunião com o grupo de pesquisa com o objetivo de definir a abordagem metodológica 

a ser adotada no processamento. Nessa reunião, foram estabelecidas as seguintes 

etapas: 

1. Processamento dos exames a serem analisados: 

• Nessa etapa, os exames foram configurados com janelas de 

tamanho uniforme e igual quantidade de janelas em todos os 

registros, garantindo consistência na análise temporal dos sinais. 

2. Agrupamento dos quantificadores (PCP, FM e Coerência): 

• Os quantificadores gerados na etapa anterior foram consolidados em 

um único arquivo, facilitando o armazenamento e o acesso aos dados 

processados. 

3. Geração de arquivo Excel com atributos: 

• Um arquivo Excel foi criado para registrar os seguintes atributos 

extraídos dos quantificadores vinculados a todos os exames: média, 

mediana, desvio padrão, teste de Friedman e variação percentual 

(VAP), permitindo uma análise estatística abrangente. 

4. Visualização dos resultados:  

• Os resultados foram representados graficamente por meio de 

histogramas, possibilitando a identificação visual da distribuição dos 

atributos. 

5. Identificação de padrões:  

• Foram analisados os atributos extraídos para detectar padrões 

relevantes nos sinais de EEG, constituindo o objetivo final do 

processamento. 

Para executar essas etapas, inicialmente elaborou-se um arquivo CSV 

contendo os exames a serem avaliados, conforme especificado no item 1. Esse 

arquivo foi então processado no software de análise de EEG descrito em (BARBOSA, 

2019) para a extração dos quantificadores PCP, FM e Coerência.  
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Em seguida, utilizando a plataforma computacional, foram desenvolvidas 

funções específicas para realizar as demais etapas descritas. Adicionalmente, o 

cálculo da variação percentual (VAP) foi implementado tanto no Excel quanto em uma 

função programada na plataforma computacional, com o propósito de validar a 

precisão da função desenvolvida por meio da comparação entre os resultados obtidos 

nas duas plataformas. 

4.2 VERSIONAMENTO 

Para o controle de versionamento do software desenvolvido, adotou-se a 

mesma estrutura de versionamento empregada pelos software na plataforma 

computacional e Python. As novas funções criadas foram organizadas e armazenadas 

na raiz do projeto, garantindo compatibilidade e facilidade de acesso durante o 

desenvolvimento e a manutenção do sistema. Essa abordagem permite gerenciar 

eficientemente as versões das funções implementadas para o processamento e 

análise de sinais de EEG, assegurando a rastreabilidade e a integração das 

atualizações ao longo do projeto. 

4.3 FUNÇÕES IMPLEMENTADAS 

Para alcançar os objetivos estabelecidos na metodologia apresentada no item 

4.1.2, foram desenvolvidas funções específicas que atendem às etapas definidas para 

o processamento e análise de sinais de EEG. Essas funções, descritas a seguir, foram 

implementadas com o propósito de automatizar a extração de quantificadores, o 

cálculo de atributos estatísticos e a geração de visualizações, contribuindo para a 

identificação de padrões nos dados amostrais. 

4.3.1 Função groupPcpAndFmAndCoerencia 

A função groupPcpAndFmAndCoerencia foi desenvolvida para processar 

arquivos com os dados localizados em um diretório específico, utilizando um prefixo 

de nome de arquivo como critério de identificação. Essa função realiza a leitura de 
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todos os arquivos correspondentes, extraindo as variáveis PCP, FM e COERENCIA 

contidas em cada arquivo.  

Em seguida, esses quantificadores foram organizados em variáveis distintas, 

uma para cada tipo (PCP, FM e COERENCIA), agrupando os dados de todos os 

exames de EEG coletados sob um mesmo estímulo. Esse processo facilita a 

consolidação dos quantificadores em um formato estruturado, permitindo sua posterior 

análise conjunta para identificação de padrões nos sinais de EEG. 

4.3.2 Função generateMedianMeanStdGrouped 

Essa função foi desenvolvida para calcular a média, a mediana e o desvio 

padrão de um conjunto de dados amostrais. Essa função geralmente utiliza como 

entrada um dos quantificadores agrupados pela função 

groupPcpAndFmAndCoerencia (como PCP, FM ou COERENCIA), processando os 

dados consolidados de exames de EEG. Os resultados gerados — valores de média, 

mediana e desvio padrão — são posteriormente empregados no cálculo da variação 

percentual (VAP). 

Essa etapa é essencial para a análise estatística dos quantificadores, 

fornecendo medidas fundamentais para a caracterização e comparação dos sinais de 

EEG. 

4.3.3 Função computePercentVariation 

Função responsável em calcular a variação percentual (VAP) entre os valores 

contidos em células de matrizes fornecidas como argumentos. Essa função processa 

os dados provenientes das análises de sinais de EEG, utilizando as medianas 

extraídas de diferentes condições ou períodos experimentais.  

O cálculo da VAP é realizado comparando pares de valores em cada matriz, 

gerando uma métrica que quantifica as diferenças relativas entre os quantificadores 

agrupados, como PCP, FM ou COERENCIA. Essa funcionalidade é essencial para 

avaliar mudanças nos padrões dos sinais de EEG, contribuindo para a análise 

estatística e a identificação de variações significativas no conjunto de dados 

amostrais. 
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4.3.4 Função computeTestPValue 

A função computeTestPValue foi desenvolvida para executar o teste de 

Friedman, calculando o valor-p associado às diferenças entre os valores contidos em 

células de matrizes fornecidas como argumentos. Essa função processa os 

quantificadores extraídos dos sinais de EEG, como PCP, FM ou COERENCIA, 

organizados em matrizes provenientes de diferentes condições ou blocos 

experimentais.  

O teste de Friedman é aplicado para avaliar se há diferenças significativas 

entre os grupos de dados, gerando um valor-p que indica a probabilidade de aceitação 

da hipótese nula de igualdade entre os quantificadores. Contribuindo para a 

identificação de padrões e variações relevantes nos sinais analisados. 

4.3.5 Função histogramPercentVariationByMaxValueInTestPValue 

Essa função realiza análise estatística comparativa entre duas matrizes de 

dados através de duas etapas principais: 

1. Teste de Friedman para verificação de diferenças significativas entre 

grupos; 

2. Cálculo da Variação Percentual (VAP) entre pares de valores 

correspondentes. 

A rotina inicia com a aplicação do teste de Friedman, que avalia a hipótese 

nula de igualdade distribucional entre os conjuntos de dados (nível de significância 

definido por 𝑝 < 𝑋𝑖𝑛𝑝𝑢𝑡). Os resultados que ultrapassam este limiar são marcados 

como estatisticamente relevantes. 

Posteriormente, calcula-se a VAP entre cada par de elementos homólogos 

das matrizes. A associação estratégica entre ambas análises ocorre através da 

filtragem seletiva: somente as variações percentuais correspondentes às posições 

com significância estatística no teste de Friedman são consideradas. Essa abordagem 

dual permite: 

• Reduzir falsos positivos por acaso estatístico; 

• Identificar mudanças biologicamente relevantes em sinais EEG; 

• Priorizar alterações consistentes nos quantificadores (PCP, FM, COERENCIA). 
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A etapa final gera um histograma das VAPs significativas, possibilitando a 

visualização da distribuição das variações percentuais significativas. 

4.3.6 Função createXlsxByStimulus 

Esta função gera uma planilha no formato Excel (.xlsx) contendo seis tabelas 

comparativas para um quantificador pré-definido (PCP, FM, ou Coerência). Cada 

tabela contrasta um dos seis estímulos experimentais com um sétimo estímulo de 

referência – este último dá nome à folha (ou sheet) criada. A estrutura de saída 

organiza-se da seguinte forma: 

1. Entrada: 

• Um quantificador de EEG (variável numérica); 

• Nome do estímulo de referência (string). 

2. Processamento: 

• Criação automática de seis pares comparativos (estímulo experimental 

vs. referência); 

• Cálculo de métricas de comparação para cada par. 

3. Saída: 

• Planilha única com abas nomeadas segundo o estímulo de referência; 

• Layout padronizado para análise transversal (ver APÊNDICE F, 

APÊNDICE G e APÊNDICE H). 

4.3.7 Função generateFileByStimulus 

Esta função é responsável pela geração de três arquivos no formato Excel 

(.xlsx), cada um contendo resultados relacionados às comparações entre os estímulos 

fornecidos como argumento para um único quantificador (PCP, FM ou COERÊNCIA). 

Os arquivos gerados correspondem às seguintes análises: 

• Teste de Friedman: Este arquivo apresenta os resultados do teste 

estatístico de Friedman, que avalia a significância das diferenças entre os estímulos 

para o quantificador analisado. O sufixo "_p_value" é adicionado ao nome do arquivo 

para indicar que ele contém valores de significância (p-values); 
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• Variação Percentual (VAP): Este arquivo contém os cálculos da 

variação percentual entre os estímulos, permitindo a análise das mudanças relativas 

nos valores do quantificador. O sufixo "_percent_variation" identifica este arquivo; 

• VAP com Teste de Friedman Significativo: Este arquivo combina os 

resultados das duas análises anteriores, filtrando as variações percentuais que 

correspondem às posições em que o teste de Friedman apresentou significância 

estatística. O sufixo "_final" é utilizado para nomear este arquivo. 

Cada planilha gerada possui sete abas (folhas ou sheets), onde cada aba 

corresponde ao resultado da função createXlsxByStimulus aplicada a um dos sete 

estímulos experimentais – sendo o sétimo estímulo considerado como referência para 

as comparações realizadas. Exemplos dessas planilhas podem ser encontrados nos 

APÊNDICE F, APÊNDICE G e APÊNDICE H. 

4.4 BASE DE DADOS 

Os dados utilizados nesta pesquisa foram reaproveitados do trabalho de 

(RAMOS, 2018), conduzido entre os anos de 2017 e 2018, antes da pandemia de 

COVID-19. Esse estudo foi realizado no âmbito do Programa de Pós-Graduação em 

Engenharia Biomédica da Universidade Federal de Uberlândia (UFU), com foco na 

estimulação musical e atenuação de ruídos em sinais de EEG coletados na Unidade 

de Terapia Intensiva (UTI) do Hospital de Clínicas da UFU (HCU-UFU) (RAMOS, 

2018). 

A coleta dos dados seguiu rigorosos protocolos éticos, sendo previamente 

autorizada pelo Comitê de Ética em Pesquisa da UFU (CEP-UFU) (parecer 

consubstanciado CEP número: 1.715.960 (ANEXO C)). Para garantir o cumprimento 

das normas éticas aplicáveis a pesquisas envolvendo seres humanos, foi elaborado 

um Termo de Consentimento Livre e Esclarecido (TCLE), que detalhava os 

procedimentos da pesquisa, as responsabilidades dos pesquisadores e voluntários, 

além de outros documentos necessários para autorização do uso dos equipamentos 

e instalações do HCU-UFU, do Laboratório de Processamento Digital de Sinais (PDS) 

e do Laboratório de Engenharia Biomédica (BioLab) da Faculdade de Engenharia 
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Elétrica da UFU (FEELT-UFU). Esses documentos foram avaliados e aprovados pelo 

CEP-UFU. 

O trabalho original utilizou métodos avançados para análise de sinais 

eletroencefalográficos, incluindo técnicas de processamento digital e análise 

quantitativa, com o objetivo de explorar padrões cerebrais em resposta à estimulação 

musical. Os dados coletados foram fundamentais para a construção da base utilizada 

nesta pesquisa, permitindo a continuidade dos estudos sobre reconhecimento de 

padrões em EEG. 

O protocolo para a coleta dos exames de EEG foi desenvolvido pelo grupo de 

pesquisa liderado pelo professor Doutor João Batista Destro Filho e estruturado em 

quatro fases principais: pré-estímulo, estímulo, pós-estímulo e gravação a vazio 

(RAMOS, 2018). Essas fases serão detalhadas posteriormente na tese, destacando 

sua importância para o registro sistemático das respostas cerebrais aos estímulos 

aplicados. 

As coletas foram realizadas utilizando o amplificador de sinais biológicos 

BrainNet BNT–EEG, juntamente com seu software proprietário de aquisição, o 

“EEGCaptações32”, versão REDE36 (1.0). Este equipamento conta com 21 canais, 

dos quais 20 são dedicados à aquisição digital dos sinais de EEG e um canal adicional 

é reservado para o registro de eletrocardiograma (ECG) (RAMOS, 2018). 

Na utilização do software de registro mencionado anteriormente, foram 

realizadas as seguintes configurações para ajuste dos filtros e da frequência de 

aquisição, conforme descrito por (RAMOS, 2018): 

• Para canais de EEG: 

o Constante de Tempo ou Filtro Passa Alta: 0,16 s – 1,0 Hz; 

o Filtro de Alta Frequência ou Filtro Passa Baixa: 100 Hz; 

o Filtro NOTCH: ativado para eliminação da frequência de 60 Hz. 

• Para canais de ECG: 

o Constante de Tempo: 0,16 s – 1,0 Hz; 

o Filtro Passa Baixa: 70 Hz; 

o Filtro NOTCH: ativado. 

• Frequência de Amostragem: 400 Hz. 
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Para a montagem dos eletrodos, foram conectados um total de 25 eletrodos 

ao paciente e ao aparelho de coleta, seguindo o padrão universal de montagem 10-

20. Dos 25 eletrodos utilizados, 23 foram dedicados à coleta do EEG e dois ao ECG. 

Entre os eletrodos do EEG, dois funcionaram como referenciais (bi-auriculares), um 

como terra e os demais foram responsáveis pela aquisição dos sinais cerebrais 

(RAMOS, 2018). 

4.4.1 Fases da coleta dos estímulos 

Neste tópico, são apresentadas as fases principais da coleta dos estímulos, 

que foram detalhadamente descritas em (RAMOS, 2018). Essas fases são 

fundamentais para a estruturação do protocolo experimental, garantindo a 

consistência e a validade dos dados coletados. A seguir, será fornecida uma visão 

geral dessas etapas, que incluem a pré-estimulação, o estímulo propriamente dito, a 

pós-estimulação e a gravação a vazio. 

4.4.1.1 Pré-estímulo 

Esta fase consiste na gravação de três minutos de atividade cerebral com os 

olhos fechados, sem qualquer estimulação externa, como movimentação, fala ou 

outras atividades que possam interferir no sinal gravado. O objetivo é capturar um 

padrão basal de atividade cerebral em condições de repouso, permitindo uma 

referência para as fases subsequentes. Durante essa etapa, o paciente deve 

permanecer imóvel e relaxado, minimizando qualquer artefato que possa afetar a 

qualidade do registro. 

4.4.1.2 Estímulo musical 

Nesta etapa, realiza-se a gravação de 60 segundos de atividade cerebral em 

repouso, sob silêncio ambiental e com olhos fechados, durante a exposição a 

estímulos sonoros controlados. O protocolo incluiu seis estímulos auditivos distintos, 

selecionados para investigar respostas neurofisiológicas a diferentes perfis acústicos 

e emocionais: 
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• Música favorita: Selecionada individualmente pelo voluntário para induzir 

valência emocional positiva; 

• Música desgostada: Escolhida pelo participante para eliciar reações de 

aversão ou desconforto; 

• Ruído branco: Estímulo acústico de espectro plano, utilizado como controle 

neutro; 

• Ruído rosa: Caracterizado por maior energia em baixas frequências, 

contrastando com o ruído branco; 

• Tom puro dó: Frequência específica para análise de respostas a tons 

puros; 

• Tom puro em ritmo baião (sol): Padrão rítmico culturalmente relevante 

(baião). 

Os estímulos foram aplicados sequencialmente, com cada um durando 60 

segundos, seguido imediatamente por uma fase de pós-estímulo. Para evitar 

interferências acústicas, foi mantido um período de silêncio entre os estímulos. Essa 

estrutura experimental visa minimizar efeitos de habituação e garantir a integridade 

dos dados coletados (MAGALHÃES et al., 2021). 

A escolha de músicas com valência emocional oposta (favorita e desgostada) 

alinha-se com estudos que demonstram padrões assimétricos de ativação frontal no 

EEG durante estímulos emocionais (TANDLE et al., 2018). Esses padrões são 

consistentes com a hipótese de que a ativação frontal lateralizada pode refletir 

processos emocionais e cognitivos associados à experiência musical. A literatura 

sugere que a música favorita tende a induzir maior atividade no hemisfério esquerdo, 

enquanto a música desgostada pode ativar mais o hemisfério direito, refletindo 

assimetrias emocionais (MAGALHÃES et al., 2021). 

4.4.1.3 Pós-estímulo 

Esta fase consiste na gravação de 30 segundos de atividade cerebral em 

repouso, sob silêncio ambiental e com olhos fechados. Ela é realizada imediatamente 

após cada um dos estímulos sonoros descritos anteriormente, visando capturar as 

respostas cerebrais residuais ou de recuperação após a exposição ao estímulo. A 

duração de 30 segundos permite avaliar a estabilização da atividade neural pós-
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estímulo, fornecendo uma referência para comparar com as fases pré e durante o 

estímulo. 

4.4.1.4 Gravação à Vazio 

Nesta etapa, ocorre a gravação de 60 segundos com os eletrodos 

desconectados do aparelho de coleta, visando registrar os sinais estáticos (ruído 

instrumental e ambiental) na ausência de qualquer sinal fisiológico. O objetivo é 

estabelecer uma linha de base para a quantificação do ruído intrínseco do sistema de 

aquisição, permitindo: 

• Identificação de artefatos técnicos: 

o Caracterização do ruído de fundo do amplificador (input-referred 

noise); 

o Detecção de interferências eletromagnéticas residuais. 

• Calibração instrumental: 

o Validação da impedância dos eletrodos em circuito aberto; 

o Verificação da estabilidade térmica do sistema. 

4.4.1.5 Considerações Finais 

O procedimento de coleta do EEG, conforme descrito por (RAMOS, 2018), 

teve a sequência de estimulação descrita na Tabela 4. 

Tabela 4 – Sequência de estímulos aplicado na coleta da base de dados de estimulação 
musical 

Estímulo 
Tempo 

(minutos) 

Pré 3 

Música favorita 1 

Pós 0,5 

Ruído rosa 1 

Pós 0,5 

Dó 1 

Pós 0,5 

Música desgostada 1 

Pós 0,5 

Ruído branco 1 
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Estímulo 
Tempo 

(minutos) 

Pós 0,5 

Sol Baião 1 

Pós 0,5 

Vazio 1 

Total 13 

Este procedimento foi aplicado a 60 voluntários, constituindo a base de dados 

utilizada para o reconhecimento de padrões em sinais de EEG. 

4.5 ESTRUTURAÇÃO E PROCESSAMENTO DOS DADOS 

De acordo com as informações de cada exame coletado para a base de 

dados, montou-se o arquivo .CSV utilizado como entrada para o software de 

processamento de EEG desenvolvido pelo grupo de pesquisa descrito anteriormente, 

onde pegou-se o instante inicial de cada estimulo musical conforme descrito em 

(RAMOS, 2018) no qual esse instante foi considerado como o tempo inicial das 

épocas. 

Assim, a planilha/CSV de entrada constou de sete linhas por exame/EEG, no 

qual, cada linha se refere a um estimulo sonoro, com janela de época de duração de 

dois segundos com um total de trinta épocas sequencias a partir do tempo de início 

da estimulação, totalizando assim os 60 segundos da estimulação musical. 

Configurou-se esta planilha também para que o software calcula-se os seguintes 

quantificadores: PCP, FM e COERENCIA. Desta forma, o arquivo CSV ficou 

configurada com 420 linhas (60 EEG x 7 estímulos). 

O processamento quantitativo dos exames de EEG foi estruturado em um 

arquivo CSV, configurado conforme o protocolo experimental descrito em (RAMOS, 

2018). Este arquivo serve como entrada para o software de processamento 

desenvolvido pelo grupo de pesquisa. A configuração inclui: 

• Organização temporal: Identificação do instante inicial de cada 

estímulo musical, com janelas de 2 segundos por época, totalizando 30 épocas 

sequenciais por estímulo, cobrindo os 60 segundos de duração total do estímulo. 
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• Estrutura de dados: 7 linhas por exame/EEG, correspondentes aos 7 

estímulos sonoros, resultando em 420 linhas no total (60 exames × 7 estímulos). 

• Variáveis calculadas: Os quantificadores PCP, FM e COERÊNCIA 

foram calculados para cada época, visando analisar a potência do sinal nos eletrodos, 

a frequência mediana e a correlação entre o hemisfério esquerdo e direito. 

Para otimizar o agrupamento posterior dos estímulos musicais provenientes 

dos diversos exames de EEG, foi estabelecido um padrão de nomenclatura para os 

arquivos de saída gerados pelo processamento de cada linha do arquivo CSV. Esse 

padrão consiste em um prefixo específico, que identifica o tipo de estímulo sonoro, 

seguido do identificador do participante (PLG) registrado durante a coleta dos dados. 

Os prefixos adotados foram: PRE_, MUSIC_FAVOR_, DO_CONT_, 

RUIDO_ROSA_, MUSIC_DESGOST_, RUIDO_BRANCO_ e SOL_BAIAO_, cada um 

correspondendo a um dos sete estímulos analisados. Por exemplo, o arquivo 

RUIDO_BRANCO_V2801 representa o processamento do estímulo "ruído branco" 

para o participante identificado como V2801. Essa convenção de nomenclatura facilita 

a organização e a rastreabilidade dos quantificadores extraídos para cada estimulo e 

paciente. 

Prosseguindo com o desenvolvimento, foram aproveitadas as funções 

programadas descritas no item 4.3 para processar os dados gerados. 

Especificamente, a função groupPcpAndFmAndCoerencia foi empregada para 

agrupar os quantificadores calculados no processamento dos sinais de EEG (PCP, 

FM e COERENCIA) organizando-os por tipo de estímulo sonoro. Para isso, executou-

se essa função sete vezes, uma para cada um dos sete estímulos definidos no arquivo 

CSV (conforme item 4.4.1), consolidando os dados de todos os exames de EEG 

correspondentes a cada estímulo em variáveis distintas. A título de detalhamento, as 

dimensões das variáveis geradas por esse processo são apresentadas a seguir: 

• PCP (7 x 1800 x 20) 

o 7 células, representando as bandas de frequência: Delta, Teta, Alfa, 

Beta, Gama, Supergama e Ruído; 

o 1800 linhas, correspondendo às 30 épocas de cada um dos 60 

exames de EEG (60 EEGs x 30 épocas); 



94 

o 20 colunas, referentes aos eletrodos utilizados: FP1, FP2, F7, F3, 

FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, OZ, O2. 

• FM (7 x 1800 x 20) 

o Possui estrutura idêntica à de PCP, uma vez que ambas as variáveis 

foram calculadas a partir da mesma configuração de dados, 

abrangendo as mesmas bandas de frequência, épocas e eletrodos. 

• COERENCIA (8 x 1740 x 129) 

o 8 células, representando os pares de eletrodos analisados: FP1-FP2, 

F7-F8, F3-F4, T3-T4, C3-C4, T5-T6, P3-P4 e O1-O2; 

o 1740 linhas, referentes as 30 épocas de cada um dos 58 exames de 

EEG (58 EEGs x 30 épocas), sendo necessária a exclusão de dois 

exames devido a divergências na frequência de amostragem que 

afetaram os resultados da função de coerência, comprometendo a 

consistência dos dados; essa exclusão foi realizada para assegurar 

a homogeneidade do conjunto analisado e evitar distorções na 

análise subsequente; 

o 129 colunas, correspondendo às frequências geradas pela função de 

coerência aplicadas aos pares de eletrodos. 

Em seguida, utilizou-se a função generateMedianMeanStdGrouped para 

calcular a mediana, média e desvio padrão das variáveis geradas anteriormente. 

Esses cálculos foram fundamentais para obter um panorama geral da distribuição dos 

dados no grupo de estímulos sonoros. A análise dessas medidas de tendência central 

e dispersão permitiu uma melhor compreensão da variabilidade e consistência dos 

resultados, facilitando a identificação de padrões nas respostas cerebrais aos 

diferentes estímulos. 

Continuando o processamento, foi executada a função 

histogramPercentVariationByMaxValueInTestPValue, que realiza o cálculo do teste 

de Friedman para identificar diferenças significativas entre um estímulo sonoro 

específico e outro. Essa função gera uma matriz de 20 linhas, correspondendo aos 

canais de EEG (FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, 

O1, OZ e O2), e 7 colunas, representando as bandas de frequência (Delta, Teta, Alfa, 

Beta, Gama, Supergama e Ruído). Cada elemento dessa matriz contém o valor-p 

resultante do teste de Friedman, obtido ao comparar os 1800 valores de cada 
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quantificador (30 épocas × 60 EEGs) entre os estímulos analisados, adotando-se um 

nível de significância de 0,05.  

Em seguida, aplicando a mesma lógica de comparação, calculou-se a 

variação percentual (VAP) entre os 1800 valores de cada par de estímulos. 

Posteriormente, com base no valor de significância do teste de Friedman, foram 

zerados todos os elementos da matriz de VAP cujas posições correspondentes na 

matriz do teste apresentassem valor-p superior a 0,05, preservando apenas as 

variações estatisticamente significativas. Por fim, um histograma foi gerado a partir 

dos valores de VAP remanescentes (elementos diferentes de zero na matriz), 

possibilitando a visualização da distribuição das variações relevantes. 

Para concluir essa etapa e facilitar análises futuras, executou-se a função 

generateFileByStimulus, que produz três arquivos Excel contendo os resultados de 

cada fase do processamento realizado por 

histogramPercentVariationByMaxValueInTestPValue: o teste de Friedman (sufixo 

p_value), a variação percentual (sufixo percent_variation) e os valores de VAP 

filtrados pelo teste estatístico (sufixo final). Diferentemente da função anterior, que 

compara apenas um estímulo com outro, esses arquivos apresentam uma visão mais 

abrangente, exibindo as comparações de cada estímulo sonoro em relação a todos 

os demais. Essas funções foram aplicadas exclusivamente aos quantificadores FM e 

PCP, e os resultados obtidos são detalhados no próximo tópico. 

4.6 RESULTADOS 

Esta seção tem como objetivo apresentar os resultados quantitativos obtidos 

após a execução das funções computacionais desenvolvidas para o reconhecimento 

de padrões em sinais de eletroencefalograma (EEG). Esses resultados refletem o 

desempenho das análises estatísticas e visuais implementadas ao longo do 

processamento dos dados, que buscaram caracterizar as respostas neurais a 

diferentes estímulos sonoros.  

Através da aplicação das ferramentas descritas nos itens anteriores, como o 

cálculo de quantificadores (PCP, FM e COERENCIA), testes estatísticos e geração de 

histogramas, foi possível extrair informações relevantes sobre a variabilidade e as 
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tendências dos sinais, contribuindo para a identificação de padrões associados aos 

sete estímulos analisados. Os dados aqui apresentados são organizados por 

quantificador e fundamentam as discussões subsequentes sobre as implicações 

neurofisiológicas dos estímulos sonoros no contexto deste estudo. 

4.6.1 Quantificador Frequência Mediana (FM) 

O quantificador Frequência Mediana (FM) foi analisado para avaliar as 

variações nas respostas neurais captadas pelos sinais de EEG frente aos sete 

estímulos sonoros investigados neste estudo. Esse quantificador, que representa a 

frequência central das bandas analisadas (Delta, Teta, Alfa, Beta, Gama, Supergama 

e Ruído), foi processado por meio das funções computacionais descritas no item 4.3, 

resultando na extração de 1800 valores por estímulo (30 épocas × 60 EEGs) para 

cada um dos 20 canais.  

A partir desses dados, calculou-se a variação percentual (VAP) entre os 

estímulos, seguida da aplicação do teste de Friedman para identificar diferenças 

estatisticamente significativas (valor-p ≤ 0,05). Os valores de VAP filtrados, que 

indicam as variações relevantes após a exclusão dos elementos não significativos 

(VAP = 0), foram organizados no arquivo Excel com o sufixo final, servindo como base 

para a geração de histogramas que ilustram a distribuição dessas diferenças. 

A Figura 20 e Figura 21 apresentam os histogramas (sete no total) gerados a 

partir desse arquivo Excel, conforme detalhado no item 4.5 Estruturação e 

Processamento dos Dados, para os valores de VAP do quantificador Frequência 

Mediana (FM) após a seleção estatística significativa. Na construção desses 

histogramas, foram excluídos os elementos com valor zero, ou seja, aqueles que não 

exibiram diferenças estatisticamente relevantes com base no teste de Friedman, 

destacando apenas as variações significativas entre os estímulos sonoros.  

Cada histograma corresponde a uma folha (sheet) do arquivo Excel, nomeada 

de acordo com o estímulo sonoro específico comparado, contendo seis tabelas 

comparativas que detalham as diferenças do FM em relação aos demais estímulos. 

Essas tabelas são estruturadas em 20 linhas, representando os canais de EEG (FP1, 

FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, OZ e O2), e 7 

colunas, correspondendo às bandas de frequência, conforme exemplificado no 
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APÊNDICE H. Essa visualização permite uma análise detalhada das alterações na 

frequência mediana (FM) induzidas por cada estímulo em diferentes regiões do 

cérebro. 

Diante dos resultados apresentados, os histogramas podem conter até 840 

(20 canais x 7 bandas x 6 estímulos) elementos, organizados em quatro intervalos de 

valores de VAP no eixo X: 0 a 5%, 5 a 10%, 10 a 15% e 15 a 20%. Esses intervalos 

agrupam as variações percentuais significativas do quantificador FM, enquanto o eixo 

Y representa a frequência relativa de elementos em cada intervalo, calculada como a 

quantidade de elementos dentro do grupo dividida pelo total de elementos 

significativos. Essa representação permite visualizar a distribuição das variações do 

FM entre os estímulos sonoros, destacando a magnitude e a proporção das diferenças 

estatisticamente relevantes nos sinais de EEG. 

 

Figura 20 - Histograma VAP da FM Silêncio após seleção estatística 
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Figura 21 - Histograma VAP do FM demais estímulos após seleção estatística 

Conforme observado nos histogramas da Figura 20 e Figura 21, 100% dos 

valores de VAP concentraram-se no intervalo de 0 a 5%, indicando que as variações 

do quantificador Frequência Mediana (FM) entre os estímulos sonoros foram mínimas. 

Esse resultado sugere que a metodologia empregada, apesar de identificar diferenças 

estatisticamente significativas (valor-p ≤ 0,05), não foi eficaz em evidenciar distinções 

expressivas entre os estímulos no que diz respeito à frequência mediana dos sinais 

de EEG. Tal concentração em um intervalo de baixa variação pode refletir uma 

limitação na sensibilidade do quantificador FM para captar alterações 

neurofisiológicas induzidas pelos estímulos sonoros analisados neste estudo. 
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4.6.2 Quantificador Porcentagem de Contribuição de Potência (PCP) 

O quantificador Porcentagem de Contribuição de Potência (PCP) foi analisado 

para complementar a avaliação das respostas neurais aos estímulos sonoros nos 

sinais de EEG. 

A Figura 22 e Figura 23 apresentam os histogramas gerados a partir do 

arquivo Excel com o sufixo final para o quantificador PCP, de maneira análoga ao 

descrito no item 4.6.1 Quantificador Frequência Mediana (FM). Esses histogramas 

ilustram a distribuição dos valores de variação percentual (VAP) do PCP após a 

seleção estatística significativa, com base nas comparações entre os sete estímulos 

sonoros. A única diferença em relação ao FM reside na configuração do eixo X, que 

para o PCP é dividido em dez intervalos de 5 unidades, abrangendo valores de 0 a 

50% (0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45 e 45-50), refletindo 

uma maior amplitude nas variações observadas. 

 

Figura 22 - Histograma VAP do PCP Silêncio após seleção estatística 
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Figura 23 - Histograma VAP do PCP demais estímulos após seleção estatística 

Com base nos resultados observados nos histogramas apresentados na 

Figura 22 e Figura 23, constata-se a presença de uma proporção significativa de 

valores de variação percentual (VAP) com magnitudes relevantes para o quantificador 

PCP. Especificamente, 80% desses valores encontram-se concentrados nos três 

primeiros intervalos (0 a 5%, 5 a 10% e 10 a 15%), enquanto os 20% restantes 

distribuem-se entre os intervalos subsequentes (15 a 50%). 

No caso do histograma associado ao estímulo "silêncio", a distribuição dos 

valores de VAP apresenta uma forma simétrica e concentrada em torno do intervalo 

de 10 a 15%, o que sugere uma discrepância estatisticamente mais acentuada para 

esse estímulo em relação aos demais. Em contraste, a análise dos histogramas 
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referentes aos outros estímulos sonoros indica uma predominância de valores no 

intervalo de 5 a 10%, sugerindo que as variações significativas do PCP tendem a se 

concentrar em magnitudes inferiores para esses casos. 

4.6.2.1 Definição do limiar de VAP após seleção estatística 

Com base nos histogramas para o quantificador PCP (Figura 22 e Figura 23), 

estabeleceu-se um limiar mínimo de 15% para os valores de variação percentual 

(VAP), com o objetivo de identificar os canais de EEG ou bandas de frequência que 

mais se destacam na diferenciação entre os estímulos sonoros. Essa escolha foi 

motivada pela observação de que aproximadamente 80% dos valores de VAP situam-

se abaixo desse patamar, conforme evidenciado na análise anterior. 

Para implementar esse critério, utilizou-se o mesmo procedimento de filtragem 

estatística aplicado anteriormente: na planilha Excel com o sufixo final, todos os 

valores de VAP inferiores a 15% foram zerados, preservando apenas aqueles que 

indicam variações mais expressivas e relevantes para a distinção dos estímulos. 

4.6.2.2 Análise detalhada da comparação com o silêncio 

Para obter uma visão mais detalhada das comparações entre os estímulos 

sonoros e identificar os canais do EEG e bandas de frequência mais relevantes, foram 

gerados gráficos de radar comparando cada estímulo sonoro com o silêncio. Esses 

gráficos foram construídos com base na planilha Excel com o sufixo final, que contém 

os valores de VAP após a seleção estatística e a definição do limiar mínimo de 15%, 

conforme descrito no item 4.6.2.1 Definição do limiar de VAP após seleção 

estatística. 

A estrutura do gráfico de radar (Figura 24) ficou da seguinte maneira: 

• Extremidades do gráfico: Representam os 20 canais do EEG (FP1, FP2, 

F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, OZ, O2); 

• Níveis do centro ao exterior: Correspondem aos valores de VAP, 

indicando a magnitude das variações percentuais significativas; 
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• Itens coloridos: Representam as sete bandas de frequência (Delta, Teta, 

Alfa, Beta, Gama, Supergama e Ruído), preenchendo o gráfico conforme a 

distribuição dos valores de VAP. 

Adicionalmente, cada gráfico inclui a contabilização do número de valores de 

VAP selecionados, isto é, aqueles superiores ao limiar de 15%. Considerando que 

cada tabela subjacente ao gráfico é composta por 20 linhas (canais de EEG) e 7 

colunas (bandas de frequência), totalizando 140 elementos, o gráfico exibe a 

quantidade de VAPs distintos de zero, oferecendo uma métrica quantitativa da 

relevância das variações observadas em cada comparação. 

 

Figura 24 - VAP acima de 15% para PCP do estimulo Silêncio com os demais estímulos 
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Ao analisar a Figura 24, observa-se que as bandas de frequência Delta e Alfa 

apresentam valores de VAP acima de 20% em todas as comparações. Para a banda 

Delta, os valores mais relevantes do VAP concentram-se nos eletrodos occipitais e 

temporais, enquanto para a banda Alfa, os valores de VAP se destacam nos eletrodos 

frontais. Esses achados sugerem que a estimulação sonora tem um impacto direto na 

porcentagem de contribuição de potência (PCP), indicando que os estímulos sonoros 

provocam respostas neurofisiológicas mensuráveis nos pacientes. 

Interpretação neurofisiológica: 

• Banda Delta: A concentração de valores significativos nos eletrodos 

occipitais e temporais pode refletir a modulação da atividade cerebral em 

regiões associadas ao processamento visual e auditivo, respectivamente. 

As ondas Delta estão geralmente relacionadas ao sono profundo, mas em 

contextos de vigília, podem indicar mudanças na atividade cortical em 

resposta a estímulos externos (RAMOS et al., 2020) (OLIVEIRA et al., 

2007); 

• Banda Alfa: A predominância nos eletrodos frontais sugere que a banda 

Alfa está envolvida na modulação da atividade cognitiva e emocional 

durante a percepção de estímulos sonoros. As ondas Alfa são 

frequentemente associadas a estados de relaxamento e redução da 

ansiedade, mas também podem refletir processos de atenção e 

concentração (RAMOS et al., 2020) (OLIVEIRA et al., 2007). 

4.6.2.3 Análise detalhada quando diferentes estímulos musicais são comparados 

De forma análoga ao descrito no item 4.6.2.2 Análise detalhada da 

comparação com o silêncio, foram elaborados gráficos de radar para comparar os 

demais estímulos sonoros entre si. A Figura 25 apresenta os gráficos das 

comparações mais relevantes, que possuem maior quantidade de VAPs diferentes de 

zero. Esses gráficos permitem visualizar as diferenças significativas na modulação 

neural entre diferentes estímulos musicais. 
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Figura 25 - VAP acima de 15% para PCP outras comparações relevantes 

Conforme ilustrado na Figura 25 percebe-se que o estimulo sonoro “música 

desgostada” quando comparado aos demais estímulos apresentou maior quantidade 

de VAPs diferente de zero, e outra comparação relevante foi entre o estimulo música 

favorita e ruído branco. Quando se analisa as comparações com a música desgostada 

percebe-se que os maiores valores de VAP está aglutinado na banda de frequência 



105 

delta nos eletrodos occipitais. Vale ressaltar que também a banda de frequência alfa 

se destaca nas comparações com dó continuo, ruído branco e rosa, nos eletrodos 

frontais e da região esquerda do cérebro. Evidencia-se também, a banda de 

frequência gama alta nos eletrodos da região temporal. Já nas comparações com o 

estimulo sonoro “música favorita” nota-se uma relevância na banda de frequência teta 

nos eletrodos occipitais e parietais. 

4.7 CONSIDERAÇÕES FINAIS 

Com base nos histogramas apresentados no item anterior, observa-se que, 

para o quantificador frequência mediana (FM), os valores de variação percentual 

(VAP) não alcançaram níveis significativos, permanecendo inferiores a 5%. Os 

histogramas indicam uma concentração de 100% dos valores nesse intervalo para 

todos os estímulos sonoros, sugerindo que este quantificador na metodologia adotada 

para o reconhecimento de padrões não se mostrou eficaz. 

Em contraste, para o quantificador porcentagem de contribuição de potência 

(PCP), os valores de VAP exibem maior discrepância, atingindo até 50%, conforme 

demonstrado nos histogramas para todos os estímulos sonoros. Esse comportamento 

revela que o PCP apresenta um elevado potencial como ferramenta para o 

reconhecimento de padrões por meio do método proposto. 

Analisando os gráficos de comparação entre os estímulos sonoros (Figura 24 

e Figura 25), elaborados após a definição do limiar de variação percentual (VAP) 

conforme a seleção estatística, observa-se que o estímulo "silêncio" se diferenciou 

dos demais nas bandas de frequência Delta e Alfa. Ressalta-se que o estímulo 

"música desgostada" também exibiu uma discrepância significativa em relação aos 

outros estímulos sonoros nas mesmas bandas Delta e Alfa. Outra diferença notável 

foi constatada na comparação entre os estímulos "música favorita" e "ruído branco", 

na qual se verificou uma variação mais pronunciada na banda de frequência Teta. 

No estudo (KUMAGAI; ARVANEH; TANAKA, 2017), argumenta-se que a 

lateralização hemisférica cerebral varia conforme o estímulo recebido. Os autores 

sugerem que a percepção musical nem sempre resulta em lateralização, mas que uma 

música não familiar pode elicitar uma resposta cortical mais intensa do que uma 
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música familiar. Esses achados corroboram os resultados deste trabalho, no qual se 

constatou que a "música desgostada" apresentou uma quantidade consideravelmente 

maior de valores de VAP significativos em comparação com os demais estímulos, 

evidenciando sua maior capacidade de diferenciação. 

Diferente dos achados de (EHRLICH et al., 2019), que identificaram a 

potência da banda Gama no hemisfério direito e modulações da potência Beta frontal 

como elementos envolvidos em tarefas de interação, este estudo revela que o 

quantificador porcentagem de contribuição de potência (PCP) para as bandas Beta e 

Gama, sob estimulação musical em comparação com o "silêncio", apresenta baixa 

relevância, sendo mais pronunciado na região occipital. 

Em (GROUSSARD et al., 2010), foi conduzido um estudo sobre memória 

semântica, definida como a memória de conceitos independente das circunstâncias 

espaciais ou temporais de aprendizagem, que permite o reconhecimento de músicas 

e melodias ou a evocação de um forte sentimento de familiaridade. Nesse trabalho 

(GROUSSARD et al., 2010), os autores observaram que a ativação dessa memória, 

sob estímulos musicais, ocorreu nas regiões temporal superior, frontal mediana e 

frontal inferior do hemisfério esquerdo, bem como na região frontal inferior do 

hemisfério direito. Diferentemente, o presente estudo destaca a relevância do PCP na 

banda de frequência Alfa nas regiões frontais e na banda Delta nas regiões occipitais, 

ao comparar o estímulo "silêncio" (ou repouso) com os demais estímulos sonoros. 

De acordo com (MAITY et al., 2015), a decomposição de sinais de EEG no 

domínio da frequência, utilizando a transformada discreta de wavelet nas bandas Alfa 

e Teta, seguida da análise por meio da técnica de flutuação multifractal sem tendência, 

revelou que uma estimulação musical simples impacta significativamente as 

dinâmicas cerebrais, manifestando-se em diferentes tipos de emoções. Nesse estudo 

(MAITY et al., 2015), pequenos sons de drone elevaram a complexidade das bandas 

Teta e Alfa em todos os eletrodos frontais, um padrão também verificado no presente 

trabalho, no qual a aplicação de estímulos sonoros destacou a banda de frequência 

Alfa na região frontal. 

Em (TSENG et al., 2013), argumenta-se que a região pré-frontal do córtex é 

a mais apropriada para avaliar os efeitos da estimulação musical sobre respostas 

emocionais, por ser responsável pelas funções como controle cognitivo, 
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processamento emocional e atividades mentais cotidianas. Os autores observaram 

que essa região apresenta maior ativação com emoções positivas associadas ao 

prazer e menor ativação com emoções negativas, como ansiedade. Especificamente, 

a potência da banda Alfa nos hemisférios esquerdo e direito do córtex pré-frontal 

mostrou-se inversamente proporcional à intensidade emocional: a potência Alfa no 

hemisfério esquerdo diminui com músicas positivas, enquanto no hemisfério direito 

essa redução ocorre com músicas negativas, evidenciando uma assimetria funcional 

relacionada à valência emocional. 

De maneira semelhante (FOLGIERI; BERGOMI; CASTELLANI, 2014), 

constatou-se que a ativação frontal está associada à intensidade das emoções 

evocadas pela música, reduzindo-se com sons relacionados a medo e frustração, e 

aumentando com sons que transmitem felicidade e satisfação. 

