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RESUMO

O eletroencefalograma (EEG) permite o registro ndo invasivo da dinamica elétrica
cerebral a partir do escalpo, sendo crucial para investigar processos cerebrais. No
entanto, a complexidade dos sinais e a necessidade de ampliar o acesso as analises
motivaram a migragcédo de um software de processamento originalmente desenvolvido

em uma plataforma computacional para Python, uma linguagem openSource.

Durante a transcrigdo foram incorporadas melhorias funcionais, incluindo rotinas
customizadas de pré-processamento, critérios para descarte de canais ruidosos,
selegao de quantificadores e parametros ajustaveis, além do desenvolvimento de uma
interface grafica que facilitou a adogdo e o treinamento de pesquisadores com

diferentes niveis de experiéncia.

Embora a versdo da plataforma computacional tenha apresentado desempenho
superior na etapa de pré e processamento, chegando a ser cerca de 60 vezes mais
rapida, e tenha gerado arquivos de dados processados cinco vezes menores, a versao
em Python garantiu equivaléncia funcional nos quantificadores calculados, com erro
relativo irrelevante (da ordem de 10712), exceto para o quantificador de coeréncia, que
possui um algoritmo ligeiramente distinto. Foram desenvolvidas rotinas estatisticas
para avaliar efeitos da estimulagao musical, nas quais o quantificador porcentagem
de contribuigao de poténcia (PCP), especialmente nas bandas delta e alfa, revelou-se

mais informativo que a frequéncia mediana (FM).

Ao aplicar técnicas de inteligéncia artificial para classificar sinais em tarefas clinicas e
musicais. Na base de dados do prognéstico do coma, obteve-se F1 Score (macro) de
90%; para a classificagao da etiologia do coma, 63% de acuracia, que aumentou para
70% ao remover exames da categoria “outros”; e na classificagdo de estimulos

musicais, com 67% de precisao.

Este trabalho contribui para a disseminagao de ferramentas abertas e reprodutiveis
em analise de sinais neurofisioldgicos e abre caminhos para futuras melhorias e

pesquisas na area.

Palavras-chave: EEG, Processamento, Estimulagdo Sonora, Reconhecimento de
Padrdes, Inteligéncia Artificial.



ABSTRACT

The electroencephalogram (EEG) allows the non-invasive recording of brain electrical
dynamics from the scalp, being crucial for investigating cerebral processes. However,
the complexity of the signals and the need to broaden access to analyses motivated
the migration of a processing software originally developed on a computational

platform to Python, an openSource programming language.

During the transcription, functional improvements were incorporated, including
customized preprocessing routines, criteria for discarding noisy channels, selection of
quantifiers, adjustable parameters, and the development of a graphical interface that

facilitated adoption and training for researchers with different levels of experience.

Although the computational platform version presented superior performance in the
preprocessing and processing stages, being about 60 times faster, and generated
processed data files five times smaller, the Python version guaranteed functional
equivalence in the calculated quantifiers, with negligible relative error (on the order of
10712), except for the coherence quantifier, which has a slightly different algorithm.
Statistical routines were developed to evaluate the effects of musical stimulation, in
which the percentage of power contribution (PCP) quantifier, especially in the delta

and alpha bands, proved to be more informative than the median frequency.

Artificial intelligence techniques were applied to classify signals in clinical and musical
tasks. In the coma prognosis database, a macro F1 Score of 90% was obtained; for
coma etiology classification, 63% accuracy was achieved, increasing to 70% after
removing exams in the "others" category; and in musical stimulus classification, 67%

accuracy was reached.

This work contributes to the dissemination of open and reproducible tools in
neurophysiological signal analysis and paves the way for future improvements and

research in the field.

Keywords: EEG, Processing, Sound Stimulation, Pattern Recognition, Artificial

Intelligence.
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CAPITULO 1 - INTRODUCAO

Este capitulo introdutério apresenta uma visdo dos conceitos e contextos
relacionados ao eletroencefalograma (EEG), um método essencial para o estudo da
atividade elétrica cerebral. Além disso, discute-se a interacdo entre EEG e
estimulagcao musical, ressaltando avangos recentes que associam padrdes neurais a
estimulos sonoros. Por fim, sdo abordadas as aplicagdes de técnicas de inteligéncia
artificial no processamento e analise dos sinais de EEG, destacando seu potencial
para a extragcdo de informacdes relevantes e para o desenvolvimento de novos

meétodos diagnosticos.

1.1 CONTEXTUALIZAGAO

A etimologia da palavra eletroencefalograma (EEG) deriva de trés termos de
origem grega: eletro (élektron), que significa eletricidade; encéfalo (egképhalos), que
se refere ao cérebro; grama (gramma), que significa registro ou escrita (ROSA,
LAUCSEN DA, 2009). Dessa forma, o EEG consiste no registro da atividade do
cérebro, originada pela soma dos potenciais das células nervosas (neurénios),

refletindo os processos funcionais cerebrais.

As bases da eletroencefalografia remontam aos experimentos pioneiros
realizados no final do século XIX, quando Richard Caton detectou sinais elétricos no
cérebro de animais (NIEDERMEYER; SILVA, 2004). Entre 1875 e 1877, utilizando um
galvanémetro, Caton posicionou sensores na substancia cinzenta do cérebro e cranio,
observando variagdes na tensio ao longo do tempo. Através de uma agulha acoplada
ao galvanémetro, que vibrava conforme essas variacdes, foi possivel registrar as
oscilacdes elétricas em uma folha de papel em movimento continuo, originando assim
o conceito do eletroencefalograma (EEG) (ROSA, LAUCSEN DA, 2009).

Em 6 de julho de 1924, o psiquiatra alemao Hans Berger realizou o primeiro
registro de eletroencefalograma (EEG) em um ser humano, um jovem de 17 anos
submetido a uma neurocirurgia realizada pelo neurocirurgio Nikolai (INCE; ADANIR;

SEVMEZ, 2021). Inicialmente, Berger explorava a base fisiolégica dos fenbmenos
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psiquicos, mas os resultados levaram-no a concentrar-se na atividade elétrica do
cérebro. Sua técnica evoluiu de registros invasivos, com eletrodos posicionados
diretamente no peridésteo apods aplicagdo de anestesia local, para a técnica nao
invasiva atual, com eletrodos acoplados ao couro cabeludo (INCE; ADANIR;
SEVMEZ, 2021). Este avango marcou o inicio de uma nova era na neurociéncia

clinica, possibilitando o estudo sistematico da atividade cerebral humana.

Com os avancgos tecnolégicos na aquisigao e interpretacao dos sinais de EEG,
sua aplicagéo expandiu-se significativamente para diversas areas do conhecimento.
Atualmente, o EEG desempenha um papel essencial na pratica clinica, sendo
amplamente empregado no diagndstico e progndstico de doengas neurologicas. Além
disso, tem se consolidado como uma ferramenta indispensavel em pesquisas
neurocientificas, permitindo uma compreensao mais aprofundada da dinamica
cerebral. No campo da tecnologia, o EEG impulsiona o desenvolvimento de interfaces
cérebro-maquina (BCI), viabilizando novas formas de interagdo entre humanos e
dispositivos eletronicos. Outro avango relevante é sua utilizagdo no monitoramento
continuo de pacientes internados em unidades de terapia intensiva (UTI),

possibilitando a avaliagdo em tempo real da funcao cerebral.

1.1.1 EEG e Estimulagdao musical

Os sinais de EEG e magnetoencefalografia (MEG) sdo frequentemente
definidos em faixas de frequéncia especificas, como ondas lentas (<0,2 Hz), delta (0,2
a 3,5 Hz), teta (4 a 7,5 Hz), alfa (8 a 13 Hz), beta (14 a 30 Hz), gama (30 a 90 Hz) e
oscilagbes de alta frequéncia (>90 Hz), embora esses limites tenham sido
estabelecidos de forma arbitraria e sem base direta em mecanismos neurofisiolégicos
conhecidos (LOPES DA SILVA, 2013).

Entretanto, a riqueza desses sinais eletrofisiolégicos tem permitido analisar
como estimulos externos complexos, como a musica, podem modular a atividade
cerebral. Pesquisas recentes indicam que diferentes caracteristicas musicais, como o
tempo e 0 modo, afetam as bandas de frequéncia do EEG, particularmente nas faixas
alfa, teta e beta, relacionadas a estados emocionais e atengéo. Por exemplo, (YANG
et al., 2025) observaram que tempos musicais lentos aumentam a poténcia das ondas

teta e alfa na regido frontal, promovendo relaxamento, enquanto tempos rapidos
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elevam a atividade beta e gama, associadas a estados de alerta e excitagdo. Esses
achados indicam o potencial da musica em regular a atividade cerebral e seus

possiveis usos terapéuticos.

Dessa forma, a musicoterapia tem se destacado como uma intervengao
promissora no cuidado de pacientes oncoldgicos, contribuindo significativamente para
a reducéo de sintomas como dor, ansiedade e estresse, além de promover o bem-
estar emocional e melhorar a qualidade de vida desses pacientes (BRADT et al.,
2016). Revisdes sistematicas recentes indicam que a terapia musical ativa areas
cerebrais envolvidas no processamento emocional e influencia positivamente a
percepcgao da dor, revelando-se uma ferramenta valiosa no tratamento integrado do
cancer. Embora sejam necessarios estudos adicionais para consolidar as evidéncias,
os resultados atuais apontam para melhorias significativas no enfrentamento dos
efeitos adversos do tratamento quimioterapico, abrindo caminho para perspectivas
terapéuticas mais eficazes (RODRIGUES et al., 2025).

1.1.2 EEG e Inteligéncia Artificial

A aplicagdo da inteligéncia artificial (IA) na andlise de sinais de
eletroencefalografia (EEG) tem representado um avanco significativo na neurociéncia
clinica. Modelos avancados de aprendizado profundo vém sendo aplicados para
interpretar padrdes complexos no EEG com alta precisao, permitindo diagndsticos
mais rapidos e acurados de disturbios neurolégicos como epilepsia (ALKHALDI et al.,
2024), deméncia (REZAEI et al., 2025) e disturbios do sono (TRANG et al., 2025).
Estudos indicam que algoritmos de |A superam métodos tradicionais na detecgéo
automatica de anomalias em EEG, ampliando o potencial diagnéstico em contextos

clinicos com menor necessidade de intervengdo humana.

Além disso, a integragao da IA aos sinais de EEG tem viabilizado aplicagdes
inovadoras em interfaces cérebro-computador (BCI), monitoramento em tempo real e
prognostico de doencgas neuroldgicas. Estudos recentes evidenciam que sistemas
baseados em IA podem analisar dados de EEG com alta precisdo para detectar
padrdes associados a condigdes neurolégicas e melhorar a interagdo entre o cérebro
e dispositivos externos, como demonstrado por avancos em BCIl que possibilitam
controle motor e comunicagao assistida (BARBERA et al., 2025; ZHANG et al., 2020).
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Esses progressos promovem uma abordagem personalizada e eficaz no cuidado em
saude, aprimorando a detecgdo, o monitoramento e a intervengao terapéutica em

tempo real.

1.2 JUSTIFICATIVA

O eletroencefalograma (EEG) capta a atividade elétrica do cérebro por meio
de sensores posicionados no couro cabeludo, produzindo sinais brutos que,
isoladamente, possuem pouca relevancia clinica. Contudo, a analise detalhada
desses dados, especialmente a identificacdo de oscilagdes em diferentes faixas de
frequéncia e sua localizagao em regides especificas do cérebro, transforma o EEG
em uma ferramenta essencial para investigagdes neuroldgicas. Quando associados a
informagdes bioldgicas e clinicas adicionais, esses dados potencializam a
compreensao dos processos cerebrais, aprimorando a precisdo no diagnostico e na

previsdo de condi¢gdes neurologicas.

Sua portabilidade e os custos acessiveis fazem do EEG uma ferramenta
amplamente utilizada em pesquisas multicéntricas e na formacao de bases de dados
(LEVIN et al., 2018). Essa técnica pode ser aplicada em grupos de individuos
saudaveis e clinicos de diferentes faixas etarias, com relativa facilidade na aquisicao
dos dados. No entanto, a analise desses sinais exige conhecimentos técnicos
especializados e ferramentas que facilitem o processamento e a identificacdo das

informagdes relevantes.

Muitos dos software utilizados para processar dados de EEG s&o pagos ou
estao disponiveis em plataformas comerciais, 0 que gera a demanda por alternativas
de cddigo aberto para essas tarefas. Além disso, o desenvolvimento de scripts e
pipelines’ analiticos para EEG é complexo e desafiador, devido a variaveis como o

formato dos arquivos de entrada, a taxa de amostragem, o posicionamento dos

" pipeline — consiste em um conjunto de passos para processar o EEG, onde se torna
necessario chamar varias rotinas de software, cada uma com sua fungao delimitada onde o resultado
de uma funcéo é entrada de outra fungéo até se cumprir o objetivo proposto. Exemplo de pipeline para
separar o EEG por bandas de frequéncia: inicialmente faz a leitura do arquivo de EEG, converte o
mesmo para matrizes, separa épocas/segmentos, converte no dominio da frequéncia, separa em
bandas de frequéncia.
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eletrodos, além da presenca de ruidos de linha e artefatos de movimento, fatores que

dificultam a padronizagao e a comparacgao dos resultados (LEVIN et al., 2018).

Durante a analise do EEG, muitos registros e coletas sao frequentemente
descartados devido a alta presenca de ruidos ou outros fatores que comprometem a
qualidade dos dados. Essa situagdo muitas vezes ocorre pela falta de especialistas
qualificados ou pela indisponibilidade de ferramentas de ciéncia de dados, que
geralmente possuem custos elevados. Entretanto, caso a validagao dos dados possa
ser automatizada por meio de plataformas acessiveis e de facil utilizagdo, o
treinamento de profissionais de saude e cientistas de dados podera ser otimizado,
minimizando a perda de informacgdes valiosas (RAMACHANDRAN et al., 2018).