Verifica-se a necessidade de mais estudos sobre estimulação musical para 

ampliar a compreensão dos benefícios potenciais na área da terapia musical cognitiva. 

A análise do quantificador de coerência permanece em desenvolvimento, uma vez 

que sua estrutura de dados difere das estruturas dos quantificadores PCP e FM. 
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CAPÍTULO 5 - APLICAÇÃO DE INTELIGÊNCIA ARTIFICIAL 

O presente capítulo aborda a aplicação de técnicas de inteligência artificial 

(IA) no contexto do processamento e análise de sinais neurofisiológicos. A inteligência 

artificial, campo da ciência da computação dedicado ao desenvolvimento de sistemas 

capazes de simular capacidades humanas como aprendizado, raciocínio e 

reconhecimento de padrões, tem se mostrado uma ferramenta poderosa para 

solucionar problemas complexos em diversas áreas, incluindo a medicina e a 

engenharia biomédica. Neste capítulo, exploram-se arquiteturas e métodos de IA 

empregados para a classificação e interpretação dos dados de EEG coletados, 

destacando seus benefícios, desafios e resultados obtidos na pesquisa. 

O processo de treinamento envolveu experimentação extensiva com o ajuste 

de hiperparâmetros e a aplicação de técnicas de otimização, buscando adaptar cada 

modelo aos desafios inerentes aos dados de EEG, tais como a natureza não 

estacionária, a alta suscetibilidade a ruídos e a variabilidade interindividual. 

5.1 DEFINIÇÃO FORMAL DO PROBLEMA 

Formalmente, os sinais de EEG podem ser representados como Xj
(e,w)(s) ∈ 𝕏, 

onde 𝑗 = {1,2, ⋯ , 𝑛} denota os pacientes, 𝑒 = {1,2, ⋯ , 𝑑} os eletrodos, 𝑤 = {1,2, ⋯ , 𝑚} 

o número de épocas/segmentos selecionadas pelo neurologista, e 𝑠 = {1,2, ⋯ , 𝑡} as 

variações elétricas ao longo do tempo para cada eletrodo. Cada amostra 𝑋𝑗 está 

associada a um rótulo yi ∈ Y, que representa o resultado esperado (por exemplo: 

estimulação A, etiologia B, prognostico C, etc.). Este estudo tem como objetivo 

aprender uma função de classificação baseada em modelos de IA, definida como 

F: X → y′ a partir do conjunto de dados de EEG, tal que y′ ≈ y, permitindo assim a 

classificação de novos exames de EEG 𝑋u ∉ 𝕏, cuja classe é desconhecida. 
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5.2 ARQUITETURAS 

Inicialmente, foi utilizado como base o código fonte da dissertação de (BALDO 

JÚNIOR, 2023), que combina Redes Neurais Convolucionais (CNN) e Redes Neurais 

Recorrentes do tipo Long Short-Term Memory (LSTM) para a classificação de sinais 

de EEG. Esse modelo híbrido CNN-LSTM foi inicialmente projetado para processar 

sinais brutos de EEG e atributos adicionais, como idade, sexo e dados estatísticos do 

sinal, visando classificar a etiologia do coma ou prognóstico do paciente. 

A arquitetura proposta por (BALDO JÚNIOR, 2023), é composta pelos 

seguintes elementos (Figura 26): 

• Paciente: Representa o paciente ou voluntário submetido ao EEG; 

• Dados do Paciente: Informações pertinentes ao voluntário ou paciente, 

constituídas por idade, sexo, prognóstico, etiologia do coma, etc; 

• Captura de Sinal: Etapa na qual os eletrodos conectados ao escalpo 

cerebral do paciente são conectados ao aparelho que realiza a coleta das 

oscilações de tensões, capturando assim o EEG; 

• Seleção de Épocas: O sinal coletado é dividido em épocas/segmentos de 

tempo, comumente de 2 segundos. Essas épocas/segmentos podem ser 

selecionadas por um neurologista especializado, que avalia a qualidade do 

exame e seleciona trechos com a menor quantidade de ruídos e que 

representem o estado do paciente. Normalmente, nesses estudos, são 

selecionadas 10 épocas/segmentos; 

• Extração de Características Estatísticas: Extração de características 

estatísticas das épocas/segmentos selecionadas, como média, desvio 

padrão, maior amostra, menor amostra e variância; 

• Rede Neural: Elemento responsável por extrair características do sinal, 

composto por uma camada convolucional (CNN) que extrai características 

relevantes do sinal de EEG bruto separado por épocas/segmentos. Em 

seguida, esses dados extraídos são processados por uma camada LSTM, 

que modela as dependências temporais nos sinais de EEG; 

• Camada de Achatamento (Flatten): Agrupamento dos dados dos 

pacientes, dados estatísticos e a saída da rede neural; 
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• Camada Densa (Fully Connected): Os dados da camada de achatamento 

são a entrada da camada densa, que realiza a classificação do EEG, 

retornando a porcentagem do EEG analisado em determinada classe.  

Essa arquitetura híbrida CNN-LSTM permite explorar tanto as características 

espaciais (CNN) quanto as temporais (LSTM) dos sinais de EEG. A inclusão de 

informações adicionais do paciente e características extraídas dos sinais de EEG, 

conforme demonstrado por (BALDO JÚNIOR, 2023), aprimoram o desempenho do 

modelo em tarefas de classificação de sinais de EEG. 

 

Figura 26 - Arquitetura IA CNN-LSTM base adaptado de (BALDO JÚNIOR, 2023) 

Outra arquitetura descrita por (BALDO JÚNIOR, 2023) também foi empregada 

para fins de treinamento, distinguindo-se por não utilizar os dados adicionais do 

paciente nem os dados estatísticos extraídos do sinal de EEG. Nessa configuração, o 

modelo recebe apenas os sinais brutos de EEG como entrada, que são processados 

diretamente pelas camadas convolucionais e recorrentes, sem a inclusão de atributos 

complementares. Essa abordagem permite avaliar o impacto da ausência dessas 

informações adicionais no desempenho da classificação. A estrutura dessa arquitetura 

pode ser visualizada na Figura 27. 
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Figura 27 - Arquitetura CNN-LSTM somente com sinal puro adaptado de (BALDO JÚNIOR, 
2023) 

Além da arquitetura híbrida CNN-LSTM, para fins de comparação, foi 

implementada uma rede neural baseada em Multi Layer Perceptron (MLP). Esse 

modelo recebe como entrada os dados do paciente e/ou os dados estatísticos 

extraídos do sinal de EEG, retornando como resultado a probabilidade de a entrada 

pertencer a uma determinada classe. A estrutura dessa abordagem está ilustrada na 

Figura 28. 
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Figura 28 – Arquitetura utilizando Multi Layer Perceptron (MLP) adaptado de (BALDO JÚNIOR, 
2023) 

Para este trabalho, estas arquiteturas foram adaptadas, incorporando novos 

modelos de IA, como Transformers, com o objetivo de aprimorar a acurácia das 

classificações, bem como adicionar outros quantificadores extraídos do sinal de EEG 

e verificar a eficiência destes, testando regiões cerebrais e eletrodos mais eficazes 

para estas atividades. Com estas arquiteturas realizou-se os seguintes experimentos: 

• Prognostico Clinico (Classificação Binária [Favorável e Desfavorável]); 

• Transformer e prognostico clinico (Classificação Binária [Favorável e 

Desfavorável]); 

• Etiologia do Coma (5 Categorias); 

• Gosto Musical (Classificação Binária [Gostada e Desgostada]). 

5.3 TREINAMENTO 

O treinamento foi realizado utilizando a validação cruzada estratificada k-fold, 

uma técnica robusta para avaliar a capacidade de generalização de modelos de 

aprendizado de máquina, especialmente em cenários com classes desbalanceadas. 

A estratificação garante que cada partição de validação cruzada reflita a distribuição 
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global das classes, evitando avaliações de desempenho enviesadas (BENGIO; 

GRANDVALET, 2003). Essa abordagem consiste em dividir o conjunto de dados em 

k partes (folds), assegurando que cada fold mantenha a mesma proporção de classes 

do conjunto original. O modelo é treinado iterativamente k vezes, utilizando um fold 

diferente como conjunto de teste e os 𝑘 − 1 folds restantes como conjunto de 

treinamento em cada iteração. 

No presente estudo, foi empregada a validação cruzada estratificada 5-fold 

(Figura 29) com X (comumente 30) épocas por fold. Para cada época, utilizou-se um 

tamanho de lote (batch size) igual a um, sendo o número de passos por época definido 

como o produto do número de pacientes pelo número de segmentos selecionados. 

Essa configuração garante a consistência das dimensões de entrada ao longo de 

todas as iterações, assegurando uma convergência adequada e possibilitando uma 

comparação justa entre os modelos avaliados. Além disso, foi utilizado um gerador de 

dados personalizado para carregar as amostras individualmente, otimizando o fluxo 

de processamento e reduzindo a carga de memória. 

 

Figura 29 - Modelo k-fold de 5 adotado para treinamento das redes neurais 

Durante os testes, a classificação final foi determinada pelo cálculo da moda 

das previsões obtidas para cada segmento, estratégia que aprimora a consistência da 

avaliação do desempenho do modelo. A medida final de desempenho dos modelos foi 

reportada como a média e o desvio padrão dos resultados obtidos em todos 

os folds (Figura 29), proporcionando uma avaliação confiável e generalizável. 

5.4 MÉTRICAS DE PERFORMANCE 

Para avaliar o desempenho dos modelos de classificação de EEGs, foram 

adotadas métricas que permitem uma análise abrangente da capacidade preditiva dos 

modelos, considerando tanto o desempenho global quanto o comportamento em 
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classes específicas, especialmente em cenários com classes desbalanceadas. A 

escolha criteriosa dessas métricas é essencial para garantir uma avaliação equilibrada 

dos modelos, reconhecendo a possível distribuição desigual das classes nas bases 

de dados de EEG. 

A acurácia, definida como a proporção de classificações corretas em relação 

ao total de amostras, foi utilizada como uma métrica inicial para avaliar o desempenho 

geral dos modelos (SOKOLOVA; LAPALME, 2009). No entanto, em problemas de 

classificação de EEGs, onde classes desbalanceadas são comuns, a acurácia pode 

superestimar o desempenho de um modelo que favorece a classe majoritária, 

negligenciando erros nas classes minoritárias, conforme observado em estudos de 

classificação de EEGs para diagnóstico neurológico (ROY et al., 2019). 

Para mitigar essa limitação, foram empregadas outras métricas, como 

precisão e recall (revocação), que avaliam o desempenho do modelo em cada classe 

individualmente (POWERS, 2020). A precisão, também conhecida como valor 

preditivo positivo, mede a proporção de amostras classificadas como pertencentes a 

uma classe que realmente pertencem a essa classe, enquanto o recall, também 

conhecido como sensibilidade, indica a proporção de amostras de uma classe que 

foram corretamente identificadas. Essas métricas são particularmente úteis para 

avaliar a capacidade do modelo de identificar corretamente casos raros, como 

pacientes com maior chance de recuperação. 

De forma inversa ao recall, a especificidade mede a proporção de amostras 

classificadas como NÃO pertencente a uma classe (conhecida como valor preditivo 

negativo) (POWERS, 2020). 

Adicionalmente, o F1 score, que representa a média harmônica entre precisão 

e recall, foi utilizado para combinar essas duas métricas em uma medida única, 

oferecendo uma visão balanceada do desempenho por classe (GOUTTE; GAUSSIER, 

2005). Em cenários desbalanceados, o F1 score (macro) foi calculado como a média 

dos F1 scores de cada classe, e o F1 score (weighted) pelo suporte (número de 

amostras) de cada classe, proporcionando uma métrica global mais representativa. 

Para o cálculo dessas métricas, utiliza-se como base a matriz de confusão, 

ilustrada na Tabela 5 para o caso de uma classificação binária. Essa matriz permite 

visualizar o desempenho do modelo, apresentando as quantidades de verdadeiros 
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positivos, verdadeiros negativos, falsos positivos e falsos negativos, que servem de 

base para o cálculo das métricas de avaliação. 

Tabela 5 - Exemplo de matriz de confusão de uma classificação binaria 

Classe 

Dado 

Classificação 

Positiva 

Classificação 

Negativa 

   

Classe A 
verdadeiro 

positivo (vp) 

falso negativo 

(fn) 

 
vp fn 

Classe B 
falso positivo 

(fp) 

verdadeiro 

negativo (vn) 

 
fp vn 

 

As fórmulas matemáticas correspondentes a cada uma das métricas 

mencionadas são apresentadas na Tabela 6. 

Tabela 6 - Formulas matemáticas das métricas 

Métrica Formula 

Acurácia 
𝑣𝑝 + 𝑣𝑛

𝑣𝑝 + 𝑓𝑛 + 𝑓𝑝 + 𝑣𝑛
 

Precisão 
𝑣𝑝

𝑣𝑝 + 𝑓𝑝
 

Recall 

(revocação) 

𝑣𝑝

𝑣𝑝 + 𝑓𝑛
 

Especificidade 
𝑣𝑛

𝑓𝑝 + 𝑣𝑛
 

F1 score 
2 × 𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

As métricas de desempenho selecionadas, incluindo acurácia, precisão, 

recall, especificidade, F1 score (macro e weighted) baseadas na matriz de confusão, 

proporcionaram uma avaliação equilibrada dos modelos de classificação de EEGs, 
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Essa abordagem, fundamentada em medidas que analisam tanto o desempenho 

global quanto o comportamento por classe, é essencial para identificar a capacidade 

dos modelos em detectar casos raros, como pacientes com maior chance de 

recuperação, garantindo uma análise confiável para aplicações clínicas. 

5.5 QUANTIFICADORES ADICIONADOS PARA ANÁLISE 

5.5.1 PCP 

Detalhado no item 2.1.1 Porcentagem de Contribuição de Potência (PCP).  

5.5.2 FM 

Apresentado no item 2.1.2 Frequência Mediana (FM). 

5.5.3 Coerência 

Discutida no item 2.1.3 Coerência. 

5.5.4 Eletrodos Região Frontal 

A região frontal do cérebro, destacada em vermelho na Figura 30, abrange os 

eletrodos FP1, FP2, F7, F8, F3, F4 e Fz, conforme o sistema internacional 10-20 de 

posicionamento de eletrodos. Esses eletrodos estão localizados na parte anterior do 

couro cabeludo, cobrindo o lobo frontal, que desempenha um papel central em uma 

ampla gama de funções cognitivas e comportamentais. O lobo frontal é responsável 

por processos como raciocínio, planejamento, tomada de decisão, controle inibitório, 

regulação emocional, atenção, memória de trabalho, comportamento social e controle 

motor voluntário (FIRAT, 2019).  

Áreas específicas dessa região, como o córtex pré-frontal, são cruciais para 

as funções executivas, que incluem a capacidade de organizar, monitorar e adaptar 

comportamentos para atingir objetivos (MILLER; COHEN, 2001), enquanto a área de 
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Broca contribui para a produção da linguagem (DRONKERS et al., 2007) e o córtex 

motor gerencia os movimentos voluntários. 

 

Figura 30 - Representação esquemática do sistema 10-20 de posicionamento de eletrodos para 
EEG, com a região frontal destacada em vermelho. Os eletrodos FP1, FP2, F7, F8, F3, F4 e FZ 

correspondem à área frontal 

5.5.5 Eletrodos Região Central 

A região central do cérebro, destacada em amarelo na Figura 31, abrange os 

eletrodos C3, C4 e Cz, conforme o sistema internacional 10-20 de posicionamento de 

eletrodos. Esses eletrodos estão posicionados ao longo da linha média e das áreas 

laterais do couro cabeludo, cobrindo a região central do cérebro, que inclui o giro pré-

central e pós-central, localizados respectivamente anterior e posterior ao sulco central 

(ou fissura de Rolando). 

Essa região é responsável por funções sensoriais e motoras primárias: o giro 

pré-central (logo à frente do sulco central), que contém o córtex motor primário, 

gerencia os movimentos voluntários do corpo contralateral, enquanto o giro pós-

central (logo atrás do sulco central), que abrange o córtex somatossensorial primário, 

processa informações sensoriais táteis, de pressão, dor e temperatura (KANDEL, 
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2012). Estes eletrodos centrais, são amplamente utilizados em estudos de imagética 

motora e em interfaces cérebro-computador (BCI), pois captam oscilações 

relacionadas à preparação, execução e imaginação de movimentos (WANG et al., 

2007). 

 

Figura 31 - Representação esquemática do sistema 10-20 de posicionamento de eletrodos para 
EEG, com a região central destacada em amarelo. Os eletrodos C3, C4 e CZ correspondem à 

área central, localizada ao longo da linha média e das áreas laterais do couro cabeludo 

5.5.6 Eletrodos Região Occipital 

A região occipital do cérebro, destacada em verde na Figura 32, abrange os 

eletrodos O1, O2 e OZ, conforme o sistema internacional 10-20 de posicionamento de 

eletrodos. Esses eletrodos estão posicionados na parte posterior do couro cabeludo, 

cobrindo o lobo occipital, que é primariamente responsável pelo processamento 

visual. O córtex visual primário (área de Brodmann 17), localizado no lobo occipital, 

desempenha um papel central na percepção visual, incluindo o reconhecimento de 

formas, cores, movimentos e profundidade (KANDEL, 2012).  

Suas funções incluem a recepção e decodificação de estímulos visuais, 

mapeamento do campo visual, análise de cor, forma, distância, tamanho e 
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profundidade dos objetos, além do reconhecimento de faces e objetos familiares. A 

atividade elétrica registrada nos eletrodos occipitais reflete, portanto, o funcionamento 

do sistema visual e é fundamental tanto para a investigação de processos perceptivos 

quanto para a detecção de alterações neurológicas que afetam a visão. 

 

Figura 32 - Representação esquemática do sistema 10-20 de posicionamento de eletrodos para 
EEG, com a região occipital destacada em verde. Os eletrodos O1, O2 e OZ correspondem à 
área occipital, localizada na parte posterior do couro cabeludo, abrangendo o lobo occipital 

5.5.7 Eletrodos Região Parietal 

A região parietal do cérebro, destacada em azul na Figura 33, abrange os 

eletrodos P3, P4 e PZ, conforme o sistema internacional 10-20 de posicionamento de 

eletrodos. Esses eletrodos estão posicionados na parte superior e posterior do couro 

cabeludo, cobrindo o lobo parietal, que desempenha um papel essencial na integração 

sensorial e na percepção espacial.  

O lobo parietal é responsável por funções como o processamento de 

informações somatossensoriais (como tato, temperatura, pressão e dor), a 

coordenação visuomotora, a orientação espacial, a atenção e a integração de 
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estímulos sensoriais para a construção de uma representação do ambiente (KANDEL, 

2012). 

Além disso, áreas específicas do lobo parietal, como o córtex parietal 

posterior, estão envolvidas na memória de trabalho e no processamento de tarefas 

que requerem atenção espacial (CORBETTA; SHULMAN, 2002). Permitindo o 

reconhecimento de objetos por meio do tato, a orientação espacial, a percepção da 

localização das partes do corpo e a integração de informações sensoriais com a visão 

e a audição. Além disso, o lobo parietal está envolvido em processos cognitivos como 

a atenção, a linguagem e a memória (CORBETTA; SHULMAN, 2002). 

 

Figura 33 - Representação esquemática do sistema 10-20 de posicionamento de eletrodos para 
EEG, com a região parietal destacada em azul. Os eletrodos P3, P4 e PZ correspondem à área 

parietal, localizada na parte superior e posterior do couro cabeludo, abrangendo o lobo 
parietal 

5.5.8 Eletrodos Região Temporal 

A região temporal do cérebro, destacada em laranja na Figura 34, abrange os 

eletrodos T3, T4, T5 e T6, conforme o sistema internacional 10-20 de posicionamento 

de eletrodos. Esses eletrodos estão posicionados nas áreas laterais do couro 
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cabeludo, cobrindo o lobo temporal, que desempenha um papel fundamental em 

funções como audição, linguagem, memória e emoção.  

O lobo temporal contém o córtex auditivo primário (área de Brodmann 41 e 

42), responsável pelo processamento de estímulos auditivos, e áreas associativas 

envolvidas na compreensão da linguagem, como a área de Wernicke no hemisfério 

dominante (KANDEL, 2012). Além disso, o lobo temporal medial, que inclui o 

hipocampo e a amígdala, é crucial para a formação de memórias declarativas e a 

regulação emocional (SQUIRE; ZOLA-MORGAN, 1991). 

 

Figura 34 - Representação esquemática do sistema 10-20 de posicionamento de eletrodos para 
EEG, com a região temporal destacada em laranja. Os eletrodos T3, T4, T5 e T6 correspondem 
à área temporal, localizada nas partes laterais do couro cabeludo, abrangendo o lobo temporal 

5.5.9 Common spatial pattern (CSP) 

O Common Spatial Pattern (CSP) é uma técnica amplamente empregada na 

análise de sinais de EEG para identificar padrões espaciais discriminativos entre 

diferentes classes de sinais cerebrais, como estados motores ou cognitivos distintos 

(BLANKERTZ et al., 2008). O algoritmo decompõe os sinais de EEG em componentes 

espaciais, otimizados para maximizar a variância de uma classe enquanto minimiza a 
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variância da outra, facilitando a distinção entre as condições neurológicas estudadas 

(RAMOSER; MULLER-GERKING; PFURTSCHELLER, 2000). 

Matematicamente, o CSP calcula filtros espaciais a partir das matrizes de 

covariância dos sinais de EEG, resolvendo um problema de autovalores generalizado. 

Esses filtros projetam os sinais originais em um novo espaço, realçando as 

características mais discriminativas e permitindo a classificação subsequente. A 

eficácia do CSP na extração de características espaciais relevantes o torna uma 

ferramenta valiosa em interfaces cérebro-computador (BCI) e na análise de padrões 

cerebrais em diversos contextos clínicos e de pesquisa, incluindo a detecção de 

estados alterados de consciência e a classificação de sinais de EEG em pacientes 

com distúrbios neurológicos (LOTTE et al., 2018). 

5.5.10 Decomposição de Wavelet 

A decomposição por wavelets é uma técnica de processamento de sinais que 

representa um sinal em termos de funções de base chamadas wavelets, que são 

oscilações localizadas no tempo e na frequência. Diferentemente da transformada de 

Fourier, que fornece apenas informações no domínio da frequência, a transformada 

wavelet discreta (DWT, Discrete Wavelet Transform) oferece uma análise multi-

resolução, capturando características temporais e frequenciais simultaneamente 

(MALLAT, 2008). Isso é particularmente útil para sinais não estacionários, como EEG, 

que exibem variações dinâmicas ao longo do tempo. A DWT decompõe o sinal em 

coeficientes de aproximação (componentes de baixa frequência) e coeficientes de 

detalhe (componentes de alta frequência) em diferentes níveis de resolução, 

permitindo a extração de padrões. 

A wavelet Daubechies 4 (Db4) é uma função wavelet ortogonal com suporte 

compacto, caracterizada por quatro coeficientes de filtro que definem sua capacidade 

de decompor sinais em componentes de baixa e alta frequência. Desenvolvida por 

Ingrid Daubechies, a Db4 possui quatro momentos nulos, o que permite a 

representação precisa de polinômios até o grau 3, tornando-a adequada para a 

análise de sinais complexos e não estacionários. Sua suavidade moderada, em 

comparação com wavelets mais simples, como a Haar, aliada à eficiência 

computacional, captura variações temporais e frequenciais, por exemplo, picos ou 
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ondas específicas, em diferentes escalas de resolução (DAUBECHIES, 1992). Dessa 

forma, a Db4 proporciona uma análise multirresolução robusta, isolando 

características do sinal que podem indicar alterações no estado neurológico, 

capturando dinâmicas espaço-temporais críticas frequentemente obscurecidas em 

sinais bruto. 

5.6 ABREVIATURAS UTILIZADAS NO PROCESSAMENTO 

Para melhorar a visualização das tabelas com os resultados, foram adotadas 

as seguintes abreviaturas (Tabela 7): 

Tabela 7 - Abreviaturas utilizadas para os resultados dos modelos de IA 

Abreviatura Significado 

MCL 
Modelo utilizando uma camada covulocional (CNN) seguida de uma 
camada recorrente de LSTM 

MMLP Modelo utilizando Multi Layer Perceptron (MLP) 

MT Modelo utilizando camadas de Transformer 

MCT 
Modelo utilizando uma camada covulocional (CNN) seguida de 
camadas de Transformer  

MCLT 
Modelo utilizando uma camada covulocional (CNN), seguida de uma 
camada recorrente de LSTM, e por fim camadas de Transformer 

CP 
Representa o processamento utilizando características do paciente 
(sexo, idade, etiologia do coma), totalizando 3 atributos por 
época/segmento 

CE 

Representa o processamento utilizando características estatísticas 
do sinal (média, desvio padrão, maior amostra, menor amostra, 
variância), totalizando 5 atributos por eletrodo, e 100 atributos por 
época/segmento 

CPCP 

Representa o processamento utilizando características do 
quantificador de porcentagem de contribuição de potência (PCP) por 
banda de frequência, totalizando 4 a 7 atributos por eletrodo, e (80 a 
140 atributos por época/segmento 

CFM 

Representa o processamento utilizando características do 
quantificador frequência mediana (FM) por banda de frequência, 
totalizando 4 a 7 atributos por eletrodo, e 80 a 140 atributos por 
época/segmento. 

CC 
Representa o processamento utilizando características do 
quantificador Coerência, totalizando 129 atributos por eletrodo, e 
2580 atributos por época/segmento 
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Abreviatura Significado 

CPE 
Representa o processamento utilizando características do paciente e 
estatísticas do sinal, totalizando 103 atributos por época/segmento. 

CPPCP 
Representa o processamento utilizando características do paciente e 
do quantificador de PCP 

CPFM 
Representa o processamento utilizando características do paciente e 
do quantificador de FM 

CPC 
Representa o processamento utilizando características do paciente e 
do quantificador de Coerência 

CPEF 
Representa o processamento utilizando características do paciente e 
utilizando somente os eletrodos da região frontal (conforme Figura 
30) 

CPEC 
Representa o processamento utilizando características do paciente e 
utilizando somente os eletrodos da região central (conforme Figura 
31) 

CPEO 
Representa o processamento utilizando características do paciente e 
utilizando somente os eletrodos da região occipital (conforme Figura 
32) 

CPEP 
Representa o processamento utilizando características do paciente e 
utilizando somente os eletrodos da região parietal (conforme Figura 
33) 

CPET 
Representa o processamento utilizando características do paciente e 
utilizando somente os eletrodos da região temporal (conforme Figura 
34) 

CCSPX 
Representa o processamento utilizando características extraídas 
através do algoritmo Common Spatial Pattern (CSP) com X valores 

CDW4 
Representa o processamento utilizando características da 
Decomposição Wavelet, com 4 valores extraídos através do CSP 

REA 
Representa que o sinal foi reamostrado para frequência de 400 Hz 
com 801 pontos por época/segmento 

SREA 
Representa que o sinal NÃO foi reamostrado (SEM reamostragem) 
para frequência de 400 Hz com 801 pontos por época/segmento 

SPV 
Representa que o processamento foi realizado sem utilização de 
placa de vídeo 

Espec. Especificidade 

ALL 

Representa que o processamento foi realizado utilizando a base de 
dados completa, sem agrupar os exames pertencentes ao mesmo 
indivíduo, mesmo em cenários nos quais existem segmentos do 
mesmo exame associados a diferentes causalidades 

First Half 

Representa que o processamento foi realizado utilizando metade da 
base de dados, mantendo os segmentos de um mesmo exame 
associados exclusivamente a uma única causalidade (A ou B), 
preservando a proporção entre as causalidades e utilizando a 
primeira metade dos exames disponíveis. 
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Abreviatura Significado 

Other Half 

Representa que o processamento foi realizado utilizando metade da 
base de dados, mantendo os segmentos de um mesmo exame 
associados exclusivamente a uma única causalidade (A ou B), 
preservando a proporção entre as causalidades e utilizando a outra 
metade dos exames disponíveis. 

Same Half 
Representa que o processamento foi realizado utilizando metade da 
base de dados, mantendo os segmentos de um mesmo exame 
associados as causalidades A e B. 

ALL Group 

Representa que o processamento foi realizado utilizando a base de 
dados completa, assegurando que todas as causalidades associadas 
a um mesmo exame estejam presentes no mesmo conjunto de 
treinamento. Essa abordagem visa evitar a fragmentação dos dados 
relacionados a um único paciente, garantindo a integridade das 
informações durante o aprendizado do modelo 

5.7 CONFIGURAÇÃO DE EXECUÇÃO DOS TREINAMENTOS 

Os experimentos foram realizados em um notebook AVELL equipado com um 

processador Intel Core i7-12700H (2,30 GHz), 32 GB de memória RAM e uma placa 

de vídeo NVIDIA GeForce RTX 3060 (6 GB de VRAM). No entanto, durante o 

processamento das redes neurais com CNN e Transformer, foi necessário desabilitar 

a placa de vídeo devido à ausência de algoritmos determinísticos no driver da GPU, o 

que resultou no seguinte erro: [GPU MaxPool gradient ops do not yet have a 

deterministic XLA implementation]. Esse ajuste garantiu a estabilidade do 

treinamento, embora tenha impactado o tempo de execução dos modelos. 

5.8 PROGNÓSTICO CLÍNICO 

5.8.1 Definição do problema 

O prognóstico de pacientes em coma é um aspecto fundamental dos cuidados 

neurocríticos, influenciando diretamente a tomada de decisões médicas, o 

aconselhamento familiar e a alocação de recursos de saúde. A avaliação prognóstica 

busca determinar se o paciente recuperará a consciência (desfecho favorável) ou 

permanecerá em estado vegetativo persistente, ou ainda evoluirá para óbito (desfecho 



126 

desfavorável). Dentre as diversas ferramentas disponíveis para essa avaliação, a 

eletroencefalografia (EEG) destaca-se como um biomarcador essencial na predição 

de desfechos (WESTHALL et al., 2016), fornecendo informações em tempo real sobre 

a função cerebral e o potencial de recuperação. 

Os métodos prognósticos tradicionais baseiam-se em escores clínicos, 

reflexos do tronco encefálico e potenciais evocados somatossensoriais (SSEPs). No 

entanto, essas abordagens podem apresentar baixa sensibilidade em determinadas 

populações de pacientes (RUIJTER et al., 2019). A análise do EEG oferece uma 

avaliação mais dinâmica da atividade cerebral, permitindo a detecção de padrões 

como reatividade a estímulos, supressão em surtos (burst suppression) e a presença 

de oscilações patológicas, fortemente correlacionadas à recuperação neurológica 

(SANDRONI et al., 2020). Entretanto, a interpretação precisa e automatizada dos 

dados de EEG ainda constitui um desafio, dado que a atividade cerebral em pacientes 

comatosos é altamente complexa e varia significativamente ao longo do tempo. 

Diante desse cenário, este trabalho propõe a utilização de técnicas de 

inteligência artificial para prever o prognóstico clínico dos pacientes, classificando-os 

em desfechos favoráveis ou desfavoráveis a partir dos exames de EEG. Essa 

abordagem visa aprimorar a acurácia e a objetividade na avaliação prognóstica, 

contribuindo para a tomada de decisões clínicas mais informadas e para a melhoria 

do manejo dos pacientes em coma. 

5.8.2 Base de dados 

A base de dados utilizada neste estudo foi coletada no Hospital de Clínicas 

da Universidade Federal de Uberlândia (HC-UFU) entre os anos de 2010 e 2020, 

especificamente na UTI Adulto, com aprovação do Comitê de Ética em Pesquisa da 

instituição (protocolo de pesquisa número 369/11 (ANEXO A) e 2.570.022 (ANEXO 

B)) (RAMOS, 2017) (RAMOS et al., 2018). 

Os registros de EEG foram obtidos utilizando o amplificador de sinais 

biológicos BrainNet BNT-EEG, que conta com 21 canais, sendo 20 dedicados à 

aquisição digital de sinais EEG e um canal adicional para registro de ECG, seguindo 

o padrão internacional de posicionamento de eletrodos 10-20. Foram aplicados filtros 
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passa-alta de 1 Hz e passa-baixa de 35 Hz, e taxas de amostragem iguais 100 Hz (35 

exames), 200 Hz (16 exames), 400 Hz (7 exames) e 600 Hz (2 exames). 

Para garantir a qualidade e a relevância dos dados, foram estabelecidos 

critérios de inclusão, que são listados a seguir:  

• Apenas pacientes em estado de coma; 

• Com idade igual ou superior a 18 anos,  

• Escala de coma se aplicável, não deve ser superior a oito pontos; 

• Os exames devem ter duração mínima de 20 minutos; 

• Ser clinicamente viáveis, conforme avaliação de um neurologista 

especializado; 

• Durante as aquisições, os pacientes não terem sido submetidos a estímulos 

externos; 

• Cada registro deveria conter pelo menos dez épocas/segmentos de dois 

segundos livres de artefatos visuais, selecionadas por neurologistas 

especializado; 

• No máximo três eletrodos poderiam ser considerados inadequados para o 

processamento, conforme apontado pelo neurologista ou devido a questões 

de sinal ruido de 60 Hz; 

• A coleta do sinal de EEG deve utilizar um amplificador compatível com o 

formato empregado na pesquisa; 

• Deve conter informações do paciente, como, número do prontuário medico, 

data da coleta, motivo da solicitação, sexo, idade, nível de consciência, 

etiologia do coma, e prognostico (favorável ou desfavorável). 

Para cada paciente, um neurologista selecionou 10 épocas/segmentos de 2 

segundos dos registros de EEG, priorizando segmentos com o menor número possível 

de artefatos e representativos da condição neurológica do indivíduo. O conjunto de 

dados também inclui metadados clínicos relevantes, como etiologia do coma, idade, 

sexo e desfecho clínico, classificado como favorável (sobreviventes) ou desfavorável 

(óbitos).  

A idade média dos pacientes foi de 49,16 ± 19,18 anos, sendo 44 do sexo 

masculino e 16 do sexo feminino. Para fins de treinamento dos modelos, foram 

consideradas apenas as nove primeiras épocas/segmentos de cada exame, de modo 
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a evitar viés na validação, sendo a predição final do paciente determinada pela moda 

das classificações dessas épocas/segmentos sendo FAVORÁVEL ou 

DESFAVORÁVEL. 

Devido à heterogeneidade das frequências de amostragem presentes no 

conjunto de dados e às limitações de alguns modelos da literatura que não suportam 

taxas variáveis, os sinais e alguns treinamentos foram reamostrados para uma 

frequência padrão de 400 Hz. Para sinais com taxas inferiores, novas amostras foram 

geradas por interpolação; para sinais com taxas superiores, as amostras foram 

reduzidas (downsampled) para adequação à frequência alvo. 

Esses procedimentos asseguraram a padronização e a qualidade dos dados, 

tornando-os adequados para a análise e o desenvolvimento dos modelos de 

classificação de EEG em pacientes com coma. 

5.8.3 Resultados 

Os resultados dos modelos treinados seguem descritos detalhadamente no 

APÊNDICE I.  

5.8.4 Discussão 

A análise dos modelos de inteligência artificial para o prognóstico de morte 

com base em sinais de EEG, apresentada no APÊNDICE I, revela variações 

significativas de desempenho entre diferentes abordagens, destacando a relevância 

da escolha do modelo e de sua configuração para otimizar as métricas como acurácia, 

F1 score, precisão, entre outras. Os modelos baseados em MCL (com camadas de 

CNN e LSTM), superam consistentemente os modelos MMLP (Multilayer Perceptron), 

especialmente quando o sinal não é reamostrado (SREA). Esses resultados 

evidenciam a capacidade superior da arquitetura MCL em capturar padrões temporais 

e espaciais complexos nos dados eletrofisiológicos, conforme destacado na Tabela 8 

que mostra os modelos que apresentaram os melhores resultados, e na Figura 46 

pode-se visualizar o comportamento das métricas dos modelos em termos de cada 

fold de treinamento. 
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Tabela 8 - Resultados do treinamento da base de dados Prognóstico Clinico com os melhores 
resultados, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CP SREA 0.87±0.04 0.86±0.04 0.92±0.10 0.83±0.15 0.87±0.04 533 

MCL CC 0.88±0.09 0.88±0.09 0.97±0.06 0.80±0.19 0.88±0.09 1055 

MCL CPEC 0.87±0.09 0.87±0.09 0.88±0.10 0.87±0.13 0.87±0.09 671 

MCL CE  

Conv1D (64/128, 
kernel 5/3, para 

128/256, kernel 3/7) 

0.75±0.11 0.75±0.10 0.80±0.18 0.73±0.13 0.75±0.11 859 

ERTNET 

(LIU et al., 
2024) 

0.73±0.18 0.73±0.18 0.76±0.22 0.77±0.17 0.73±0.18 284 

 

 

Figura 35 - Evolução de cada FOLD do treinamento da base de dados Prognóstico Clinico com 
os melhores resultados 
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O modelo CNN-LSTM com características de coerência (MCL CC), apresenta 

o melhor desempenho geral, com um F1 score (macro) de 0,88 ± 0,09 e precisão de 

0,97 ± 0,06, embora exija um tempo de treinamento elevado (1055 segundos). Esses 

resultados indicam um trade-off entre desempenho preditivo e eficiência 

computacional, sugerindo que a inclusão do quantificador de coerência, calculado em 

tempo de execução, pode comprometer marginalmente a eficiência em comparação 

ao modelo Multi Layer Perceptron com características do paciente sem reamostragem 

do sinal (MMLP CP SREA) (APÊNDICE I - Tabela 15), que, apesar de ser o mais 

rápido, com treinamento de apenas 72 segundos, apresenta métricas inferiores, com 

acurácia de 0,67 ± 0,09. Essa relação ressalta a importância do equilíbrio entre 

precisão e eficiência computacional no contexto clínico. 

A incorporação da wavelet Daubechies 4 (Db4) (APÊNDICE I - Tabela 18), no 

modelo MCL CDW4, que apresentou acurácia de 0.75 ± 0.11, evidencia a importância 

de utilizar wavelets para extrair características temporais e frequenciais em sinais 

EEG, especialmente devido à natureza não estacionária desses sinais. Em contraste, 

modelos baseados em arquiteturas mais complexas, como ResNet50 e EfficientNet 

(APÊNDICE I - Tabela 19) apresentaram desempenho inferior (acurácia de 0.45 ± 

0.10 e 0.43 ± 0.24, respectivamente), além de demandarem maior tempo de 

treinamento, indicando que a complexidade arquitetural nem sempre se traduz em 

melhor desempenho para essa tarefa específica. 

A utilização de subconjuntos específicos de canais eletroencefalográficos, 

correspondentes a regiões cerebrais delimitadas, promove elevado desempenho 

preditivo e reduz significativamente a quantidade de dados processados, acelerando 

o treinamento dos modelos. Por exemplo, o modelo MCL CPEC, focado na região 

central, alcança acurácia de 0,87 ± 0,09 com tempo de treinamento de 671 segundos, 

em contraste com o modelo MCL CC, que utiliza todos os canais e obtém acurácia de 

0,88 ± 0,09, mas exige 1055 segundos. Essa redução na dimensionalidade dos dados 

diminui a complexidade computacional, permitindo a análise de padrões 

eletrofisiológicos específicos de áreas cerebrais relevantes para o prognóstico, sem 

interferências de ruídos ou informações redundantes. Assim, a regionalização dos 

canais otimiza o equilíbrio entre precisão e eficiência, essencial para aplicações 

clínicas em tempo real. 
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5.9 TRANSFORMER E PROGNÓSTICO CLÍNICO 

5.9.1 Definição do problema 

O problema abordado nesta seção é o mesmo descrito na Seção 5.8 

Prognóstico Clínico, que consiste em prever o desfecho clínico (favorável ou 

desfavorável) de pacientes em coma a partir da classificação dos sinais de EEG. 

Entretanto, nesta etapa, adota-se uma abordagem diferenciada, empregando o 

modelo Transformer para explorar sua capacidade baseada em atenção de capturar 

padrões complexos nos sinais de EEG, visando aprimorar a precisão do prognóstico. 

5.9.2 Base de dados 

A base de dados utilizada nesta seção é a mesma apresentada em 5.8 

Prognóstico Clínico, que contém sinais de EEG de pacientes em coma. 

5.9.3 Descrição do Modelo 

Os Transformers têm demonstrado potencial significativo em aplicações de 

séries temporais e biomédicas devido à sua capacidade de capturar dependências de 

longo alcance e padrões espaço-temporais complexos. 

Nesse contexto, foram propostas três arquiteturas: 

1. MT (Modelo Transformer), baseada exclusivamente em camadas de 

Transformer, variando apenas o número de camadas; 

2. Modelo Transformer com Características adicionais, idêntica ao MT, porém 

com a adição de características extras (e.g., idade, sexo, métricas estatísticas 

do sinal) antes da camada densa de classificação; 

3. MCT (Modelo CNN-Transformer), composta por camadas convolucionais 

(CNN) seguidas de camadas de Transformer, sendo estruturalmente 

semelhante à arquitetura MCL. 

A primeira arquitetura (MT), conforme ilustrada na Figura 36, estrutura-se em 

quatro componentes principais: 
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• Registro de EEG: Esta etapa consiste na conexão dos eletrodos ao couro 

cabeludo do paciente, registrando o sinal de EEG por meio de um 

dispositivo apropriado, conforme descrito anteriormente; 

• Seleção de segmentos e preparação dos dados: Nessa fase, um 

neurologista analisa o registro de EEG e seleciona 10 segmentos de 2 

segundos cada, garantindo mínima presença de artefatos e 

representatividade da condição neurológica do paciente; 

• Arquitetura baseada em Transformer: construído com base no 

TransformerEncoder, composto por múltiplos mecanismos de Self-

Attention, camadas Feed-Forward e camadas de normalização. Esse 

esquema permite a modelagem eficiente de dependências espaço-

temporais nos sinais de EEG. Para avaliar o desempenho, foram realizados 

diversos treinamentos com ajustes em diferentes hiperparâmetros, como 

número de camadas de TransformerEncoder, quantidade de cabeças de 

atenção, dimensão da camada intermediária, taxa de dropout e número de 

épocas de treinamento; 

• Classificador: A etapa de classificação consiste em uma camada de 

GlobalAveragePooling para redução da dimensionalidade dos dados, 

seguida de uma camada densa que realiza a classificação. Ao final, o 

modelo gera um vetor indicando as probabilidades de cada rótulo. 