A automacéo na analise dos dados de EEG nao apenas torna essa tecnologia
mais acessivel, como também amplia seu uso na exploragdo de fendmenos
neurocientificos complexos. Um campo de especial interesse € a investigagdo da
relacédo entre estimulos sonoros e emogdes, motivada pelo impacto significativo que
a musica e outros estimulos auditivos exercem sobre a atividade cerebral. Essa linha
de pesquisa tem despertado grande atengao por sua relevancia clinica e experimental,
possibilitando avangos importantes na compreensdo dos mecanismos neurais

subjacentes as respostas emocionais.

E amplamente reconhecido que os sons desempenham um papel
fundamental na regulagcao das emocgdes. Ao ouvir o rugido de um predador, como um
ledo ou uma onga, o corpo interpreta rapidamente 0 som como uma ameaca,
desencadeando uma resposta fisiolégica associada ao medo. Da mesma forma, a
exposi¢cao a uma musica apreciada pode ativar diversas emog¢des, como alegria,
felicidade e memoaria afetiva. Além disso, algumas abordagens terapéuticas sugerem
que a estimulacdo musical pode acelerar o processo de recuperagdo em
determinados tratamentos de saude. Nesse contexto, torna-se essencial investigar
como a musica influencia as emogdes e quais areas cerebrais sao ativadas,
considerando que um mesmo estimulo sonoro pode gerar respostas emocionais

distintas em cada individuo.

Para compreender essas relagdes com maior precisdo, € necessario um

aprofundamento na analise dos sinais cerebrais. No entanto, a identificacdo precisa
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dos padrdes cerebrais requer técnicas avancadas de analise, visto que os sinais de

EEG sao altamente dindmicos e complexos.

Nesse sentido, a aplicagao de inteligéncia artificial (IA) tem se mostrado uma
abordagem promissora para a classificacdo automatica dos exames, permitindo
detectar padrdes sutis nos sinais elétricos do cérebro e associa-los tanto a diferentes
estados emocionais quanto a possiveis condi¢cdes patoldgicas. Essa abordagem nao
apenas facilita a interpretagado dos dados, como também amplia as possibilidades de
diagnodstico precoce, monitoramento de disturbios neuroldgicos e personalizagao de
tratamentos, tornando a analise do EEG uma ferramenta ainda mais acessivel e

eficiente para diversas aplicagdes clinicas e terapéuticas.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Desenvolver uma plataforma computacional de cédigo aberto para o
processamento de sinais neurofisiolégicos e analise estatistica, possibilitando a
realizacdo de avaliagbes quantitativas automatizadas por meio de técnicas de

aprendizado de maquina.

Aplicar essa plataforma a bases de dados de estimulagbes cognitivas,
abrangendo tanto individuos saudaveis quanto pacientes com condi¢coes
neurolégicas, a fim de identificar padrbes caracteristicos de atividade cerebral,
investigar correlagdes entre estimulos e respostas neurais e contribuir para avangos

no diagndstico, monitoramento e progndstico de patologias.

1.3.2 Objetivos Especificos

Para alcangar o objetivo geral proposto, este trabalho visa atender aos

seguintes objetivos especificos:

¢ Desenvolver uma pipeline computacional em cédigo aberto capaz de realizar o
processamento de sinais neurofisioldgicos, integrando técnicas de filtragem,

segmentacgao e normalizagao para garantir a qualidade dos dados analisados.
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e Implementar algoritmos de aprendizado de maquina para a classificacéo
automatizada de padrdes neurais, explorando modelos supervisionados e nao
supervisionados para aprimorar a deteccdo de assinaturas eletrofisioldgicas
associadas a estimulos cognitivos.

e Criar um modulo de analise estatistica avangada para investigar relagdo entre
atividade cerebral e estimulos externos, possibilitando a extragdo de métricas
quantitativas que auxiliem na interpretacao dos resultados.

e Aplicar a plataforma a bases de dados de EEG, tanto de individuos saudaveis
quanto pacientes com condigdes neuroldgicas, avaliando a eficacia da ferramenta na
distingao de padrdes neurais especificos em diferentes cenarios clinicos.

e Otimizar a escalabilidade e acessibilidade da plataforma, garantindo que o
cédigo desenvolvido seja modular, de facil reprodugcdo e compativel com diferentes
conjuntos de dados e configuragdes experimentais.

e Validar a metodologia proposta por meio de experimentos comparativos,
analisando o desempenho da plataforma em relagdo a abordagens tradicionais e

verificando sua aplicabilidade em estudos neurocientificos e clinicos.

1.4 ORGANIZACAO DO DOCUMENTO

Esta tese esta organizada da seguinte forma:

e Capitulo 1 — Apresenta uma introducédo ao tema, destacando a relevancia do
EEG para a ciéncia e a sociedade, além da justificativa para a escolha do tema e da
definicdo dos objetivos;

e Capitulo 2 — Discute o estado da arte, abordando os principais software
utilizados no processamento de EEG, acompanhados de uma comparagao sucinta
dessas ferramentas sob a perspectiva de desenvolvimento e implementagao.
Também aborda o estudo da estimulacdo musical relacionada a neurociéncia e
apresenta a aplicagao da inteligéncia artificial na classificagdo dos sinais de EEG;

e Capitulo 3 — Descreve a transcricao do software de processamento de EEG
desenvolvido pelo grupo de pesquisa para a linguagem Python, incluindo as melhorias
implementadas em relagao a versao anterior e a criagado de uma interface grafica para

facilitar o uso da ferramenta;
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e Capitulo 4 — Propde um mecanismo para a extragao de atributos destinado a
analise de padrdes nos sinais de EEG sob estimulagdo musical;

e Capitulo 5 — Explora a aplicagdo de técnicas de inteligéncia artificial e
aprendizado de maquina na classificacdo das bases de dados, avaliando o
desempenho de diferentes abordagens computacionais;

e Capitulo 6 — Apresenta as conclusbes do estudo e sugere diregdes para
trabalhos futuros, discutindo as principais contribuicdes e possiveis desdobramentos

da pesquisa.
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CAPITULO 2 - ESTADO DA ARTE

O avango das tecnologias para o processamento de sinais de
eletroencefalografia (EEG) tem impulsionado significativamente a pesquisa e as
aplicagdes clinicas na neurociéncia. Diversos software, tanto de codigo aberto quanto
comerciais, oferecem ferramentas especializadas que permitem a analise detalhada
dos dados brutos, facilitando desde o pré-processamento até a extracdo de padrbes
complexos. Paralelamente, a exploragao dos efeitos da estimulagdo musical sobre a
atividade cerebral, capturada pelo EEG, tem revelado conexdes importantes entre
estimulos auditivos e respostas neurofisiologicas. Adicionalmente, a incorporagéao de
técnicas de inteligéncia artificial no processamento e analise de EEG tem ampliado a
capacidade de detectar e interpretar padrées neurais, promovendo melhorias nos
diagndsticos e no entendimento dos fendmenos cerebrais. Este capitulo revisa o

estado da arte nessas trés areas.

2.1 ELETROENCEFALOGRAMA (EEG)

O eletroencefalograma (EEG) € um método nao invasivo que registra a
atividade elétrica cerebral por meio de eletrodos posicionados no couro cabeludo,
captando os impulsos gerados pelos neurénios do coértex cerebral (SCHOMER,;
LOPES DA SILVA, 2017). Cada eletrodo corresponde a um canal, permitindo o

registro simultaneo dos sinais provenientes de diferentes regides do cérebro.

Para a coleta do EEG, a Sociedade Brasileira de Neurofisiologia Clinica
(SBNC) recomenda o uso do Sistema Internacional 10-20, que consiste em 21
eletrodos cuja colocagdo segue critérios bem definidos (MARINHO, 2017). O
posicionamento dos eletrodos € realizado com base em medidas especificas dos
pontos de referéncia do cranio, buscando adequagao ao tamanho e formato individual

de cada paciente.

A nomenclatura dos eletrodos reflete as areas cerebrais subjacentes,
facilitando a interpretagao por profissionais de diferentes areas e a padronizagéo entre
laboratérios. Cada eletrodo € identificado por uma letra, que indica a regidao cerebral

coberta (Fp: fronto-polar, F: frontal, C: central, P: parietal, T: temporal, O: occipital), e
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por um numero, que representa a lateralizacdo. Os numeros impares correspondem
ao hemisfério esquerdo e pares ao direito. Os eletrodos da linha média sao

identificados com a letra Z (Fz, Cz, Pz).

O posicionamento dos eletrodos no sistema 10-20 € baseado em medidas
proporcionais ao tamanho do cranio, utilizando pontos de referéncia como nasio, inion
e pontos pré-auriculares. As distancias entre os eletrodos sao definidas de modo que
o espagamento corresponde a 10% ou 20% das dimensdes totais do cranio, tanto na
diregao antero-posterior quanto na transversal. O primeiro eletrodo é colocado a 10%
da distancia total entre dois pontos de referéncia, e os demais sdo dispostos a
intervalos de 20%, garantindo cobertura adequada e padronizagao entre diferentes
individuos (RECOMMENDATIONS FOR THE PRACTICE OF CLINICAL
NEUROPHYSIOLOGY: GUIDELINES OF THE INTERNATIONAL FEDERATION OF
CLINICAL NEUROPHYSIOLOGY, 1999).

A Figura 1 ilustra a disposi¢cao dos eletrodos de acordo com o sistema 10-20,
evidenciando as posi¢oes das medidas de 10% e 20% ao longo do cranio, conforme
os pontos de referéncia utilizados. Essa representacao facilita a compreenséo da
distribuicao dos eletrodos e reforca a importancia do método para a padronizacao dos
registros de EEG.

Nasio

!
%!
N

3

Figura 1 - Sistema Internacional de montagem de eletrodos 10-20
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O tragado do EEG representa a variagao da atividade elétrica cerebral ao longo
do tempo, registrada simultaneamente em multiplos canais (eletrodos). Esse tragado
exibe oscilagdes de diferentes frequéncias e amplitudes, que refletem os padroes de
atividade neural em repouso ou durante tarefas especificas. A analise visual do
tracado permite identificar caracteristicas como ritmos dominantes, artefatos e
eventos transientes, sendo fundamental para a interpretagao clinica e pesquisa em
neurociéncia. Na Figura 2, é apresentado um exemplo de tragado de EEG, ilustrando

a disposigao dos sinais registrados pelos diferentes eletrodos ao longo do tempo.
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Figura 2 - Exemplo de tragado de EEG

Caracterizado por sua complexidade, o registro de EEG apresenta variacdes
dinamicas ao longo do tempo e entre diferentes regides cerebrais. Para facilitar a
analise, o sinal é frequentemente dividido em janelas temporais menores, conhecidas
como épocas, que permitem isolar segmentos de interesse relacionados a eventos
especificos ou estados cognitivos. A partir dessas épocas, sdo aplicadas diversas
técnicas de andlise de sinais, como transformadas de Fourier, wavelets e o calculo de
quantificadores espectrais, incluindo a Porcentagem de Contribuicdo de Poténcia
(PCP), Frequéncia Mediana (FM) e a Coeréncia, com o objetivo de extrair informacdes

relevantes e facilitar a interpretacdo dos dados obtidos.

2.1.1 Porcentagem de Contribuicao de Poténcia (PCP)

A Porcentagem de Contribuicdo de Poténcia (PCP) é um quantificador que

mensura, de maneira relativa, a poténcia presente em cada ritmo cerebral em relagao
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a poténcia total do espectro, informando a contribuicdo que cada ritmo tem perante a
época/segmento avaliada (RAMOS et al., 2018). Este parametro € particularmente util
na analise de sinais de EEG, pois permite avaliar como a energia do sinal esta

distribuida entre as diferentes bandas de frequéncia.

O calculo do PCP inicia-se com a determinagao da poténcia total do sinal na

época/segmento, sendo definido como a Equacgéao 1 abaixo:

P, = j | S.n(f)I2 df 1)

Onde:

P, - Poténcia total do sinal na época/segmento n

S _ Densidade espectral de poténcia do sinal EEG na
xm épocal/segmento n.

n - Epoca/segmento selecionada

Em seguida realiza-se o calculo do PCP (Equagao 2):

_ JIsan(P)I* df

PCP n_ritmo — P (2)
n

Onde:

Contribuicao de poténcia do ritmo especifico em relacéo a
poténcia total do sinal

Pn - Poténcia total do sinal na época/segmento n
Densidade espectral de poténcia do ritmo especifico na
1S,n(f)I? P P P

época/segmento n
n - Epocal/segmento selecionada

PCPn_Titma -

2.1.2 Frequéncia Mediana (FM)

A Frequéncia Mediana (FM) é um parametro fundamental na analise espectral
de sinais de EEG, representando o valor de frequéncia que divide o espectro de
poténcia em duas partes iguais. Conforme indicado na Equacao 3, a FM é definida
como o valor de frequéncia em que 50% da poténcia calculada esta concentrada nas

frequéncias mais baixas e 50% nas frequéncias mais altas (RAMOS et al., 2016).