 

Figura 36 - Arquitetura IA (Modelo Transformer MT) utilizando Transformers através de sinais 
de EEG como entrada para camadas de TransformerEncoder  
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Para modelar a correlação entre os sinais de EEG e a classificação, o modelo 

proposto aprende representações latentes dos sinais ao capturar dependências 

temporais e espaciais. O conjunto de registros Xj
(e,w)(𝑠) é representado como uma 

sequência temporal multidimensional, na qual cada eletrodo é tratado como um canal 

independente. Essa sequência é processada diretamente por um bloco 

TransformerEncoder, que captura dependências de longo alcance entre os sinais ao 

longo do tempo e entre diferentes eletrodos, dispensando operações locais como 

convoluções. As camadas de saída do TransformerEncoder são calculadas conforme 

a Equação 10: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑛)𝑊0 (10) 

Onde 𝑛 denota o número de cabeças de atenção e 𝑊𝑂 ∈  ℝℎ 𝑑𝑣× 𝑑𝑚𝑜𝑑𝑒𝑙. No 

qual cada cabeça de atenção é calculada de acordo com a Equação 11: 

 ℎ𝑒𝑎𝑑𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (11) 

As matrizes de projeção são parametrizadas como 𝑊𝑖
𝑄 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙× 𝑑𝑘 , 𝑊𝑖

𝐾 ∈

 ℝ𝑑𝑚𝑜𝑑𝑒𝑙× 𝑑𝑘 , e 𝑊𝑖
𝑉 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙× 𝑑𝑣. O próprio mecanismo de self-attention é definido pela 

Equação 12: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 𝐾𝑇

√𝑑𝑘

) 𝑉 (12) 

Onde 𝑄 (queries/consultas), 𝐾 (keys/chaves) e 𝑉 (values/valores) são 

representações do sinal de entrada, e 𝑑𝑘 é a dimensão das chaves. A normalização 

por √𝑑𝑘 melhora a estabilidade dos gradientes durante o treinamento. 

Em resumo, o modelo processa uma matriz de entrada tridimensional de 

formato (𝑗 ×  𝑤, 𝑠, 𝑒), em que 𝑗 é o número de pacientes, 𝑤 o número de segmentos 

por paciente, 𝑠 o número de amostras por segmento e 𝑒 o número de canais de EEG 

(eletrodos). Cada amostra na dimensão temporal atua como um token no contexto do 

TransformerEncoder, formando uma sequência de 𝑠 tokens para cada segmento. 

O módulo TransformerEncoder analisa esses tokens e emprega o mecanismo 

de atenção MultiHead com 𝑑𝑚𝑜𝑑𝑒𝑙 = 𝑒. Essa dimensão é dividida entre 𝑁_𝐻 cabeças 

de atenção, cada uma operando em um subespaço de dimensão 𝑑𝑘 =  𝑑𝑣 =  ⌊
𝑒

𝑁_𝐻
⌋, 



134 

considerando somente a parte inteira da divisão. Por meio desse mecanismo, o 

modelo captura relações temporais e espaciais, permitindo enfatizar as características 

mais relevantes, preservando o formato original da entrada (𝑗 ×  𝑤, 𝑠, 𝑒). 

Posteriormente, aplica-se o globalAveragePooling na dimensão temporal, reduzindo 

cada segmento a uma matriz de formato (𝑗 ×  𝑤, 𝑒). Por fim, uma camada densa 

transforma essa representação em uma matriz de saída de formato (𝑗 ×  𝑤, 𝑌), onde 

𝑌 representa a quantidade de categorias, fornecendo assim as probabilidades 

previstas para cada segmento pertencer às categorias da classificação. 

A segunda arquitetura, denominada Modelo Transformer com características 

adicionais, conforme ilustrado na Figura 37, é bastante semelhante ao modelo MT. A 

principal diferença consiste na incorporação de informações extras, como idade, sexo 

e métricas estatísticas do sinal, que são adicionadas antes da camada densa de 

classificação, com o objetivo de aprimorar os resultados da classificação. 

 

Figura 37 - Arquitetura IA (Modelo Transformer MT) utilizando Transformers através de sinais 
de EEG como entrada para camadas de TransformerEncoder, com as características extras 

adicionadas na camada densa 

Por fim, a terceira arquitetura, denominada Modelo CNN-Transformer (MCT), 

também segue o mesmo design do Modelo Transformer com características 

adicionais. A única diferença é que, antes das camadas de TransformerEnconder, é 

inserida uma camada convolucional (CNN), conforme ilustrado na Figura 29. Essa 
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variação da arquitetura visa aprimorar o desempenho do modelo, buscando a melhor 

configuração possível para a tarefa. 

 

Figura 38 - Arquitetura IA (Modelo CNN-Transformer MCT) utilizando CNN e Transformers 
através de sinais de EEG como entrada para o CNN seguido das camadas de 

TransformerEncoder, com as características extras adicionadas na camada densa 

Para utilizar o Transformer na infraestrutura existente, foi necessário realizar 

o downgrade do Python da versão 3.12 para 3.11, devido à incompatibilidade da 

biblioteca TensorFlow Text com a versão mais recente (3.12). Além disso, o 

processamento via CUDA (GPU) foi desabilitado porque as operações de gradiente 

do MaxPool não possuem implementação determinística com XLA (Accelerated Linear 

Algebra) quando usadas em arquiteturas CNN e Transformer. 

Para melhor compreensão das tabelas de resultados, observe a legenda a 

seguir (Tabela 9): 

Tabela 9 - Legenda para os hiperparametros do modelo Transformer 

Nome Coluna Descrição 

N_L Número de camadas (layers) de Transformer 

INT_D Dimensão da camada intermediaria do Transformer 

DOUT Dropout do Transformer 

N_H Número de cabeças do Transformer 

EPC Número de épocas utilizadas no treinamento 
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5.9.4 Resultados 

Os resultados dos modelos treinados seguem descritos detalhadamente no 

APÊNDICE J. 

5.9.5 Discussão 

Com base nas diversas configurações de treinamento avaliadas, esta seção 

discute os principais resultados obtidos com as arquiteturas baseadas em 

TransformerEncoder. A Tabela 10 apresenta uma síntese dos melhores desempenhos 

alcançados, destacando as combinações de hiperparâmetros que maximizam as 

métricas de desempenho. A análise detalhada desses resultados permite 

compreender como os hiperparâmetros de número de camadas (N_L), dimensão 

intermediária (INT_D), dropout (DOUT), número de cabeças de atenção (𝑁_𝐻), e 

quantidade de épocas de treinamento (EPC) influenciam o desempenho dos modelos, 

oferecendo insights para otimização futura e aplicações práticas. O comportamento 

das métricas dos modelos por fold de treinamento é visualizado na Figura 39 e Figura 

40. 

Tabela 10 - Resultado Prognostico Clinico usando Transformers variando os hiperparâmetros 
com os melhores resultados, em negrito se destaca o melhor modelo para MT e MCT 
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MCT 8 32 3 0.05 30 0.78±0.07 0.78±0.07 0.83±0.14 0.77±0.13 0.78±0.07 1284 

MCT CP 8 32 3 0.1 30 0.80±0.10 0.80±0.10 0.82±0.10 0.77±0.17 0.80±0.10 1349 

MCT CE 8 64 1 0.1 30 0.77±0.14 0.77±0.14 0.76±0.14 0.80±0.16 0.77±0.14 863 

MCT CPCP 4 64 3 0.1 30 0.78±0.11 0.78±0.11 0.80±0.13 0.77±0.13 0.78±0.11 1976 

MCT CFM 8 128 3 0.05 30 0.80±0.07 0.80±0.07 0.83±0.09 0.77±0.08 0.80±0.07 2014 

MCT CC 4 64 1 0.1 30 0.87±0.09 0.86±0.09 0.95±0.10 0.80±0.19 0.87±0.09 1281 

MCT CPE 4 256 3 0.05 30 0.78±0.09 0.78±0.09 0.76±0.07 0.83±0.11 0.78±0.09 1217 

MCT CPPCP 8 256 3 0.05 30 0.83±0.05 0.83±0.05 0.83±0.02 0.83±0.11 0.83±0.05 1878 

MCT CPFM 
SREA 

4 128 3 0.05 30 0.87±0.04 0.87±0.04 0.94±0.08 0.80±0.13 0.87±0.04 736 

MCT CPC 4 32 3 0.1 30 0.90±0.06 0.90±0.06 0.97±0.06 0.83±0.15 0.90±0.06 1526 

MT 8 64 3 0.1 30 0.88±0.09 0.88±0.09 0.97±0.06 0.80±0.19 0.88±0.09 503 

MT CP 4 256 3 0.05 30 0.87±0.07 0.87±0.07 0.96±0.08 0.77±0.08 0.87±0.07 426 
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MT CE 8 256 3 0.05 30 0.85±0.10 0.84±0.10 0.93±0.13 0.80±0.19 0.85±0.10 685 

MT CPCP 8 256 3 0.05 30 0.87±0.04 0.86±0.04 0.95±0.10 0.80±0.13 0.87±0.04 1000 

MT CFM 8 256 3 0.05 30 0.83±0.05 0.83±0.05 0.96±0.08 0.70±0.07 0.83±0.05 950 

MT CC 4 256 1 0.1 30 0.87±0.11 0.86±0.12 0.92±0.10 0.80±0.19 0.87±0.11 632 

MT CPE 4 128 3 0.05 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 413 

MT CPPCP 8 64 3 0.1 30 0.83±0.08 0.83±0.08 0.93±0.13 0.77±0.17 0.83±0.08 1046 

MT CPFM 
SPV 

4 64 3 0.1 30 0.83±0.09 0.83±0.10 0.89±0.10 0.77±0.17 0.83±0.09 2626 

MT CPC 8 32 3 0.05 30 0.87±0.04 0.87±0.04 0.91±0.07 0.83±0.15 0.87±0.04 1161 

 

 

Figura 39 - Evolução de cada FOLD do treinamento da base de dados Prognóstico Clinico MCT 
com os melhores resultados  
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Figura 40 - Evolução de cada FOLD do treinamento da base de dados Prognóstico Clinico MT 
com os melhores resultados 

Os modelos MCT e MT demonstraram desempenhos distintos dependendo 

das características processadas e configurações de hiperparâmetros. O modelo  

CNN-Transformer com características de paciente e coerência (MCT CPC) (N_H =

4, INT_D = 32, N_L = 3, DOUT = 0,1, EPC = 30) destacou-se como o modelo mais 

preciso, alcançando 0,90 de acurácia (com precisão de 0,97), porém com tempo de 

treinamento elevado (1526 segundos). Em contrapartida, o modelo Transformer (MT) 

padrão (sem características adicionais) obteve 0,88 de acurácia em apenas 503 

segundos, evidenciando sua eficiência computacional.  
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Configurações com N_L = 3 e INT_D ≤ 128 tendem a otimizar o desempenho, 

enquanto N_H = 8 não melhora consistentemente os resultados em comparação 

com N_H = 4. Nota-se que os modelos MCT tendem a exigir mais recursos 

computacionais para resultados comparáveis. Isso indica que, embora arquiteturas 

mais complexas (MCT) possam alcançar picos de precisão, as versões otimizadas 

(MT) oferecem um melhor custo-benefício para aplicações práticas. 

Para analisar a dimensionalidade e a natureza esparsa dos dados de EEG, 

utilizou-se a técnica de visualização t-SNE (t-distributed Stochastic Neighbor 

Embedding), que reduz dados de alta dimensão para representações bidimensionais, 

preservando as relações de proximidade entre os pontos (VAN DER MAATEN; 

HINTON, 2008). Inicialmente, os dados brutos do sinal EEG associados ao melhor 

resultado MT foram visualizados com t-SNE (Figura 41), fornecendo uma percepção 

da distribuição original dos dados. Em seguida, aplicou-se a mesma técnica para 

visualizar a versão latente dos dados após a passagem pelas camadas do 

TransformerEncoder em cada Fold, evidenciando como o modelo promoveu uma 

segregação mais clara dos padrões, destacando seu papel na melhoria da 

separabilidade e representatividade dos dados para a tarefa de classificação. Essa 

evolução na distribuição dos dados pode ser visualizada na Figura 41, Figura 42 e 

Figura 43. 

 

Figura 41 - Visualização t-SNE dos dados brutos do EEG e a visão latente após a aplicação das 
camadas de TransformerEnconder do melhor resultado do Modelo MT (𝐍_𝐇 = 𝟖, 𝐈𝐍𝐓_𝐃 =

𝟔𝟒, 𝐍_𝐋 = 𝟑, 𝐃𝐎𝐔𝐓 = 𝟎, 𝟏 𝐞 𝐄𝐏𝐂 = 𝟑𝟎) para o primeiro Fold 
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Figura 42 - Visualização t-SNE latente após a aplicação das camadas de TransformerEnconder 
do melhor resultado do Modelo MT (𝐍_𝐇 = 𝟖, 𝐈𝐍𝐓_𝐃 = 𝟔𝟒, 𝐍_𝐋 = 𝟑, 𝐃𝐎𝐔𝐓 = 𝟎, 𝟏 𝐞 𝐄𝐏𝐂 = 𝟑𝟎) para 

o segundo e terceiro Fold 

 

Figura 43 - Visualização t-SNE latente após a aplicação das camadas de TransformerEnconder 
do melhor resultado do Modelo MT (𝐍_𝐇 = 𝟖, 𝐈𝐍𝐓_𝐃 = 𝟔𝟒, 𝐍_𝐋 = 𝟑, 𝐃𝐎𝐔𝐓 = 𝟎, 𝟏 𝐞 𝐄𝐏𝐂 = 𝟑𝟎) para 

o quarto e quinto Fold 

Os achados, consolidados na Tabela 10, Figura 41, Figura 42 e Figura 43, 

sugerem que a arquitetura Transformer é robusta para o prognóstico clinico com EEG, 

mas requer otimização cuidadosa de hiperparâmetros e seleção de características 

para atender às demandas clínicas. 
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5.10 ETIOLOGIA DO COMA 

5.10.1 Definição do problema 

A etiologia do coma abrange uma ampla variedade de condições subjacentes, 

tornando-se um desafio clínico significativo nos cuidados neurocríticos. Compreender 

as causas do coma é fundamental para um diagnóstico preciso, definição do 

tratamento adequado e comunicação eficaz com familiares dos pacientes. Entre os 

fatores etiológicos mais comuns estão o traumatismo cranioencefálico, desequilíbrios 

metabólicos, infecções do sistema nervoso central e lesões estruturais, como acidente 

vascular cerebral (AVC) ou tumores. Estudos recentes apontam o traumatismo 

cranioencefálico como uma das principais causas, seguido por AVC isquêmico e 

hemorragia intracerebral (MAHAJAN et al., 2024).  

No contexto brasileiro, é frequente que pacientes cheguem às unidades de 

emergência em coma sem identificação ou informações sobre a possível origem do 

quadro, como histórico de trauma recente, o que intensifica a necessidade de métodos 

diagnósticos que auxiliem o corpo clinico na identificação da causa primária, pois 

fundamenta a avaliação prognóstica e o desenvolvimento de intervenções 

terapêuticas direcionadas. 

Os métodos tradicionais de diagnósticos em neurocríticos, como escores 

clínicos, avaliação de reflexos do tronco encefálico e potenciais evocados 

somatossensoriais (SSEPs), têm sido amplamente utilizados para investigar as 

causas do coma. Contudo, essas abordagens frequentemente carecem de 

sensibilidade e especificidade, especialmente em populações heterogêneas de 

pacientes (WARTENBERG et al., 2019). A análise do EEG tem se destacado como 

uma ferramenta valiosa, oferecendo uma avaliação dinâmica e não invasiva da 

atividade cerebral. 

Avanços recentes em aprendizado de máquina potencializaram a análise de 

EEG, permitindo a detecção de padrões sutis e complexos anteriormente 

negligenciados (NASCIMENTO JUNIOR et al., 2025). Apesar dessas inovações, 

desafios importantes persistem para a interpretação automatizada e precisa dos 

dados de EEG, uma vez que a atividade cerebral em pacientes comatosos é altamente 
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variável e influenciada por múltiplos fatores, incluindo o momento da avaliação e a 

etiologia subjacente do coma. 

Dessa forma, este estudo propõe a classificação da etiologia do coma a partir 

dos exames de EEG de pacientes em estado comatoso, considerando categorias 

como traumatismo cranioencefálico, coma metabólico, acidente vascular cerebral e 

outras. O objetivo é identificar a causa raiz do quadro clínico, contribuindo para o 

direcionamento mais eficaz do tratamento. 

5.10.2 Base de dados 

A base de dados utilizada nesta seção é a mesma apresentada em 5.8 

Prognóstico Clínico, que contém sinais de EEG de pacientes em coma. 

Porém vale destacar a distribuição da etiologia do coma da base dados 

conforme a Tabela 11. 

Tabela 11 - Distribuição da base dados em coma em termos de etiologia e desfecho clinico 

Etiologia 

Q
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e
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Desfecho 

Rotulo Total 

Favorável Desfavorável 

Traumatismo Cranioencefálico 20 17 3 TCE 20 

Coma Metabólico 18 5 13 CM 18 

Acidente Vascular Cerebral 12 5 7 AVC 12 

Encefalopatia pós anóxica 2 2 0 

Outros 10 

Neoplasia 2 0 2 

Distúrbios Hidroeletrolíticos 1 1 0 

Ferimento por arma de fogo 1 0 1 

Hematoma subdural crônico 1 0 1 

Hidrocefalia 1 0 1 

Encefalopatia hipóxica 1 0 1 

Neurocisticercose 1 0 1 

Total 60 30 30 - 60 
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5.10.3 Resultados 

Os resultados dos modelos de inteligência artificial voltados para a 

classificação da etiologia do coma seguem descritos detalhadamente no APÊNDICE 

K, APÊNDICE L, APÊNDICE M e APÊNDICE N. 

5.10.4 Discussão 

Com base nos resultados apresentados na Tabela 12, esta seção discute a 

classificação da etiologia do coma utilizando diferentes configurações de modelos 

baseados em aprendizado profundo. Observa-se que o modelo CNN-LSTM com 

características do paciente e eletrodos frontais (MCL CPEF) alcançou a melhor 

acurácia (0,63 ± 0,14) e F1 score (macro) (0,59 ± 0,16), indicando maior capacidade 

de discriminação entre as diferentes causas do coma. Por outro lado, modelos como 

CNN-Transformer com características dos eletrodos temporais (MCT CET) ou com 

características do paciente e Frequência Mediana (MCT CPFM) apresentaram 

desempenho inferior, evidenciando as dificuldades inerentes à classificação etiológica 

nessa base de dados.  

A análise dos hiperparâmetros, como número de cabeças de atenção, 

dimensão intermediária e taxa de dropout, demonstra sua influência significativa nos 

resultados, reforçando a importância do ajuste fino desses parâmetros para otimizar 

o desempenho. Além disso, os tempos de treinamento variaram consideravelmente 

entre os modelos, o que ressalta a necessidade de equilíbrio entre eficiência 

computacional e acurácia para aplicações clínicas práticas. Esses achados fornecem 

subsídios importantes para o desenvolvimento de sistemas assistivos que possam 

auxiliar no diagnóstico etiológico do coma.  

Tabela 12 - Resultados do treinamento da base de dados Etiologia do Coma, melhores 
resultados, em negrito se destaca o melhor modelo 
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MCL CP      0.60±0.11 0.53±0.13 0.58±0.17 0.56±0.10 0.86±0.03 787 

MCL CPFM      0.53±0.13 0.46±0.10 0.47±0.11 0.49±0.12 0.84±0.04 968 

MCL CPEF      0.63±0.14 0.59±0.16 0.65±0.21 0.62±0.14 0.87±0.04 813 

MCLT CPEF 4 64 1 0.1 30 0.58±0.15 0.56±0.17 0.62±0.20 0.57±0.17 0.86±0.05 871 
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MCT CPE 8 256 3 0.05 30 0.57±0.12 0.49±0.14 0.49±0.17 0.53±0.13 0.85±0.04 1758 

MCT CPFM 8 256 3 0.05 30 0.52±0.14 0.44±0.07 0.45±0.06 0.47±0.12 0.83±0.05 1933 

MCT CET 3 128 3 0.2 60 0.47±0.04 0.39±0.09 0.46±0.11 0.41±0.06 0.82±0.02 2333 

Complementarmente, a Figura 44 apresenta o comportamento das métricas 

dos modelos com os melhores resultados em cada fold durante o treinamento, 

permitindo uma análise detalhada da consistência e variação do desempenho ao 

longo das diferentes divisões dos dados. 

 

Figura 44 - Evolução de cada FOLD do treinamento da base de dados Etiologia do Coma 
melhores performances 
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Baseando-se na Tabela 13 que apresenta os resultados do treinamento 

realizados na base de dados da etiologia do coma, excluindo os exames rotulados 

como "outros". Observa-se que o modelo MCL CPEF se destacou, apresentando a 

melhor acurácia (0,70 ± 0,14) e F1 score macro (0,68 ± 0,18), indicando uma 

capacidade superior para distinguir as diferentes causas do coma quando os rótulos 

menos frequentes são removidos. O modelo MCL CPFM, MT e MCT CEC também 

apresentou desempenho competitivo, reforçando a eficácia da seleção de atributos e 

das configurações com ajuste refinado dos hiperparâmetros. Em contraste, modelos 

como MCT CET mostraram resultados inferiores, refletindo desafios na classificação 

devido à complexidade e variabilidade dos dados clínicos. Os tempos de treinamento 

permaneceram relativamente moderados, o que sugere um equilíbrio adequado entre 

precisão e eficiência computacional. Esses resultados enfatizam a importância da 

curadoria dos dados e da calibração dos modelos para otimizar o diagnóstico assistido 

por IA na etiologia do coma.  

Tabela 13 - Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, melhores resultados, em negrito se destaca o melhor modelo 
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MCL CPE      0.60±0.14 0.56±0.16 0.61±0.18 0.59±0.15 0.80±0.06 625 

MCL CPFM      0.64±0.17 0.60±0.20 0.66±0.23 0.62±0.18 0.81±0.09 942 

MCL CPEF      0.70±0.14 0.68±0.18 0.72±0.18 0.70±0.16 0.85±0.07 733 

MT 8 128 3 0.2 60 0.62±0.19 0.62±0.19 0.68±0.17 0.64±0.20 0.81±0.10 832 

MT CP 8 256 3 0.05 30 0.62±0.18 0.59±0.19 0.63±0.22 0.60±0.19 0.81±0.09 691 

MT CPCP 8 128 3 0.2 60 0.60±0.17 0.59±0.16 0.69±0.18 0.63±0.19 0.81±0.08 1503 

MCT CEC 3 128 3 0.2 60 0.64±0.16 0.60±0.16 0.67±0.20 0.63±0.16 0.82±0.08 1961 

 

Adicionalmente, a Figura 45 ilustra a variação das métricas dos modelos com 

os melhores desempenhos sem os exames do rotulo “OUTROS” em cada fold ao 

longo do treinamento, possibilitando uma avaliação detalhada da consistência e das 

flutuações no desempenho em diferentes divisões dos dados. 
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Figura 45 - Evolução de cada FOLD do treinamento da base de dados Etiologia do Coma SEM 
exames pertencentes ao rotulo outros, melhores performances 

A exclusão dos exames rotulados como "outros" reduziu a base de dados de 

60 para 50 pacientes, eliminando casos com causas de coma menos frequentes e 

mais heterogêneas. Essa remoção resultou na simplificação do problema de 

classificação, que passou de 4 para 3 classes, diminuindo a variabilidade e o ruído 

associados a rótulos menos representativos. Assim, a redução do número de classes 

favoreceu a distinção entre as causas mais prevalentes, contribuindo para aprimorar 

a capacidade de aprendizagem e o desempenho dos modelos de classificação. 



147 

5.11 GOSTO MUSICAL 

5.11.1 Definição do problema 

O estudo das respostas cerebrais associadas ao gosto musical representa um 

desafio multidisciplinar, envolvendo neurociência, psicologia e ciência de dados. A 

música exerce um papel central na experiência humana, sendo capaz de evocar 

emoções intensas, memórias e estados afetivos distintos. No entanto, a forma como 

diferentes estilos ou faixas musicais impactam o cérebro de maneira individualizada 

ainda não é totalmente compreendida. A identificação neural de músicas favoritas 

(selecionadas individualmente pelo voluntário para induzir valência emocional 

positiva) e músicas desgostadas (escolhidas pelo voluntário para eliciar reações de 

aversão ou desconforto) pode fornecer insights valiosos sobre os mecanismos de 

processamento emocional e preferências pessoais, além de explorar as bases 

neurofisiológicas das emoções e suas aplicações em áreas como musicoterapia, 

neuromarketing e diagnóstico de distúrbios afetivos. 

Tradicionalmente, a avaliação do gosto musical tem se baseado em 

autorrelatos e questionários subjetivos que, embora úteis, apresentam limitações 

quanto à objetividade e à padronização das respostas (NORTH; HARGREAVES, 

2008). No contexto brasileiro, a diversidade cultural influencia fortemente as 

preferências musicais, o que potencializa a necessidade de métodos objetivos para 

analisar respostas emocionais. Nesse sentido, a análise do EEG surge como uma 

alternativa promissora, permitindo a investigação direta da atividade cerebral em 

tempo real durante a escuta musical. Contudo, a variabilidade interindividual e a 

complexidade dos padrões eletroencefalográficos associados a diferentes estados 

emocionais tornam a classificação automatizada um desafio significativo (ALLURI et 

al., 2012). 

Avanços em aprendizado de máquina têm possibilitado a identificação de 

padrões sutis em sinais de EEG, porém, os desafios mencionados anteriormente 

ainda dificultam a generalização de modelos preditivos para diferentes populações e 

gêneros musicais (HASANZADEH; ANNABESTANI; MOGHIMI, 2021; HE et al., 2024; 

PANDEY et al., 2021). A compreensão e a classificação precisas dessas respostas 

podem não apenas avançar o conhecimento científico sobre cognição musical, mas 
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também abrir caminho para aplicações em musicoterapia, entretenimento 

personalizado e interfaces cérebro-computador adaptativas. 

Dessa forma, este trabalho propõe a utilização de exames de EEG como 

entrada para modelos de inteligência artificial, visando a classificação automatizada 

desses exames em músicas favoritas e músicas desgostadas. 

5.11.2 Base de dados 

A base de dados utilizada nesta seção é a mesma apresentada no CAPÍTULO 

4 - ANÁLISE DE PADRÕES DE ESTIMULAÇÃO MUSICAL subitem 4.4 Base de 

dados, que contém sinais de EEG de indivíduos normais submetidos a estimulação 

musical. 

5.11.3 Resultados 

Os resultados dos modelos treinados seguem descritos detalhadamente no 

APÊNDICE O, APÊNDICE P e APÊNDICE Q. 

5.11.4 Discussão 

A análise comparativa dos modelos treinados para classificação de respostas 

neurais à estimulação musical (músicas favoritas vs. desgostadas) revela insights 

significativos sobre o desempenho de diferentes arquiteturas de redes neurais e 

estratégias de processamento de dados. A Tabela 14, apresentada a seguir, sintetiza 

os melhores desempenhos alcançados, destacando as combinações de modelos e 

configurações que maximizam as métricas de desempenho. E na Figura 46 pode-se 

visualizar o comportamento dos modelos em termos de cada fold de treinamento. 

Tabela 14 - Resultados do treinamento base de dados Estimulação musical (Favorita e 
Desgostada) melhores performances, em negrito se destaca o melhor modelo 
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E
P

C
 

Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 

T
e

m
p

o
 

(s
e
g

.)
 

MMLP All     30 0.53±0.09 0.52±0.09 0.53±0.07 0.67±0.14 0.53±0.09 223 

MCL CFM All     30 0.43±0.11 0.43±0.11 0.44±0.10 0.43±0.12 0.43±0.11 1540 

MCL CPEC All     30 0.44±0.03 0.44±0.04 0.44±0.04 0.42±0.08 0.44±0.03 1484 
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F1 score 
(macro) 

Precisão Recall Espec. 
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MMLP All 
Group 

    30 0.63±0.07 0.62±0.08 0.62±0.08 0.65±0.14 0.63±0.08 232 

MCL CPC All 
Group 

    30 0.65±0.11 0.64±0.11 0.66±0.10 0.62±0.19 0.65±0.11 1616 

MCL CPEC All 
Group 

    30 0.62±0.03 0.61±0.03 0.62±0.04 0.60±0.10 0.62±0.03 1560 

MCL CPC All 
Group 

Aumento do 
Dropout para 

0.5 nas 
camadas que 

usam 0.2 
(kernel_regul
arizer=regular
izers.l2(1e-4)) 

    30 0.68±0.09 0.67±0.09 0.67±0.08 0.70±0.16 0.68±0.09 1577 

MCT CP Same 
Half 

8 64 1 0.3 30 0.42±0.14 0.41±0.14 0.43±0.16 0.37±0.07 0.42±0.14 846 

 

Figura 46 – Evolução de cada FOLD do treinamento base de dados Estimulação musical 
(Favorita e Desgostada) melhores performances 
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A interpretação dos resultados apresentados na Tabela 14 evidencia que o 

modelo MCL CPC All Group, que incorporou um aumento na taxa de dropout para 0,5 

nas camadas originalmente configuradas com 0,2 (utilizando regularização L2 com 

coeficiente 1𝑒−4), atingiu o melhor desempenho geral. Este modelo alcançou F1 score 

e precisão em torno de 67%, destacando-se pela combinação das características 

clínicas dos pacientes com medidas de coerência (CPC) associadas aos sinais de 

EEG. Esses resultados sugerem que ajustes cuidadosos nos hiperparâmetros, como 

a taxa de dropout e a regularização, podem contribuir significativamente para a 

melhoria da performance dos modelos nesta tarefa complexa. 

Em comparação, os modelos Multi Layer Perceptron (MMLP), embora mais 

simples e eficientes em termos de tempo de treinamento (por exemplo, MMLP All com 

223 segundos), apresentaram desempenhos inferiores (acurácia máxima de 63% para 

MMLP All Group). Isso indica que, apesar da eficiência computacional, os modelos 

MLP podem não ser suficientes para capturar a complexidade dos padrões 

emocionais em EEG, corroborando com a literatura que mostra a superioridade de 

redes mais profundas, como CNNs e LSTMs, em tarefas de classificação de emoções 

(GUO et al., 2018). 

Os modelos CNN-LSTM (MCL) com a configuração "All Group" apresentaram 

desempenhos superiores em comparação com as configurações "All" ou "Same Half", 

destacando a importância da estratégia de segregação dos dados para aprimorar a 

generalização dos modelos. Por exemplo, o modelo MCL CPC All Group alcançou 

uma acurácia de 65%, enquanto o modelo MCT CP Same Half obteve apenas 42%, 

sugerindo que a utilização de segmentos provenientes do mesmo voluntário tanto no 

treinamento quanto na validação pode introduzir vieses intraindividuais que 

comprometem a capacidade de generalização. Contudo, ao manter esses segmentos 

agrupados exclusivamente no conjunto de treinamento ou de validação, a 

performance dos modelos é significativamente melhorada. 

Estes achados têm implicações no campo da neurociência afetiva e para 

aplicações práticas, como a terapia musical e o neuromarketing. A capacidade de 

classificar respostas emocionais a estímulos musicais com precisão pode auxiliar no 

desenvolvimento de intervenções personalizadas e na compreensão das bases 

neurais das preferências musicais. Mostrando que é possível identificar padrões 
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emocionais com um grau razoável de confiabilidade, o que pode ser útil em contextos 

terapêuticos para personalizar playlists musicais. 

No entanto, os resultados também revelam limitações. A acurácia máxima 

alcançada é de aproximadamente 68%, o que, embora significativo, ainda deixa 

espaço para melhorias. Isso pode ser devido à variabilidade interindividual nas 

respostas emocionais ou à complexidade dos padrões neurais envolvidos.  

Para futuras pesquisas, sugere-se investigar a influência de diferentes 

gêneros musicais e culturais, considerando a rica diversidade cultural brasileira. Essa 

abordagem pode fornecer insights valiosos sobre a capacidade de generalização dos 

modelos, além de contribuir para o desenvolvimento de sistemas mais robustos e 

adaptados à pluralidade de contextos presentes no país. 

Em conclusão, os resultados obtidos demonstram que é possível classificar 

respostas emocionais a estímulos musicais com um grau razoável de precisão usando 

EEG e redes neurais, mas que ainda há espaço para otimização e refinamento das 

técnicas empregadas, especialmente no que diz respeito à eficiência computacional e 

à generalização para diferentes populações.
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CAPÍTULO 6 - CONCLUSÕES E TRABALHOS FUTUROS 

Destaca-se neste capítulo os aspectos da pesquisa e conclusões do trabalho 

apresentado nesta tese. Ademais, são apresentadas algumas sugestões para 

trabalhos futuros e a contribuição científica do presente trabalho. 

6.1 CONCLUSÕES 

Considerando o crescimento exponencial no interesse pelo entendimento dos 

processos mentais, o EEG tem se destacado como uma ferramenta poderosa para 

fornecer respostas importantes nesse campo. Para facilitar a identificação dessas 

respostas, há uma necessidade crescente de ferramentas automatizadas para 

processar os dados de EEG, preferencialmente de código aberto, que amplie o acesso 

das pessoas a essas análises. Diante disso, este trabalho propôs a transcrição do 

software de processamento de EEG desenvolvido pelo grupo de pesquisa na 

plataforma computacional para Python, uma linguagem de programação de código 

aberto. 

Durante o processo de transcrição, foram identificadas necessidades 

específicas que resultaram em aprimoramentos significativos no software 

originalmente desenvolvido na plataforma computacional. Entre essas melhorias, 

destacam-se a inclusão de funções customizadas para o pré-processamento dos 

sinais, a definição de limiares para o descarte de canais ruidosos, a possibilidade de 

seleção dos quantificadores a serem calculados, bem como a configuração de 

parâmetros ajustáveis para o processamento, tais como o parâmetro taumax, a 

definição das épocas sequenciais e a escolha dos canais a serem analisados. Esses 

aprimoramentos tornaram a ferramenta mais robusta e flexível, permitindo ao grupo 

conduzir suas pesquisas de forma mais ágil e otimizar o processamento dos exames 

de EEG antes mesmo da conclusão da transcrição. 

A transcrição do software para a linguagem Python teve como objetivo migrar 

o código para uma linguagem de programação openSource (de código aberto) 

gratuita. Na análise comparativa das duas versões, observou-se que a versão da 
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plataforma computacional apresentou desempenho superior, conforme evidenciado 

nos resultados do capítulo PROCESSAMENTO DO EEG. Especificamente, o pré-

processamento e o processamento realizados em Python foram quase 60 vezes mais 

lentos, possivelmente devido à metodologia utilizada na transcrição, que incluiu a 

adaptação para o paradigma de programação orientado a objetos. Além disso, o 

arquivo final gerado em Python, que armazena os dados do EEG e os quantificadores 

extraídos, teve um tamanho quase cinco vezes maior que o correspondente na 

plataforma computacional. Técnicas adicionais, como algoritmos de compressão, 

podem ser aplicadas para reduzir esse tamanho e otimizar o armazenamento. 

Para garantir a equivalência da transcrição da versão do software na 

plataforma computacional para Python, foi realizado um conjunto de testes de 

regressão que verificaram que o erro relativo da transcrição ficou na ordem de 10-12, 

um valor irrelevante para o processo, com exceção do quantificador de coerência, que 

necessita de uma análise com outra abordagem. Além disso, a criação de uma 

interface gráfica acessível permitiu a adoção da plataforma por pesquisadores com 

diferentes níveis de experiência, acelerando o treinamento e a produção científica do 

grupo. 

Ademais, visando compreender como as estimulações musicais influenciam 

a atividade elétrica cerebral, foram desenvolvidas rotinas estatísticas para destacar os 

eletrodos e as bandas de frequência mais relevantes na comparação entre diferentes 

estímulos. No software de suporte ao reconhecimento de padrões, verificou-se que o 

quantificador frequência mediana (FM) não foi eficaz. Por outro lado, o quantificador 

de porcentagem de contribuição de potência (PCP) revelou insights significativos, 

destacando diferenças substanciais entre os estímulos sonoros de silêncio e música 

desgostada em comparação com os demais estímulos. Essa discrepância foi mais 

pronunciada nas bandas de frequência delta e alfa, que apresentaram variações 

marcantes nos atributos extraídos pelo software, corroborando achados da literatura 

que evidenciam a importância dessas bandas na resposta cerebral à música. 

Aprofundando na análise dos sinais de EEG, foram aplicadas diversas 

técnicas de inteligência artificial visando classificar bases de dados com o objetivo de 

desenvolver mecanismos automatizados que auxiliem o corpo clínico na tomada de 

decisões mais embasadas. Entre as metodologias empregadas destacam-se redes 
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neurais convolucionais (CNNs), redes de memória de longo curto prazo (LSTMs), 

perceptrons multicamadas (MLPs), Transformers e modelos híbridos. 

Para a base de dados de pacientes em coma, na classificação do prognóstico 

entre favorável e desfavorável, destaca-se o modelo MCT CPC alcançando F1 Score 

(macro) de 90%. Na classificação da etiologia do coma, o modelo MCL CPEF obteve 

63% de acurácia, e ao remover da base os exames pertencentes à categoria "outros", 

o desempenho do mesmo modelo manteve-se superior, alcançando 70% de acurácia. 

Por fim, na base de dados relativa à classificação da estimulação musical entre música 

gostada e desgostada, o modelo MCL CPC All Group com ajustes nos 

hiperparâmetros destacou-se com 67% de precisão. 

Espera-se que este trabalho promova a disseminação de tecnologias abertas 

e reprodutíveis na área de análise de sinais neurofisiológicos, incentivando melhorias 

contínuas e avanços futuros. 

6.2 TRABALHOS FUTUROS 

Para a ferramenta de processamento de dados de EEG, os trabalhos futuros 

incluem: 

• Otimizar o desempenho do processamento no software em Python, visando 

igualar ou superar a performance alcançada na implementação da plataforma 

computacional; 

• Explorar o uso de algoritmos de compressão e formatos otimizados, como 

HDF5, para reduzir o tamanho dos arquivos gerados pelo software em Python. 

No que diz respeito ao reconhecimento de padrões em múltiplos sinais, as 

direções futuras são: 

• Automatizar o processo de reconhecimento, tornando-o mais eficiente e menos 

dependente de intervenção manual; 

• Implementar rotinas capazes de lidar com formatos de dados de entrada 

distintos de PCP e FM, incluindo especialmente dados derivados de coerência. 

Por fim, em relação à aplicação de inteligência artificial para a classificação 

de exames de EEG, os próximos passos consistem em: 
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• Aprofundar a compreensão sobre a relação entre os achados dos modelos e 

os fundamentos neurocientíficos subjacentes; 

• Realizar testes estatísticos para verificar a diferença significativa entre os 

modelos de classificação avaliados na comparação dos resultados; 

• Testar modelos de classificação pré-treinados, explorando o potencial de 

transferência de aprendizado para melhorar a performance em conjuntos de 

dados menores; 

• Expandir a comparação incluindo novos modelos de aprendizado de máquina 

e deep learning; 

• Validar a capacidade de generalização dos modelos aplicando-os a outras 

bases de dados abrangendo diferentes populações e condições clínicas. 

6.3 CONSIDERAÇÕES FINAIS 

Este trabalho contemplou a transcrição do software desenvolvido pelo grupo 

de pesquisa em uma plataforma computacional para a linguagem Python, 

incorporando melhorias que atendem às novas demandas do grupo. Além disso, foi 

implementado um mecanismo para auxiliar na busca de padrões entre múltiplos 

registros de EEG, bem como a aplicação de técnicas de inteligência artificial para a 

classificação dos sinais. 

As aplicações desenvolvidas visam simplificar e otimizar o cotidiano dos 

trabalhos envolvendo EEG, tornando o processo mais automatizado e facilitando o 

reconhecimento de padrões relevantes. 

Do ponto de vista científico, as principais contribuições deste trabalho incluem: 

a) Otimização do tempo do pesquisador, ao possibilitar o processamento paralelo 

dos registros de EEG e outras atividades, graças à automação dos 

procedimentos; 

b) Disponibilização de um software openSource para processamento de EEG, 

ampliando o acesso e possibilitando customizações futuras; 

c) Desenvolvimento de um mecanismo eficiente de reconhecimento de padrões e 

classificação dos exames de EEG; 
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d) Implementação e avaliação de modelos de inteligência artificial que 

demonstraram boa performance e precisão na classificação dos sinais. 

Estes avanços representam um passo importante para o aprimoramento das 

ferramentas de análise de EEG, com potencial aplicação clínica e pesquisa científica. 
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APÊNDICE A - Programas / Funções Software de Processamento de 

EEG Versão Plataforma computacional 

A seguir, são apresentadas as funções implementadas no software de 

processamento de EEG, conforme desenvolvido na dissertação de mestrado de 

(BARBOSA, 2019). Cada função desempenha um papel específico na extração, 

análise e manipulação dos dados de EEG, contribuindo para a eficiência e 

reprodutibilidade do processamento. 

1 readFilePLG 

Realiza a leitura de arquivos no formato PLG (*.plg), correspondentes a 

exames de eletroencefalograma (EEG), permitindo que os dados registrados sejam 

interpretados e processados na plataforma computacional. 

2 customizeRecordEEG 

Personaliza o registro do EEG ao traduzir os nomes dos canais com base em 

uma variável de tradução e reorganizá-los conforme uma lista de ordenação definida 

como parâmetro. Esse processo assegura a padronização e a correta disposição dos 

canais, facilitando a análise e interpretação dos dados. 

3 translateChannelNamesByPrefixComparator 

Realiza a tradução dos nomes dos canais de EEG com base em um 

mapeamento fornecido como parâmetro. O mapeamento consiste em uma matriz de 

duas colunas, onde a primeira coluna contém os prefixos a serem traduzidos e a 

segunda coluna define os respectivos valores traduzidos. 

Cabe ressaltar que o mapeamento não precisa ser um para um, ou seja, a 

tradução pode ser consolidada em um único valor, mesmo que a matriz de entrada 

contenha múltiplas linhas. Esse processo permite maior flexibilidade e padronização 

na nomenclatura dos canais, facilitando a análise e interpretação dos dados. 

4 sortChannelsByListNames 

Realiza a ordenação dos canais de EEG com base nos nomes contidos nas 

variáveis xn, nameChannels e typeChannels, seguindo a lista de ordenação fornecida 
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como parâmetro. Esse procedimento assegura que os canais sejam organizados de 

forma padronizada e consistente, facilitando a análise e processamento dos dados. 

5 splitChannels 

Separa os canais de EEG com base em uma lista de referência fornecida 

como parâmetro, retornando duas listas distintas: uma contendo os canais 

especificados no parâmetro e outra com os canais restantes. Esse processo permite 

a organização e categorização dos canais, facilitando análises segmentadas e 

comparativas conforme a necessidade do estudo. 

6 findTypeChannel 

Localiza a posição da primeira ocorrência de um tipo de canal específico, 

conforme o argumento fornecido. Caso o tipo de canal seja encontrado, a função 

retorna sua posição na lista; caso contrário, retorna -1. Esse procedimento permite a 

identificação rápida e eficiente de canais específicos, auxiliando na organização e 

manipulação dos dados de EEG. 

7 findNameChannel 

Busca a posição da primeira ocorrência de um nome de canal específico, 

conforme o argumento fornecido. Se o canal for encontrado, a função retorna sua 

posição na lista; caso contrário, retorna -1. Esse procedimento permite a identificação 

eficiente de canais, facilitando a manipulação e organização dos dados de EEG. 