_ Lk=olx(B)f (k)

Foedi =
meailana 1,:=0|x(k)|

3)
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Onde:

|x(k)| - Modulo obtido pela Transformada Discreta de Fourier
f(k) - Vetorde frequéncias

n - Numero de amostras do sinal |x(k)|

Em individuos acordados e neurologicamente normais, a FM geralmente esta
em torno de 12 Hz (TONNER; BEIN, 2006). No entanto, estudos piloto com voluntarios
saudaveis mostraram que, dependendo da regido cerebral analisada, a FM pode
variar entre 20 e 30 Hz, predominando o ritmo Beta da atividade cerebral (RAMOS et
al., 2016). A distribuicao da FM varia conforme os eletrodos das regides cerebrais,
com médias de 25 Hz (frontal), 24 Hz (central), 27 Hz (temporal), 23 Hz (parietal) e 22
Hz (occipital), conforme reportado por (RAMOS et al., 2016). Essa distribui¢do indica
que as regides anteriores apresentam frequéncias medianas mais elevadas, com
maior presenca de ritmos de alta frequéncia (Beta e Gama), enquanto as regioes

posteriores exibem predominancia de ritmos mais lentos (Delta, Teta e Alfa).

A FM também possui aplicagdes clinicas relevantes, como na monitorizagao
da profundidade anestésica. Durante a anestesia, a FM desloca-se para valores mais
baixos, atingindo cerca de 2 a 3 Hz em estados de anestesia profunda, sendo que

valores menores indicam maior profundidade anestésica (TONNER; BEIN, 2006).

2.1.3 Coeréncia

A coeréncia, conforme definida na Equacao 4, quantifica a consisténcia da
diferenca de fase entre dois sinais de EEG, refletindo o grau de sincronia entre eles
(RAMOS, 2017). Esse parametro € especialmente valioso para avaliar a simetria
funcional entre os hemisférios cerebrais direito e esquerdo, revelando relagcbes de

conectividade entre diferentes regides corticais.

1S4, (e7)|”

: . (4)
Sx(e]w) ) Sy(e]w)

|rxy(ejw)|f =
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Onde:
Sxy - Densidade espectral de poténcia cruzada
Sx - Densidade espectral do sinal X
Sy - Densidade espectral do sinal Y

Segmento considerado

A Equacdao 5 estabelece uma propriedade fundamental da coeréncia

delimitando seus valores entre 0 e 1.

0 < |y (@) <1 (5)

Valores proximos a zero indicam que os componentes de frequéncia dos
sinais sédo linearmente independentes, sugerindo baixa ou nenhuma sincronia entre
as regides cerebrais analisadas (WANG et al., 2015). Em contraste, valores proximos
a um revelam forte correlagdo linear, indicando alta sincronizagdo entre as areas

cerebrais correspondentes.

A coeréncia é baseada principalmente na consisténcia de fase entre os sinais,
nao necessariamente em suas amplitudes, o que significa que dois sinais podem ter
fases diferentes, mas apresentar alta coeréncia quando se a diferengca de fase
permanecer constante (SRINIVASAN et al.,, 2007). Esta caracteristica torna a

coeréncia uma métrica valiosa para avaliar o nivel de conectividade funcional cortical.

Na analise da simetria interhemisférica, sao utilizados 8 pares de eletrodos
simétricos (FP1-FP2, F7-F8, F3-F4, T3-T4, C3-C4, T5-T6, P3-P4, O1-02) para avaliar
a atividade elétrica cerebral entre os hemisférios direito e esquerdo. Essa abordagem
permite identificar assimetrias funcionais que podem estar associadas a condi¢des
neurolégicas especificas. Estudos anteriores demonstraram que diferentes pares de
eletrodos podem apresentar niveis variados de coeréncia, com eletrodos occipitais
frequentemente exibindo maior coeréncia em comparagao com pares temporais mais
amplamente separados (FRENCH, 1982).

A alta coeréncia entre regides homologas indica cooperagao neuronal
eficiente e maior transmissdo de informacdo entre as areas cerebrais

correspondentes. Por definicdo matematica, sinais idénticos apresentam coeréncia



39

igual a 1,0, enquanto a presenga de componentes de frequéncia n&o relacionados em

um dos sinais reduzira proporcionalmente o valor da coeréncia.

2.2 SOFTWARE DE PROCESSAMENTO DE EEG

Cada instante de medicao do sinal de EEG é registrado em um vetor X;, que
corresponde a uma amostra temporal distribuida ao longo de Y. canais,
representando as posigdes dos eletrodos no couro cabeludo. Essa configuragao
caracteriza uma amostragem discreta de um campo elétrico continuo, evidenciando a
natureza espaco-temporal do EEG (VON WEGNER; LAUFS, 2018). Cada elemento
da matriz que representa o sinal de EEG, de dimensao (X;, Y.), contém um valor
numérico em ponto flutuante correspondente ao potencial elétrico captado por cada
eletrodo, sendo esse valor altamente suscetivel a ruidos e interferéncias provenientes
de outros sinais. A complexidade inerente ao EEG torna a analise direta um desafio,
requerendo o uso de software especializados para o pré-processamento, a remogao

de ruidos e a interpretacao precisa dos dados.

Os sinais de EEG sao caracterizados por sua alta variabilidade e
suscetibilidade a ruidos, tornando essencial o uso de software especializados que
processam as X; amostras para extrair informagdes adicionais, reduzir a
complexidade dos sinais e mitigar a influéncia de artefatos. Esses software
desempenham um papel fundamental ao automatizar a aquisicdo, o pré-
processamento, a extragdo de caracteristicas e a visualizacdo dos sinais elétricos
cerebrais. Dependendo da situagdo, eles podem ser projetados para atender a
diferentes objetivos, como a remocgao de artefatos, a segmentacdo de dados ou a

analise de padrbes espaciais e temporais.

Dessa forma, existem diversas ferramentas desenvolvidas para o
processamento de EEG, cada uma com finalidades especificas. Algumas sao focadas
na analise clinica, auxiliando no diagndstico de disturbios neuroldgicos, enquanto
outras sao voltadas para pesquisa e desenvolvimento de aplicagdes em neurociéncia

e interfaces cérebro-computador, conforme descrito em (BARBOSA, 2019).
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A seguir, € apresentada a Tabela 1 que sintetiza as principais caracteristicas
dos software analisados por (BARBOSA, 2019), permitindo uma visdo comparativa de

suas especificidades. A Tabela 1 contém as seguintes colunas:
o Software — Nome da ferramenta analisada;

« Linguagem - A principal linguagem de programagao utilizada no

desenvolvimento do software;

« Interface Grafica — Indica se a ferramenta possui uma interface grafica (GUI)

ou se é baseada em scripts;

e Licengade Uso — Tipo de licenciamento, informando se o software é de cédigo

aberto, gratuito para pesquisa ou comercial;

o Caracteristicas — Principais funcionalidades e aplicagées, como suporte a
EEG e MEG, métodos de andlise, visualizagdo e integragdo com outras

ferramentas.

Essa comparagcdo possibilita uma visdo abrangente das diferentes
ferramentas disponiveis para processamento e andlise de dados EEG e MEG,
auxiliando na escolha do software mais adequado conforme as necessidades

especificas do usuario.

Tabela 1 Caracteristicas basicas dos software de processamento de EEG pesquisados
adaptado de (BARBOSA, 2019)

Software Lingua- Interface | Licenca de Uso Caracteristicas
gem Grafica
EEGLAB Matlab® Sim GNU General Public | Fungdes: 400
License Linhas de cédigo: 50000
Plataforma: Multi
ERPLAB Matlab® Sim Creative Commons | Numero de downloads do software:
Attribution License | 7000
(CC BY)
FIELDTRIP Matlab® Néo GNU General Public | Plataforma: Multi
License Funcdes alto nivel: 108
Fungdes baixo nivel: 858
Linhas de cédigo: 103227
MNE-Python | Python Nao BSD licenced Linhas de Cdodigo em Python: 44000
Linhas de comentério: 22000
Documentagéo: 35%
Esta entre os mais bem documentado
projetos Python
PyEEG Python Nao Open Source
Brain Vision | - Sim 100 euros por 2 | Recursos facilmente  expansiveis
Analyser meses de teste (MATLAB®) e compativeis com outros
software de analise (BESA)
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Software Lingua- Interface | Licenga de Uso Caracteristicas
gem Grafica

Brainstorm Matlab® Sim GNU General Public | Usuarios registrados: > 20000
License

EMEGS Matlab® Sim GNU General Public | Memodria RAM necessaria: > 2 GB
License Aceleradores graficos sdo bem-vindos

para montagem de visbes 3D.
BRAINVISA Python Sim Plataforma: Multi

Memoéria RAM: 2 Gb
Espacgo em disco: 1.5 Gb

ELAN C Sim Plataforma: Linux
Memoéria RAM necessaria: > 128 MB
Memoria RAM recomendada: 4 GB

BIOSIG Matlab®/C | Sim GNU General Public
License
ASA Sim Paga Plataforma: Windows
Processador (CPU): > 2.2 GHz
Memoria RAM: > 1024 MB
Internet Explorer: > 6.0.26
DirectX: >9.0 ¢
CARTOOL C++ Sim Gratuito para | Plataforma: Windows
pesquisas sem fins | Usuarios cadastrados: 650
lucrativos Meméria RAM recomendada: 8 GB
Tela de resolugdo recomendada:
1600x1200 pixels
BEAPP Matlab® Sim GNU General Public | Rastreia a saida e os parametros de
License cada etapa da anadlise, permitindo a
revisdo de etapas anteriores ou a
execugado novamente de uma parte da
analise com novos parametros quando
necessario.
Analise 50% 78% 71% Gratuito, Apenas 36% especifica 0s
Geral Matlab®, Sim, 15% Pago, requerimentos de sistema para
22% 22% N&o | 140, Nao | utilizag&o.
Python! especiﬁcado 21% Multiplataforma,
28% 15% Windows,
Outros 7% Linux,

57% Nao especificado

A analise dos software para processamento de EEG revela que metade deles
sao desenvolvidos em Matlab®, evidenciando a popularidade dessa plataforma entre
pesquisadores e desenvolvedores. Além disso, a grande maioria 78% dos software
oferece interfaces graficas que facilitam a interacdo do usuario, e alguns permitem
alternar entre uso via interface grafica e linha de comando, ampliando a flexibilidade
para diferentes perfis de usuario (BARBOSA, 2019).

Outro dado importante € que 71% dessas ferramentas sdo gratuitas e de
cédigo aberto, o que promove um ambiente colaborativo e acessivel para a

comunidade cientifica, beneficiando especialmente o0 meio académico
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(COMBRISSON et al., 2017). Contudo, muitos desses software, embora abertos,
dependem da plataforma proprietaria Matlab® para sua execugao. Além disso, apenas
uma parte menor, cerca de 36%, fornece informagdes detalhadas sobre os requisitos
computacionais necessarios para sua operagao, o que pode ser um obstaculo, visto
que o processamento de dados de EEG frequentemente demanda recursos
computacionais elevados, especialmente em estudos que envolvem grandes volumes

de dados.

Em relacdo a reprodutibilidade das analises, observa-se que ainda ha
limitagbes significativas devido a falta de padronizagdo na documentacédo e
compartilhamento dos codigos usados. Para mitigar isso, alguns software incluem
registros detalhados dos parametros e operagdes realizadas, promovendo maior
transparéncia e facilitando a replicagdo dos estudos (BARBOSA, 2019). Também é
perceptivel uma tendéncia crescente na utilizacdo de software e dispositivos portateis
para monitoramento em tempo real, sobretudo em contextos de neurofeedback e
interfaces cérebro-computador, favorecendo a usabilidade em ambientes extraclinicos

e aumentando a aplicabilidade pratica dessas tecnologias (BLUM et al., 2017).

Diante do exposto, esta tese propde a traducido do software de
processamento de EEG desenvolvido pelo grupo de pesquisa do Professor Doutor
Joao Batista Destro Filho, dedicado aos estudos de eletroencefalograma, para a
linguagem Python, uma linguagem de programacgao de cédigo aberto que permite uso
e distribuigdo livres, sem custos associados. Tal mudanca justifica-se pela substituigéo
da versao corrente em uma plataforma computacional que possui algumas despesas.
Além disso, baseado no levantamento dos software existentes, planeja-se a criagao
de uma interface grafica integrada, visando facilitar a utilizacdo da ferramenta por

novos pesquisadores do grupo e ampliar seu potencial de aplicagao.

2.3 ESTIMULACAO MUSICAL E NEUROCIENCIA

A musica esta presente no cotidiano e possui o poder de influenciar os
sentidos e os processos cognitivos. Grande parte desses estimulos sdo processados
pelo cortex auditivo, desencadeando atividades cerebrais que vao desde a ativacao
da memoaria até a modulagédo do estado emocional, podendo gerar sensagdes como
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alegria, amor, tristeza e angustia (MAGUIRE, 2012). Dessa forma, a musica pode ser
compreendida como uma combinagdo harmoniosa de sons, capaz de gerar

experiéncias sensoriais significativas para o ser humano.

Estudos como o de (MOORE, 2013) buscam compreender como a
estimulacdo musical influencia as estruturas neurais envolvidas na regulagdo
emocional, investigando suas possiveis implicagbes clinicas. Esses achados
permitem identificar caracteristicas musicais e experiéncias associadas a diferentes
padroes de ativacdo neural, dependendo do contexto musical. Ao ouvir musicas
preferidas ou familiares, cantar ou improvisar, observa-se um padrdo especifico de
ativacdo. Por outro lado, quando a musica introduz maior complexidade, dissonancia
ou eventos musicais inesperados, a ativagao neural pode seguir um padrao distinto,

refletindo diferentes mecanismos de regulacdo emocional.

O EEG possibilita a associagao entre o estado fisico e mental do paciente
durante o exame, com base na frequéncia das ondas cerebrais registradas pelos
eletrodos. Ondas de baixa frequéncia (Delta: 0,5 — 3,5 Hz; Teta: 3,5 — 7,5 Hz; Alfa:
7,5 — 12,5 Hz) estdo associadas ao sono profundo e ao estado de vigilia. Por outro
lado, ondas de maior frequéncia (Beta: 12,5 — 30 Hz; Gama: 30 — 80 Hz; Supergama:
80 — 120 Hz) estdo relacionadas a atividades cognitivas, como percepgéao, atengéo e
memoria (FREEMAN; QUIROGA, 2013).