8 verifyAllValuesInInterval 

Verifica se todos os valores de uma matriz fornecida como argumento estão 

dentro de um intervalo especificado como parâmetro. Caso todos os elementos 

satisfaçam a condição, a função confirma a validade dos dados; caso contrário, 

identifica a presença de valores fora do intervalo. Esse procedimento é essencial para 

controle de qualidade e integridade dos dados, garantindo que os valores estejam 

dentro dos limites esperados para a análise de EEG. 

9 epochSeparator 

Função responsável pela segmentação das épocas do EEG, permitindo a 

divisão do sinal com base em intervalos de tempo previamente definidos. Recebe 
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como argumentos o tamanho da época e uma string no formato 

MM:SS|MM:SS|MM:SS, em que cada MM:SS representa o instante inicial de uma 

época. Esse processo assegura a consistência na extração das épocas, garantindo a 

integridade dos dados para análises subsequentes. 

10 validateChannels 

Este programa tem como objetivo validar o sinal EEG com base no nível de 

ruído detectado nos eletrodos. Para isso, realiza um cálculo fundamentado na 

densidade espectral de potência, determinando: 

• O nível do sinal em porcentagem na faixa de 1-40 Hz; 

• O nível de ruído na faixa de 58-62 Hz. 

Para que um sinal seja totalmente aprovado, os eletrodos devem atender à 

seguinte condição: o valor máximo de potência na faixa de ruído deve ser igual ou 

inferior à metade do valor máximo de potência na faixa do sinal, garantindo 

consistência no processo de validação dos sinais de EEG. 

11 computeMeanZeroPowerSignalRXTXFtestXMXFxmFilteredAndNormAndFre

q 

Este programa tem como objetivo calcular métricas específicas do sinal EEG, 

incluindo: 

• Média Zero; 

• Potência do Sinal; 

• Rx e Tx; 

• XM e XF; 

• fTest; 

• XM Filtrado; 

• M Normalizado. 

Esses cálculos são essenciais para a análise quantitativa do sinal EEG, 

permitindo a extração de informações relevantes para diferentes aplicações em 

processamento de sinais e neurociência. 
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12 computePCPsaveInMatAndExcel  

Este programa tem como objetivo calcular a Porcentagem da Contribuição de 

Potência (PCP) para cada faixa de frequência definida, incluindo: 

• Delta, Teta, Alfa, Beta, Gama, Super Gama e Ruído. 

Os valores calculados são armazenados em um arquivo especificado como 

referência. Além disso, caso a opção FLAG de geração de Excel esteja ativada, o 

programa também exporta os resultados para um arquivo no formato Excel, facilitando 

a análise e interpretação dos dados. 

13 computeFMsaveInMatAndExcel 

O cálculo da Frequência Mediana é realizado para cada faixa de frequência 

pré-definida, incluindo: 

• Delta, Teta, Alfa, Beta, Gama, Super Gama e Ruído. 

Os valores obtidos são armazenados em um arquivo especificado como 

referência. Além disso, caso a opção FLAG de geração de Excel esteja ativada, os 

resultados também são exportados para um arquivo no formato Excel, facilitando a 

análise e organização dos dados. 

14 computeCoherenceLeftWithRightHeadSaveMatAndExcel 

O sinal EEG segmentado em épocas é submetido à análise de coerência 

utilizando a função 'mscohere' da plataforma computacional. Para esse processo, 

foram criadas duas matrizes: 

• leftHEAD, correspondente aos eletrodos do lado esquerdo do escalpo cerebral 

(FP1, F7, F3, T3, C3, T5, P3 e O1); 

• rightHEAD, correspondente aos eletrodos do lado direito do escalpo cerebral 

(FP2, F8, F4, T4, C4, T6, P4 e O2). 

Com base nessas matrizes, foram calculadas as coerências entre pares de 

eletrodos simétricos, considerando as seguintes combinações: FP1-FP2, F7-F8, F3-

F4, T3-T4, C3-C4, T5-T6, P3-P4 e O1-O2. Os valores obtidos são armazenados no 

arquivo especificado como referência. Além disso, caso a opção FLAG de geração de 



170 

 

Excel esteja ativada, os resultados também são exportados para um arquivo no 

formato Excel, permitindo uma análise mais acessível e organizada dos dados. 

15 processRecords 

Este programa realiza a leitura de um arquivo CSV, estruturado de acordo 

com um formato específico, cujo exemplo pode ser visualizado no APÊNDICE C. 

Cada linha desse arquivo representa um exame de EEG a ser processado, gerando 

um arquivo de dados correspondente, no qual são armazenados os cálculos 

realizados conforme os parâmetros fornecidos. 

O arquivo CSV contém as seguintes colunas: 

• Coluna A (Nome Arquivo) – Nome do arquivo .PLG a ser processado (sem a 

extensão); 

• Coluna B (Duração Épocas) – Duração das épocas em segundos; 

• Coluna C (Qtd Épocas) – Número de épocas a serem segmentadas; 

• Colunas D a M (EpX) – Instante de início de cada época, no formato mm:ss 

(minutos:segundos); 

o A quantidade de colunas de épocas é definida pelo valor do campo "Qtd 

Épocas". 

• Coluna N (Qtd Ruidosos) – Número de canais identificados como ruidosos 

pelo médico. Se houver mais de três canais ruidosos, o exame deve ser 

descartado; 

o A quantidade de colunas para canais ruidosos é determinada pelo valor 

do campo "Qtd Ruidosos". 

• Colunas O a Q (Canal Ruidoso X) – Lista de canais ruidosos identificados 

(ex.: FP1, FP2, F7, F3, CZ, P4, etc.); 

• Coluna R (Normal/Coma) – Identifica se o exame é Normal (100 Hz) ou Coma 

(30 Hz); 

o Qualquer valor diferente de "COMA" será considerado como "NORMAL". 
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• Coluna S (Filtro) – Define a frequência máxima para o processamento do 

exame; 

• Coluna T (Nome Saída) – Nome do arquivo de dados gerado após o 

processamento da linha correspondente; 

• Coluna U (Gera Excel) – Define se devem ser gerados arquivos Excel para os 

cálculos de PCP, FM e Coerência. 

o Deve-se utilizar "NAO" para um processamento mais rápido. 

 

Cada linha do arquivo CSV representa um exame a ser processado, e os 

cálculos realizados incluem: 

• Conversão do arquivo .PLG para o especificado pela plataforma 

computacional; 

• Segmentação das épocas do EEG; 

• Validação do exame, verificando se o nível de ruído (58-62 Hz) excede o valor 

do sinal; 

• Cálculo da Porcentagem da Contribuição de Potência (PCP); 

• Cálculo da Frequência Mediana (FM); 

• Cálculo da Coerência entre hemisfério esquerdo e hemisfério direito; 

• Cálculo da Variação da Potência Cerebral (VPC); 

• Cálculo da Porcentagem de Segmentos Não Gaussianos (PSNG); 

• Cálculo da Porcentagem de Segmentos Não Estacionários (PSNE). 

 

Ao final da execução, é gerado um arquivo de saída no formato 

Result_X.CSV, onde X representa o nome do arquivo de entrada. Esse arquivo é salvo 

no mesmo diretório do arquivo CSV original, juntamente com os arquivos de dados 

correspondentes.  
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O arquivo Result_X.CSV mantém os mesmos dados do arquivo de entrada, 

porém com a adição das seguintes colunas, conforme exemplificado no APÊNDICE 

D: 

• Coluna V (Conversão?) – Indica se a conversão do arquivo .PLG para o 

formato esperado pela plataforma computacional foi bem-sucedida (SIM/NAO); 

• Coluna W (Canais Ruidosos) – Lista dos canais identificados como ruidosos 

na validação por software; 

• Coluna X [Exame Válido (Pouco Ruído?)] – Indica se o exame contém até 

três canais ruidosos (SIM/NAO); 

• Coluna Y (PCP) – Confirma se o cálculo do PCP foi realizado com sucesso 

(SIM/NAO); 

• Coluna Z (Frequência Mediana) – Confirma se o cálculo da FM foi realizado 

com sucesso (SIM/NAO); 

• Coluna AA (Coerência) – Confirma se o cálculo da coerência foi realizado com 

sucesso (SIM/NAO); 

• Coluna AB (FreqMax Adotada) – Informa o valor da frequência máxima 

adotada nos cálculos. 

Nota: Todos os arquivos .PLG a serem processados devem estar no mesmo 

diretório que o arquivo CSV de entrada. 

16 readFileCSVForProcessRecords 

Realiza a leitura de um arquivo CSV, seguindo a mesma estrutura definida 

para o programa 15 processRecords. Esse processo assegura a correta interpretação 

dos dados, permitindo que as informações sejam extraídas e processadas de acordo 

com os parâmetros estabelecidos no arquivo. 

17 saveFileMAT 

Realiza a conversão do arquivo .PLG para o formato especifico da plataforma 

computacional, armazenando os valores dos atributos e quantificadores extraídos. 

Esse processo permite que os dados sejam estruturados de forma compatível para 

análises subsequentes, garantindo a integridade e acessibilidade das informações. 
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18 updateFreqMaxAccordingWithBands 

Define as novas bandas ou faixas de frequência com base na frequência 

máxima do exame, retornando também os nomes das bandas ajustadas e a nova 

frequência máxima permitida. 

O algoritmo exclui as faixas que ultrapassam o limite definido, assegurando 

que apenas as bandas integralmente contidas dentro da frequência máxima 

estabelecida sejam mantidas. Caso a frequência máxima ocorra dentro de uma faixa, 

seu valor será ajustado para o limite inferior dessa faixa, garantindo a consistência 

dos intervalos de análise. 

Além disso, a frequência máxima não pode exceder metade da frequência de 

amostragem nem ser superior a 100 Hz. Quando um novo valor de frequência máxima 

é definido, as faixas preservadas serão aquelas cujo limite superior permaneça abaixo 

desse novo valor ajustado. 

19 groupEpochsByFrequences 

O programa agrega os valores de frequência de cada época, consolidando-

os em uma estrutura do tipo cell na plataforma computacional. Esse processo permite 

a unificação das informações de todas as épocas, possibilitando uma análise 

abrangente e organizada dos dados de EEG. 

20 brainPowerVariation 

Realiza o cálculo da Variação da Potência Cerebral (VPC), analisando as 

flutuações da potência do sinal EEG ao longo do tempo. Esse parâmetro é essencial 

para avaliar mudanças dinâmicas na atividade cerebral, auxiliando na interpretação 

de padrões associados a diferentes estados cognitivos e fisiológicos. 

21 MRT 

Executa o Teste Razão Média (MRT – Mean Ratio Test), um método 

estatístico utilizado para comparar as funções de distribuição espectral de 

subconjuntos de amostras. Esse teste permite avaliar a estacionariedade do sinal 

EEG, identificando possíveis variações na distribuição espectral ao longo do tempo 

(DESTRO-FILHO; FARIA, 2018). 
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22 myfunc 

Executa o teste não paramétrico de Jarque-Bera (JB), um método estatístico 

amplamente utilizado para verificar a normalidade de uma distribuição. Esse teste 

apresenta boas propriedades assintóticas de poder e desempenho eficiente em 

amostras finitas. A construção do teste de gaussianidade baseia-se no princípio do 

método multiplicador de Lagrange (LM – Lagrange Multiplier), permitindo a avaliação 

da simetria e curtose da distribuição dos dados (DESTRO-FILHO; FARIA, 2018). 

23 psngAndPsne 

Computa a Porcentagem de Segmentos Não Gaussianos (PSNG), baseada 

nos resultados do teste de Jarque-Bera (JB), que avalia a normalidade da distribuição 

dos dados. Além disso, calcula a Porcentagem de Segmentos Não Estacionários 

(PSNE), determinada a partir do teste Razão Média (MRT – Mean Ratio Test), que 

analisa a estacionariedade do sinal EEG. Esses parâmetros são fundamentais para 

caracterizar a natureza estatística dos segmentos do sinal, auxiliando na identificação 

de padrões irregulares e variações dinâmicas. 

24 isEqualsErrorRelative 

Compara duas variáveis fornecidas como parâmetro, verificando se seus 

valores são iguais dentro de um limiar de erro relativo, também especificado como 

parâmetro. Essa abordagem permite considerar pequenas variações numéricas, 

garantindo maior precisão na validação de dados e robustez na análise de igualdade. 

25 isEqualsExamsProcessedErrorRelative 

Compara dois exames processados a partir dos arquivos de dados gerados, 

verificando se apresentam equivalência dentro de um erro relativo aceitável, definido 

como parâmetro. Essa verificação assegura a consistência dos resultados, permitindo 

a detecção de diferenças numéricas sutis e garantindo maior precisão na validação 

da reprodutibilidade dos dados. 

26 isEqualsFriedman 

Compara duas variáveis fornecidas como parâmetro, verificando sua 

equivalência linha a linha por meio do teste de Friedman. Esse teste estatístico não 
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paramétrico avalia diferenças entre distribuições emparelhadas, permitindo a 

detecção de variações significativas entre os conjuntos de dados. 

27 validateFriedmanCellVector 

Compara dois vetores do tipo cell (A e B) na plataforma computacional, 

avaliando sua equivalência estatística por meio do teste de Friedman. 

28 isEqualsExamsProcessedFriedman 

Compara dois arquivos gerados a partir de processamentos anteriores, 

avaliando sua equivalência estatística com base em um p-valor aceitável. Essa 

verificação permite identificar diferenças estatisticamente significativas entre os 

resultados, assegurando maior precisão na validação da reprodutibilidade dos dados. 

29 testCompareExameByCsv 

Realiza a leitura de um arquivo CSV, no qual a primeira coluna contém o 

arquivo de referência e a segunda coluna especifica o arquivo a ser comparado. Ao 

final do processamento, são gerados dois arquivos de resultado, apresentando, linha 

a linha, a saída da comparação baseada no erro relativo e no teste estatístico de 

Friedman. Essa abordagem permite uma avaliação detalhada da equivalência dos 

dados, assegurando maior precisão na análise estatística das diferenças entre os 

arquivos comparados. 
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APÊNDICE B - Descrição das variáveis importantes do Software de 

Processamento de EEG Versão Plataforma computacional 

A seguir, são descritas as principais variáveis geradas pelo processamento 

do EEG durante a execução da função processRecords, conforme documentado em 

(BARBOSA, 2019). Essas variáveis representam os principais parâmetros e 

quantificadores extraídos, sendo fundamentais para a análise e interpretação dos 

dados processados. 

1 nameChannels (vetor de cellstr) 

Vetor de tamanho L, onde L representa a quantidade de canais EEG no 

registro (comumente, L = numberChannels = 20). Os nomes dos canais possuem 

correspondência direta com as variáveis "xn" e "typeChannels", seguindo a ordem: 

Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, 

O2. 

2 typeChannels (vetor cellstr) 

Vetor de tamanho L, onde L representa a quantidade de canais EEG no 

registro (comumente, L = numberChannels = 20). Esse vetor armazena o tipo 

correspondente a cada canal, que pode assumir valores como EEG, FOTO, EKG, 

entre outros. Os tipos dos canais possuem correspondência direta com as variáveis 

"xn" e "nameChannels", garantindo a correta identificação e categorização dos sinais 

registrados. 

3 xn (matriz de escalares) 

Matriz de dimensão L × N, onde L representa a quantidade de canais EEG e 

N corresponde ao tempo discreto do registro. Essa matriz contém o sinal EEG 

convertido para o formato específico da plataforma computacional, onde: 

• As L linhas correspondem aos canais identificados no vetor "nameChannels"; 

• As N colunas representam os instantes de tempo discretizados. 

Cada elemento da matriz está expresso em microvolts (µV), representando a 

amplitude do sinal EEG em um determinado instante. A organização da matriz segue 
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a convenção: L = numberChannels (número de canais EEG) e N = número de 

amostras temporais. 

4 numberChannels (escalar) 

Número total de canais na matriz "xn", onde numberChannels é igual a L, 

representando a quantidade de canais EEG no registro.  

5 N (escalar) 

Número total de amostras por canal, representando a quantidade de instantes 

temporais discretizados registrados para cada canal EEG. Esse parâmetro define a 

resolução temporal do sinal, sendo fundamental para a análise e processamento dos 

dados adquiridos. 

6 T (escalar) 

Período de amostragem, expresso em segundos, determinado com base na 

taxa de amostragem do sinal EEG. Esse valor representa o intervalo de tempo entre 

amostras consecutivas. 

7 Fa (escalar) 

Frequência de amostragem da aquisição do sinal EEG, expressa em hertz 

(Hz). Esse parâmetro define o número de amostras coletadas por segundo, 

influenciando diretamente a resolução temporal do registro e a fidelidade da 

representação do sinal cerebral. 

8 t (vetor de escalares) 

Vetor de tempo, expresso em segundos, com dimensão N, correspondente à 

quantidade de amostras do sinal EEG. Esse vetor é utilizado para a representação 

temporal dos dados, permitindo a correta plotagem e análise da evolução do sinal ao 

longo do tempo. 

9 totalTime (escalar) 

Tempo total do exame, expresso em segundos, correspondente à duração 

completa do registro EEG. Esse parâmetro é obtido a partir do número total de 
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amostras (N) e da frequência de amostragem, sendo fundamental para a análise 

temporal do sinal. 

10 freqMax (escalar) 

Frequência de corte, expressa em hertz (Hz), correspondente ao filtro passa-

baixa que deve ser aplicado ao sinal EEG. O valor do corte varia conforme a condição 

do exame, sendo definido como 100 Hz para exames normais e 30 Hz para exames 

em coma. Esse parâmetro é essencial para a eliminação de altas frequências 

indesejadas, preservando apenas as componentes relevantes do sinal. 

11 variablesInformation (matriz de cellString) 

Fornece uma descrição resumida das variáveis armazenadas no arquivo dos 

dados, detalhando seus significados e funções no processamento do sinal EEG. 

Essas variáveis representam os principais parâmetros extraídos e calculados, sendo 

fundamentais para a análise e interpretação dos dados registrados. 

12 dayOfConversion (string) 

Registra a data de conversão do arquivo PLG para o arquivo de dados, 

permitindo o rastreamento do momento em que o processamento foi realizado. Esse 

dado é essencial para a organização, auditoria e reprodutibilidade dos resultados. 

13 remainingChannels (matriz de escalares) 

Armazena os registros de canais do EEG convertidos para o formato da 

plataforma computacional, que não estão presentes na lista especificada em 

listChannels. A matriz gerada possui dimensão LR × N, onde: 

• LR representa a quantidade de canais EEG que não pertencem a listChannels 

(comumente LR = 1, correspondente ao canal FOTO); 

• N corresponde ao número total de amostras, cujos valores estão expressos em 

microvolts (µV) e representam a amplitude do sinal em cada instante. 

Essa estrutura permite o armazenamento separado de canais auxiliares, 

garantindo a integridade dos dados principais e preservando informações relevantes 

para análises complementares. 
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14 remainingChannelsName (vetor cellstr) 

Lista os nomes dos canais presentes no exame .PLG, mas que não estão 

incluídos na relação especificada em listChannels. Esse vetor possui dimensão LR, 

onde LR representa a quantidade de canais EEG restantes. 

Cada elemento desse vetor tem correspondência direta com as variáveis 

"remainingChannelsType" e "remainingChannels", assegurando a correta 

identificação dos canais auxiliares que foram excluídos da lista principal. 

15 remainingChannelsType (vetor cellstr) 

Armazena os tipos dos canais presentes no exame .PLG, mas que não fazem 

parte da lista definida em listChannels. Esse vetor possui dimensão LR, onde LR 

representa a quantidade de canais EEG restantes. 

Cada elemento desse vetor tem correspondência direta com as variáveis 

"remainingChannels" e "remainingChannelsName", garantindo a correta 

categorização dos canais auxiliares excluídos da lista principal. 

16 epochsValues (vetor de cell) 

Vetor de dimensão nEpochs, onde nEpochs representa o número de épocas 

definidas pelo usuário (comumente 10 épocas). Cada posição desse vetor contém 

uma célula que armazena uma matriz de dimensão L × NAE, onde: 

• L corresponde à quantidade de canais EEG no registro (comumente L = 20); 

• NAE representa o número de amostras por época, calculado como fa × duração 

da época (segundos), onde fa é a frequência de amostragem. 

Essa estrutura permite a segmentação e organização dos dados EEG por 

épocas, facilitando a análise temporal do sinal. 

17 epochsTimes (vetor de cell) 

Vetor que armazena a representação dos instantes de tempo associados a 

cada época, com dimensão nEpochs, onde nEpochs corresponde ao número de 

épocas definidas pelo usuário. 
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Cada posição desse vetor contém uma célula que armazena um vetor de 

tamanho NAE, onde: 

• NAE representa o número de amostras por época, determinado por fa × 

duração da época (em segundos), sendo fa a frequência de amostragem; 

• Cada célula contém o conjunto de instantes de tempo associados aos dados 

registrados na respectiva época. 

Essa estrutura permite a associação precisa entre os dados do EEG e os 

instantes de tempo correspondentes, facilitando a análise temporal do sinal. 

18 epochsValuesZerosInNoiseChannel (vetor de cell) 

Semelhante a epochsValues, porém com os valores dos canais considerados 

ruidosos substituídos por zeros. A remoção dos dados ocorre tanto para os canais 

identificados como ruidosos durante o processamento quanto para aqueles 

classificados como ruidosos na avaliação médica. 

Essa abordagem permite a manutenção da estrutura dos dados temporais, ao 

mesmo tempo que elimina a influência de canais comprometidos. 

19 PCP (vetor de cell) 

Vetor de dimensão nFrequences, onde nFrequences corresponde ao número 

de faixas de frequência analisadas (comumente nFrequences = 7, abrangendo Delta, 

Teta, Alfa, Beta, Gama, Super Gama e Ruído). 

Cada elemento desse vetor contém uma matriz de dimensão L × nEpochs, 

onde: 

• L representa a quantidade de canais EEG do registro (comumente L = 20); 

• nEpochs corresponde ao número de épocas do exame (comumente nEpochs 

= 10). 

Essa matriz armazena valores escalares que representam a contribuição de 

potência de cada ritmo cerebral em cada época, possibilitando a análise da 

distribuição espectral do sinal EEG ao longo do tempo. 
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20 powerSignal (matriz de escalares) 

Matriz de dimensão L × nEpochs, onde: 

• L representa a quantidade de canais EEG do registro (comumente L = 20); 

• nEpochs corresponde ao número de épocas do exame (comumente nEpochs 

= 10). 

Essa matriz armazena a potência total de cada época para cada canal EEG, 

permitindo a análise da distribuição de energia do sinal ao longo do tempo e a 

comparação entre diferentes períodos do exame. 

21 frequencesNamePCP (vetor de cellstr) 

Vetor de dimensão nFrequences, armazenando os nomes das faixas de 

frequência associadas à variável PCP. Os valores contidos nesse vetor correspondem 

às principais bandas do EEG, sendo: 

• Delta, Teta, Alfa, Beta, Gama, Supergama e Ruído. 

Os nomes das frequências são idênticos aos armazenados na variável 

"frequencesName", garantindo consistência na nomenclatura utilizada no 

processamento e análise do sinal EEG. 

22 frequencesPCP (matriz de escalares) 

Matriz de dimensão nFrequences × 2, armazenando os intervalos de 

frequência (em Hz) associados à variável PCP. Cada linha dessa matriz corresponde 

a uma das faixas de frequência analisadas, apresentando os limites inferior e superior 

de cada banda espectral. 

Essa matriz possui uma relação direta com as linhas da variável 

"frequencesNamePCP", garantindo consistência na definição das faixas espectrais 

utilizadas no processamento do EEG. 

23 FM (vetor de cell) 

Vetor de dimensão nFrequences, onde nFrequences corresponde ao número 

de faixas de frequência analisadas (comumente nFrequences = 7, abrangendo Delta, 

Teta, Alfa, Beta, Gama, Supergama e Ruído). 
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Cada elemento desse vetor contém uma matriz de dimensão L × nEpochs, 

onde: 

• L representa a quantidade de canais EEG do registro (comumente L = 20); 

• nEpochs corresponde ao número de épocas do exame (comumente nEpochs 

= 10). 

Essa matriz armazena valores escalares que representam a Frequência 

Mediana de cada ritmo cerebral ao longo das épocas, possibilitando a análise da 

distribuição espectral do sinal EEG e suas variações temporais. 

24 frequencesNameFM (vetor de cellstr) 

Vetor de dimensão nFrequences, armazenando os nomes das faixas de 

frequência (em Hz) associadas à variável FM. As frequências representadas incluem: 

• Delta, Teta, Alfa, Beta, Gama, Supergama e Ruído. 

Os valores contidos nesse vetor são idênticos aos da variável 

"frequencesName", garantindo consistência na nomenclatura das bandas espectrais 

utilizadas na análise da Frequência Mediana do sinal EEG. 

25 frequencesFM (matriz de escalares) 

Matriz de dimensão nFrequences × 2, armazenando os intervalos de 

frequência (em Hz) associados à variável FM. Cada linha dessa matriz corresponde a 

uma das faixas de frequência analisadas, apresentando os limites inferior e superior 

de cada banda espectral. 

Essa matriz possui uma relação direta com as linhas da variável 

"frequencesNameFM", garantindo consistência na definição das faixas espectrais 

utilizadas no processamento do EEG. 

26 COR_PairsOfElectrodes (vetor de cell) 

Vetor de dimensão nPairsOfElectrodes, onde nPairsOfElectrodes representa 

o número de pares de eletrodos analisados na coerência (comumente 

nPairsOfElectrodes = 8). 
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Cada elemento desse vetor contém uma matriz de dimensão nEpochs × Y, 

onde: 

• nEpochs corresponde à quantidade de épocas selecionadas no exame 

(comumente nEpochs = 10); 

• Y representa o número de frequências geradas pela função 'mscohere' da 

plataforma computacional, utilizada para o cálculo da coerência. 

Cada matriz armazena os valores de coerência calculados para um par 

específico de eletrodos, seguindo a seguinte ordenação: 

1. FP1 – FP2 

2. F7 – F8 

3. F3 – F4 

4. T3 – T4 

5. C3 – C4 

6. T5 – T6 

7. P3 – P4 

8. O1 – O2 

Essa estrutura permite a análise detalhada da conectividade funcional entre 

pares de eletrodos, facilitando a interpretação das relações entre diferentes regiões 

cerebrais ao longo das épocas do exame. 

27 CORRELATION (vetor de cell) 

Vetor de dimensão nFrequences, onde nFrequences representa o número de 

faixas de frequência analisadas (comumente nFrequences = 7, abrangendo Delta, 

Teta, Alfa, Beta, Gama, Supergama e Ruído). 

Cada elemento desse vetor contém um vetor de cells de dimensão 

nPairsOfElectrodes, onde nPairsOfElectrodes corresponde ao número de pares de 

eletrodos formados pela combinação dos eletrodos do hemisfério esquerdo com os 

do hemisfério direito (comumente nPairsOfElectrodes = 8). 
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Cada elemento do vetor de pares armazena uma matriz de dimensão nEpochs 

× NY, onde: 

• nEpochs representa a quantidade de épocas selecionadas no exame 

(comumente nEpochs = 10); 

• NY corresponde à quantidade de frequências analisadas por banda ou faixa de 

frequência, conforme a variável Y de "COR_PairsOfElectrodes". 

Essa estrutura possibilita a análise da coerência entre pares de eletrodos para 

cada banda de frequência, fornecendo informações sobre a conectividade funcional 

do cérebro ao longo do tempo. 

28 frequencesNameCORR (vetor de cellstr) 

Vetor de dimensão nFrequences, armazenando os nomes das faixas de 

frequência associadas à variável CORRELATION. Essas faixas incluem: 

• Delta, Teta, Alfa, Beta, Gama, Supergama e Ruído. 

Os valores contidos nesse vetor são idênticos aos da variável 

"frequencesName", garantindo consistência na nomenclatura das bandas espectrais 

utilizadas na análise de coerência do sinal EEG. 

29 frequencesCORR (matriz de escalares) 

Matriz de dimensão nFrequences × 2, armazenando os intervalos de 

frequência (em Hz) associados à variável CORRELATION. Cada linha dessa matriz 

corresponde a uma das faixas de frequência analisadas, apresentando os limites 

inferior e superior de cada banda espectral. 

Essa matriz possui uma relação direta com as linhas da variável 

"frequencesNameCORR", garantindo consistência na definição das faixas espectrais 

utilizadas no processamento do EEG. 

30 F_cor (vetor de escalares) 

Vetor de frequências em hertz (Hz), com dimensão Y, gerado pela função 

'mscohere' da plataforma computacional. Esse vetor contém os valores de frequência 
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analisados durante o cálculo da coerência, sendo essencial para a interpretação dos 

resultados espectrais do sinal EEG. 
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APÊNDICE C - Arquivo .CSV de entrada para o processRecords 

Nome 
Arquivo 

PLG 

Duração 
Epocas 
(seg) 

Qtd. 
Epo-
cas 

Ep1 Ep2 Ep3 Ep4 Ep5 Ep6 Ep7 Ep8 Ep9 Ep10 
Qtd 

Ruido-
sos 

Canal 
Ruido 

1 

Canal 
Ruido 

2 

Canal 
Ruido 

3 

Normal 
/Coma 

Fil-
tro 

Nome Saída 
Gerar 
Excel 

0011901' 2 10 01:49 01:51 01:53 01:55 01:58 02:00 02:14 02:23 02:41 02:45     COMA 35 
C0011901_ME 

_OUTROS 
SIM 

0013501' 2 10 12:28 12:30 12:32 12:34 12:36 12:38 12:42 12:49 12:56 13:13 3 FP1 FP2 F4 COMA 35 
C0013501_ME 

_COMA 
_METABOLICO 

SIM 

0303001' 2 10 03:56 03:58 04:05 04:07 04:26 05:13 06:06 06:21 08:27 09:29     COMA 35 
C0303001_ME 

_OUTROS 
SIM 

0372501' 2 10 15:44 16:11 17:23 17:44 18:21 18:36 18:48 18:50 19:00 19:02 3 F4 F8 Oz COMA 35 
C0372501_ME 

_OUTROS 
SIM 

0373701' 2 10 09:53 09:55 09:57 10:01 10:03 10:28 10:35 11:02 11:52 12:17 2 T5 F7  COMA 35 
C0373701_ 

COMA_ 
METABÓLICO 

SIM 

0375201' 2 10 10:36 10:38 10:40 10:42 10:44 11:23 11:28 11:35 12:16 12:23 1 Oz   COMA 35 
C0375201_ME 

_COMA_ 
METABÓLICO 

SIM 

0726001' 2 10 00:32 00:34 00:36 00:38 00:46 01:00 01:39 02:05 02:45 03:01 2 FP2 F4  COMA 35 
C0726001_ME 

_OUTROS 
SIM 

0932801' 2 10 00:01 00:03 00:05 00:07 00:22 00:27 00:44 01:04 01:15 01:38 1 FP2   COMA 35 
C0932801_M 

E_OUTROS 
SIM 

1045901' 2 10 02:54 02:56 02:58 03:00 03:10 04:36 05:23 06:30 06:50 09:23     COMA 35 
C1045901_ME 

_AVE 
SIM 

1048001' 2 10 00:48 00:50 00:52 00:54 01:33 02:24 03:03 05:00 07:26 07:39     COMA 35 
C1048001_ME 

_TCE 
SIM 

1054001' 2 10 00:56 04:04 04:37 05:43 06:08 06:54 07:25 07:27 07:29 07:31     COMA 35 
C1054001_M 

E_AVE 
SIM 
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APÊNDICE D - Arquivo .CSV de resultado do processamento do APÊNDICE C apenas com as colunas adicionais 

 

Nome Arquivo 
PLG 

Conversão? Canais Ruidosos 
Exame Valido (POUCO 

RUIDO)? 
PCP 

Frequência 
Mediana 

Coerência 
FreqMax 
Adotada 

0011901' SUCCESS  SIM SIM SIM SIM 30.00 

0013501' SUCCESS  SIM SIM SIM SIM 30.00 

0303001' SUCCESS F7 SIM SIM SIM SIM 30.00 

0372501' SUCCESS F7 NAO SIM SIM SIM 30.00 

0373701' SUCCESS F7 SIM SIM SIM SIM 30.00 

0375201' SUCCESS F7 SIM SIM SIM SIM 30.00 

0726001' SUCCESS  SIM SIM SIM SIM 30.00 

0932801' SUCCESS  SIM SIM SIM SIM 30.00 

1045901' SUCCESS  SIM SIM SIM SIM 30.00 

1048001' SUCCESS  SIM SIM SIM SIM 30.00 

1054001' SUCCESS  SIM SIM SIM SIM 30.00 

1054501' SUCCESS  SIM SIM SIM SIM 30.00 
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APÊNDICE E - Arquivo .CSV de entrada para o processRecords após melhorias 

Nome 
Arquivo 

PLG 

Fun 
cao 

Filtro 

Limiar 
de 

erro 

Duracao 
Epocas 
(segu 
ndos) 

Qtd 
Epocas 

Ep1 Ep2 Ep3 Ep4 Ep5 
Medico 
Canais 

Ruidosos 

Filtro 
Passa 
Baixa 

Quantificadores Parametros 
Canais a 

Processar 
Gerar 
Excel 

Nome 
Saida 

'0005201' teste  2 5 3:14 3:16 3:18 3:20 3:23 O2,FP1  PCP,VPC Taumax=30 O2 NAO Vteste 

1109101' teste  2 5 9:55 9:57 9:59 10:01 05:57 O2 35 FM,PSNG  O2,FP1 NAO Vpassou 

'0013201' teste  2 5 04:25 04:42 04:53 05:06 05:16   TODOS   NAO V78 

'0013201' teste  2 
SEQUEN 
CIAL=8 

04:25       COERENCIA   NAO VSEQ 
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APÊNDICE F - Exemplo de um arquivo Excel de saída de cálculo do teste de Friedman 

 SILENCIO        MUSICA FAVORITA       MUSICA DESGOSTADA     

 DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO 

FP1 0,023652 0,000236 0,001586 7,7E-08 0,143918 0,023652 0,081125  0,09896 0,322199 0,278263 0,053266 0,509275 7,5E-05 0,509275  0,065992 0,924886 1 0,008294 0,108984 0,539991 0,203092 

FP2 0,081125 1,29E-07 0,042658 5,03E-05 0,004033 0,571608 5,92E-08  0,09896 0,053266 0,257899 0,777297 0,539991 0,00721 0,131428  0,450701 0,299694 0,571608 0,000236 0,604078 0,396144 0,157299 

F7 0,813664 0,186858 0,01621 1,16E-05 0,143918 0,157299 1,44E-05  0,777297 0,4795 0,962401 0,089686 0,186858 0,008294 0,345779  0,37043 0,065992 0,509275 0,089686 0,089686 0,509275 0,203092 

F3 0,345779 0,005414 7,52E-06 0,089686 0,143918 0,053266 3,35E-05  0,171602 0,203092 0,345779 0,962401 0,887537 0,081125 5,03E-05  0,509275 0,571608 0,637352 0,924886 0,571608 0,962401 0,777297 

FZ 0,038063 0,018422 2,72E-05 0,345779 0,22033 0,509275 3,84E-06  0,422907 0,4795 0,4795 0,203092 0,396144 0,186858 0,000817  0,850436 0,450701 0,22033 0,22033 0,962401 0,143918 0,422907 

F4 0,001348 0,002979 0,012474 0,238593 0,203092 0,000817 9,37E-06  0,741413 0,073239 0,813664 0,4795 0,671373 0,004033 0,033895  1 0,962401 0,777297 0,012474 0,604078 0,706082 0,850436 

F8 0,539991 0,004678 0,012474 0,108984 0,850436 0,010909 1,44E-10  0,008294 0,009522 0,887537 0,345779 0,053266 0,002183 0,000284  0,571608 0,299694 0,539991 0,014234 0,059346 0,813664 0,081125 

T3 0,604078 0,059346 4,54E-08 1,06E-10 0,038063 0,005414 1,07E-14  0,108984 0,038063 0,005414 0,396144 0,777297 0,000134 0,053266  0,4795 0,026719 0,571608 0,00034 0,014234 0,008294 2,72E-05 

C3 0,887537 0,038063 8,86E-09 0,131428 0,047715 0,422907 0,00034  0,741413 0,345779 0,450701 0,539991 0,322199 0,539991 0,030124  0,089686 0,887537 0,604078 0,850436 0,01621 0,038063 0,014234 

CZ 0,924886 0,004678 9,37E-06 0,637352 0,571608 0,396144 0,000407  0,22033 0,059346 0,018422 0,604078 0,850436 0,924886 0,053266  0,257899 0,924886 0,157299 0,37043 0,962401 0,038063 0,539991 

C4 0,813664 0,008294 0,000817 0,637352 0,059346 0,119795 0,000486  0,009522 0,009522 0,081125 0,299694 0,741413 0,020895 0,171602  0,509275 0,422907 0,143918 0,850436 0,143918 0,108984 0,012474 

T4 0,509275 0,001143 0,00034 6,03E-06 4,11E-05 0,000284 3,48E-16  0,023652 0,741413 0,509275 0,171602 0,604078 0,012474 4,54E-08  0,962401 0,813664 0,345779 0,089686 0,026719 0,059346 2,21E-05 

T5 0,850436 0,000967 1,92E-06 0,257899 0,171602 0,322199 0,089686  0,038063 0,887537 0,257899 0,004678 0,018422 0,22033 0,887537  0,322199 0,089686 0,059346 0,278263 0,059346 0,143918 0,000967 

P3 0,601029 0,002745 1,24E-06 0,234654 0,183165 0,81212 0,008933  0,140566 0,634514 0,128203 0,010256 0,73931 0,849189 0,775468  0,087011 0,568366 0,962084 0,703718 0,419004 0,096145 0,057233 

PZ 0,171602 0,171602 3,84E-06 0,924886 0,008294 0,741413 0,006254  0,010909 0,777297 0,143918 1 0,278263 0,023652 0,637352  0,257899 0,186858 0,278263 0,450701 0,01621 0,671373 0,026719 

P4 0,777297 0,005414 2,43E-06 0,637352 0,014234 0,065992 0,00347  0,143918 0,073239 0,157299 0,539991 0,396144 0,065992 0,157299  0,396144 0,37043 0,038063 0,604078 0,37043 0,131428 0,09896 

T6 0,604078 0,004033 6,61E-14 0,637352 0,047715 0,00721 0,00034  0,01621 0,741413 0,023652 0,131428 0,299694 0,006254 0,020895  0,131428 0,157299 0,299694 0,924886 0,008294 0,37043 0,000284 

O1 0,706082 0,023652 3,21E-14 0,008294 0,119795 0,203092 0,008294  0,203092 0,157299 0,065992 0,012474 0,850436 0,278263 0,396144  0,033895 1,44E-05 0,004678 0,813664 0,278263 0,345779 0,09896 

OZ 1 0,005414 1,54E-08 0,171602 0,450701 0,047715 0,000967  0,059346 0,186858 0,038063 0,042658 0,131428 0,278263 0,450701  0,009522 0,00721 0,203092 0,924886 0,073239 0,706082 0,026719 

O2 0,924886 0,002553 1,54E-12 0,741413 0,004678 0,345779 1,92E-06  0,047715 0,4795 0,143918 0,030124 0,741413 0,038063 0,01621  0,073239 0,000689 0,000284 0,741413 0,777297 0,671373 0,741413 

                        

 DO CONTINUO       SOL BAIAO       RUIDO BRANCO      
 DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO 

FP1 0,005414 0,000817 0,081125 0,257899 0,396144 0,157299 0,119795  0,143918 0,924886 0,238593 0,813664 0,012474 0,637352 8,86E-09  0,741413 0,119795 0,322199 0,203092 0,257899 0,450701 0,108984 
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FP2 0,850436 9,99E-08 0,37043 0,539991 0,143918 0,09896 0,604078  1 0,887537 0,777297 0,37043 0,108984 0,020895 4,11E-05  0,671373 0,108984 0,119795 0,604078 0,637352 0,089686 0,238593 

F7 0,157299 0,539991 0,4795 0,345779 0,396144 0,671373 0,539991  0,020895 0,09896 0,059346 0,042658 0,924886 0,637352 3,06E-06  0,020895 0,741413 0,000196 0,000111 0,962401 0,637352 0,157299 

F3 0,671373 0,081125 0,37043 0,924886 0,396144 0,604078 0,038063  0,4795 0,322199 0,539991 0,962401 0,671373 0,203092 0,000162  0,604078 0,539991 0,203092 0,257899 0,422907 0,171602 0,09896 

FZ 0,604078 0,119795 0,777297 0,706082 0,09896 0,278263 0,37043  0,539991 0,813664 0,706082 0,509275 0,238593 0,604078 4,11E-05  0,257899 0,539991 0,37043 0,887537 0,604078 0,777297 0,023652 

F4 0,813664 0,030124 0,637352 0,396144 0,509275 0,257899 0,038063  0,671373 0,238593 0,637352 0,322199 0,706082 0,033895 0,001348  0,924886 0,322199 0,450701 0,741413 0,509275 0,4795 0,186858 

F8 0,777297 0,023652 0,033895 0,604078 0,238593 0,026719 0,539991  0,539991 0,539991 1 0,203092 0,396144 0,962401 0,010909  0,450701 0,047715 0,962401 0,509275 0,604078 0,604078 0,813664 

T3 0,073239 0,299694 0,089686 0,924886 0,962401 0,887537 0,01621  0,131428 0,042658 0,4795 0,000407 0,005414 0,637352 1,92E-06  0,813664 0,671373 0,962401 0,396144 0,637352 0,706082 0,741413 

C3 0,509275 0,081125 0,004678 0,278263 0,813664 0,604078 0,637352  0,065992 0,813664 0,450701 0,571608 0,509275 0,089686 0,000196  0,257899 0,131428 0,850436 1 0,4795 0,924886 0,238593 

CZ 0,887537 0,257899 0,081125 0,37043 0,37043 0,073239 0,850436  0,053266 0,422907 0,089686 0,257899 0,706082 0,22033 0,000817  0,171602 0,322199 0,741413 0,299694 0,396144 0,539991 0,033895 

C4 0,813664 0,047715 0,119795 0,065992 0,671373 0,033895 0,850436  0,108984 0,539991 0,637352 0,422907 0,539991 0,278263 0,001143  0,033895 0,637352 0,962401 0,924886 0,186858 0,604078 0,299694 

T4 0,887537 0,001863 0,299694 0,059346 0,37043 0,09896 0,186858  0,962401 0,924886 0,509275 0,345779 0,006254 0,143918 7,76E-13  0,887537 0,322199 0,450701 0,186858 0,047715 0,539991 0,000967 

T5 1 0,065992 0,171602 0,053266 1 0,4795 0,777297  0,4795 0,962401 0,671373 1 0,238593 0,345779 0,000817  0,322199 0,813664 0,422907 0,450701 0,119795 0,850436 0,422907 

P3 0,849189 0,096145 0,153826 1 0,253904 0,274227 0,4758  0,003734 0,634514 0,601029 0,703718 0,366405 0,703718 0,318132  0,032418 0,536577 0,253904 0,849189 0,536577 0,21646 0,106029 