Com base em dados de EEG, diversos estudos investigam a relagao entre a
estimulacao sonora e as faixas de frequéncia observadas nos exames de EEG. Por
exemplo, o estudo de (CHEN; YAO; JIANG, 2017) identificou que a faixa de 20 a 35
Hz (Beta e Gama) na regido do cortex frontal apresentou destaque durante a audigao
de musicas e a imaginagao musical. Essa mesma relagao foi evidenciada no estudo
de (WILL; BERG, 2007), que apontou que os efeitos de sincronizagao na faixa de 13
a 44 Hz (Beta e Gama) influenciam fungbes cognitivas como aprendizagem e

memoria.

O estudo de (MAITY et al., 2015) destacou a ativagao das faixas Alfa e Teta
na regiao frontal durante a estimulagdo musical com drones de tampura (instrumento

de corda indiano), em comparagdo ao mesmo paciente sem estimulo musical.

Da mesma forma, (TANDLE et al., 2016) enfatizou que a poténcia da faixa

Teta no hemisfério esquerdo apresenta um comportamento distinto do hemisfério
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direito durante a estimulagdo musical. Observou-se um aumento da atividade Teta em
voluntarios que apreciaram a musica, evocando emogoes positivas e/ou agradaveis,
enquanto aqueles que nao apreciaram a estimulagao apresentaram uma redugao
nessa atividade. Além disso, (TSENG et al., 2013) também identificou um destaque
na faixa Teta e apontou a assimetria na atividade Alfa ao longo da estimulagao

musical.

Conforme (FOLGIERI; BERGOMI; CASTELLANI, 2014), a relagao entre
estimulos musicais agradaveis e desagradaveis e a atividade neural em diferentes
regides frontais apresenta padrdes distintos. Os resultados indicaram que musicas
classificadas como agradaveis apresentam maior relevancia na regidao frontal
esquerda, com predominancia das faixas Teta e Gama em comparacgao as faixas Alfa
e Beta. Em contrapartida, estimulos sonoros considerados desagradaveis mostraram
maior ativacado na regido frontal direita, com destaque para as faixas Alfa e Beta,

quando comparadas a Teta e Gama.

Pesquisas como a de (KOELSCH, 2011) buscam identificar as areas cerebrais
envolvidas na percepgdo musical e na memdéria associada a musica. No entanto,
essas investigagdes enfrentam desafios significativos para obter dados conclusivos,
evidenciando que essa ainda é uma tematica em desenvolvimento, que demanda

estudos mais aprofundados e fundamentacéao adicional.

O que se evidencia em todos os estudos envolvendo musica e EEG é que a
atividade cerebral sofre alteragdes significativas durante a estimulagdo musical,
refletindo padrdes distintos no tragado do exame. Além disso, essas alteragcdes podem
se manifestar de maneira especifica em diferentes regides cerebrais, dependendo das

caracteristicas do estimulo aplicado.

Dessa forma, a literatura revisada demonstra que a relacdo entre musica e
atividade neural € um campo de estudo promissor, mas ainda em desenvolvimento.
Embora os avangos permitam identificar padrbes de ativagao cerebral associados a
estimulagdo musical, os desafios metodoldgicos e a variabilidade individual dos
participantes reforcam a necessidade de investigagdes mais aprofundadas e

metodologias mais padronizadas.

Esta tese investiga a analise dos sinais de EEG submetidos a estimulagéo
musical, com o objetivo de comparar diferentes tipos de estimulos e identificar padroes



45

distinguiveis em suas respostas cerebrais. A continuidade dessas pesquisas €
fundamental para aprofundar o entendimento dos efeitos da musica sobre a atividade
cerebral, contribuindo para avangos em areas como neurociéncia, reabilitacao e

promog¢ao do bem-estar.

2.4 INTELIGENCIA ARTIFICIAL E EEG

A inteligéncia artificial (IA) constitui um campo proeminente da ciéncia da
computacdo, voltado ao desenvolvimento de sistemas capazes de desempenhar
fungdes cognitivas complexas, abrangendo, entre outras, aprendizado, raciocinio,
percepgao, compreensao de linguagem natural e tomada de decis&o. Esse campo tem
encontrado ampla aplicacédo em diversas areas, como saude (BAJWA et al., 2021),
finangcas (RAMEZANI et al., 2023), transporte (WILBUR et al., 2023) e seguranga
(KOMMRUSCH, 2019), transformando a interagdo cotidiana com tecnologias
(MARTINS, 2023). No nucleo desses avancgos, destacam-se as redes neurais
profundas e os modelos de aprendizado de maquina, que possibilitam a construgao
de solucbes cada vez mais precisas e eficientes, capacitando sistemas a processar
grandes volumes de dados e extrair informagdes relevantes de maneira autbnoma
(ORACLE, [s.d.]).

No contexto da neurociéncia e da interagdo homem-maquina, a inteligéncia
artificial (IA) exerce um papel crucial, sobretudo em sistemas de interface cérebro-
computador (BCI). Essas tecnologias viabilizam a conexdo direta entre o cérebro
humano e dispositivos externos por meio de sinais, como o0s obtidos pelo
eletroencefalograma (EEG). Esse registro da atividade elétrica cerebral fornece uma
fonte rica de dados para a aplicagéo de algoritmos de aprendizado profundo e outras
abordagens de IA (GU et al., 2021).

Os sinais de EEG caracterizam-se por desafios notaveis, como a elevada
variabilidade interindividual, a susceptibilidade a ruidos e sua natureza nao
estacionaria (KAMRUD; BORGHETTI; SCHUBERT KABBAN, 2021). Para contornar
essas limitacbes, técnicas de inteligéncia artificial (IA), como redes neurais
convolucionais (CNNs) e redes neurais recorrentes (RNNs), tém sido amplamente
utilizadas (LAM; LUI, 2023). Esses métodos possibilitam a identificacdo de padroes



46

relevantes, aprimorando o desempenho em tarefas como a classificacdo de emocgoes,
a detecgao de imaginagao motora e a previsao de prognosticos clinicos (CARNEIRO
et al., 2023; LAM; LUI, 2023; QIAN et al., 2022; YAO et al., 2024).

Adicionalmente, algumas aplicagbes de IA tém integrado sinais de
eletroencefalograma (EEG) a outros dados fisioldgicos, como a resposta galvanica da
pele e os batimentos cardiacos, em abordagens multimodais. Essas integragdes
contribuem para o desenvolvimento de sistemas mais robustos, com aplicagdes em
saude, entretenimento e neurociéncia (FU et al., 2022). Por exemplo, no ambito da
avaliagdo emocional, estudos demonstraram que a combinag¢dao de EEG com sinais
periféricos permite identificar estados afetivos com maior precisdo, resultando em
classificacdes mais acuradas (BALDO JUNIOR, 2023; FU et al., 2022).