PZ 0,257899 0,813664 0,081125 0,018422 0,571608 0,962401 0,887537  0,004678 0,450701 0,741413 0,203092 0,887537 0,018422 0,053266  0,006254 0,962401 0,278263 0,203092 0,131428 0,143918 0,186858 

P4 0,706082 0,238593 0,813664 0,887537 0,422907 0,671373 0,131428  0,962401 0,030124 0,637352 0,038063 0,396144 0,257899 0,065992  0,186858 0,157299 0,604078 0,671373 0,299694 0,604078 0,089686 

T6 0,813664 0,010909 0,023652 0,042658 0,238593 0,020895 0,850436  0,741413 0,238593 0,257899 0,278263 0,637352 0,00347 0,203092  0,081125 0,047715 0,026719 0,962401 0,299694 0,009522 0,073239 

O1 0,4795 1 0,00347 0,450701 0,089686 0,322199 0,22033  0,850436 0,396144 0,706082 0,604078 0,924886 0,22033 0,012474  0,509275 0,422907 0,924886 0,089686 0,422907 0,924886 0,962401 

OZ 0,322199 0,065992 0,157299 0,571608 0,671373 0,157299 0,962401  0,604078 0,604078 0,238593 0,171602 0,637352 0,637352 0,005414  0,777297 0,706082 0,171602 0,604078 0,322199 0,278263 0,09896 

O2 0,604078 0,131428 0,030124 0,422907 0,01621 0,706082 0,033895  0,887537 0,706082 0,924886 0,278263 0,509275 0,887537 6,15E-05  0,962401 0,706082 0,924886 0,604078 0,604078 0,322199 0,000579 
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APÊNDICE G - Exemplo de um arquivo Excel de saída do cálculo do VAP 

 SILENCIO        MUSICA FAVORITA       MUSICA DESGOSTADA     
 DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO 

FP1 0,595768 0,87009 0,259956 0,316259 0,090268 0,016973 0,001812  1,194153 0,070018 0,165669 0,135871 0,034423 0,027143 0,000894  0,231098 0,010624 0,061997 0,0845 0,117522 0,003494 0,001135 

FP2 0,841157 0,968848 0,118659 0,185927 0,247707 0,003693 0,002762  0,580901 0,22257 0,033174 0,04875 0,021857 0,019032 4,56E-05  0,060831 0,111802 0,07541 0,127447 0,101485 0,005587 0,001354 

F7 0,100812 0,447685 0,111703 0,249798 0,1016 0,003482 0,003384  0,680415 0,234233 0,129694 0,071264 0,103651 0,016715 0,001167  0,118884 0,326511 0,028536 0,078738 0,072481 0,006861 0,000265 

F3 0,802337 0,593241 0,233814 0,21623 0,12919 0,012364 0,001566  0,746025 0,081298 0,125294 0,049551 0,052737 0,016366 0,000884  0,55486 0,302941 0,085922 0,074153 0,116635 0,00278 0,001606 

FZ 1,220249 1,103765 0,351018 0,148131 0,170803 0,002096 0,003182  0,002474 0,237588 0,015623 0,137978 0,020239 0,014218 0,001528  0,465123 0,040607 0,183472 0,20062 0,102097 0,013392 0,000587 

F4 1,417652 0,782454 0,161873 0,039497 0,11543 0,012444 0,00183  0,063204 0,388215 0,219216 0,191286 0,105064 0,01787 0,000302  0,421018 0,230413 0,126361 0,248263 0,006502 0,001409 0,000873 

F8 0,334084 0,827649 0,304923 0,266913 0,117089 0,025826 0,004453  1,054843 0,458895 0,270228 0,053122 0,235478 0,030943 0,001809  0,344164 0,11265 0,252466 0,159937 0,328428 0,00464 0,002178 

T3 0,093229 0,490714 0,617214 0,571319 0,17662 0,035254 0,006291  1,203961 0,78414 0,365087 0,295182 0,146858 0,049381 0,001092  0,769734 0,873576 0,138364 0,529608 0,454545 0,058112 0,007222 

C3 0,38463 0,742916 0,571433 0,050461 0,069973 0,012148 0,001677  0,715608 0,213236 0,158208 0,049848 0,015907 0,010285 0,001518  0,987762 0,26985 0,068035 0,006757 0,103764 0,02064 0,001428 

CZ 0,155539 0,501053 0,353531 0,127143 0,010999 0,010564 0,001519  0,674348 0,378654 0,418251 0,188961 0,01085 0,009193 0,000578  0,655418 0,37478 0,28438 0,092795 0,123028 0,004543 0,000501 

C4 0,1149 0,926192 0,440222 0,075633 0,169607 0,017318 0,002063  1,118511 0,442846 0,206013 0,014186 0,025011 0,01859 7,29E-05  1,006737 0,121336 0,308309 0,131486 0,123531 0,009319 0,001649 

T4 0,506144 1,195034 0,579707 0,768204 0,450421 0,030686 0,007142  1,099557 0,396413 0,132582 0,16891 0,050356 0,024892 0,001509  0,230889 0,097096 0,014971 0,144818 0,191009 0,037895 0,0044 

T5 0,560703 1,336285 0,728461 0,032832 0,085702 0,0094 0,001098  0,742546 0,141332 0,149544 0,454682 0,314168 0,015863 0,000119  0,51543 0,743569 0,273174 0,178521 0,272147 0,00149 0,002192 

P3 0,150899 0,896863 0,357998 0,055094 0,087976 0,000151 0,000322  0,623005 0,151914 0,091214 0,154402 0,024343 0,001802 0,000471  0,76816 0,219163 0,385205 0,062172 0,088874 0,022102 0,001664 

PZ 0,079334 1,089736 0,417561 0,222579 0,173357 0,002935 0,00152  1,519129 0,053681 0,185168 0,065906 0,234743 0,016068 0,001271  0,891543 0,518816 0,25812 0,036177 0,254184 0,000318 0,002268 

P4 0,134106 0,624801 0,573596 0,168705 0,213661 0,005233 0,00274  1,227517 0,300564 0,077168 0,104916 0,119754 0,007457 0,000268  0,797669 0,271167 0,354279 0,055187 0,085058 0,010509 0,000969 

T6 0,988035 1,444386 0,774728 0,099487 0,010429 0,020192 0,002907  1,219627 0,071788 0,173884 0,169421 0,255772 0,02589 0,00079  0,494893 0,805922 0,166282 0,292263 0,335911 0,003357 0,002607 

O1 0,369817 1,284894 0,888519 0,07282 0,192045 0,00125 0,002317  1,330678 0,611184 0,227753 0,208227 0,027222 0,00764 0,000563  1,344151 1,313259 0,265216 0,098713 0,010549 0,004665 0,001223 

OZ 0,423165 1,34282 0,896317 0,103013 0,237875 0,000982 0,002816  1,440096 0,40746 0,28609 0,118972 0,150678 0,003382 5,45E-05  1,112802 0,715989 0,210891 0,039545 0,051141 0,005216 0,000682 

O2 0,309195 0,903936 0,983046 0,024451 0,276322 0,002082 0,003779  0,919053 0,398915 0,16237 0,042094 0,110923 0,019403 0,000658  0,912628 1,285001 0,323655 0,06671 0,101271 0,003086 8,19E-05 

                        

 DO CONTINUO       SOL BAIAO       RUIDO BRANCO      
 DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO 

FP1 0,447944 0,341924 0,220192 0,121369 0,053172 0,014114 0,000847  0,695204 0,163582 0,094191 0,014467 0,183254 0,005627 0,005041  0,283336 0,164912 0,17573 0,064163 0,0625 0,001605 0,001857 
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FP2 0,529909 0,532468 0,086499 0,037606 0,109096 0,009019 6,86E-05  0,62466 0,175922 0,074199 0,010213 0,130491 0,011509 0,001132  0,116832 0,20357 0,125418 0,001216 0,089289 0,003109 0,00086 

F7 0,346904 0,063395 0,062869 0,081247 0,01079 0,002239 0,000701  1,000394 0,223703 0,148901 0,101051 0,189399 0,00101 0,0049  0,909085 0,139506 0,225636 0,112774 0,07076 0,003473 0,0023 

F3 0,141458 0,361458 0,001337 0,008538 0,222151 0,007366 0,000928  0,09173 0,16033 0,268447 0,001646 0,131059 0,009493 0,001023  0,517405 0,007924 0,473686 0,138305 0,035881 0,01138 5,3E-05 

FZ 0,464325 0,775563 0,220138 0,00634 0,063881 0,008185 0,001143  0,38335 0,402509 0,030137 0,09582 0,128795 0,007968 0,002313  0,363202 0,353108 0,248688 0,006618 0,02272 0,003215 0,000982 

F4 0,29671 0,369615 0,107807 0,001829 0,169761 0,009487 0,001003  0,049861 0,344562 0,075958 0,077206 0,127267 0,009883 0,0014  0,092518 0,014144 0,319019 0,09697 0,039905 0,004177 0,000149 

F8 0,735243 0,470208 0,254305 0,125643 0,068538 0,027662 0,000342  0,374512 0,428027 0,082814 0,058121 0,030476 0,007218 0,002235  0,863534 0,441858 0,121161 0,027924 0,102587 0,004878 0,000235 

T3 0,597538 0,232402 0,255019 0,116072 0,03695 0,003419 0,002558  0,409832 0,625987 0,118319 0,265963 0,236044 0,004996 0,004924  0,163193 0,020952 0,031362 0,038097 0,043077 0,010327 0,001016 

C3 0,459737 0,327146 0,328723 0,071575 0,028159 0,003703 0,001011  1,023983 0,02448 0,207627 0,056285 0,159498 0,003784 0,002451  0,672346 0,225111 0,197379 0,077311 0,040365 0,001678 0,000378 

CZ 0,075136 0,394335 0,111311 0,070107 0,016064 0,011671 4,53E-05  0,733234 0,095264 0,273148 0,04291 0,116912 0,010924 0,001532  0,416341 0,250703 0,406172 0,130543 0,011328 0,009224 0,001011 

C4 0,164537 0,623829 0,039067 0,021268 0,064435 0,010019 0,000486  0,647657 0,341934 0,197793 0,187541 0,068268 0,00884 0,000613  0,781091 0,160558 0,423352 0,00399 0,10271 0,003673 0,000313 

T4 0,102984 1,046021 0,286487 0,30926 0,179574 0,01421 0,001966  0,043864 0,391885 0,099063 0,326702 0,15255 0,01942 0,005157  0,299527 0,334281 0,051934 0,193941 0,241403 0,007814 0,001544 

T5 0,139532 0,526217 0,291303 0,2494 0,033486 0,00715 0,000695  0,297032 0,028615 0,055306 5,89E-05 0,094145 0,000681 0,001854  0,403071 0,074227 0,069307 0,137174 0,242611 0,005311 0,001118 

P3 0,018526 0,446499 0,21215 0,24841 0,006818 0,003056 0,000501  1,038688 0,364912 0,006174 0,002845 0,052479 0,008434 0,001463  0,72319 0,293195 0,365115 0,186871 0,053797 0,01036 0,001369 

PZ 0,017068 0,372099 0,091748 0,197411 0,118126 0,012751 0,001875  0,714679 0,630758 0,117346 0,158355 0,028001 0,007435 0,000174  1,097002 0,071788 0,301508 0,263256 0,242506 0,005477 0,001099 

P4 0,06268 0,43635 0,137282 0,146898 0,13764 0,004577 0,001044  0,067237 0,391464 0,297559 0,124806 0,206647 0,00129 0,001119  0,015514 0,039721 0,311284 0,129843 0,009388 0,007073 0,000684 

T6 0,246972 0,42084 0,200788 0,325242 0,266948 0,017351 0,00048  0,492382 0,735779 0,028155 0,172913 0,114799 0,024315 0,000873  0,22155 0,461387 0,314878 0,016845 0,205199 0,01128 0,001045 

O1 0,016028 0,210646 0,150938 0,11839 0,152839 0,001157 0,000423  0,128847 0,062113 0,238268 0,048684 0,043989 0,005675 0,001408  0,359089 0,131415 0,172818 0,058592 0,049881 0,001477 0,000348 

OZ 0,153039 0,496134 0,17728 0,198581 0,013782 0,00682 0,000473  0,366053 0,091636 0,220942 0,195902 0,004073 0,00274 0,002293  0,195477 0,006235 0,226539 0,125495 0,064529 0,002917 0,001528 

O2 0,262531 0,340161 0,172344 0,097296 0,22763 0,001452 0,001544  0,470061 0,161232 0,298304 0,145724 0,098916 0,003169 0,002959  0,707588 0,177538 0,122828 0,153797 0,041546 0,010368 0,002679 
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APÊNDICE H - Exemplo de um arquivo Excel de saída do cálculo do VAP selecionado de acordo com teste de  

Friedman ( < 0,05) 

 SILENCIO        MUSICA FAVORITA       MUSICA DESGOSTADA     

 DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO 

FP1 0,595768 0,87009 0,259956 0,316259 0 0,016973 0  0 0 0 0 0 0,027143 0  0 0 0 0,0845 0 0 0 

FP2 0 0,968848 0,118659 0,185927 0,247707 0 0,002762  0 0 0 0 0 0,019032 0  0 0 0 0,127447 0 0 0 

F7 0 0 0,111703 0,249798 0 0 0,003384  0 0 0 0 0 0,016715 0  0 0 0 0 0 0 0 

F3 0 0,593241 0,233814 0 0 0 0,001566  0 0 0 0 0 0 0,000884  0 0 0 0 0 0 0 

FZ 1,220249 1,103765 0,351018 0 0 0 0,003182  0 0 0 0 0 0 0,001528  0 0 0 0 0 0 0 

F4 1,417652 0,782454 0,161873 0 0 0,012444 0,00183  0 0 0 0 0 0,01787 0,000302  0 0 0 0,248263 0 0 0 

F8 0 0,827649 0,304923 0 0 0,025826 0,004453  1,054843 0,458895 0 0 0 0,030943 0,001809  0 0 0 0,159937 0 0 0 

T3 0 0 0,617214 0,571319 0,17662 0,035254 0,006291  0 0,78414 0,365087 0 0 0,049381 0  0 0,873576 0 0,529608 0,454545 0,058112 0,007222 

C3 0 0,742916 0,571433 0 0,069973 0 0,001677  0 0 0 0 0 0 0,001518  0 0 0 0 0,103764 0,02064 0,001428 

CZ 0 0,501053 0,353531 0 0 0 0,001519  0 0 0,418251 0 0 0 0  0 0 0 0 0 0,004543 0 

C4 0 0,926192 0,440222 0 0 0 0,002063  1,118511 0,442846 0 0 0 0,01859 0  0 0 0 0 0 0 0,001649 

T4 0 1,195034 0,579707 0,768204 0,450421 0,030686 0,007142  1,099557 0 0 0 0 0,024892 0,001509  0 0 0 0 0,191009 0 0,0044 

T5 0 1,336285 0,728461 0 0 0 0  0,742546 0 0 0,454682 0,314168 0 0  0 0 0 0 0 0 0,002192 

P3 0 0,896863 0,357998 0 0 0 0,000322  0 0 0 0,154402 0 0 0  0 0 0 0 0 0 0 

PZ 0 0 0,417561 0 0,173357 0 0,00152  1,519129 0 0 0 0 0,016068 0  0 0 0 0 0,254184 0 0,002268 

P4 0 0,624801 0,573596 0 0,213661 0 0,00274  0 0 0 0 0 0 0  0 0 0,354279 0 0 0 0 

T6 0 1,444386 0,774728 0 0,010429 0,020192 0,002907  1,219627 0 0,173884 0 0 0,02589 0,00079  0 0 0 0 0,335911 0 0,002607 

O1 0 1,284894 0,888519 0,07282 0 0 0,002317  0 0 0 0,208227 0 0 0  1,344151 1,313259 0,265216 0 0 0 0 

OZ 0 1,34282 0,896317 0 0 0,000982 0,002816  0 0 0,28609 0,118972 0 0 0  1,112802 0,715989 0 0 0 0 0,000682 

O2 0 0,903936 0,983046 0 0,276322 0 0,003779  0,919053 0 0 0,042094 0 0,019403 0,000658  0 1,285001 0,323655 0 0 0 0 

                        

 DO CONTINUO       SOL BAIAO       RUIDO BRANCO      
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 DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO  DELTA TETA ALFA BETA GAMA GAMA ALTA RUIDO 

FP1 0,447944 0,341924 0 0 0 0 0  0 0 0 0 0,183254 0 0,005041  0 0 0 0 0 0 0 

FP2 0 0,532468 0 0 0 0 0  0 0 0 0 0 0,011509 0,001132  0 0 0 0 0 0 0 

F7 0 0 0 0 0 0 0  1,000394 0 0 0,101051 0 0 0,0049  0,909085 0 0,225636 0,112774 0 0 0 

F3 0 0 0 0 0 0 0,000928  0 0 0 0 0 0 0,001023  0 0 0 0 0 0 0 

FZ 0 0 0 0 0 0 0  0 0 0 0 0 0 0,002313  0 0 0 0 0 0 0,000982 

F4 0 0,369615 0 0 0 0 0,001003  0 0 0 0 0 0,009883 0,0014  0 0 0 0 0 0 0 

F8 0 0,470208 0,254305 0 0 0,027662 0  0 0 0 0 0 0 0,002235  0 0,441858 0 0 0 0 0 

T3 0 0 0 0 0 0 0,002558  0 0,625987 0 0,265963 0,236044 0 0,004924  0 0 0 0 0 0 0 

C3 0 0 0,328723 0 0 0 0  0 0 0 0 0 0 0,002451  0 0 0 0 0 0 0 

CZ 0 0 0 0 0 0 0  0 0 0 0 0 0 0,001532  0 0 0 0 0 0 0,001011 

C4 0 0,623829 0 0 0 0,010019 0  0 0 0 0 0 0 0,000613  0,781091 0 0 0 0 0 0 

T4 0 1,046021 0 0 0 0 0  0 0 0 0 0,15255 0 0,005157  0 0 0 0 0,241403 0 0,001544 

T5 0 0 0 0 0 0 0  0 0 0 0 0 0 0,001854  0 0 0 0 0 0 0 

P3 0 0 0 0 0 0 0  1,038688 0 0 0 0 0 0  0,72319 0 0 0 0 0 0 

PZ 0 0 0 0,197411 0 0 0  0,714679 0 0 0 0 0,007435 0  1,097002 0 0 0 0 0 0 

P4 0 0 0 0 0 0 0  0 0,391464 0 0,124806 0 0 0  0 0 0 0 0 0 0 

T6 0 0,42084 0,200788 0,325242 0 0,017351 0  0 0 0 0 0 0,024315 0  0 0,461387 0,314878 0 0 0,01128 0 

O1 0 0 0,150938 0 0 0 0  0 0 0 0 0 0 0,001408  0 0 0 0 0 0 0 

OZ 0 0 0 0 0 0 0  0 0 0 0 0 0 0,002293  0 0 0 0 0 0 0 

O2 0 0 0,172344 0 0,22763 0 0,001544  0 0 0 0 0 0 0,002959  0 0 0 0 0 0 0,002679 
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APÊNDICE I - Resultados do Treinamento Prognostico Clinico 

Os primeiros modelos que foram treinados basearam-se na arquitetura 

mencionada no item 5.2 Arquiteturas.  

Os resultados apresentados na Tabela 15 representam uma adaptação do 

processamento realizado por (BALDO JÚNIOR, 2023), incorporando reajustes na 

arquitetura original para permitir o treinamento com outros modelos, bem como a 

reamostragem do sinal de EEG. 

Tabela 15 – Resultados do treinamento da base de dados Prognóstico Clinico para o sinal 
puro, com características do paciente e estatísticas, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MMLP SREA 0.78 ± 0.09 0.78 ± 0.09 0.84 ± 0.09 0.70 ± 0.13 0.78 ± 0.09 105 

MMLP 0.70 ± 0.15 0.69 ± 0.15 0.81 ± 0.21 0.60 ± 0.08 0.70 ± 0.15 120 

MMLP CP SREA 0.67 ± 0.09 0.66 ± 0.10 0.68 ± 0.09 0.63 ± 0.16 0.67 ± 0.09 72 

MMLP CP 0.67 ± 0.09 0.66 ± 0.10 0.68 ± 0.09 0.63 ± 0.16 0.67 ± 0.09 76 

MMLP CE SREA 0.65 ± 0.13 0.65 ± 0.14 0.65 ± 0.14 0.63 ± 0.19 0.65 ± 0.13 74 

MMLP CE 0.63 ± 0.14 0.63 ± 0.14 0.64 ± 0.15 0.60 ± 0.17 0.63 ± 0.14 86 

MMLP CPE SREA 0.52 ± 0.13 0.51 ± 0.14 0.49 ± 0.14 0.50 ± 0.24 0.52 ± 0.13 75 

MMLP CPE 0.48 ± 0.19 0.48 ± 0.19 0.48 ± 0.15 0.53 ± 0.25 0.48 ± 0.19 82 

MCL SREA 0.78 ± 0.11 0.78 ± 0.11 0.84 ± 0.16 0.73 ± 0.08 0.78 ± 0.11 497 

MCL 0.77 ± 0.03 0.77 ± 0.03 0.79 ± 0.04 0.73 ± 0.08 0.77 ± 0.03 741 

MCL CP SREA 0.87 ± 0.04 0.86 ± 0.04 0.92 ± 0.10 0.83 ± 0.15 0.87 ± 0.04 533 

MCL CP 0.78 ± 0.07 0.78 ± 0.07 0.75 ± 0.08 0.87 ± 0.07 0.78 ± 0.07 683 

MCL CE SREA 0.78 ± 0.16 0.78 ± 0.16 0.86 ± 0.20 0.73 ± 0.08 0.78 ± 0.16 548 

MCL CE 0.73 ± 0.10 0.73 ± 0.10 0.76 ± 0.14 0.73 ± 0.17 0.73 ± 0.10 701 

MCL CPE SREA 0.85 ± 0.06 0.85 ± 0.06 0.90 ± 0.09 0.80 ± 0.13 0.85 ± 0.06 543 

MCL CPE 0.72 ± 0.13 0.71 ± 0.13 0.71 ± 0.12 0.77 ± 0.13 0.72 ± 0.13 706 

Os resultados apresentados na Tabela 15 mostraram-se bastante próximos 

aos obtidos por (BALDO JÚNIOR, 2023), evidenciando que, apesar de algumas 

modificações no algoritmo base, os resultados permaneceram consistentes, mesmo 

com diferentes configurações de hardware nos experimentos. Destaca-se o 

desempenho superior do modelo MCL CP SREA (CNN-LSTM com características do 

paciente e sem reamostragem do sinal), assim como da base de dados sem 
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reamostragem, que apresentou resultados melhores em comparação com a versão 

reamostrada. 

Em busca de melhorar os resultados utilizou-se no treinamento os atributos 

extraídos pelo software de processamento de EEG como: Participação de contribuição 

de Potência - PCP, Frequência Mediana – FM, e Coerência. Obtendo-se os resultados 

da Tabela 16: 

Tabela 16 - Resultados do treinamento da base de dados Prognóstico Clinico para os atributos 
PCP, FM e Coerência, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPCP SREA 0.80 ± 0.09 0.80 ± 0.09 0.86 ± 0.13 0.73 ± 0.08 0.80 ± 0.09 649 

MCL CPCP 0.75 ± 0.07 0.75 ± 0.08 0.78 ± 0.12 0.73 ± 0.17 0.75 ± 0.08 1048 

MCL CPPCP SREA 0.80 ± 0.07 0.80 ± 0.07 0.83 ± 0.10 0.77 ± 0.13 0.80 ± 0.07 631 

MCL CPPCP 0.82 ± 0.06 0.82 ± 0.06 0.84 ± 0.09 0.80 ± 0.13 0.82 ± 0.06 877 

MCL CFM SREA 0.82 ± 0.10 0.82 ± 0.10 0.87 ± 0.13 0.77 ± 0.13 0.82 ± 0.10 701 

MCL CFM 0.80 ± 0.04 0.80 ± 0.03 0.82 ± 0.11 0.80 ± 0.07 0.80 ± 0.04 1084 

MCL CFM REA 
(REA exceto no 

FM) 
0.77 ± 0.06 0.77 ± 0.06 0.79 ± 0.12 0.77 ± 0.08 0.77 ± 0.06 868 

MCL CPFM SREA 0.82 ± 0.06 0.81 ± 0.06 0.87 ± 0.11 0.77 ± 0.13 0.82 ± 0.06 728 

MCL CPFM 0.77 ± 0.03 0.77 ± 0.03 0.77 ± 0.05 0.77 ± 0.08 0.77 ± 0.03 906 

MCL CC 0.88 ± 0.09 0.88 ± 0.09 0.97 ± 0.06 0.80 ± 0.19 0.88 ± 0.09 1055 

MCL CPC 0.88 ± 0.04 0.88 ± 0.04 0.94 ± 0.07 0.83 ± 0.15 0.88 ± 0.04 3624 

MCL CPC Aumento 
do Dropout para 
0.5 nas camadas 

que usam 0.2 
(kernel_regularize
r=regularizers.l2(1

e-4)) 

0.85 ± 0.06 0.85 ± 0.07 0.92 ± 0.10 0.80 ± 0.19 0.85 ± 0.06 1105 

Na Tabela 16, o modelo com atributos de coerência não possui uma versão 

sem reamostragem, pois a coerência está diretamente relacionada ao espectro de 

frequência. Dados com frequências diferentes geram quantidades distintas de 

atributos, o que pode causar erros na arquitetura do modelo. Vale destacar que o 

modelo MCL com características de coerência apresentou o melhor desempenho 

entre as configurações avaliadas. 
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Posteriormente, foi realizado o treinamento do modelo utilizando sinais de 

EEG das regiões cerebrais frontal, central, occipital, parietal e temporal, conforme 

detalhado na Tabela 17. 

Tabela 17 - Resultados do treinamento da base de dados Prognóstico Clinico com 
características do paciente e regiões cerebrais: frontal, central, occipital, parietal e temporal, 

em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPEF SREA 0.80 ± 0.09 0.80 ± 0.09 0.78 ± 0.07 0.83 ± 0.15 0.80 ± 0.09 526 

MCL CPEF 0.77 ± 0.06 0.77 ± 0.06 0.77 ± 0.06 0.77 ± 0.13 0.77 ± 0.06 696 

MCL CPEC SREA 0.80 ± 0.14 0.80 ± 0.14 0.80 ± 0.13 0.80 ± 0.16 0.80 ± 0.14 489 

MCL CPEC 0.87 ± 0.09 0.87 ± 0.09 0.88 ± 0.10 0.87 ± 0.13 0.87 ± 0.09 671 

MCL CPEO SREA 0.82 ± 0.10 0.82 ± 0.10 0.84 ± 0.11 0.80 ± 0.16 0.82 ± 0.10 488 

MCL CPEO 0.87 ± 0.09 0.86 ± 0.09 0.92 ± 0.11 0.83 ± 0.18 0.87 ± 0.09 673 

MCL CPEP SREA 0.82 ± 0.08 0.82 ± 0.08 0.81 ± 0.05 0.83 ± 0.15 0.82 ± 0.08 517 

MCL CPEP 0.83 ± 0.09 0.83 ± 0.10 0.87 ± 0.11 0.80 ± 0.16 0.83 ± 0.09 700 

MCL CPET SREA 0.75 ± 0.05 0.75 ± 0.05 0.75 ± 0.06 0.77 ± 0.08 0.75 ± 0.05 482 

MCL CPET 0.83 ± 0.05 0.83 ± 0.06 0.87 ± 0.13 0.83 ± 0.11 0.83 ± 0.05 688 

Esse processo permitiu avaliar o impacto das diferentes áreas cerebrais na 

classificação dos sinais de EEG para o prognóstico de coma, destacando o 

desempenho superior das regiões central e occipital quando o sinal foi reamostrado, 

alcançando uma acurácia de 0,87. Esses resultados evidenciam a relevância da 

reamostragem, contribuindo para a predição mais precisa do estado clínico dos 

pacientes nestas regiões em especifico. 

O próximo passo consistiu em testar o modelo utilizando atributos extraídos 

por meio do Common Spatial Pattern (CSP), também com os dados extraídos da 

decomposição wavelet, e realizando alterações na arquitetura como adição de um 

layer com Transformer ou alterações de hiperparâmetros, conforme apresentado na 

Tabela 18. Essa abordagem combinada permite capturar tanto padrões espaciais (via 

CSP), quanto características temporais e frequenciais (via decomposição wavelet) 

dos sinais de EEG. 
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Tabela 18 - Resultados do treinamento da base de dados Prognóstico Clinico para CSP, 
decomposição de Wavelet, e alterações na arquitetura do modelo, em negrito se destaca o 

melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CCSP4 0.60 ± 0.11 0.55 ± 0.18 0.58 ± 0.13 0.53 ± 0.22 0.60 ± 0.11 993 

MCL CCSP10 0.47 ± 0.10 0.34 ± 0.22 0.37 ± 0.22 0.33 ± 0.24 0.47 ± 0.10 1012 

MCL CCSP20 0.40 ± 0.14 0.32 ± 0.26 0.31 ± 0.26 0.33 ± 0.28 0.40 ± 0.14 908 

MCL CDW4  0.75 ± 0.11 0.75 ± 0.11 0.75 ± 0.11 0.77 ± 0.08 0.75 ± 0.11 932 

MCL CE  

Conv1D (64/128, 
kernel 5/3, para 

128/256, kernel 3/7) 

0.75 ± 0.11 0.75 ± 0.10 0.80 ± 0.18 0.73 ± 0.13 0.75 ± 0.11 859 

MCLT CE 0.75 ± 0.05 0.75 ± 0.05 0.79 ± 0.12 0.73 ± 0.17 0.75 ± 0.05 1054 

Conforme observado na Tabela 18, o CSP não apresentou resultados 

satisfatórios, enquanto a decomposição wavelet demonstrou um desempenho 

superior, alcançando um F1 score de 0,75, e alterando o modelo base melhora-se o 

desempenho. 

Ainda foi realizado testes utilizando outros modelos de redes neurais o qual o 

resultado pode ser visualizado na Tabela 19. 

Tabela 19 - Resultados do treinamento da base de dados Prognóstico Clinico com outros 
modelos de rede neural, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

INCEPTION 
(ISMAIL FAWAZ 

et al., 2019) 
0.58 ± 0.09 0.55 ± 0.11 0.65 ± 0.19 0.60 ± 0.20 0.58 ± 0.09 1479 

RESNET  

(ISMAIL FAWAZ 
et al., 2019) 

0.67 ± 0.12 0.64 ± 0.14 0.73 ± 0.17 0.67 ± 0.21 0.67 ± 0.12 1539 

ResNet50 0.45 ± 0.10 0.32 ± 0.04 0.36 ± 0.20 0.67 ± 0.42 0.45 ± 0.10 6859 

ResNet101 0.48 ± 0.03 0.33 ± 0.02 0.25 ± 0.01 0.48 ± 0.03 0.48 ± 0.03 14655 

ERTNET 

(LIU et al., 2024) 
0.73 ± 0.18 0.73 ± 0.18 0.76 ± 0.22 0.77 ± 0.17 0.73 ± 0.18 284 

EfficientNet 0.43 ± 0.24 0.38 ± 0.23 0.27 ± 0.24 0.40 ± 0.39 0.43 ± 0.24 884 

EfficientNetB0 0.48 ± 0.12 0.41 ± 0.13 0.39 ± 0.21 0.63 ± 0.36 0.48 ± 0.12 1227 

EfficientNetB1 0.50 ± 0.00 0.33 ± 0.00 0.30 ± 0.25 0.60 ± 0.49 0.50 ± 0.00 3669 

EfficientNetB2 0.55 ± 0.10 0.45 ± 0.16 0.56 ± 0.12 0.80 ± 0.27 0.55 ± 0.10 4132 

EfficientNetB3 0.37 ± 0.09 0.30 ± 0.03 0.35 ± 0.12 0.50 ± 0.35 0.37 ± 0.09 4517 
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Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

EfficientNetB4 0.47 ± 0.09 0.39 ± 0.12 0.23 ± 0.29 0.17 ± 0.21 0.47 ± 0.09 5254 

EfficientNetB5 0.32 ± 0.17 0.23 ± 0.10 0.34 ± 0.16 0.60 ± 0.37 0.32 ± 0.17 6861 

EfficientNetB6 0.48 ± 0.03 0.43 ± 0.06 0.48 ± 0.04 0.50 ± 0.30 0.48 ± 0.03 8464 

EfficientNetV2M 0.50 ± 0.11 0.41 ± 0.13 0.42 ± 0.21 0.73 ± 0.39 0.50 ± 0.11 4515 

EfficientNetV2M 
(preprocessing=true) 

0.50 ± 0.11 0.41 ± 0.13 0.42 ± 0.21 0.73 ± 0.39 0.50 ± 0.11 4116 
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APÊNDICE J - Resultados do Treinamento Transformer e Prognostico 

Clinico 

1 Sinal Puro 

A análise inicial considerou exclusivamente o sinal EEG bruto para a 

classificação, com os resultados apresentados nas Tabela 20 e Tabela 21, utilizando 

a legenda da Tabela 9 como referência. Essa abordagem permite avaliar a influência 

dos hiperparâmetros no desempenho dos modelos, destacando o impacto de 

configurações específicas na acurácia e no tempo de treinamento. 

Na Tabela 20, observa-se o efeito da variação dos hiperparâmetros no modelo 

com camadas de TransformerEncoder (MT). O aumento do número de camadas (NL, 

de 1 para 3) geralmente eleva a acurácia, mas implica maior tempo de treinamento. 

Por exemplo, o modelo MT com N_H = 8, INT_D = 64, N_L = 1, DOUT = 0,1 e EPC =

30 alcança acurácia de 0,78 ± 0,16, enquanto o modelo com N_L = 3 obtém 0,88 ± 

0,09, um ganho de 10%, mas com tempo de treinamento mais que duplicado (de 228 

para 503 segundos). Valores menores de dimensão interna (INT_D) reduzem a 

quantidade de atributos capturados, porém podem melhorar a acurácia, enquanto 

taxas de dropout (DOUT) mais elevadas tendem a diminuir o desempenho. Aumentar 

o número de épocas (EPC, de 30 para 60) não garante ganhos significativos, sugerindo 

convergência precoce dos modelos. 

Adicionalmente, o processamento sem placa de vídeo (SPV) aumenta 

consideravelmente o tempo de treinamento, como no caso de MT SPV com N_H =

8, INT_D = 64, N_L = 3, DOUT = 0,05 e EPC = 60 (6037 segundos), com prejuízo ao 

desempenho (acurácia de 0,85 ± 0,10), reforçando a importância de recursos 

computacionais otimizados para aplicações clínicas. 

Tabela 20 - Resultado Prognostico Clinico usando Transformers com Sinal Puro variando os 
hiperparâmetros do modelo MT, em negrito se destaca o melhor modelo 

Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MT 
SPV 

4 32 3 0.05 30 0.83±0.12 0.83±0.12 0.88±0.15 0.80±0.19 0.83±0.12 2628 

MT 4 32 3 0.05 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 502 

MT 4 64 1 0.1 30 0.78±0.07 0.73±0.10 0.81±0.17 0.63±0.07 0.73±0.10 190 

MT 4 64 1 0.1 60 0.80±0.04 0.77±0.05 0.96±0.08 0.60±0.08 0.78±0.04 372 
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Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MT 4 64 1 0.2 30 0.78±0.07 0.78±0.07 0.90±0.13 0.67±0.11 0.78±0.07 193 

MT 4 64 1 0.2 60 0.80±0.04 0.79±0.04 0.94±0.11 0.67±0.11 0.80±0.04 364 

MT 4 64 3 0.1 30 0.83±0.05 0.83±0.06 0.93±0.08 0.73±0.13 0.83±0.05 425 

MT 4 64 3 0.1 60 0.80±0.04 0.80±0.04 0.89±0.09 0.70±0.07 0.80±0.04 786 

MT 4 64 3 0.2 30 0.80±0.11 0.80±0.11 0.84±0.15 0.77±0.17 0.80±0.11 420 

MT 4 64 3 0.2 60 0.87±0.04 0.87±0.04 0.97±0.07 0.77±0.08 0.87±0.04 765 

MT 4 128 1 0.1 30 0.80±0.09 0.80±0.09 0.89±0.13 0.70±0.13 0.80±0.09 202 

MT 4 128 1 0.1 60 0.82±0.10 0.81±0.10 0.85±0.12 0.80±0.19 0.82±0.10 367 

MT 4 128 1 0.2 30 0.83±0.09 0.83±0.10 0.92±0.10 0.73±0.17 0.83±0.09 206 

MT 4 128 1 0.2 60 0.82±0.06 0.81±0.07 0.87±0.07 0.77±0.17 0.82±0.06 378 

MT 
SPV 

4 128 3 0.05 30 0.78±0.09 0.78±0.09 0.83±0.14 0.77±0.17 0.78±0.09 2779 

MT 4 128 3 0.05 30 0.80±0.07 0.79±0.07 0.88±0.15 0.77±0.17 0.80±0.07 391 

MT 4 128 3 0.1 30 0.78±0.11 0.78±0.11 0.81±0.16 0.77±0.17 0.78±0.11 390 

MT 4 128 3 0.1 60 0.78±0.07 0.77±0.07 0.88±0.15 0.73±0.20 0.78±0.07 734 

MT 4 128 3 0.2 30 0.87±0.11 0.86±0.12 0.94±0.11 0.80±0.19 0.87±0.11 415 

MT 4 128 3 0.2 60 0.82±0.06 0.81±0.06 0.85±0.12 0.80±0.13 0.82±0.06 768 

MT 4 128 5 0.05 30 0.80±0.13 0.80±0.13 0.88±0.16 0.70±0.13 0.80±0.13 602 

MT 4 128 10 0.05 30 0.83±0.11 0.82±0.12 0.93±0.09 0.73±0.23 0.83±0.10 1142 

MT 8 32 3 0.05 30 0.78±0.09 0.78±0.09 0.89±0.14 0.67±0.11 0.78±0.09 525 

MT 8 64 1 0.1 30 0.78±0.16 0.77±0.18 0.86±0.20 0.63±0.25 0.78±0.16 228 

MT 8 64 1 0.1 60 0.82±0.12 0.80±0.16 0.97±0.07 0.67±0.26 0.82±0.12 419 

MT 8 64 1 0.2 30 0.77±0.14 0.75±0.17 0.86±0.20 0.60±0.23 0.77±0.14 242 

MT 8 64 1 0.2 60 0.78±0.11 0.76±0.14 0.93±0.09 0.63±0.25 0.78±0.11 459 

MT 8 64 3 0.05 30 0.85±0.10 0.85±0.10 0.93±0.09 0.77±0.17 0.85±0.10 499 

MT 8 64 3 0.05 60 0.88±0.09 0.88±0.09 0.97±0.06 0.80±0.19 0.88±0.09 983 

MT 
SPV 

8 64 3 0.05 60 0.85±0.10 0.85±0.10 0.96±0.08 0.73±0.17 0.85±0.10 6037 

MT 8 64 3 0.1 30 0.88±0.09 0.88±0.09 0.97±0.06 0.80±0.19 0.88±0.09 503 

MT 8 64 3 0.1 60 0.88±0.09 0.88±0.09 0.97±0.06 0.80±0.19 0.88±0.09 939 

MT 8 64 3 0.2 30 0.83±0.09 0.82±0.11 1.00±0.00 0.67±0.18 0.83±0.09 534 

MT 8 64 3 0.2 60 0.80±0.10 0.79±0.11 0.94±0.11 0.67±0.21 0.80±0.10 987 

MT 8 128 1 0.1 30 0.80±0.04 0.79±0.04 0.96±0.08 0.63±0.07 0.80±0.04 246 

MT 8 128 1 0.1 60 0.82±0.03 0.81±0.04 0.97±0.07 0.67±0.11 0.82±0.03 451 

MT 8 128 1 0.2 30 0.82±0.06 0.81±0.07 0.96±0.08 0.67±0.11 0.82±0.06 244 

MT 8 128 1 0.2 60 0.82±0.06 0.81±0.07 0.96±0.08 0.67±0.11 0.82±0.06 447 

MT 8 128 3 0.05 30 0.82±0.06 0.81±0.07 0.97±0.07 0.67±0.15 0.82±0.06 509 

MT 8 128 3 0.1 30 0.80±0.04 0.79±0.05 0.97±0.07 0.63±0.13 0.80±0.04 508 

MT 8 128 3 0.1 60 0.83±0.05 0.83±0.06 0.97±0.07 0.70±0.13 0.83±0.05 935 

MT 8 128 3 0.2 30 0.80±0.09 0.79±0.10 1.00±0.00 0.60±0.17 0.80±0.09 531 

MT 8 128 3 0.2 60 0.82±0.03 0.81±0.04 0.97±0.07 0.67±0.11 0.82±0.03 996 



202 

 

A Tabela 21 evidencia o impacto da variação dos hiperparâmetros no 

desempenho do modelo convolucional e transformer (MCT), que combina camadas 

convolucionais e TransformerEncoder. Configurações com número de cabeças de 

atenção (N_H) igual a 4 ou 8 apresentam desempenhos semelhantes, com variações 

mínimas na acurácia. O aumento da dimensão interna (INT_D) de 32 para 128 

promove ligeira melhoria na acurácia e precisão, refletindo maior capacidade de 

captura de padrões complexos nos sinais EEG. Modelos com três camadas (N_L = 3) 

superam consistentemente aqueles com 5 ou 10 camadas, que exibem desempenho 

inferior e maior custo computacional. A elevação do número de épocas (EPC) de 30 

para 60 não resulta em ganhos significativos, podendo, em alguns casos, reduzir a 

acurácia devido à convergência precoce ou ao sobreajuste. Esses resultados 

destacam a importância de configurações otimizadas, como N_H = 4, INT_D =

128, N_L = 3, DOUT = 0,05 e EPC = 30 ou N_H = 8, INT_D = 32, N_L = 3, DOUT =

0,05 e EPC = 30, para equilibrar precisão e eficiência em aplicações clínicas de 

prognóstico de morte. 

Tabela 21 - Resultado Prognostico Clinico usando Transformers com Sinal Puro variando os 
hiperparâmetros do modelo MCT, em negrito se destaca o melhor modelo 

Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCT 4 32 3 0.05 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1560 

MCT 4 32 3 0.05 60 0.70±0.07 0.69±0.07 0.66±0.05 0.83±0.15 0.70±0.07 3121 

MCT 4 32 3 0.2 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1662 

MCT 4 32 3 0.2 60 0.70±0.07 0.69±0.07 0.66±0.05 0.83±0.15 0.70±0.07 3052 

MCT 4 64 3 0.05 30 0.75±0.05 0.75±0.05 0.80±0.11 0.70±0.07 0.75±0.05 1654 

MCT 4 64 3 0.05 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 3034 

MCT 4 64 3 0.1 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1553 

MCT 4 64 3 0.1 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 3217 

MCT 4 64 3 0.2 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1683 

MCT 4 64 3 0.2 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 3262 

MCT 4 128 3 0.05 30 0.78±0.09 0.78±0.08 0.81±0.12 0.77±0.13 0.78±0.09 1104 

MCT 4 128 3 0.1 30 0.75±0.09 0.75±0.09 0.77±0.13 0.73±0.17 0.75±0.09 1095 

MCT 4 128 5 0.05 30 0.70±0.14 0.70±0.13 0.73±0.17 0.67±0.18 0.70±0.14 1542 

MCT 4 128 10 0.05 30 0.67±0.09 0.65±0.11 0.75±0.14 0.60±0.27 0.67±0.09 2706 

MCT 8 32 3 0.05 30 0.78±0.07 0.78±0.07 0.83±0.14 0.77±0.13 0.78±0.07 1284 

MCT 8 32 3 0.05 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 3064 

MCT 8 32 3 0.2 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1663 

MCT 8 32 3 0.2 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 3105 

MCT 8 64 3 0.05 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1357 
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Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCT 8 64 3 0.05 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 2572 

MCT 8 64 3 0.2 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1631 

MCT 8 64 3 0.2 60 0.75±0.07 0.75±0.08 0.77±0.13 0.77±0.13 0.75±0.08 2862 

MCT 8 128 3 0.05 30 0.77±0.11 0.76±0.11 0.83±0.16 0.70±0.19 0.77±0.11 1369 

MCT 8 128 3 0.1 30 0.75±0.05 0.75±0.05 0.80±0.11 0.70±0.07 0.75±0.05 1618 

MCT 8 128 3 0.2 30 0.75±0.05 0.75±0.05 0.80±0.11 0.70±0.07 0.75±0.05 1605 

MCT 8 128 5 0.05 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1633 

MCT 8 128 10 0.05 30 0.75±0.05 0.75±0.05 0.80±0.11 0.70±0.07 0.75±0.05 1616 

2 Sinal com características do paciente 

Na base de dados utilizada, houve a catalogação das seguintes informações 

do paciente: 

• Idade em anos; 

• Gênero/sexo (Masculino ou Feminino); 

• Etiologia do coma (acidente vascular cerebral – AVC (12), coma 

metabólico (18), Traumatismo cranioencefálico – TCE (20) e Outros (10)). 

As informações acima foram colocadas como entrada da arquitetura da rede 

neural, no qual o gênero e etiologia passou por uma tradução de caracteres para 

número inteiro (OneHotEncoder), assim, foi adicionado três novos valores como 

entrada para cada paciente, os resultados desses treinamentos são apresentados na 

Tabela 22, Tabela 23, Tabela 24, Tabela 25, Tabela 26, Tabela 27 e Tabela 28. 

Na Tabela 22 com N_H =  4 e INT_D =  32 os modelos MT CP superam 

consistentemente os MCT CP em acurácia, F1 score e precisão, além de 

apresentarem maior eficiência computacional, com tempo de treinamento 

aproximadamente 29% menor. O aumento do número de camadas (N_L =  5 ou 10 ) 

nos modelos MT CP não resulta em ganhos substanciais, e o incremento do número 

de épocas (de 30 para 60 ou 120) tende a reduzir a acurácia, indicando que 

configurações mais profundas e treinamentos prolongados podem levar a sobreajuste 

ou degradação do desempenho. 
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Tabela 22 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟒 𝐞 𝐈𝐍𝐓_𝐃 =  𝟑𝟐, em negrito se destaca o 

melhor resultado para MT e MCT 
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Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Temp

o 
(seg.) 

MCT CP 4 32 1 0.1 30 0.77±0.06 0.76±0.06 0.80±0.11 0.73±0.13 0.77±0.06 940 

MT CP 4 32 1 0.1 30 0.85±0.03 0.85±0.03 0.87±0.07 0.83±0.00 0.85±0.03 304 

MT CP 4 32 1 0.1 60 0.83±0.05 0.83±0.05 0.88±0.11 0.80±0.07 0.83±0.05 385 

MT CP 4 32 1 0.1 120 0.78±0.04 0.78±0.04 0.81±0.02 0.73±0.08 0.78±0.04 795 

MCT CP 4 32 3 0.05 30 0.78±0.11 0.78±0.11 0.78±0.13 0.80±0.13 0.78±0.11 1.244 

MT CP 4 32 3 0.05 30 0.85±0.06 0.85±0.07 0.95±0.10 0.77±0.17 0.85±0.06 562 

MT CP 4 32 3 0.05 60 0.85±0.10 0.85±0.10 0.92±0.10 0.77±0.17 0.85±0.10 1.055 

MCT CP 4 32 3 0.1 30 0.75±0.09 0.75±0.09 0.77±0.10 0.73±0.08 0.75±0.09 1.263 

MT CP 4 32 3 0.1 30 0.85±0.06 0.85±0.07 0.95±0.10 0.77±0.17 0.85±0.06 536 

MT CP 4 32 3 0.1 60 0.82±0.10 0.81±0.10 0.89±0.13 0.73±0.13 0.82±0.10 1.033 

MT CP 4 32 5 0.1 30 0.80±0.09 0.79±0.10 0.88±0.11 0.73±0.23 0.80±0.09 1048 

MT CP 4 32 10 0.1 30 0.82±0.08 0.81±0.09 0.90±0.12 0.73±0.13 0.82±0.08 1590 

Já na Tabela 23 com N_H =  4 e INT_D =  64 os modelos MCT CP mostram-

se mais competitivos em termos de desempenho, porém, ao desabilitar a placa de 

vídeo para o modelo MT CP, este apresenta o melhor resultado geral, embora o tempo 

de processamento aumente significativamente. 

Tabela 23 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟒 𝐞 𝐈𝐍𝐓_𝐃 =  𝟔𝟒, em negrito se destaca o 

melhor resultado para MT e MCT 
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MCT CP 4 64 1 0.1 30 0.80±0.09 0.80±0.09 0.80±0.12 0.83±0.11 0.80±0.09 754 

MT CP 4 64 1 0.1 30 0.77±0.08 0.76±0.09 0.87±0.11 0.63±0.13 0.77±0.08 219 

MCT CP 4 64 3 0.05 30 0.77±0.08 0.77±0.08 0.78±0.12 0.77±0.08 0.77±0.08 1059 

MT CP 4 64 3 0.05 30 0.80±0.09 0.79±0.10 0.93±0.09 0.67±0.18 0.80±0.09 433 

MT CP 
SPV 

4 64 3 0.05 30 0.82±0.08 0.81±0.09 0.86±0.08 0.77±0.17 0.82±0.08 1806 

MCT CP 4 64 3 0.1 30 0.77±0.03 0.76±0.03 0.79±0.11 0.77±0.08 0.77±0.03 991 

MT CP 4 64 3 0.1 30 0.77±0.06 0.76±0.07 0.82±0.10 0.70±0.13 0.77±0.06 440 

Avaliando a Tabela 24 com N_H =  4 e INT_D =  128 os modelos MT CP com 

3 camadas (N_L = 3) e dropout moderado (0.05 ou 0.1) apresentam melhor 

desempenho (acurácia até 0.83), enquanto configurações mais simples (N_L = 1) 
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mantêm acurácia próxima de 0.80 com tempo de treino menor (ex: 210s). Aumentar 

épocas (EPC = 120) reduz ligeiramente a acurácia (ex: 0.78), indicando possível 

sobreajuste. Modelos MCT CP têm desempenho inferior (acurácia ≤0.73) e maior 

tempo de processamento. 

Tabela 24 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟒 𝐞 𝐈𝐍𝐓_𝐃 =  𝟏𝟐𝟖, em negrito se destaca o 

melhor resultado para MT e MCT 

M
o

d
e
lo

 

N
_
H

 

IN
T

_
D

 

N
_
L

 

D
O

U
T

 

E
P

C
 

Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Temp

o 
(seg.) 

MT CP 4 128 1 0.01 120 0.78±0.07 0.78±0.07 0.79±0.12 0.80±0.13 0.78±0.07 969 

MT CP 4 128 1 0.05 30 0.80±0.10 0.80±0.10 0.87±0.11 0.70±0.13 0.80±0.10 210 

MCT CP 4 128 1 0.1 30 0.70±0.15 0.69±0.16 0.67±0.18 0.70±0.29 0.70±0.15 895 

MT CP 4 128 1 0.1 30 0.80±0.10 0.80±0.10 0.87±0.11 0.70±0.13 0.80±0.10 213 

MT CP 4 128 1 0.1 60 0.83±0.08 0.83±0.08 0.90±0.09 0.77±0.17 0.83±0.08 401 

MT CP 4 128 1 0.1 120 0.78±0.07 0.78±0.07 0.78±0.06 0.80±0.13 0.78±0.07 953 

MCT CP 4 128 1 0.2 30 0.73±0.08 0.73±0.08 0.74±0.09 0.73±0.17 0.73±0.08 869 

MT CP 4 128 1 0.2 30 0.80±0.07 0.80±0.07 0.89±0.09 0.70±0.13 0.80±0.07 214 

MT CP 4 128 3 0.05 30 0.82±0.06 0.81±0.07 0.91±0.12 0.73±0.13 0.82±0.06 440 

MT CP 4 128 3 0.05 60 0.82±0.06 0.81±0.07 0.91±0.12 0.73±0.13 0.82±0.06 1074 

MT CP 4 128 3 0.1 30 0.83±0.09 0.83±0.10 0.92±0.11 0.73±0.13 0.83±0.09 736 

Com N_H =  4 e INT_D =  256 conforme apresentado na Tabela 25, os 

modelos MT CP destacam-se pelo desempenho superior, especialmente para a 

configuração com 3 camadas (N_L = 3) e DOUT = 0.05 no qual ambos modelos MT e 

MCT alcança o melhor desempenho nessa configuração. 

Tabela 25 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟒 𝐞 𝐈𝐍𝐓_𝐃 =  𝟐𝟓𝟔, em negrito se destaca o 

melhor resultado para MT e MCT 
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MCT CP 4 256 1 0.1 30 0.75±0.09 0.75±0.09 0.79±0.12 0.70±0.13 0.75±0.09 752 

MT CP 4 256 1 0.1 30 0.80±0.07 0.80±0.07 0.89±0.09 0.70±0.13 0.80±0.07 314 

MCT CP 4 256 3 0.05 30 0.78±0.09 0.78±0.09 0.78±0.08 0.80±0.13 0.78±0.09 1170 

MT CP 4 256 3 0.05 30 0.87±0.07 0.87±0.07 0.96±0.08 0.77±0.08 0.87±0.07 426 

MCT CP 4 256 3 0.1 30 0.73±0.06 0.72±0.07 0.77±0.15 0.77±0.17 0.73±0.06 1231 

MT CP 4 256 3 0.1 30 0.83±0.09 0.83±0.10 0.95±0.10 0.70±0.13 0.83±0.09 439 
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Analisando a Tabela 26 com N_H =  8 e INT_D =  32, os modelos MT CP, 

especialmente com 3 camadas, apresentam melhor desempenho, alcançando 

acurácia e F1 score de até 0,83, além de maior precisão (até 1,00) com tempos de 

treinamento significativamente menores (entre 283 e 782 segundos) em comparação 

aos modelos MCT CP. Embora os MCT CP apresentem desempenho competitivo, 

eles demandam tempos de processamento mais longos (acima de 1000 segundos), 

indicando que MT CP oferece melhor equilíbrio entre eficiência e precisão para as 

configurações avaliadas.  

Tabela 26 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟖 𝐞 𝐈𝐍𝐓_𝐃 =  𝟑𝟐, em negrito se destaca o 

melhor resultado para MT e MCT 
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MCT CP 8 32 1 0.1 30 0.80±0.09 0.80±0.09 0.81±0.12 0.80±0.07 0.80±0.09 1070 

MT CP 8 32 1 0.1 30 0.77±0.06 0.76±0.07 0.82±0.10 0.70±0.13 0.77±0.06 283 

MCT CP 8 32 1 0.1 60 0.78±0.09 0.78±0.09 0.77±0.09 0.83±0.11 0.78±0.09 1419 

MT CP 8 32 1 0.1 60 0.82±0.06 0.82±0.06 0.85±0.08 0.77±0.08 0.82±0.06 483 

MCT CP 8 32 3 0.05 30 0.78±0.07 0.78±0.07 0.78±0.12 0.83±0.11 0.78±0.07 1310 

MT CP 8 32 3 0.05 30 0.83±0.05 0.83±0.05 0.93±0.09 0.73±0.08 0.83±0.05 551 

MCT CP 8 32 3 0.1 30 0.80±0.10 0.80±0.10 0.82±0.10 0.77±0.17 0.80±0.10 1349 

MT CP 8 32 3 0.1 30 0.83±0.05 0.83±0.06 1.00±0.00 0.67±0.11 0.83±0.05 782 

Observando a Tabela 27 com N_H =  8 e INT_D =  64, os modelos MT CP 

com 3 camadas novamente apresentam os melhores resultados. O processamento 

sem placa de vídeo (MT CP SPV) eleva a acurácia para 0,85, porém aumenta 

significativamente o tempo de treinamento (3202 segundos). Modelos com menos 

camadas ou MCT CP têm desempenho inferior e maior tempo de processamento. 

Configurações com 5 camadas mantêm desempenho similar, enquanto 10 camadas 

aumentam o tempo sem ganhos expressivos. 
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Tabela 27 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟖 𝐞 𝐈𝐍𝐓_𝐃 =  𝟔𝟒, em negrito se destaca o 

melhor resultado para MT e MCT 
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MCT CP 8 64 1 0.1 30 0.73±0.11 0.72±0.12 0.78±0.13 0.67±0.24 0.73±0.11 1059 

MT CP 8 64 1 0.1 30 0.78±0.09 0.78±0.09 0.88±0.10 0.67±0.15 0.78±0.09 282 

MT CP 8 64 3 0.05 30 0.80±0.09 0.80±0.09 0.87±0.13 0.73±0.13 0.80±0.09 543 

MT CP 
SPV 

8 64 3 0.05 30 0.85±0.06 0.85±0.07 0.95±0.10 0.77±0.17 0.85±0.06 3202 

MCT CP 8 64 3 0.1 30 0.78±0.07 0.78±0.07 0.80±0.12 0.80±0.13 0.78±0.07 1356 

MT CP 8 64 3 0.1 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 911 

MT CP 8 64 3 0.1 60 0.78±0.09 0.78±0.09 0.85±0.14 0.73±0.13 0.78±0.09 1055 

MT CP 8 64 5 0.05 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 1308 

MT CP 8 64 10 0.05 30 0.83±0.08 0.83±0.08 0.94±0.11 0.73±0.13 0.83±0.08 2213 

Visualizando a Tabela 28 com N_H =  8 e INT_D =  128, os modelos MT CP 

superam os MCT CP em acurácia e precisão, com destaque para 3 camadas (N_L=3). 

Tabela 28 - Resultado Prognostico Clinico usando Transformers com características do 
paciente variando os hiperparâmetros com 𝐍_𝐇 =  𝟖 𝐞 𝐈𝐍𝐓_𝐃 =  𝟏𝟐𝟖, em negrito se destaca o 

melhor resultado para MT e MCT 
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MCT CP 8 128 1 0.1 30 0.77±0.08 0.76±0.08 0.78±0.05 0.73±0.17 0.77±0.08 866 

MT CP 8 128 1 0.1 30 0.78±0.09 0.78±0.09 0.88±0.10 0.67±0.15 0.78±0.09 340 

MCT CP 8 128 3 0.05 30 0.77±0.12 0.77±0.12 0.79±0.13 0.73±0.17 0.77±0.12 1371 

MT CP 8 128 3 0.05 30 0.83±0.05 0.83±0.05 0.93±0.09 0.73±0.08 0.83±0.05 573 

MCT CP 8 128 3 0.1 30 0.73±0.10 0.73±0.10 0.71±0.09 0.80±0.13 0.73±0.10 1375 

MT CP 8 128 3 0.1 30 0.83±0.05 0.83±0.06 0.97±0.07 0.70±0.13 0.83±0.05 903 

A melhor configuração geral observada foi o modelo MT CP com 4 cabeças 

de atenção (N_H = 4), dimensão intermediária (INT_D = 256), 3 camadas (N_L = 3), 

dropout de 0,05 (DOUT = 0.05) e 30 épocas (EPC = 30), que alcançou F1 score 

(macro) de 0,87 ± 0,07 e precisão de 0,96 ± 0,08, com tempo de treinamento de 426 

segundos. Em comparação, o modelo MCT CP com N_H = 8, INT_D = 32, N_L =

3, DOUT = 0,1 e EPC = 30 com F1 score de 0,80 ± 0,10 e tempo de processamento 

significativamente maior (1349 segundos). Esses resultados ressaltam que 

configurações com 3 camadas proporcionam o melhor desempenho, enquanto o 
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modelo MT CP oferece vantagens claras em termos de eficiência computacional, 

apresentando tempos de treinamento mais baixos sem comprometer a precisão. 

3 Sinal com características estatísticas 

Nesta seção, o processamento do sinal EEG foi realizado por meio da 

extração de características estatísticas, incluindo média, desvio padrão, valores 

máximo e mínimo, e variância. Para cada um dos 20 canais utilizados, foram extraídos 

cinco atributos, totalizando 100 atributos por segmento. Essa abordagem permite 

capturar informações temporais e variacionais do sinal, possibilitando a avaliação do 

impacto da variação dos hiperparâmetros nas métricas de desempenho dos modelos 

durante o treinamento. 

Na Tabela 29 podemos notar que os modelos MT CE apresentam 

desempenho consistentemente superior aos MCT CE em termos de acurácia, F1 

score e precisão, especialmente em configurações com 3 camadas (N_L = 3), e 

dimensões intermediárias maiores (INT_D = 128 ou 256). Destaca-se o modelo MT 

N_H = 8, INT_D = 256, N_L = 3, DOUT = 0,05, EPC = 30, que alcança acurácia de 0,85 

e precisão de 0,93, com tempos de treinamento relativamente baixos (em torno de 

685 segundos). Já os modelos MCT CE, embora apresentem desempenho razoável, 

geralmente exibem acurácia inferior (em torno de 0,70 a 0,77) e tempos de 

processamento mais elevados. Além disso, observa-se que o aumento do número de 

cabeças de atenção não garante melhoria significativa no desempenho, enquanto a 

escolha adequada da dimensão intermediária e do número de camadas é crucial para 

otimizar os resultados. 

Tabela 29 - Resultado Prognostico Clinico usando Transformers com características 
estatísticas variando os hiperparâmetros, em negrito se destaca o melhor resultado para MT e 

MCT 
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MCT CE 4 32 3 0.1 30 0.77±0.06 0.77±0.06 0.75±0.06 0.80±0.13 0.77±0.06 1114 

MT CE 4 32 3 0.1 30 0.83±0.08 0.83±0.08 0.94±0.11 0.73±0.13 0.83±0.08 614 

MCT CE 4 64 1 0.1 30 0.77±0.12 0.76±0.12 0.77±0.15 0.80±0.19 0.77±0.12 631 

MT CE 4 64 1 0.1 30 0.75±0.05 0.75±0.05 0.80±0.11 0.70±0.13 0.75±0.05 205 

MCT CE 4 128 3 0.05 30 0.75±0.09 0.75±0.09 0.79±0.13 0.70±0.16 0.75±0.09 1372 
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MT CE 4 128 3 0.05 30 0.83±0.08 0.83±0.08 0.89±0.11 0.80±0.19 0.83±0.08 422 

MCT CE 4 256 3 0.05 30 0.75±0.12 0.74±0.13 0.75±0.07 0.73±0.25 0.75±0.12 1170 

MT CE 4 256 3 0.05 30 0.83±0.08 0.83±0.08 0.91±0.11 0.77±0.17 0.83±0.08 547 

MCT CE 8 32 3 0.05 30 0.73±0.12 0.73±0.12 0.73±0.15 0.77±0.17 0.73±0.12 1680 

MT CE 8 32 3 0.05 30 0.77±0.06 0.75±0.08 0.94±0.11 0.60±0.17 0.77±0.06 500 

MCT CE 8 32 3 0.1 30 0.72±0.11 0.71±0.11 0.71±0.11 0.73±0.17 0.72±0.11 1649 

MT CE 8 32 3 0.1 30 0.77±0.10 0.75±0.11 0.93±0.13 0.60±0.17 0.77±0.10 831 

MCT CE 8 64 1 0.1 30 0.77±0.14 0.77±0.14 0.76±0.14 0.80±0.16 0.77±0.14 863 

MT CE 8 64 1 0.1 30 0.73±0.21 0.72±0.23 0.78±0.28 0.63±0.29 0.73±0.21 218 

MCT CE 8 64 3 0.05 30 0.70±0.10 0.70±0.10 0.70±0.10 0.70±0.16 0.70±0.10 1686 

MCT CE 8 64 3 0.05 60 0.75±0.09 0.75±0.09 0.74±0.13 0.80±0.13 0.75±0.09 2501 

MCT CE 8 64 3 0.1 30 0.75±0.12 0.75±0.12 0.76±0.14 0.77±0.13 0.75±0.12 1384 

MT CE 8 64 3 0.1 30 0.80±0.09 0.79±0.10 0.96±0.08 0.63±0.16 0.80±0.09 682 

MCT CE 8 128 3 0.1 30 0.72±0.07 0.71±0.07 0.77±0.14 0.67±0.18 0.72±0.07 1695 

MT CE 8 128 3 0.1 30 0.82±0.06 0.81±0.07 0.94±0.11 0.70±0.13 0.82±0.06 540 

MCT CE 8 256 3 0.05 30 0.73±0.13 0.73±0.14 0.76±0.14 0.70±0.22 0.73±0.13 1523 

MT CE 8 256 3 0.05 30 0.85±0.10 0.84±0.10 0.93±0.13 0.80±0.19 0.85±0.10 685 

4 Sinal com características de PCP 

Nesta seção, o processamento do sinal EEG foi realizado por meio da 

extração dos valores de PCP nas bandas de frequência delta, teta, alfa e beta. Para 

cada um dos 20 canais, foram obtidos quatro atributos (um por banda), resultando em 

uma matriz de 20 × 4 elementos, totalizando 80 características adicionais por paciente 

como entrada para o treinamento dos modelos. Os resultados dessa abordagem são 

apresentados na Tabela 30, evidenciando o impacto dessas características e das 

alterações dos hiperparâmetros nas métricas de desempenho. 

Conforme observado na Tabela 30 os modelos MT CPCP superam os MCT 

CPCP em acurácia e precisão, com destaque para MT CPCP (N_H = 8, INT_D =

256, N_L = 3, DOUT = 0,05, EPC = 30), que atinge acurácia de 0,87 e precisão de 0,95 

em 1000 segundos. Configurações MCT CPCP apresentam desempenho inferior (em 

torno de 0,70 a 0,78) e tempos maiores (chegando a 2225 segundos). Modelos com 

N_L = 3 e INT_D ≥ 64 oferecem melhor desempenho, enquanto N_H = 8 maximiza a 

precisão em MT CPCP. 
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Tabela 30 - Resultado Prognostico Clinico usando Transformers com características de PCP 
variando os hiperparâmetros, em negrito se destaca o melhor resultado para MT e MCT 
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MCT CPCP 4 32 3 0.1 30 0.70±0.09 0.70±0.09 0.70±0.10 0.73±0.08 0.70±0.09 1606 

MT CPCP 4 32 3 0.1 30 0.83±0.09 0.83±0.10 0.91±0.11 0.77±0.20 0.83±0.09 824 

MCT CPCP 4 64 1 0.1 30 0.72±0.09 0.71±0.09 0.73±0.15 0.77±0.13 0.72±0.09 1127 

MT CPCP 4 64 1 0.1 30 0.80±0.07 0.80±0.07 0.83±0.10 0.77±0.13 0.80±0.07 896 

MCT CPCP 4 64 3 0.1 30 0.78±0.11 0.78±0.11 0.80±0.13 0.77±0.13 0.78±0.11 1976 

MT CPCP 4 64 3 0.1 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 779 

MCT CPCP 4 128 3 0.05 30 0.70±0.13 0.69±0.13 0.76±0.21 0.70±0.07 0.70±0.13 1897 

MT CPCP 4 128 3 0.05 30 0.85±0.11 0.85±0.11 0.90±0.12 0.80±0.19 0.85±0.11 713 

MCT CPCP 4 128 3 0.1 30 0.75±0.07 0.75±0.08 0.78±0.06 0.70±0.13 0.75±0.08 1400 

MT CPCP 4 128 3 0.1 30 0.85±0.10 0.85±0.10 0.94±0.11 0.77±0.17 0.85±0.10 769 

MCT CPCP 4 256 3 0.05 30 0.70±0.11 0.70±0.11 0.71±0.16 0.73±0.17 0.70±0.11 1842 

MT CPCP 4 256 3 0.05 30 0.85±0.10 0.84±0.10 0.93±0.13 0.80±0.19 0.85±0.10 1038 

MCT CPCP 8 32 3 0.05 30 0.75±0.05 0.75±0.05 0.76±0.03 0.73±0.17 0.75±0.05 1968 

MT CPCP 8 32 3 0.05 30 0.78±0.13 0.78±0.13 0.81±0.11 0.73±0.17 0.78±0.13 1124 

MCT CPCP 8 32 3 0.1 30 0.78±0.09 0.78±0.09 0.76±0.12 0.87±0.13 0.78±0.09 1876 

MT CPCP 8 32 3 0.1 30 0.80±0.11 0.80±0.12 0.88±0.15 0.70±0.13 0.80±0.11 1125 

MT CPCP 8 64 1 0.1 30 0.82±0.10 0.81±0.10 0.83±0.10 0.80±0.16 0.82±0.10 589 

MCT CPCP 8 64 3 0.1 30 0.75±0.14 0.75±0.14 0.75±0.16 0.77±0.17 0.75±0.14 1913 

MT CPCP 8 64 3 0.1 30 0.83±0.05 0.83±0.06 0.97±0.07 0.70±0.13 0.83±0.05 765 

MCT CPCP 8 128 3 0.05 30 0.70±0.07 0.70±0.07 0.69±0.07 0.73±0.17 0.70±0.07 2035 

MT CPCP 8 128 3 0.05 30 0.82±0.06 0.81±0.07 0.94±0.11 0.70±0.13 0.82±0.06 1009 

MCT CPCP 8 256 3 0.05 30 0.72±0.07 0.71±0.07 0.68±0.05 0.83±0.15 0.72±0.07 2225 

MT CPCP 8 256 3 0.05 30 0.87±0.04 0.86±0.04 0.95±0.10 0.80±0.13 0.87±0.04 1000 

5 Sinal com características de FM  

De forma análoga ao processamento com PCP, o sinal EEG foi processado 

por meio da extração da frequência mediana (FM) nas bandas delta, teta, alfa e beta. 

Para cada um dos 20 canais, obtiveram-se quatro atributos (um por banda), formando 

uma matriz de 20 × 4 elementos, totalizando 80 características adicionais por paciente 

como entrada para o treinamento dos modelos. Os resultados dessa abordagem, 

apresentados na Tabela 31, evidenciam o impacto dessas características e da 

variação dos hiperparâmetros nas métricas de desempenho dos modelos. 

Avaliando a Tabela 31, os modelos MT CFM superam os MCT CFM em 

acurácia e precisão, com destaque para MT CFM (N_H = 8, INT_D = 256, N_L =
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3, DOUT = 0,05, EPC = 30), que alcança acurácia de 0,83 e precisão de 0,96 em 950 

segundos. Configurações MCT CFM apresentam desempenho inferior (em torno de 

0,77) e tempos maiores (chegando a 2241 segundos). Modelos com N_L = 3 e 

INT_D ≥ 128 oferecem melhor desempenho, enquanto N_H = 8 não melhora 

consistentemente os resultados. 

Tabela 31 - Resultado Prognostico Clinico usando Transformers com características de FM 
variando os hiperparâmetros, em negrito se destaca o melhor resultado para MT e MCT 
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MCT CFM 4 32 3 0.1 30 0.75±0.09 0.75±0.09 0.77±0.14 0.77±0.13 0.75±0.09 1665 

MT CFM 4 32 3 0.1 30 0.80±0.09 0.80±0.08 0.88±0.15 0.73±0.08 0.80±0.09 698 

MCT CFM 4 64 1 0.1 30 0.75±0.15 0.75±0.15 0.78±0.20 0.77±0.17 0.75±0.15 1109 

MT CFM 4 64 1 0.1 30 0.75±0.07 0.75±0.08 0.75±0.08 0.77±0.13 0.75±0.08 674 

MCT CFM 4 64 3 0.1 30 0.73±0.12 0.73±0.12 0.75±0.16 0.73±0.17 0.73±0.12 1908 

MT CFM 4 64 3 0.1 30 0.75±0.07 0.75±0.08 0.75±0.08 0.77±0.13 0.75±0.08 827 

MCT CFM 4 128 3 0.05 30 0.77±0.08 0.76±0.08 0.81±0.16 0.77±0.13 0.77±0.08 1909 

MT CFM 4 128 3 0.05 30 0.82±0.10 0.81±0.10 0.89±0.14 0.77±0.17 0.82±0.10 711 

MCT CFM 4 256 3 0.05 30 0.75±0.09 0.74±0.09 0.81±0.17 0.73±0.17 0.75±0.09 1774 

MT CFM 4 256 3 0.05 30 0.83±0.08 0.83±0.08 0.91±0.13 0.80±0.19 0.83±0.08 995 

MCT CFM 8 32 3 0.05 30 0.72±0.07 0.71±0.07 0.76±0.12 0.70±0.22 0.72±0.07 1847 

MT CFM 8 32 3 0.05 30 0.75±0.05 0.75±0.05 0.85±0.13 0.63±0.07 0.75±0.05 1149 

MCT CFM 8 32 3 0.1 30 0.72±0.07 0.71±0.07 0.76±0.12 0.70±0.22 0.72±0.07 1900 

MT CFM 8 32 3 0.1 30 0.73±0.10 0.72±0.10 0.88±0.16 0.57±0.13 0.73±0.10 1151 

MT CFM 8 64 1 0.1 30 0.75±0.05 0.75±0.05 0.80±0.12 0.70±0.13 0.75±0.05 612 

MCT CFM 8 64 3 0.1 30 0.78±0.11 0.78±0.12 0.83±0.16 0.77±0.17 0.78±0.11 1796 

MT CFM 8 64 3 0.1 30 0.82±0.06 0.81±0.07 0.96±0.08 0.67±0.11 0.82±0.06 937 

MCT CFM 8 128 3 0.05 30 0.80±0.07 0.80±0.07 0.83±0.09 0.77±0.08 0.80±0.07 2014 

MT CFM 8 128 3 0.05 30 0.78±0.10 0.78±0.10 0.88±0.15 0.67±0.11 0.78±0.10 936 

MCT CFM 8 256 3 0.05 30 0.75±0.14 0.73±0.16 0.86±0.15 0.63±0.29 0.75±0.14 2241 

MT CFM 8 256 3 0.05 30 0.83±0.05 0.83±0.05 0.96±0.08 0.70±0.07 0.83±0.05 950 

6 Sinal com características de Coerência 

A seguir, a análise concentra-se nas características de coerência extraídas 

dos sinais, avaliando seu impacto no desempenho dos modelos. Essas características 

são fundamentais para capturar a sincronização e a conectividade funcional entre 

diferentes regiões do cérebro. 
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Ao observar a Tabela 32, os dados mostram que os modelos MCT CC 

geralmente apresentam desempenho ligeiramente superior ao MT CC, especialmente 

em configurações com menor número de cabeças de atenção (4) e dimensões 

intermediárias médias (64 a 256). Com destaque para MCT CC (N_H = 4, INT_D =

64, N_L = 1, DOUT = 0,1, EPC = 30), que alcança acurácia de 0,87 e precisão de 0,95 

em 1281 segundos. No entanto, os modelos MT CC tendem a apresentar tempos de 

treinamento menores, oferecendo maior eficiência computacional. Além disso, 

modelos com N_L = 3 não melhoram consistentemente o desempenho, enquanto 

N_H = 4 oferece melhores resultados que N_H = 8. 

Tabela 32 - Resultado Prognostico Clinico usando Transformers com características de 
Coerência variando os hiperparâmetros, em negrito se destaca o melhor resultado para MT e 

MCT 
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MCT CC 4 32 3 0.1 30 0.85±0.11 0.84±0.13 0.95±0.10 0.77±0.25 0.85±0.11 1646 

MT CC 4 32 3 0.1 30 0.83±0.09 0.83±0.10 0.86±0.08 0.80±0.19 0.83±0.09 980 

MCT CC 4 64 1 0.1 30 0.87±0.09 0.86±0.09 0.95±0.10 0.80±0.19 0.87±0.09 1281 

MT CC 4 64 1 0.1 30 0.83±0.09 0.83±0.10 0.86±0.08 0.80±0.19 0.83±0.09 648 

MCT CC 4 64 3 0.1 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 1611 

MT CC 4 64 3 0.1 30 0.80±0.13 0.79±0.13 0.82±0.12 0.77±0.25 0.80±0.13 1085 

MCT CC 4 128 3 0.05 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 2156 

MT CC 4 128 3 0.05 30 0.83±0.14 0.83±0.15 0.87±0.12 0.77±0.25 0.83±0.14 725 

MCT CC 4 256 1 0.1 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 1083 

MT CC 4 256 1 0.1 30 0.87±0.11 0.86±0.12 0.92±0.10 0.80±0.19 0.87±0.11 632 

MCT CC 4 256 3 0.05 30 0.83±0.05 0.83±0.06 0.90±0.12 0.80±0.19 0.83±0.05 1744 

MT CC 4 256 3 0.05 30 0.80±0.09 0.80±0.09 0.81±0.11 0.80±0.19 0.80±0.09 902 

MCT CC 8 32 3 0.05 30 0.87±0.09 0.86±0.09 0.95±0.10 0.80±0.19 0.87±0.09 1884 

MT CC 8 32 3 0.05 30 0.83±0.14 0.83±0.15 0.86±0.13 0.80±0.27 0.83±0.14 1138 

MCT CC 8 32 3 0.1 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 1890 

MT CC 8 32 3 0.1 30 0.83±0.12 0.83±0.12 0.86±0.12 0.80±0.19 0.83±0.12 1135 

MT CC 8 64 1 0.1 30 0.82±0.08 0.81±0.09 0.84±0.09 0.80±0.19 0.82±0.08 718 

MCT CC 8 64 3 0.1 30 0.85±0.11 0.84±0.13 0.95±0.10 0.77±0.25 0.85±0.11 1903 

MT CC 8 64 3 0.1 30 0.83±0.09 0.83±0.10 0.86±0.08 0.80±0.19 0.83±0.09 1188 

MCT CC 8 128 3 0.05 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 2020 

MT CC 8 128 3 0.05 30 0.80±0.10 0.79±0.10 0.84±0.10 0.77±0.23 0.80±0.10 1028 

MCT CC 8 256 3 0.05 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 2078 

MT CC 8 256 3 0.05 30 0.78±0.10 0.78±0.11 0.80±0.11 0.77±0.25 0.78±0.10 1189 
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7  Sinal com características do paciente e estatísticas 

Nesta configuração, foram adicionadas 103 características ao conjunto de 

entrada para cada paciente, sendo 3 referentes às informações clínicas e 100 

derivadas dos dados estatísticos previamente mencionados. Os resultados do 

treinamento com essa configuração estão apresentados na Tabela 33. 

Os resultados exibidos na Tabela 33, evidenciam que os modelos MT CPE 

superam os MCT CPE em termos de acurácia, F1 score e precisão, com destaque 

para MT CPE (N_H = 4, INT_D = 128, N_L = 3, DOUT = 0,05, EPC = 30), que alcança 

acurácia de 0,85 e precisão de 0,97 em 413 segundos, enquanto os modelos MCT 

CPE apresentam acurácia máxima próximo a 0,78 e tempos mais longos, acima de 

900 segundos. Modelos com N_L = 3 e INT_D ≥ 128 oferecem melhor desempenho, 

enquanto N_H = 8 mantém resultados similares a N_H = 4, mas com maior custo 

computacional. 

Tabela 33 - Resultado Prognostico Clinico usando Transformers com características do 
paciente e estatísticas variando os hiperparâmetros, em negrito se destaca o melhor resultado 

para MT e MCT 
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MCT CPE 4 32 3 0.1 30 0.77±0.03 0.77±0.03 0.76±0.05 0.80±0.07 0.77±0.03 1163 

MT CPE 4 32 3 0.1 30 0.83±0.11 0.83±0.11 0.88±0.10 0.77±0.17 0.83±0.11 385 

MCT CPE 4 64 1 0.1 30 0.75±0.05 0.74±0.06 0.80±0.10 0.70±0.19 0.75±0.05 941 

MT CPE 4 64 1 0.1 30 0.78±0.09 0.78±0.09 0.82±0.11 0.73±0.08 0.78±0.09 209 

MCT CPE 4 64 3 0.1 30 0.75±0.05 0.75±0.06 0.74±0.07 0.80±0.07 0.75±0.05 1130 

MT CPE 4 64 3 0.1 30 0.80±0.07 0.80±0.07 0.89±0.09 0.70±0.13 0.80±0.07 413 

MCT CPE 4 128 3 0.05 30 0.75±0.07 0.74±0.09 0.72±0.09 0.87±0.13 0.75±0.08 1408 

MT CPE 4 128 3 0.05 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 413 

MCT CPE 4 128 3 0.1 30 0.73±0.10 0.73±0.10 0.75±0.10 0.70±0.13 0.73±0.10 1265 

MT CPE 4 128 3 0.1 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 420 

MCT CPE 4 256 3 0.05 30 0.78±0.09 0.78±0.09 0.76±0.07 0.83±0.11 0.78±0.09 1217 

MT CPE 4 256 3 0.05 30 0.83±0.05 0.83±0.06 0.93±0.08 0.73±0.13 0.83±0.05 418 

MCT CPE 8 32 3 0.05 30 0.73±0.10 0.73±0.10 0.74±0.15 0.80±0.07 0.73±0.10 1267 

MT CPE 8 32 3 0.05 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 824 

MCT CPE 8 32 3 0.1 30 0.73±0.10 0.73±0.10 0.71±0.08 0.77±0.17 0.73±0.10 1564 

MT CPE 8 32 3 0.1 30 0.85±0.06 0.85±0.07 0.97±0.07 0.73±0.13 0.85±0.06 824 

MT CPE 8 64 1 0.1 30 0.72±0.09 0.71±0.09 0.76±0.08 0.63±0.13 0.72±0.09 347 

MCT CPE 8 64 3 0.1 30 0.73±0.06 0.73±0.06 0.73±0.07 0.77±0.13 0.73±0.06 1649 



214 

 

M
o

d
e
lo

 

N
_
H

 

IN
T

_
D

 

N
_
L

 

D
O

U
T

 

E
P

C
 

Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 

T
e

m
p

o
 

(s
e
g

.)
 

MT CPE 8 64 3 0.1 30 0.83±0.08 0.83±0.08 0.96±0.08 0.70±0.13 0.83±0.08 582 

MT CPE 8 128 3 0.05 30 0.82±0.08 0.81±0.09 0.89±0.14 0.77±0.17 0.82±0.08 578 

MCT CPE 8 128 3 0.1 30 0.75±0.09 0.75±0.09 0.76±0.15 0.80±0.13 0.75±0.09 1404 

MT CPE 8 128 3 0.1 30 0.82±0.06 0.81±0.07 0.94±0.11 0.70±0.13 0.82±0.06 688 

MCT CPE 8 256 3 0.05 30 0.77±0.06 0.76±0.07 0.75±0.09 0.83±0.11 0.77±0.06 1532 

MT CPE 8 256 3 0.05 30 0.83±0.08 0.83±0.08 0.93±0.09 0.73±0.17 0.83±0.08 711 

8 Sinal com características do paciente e PCP 

Para esta configuração, 83 características são adicionadas ao treinamento 

para cada paciente, no qual 3 são características de paciente e as 80 demais são as 

características de PCP mencionadas anteriormente. Os resultados do treinamento 

com essa configuração estão apresentados na Tabela 34. 

Os resultados da Tabela 34 indicam que, em geral, os modelos MT CPPCP 

apresentam desempenho superior aos MCT CPPCP em acurácia e precisão, com 

destaque para MT CPPCP (N_H = 8, INT_D = 64, N_L = 3, DOUT = 0,1, EPC = 30), que 

alcança acurácia de 0,83 e precisão de 0,93 em 1046 segundos. Em contraste, os 

modelos MCT CPPCP apresentam acurácia máxima em torno de 0,83, mas com 

tempos de processamento consideravelmente maiores, chegando a 2090 segundos. 

Modelos com N_L = 3 e INT_D ≥ 64 oferecem melhor desempenho, enquanto N_H =

8 não melhora significativamente os resultados. 

Tabela 34 - Resultado Prognostico Clinico usando Transformers com características do 
paciente e PCP variando os hiperparâmetros, em negrito se destaca o melhor resultado para 

MT e MCT 
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MCT CPPCP 4 32 3 0.1 30 0.80±0.09 0.80±0.08 0.84±0.14 0.77±0.13 0.80±0.09 1600 

MT CPPCP 4 32 3 0.1 30 0.83±0.08 0.83±0.08 0.90±0.09 0.77±0.17 0.83±0.08 778 

MCT CPPCP 4 64 1 0.05 30 0.78±0.09 0.78±0.09 0.79±0.13 0.83±0.11 0.78±0.09 1169 

MT CPPCP 4 64 1 0.05 30 0.82±0.06 0.82±0.06 0.84±0.09 0.80±0.13 0.82±0.06 779 

MCT CPPCP 4 64 1 0.1 30 0.80±0.07 0.80±0.07 0.82±0.02 0.77±0.13 0.80±0.07 917 

MT CPPCP 4 64 1 0.1 30 0.80±0.07 0.80±0.07 0.81±0.10 0.80±0.13 0.80±0.07 964 

MCT CPPCP 4 128 3 0.05 30 0.78±0.04 0.78±0.04 0.78±0.04 0.80±0.13 0.78±0.04 1554 



215 

 

M
o

d
e
lo

 

N
_
H

 

IN
T

_
D

 

N
_
L

 

D
O

U
T

 

E
P

C
 

Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 

T
e

m
p

o
 

(s
e
g

.)
 

MT CPPCP 4 128 3 0.05 30 0.78±0.09 0.78±0.09 0.82±0.10 0.73±0.13 0.78±0.09 709 

MCT CPPCP 4 128 3 0.1 30 0.77±0.03 0.76±0.03 0.81±0.11 0.73±0.08 0.77±0.03 1362 

MT CPPCP 4 128 3 0.1 30 0.82±0.06 0.81±0.07 0.93±0.09 0.70±0.13 0.82±0.06 795 

MCT CPPCP 4 256 3 0.05 30 0.80±0.07 0.80±0.07 0.80±0.11 0.83±0.11 0.80±0.07 1690 

MT CPPCP 4 256 3 0.05 30 0.83±0.05 0.83±0.06 0.92±0.11 0.77±0.17 0.83±0.05 1125 

MCT CPPCP 8 32 3 0.05 30 0.77±0.11 0.76±0.11 0.77±0.13 0.77±0.17 0.77±0.11 2064 

MT CPPCP 8 32 3 0.05 30 0.80±0.07 0.80±0.07 0.90±0.13 0.70±0.07 0.80±0.07 1151 

MT CPPCP 8 32 3 0.1 30 0.80±0.09 0.80±0.09 0.86±0.13 0.73±0.08 0.80±0.09 1143 

MCT CPPCP 8 32 3 0.1 30 0.70±0.07 0.69±0.07 0.68±0.08 0.80±0.13 0.70±0.07 1735 

MT CPPCP 8 64 1 0.1 30 0.82±0.03 0.82±0.03 0.86±0.07 0.77±0.08 0.82±0.03 670 

MCT CPPCP 8 64 3 0.1 30 0.78±0.04 0.78±0.04 0.78±0.05 0.80±0.07 0.78±0.04 2090 

MT CPPCP 8 64 3 0.1 30 0.83±0.08 0.83±0.08 0.93±0.13 0.77±0.17 0.83±0.08 1046 

MCT CPPCP 8 128 3 0.05 30 0.73±0.06 0.73±0.06 0.73±0.08 0.77±0.08 0.73±0.06 1863 

MT CPPCP 8 128 3 0.05 30 0.80±0.07 0.80±0.07 0.89±0.09 0.70±0.13 0.80±0.07 931 

MCT CPPCP 8 256 3 0.05 30 0.83±0.05 0.83±0.05 0.83±0.02 0.83±0.11 0.83±0.05 1878 

MT CPPCP 8 256 3 0.05 30 0.83±0.05 0.83±0.06 0.92±0.11 0.77±0.17 0.83±0.05 945 

9 Sinal com características do paciente e FM 

Nesta configuração, utiliza-se 80 valores referente as características de FM 

mencionados anteriormente, combinado com 3 características clínicas do paciente, 

totalizando 83 valores adicionais para cada paciente que compôs o treinamento. Os 

resultados do treinamento com essa combinação são apresentados na Tabela 35. 

Analisando a Tabela 35, os modelos MT CPFM apresentam desempenho 

superior aos MCT CPFM, com destaque para MT CPFM SPV (N_H = 4, INT_D =

64, N_L = 3, DOUT = 0,1, EPC = 30), que alcança acurácia de 0,83 e precisão de 0,89 

em 2626 segundos. A variante MCT CPFM SREA (N_H = 4, INT_D = 128, N_L =

3, DOUT = 0,05) atinge a maior acurácia (0,87), com tempo menor (736 segundos). 

Ressalva-se também que o processamento sem placa de vídeo (MT CPFM SPV) não 

garantiu melhoria significativa no desempenho, mas aumentou o tempo de 

treinamento. Além disso, percebe-se que não reamostrar o sinal para MCT melhora a 

performance das métricas. 
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Tabela 35 - Resultado Prognostico Clinico usando Transformers com características do 
paciente e FM variando os hiperparâmetros, em negrito se destaca o melhor resultado para MT 
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MCT CPFM 4 32 1 0.05 30 0.70±0.09 0.69±0.09 0.71±0.08 0.70±0.19 0.70±0.09 1571 

MT CPFM 4 32 1 0.05 30 0.82±0.14 0.82±0.15 0.85±0.15 0.77±0.17 0.82±0.14 571 

MCT CPFM 4 32 1 0.1 30 0.75±0.12 0.75±0.12 0.78±0.15 0.73±0.17 0.75±0.12 1060 

MT CPFM 4 32 1 0.1 30 0.83±0.12 0.83±0.12 0.86±0.13 0.80±0.13 0.83±0.12 568 

MCT CPFM 4 32 3 0.1 30 0.75±0.05 0.74±0.06 0.75±0.06 0.77±0.17 0.75±0.05 1756 

MT CPFM 4 32 3 0.1 30 0.80±0.11 0.80±0.12 0.88±0.15 0.70±0.13 0.80±0.11 936 

MCT CPFM 4 64 1 0.1 30 0.82±0.06 0.82±0.06 0.82±0.10 0.83±0.11 0.82±0.06 966 

MT CPFM 
SPV 

4 64 1 0.1 30 0.75±0.05 0.75±0.05 0.75±0.06 0.77±0.08 0.75±0.05 1673 

MT CPFM 4 64 1 0.1 30 0.75±0.05 0.75±0.05 0.80±0.11 0.70±0.07 0.75±0.05 549 

MCT CPFM 
SREA 

4 64 3 0.1 30 0.85±0.03 0.85±0.03 0.93±0.08 0.77±0.08 0.85±0.03 815 

MCT CPFM 4 64 3 0.1 30 0.77±0.10 0.76±0.10 0.76±0.09 0.80±0.13 0.77±0.10 1568 

MT CPFM 
SPV 

4 64 3 0.1 30 0.83±0.09 0.83±0.10 0.89±0.10 0.77±0.17 0.83±0.09 2626 

MT CPFM 4 64 3 0.1 30 0.80±0.09 0.80±0.09 0.88±0.10 0.70±0.13 0.80±0.09 728 

MCT CPFM 
SREA 

4 128 3 0.05 30 0.87±0.04 0.87±0.04 0.94±0.08 0.80±0.13 0.87±0.04 736 

MCT CPFM 4 128 3 0.05 30 0.73±0.06 0.73±0.06 0.76±0.13 0.73±0.08 0.73±0.06 1468 

MT CPFM 4 128 3 0.05 30 0.82±0.08 0.81±0.09 0.87±0.11 0.77±0.17 0.82±0.08 701 

MCT CPFM 4 256 3 0.05 30 0.77±0.06 0.76±0.07 0.76±0.07 0.80±0.13 0.77±0.06 1860 

MT CPFM 4 256 3 0.05 30 0.77±0.12 0.77±0.12 0.79±0.14 0.73±0.13 0.77±0.12 888 

MCT CPFM 8 32 3 0.05 30 0.77±0.06 0.76±0.07 0.79±0.13 0.77±0.08 0.77±0.06 1925 

MT CPFM 8 32 3 0.05 30 0.77±0.08 0.77±0.08 0.81±0.11 0.70±0.07 0.77±0.08 1166 

MCT CPFM 8 32 3 0.1 30 0.75±0.07 0.75±0.08 0.79±0.13 0.73±0.08 0.75±0.08 1978 

MT CPFM 8 32 3 0.1 30 0.78±0.07 0.78±0.07 0.84±0.08 0.70±0.07 0.78±0.07 1169 

MT CPFM 8 64 1 0.1 30 0.78±0.09 0.78±0.09 0.85±0.14 0.73±0.13 0.78±0.09 592 

MCT CPFM 8 64 3 0.1 30 0.75±0.07 0.74±0.08 0.79±0.12 0.73±0.17 0.75±0.08 1937 

MT CPFM 8 64 3 0.1 30 0.82±0.10 0.81±0.10 0.91±0.11 0.70±0.13 0.82±0.10 894 

MCT CPFM 8 128 3 0.05 30 0.78±0.04 0.78±0.04 0.81±0.11 0.77±0.08 0.78±0.04 1936 

MT CPFM 8 128 3 0.05 30 0.80±0.11 0.80±0.12 0.88±0.15 0.70±0.13 0.80±0.11 848 

MCT CPFM 8 256 3 0.05 30 0.77±0.08 0.76±0.09 0.85±0.14 0.70±0.13 0.77±0.08 1984 

MT CPFM 8 256 3 0.05 30 0.82±0.06 0.82±0.06 0.87±0.11 0.77±0.08 0.82±0.06 1001 

10 Sinal com características do paciente e Coerência 

Para esta configuração, além das características de coerência extraídas dos 

sinais EEG, são incorporadas as características clínicas do paciente. Os resultados 
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do treinamento com essa combinação são apresentados na Tabela 36, destacando o 

impacto dessas características nas métricas de desempenho dos modelos. 

Observando a Tabela 36, percebe-se que os modelos MCT CPC superam 

ligeiramente os MT CPC em acurácia e precisão, com destaque para MCT CPC 

(N_H = 4, INT_D = 32, N_L = 3, DOUT = 0,1, EPC = 30), que alcança acurácia de 0,90 e 

precisão de 0,97 em 1526 segundos. Configurações MT CPC apresentam 

desempenho competitivo, mas com tempos menores. Modelos com N_L = 3 e INT_D ≤

64 oferecem os melhores resultados, enquanto N_H = 8 não melhora 

significativamente a acurácia. O processamento sem placa de vídeo (MT CPC SPV) 

não mostrou ganhos expressivos em desempenho, mas aumentou o tempo de 

processamento. 

Tabela 36 - Resultado Prognostico Clinico usando Transformers com características do 
paciente e Coerência variando os hiperparâmetros, em negrito se destaca o melhor resultado 

para MT e MCT 
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MCT CPC 4 32 1 0.1 30 0.87±0.04 0.86±0.04 0.92±0.10 0.83±0.15 0.87±0.04 1070 

MT CPC 4 32 1 0.1 30 0.87±0.07 0.87±0.07 0.90±0.08 0.83±0.15 0.87±0.07 658 

MT CPC SPV 4 32 1 0.1 30 0.87±0.07 0.87±0.07 0.90±0.08 0.83±0.15 0.87±0.07 1257 

MCT CPC 4 32 3 0.1 30 0.90±0.06 0.90±0.06 0.97±0.06 0.83±0.15 0.90±0.06 1526 

MT CPC 4 32 3 0.1 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 917 

MCT CPC 4 64 1 0.1 30 0.88±0.04 0.88±0.04 0.94±0.07 0.83±0.15 0.88±0.04 922 

MT CPC 4 64 1 0.1 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 587 

MCT CPC 4 128 3 0.05 30 0.88±0.04 0.88±0.04 0.94±0.07 0.83±0.15 0.88±0.04 1505 

MT CPC 4 128 3 0.05 30 0.80±0.07 0.80±0.07 0.81±0.12 0.83±0.15 0.80±0.07 738 

MCT CPC 8 32 3 0.05 30 0.88±0.04 0.88±0.04 0.94±0.07 0.83±0.15 0.88±0.04 1917 

MT CPC 8 32 3 0.05 30 0.87±0.04 0.87±0.04 0.91±0.07 0.83±0.15 0.87±0.04 1161 

MCT CPC 8 32 3 0.1 30 0.85±0.06 0.85±0.07 0.92±0.10 0.80±0.19 0.85±0.06 1981 

MT CPC 8 32 3 0.1 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 1165 

MT CPC 8 64 1 0.1 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 693 

MCT CPC 8 64 3 0.1 30 0.88±0.04 0.88±0.04 0.94±0.07 0.83±0.15 0.88±0.04 1974 

MT CPC 8 64 3 0.1 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 927 

MCT CPC 8 128 3 0.05 30 0.88±0.04 0.88±0.04 0.94±0.07 0.83±0.15 0.88±0.04 1943 

MT CPC 8 128 3 0.05 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 980 

MCT CPC 8 256 3 0.05 30 0.88±0.04 0.88±0.04 0.94±0.07 0.83±0.15 0.88±0.04 1867 

MT CPC 8 256 3 0.05 30 0.85±0.06 0.85±0.06 0.87±0.07 0.83±0.15 0.85±0.06 920 
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APÊNDICE K - Resultados do Treinamento Etiologia do Coma 

Conforme detalhado na Tabela 37, os modelos, fundamentados nas 

arquiteturas descritas no item 5.2 Arquiteturas, foram treinados utilizando sinais 

puros de EEG, complementados por características clínicas dos pacientes e 

estatísticas descritivas. O processamento dos dados seguiu uma adaptação da 

metodologia proposta por (BALDO JÚNIOR, 2023), incorporando ajustes na 

arquitetura original para otimizar a integração de diferentes modelos de aprendizado 

de máquina, bem como a reamostragem do sinal de EEG. 

Tabela 37 – Resultados do treinamento da base de dados Etiologia do Coma para o sinal puro, 
com características do paciente e estatísticas, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MMLP 0.32±0.08 0.21±0.07 0.21±0.10 0.26±0.06 0.75±0.03 93 

MMLP SREA 0.40±0.13 0.25±0.08 0.23±0.09 0.31±0.09 0.78±0.04 98 

MCL 0.40±0.11 0.30±0.10 0.28±0.12 0.35±0.11 0.79±0.04 670 

MCL SREA 0.40±0.13 0.31±0.14 0.32±0.16 0.35±0.12 0.80±0.05 476 

MMLP CP 0.42±0.14 0.30±0.16 0.28±0.17 0.36±0.15 0.79±0.05 92 

MMLP CP SREA 0.42±0.14 0.30±0.16 0.28±0.17 0.36±0.15 0.79±0.05 91 

MCL CP 0.60±0.11 0.53±0.13 0.58±0.17 0.56±0.10 0.86±0.03 787 

MCL CP SREA 0.60±0.12 0.51±0.11 0.48±0.11 0.54±0.11 0.86±0.04 594 

MMLP CE 0.45±0.13 0.34±0.10 0.32±0.10 0.38±0.09 0.81±0.04 98 

MMLP CE SREA 0.42±0.12 0.31±0.09 0.29±0.09 0.34±0.09 0.80±0.04 99 

MCL CE 0.35±0.10 0.25±0.07 0.24±0.09 0.29±0.08 0.77±0.03 702 

MCL CE SREA 0.40±0.11 0.27±0.08 0.25±0.09 0.32±0.08 0.79±0.03 527 

MMLP CPE 0.33±0.09 0.27±0.08 0.35±0.14 0.29±0.09 0.76±0.03 100 

MMLP CPE 
SREA 

0.27±0.06 0.15±0.04 0.13±0.06 0.20±0.05 0.74±0.02 97 

MCL CPE 0.52±0.13 0.44±0.10 0.48±0.09 0.48±0.11 0.83±0.04 787 

MCL CPE SREA 0.47±0.16 0.40±0.17 0.41±0.22 0.42±0.17 0.82±0.05 524 

Analisando a Tabela 37, observa-se que os modelos baseados em Multi Layer 

Perceptron (MMLP) apresentaram os menores índices de acurácia e F1 score, 

evidenciando limitações na capacidade de capturar a complexidade dos dados. Em 

contrapartida, os modelos que combinam camadas convolucionais seguidas de 

camadas recorrentes (MCL) demonstraram desempenho superior, com destaque para 
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aqueles que incorporaram características clínicas dos pacientes (CP), alcançando 

acurácia média de 60% e especificidade de 86%.  

Esses resultados ressaltam a importância da inclusão de atributos clínicos 

para aprimorar a classificação. Ademais, os desempenhos obtidos são bastante 

próximos aos reportados por (BALDO JÚNIOR, 2023), o que reforça a consistência 

dos resultados mesmo diante de modificações na arquitetura base e variações nas 

configurações de hardware utilizadas nos experimentos. A reamostragem do sinal 

para 400 Hz (ausente nos modelos SREA) apresentou impacto variável, promovendo 

ligeiras melhorias em alguns modelos. Por fim, os tempos de processamento indicam 

que os modelos MCL demandam maior custo computacional em comparação aos 

MMLP, refletindo a maior complexidade dessas arquiteturas. 

Para aprimorar o desempenho dos modelos na classificação da etiologia do 

coma, foram incorporados atributos extraídos por meio de software de processamento 

de EEG, incluindo o quantificador de Porcentagem de Contribuição de Potência 

(PCP), Frequência Mediana (FM) e Coerência. Esses atributos, que capturam 

características específicas das bandas de frequência e da conectividade cerebral, 

com os resultados apresentados na Tabela 38. 

Tabela 38 – Resultados do treinamento da base de dados Etiologia do Coma para os atributos 
PCP, FM e Coerência, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPCP 0.43±0.10 0.36±0.09 0.36±0.10 0.39±0.10 0.81±0.03 1053 

MCL CPCP SREA 0.45±0.16 0.32±0.11 0.31±0.11 0.38±0.14 0.81±0.05 610 

MCL CPPCP 0.48±0.19 0.39±0.13 0.41±0.08 0.41±0.15 0.82±0.06 1046 

MCL CPPCP 
SREA 

0.50±0.11 0.35±0.05 0.32±0.05 0.40±0.07 0.83±0.03 661 

MCL CFM 0.32±0.13 0.22±0.08 0.21±0.09 0.28±0.11 0.76±0.04 959 

MCL CFM SREA 0.45±0.11 0.33±0.07 0.37±0.08 0.38±0.10 0.81±0.04 662 

MCL CPFM 0.53±0.13 0.46±0.10 0.47±0.11 0.49±0.12 0.84±0.04 968 

MCL CPFM SREA 0.53±0.15 0.41±0.11 0.42±0.10 0.45±0.13 0.84±0.05 588 

MCL CC 0.48±0.10 0.41±0.09 0.41±0.10 0.44±0.11 0.82±0.03 1115 

MCL CPC 0.45±0.16 0.38±0.15 0.43±0.21 0.42±0.17 0.81±0.05 1124 

MCL CPC SPV 0.47±0.17 0.40±0.19 0.42±0.23 0.43±0.19 0.82±0.06 2772 
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Os resultados da Tabela 38 mostram que o modelo MCL CPFM obteve o 

melhor desempenho, com F1 score (macro) de 0,46 e especificidade de 0,84, 

destacando-se pela integração de características do paciente e frequência mediana. 

A não utilização de placa de vídeo (SPV) quase triplica tempo de processamento, sem 

ganhos expressivos nas métricas.  

Em seguida, realizou-se o treinamento dos modelos utilizando sinais de EEG 

provenientes das regiões cerebrais frontal, central, occipital, parietal e temporal, 

conforme detalhado na Tabela 39. Essa abordagem buscou avaliar o impacto da 

análise regionalizada do sinal EEG na classificação das etiologias do coma. 

Tabela 39 – Resultados do treinamento da base de dados Etiologia do Coma com 
características do paciente e regiões cerebrais: frontal, central, occipital, parietal e temporal, 

em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPEF 0.63 ± 0.14 0.59 ± 0.16 0.65 ± 0.21 0.62 ± 0.14 0.87 ± 0.04 813 

MCL CPEF SREA 0.60 ± 0.11 0.53 ± 0.07 0.56 ± 0.07 0.55 ± 0.08 0.86 ± 0.04 579 

MCL CPEC 0.58 ± 0.14 0.54 ± 0.17 0.60 ± 0.24 0.54 ± 0.14 0.86 ± 0.04 912 

MCL CPEC SREA 0.55 ± 0.11 0.49 ± 0.12 0.52 ± 0.16 0.50 ± 0.10 0.85 ± 0.04 569 

MCL CPEO 0.57 ± 0.19 0.48 ± 0.20 0.51 ± 0.22 0.51 ± 0.19 0.85 ± 0.06 909 

MCL CPEO SREA 0.47 ± 0.17 0.43 ± 0.17 0.47 ± 0.18 0.44 ± 0.17 0.82 ± 0.05 506 

MCL CPEP 0.57 ± 0.13 0.52 ± 0.18 0.60 ± 0.23 0.52 ± 0.14 0.85 ± 0.04 771 

MCL CPEP SREA 0.50 ± 0.17 0.43 ± 0.18 0.48 ± 0.22 0.45 ± 0.16 0.83 ± 0.06 579 

MCL CPET 0.63 ± 0.15 0.61 ± 0.13 0.69 ± 0.15 0.61 ± 0.12 0.87 ± 0.04 922 

MCL CPET SREA 0.58 ± 0.13 0.48 ± 0.17 0.51 ± 0.23 0.53 ± 0.13 0.85 ± 0.05 588 

Ao analisar a Tabela 39, observa-se que o modelo MCL CPEF apresentou o 

melhor desempenho, alcançando acurácia de 0,63 e especificidade de 87%, 

evidenciando a importância da região frontal na identificação das etiologias do coma. 

A ausência de reamostragem do sinal (SREA) comprometeu a acurácia em todas as 

regiões avaliadas, indicando que a reamostragem contribui para a melhoria da 

qualidade dos dados e, consequentemente, do desempenho dos modelos. 

Para ampliar a análise, foram testadas outras abordagens no treinamento da 

base de dados voltada para a etiologia do coma, buscando aprimorar a classificação 

das diferentes causas do coma. Os resultados obtidos com essas metodologias estão 

apresentados na Tabela 40. 
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Tabela 40 – Resultados do treinamento da base de dados Etiologia do Coma testando outras 
abordagens, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCLT CE 0.47±0.14 0.36±0.11 0.35±0.11 0.39±0.13 0.82±0.05 1412 

MCLT CPEF 0.58±0.15 0.56±0.17 0.62±0.20 0.57±0.17 0.86±0.05 871 

MCL CDW4 0.43±0.10 0.35±0.09 0.34±0.11 0.39±0.10 0.80±0.03 948 
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APÊNDICE L - Resultados do Treinamento Etiologia do Coma usando 

Transformer 

Nesta seção, são apresentados os resultados do treinamento da base de 

dados do Coma para a classificação da etiologia do mesmo, utilizando modelos 

baseados em arquiteturas TransformerEncoder, especificamente as variações dos 

modelos MT e MCT. 

A primeira análise que é apresentada na Tabela 41, considerou sinais puros 

de EEG, complementados por características clínicas dos pacientes e estatísticas 

descritivas, com o objetivo de avaliar o impacto dos diferentes hiperparâmetros na 

performance dos modelos. 

Tabela 41 - Resultados do treinamento da base de dados Etiologia do Coma usando 
Transformers variando os hiperparâmetros do modelo MT e MCT para o sinal puro, com 

características do paciente e estatísticas, em negrito se destaca o melhor modelo 
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MT 8 128 3 0.2 60 0.38±0.15 0.32±0.14 0.30±0.13 0.36±0.16 0.79±0.05 852 

MCT 8 256 3 0.05 30 0.32±0.16 0.26±0.14 0.28±0.18 0.28±0.14 0.76±0.05 1628 

MT CP 4 64 3 0.1 30 0.50±0.14 0.37±0.10 0.38±0.13 0.45±0.13 0.83±0.05 501 

MT CP 8 128 3 0.2 60 0.53±0.18 0.44±0.19 0.47±0.24 0.49±0.19 0.84±0.06 1250 

MCT CP 8 256 3 0.05 30 0.47±0.11 0.38±0.09 0.38±0.12 0.42±0.11 0.81±0.04 1707 

MT CE 4 64 3 0.1 30 0.42±0.15 0.33±0.14 0.35±0.18 0.37±0.15 0.80±0.05 517 

MT CE 8 128 3 0.2 60 0.37±0.16 0.27±0.14 0.24±0.13 0.33±0.16 0.78±0.06 1539 

MCT CE 8 256 3 0.05 30 0.32±0.10 0.23±0.08 0.24±0.10 0.28±0.08 0.76±0.03 1788 

MT CPE 4 64 3 0.1 30 0.52±0.14 0.43±0.16 0.47±0.20 0.47±0.17 0.83±0.05 365 

MT CPE 8 128 3 0.2 60 0.50±0.14 0.42±0.14 0.45±0.17 0.47±0.16 0.83±0.05 1534 

MT CPE 8 256 3 0.05 30 0.47±0.16 0.40±0.15 0.41±0.17 0.42±0.16 0.81±0.05 548 

MCT CPE 8 256 3 0.05 30 0.57±0.12 0.49±0.14 0.49±0.17 0.53±0.13 0.85±0.04 1758 

Os resultados da Tabela 41 indicam que os modelos que incorporaram 

características do paciente (CP) apresentaram desempenho superior em comparação 

aos demais, ressaltando a importância da inclusão de atributos clínicos na 

classificação da etiologia do coma. Destaca-se o modelo MCT CPE (N_H = 8, INT_D =

256, N_L = 3, DOUT = 0,05, EPC = 30), que obteve o melhor desempenho, com 

acurácia de 0,57 e especificidade de 0,85. Ressalta-se ainda que os modelos 

baseados na arquitetura MCT demandaram maior tempo computacional, em parte 
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devido à execução sem o uso de placa de vídeo, conforme limitação previamente 

mencionada. 

Para ampliar a avaliação dos modelos baseados em arquiteturas Transformer, 

foram testadas variações dos hiperparâmetros, aplicados aos atributos extraídos do 

EEG referentes à Participação de Contribuição de Potência (PCP), Frequência 

Mediana (FM) e Coerência. Os resultados obtidos com essas configurações estão 

apresentados na Tabela 42. 

Tabela 42 - Resultados do treinamento da base de dados Etiologia do Coma usando 
Transformers variando os hiperparâmetros do modelo MT e MCT, para os atributos PCP, FM e 

Coerência, em negrito se destaca o melhor modelo 
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MT CPCP 4 64 3 0.1 30 0.35±0.06 0.30±0.07 0.29±0.07 0.31±0.07 0.78±0.02 744 

MT CPCP 8 128 3 0.2 60 0.37±0.20 0.32±0.19 0.33±0.21 0.35±0.20 0.78±0.07 1876 

MCT CPCP 8 256 3 0.05 30 0.43±0.13 0.33±0.09 0.36±0.12 0.36±0.10 0.80±0.04 2046 

MT CPPCP 4 64 3 0.1 30 0.43±0.16 0.39±0.16 0.42±0.23 0.40±0.17 0.81±0.05 804 

MT CPPCP 8 128 3 0.2 60 0.45±0.23 0.39±0.22 0.41±0.23 0.41±0.23 0.81±0.07 1873 

MCT CPPCP 8 256 3 0.05 30 0.48±0.03 0.41±0.06 0.44±0.08 0.45±0.06 0.82±0.01 2023 

MT CFM 4 64 3 0.1 30 0.40±0.08 0.32±0.07 0.33±0.11 0.37±0.09 0.79±0.03 783 

MT CFM 8 128 3 0.2 60 0.47±0.13 0.38±0.12 0.40±0.10 0.42±0.13 0.81±0.04 1855 

MCT CFM 8 256 3 0.05 30 0.28±0.11 0.19±0.07 0.24±0.11 0.23±0.08 0.75±0.04 1926 

MT CPFM 4 64 3 0.1 30 0.45±0.07 0.38±0.05 0.43±0.07 0.41±0.06 0.82±0.02 791 

MT CPFM 8 128 3 0.2 60 0.45±0.14 0.35±0.12 0.36±0.12 0.40±0.14 0.81±0.05 1847 

MT CPFM 8 256 3 0.05 30 0.50±0.14 0.41±0.14 0.42±0.11 0.43±0.15 0.82±0.05 957 

MCT CPFM 8 256 3 0.05 30 0.52±0.14 0.44±0.07 0.45±0.06 0.47±0.12 0.83±0.05 1933 

MT CC 4 64 3 0.1 30 0.37±0.09 0.31±0.09 0.30±0.07 0.33±0.12 0.78±0.03 686 

MT CC 8 128 3 0.2 60 0.32±0.13 0.26±0.12 0.28±0.10 0.30±0.16 0.77±0.04 1746 

MCT CC 8 256 3 0.05 30 0.45±0.16 0.36±0.15 0.38±0.21 0.39±0.17 0.81±0.05 1997 

MT CPC 4 64 3 0.1 30 0.42±0.12 0.34±0.14 0.34±0.17 0.37±0.14 0.80±0.04 753 

MT CPC 8 128 3 0.2 60 0.43±0.14 0.36±0.15 0.35±0.15 0.40±0.15 0.81±0.05 1673 

MCT CPC 8 256 3 0.05 30 0.37±0.07 0.31±0.06 0.32±0.11 0.33±0.07 0.79±0.03 1963 

Os resultados apresentados na Tabela 42 indicam que o modelo MCT CPFM 

(N_H = 8, INT_D = 256, N_L = 3, DOUT = 0,05, EPC = 30) obteve o melhor 

desempenho, alcançando um F1 score macro de 0,44 e especificidade de 0,83, 

evidenciando a eficácia da integração entre características clínicas dos pacientes e a 

frequência mediana do EEG. Observa-se que o aumento do número de cabeças de 
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atenção (N_H) e da dimensão intermediária (INT_D) contribui, em geral, para a 

melhoria dos resultados, embora implique em maior tempo de processamento. Diante 

do exposto, percebe-se que os modelos que incorporaram características do paciente 

combinadas com os quantificadores apresentaram desempenho superior em relação 

às demais configurações. 

Na etapa seguinte, foram avaliados os resultados do treinamento dos modelos 

baseados em arquitetura Transformer utilizando sinais puros de EEG provenientes 

das regiões cerebrais frontal, central, occipital, parietal e temporal. Os resultados, 

apresentados na Tabela 43, analisam o desempenho dessas configurações na 

identificação de etiologias. 

Tabela 43 - Resultados do treinamento da base de dados Etiologia do Coma usando 
Transformers com Sinal Puro variando os hiperparâmetros do modelo MT para as regiões 
cerebrais: frontal, central, occipital, parietal e temporal, em negrito se destaca o melhor 

modelo 
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MCT CEF 3 128 3 0.2 60 0.40±0.16 0.34±0.18 0.36±0.21 0.38±0.18 0.79±0.06 2374 

MT CEF 7 128 3 0.2 60 0.47±0.13 0.38±0.11 0.42±0.10 0.44±0.14 0.82±0.04 681 

MT CEF 3 128 3 0.2 60 0.45±0.07 0.37±0.08 0.35±0.09 0.43±0.08 0.81±0.02 687 

MCT CEC 3 128 3 0.2 60 0.47±0.10 0.39±0.08 0.39±0.11 0.43±0.11 0.82±0.04 2344 

MT CEC 3 128 3 0.2 60 0.38±0.10 0.24±0.11 0.24±0.14 0.33±0.10 0.78±0.04 632 

MCT CEP 3 128 3 0.2 60 0.40±0.21 0.35±0.21 0.36±0.21 0.37±0.22 0.80±0.06 2345 

MT CEP 3 128 3 0.2 60 0.38±0.10 0.22±0.08 0.20±0.09 0.30±0.09 0.77±0.04 538 

MCT CEO 3 128 3 0.2 60 0.33±0.14 0.27±0.12 0.27±0.13 0.30±0.12 0.78±0.05 2315 

MT CEO 3 128 3 0.2 60 0.28±0.13 0.17±0.08 0.17±0.10 0.23±0.08 0.74±0.04 544 

MCT CET 3 128 3 0.2 60 0.47±0.04 0.39±0.09 0.46±0.11 0.41±0.06 0.82±0.02 2333 

MT CET 3 128 3 0.2 60 0.30±0.10 0.20±0.09 0.21±0.12 0.25±0.09 0.75±0.03 586 

Os resultados da Tabela 43 indicam que o modelo MCT CET (N_H =

3, INT_D = 128, N_L = 3, DOUT = 0,2, EPC = 60) apresentou o melhor desempenho, 

alcançando acurácia de 0,47 e precisão de 0,46, ressaltando a importância da região 

temporal na identificação das etiologias do coma. Os modelos MT CEF e MCT CEC 

também obtiveram resultados expressivos, com acurácia próxima a 0,47, enquanto as 

configurações aplicadas à região occipital (CEO) apresentaram desempenho inferior, 

com acurácia inferior a 0,33. 
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APÊNDICE M - Resultados do Treinamento Etiologia do Coma 

removendo os exames pertencentes ao rotulo OUTROS 

Com o objetivo de aprimorar a acurácia na classificação da etiologia do coma, 

foi implementada a sugestão do coorientador Murillo de remover da base de dados os 

exames de eletroencefalograma (EEG) pertencentes ao rótulo OUTROS, conforme 

apresentado a seguir. Essa decisão fundamenta-se na heterogeneidade do grupo 

OUTROS, que engloba diversas etiologias do coma, o que pode dificultar a 

capacidade dos modelos de aprendizado de máquina em classificá-los com precisão 

devido à grande variabilidade de padrões cerebrais. Ao excluir esses exames, espera-

se aumentar a assertividade dos modelos, uma vez que a gama de etiologias a serem 

classificadas torna-se mais específica, permitindo uma análise mais focada em 

condições como traumatismo cranioencefálico, coma metabólico e acidente vascular 

cerebral, conforme descrito no item 5.10.2 Base de dados. 

Conforme a metodologia apresentada anteriormente, a primeira análise 

baseou-se nos modelos fundamentados nas arquiteturas descritas no item 5.2 

Arquiteturas, que foram treinados utilizando sinais puros de EEG, complementados 

por características clínicas dos pacientes e estatísticas descritivas. Os resultados 

desse treinamento, apresentados na Tabela 44. 

Tabela 44 – Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, para o sinal puro, com características do paciente e 

estatísticas, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MMLP 0.44±0.15 0.36±0.12 0.35±0.12 0.38±0.12 0.71±0.08 147 

MCL 0.54±0.16 0.49±0.18 0.51±0.20 0.52±0.17 0.76±0.09 664 

MMLP CP 0.38±0.19 0.33±0.20 0.31±0.21 0.37±0.20 0.67±0.10 78 

MCL CP 0.58±0.12 0.51±0.08 0.54±0.07 0.54±0.08 0.78±0.05 546 

MMLP CE 0.50±0.14 0.44±0.14 0.47±0.18 0.48±0.15 0.75±0.07 84 

MCL CE 0.56±0.10 0.50±0.10 0.50±0.13 0.54±0.12 0.78±0.06 643 

MMLP CPE 0.34±0.08 0.24±0.09 0.21±0.11 0.31±0.08 0.65±0.04 78 

MCL CPE 0.60±0.14 0.56±0.16 0.61±0.18 0.59±0.15 0.80±0.06 625 

Os resultados da Tabela 44, indicam que os modelos baseados em Multi 

Layer Perceptron (MMLP) apresentaram desempenho inferior em relação aos 
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modelos com camadas convolucionais recorrentes (MCL). O modelo MCL CPE, que 

combina sinais puros de EEG com características do paciente e estatísticos, 

destacou-se com a maior acurácia média de 60% e especificidade elevada de 80%. 

Os tempos de processamento dos modelos MCL foram consideravelmente maiores, 

refletindo a maior complexidade computacional dessas arquiteturas. 

A seguir, na Tabela 45, são apresentados os resultados do treinamento 

utilizando os atributos extraídos do EEG, especificamente PCP, FM e Coerência. 

Tabela 45 – Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, para os atributos PCP, FM e Coerência, em negrito se destaca o 

melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPCP 0.54±0.14 0.47±0.12 0.48±0.13 0.49±0.11 0.76±0.08 936 

MCL CPPCP 0.58±0.13 0.50±0.13 0.53±0.13 0.55±0.11 0.79±0.06 847 

MCL CFM 0.52±0.17 0.49±0.18 0.55±0.24 0.49±0.17 0.75±0.09 949 

MCL CPFM 0.64±0.17 0.60±0.20 0.66±0.23 0.62±0.18 0.81±0.09 942 

MCL CC 0.54±0.17 0.48±0.17 0.50±0.19 0.51±0.18 0.77±0.09 942 

MCL CPC 0.62±0.16 0.58±0.18 0.64±0.20 0.61±0.17 0.81±0.08 871 

Os resultados da Tabela 45 mostram que o modelo MCL CPFM obteve o 

melhor desempenho, com acurácia de 0,64 e especificidade de 0,81, destacando a 

eficácia da integração de características do paciente e frequência mediana para 

identificar etiologias. Os tempos de processamento foram relativamente semelhantes 

entre os modelos, variando entre 847 e 949 segundos. 

A Tabela 46 apresenta os resultados do treinamento considerando as regiões 

cerebrais frontal, central, occipital, parietal e temporal, permitindo avaliar o 

desempenho dos modelos em diferentes áreas do cérebro. Essa análise visa 

compreender a contribuição específica de cada região na classificação da etiologia do 

coma, considerando a complexidade e a diversidade funcional das áreas cerebrais 

envolvidas. 
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Tabela 46 – Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, com regiões cerebrais: frontal, central, occipital, parietal e 

temporal, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CEF 0.68±0.16 0.64±0.18 0.69±0.21 0.67±0.18 0.84±0.08 1483 

MCL CEC 0.60±0.16 0.56±0.16 0.61±0.18 0.58±0.16 0.80±0.08 1484 

MCL CEO 0.46±0.16 0.42±0.17 0.45±0.23 0.47±0.20 0.72±0.09 1095 

MCL CEP 0.50±0.13 0.46±0.10 0.48±0.12 0.47±0.11 0.75±0.06 1414 

MCL CET 0.54±0.17 0.48±0.17 0.51±0.19 0.50±0.16 0.77±0.09 1418 

MCL CPEF 0.70±0.14 0.68±0.18 0.72±0.18 0.70±0.16 0.85±0.07 733 

MCL CPEF 
FA=200 

400 pontos 
0.62±0.12 0.60±0.16 0.65±0.17 0.62±0.15 0.81±0.06 462 

MCL CPEC 0.64±0.19 0.60±0.21 0.64±0.19 0.62±0.18 0.81±0.08 734 

MCL CPEO 0.62±0.19 0.59±0.22 0.64±0.23 0.60±0.20 0.80±0.10 753 

MCL CPEO 

FA=200 
400 pontos 

0.62±0.20 0.58±0.23 0.60±0.26 0.60±0.21 0.80±0.10 467 

MCL CPEP 0.64±0.16 0.60±0.18 0.64±0.19 0.61±0.16 0.82±0.07 763 

MCL CPET 0.70±0.14 0.67±0.16 0.71±0.18 0.67±0.15 0.84±0.07 715 

MCL CEEF 0.58±0.16 0.55±0.13 0.64±0.12 0.56±0.15 0.79±0.08 747 

MCL CEEC 0.58±0.12 0.55±0.10 0.62±0.11 0.55±0.10 0.79±0.05 745 

MCL CEEO 0.58±0.12 0.51±0.09 0.54±0.12 0.53±0.09 0.79±0.06 741 

MCL CEEP 0.54±0.05 0.49±0.07 0.54±0.12 0.50±0.05 0.77±0.04 751 

MCL CEET 0.58±0.17 0.51±0.17 0.54±0.18 0.54±0.18 0.79±0.08 736 

Os resultados apresentados na Tabela 46 destacam que as regiões frontal e 

temporal, quando combinadas com características do paciente, alcançaram uma 

acurácia de 70%, com o modelo MCL CPEF apresentando a melhor performance 

geral. A reamostragem dos dados (FA=200, 400 pontos) contribuiu para a redução do 

tempo computacional, como observado no modelo MCL CPEF, cujo tempo diminuiu 

de 733 para 462 segundos. Contudo, essa redução no tempo foi acompanhada por 

uma queda na acurácia, evidenciando um trade-off entre eficiência computacional e 

desempenho do modelo. 
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APÊNDICE N - Resultados do Treinamento Etiologia do Coma usando 

Transformer removendo os exames pertencentes ao rotulo 

OUTROS 

De forma análoga ao descrito no APÊNDICE L - Resultados do Treinamento 

Etiologia do Coma usando Transformer, foram realizados experimentos com 

arquiteturas Transformer (MT e MCT), utilizando a base de dados sem os exames do 

rótulo OUTROS. Os resultados, apresentados nas tabelas subsequentes, avaliam o 

desempenho dessas configurações na classificação de etiologias. 

Os resultados apresentados na Tabela 47 avaliam o desempenho do modelo 

Transformer (MT), com variação de hiperparâmetros, utilizando sinais puros de EEG. 

Tabela 47 - Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, usando Transformers com Sinal Puro variando os 

hiperparâmetros do modelo MT, em negrito se destaca o melhor modelo 

Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Temp

o 
(seg.) 

MT 4 64 1 0.1 30 0.42±0.10 0.35±0.11 0.33±0.11 0.40±0.11 0.69±0.05 164 

MT 4 64 1 0.1 60 0.46±0.15 0.41±0.14 0.41±0.14 0.43±0.15 0.72±0.07 298 

MT 4 64 1 0.2 30 0.42±0.10 0.38±0.14 0.39±0.16 0.40±0.14 0.70±0.05 167 

MT 4 64 1 0.2 60 0.42±0.12 0.38±0.14 0.38±0.15 0.41±0.14 0.70±0.06 294 

MT 4 64 3 0.1 30 0.56±0.05 0.49±0.09 0.48±0.13 0.55±0.11 0.77±0.03 360 

MT 4 64 3 0.1 60 0.62±0.08 0.53±0.09 0.51±0.12 0.60±0.07 0.81±0.04 642 

MT 4 64 3 0.1 120 0.54±0.05 0.45±0.07 0.46±0.13 0.52±0.11 0.76±0.04 1255 

MT 4 64 3 0.2 30 0.48±0.13 0.45±0.12 0.51±0.16 0.48±0.15 0.73±0.06 366 

MT 4 64 3 0.2 60 0.52±0.12 0.48±0.13 0.52±0.14 0.53±0.15 0.76±0.06 649 

MT 4 128 1 0.1 30 0.48±0.12 0.37±0.11 0.41±0.18 0.43±0.10 0.73±0.06 150 

MT 4 128 1 0.1 60 0.50±0.09 0.44±0.08 0.52±0.10 0.47±0.09 0.74±0.05 315 

MT 4 128 1 0.2 30 0.44±0.14 0.34±0.13 0.34±0.19 0.40±0.12 0.71±0.07 162 

MT 4 128 1 0.2 60 0.52±0.10 0.46±0.10 0.53±0.14 0.50±0.13 0.76±0.06 308 

MT 4 128 1 0.2 120 0.56±0.14 0.52±0.16 0.54±0.18 0.54±0.17 0.78±0.08 647 

MT 4 128 3 0.1 30 0.48±0.12 0.45±0.12 0.53±0.13 0.48±0.13 0.73±0.06 360 

MT 4 128 3 0.1 60 0.56±0.20 0.52±0.21 0.55±0.19 0.55±0.21 0.78±0.10 655 

MT 4 128 3 0.2 30 0.48±0.16 0.45±0.17 0.50±0.19 0.50±0.18 0.74±0.08 357 

MT 4 128 3 0.2 60 0.54±0.14 0.47±0.13 0.53±0.16 0.52±0.16 0.77±0.07 651 

MT 4 128 3 0.2 120 0.58±0.10 0.55±0.10 0.64±0.15 0.58±0.12 0.79±0.06 1286 

MT 4 128 3 0.2 160 0.60±0.18 0.56±0.19 0.65±0.20 0.60±0.20 0.80±0.09 1668 

MT 8 64 1 0.1 30 0.46±0.14 0.37±0.10 0.35±0.11 0.41±0.10 0.71±0.07 213 

MT 8 64 1 0.1 60 0.48±0.10 0.45±0.12 0.47±0.15 0.48±0.12 0.73±0.04 399 
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Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Temp

o 
(seg.) 

MT 8 64 1 0.2 30 0.48±0.13 0.39±0.09 0.37±0.10 0.43±0.10 0.72±0.07 209 

MT 8 64 1 0.2 60 0.48±0.08 0.43±0.04 0.44±0.05 0.45±0.05 0.73±0.03 399 

MT 8 64 3 0.1 30 0.60±0.14 0.56±0.17 0.58±0.17 0.58±0.17 0.80±0.08 441 

MT 8 64 3 0.1 60 0.60±0.17 0.56±0.20 0.62±0.25 0.59±0.18 0.80±0.08 878 

MT 8 64 3 0.2 30 0.52±0.20 0.50±0.21 0.54±0.20 0.54±0.23 0.77±0.10 451 

MT 8 64 3 0.2 60 0.48±0.15 0.45±0.17 0.49±0.21 0.50±0.18 0.75±0.07 851 

MT 8 128 1 0.1 30 0.50±0.06 0.40±0.06 0.36±0.08 0.46±0.06 0.74±0.03 206 

MT 8 128 1 0.1 60 0.58±0.10 0.50±0.14 0.52±0.19 0.55±0.13 0.78±0.05 383 

MT 8 128 1 0.2 30 0.50±0.06 0.40±0.07 0.38±0.10 0.46±0.06 0.74±0.03 218 

MT 8 128 1 0.2 60 0.48±0.17 0.45±0.17 0.49±0.23 0.48±0.18 0.74±0.08 386 

MT 8 128 3 0.05 60 0.56±0.08 0.51±0.10 0.53±0.16 0.55±0.11 0.78±0.05 1070 

MT 8 128 3 0.1 30 0.54±0.14 0.50±0.12 0.61±0.14 0.55±0.15 0.77±0.07 469 

MT 8 128 3 0.1 60 0.60±0.21 0.57±0.22 0.62±0.27 0.61±0.21 0.81±0.10 850 

MT 8 128 3 0.2 30 0.54±0.14 0.52±0.12 0.63±0.15 0.57±0.16 0.78±0.07 428 

MT 8 128 3 0.2 60 0.62±0.19 0.62±0.19 0.68±0.17 0.64±0.20 0.81±0.10 832 

MT 8 128 3 0.2 120 0.64±0.16 0.60±0.22 0.62±0.24 0.64±0.20 0.82±0.09 1622 

MT 8 128 3 0.2 160 0.62±0.18 0.60±0.21 0.62±0.21 0.62±0.22 0.81±0.10 2162 

MT 8 256 3 0.05 30 0.66±0.15 0.61±0.13 0.64±0.14 0.63±0.14 0.83±0.07 682 

Os dados apresentados na Tabela 47 demonstram que o desempenho dos 

modelos Transformer (MT) varia significativamente conforme a configuração dos 

hiperparâmetros, especialmente o número de camadas (N_L), a taxa de dropout 

(DOUT) e o número de épocas (EPC). Modelos com três camadas (N_L=3) e maior 

número de épocas tendem a alcançar melhores resultados, com F1 score (macro) 

chegando a 62%, precisão de 0,68 e especificidade de 0,81, como observado na 

configuração MT com N_H = 8, INT_D = 128, N_L = 3, DOUT = 0,20, EPC = 60. Além 

disso, o aumento do número de cabeças de atenção (N_H) e da dimensão 

intermediária (INT_D) também contribui para a melhora do desempenho, embora 

impacte diretamente no tempo de processamento, que pode variar de 164 a 2162 

segundos.  

Configurações com N_L = 3 e EPC ≥ 60 apresentaram melhores resultados 

(acurácia de 0,54–0,64) em comparação com N_L = 1 (acurácia ≤ 0,58). O tempo 

computacional aumentou com EPC mais alto, como em MT (EPC = 120, 1622 

segundos) e MT (EPC = 160, 2162 segundos), indicando um trade-off entre precisão 

e custo computacional. Configurações com menor dropout (0,1) e maior número de 
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épocas tendem a promover maior estabilidade e precisão nos resultados. Esses 

achados indicam que a otimização dos hiperparâmetros é fundamental para 

maximizar a eficácia dos modelos Transformer na classificação da etiologia, 

equilibrando desempenho e custo computacional. 

Os resultados apresentados na Tabela 48 avaliam o desempenho dos 

modelos Transformer (MT e MCT) na base de dados, utilizando sinais puros de EEG, 

complementados por características do paciente e estatísticas descritivas. 

Tabela 48 – Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, usando Transformers, com o sinal puro, características do 

paciente e estatísticas, em negrito se destaca o melhor modelo 
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MCT 8 256 3 0.05 30 0.42±0.12 0.34±0.09 0.39±0.13 0.38±0.10 0.70±0.05 1208 

MT CP 8 128 3 0.2 60 0.60±0.21 0.59±0.22 0.65±0.23 0.61±0.24 0.81±0.11 928 

MT CP 8 256 3 0.05 30 0.62±0.18 0.59±0.19 0.63±0.22 0.60±0.19 0.81±0.09 691 

MCT CP 8 256 3 0.05 30 0.50±0.11 0.47±0.12 0.62±0.13 0.48±0.10 0.74±0.05 1426 

MT CE 8 128 3 0.2 60 0.54±0.08 0.51±0.11 0.53±0.18 0.57±0.10 0.77±0.04 1321 

MCT CE 8 256 3 0.05 30 0.60±0.13 0.54±0.15 0.55±0.15 0.56±0.13 0.79±0.06 1453 

MT CPE 8 128 3 0.2 60 0.50±0.17 0.47±0.18 0.49±0.18 0.51±0.20 0.75±0.08 1323 

MCT CPE 8 256 3 0.05 30 0.60±0.17 0.59±0.19 0.64±0.19 0.60±0.19 0.80±0.08 1257 

Ao analisar a Tabela 48, observa-se que o modelo MT CP (N_H = 8, INT_D =

256, N_L = 3, DOUT = 0.05, EPC = 30) apresentou o melhor desempenho, alcançando 

acurácia de 62% e um F1 score macro de 0,59, evidenciando a eficácia da 

incorporação das características do paciente na identificação das etiologias. Os 

modelos MCT CPE e MCT CE também obtiveram resultados expressivos, com 

acurácia próxima a 0,60, enquanto o modelo MCT isolado apresentou desempenho 

inferior, com acurácia de 42%. Esses resultados ressaltam a importância da 

integração de informações clínicas para aprimorar a assertividade dos modelos na 

classificação da etiologia do coma. 

Na Tabela 49, são apresentados os resultados do treinamento da base de 

dados utilizando os atributos extraídos do EEG: PCP, FM e Coerência. Esses 

quantificadores avaliam diferentes características do sinal no domínio da frequência, 
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fornecendo informações complementares sobre a atividade cerebral para a 

classificação da etiologia do coma. 

Tabela 49 – Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, usando Transformers, para os atributos PCP, FM e Coerência, 

em negrito se destaca o melhor modelo 
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MT CPCP 8 128 3 0.2 60 0.60±0.17 0.59±0.16 0.69±0.18 0.63±0.19 0.81±0.08 1503 

MCT CPCP 8 256 3 0.05 30 0.42±0.16 0.34±0.12 0.33±0.13 0.37±0.13 0.70±0.08 1708 

MCT CPPCP 8 64 3 0.05 30 0.52±0.19 0.43±0.20 0.47±0.25 0.47±0.18 0.75±0.09 1590 

MCT CPPCP 8 64 3 0.05 60 0.54±0.17 0.46±0.17 0.49±0.21 0.49±0.15 0.76±0.08 2600 

MCT CPPCP 8 128 3 0.05 30 0.52±0.17 0.45±0.16 0.47±0.17 0.47±0.15 0.76±0.08 1556 

MT CPPCP 8 128 3 0.2 60 0.56±0.16 0.54±0.16 0.55±0.15 0.58±0.18 0.79±0.08 1523 

MCT CPPCP 8 256 3 0.05 30 0.56±0.27 0.51±0.27 0.52±0.26 0.52±0.27 0.78±0.13 1800 

MCT CFM 8 64 3 0.05 30 0.38±0.16 0.30±0.13 0.31±0.17 0.35±0.13 0.68±0.08 1557 

MT CFM 8 128 3 0.2 60 0.54±0.14 0.51±0.14 0.56±0.22 0.56±0.15 0.77±0.07 1307 

MCT CFM 8 256 3 0.05 30 0.42±0.19 0.32±0.16 0.30±0.16 0.37±0.17 0.70±0.10 1711 

MT CPFM 8 128 3 0.2 60 0.54±0.17 0.51±0.19 0.53±0.21 0.55±0.20 0.77±0.08 1314 

MT CPFM 8 256 3 0.05 30 0.56±0.14 0.51±0.16 0.52±0.21 0.53±0.13 0.77±0.07 938 

MCT CPFM 8 256 3 0.05 30 0.50±0.18 0.40±0.14 0.45±0.17 0.44±0.12 0.74±0.08 1668 

MT CC 8 128 3 0.2 60 0.48±0.12 0.44±0.11 0.44±0.14 0.49±0.13 0.74±0.06 1152 

MCT CC 8 256 3 0.05 30 0.50±0.09 0.45±0.10 0.46±0.13 0.48±0.12 0.75±0.05 1694 

MT CPC 8 128 3 0.2 60 0.58±0.12 0.58±0.12 0.65±0.13 0.59±0.11 0.80±0.05 1149 

MT CPCP 8 256 3 0.05 30 0.56±0.10 0.50±0.12 0.53±0.17 0.54±0.14 0.78±0.05 947 

MCT CPC 8 256 3 0.05 30 0.54±0.10 0.48±0.10 0.51±0.16 0.52±0.13 0.77±0.06 1692 

Os resultados da Tabela 49 indicam que os modelos baseados na arquitetura 

Transformer (MT) geralmente superam os modelos híbridos (MCT) quando treinados 

com os atributos PCP e FM isoladamente ou em combinação, com exceção da 

Coerência. O modelo MT CPCP (N_H = 8, INT_D = 128, N_L = 3, DOUT = 0,2, EPC =

60) obteve o melhor desempenho, alcançando uma acurácia média de 60% e 

especificidade de 0,81. Modelos treinados apenas com o atributo FM exibiram os 

menores índices de acurácia e F1 score, evidenciando que essa característica isolada 

pode ser menos discriminativa para a tarefa. 

Os resultados apresentados na Tabela 50 avaliam o desempenho utilizando 

sinais puros de EEG das regiões frontal, central, occipital, parietal e temporal. 
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Tabela 50 - Resultados do treinamento da base de dados Etiologia do Coma SEM exames 
pertencentes ao rotulo outros, usando Transformers com Sinal Puro, variando os 

hiperparâmetros do modelo MT para as regiões cerebrais: frontal, central, occipital, parietal e 
temporal, em negrito se destaca o melhor modelo 
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MT CEF 4 64 3 0.1 60 0.52±0.13 0.50±0.14 0.53±0.17 0.55±0.15 0.78±0.08 584 

MT CEC 3 64 3 0.1 60 0.36±0.14 0.23±0.10 0.24±0.15 0.31±0.12 0.66±0.07 516 

MT CEP 3 64 3 0.1 60 0.44±0.08 0.29±0.09 0.29±0.14 0.37±0.07 0.69±0.04 526 

MT CEO 3 64 3 0.1 60 0.36±0.10 0.21±0.09 0.17±0.10 0.30±0.09 0.65±0.05 451 

MT CET 4 64 3 0.1 60 0.58±0.08 0.47±0.07 0.50±0.08 0.53±0.04 0.79±0.03 596 

MCT CEF 3 128 3 0.2 60 0.56±0.17 0.53±0.15 0.57±0.17 0.55±0.16 0.79±0.09 1991 

MT CEF 4 128 3 0.2 60 0.58±0.10 0.57±0.10 0.61±0.12 0.61±0.11 0.80±0.05 474 

MT CEF 7 128 3 0.2 60 0.54±0.14 0.51±0.15 0.65±0.21 0.58±0.14 0.79±0.07 510 

MCT CEC 3 128 3 0.2 60 0.64±0.16 0.60±0.16 0.67±0.20 0.63±0.16 0.82±0.08 1961 

MT CEC 3 128 3 0.2 60 0.40±0.06 0.22±0.08 0.17±0.08 0.33±0.05 0.67±0.03 526 

MCT CEP 3 128 3 0.2 60 0.50±0.14 0.48±0.15 0.52±0.19 0.50±0.16 0.75±0.07 1936 

MT CEP 3 128 3 0.2 60 0.40±0.06 0.21±0.06 0.20±0.14 0.33±0.05 0.67±0.03 555 

MCT CEO 3 128 3 0.2 60 0.48±0.10 0.44±0.08 0.47±0.08 0.44±0.09 0.74±0.05 1932 

MT CEO 3 128 3 0.2 60 0.36±0.10 0.20±0.08 0.19±0.15 0.30±0.09 0.65±0.05 571 

MCT CET 3 128 3 0.2 60 0.48±0.13 0.43±0.12 0.45±0.14 0.44±0.13 0.74±0.07 1946 

MT CET 4 128 3 0.2 60 0.48±0.08 0.42±0.07 0.43±0.09 0.48±0.04 0.74±0.03 568 

A análise dos dados da Tabela 50 revela uma variação significativa no 

desempenho dos modelos Transformer (MT) e híbridos (MCT) aplicados às diferentes 

regiões cerebrais. O modelo MCT CEC (N_H = 3, INT_D = 128, N_L = 3, DOUT =

0.2, EPC = 60) obteve o melhor desempenho, com acurácia de 0,64 e especificidade 

de 0,82, indicando melhor capacidade discriminativa nessa região. Modelos aplicados 

a região frontal (CEF) também mostraram desempenho relativamente elevado, com 

acurácia entre 52% e 58%, especialmente quando a dimensão intermediária foi 

aumentada para 128.  
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APÊNDICE O - Resultados do Treinamento Gosto Musical 

Os resultados apresentados a seguir referem-se ao treinamento dos modelos 

de inteligência artificial voltados para a classificação do gosto musical.  

Para o estudo do gosto musical, o procedimento adotado foi análogo ao 

utilizado para o prognóstico clínico e a etiologia do coma, empregando as mesmas 

arquiteturas. Conforme detalhado na Tabela 51, os modelos, fundamentados nas 

arquiteturas descritas no item 5.2 Arquiteturas, foram treinados utilizando sinais 

puros de EEG, complementados por características clínicas dos voluntários e 

estatísticas descritivas.  

Tabela 51 - Resultados do treinamento da base de dados Estimulação musical (Favorita e 
Desgostada) para o sinal puro, com características do paciente e estatísticas, em negrito se 

destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MMLP All 0.53±0.09 0.52±0.09 0.53±0.07 0.67±0.14 0.53±0.09 223 

MCL All 0.43±0.08 0.35±0.07 0.24±0.20 0.23±0.22 0.43±0.08 1413 

MMLP CP All 0.29±0.08 0.28±0.09 0.25±0.13 0.23±0.12 0.29±0.08 143 

MCL CP All 0.35±0.06 0.35±0.06 0.34±0.06 0.33±0.09 0.35±0.06 1565 

MMLP CE All 0.48±0.07 0.46±0.06 0.50±0.12 0.30±0.07 0.48±0.07 136 

MCL CE All 0.41±0.09 0.38±0.07 0.40±0.15 0.23±0.06 0.41±0.09 1589 

MMLP CPE All 0.30±0.03 0.30±0.03 0.28±0.03 0.27±0.06 0.30±0.03 149 

MCL CPE All 0.36±0.06 0.35±0.06 0.34±0.07 0.32±0.12 0.36±0.05 1550 

Os resultados da Tabela 51 mostram que o modelo MMLP ALL obteve o 

melhor desempenho, com F1 score (macro) de 0,52 e especificidade de 53%, 

indicando maior capacidade de identificar padrões neurais sem características 

adicionais, esse modelo também se destacou pelo elevado valor de recall (0,67), 

indicando uma maior sensibilidade na identificação correta das classes. Em 

comparação, os modelos baseados em MCL apresentaram desempenho inferior, com 

acurácia variando entre 35% e 43%, sugerindo menor capacidade discriminativa, 

especialmente quando utilizados em conjunto com atributos específicos (como CP ou 

CE). O tempo computacional foi significativamente menor para modelos MMLP (média 

de 163 segundos) em comparação com MCL (média de 1530 segundos), sugerindo 

maior eficiência do MMLP na classificação. 
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O treinamento subsequente foi realizado utilizando atributos extraídos do sinal 

eletroencefalográfico (EEG) por meio do software de processamento, especificamente 

a PCP, FM e Coerência, que caracterizam diferentes aspectos do sinal no domínio da 

frequência, na qual a Tabela 52 apresenta os resultados obtidos com essa 

configuração. 

Tabela 52 - Resultados do treinamento da base de dados Estimulação musical (Favorita e 
Desgostada) para o sinal puro, com os atributos PCP, FM e Coerência, em negrito se destaca o 

melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPCP All 0.32±0.04 0.31±0.04 0.33±0.04 0.37±0.09 0.32±0.04 1529 

MCL CPPCP All 0.24±0.08 0.23±0.08 0.25±0.06 0.27±0.10 0.24±0.08 1497 

MCL CFM All 0.43±0.11 0.43±0.11 0.44±0.10 0.43±0.12 0.43±0.11 1540 

MCL CPFM All 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 0.30±0.06 1772 

MCL CC All 0.41±0.09 0.39±0.10 0.39±0.10 0.41±0.09 0.41±0.09 1754 

MCL CPC All 0.38±0.11 0.37±0.11 0.37±0.11 0.38±0.11 0.38±0.11 1834 

Avaliando a Tabela 52 percebe-se que o modelo MCL CFM All obteve o 

melhor desempenho, com F1 score (macro) e especificidade de 43%, evidenciando a 

relevância da frequência mediana para identificar padrões neurais associados a 

preferências musicais. Enquanto MCL CPPCP All obteve o menor desempenho 

(acurácia de 0,24). 

Em seguida, realizou-se o treinamento dos modelos utilizando sinais de EEG 

provenientes das regiões cerebrais frontal, central, occipital, parietal e temporal, 

conforme detalhado na Tabela 53. Essa abordagem buscou avaliar o impacto da 

análise regionalizada do sinal EEG na classificação de respostas emocionais a 

estímulos musicais (favorita vs. desgostada). 

Tabela 53 - Resultados do treinamento da base de dados Estimulação musical (Favorita e 
Desgostada) com características do voluntario e as regiões cerebrais: frontal, central, 

occipital, parietal e temporal, em negrito se destaca o melhor modelo 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPEF All 0.37±0.02 0.35±0.03 0.31±0.08 0.28±0.16 0.37±0.02 1478 

MCL CPEC All 0.44±0.03 0.44±0.04 0.44±0.04 0.42±0.08 0.44±0.03 1484 

MCL CPEO All 0.26±0.03 0.25±0.04 0.24±0.06 0.23±0.08 0.26±0.03 1676 

MCL CPEP All 0.30±0.05 0.29±0.05 0.30±0.06 0.32±0.11 0.30±0.05 1919 

MCL CPET All 0.43±0.04 0.42±0.05 0.41±0.08 0.35±0.13 0.43±0.04 1920 



235 

 

Os resultados apresentados na Tabela 53 indicam que o modelo MCL CPEC 

All obteve o melhor desempenho, com F1 score (macro) e especificidade de 44%, o 

que evidencia a importância da região central na identificação de padrões neurais 

associados às preferências musicais. O modelo baseado nos eletrodos da região 

temporal (CPET) apresentou resultados próximos, demonstrando também relevância 

dessa área para a tarefa. Em contrapartida, o modelo que utilizou sinais da região 

occipital (CPEO) obteve o menor desempenho, sugerindo menor contribuição dessa 

região para a discriminação das respostas neurais a estímulos musicais. 
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APÊNDICE P - Resultados do Treinamento Gosto Musical segregando a 

base de dados 

Nesta etapa, foi realizado o treinamento dos modelos com a base de dados 

segregada de diferentes formas, com o objetivo de investigar o impacto da divisão dos 

exames de música gostada e desgostada na performance da classificação. Foram 

conduzidas quatro segregações:  

• First Half: utilizando metade dos exames de música favorita e a outra 

metade de música desgostada de pacientes distintos; 

• Other Half: utilizando o conjunto complementar não selecionado em First 

Half; 

• Same Half: empregando apenas metade da base de dados, no qual, os 

mesmos exames de música favorita e desgostada foram utilizados; 

• All Group: agrupando exames de música favorita e desgostada do mesmo 

paciente no mesmo conjunto de treino ou validação. 

Essa abordagem foi motivada pela observação do APÊNDICE O - 

Resultados do Treinamento Gosto Musical de que a classificação binária entre 

gostada e desgostada apresentou desempenho inferior à estratégia mais simples, que 

consiste na escolha constante de um único resultado, sugerindo limitações na 

generalização dos modelos. Os resultados detalhados desses experimentos estão 

apresentados na Tabela 54, Tabela 55 e Tabela 56. 

Tabela 54 - Resultados do treinamento segregando a base de dados Estimulação musical 
(Favorita e Desgostada) para o sinal puro, com características do paciente e estatísticas, em 

negrito se destaca o melhor modelo com All Group 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MMLP All 
Group 

0.63±0.07 0.62±0.08 0.62±0.08 0.65±0.14 0.63±0.08 232 

MMLP Same 
Half 

0.67±0.15 0.66±0.15 0.68±0.18 0.63±0.19 0.67±0.15 120 

MMLP Other 
Half 

0.77±0.11 0.76±0.11 0.82±0.17 0.73±0.20 0.77±0.11 111 

MMLP First Half 0.84±0.11 0.84±0.11 0.83±0.13 0.85±0.15 0.84±0.11 117 

MCL All Group 0.58±0.09 0.49±0.14 0.58±0.35 0.52±0.38 0.58±0.09 1829 

MCL Same Half 0.47±0.04 0.37±0.04 0.23±0.20 0.10±0.08 0.47±0.04 697 
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Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL Other Half 0.55±0.04 0.43±0.08 0.60±0.49 0.10±0.08 0.55±0.04 882 

MCL First Half 0.58±0.15 0.49±0.21 0.37±0.33 0.53±0.44 0.60±0.13 845 

MCL CP All 
Group 

0.47±0.03 0.45±0.04 0.47±0.03 0.55±0.15 0.47±0.03 1745 

MCL CP Same 
Half 

0.22±0.16 0.19±0.15 0.14±0.20 0.20±0.32 0.22±0.16 959 

MCL CP Other 
Half 

0.72±0.09 0.71±0.08 0.75±0.14 0.70±0.19 0.72±0.09 0 

MCL CP First 
Half 

0.86±0.16 0.86±0.16 0.84±0.18 0.89±0.16 0.86±0.16 719 

MCL CE All 
Group 

0.58±0.05 0.54±0.07 0.65±0.11 0.35±0.19 0.58±0.05 1723 

MCL CE Same 
Half 

0.42±0.11 0.41±0.11 0.41±0.12 0.43±0.17 0.42±0.11 985 

MCL CE Other 
Half 

0.73±0.19 0.73±0.20 0.74±0.17 0.73±0.25 0.73±0.19 984 

MCL CE First 
Half 

0.73±0.20 0.73±0.21 0.72±0.26 0.70±0.27 0.73±0.20 745 

MCL CPE All 
Group 

0.52±0.06 0.49±0.05 0.60±0.20 0.53±0.22 0.52±0.06 1746 

MCL CPE Same 
Half 

0.30±0.09 0.28±0.07 0.22±0.13 0.20±0.13 0.30±0.09 978 

MCL CPE Other 
Half 

0.87±0.09 0.86±0.09 0.94±0.08 0.80±0.19 0.87±0.09 985 

MCL CPE First 
Half 

0.84±0.17 0.84±0.17 0.84±0.17 0.85±0.15 0.84±0.17 757 

Observando os resultados da Tabela 54 percebe-se variações significativas 

no desempenho dos modelos em função da estratégia de segregação da base de 

dados. Fica evidente uma discrepância marcante entre os grupos Same Half e All 

Group, em comparação com as versões Other Half e First Half. Por exemplo, enquanto 

o modelo MCL CPE Same Half apresentou precisão de apenas 22%, a versão Other 

Half alcançou uma precisão de 94%. Esse contraste sugere que a distribuição 

assimétrica dos dados entre as partições pode introduzir viés de seleção, impactando 

diretamente a capacidade de generalização dos modelos. 

Os resultados apresentados na Tabela 55 evidenciam, mais uma vez, uma 

divergência significativa entre as estratégias de segregação: as configurações Same 

Half e All Group apresentaram métricas inferiores em comparação com First Half e 
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Other Half. Isso sugere que a inclusão de estímulos musicais provenientes do mesmo 

voluntário no mesmo conjunto de dados compromete a capacidade de generalização 

do modelo, possivelmente devido a vieses intraindividuais presentes nos padrões 

neurais. Vale destacar que, ao utilizar características de Coerência, o modelo 

apresentou um desempenho superior. 

Tabela 55 - Resultados do treinamento segregando a base de dados Estimulação musical 
(Favorita e Desgostada) para o sinal puro, com os atributos PCP, FM e Coerência, em negrito 

se destaca o melhor modelo All Group 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPCP All 
Group 

0.52±0.03 0.51±0.03 0.52±0.03 0.53±0.11 0.52±0.03 1699 

MCL CPCP Same 
Half 

0.48±0.08 0.47±0.07 0.48±0.08 0.53±0.19 0.48±0.08 976 

MCL CPCP Other 
Half 

0.67±0.20 0.66±0.21 0.71±0.25 0.60±0.27 0.67±0.20 965 

MCL CPCP First 
Half 

0.84±0.14 0.84±0.14 0.84±0.16 0.85±0.15 0.84±0.13 708 

MCL CPPCP All 
Group 

0.59±0.05 0.59±0.05 0.60±0.06 0.57±0.14 0.59±0.05 1725 

MCL CPPCP 
Same Half 

0.37±0.13 0.34±0.12 0.29±0.19 0.33±0.30 0.37±0.13 971 

MCL CPPCP 
Other Half 

0.70±0.07 0.70±0.07 0.69±0.07 0.73±0.08 0.70±0.07 963 

MCL CPPCP First 
Half 

0.89±0.18 0.89±0.18 0.87±0.19 0.88±0.24 0.89±0.18 728 

MCL CFM All 
Group 

0.56±0.09 0.56±0.09 0.56±0.10 0.52±0.10 0.56±0.09 1717 

MCL CFM Same 
Half 

0.43±0.08 0.42±0.08 0.43±0.09 0.43±0.08 0.43±0.08 905 

MCL CFM Other 
Half 

0.72±0.17 0.70±0.18 0.74±0.17 0.72±0.17 0.72±0.17 911 

MCL CFM First 
Half 

0.82±0.13 0.82±0.13 0.84±0.12 0.82±0.12 0.82±0.12 871 

MCL CPFM All 
Group 

0.56±0.09 0.56±0.09 0.56±0.09 0.56±0.09 0.56±0.09 1660 

MCL CPFM 
Same Half 

0.23±0.12 0.23±0.12 0.23±0.13 0.23±0.12 0.23±0.12 896 

MCL CPFM 
Other Half 

0.62±0.13 0.61±0.13 0.62±0.13 0.62±0.13 0.62±0.13 901 
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Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPFM First 
Half 

0.84±0.16 0.84±0.16 0.86±0.16 0.84±0.16 0.84±0.16 838 

MCL CC All 
Group 

0.60±0.08 0.60±0.08 0.60±0.08 0.60±0.08 0.60±0.08 1760 

MCL CC Same 
Half 

0.42±0.11 0.41±0.11 0.42±0.11 0.42±0.11 0.42±0.11 887 

MCL CC Other 
Half 

0.87±0.11 0.86±0.13 0.91±0.07 0.87±0.11 0.87±0.11 908 

MCL CC First 
Half 

0.84±0.13 0.84±0.13 0.87±0.11 0.85±0.12 0.85±0.12 887 

MCL CPC All 
Group 

0.65±0.11 0.64±0.11 0.66±0.10 0.62±0.19 0.65±0.11 1616 

MCL CPC Same 
Half 

0.35±0.11 0.35±0.11 0.35±0.11 0.35±0.11 0.35±0.11 910 

MCL CPC Other 
Half 

0.87±0.11 0.86±0.13 0.91±0.07 0.87±0.11 0.87±0.11 906 

MCL CPC First 
Half 

0.82±0.19 0.82±0.19 0.84±0.17 0.83±0.18 0.83±0.18 845 

A partir dos resultados da Tabela 56, fica ainda mais evidente que as 

estratégias de segregação Same Half e All Group apresentam desempenho inferior 

em comparação com as segregações First Half e Other Half. Contudo, vale ressaltar 

que as regiões centrais (CPEC) e temporais (CPET), na configuração All Group, se 

destacaram ao apresentar desempenho superior em relação às demais regiões 

analisadas. 

Tabela 56 - Resultados do treinamento segregando a base de dados Estimulação musical 
(Favorita e Desgostada) com características do voluntario e as regiões cerebrais: frontal, 

central, occipital, parietal e temporal, em negrito se destaca o melhor modelo para All Group 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPEF All 
Group 

0.50±0.00 0.49±0.01 0.50±0.00 0.43±0.14 0.50±0.00 1714 

MCL CPEF Same 
Half 

0.30±0.16 0.28±0.15 0.28±0.19 0.30±0.22 0.30±0.16 957 

MCL CPEF Other 
Half 

0.82±0.12 0.82±0.12 0.82±0.14 0.83±0.15 0.82±0.12 906 

MCL CPEF First 
Half 

0.89±0.13 0.89±0.14 0.86±0.16 0.96±0.08 0.89±0.13 693 

MCL CPEC All 
Group 

0.62±0.03 0.61±0.03 0.62±0.04 0.60±0.10 0.62±0.03 1560 
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Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCL CPEC Same 
Half 

0.40±0.06 0.38±0.05 0.39±0.08 0.33±0.15 0.40±0.06 954 

MCL CPEC Other 
Half 

0.75±0.09 0.74±0.10 0.75±0.06 0.73±0.23 0.75±0.09 907 

MCL CPEC First 
Half 

0.84±0.20 0.84±0.21 0.85±0.22 0.85±0.15 0.84±0.20 690 

MCL CPEO All 
Group 

0.53±0.11 0.52±0.12 0.57±0.11 0.52±0.11 0.53±0.11 1674 

MCL CPEO Same 
Half 

0.27±0.10 0.25±0.10 0.16±0.15 0.13±0.13 0.27±0.10 926 

MCL CPEO 
Other Half 

0.78±0.09 0.77±0.10 0.93±0.09 0.63±0.19 0.78±0.09 921 

MCL CPEO First 
Half 

0.79±0.17 0.79±0.17 0.77±0.20 0.81±0.24 0.79±0.17 885 

MCL CPET All 
Group 

0.62±0.06 0.60±0.06 0.68±0.09 0.48±0.13 0.62±0.06 1732 

MCL CPET Same 
Half 

0.45±0.13 0.44±0.13 0.45±0.17 0.40±0.13 0.45±0.13 933 

MCL CPET Other 
Half 

0.67±0.05 0.66±0.06 0.67±0.03 0.67±0.18 0.67±0.05 927 

MCL CPET First 
Half 

0.79±0.17 0.78±0.17 0.76±0.20 0.81±0.22 0.79±0.17 862 

MCL CPEP All 
Group 

0.57±0.06 0.56±0.05 0.58±0.08 0.58±0.12 0.57±0.06 1750 

MCL CPEP Same 
Half 

0.33±0.08 0.33±0.08 0.30±0.10 0.27±0.13 0.33±0.08 923 

MCL CPEP Other 
Half 

0.75±0.12 0.74±0.12 0.77±0.15 0.77±0.23 0.75±0.12 922 

MCL CPEP First 
Half 

0.82±0.11 0.82±0.12 0.83±0.11 0.78±0.23 0.82±0.12 858 

Buscando aprimorar os resultados da classificação de respostas emocionais 

a estímulos musicais (favorita vs. desgostada), realizou-se alterações nas arquiteturas 

de inteligência artificial, incluindo o uso de TransformerEncoder, Common Spatial 

Patterns (CSP) e a aplicação do Multi-Layer Perceptron (MLP) restrito a bandas de 

frequência específicas do sinal EEG. Essas modificações visam explorar diferentes 

aspectos do sinal de EEG para melhorar a capacidade discriminativa dos modelos na 

classificação das respostas a estímulos musicais. Os resultados obtidos com essas 

novas arquiteturas são apresentados na Tabela 57. 
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Tabela 57 - Resultados do treinamento segregando a base de dados Estimulação musical 
(Favorita e Desgostada) com outras arquiteturas, em negrito se destaca o melhor modelo para 

All Group 

Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCLT CE All Group 0.55±0.10 0.50±0.14 0.50±0.18 0.55±0.10 0.55±0.10 533 

MCL CCSP4 All Group 0.49±0.02 0.36±0.05 0.29±0.08 0.49±0.02 0.49±0.02 1465 

MCL CCSP4 Same Half 0.38±0.13 0.31±0.10 0.33±0.22 0.38±0.13 0.38±0.13 989 

MCL CCSP4 Other Half 0.85±0.11 0.84±0.13 0.89±0.07 0.85±0.11 0.85±0.11 891 

MCL CCSP4 First Half 0.81±0.20 0.81±0.20 0.82±0.20 0.81±0.20 0.81±0.20 849 

MCL CCSP10 All Group 0.52±0.07 0.47±0.10 0.46±0.13 0.52±0.07 0.52±0.07 1704 

MCL CCSP10 Same Half 0.43±0.23 0.37±0.23 0.35±0.26 0.43±0.23 0.43±0.23 809 

MCL CCSP10 Other Half 0.87±0.14 0.86±0.14 0.89±0.13 0.87±0.14 0.87±0.14 904 

MCL CCSP10 First Half 0.84±0.13 0.84±0.13 0.85±0.13 0.84±0.13 0.84±0.13 850 

MCL CCSP20 All Group 0.55±0.07 0.47±0.13 0.50±0.14 0.55±0.07 0.55±0.07 1851 

MCL CCSP20 Same Half 0.37±0.20 0.35±0.20 0.35±0.22 0.37±0.20 0.37±0.20 747 

MCL CCSP20 Other Half 0.85±0.10 0.85±0.10 0.86±0.10 0.85±0.10 0.85±0.10 896 

MCL CCSP20 First Half 0.88±0.14 0.87±0.14 0.89±0.13 0.88±0.13 0.88±0.13 861 

MMLP CPCP All Group 0.49±0.08 0.49±0.08 0.49±0.08 0.52±0.10 0.49±0.08 808 

MMLP CPCP Alfa All 
Group 

0.50±0.05 0.50±0.05 0.50±0.06 0.47±0.09 0.50±0.05 380 

MMLP CPCP Beta All 
Group 

0.50±0.10 0.48±0.09 0.47±0.10 0.53±0.30 0.50±0.10 148 

MMLP CPCP Gama All 
Group 

0.53±0.06 0.52±0.05 0.52±0.04 0.63±0.15 0.53±0.06 138 

MMLP CPCP Super 
Gama All Group 

0.55±0.07 0.54±0.07 0.54±0.05 0.67±0.14 0.55±0.07 148 

MMLP CPCP Teta All 
Group 

0.54±0.03 0.54±0.03 0.54±0.02 0.60±0.06 0.54±0.03 135 

MMLP CPCP Delta All 
Group 

0.52±0.08 0.52±0.08 0.51±0.07 0.55±0.11 0.52±0.08 134 

MMLP CPCP Delta Teta 
Super Gama All Group 

0.55±0.07 0.54±0.07 0.55±0.06 0.65±0.12 0.55±0.07 136 

MCL CPC All Group 
Aumento do Dropout 
para 0.5 nas camadas 

que usam 0.2 
(kernel_regularizer=reg

ularizers.l2(1e-4)) 

0.68±0.09 0.67±0.09 0.67±0.08 0.70±0.16 0.68±0.09 1577 

MCT CPC All Group 
usando 30 segmentos 

ao invés de 10 
0.60±0.03 0.59±0.04 0.61±0.03 0.60±0.03 0.60±0.03 4914 
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Modelo Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Tempo 
(seg.) 

MCT CPC All Group 
usando 30 segmentos 

ao invés de 10 
0.58±0.05 0.57±0.05 0.59±0.04 0.58±0.05 0.58±0.05 7348 

MCL CPC All Group 
usando 30 segmentos 

ao inves de 10 
0.63±0.04 0.63±0.04 0.64±0.04 0.63±0.04 0.63±0.04 6236 

MCL CE T3 T4 Pz O2 Oz 
All Group 

0.64±0.11 0.63±0.12 0.67±0.11 0.57±0.19 0.64±0.11 1663 

MCL CP T3 T4 Pz O2 Oz 
All Group 

0.60±0.07 0.60±0.07 0.60±0.09 0.62±0.13 0.60±0.07 1502 

MCL CPE T3 T4 Pz O2 
Oz All Group 

0.63±0.074 0.62±0.04 0.65±0.06 0.57±0.14 0.63±0.04 1632 

Os resultados apresentados na Tabela 57 evidenciam que as versões dos 

modelos com maior número de filtros CSP tendem a apresentar métricas superiores, 

refletindo uma melhor extração das características espaciais relevantes do sinal EEG. 

Embora os modelos baseados em MMLP tenham exibido desempenho mais modesto, 

eles mostraram resultados consistentes ao longo de diferentes bandas de frequência, 

com acurácias na faixa de 50% a 55%, sugerindo que a segmentação espectral 

oferece informações complementares, porém insuficientes quando utilizadas 

isoladamente para a tarefa.  

Além disso, observou-se que o ajuste de hiperparâmetros, como o aumento 

do dropout e alteração do kernel_regularizer no modelo MCL CPC All Group, 

promoveu uma melhora significativa no desempenho, alcançando acurácia de 68%, o 

que indica que estratégias de regularização são interessantes para evitar overfitting e 

aprimorar a capacidade de generalização dos modelos. Vale destacar ainda que a 

utilização exclusiva dos eletrodos com maior relevância para a distinção entre música 

favorita e desgostada, conforme identificado na seção 4.6.2.3 Análise detalhada 

quando diferentes estímulos musicais são comparados, resultou em uma melhora 

significativa na performance do modelo, reforçando a importância da seleção criteriosa 

dos eletrodos para otimizar a classificação. 
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APÊNDICE Q - Resultados do Treinamento Gosto Musical usando 

Tranformer 

Com o objetivo de aprimorar o desempenho dos modelos, foram realizados 

experimentos ajustando os hiperparâmetros das arquiteturas baseadas em 

transformers. Essa etapa buscou identificar configurações que potencializassem a 

capacidade de discriminação dos modelos na classificação das respostas neurais a 

estímulos musicais. Os resultados obtidos a partir dessas variações encontram-se 

detalhados na Tabela 58. Esta análise foi realizada apenas com a segregação Same 

Half, pois é a configuração com menor desempenho. 

Tabela 58 - Resultados do treinamento da base de dados Estimulação musical (Favorita e 
Desgostada) usando arquitetura com transformer, para o sinal puro, com características do 

paciente e estatísticas, em negrito se destaca o melhor modelo 

Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Temp

o 
(seg.) 

MCT 
CP 

Same 
Half 

4 256 1 0.1 30 0.38±0.15 0.35±0.14 0.38±0.15 0.40±0.29 0.38±0.15 730 

idem 4 128 1 0.1 30 0.30±0.14 0.29±0.13 0.30±0.12 0.27±0.08 0.30±0.14 727 

idem 4 64 1 0.1 30 0.32±0.13 0.27±0.10 0.22±0.13 0.20±0.13 0.32±0.13 735 

idem 4 32 1 0.1 30 0.40±0.16 0.37±0.16 0.34±0.25 0.30±0.19 0.40±0.16 707 

idem 4 32 1 0.2 30 0.35±0.13 0.32±0.13 0.25±0.22 0.13±0.13 0.35±0.13 682 

idem 4 32 1 0.3 30 0.32±0.10 0.29±0.09 0.23±0.13 0.17±0.11 0.32±0.10 718 

idem 6 256 1 0.1 30 0.33±0.11 0.30±0.09 0.25±0.17 0.17±0.11 0.33±0.11 807 

idem 6 128 1 0.1 30 0.33±0.05 0.31±0.07 0.26±0.14 0.23±0.17 0.33±0.05 798 

idem 6 128 1 0.2 30 0.27±0.12 0.24±0.11 0.16±0.15 0.13±0.13 0.27±0.12 762 

idem 6 128 1 0.3 30 0.37±0.10 0.34±0.11 0.29±0.18 0.23±0.17 0.37±0.10 777 

idem 6 64 1 0.1 30 0.27±0.11 0.24±0.11 0.15±0.15 0.13±0.13 0.27±0.11 791 

idem 6 32 1 0.1 30 0.32±0.14 0.29±0.13 0.27±0.17 0.17±0.11 0.32±0.14 792 

idem 8 256 1 0.1 30 0.33±0.14 0.31±0.15 0.28±0.19 0.27±0.17 0.33±0.14 879 

idem 8 128 1 0.1 30 0.28±0.04 0.27±0.05 0.26±0.13 0.30±0.16 0.28±0.04 868 

idem 8 64 1 0.1 30 0.32±0.10 0.27±0.09 0.14±0.18 0.13±0.19 0.32±0.10 843 

idem 8 64 1 0.2 30 0.35±0.19 0.33±0.20 0.26±0.24 0.27±0.31 0.35±0.19 860 

idem 8 64 1 0.3 30 0.42±0.14 0.41±0.14 0.43±0.16 0.37±0.07 0.42±0.14 846 

idem 8 32 1 0.1 30 0.35±0.11 0.33±0.12 0.30±0.17 0.33±0.21 0.35±0.11 847 

idem 4 256 1 0.1 30 0.38±0.15 0.35±0.14 0.38±0.15 0.40±0.29 0.38±0.15 730 

idem 4 128 1 0.1 30 0.30±0.14 0.29±0.13 0.30±0.12 0.27±0.08 0.30±0.14 727 

idem 4 64 1 0.1 30 0.32±0.13 0.27±0.10 0.22±0.13 0.20±0.13 0.32±0.13 735 

idem 4 32 1 0.1 30 0.40±0.16 0.37±0.16 0.34±0.25 0.30±0.19 0.40±0.16 707 
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Mod. N_H INT_D N_L DOUT EPC Acurácia 
F1 score 
(macro) 

Precisão Recall Espec. 
Temp

o 
(seg.) 

idem 4 32 1 0.2 30 0.35±0.13 0.32±0.13 0.25±0.22 0.13±0.13 0.35±0.13 682 

A análise dos resultados apresentados na Tabela 58 destaca um desempenho 

relativamente modesto dos modelos avaliados, com acurácia e F1 score (macro) 

variando na faixa de aproximadamente 24% a 42%, refletindo o desafio inerente da 

tarefa. Observa-se que o modelo com a melhor performance, identificado como MCT 

CP Same Half com 𝑁_𝐻 = 8, INT_D = 64, N_L = 1 e DOUT = 0.3 atingiu um F1 score 

de 41% e acurácia de 42%. Note-se que a variação nos hiperparâmetros, como o 

número de cabeças de atenção (N_H) e dimensão da camada intermediaria do 

TransformerEncoder (INT_D) e taxa de dropout (DOUT), apresenta impacto claro nos 

resultados, indicando a sensibilidade desse modelo a tais ajustes. Além disso, o tempo 

de treinamento, apesar de relativamente estável na faixa de 682 a 879 segundos, não 

parece correlacionar diretamente com a melhora do desempenho, sugerindo que 

otimizações no ajuste dos hiperparâmetros podem ser mais efetivas para ganhos 

preditivos do que o simples aumento do tempo computacional. Estes resultados 

apontam para a necessidade de abordagens mais robustas e potencialmente novas 

arquiteturas para melhorar a classificação nesta base de dados complexa. 
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ANEXO A - Parecer Comitê de Ética 369/11 base de dados 
pacientes em coma 
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ANEXO B - Parecer Comitê de Ética 2.570.022 base de dados 
pacientes em coma 

Abaixo é mostrado a primeira e a última página do parecer consubstanciado. 
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ANEXO C - Parecer Comitê de Ética 1.715.960 base de dados 
estimulação musical 

Abaixo é mostrado a primeira e a última página do parecer consubstanciado. 
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