A inteligéncia artificial (IA) segue transformando o campo das BCI, expandindo
as possibilidades de interacdo entre humanos e maquinas. Desde o controle de
dispositivos por individuos com deficiéncias motoras até o diagndstico de condigbes
neuroldgicas, a IA oferece solugdes inovadoras que redefinem a integragao entre
tecnologia e saude (WILLETT et al., 2023; ZHANG et al., 2024).

Entre as inovagdes mais marcantes no campo da IA destaca-se o surgimento
dos modelos baseados em Transformers. Introduzidos por (VASWANI et al., 2017) no
artigo “Attention is All You Need’, publicado pela equipe do Google Research, os
Transformers revolucionaram o processamento de linguagem natural (NLP, na sigla
em inglés) ao propor um mecanismo de atengdo que captura eficientemente relagdes
de longo alcance em sequéncias de dados. Diferentemente das arquiteturas
tradicionais, como redes neurais recorrentes (RNNs) e convolucionais (CNNs), que
processam sequéncias de forma iterativa ou local, os Transformers utilizam
exclusivamente o mecanismo de atencao, possibilitando o processamento paralelo

dos dados e alcangando maior eficiéncia computacional (VASWANI et al., 2017).

A arquitetura dos Transformers constitui a base de modelos amplamente
reconhecidos, como o GPT (Generative Pre-trained Transformer) e o BERT
(Bidirectional Encoder Representations from Transformers), e tem sido aplicada em
areas além do processamento de linguagem natural (NLP), como viséo
computacional, biologia computacional e, mais recentemente, o desenvolvimento de

sistemas multimodais. Sua capacidade de processar grandes volumes de dados e de
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se adaptar a diferentes tipos de tarefas a posiciona como uma das tecnologias mais

promissoras no campo da IA (ISLAM et al., 2023).

A principal inovacdo dos Transformers reside em sua capacidade de
processar dados paralelamente, diferentemente do processamento sequencial
caracteristico das redes neurais recorrentes (RNNs) (VASWANI et al., 2017). Esse
avango proporciona ganhos expressivos em eficiéncia computacional, especialmente
em aplicagbes que demandam o manejo de grandes volumes de dados, como o
processamento de linguagem natural (NLP) e a andlise de sinais cerebrais. Na analise
de EEG, essa caracteristica permite que os Transformers integrem informacgdes
temporais e espaciais de forma eficiente, aprimorando a precisdo das classificagdes

em tarefas complexas (YAO et al., 2024).

Recentemente, os Transformers tém sido adaptados para tarefas especificas
na analise de EEG, como o reconhecimento de emocgdes e a classificacdo de
imaginacdo motora. Modelos como o EEGformer integram convolugdes
unidimensionais (1D-CNNs) para extrair caracteristicas locais com camadas de
Transformer que capturam dependéncias globais, alcangando resultados superiores

em comparagao com outras arquiteturas de aprendizado profundo (WAN et al., 2023).

Além disso, arquiteturas hibridas que integram Transformers a redes neurais
convolucionais (CNNs) tém se revelado promissoras. Estudos recentes, por exemplo,
empregaram Transformers para detectar padrdes complexos em sinais de EEG,
utilizando mecanismos de atengdo que destacam regides cerebrais relevantes
enquanto mantém as caracteristicas temporais do sinal (LIU et al., 2024; LU; MA; TAN,
2023). Essas abordagens tém sido aplicadas com éxito em areas como diagndstico

clinico, reconhecimento de emogdes e controle de dispositivos assistivos.

Em sintese, os Transformers revolucionaram o aprendizado profundo ao
estabelecer um novo paradigma para a analise de dados sequenciais e espaciais. Sua
flexibilidade e eficiéncia o consolida como uma ferramenta essencial em aplicacbes
que abrangem desde a neurociéncia até a inteligéncia artificial geral. Contudo, sua
utilizacdo na analise de EEG permanece pouco explorada, sobretudo em tarefas

voltadas a avaliacdo de pacientes em coma.

Nesta tese, explorou-se a aplicagdao de diversos modelos de inteligéncia
artificial (IA) ao treinamento de bases de dados de EEG, com o objetivo de aprimorar
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a analise e interpretacédo dos sinais cerebrais. Para tanto, empregou-se arquiteturas
de aprendizado profundo como redes neurais convolucionais (CNNs), redes de
memoria de longo curto prazo (LSTMs), perceptrons multicamadas (MLPs) e
Transformers, além de modelos hibridos. Essa sele¢ao diversificada visa avaliar
sistematicamente o desempenho em diferentes tarefas, que incluem o progndstico
clinico, a identificacdo da etiologia do coma e a anadlise da resposta a estimulagao

musical.
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CAPITULO 3 - PROCESSAMENTO DO EEG

O processamento do EEG € uma etapa fundamental para a extragcédo de
informacgdes relevantes a partir dos sinais cerebrais. Esse processo envolve
diversas técnicas, como filtragem, segmentacéo, extracido de caracteristicas e
analise estatistica, possibilitando a interpretacdo e a aplicacdo dos dados em

diferentes contextos cientificos e clinicos.

Neste capitulo, sera apresentado o funcionamento do software de
processamento de EEG, destacando sua implementacdo tanto na plataforma
computacional corrente, quanto em sua versdo transcrita para Python. A
transcricdo do codigo visa proporcionar maior acessibilidade e flexibilidade, uma
vez que o Python é uma linguagem de cddigo aberto amplamente utilizada na
comunidade cientifica. A seguir, serao descritos 0os principais aspectos do
processamento, comparando as abordagens adotadas em cada linguagem e suas

respectivas funcionalidades.

3.1 MATERIAIS E METODOS

Esta secdo apresenta e descreve as tecnologias e metodologias
empregadas no processamento do EEG, destacando os recursos utilizados para
a implementagao do software na plataforma computacional e em linguagem
Python. Serdo abordadas as ferramentas computacionais, bibliotecas e algoritmos
empregados, bem como os critérios adotados para a extragao, filtragem e analise

dos sinais cerebrais.

A seguir, sdo detalhados os materiais utilizados e os procedimentos
metodoldgicos aplicados no desenvolvimento deste estudo.

3.1.1 Tecnologias utilizadas

Para a implementacdo e processamento dos sinais de EEG, diversas
tecnologias foram empregadas ao longo do desenvolvimento deste estudo. Estas

ferramentas foram selecionadas com base em sua eficiéncia, compatibilidade e
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relevancia cientifica, permitindo um fluxo de trabalho organizado e reprodutivel. A
seguir, sdo apresentadas as principais tecnologias utilizadas, juntamente com suas

funcdes e aplicagdes dentro do projeto.

3.1.11GIT

O GIT €& um sistema de controle de versao distribuido que facilita o
gerenciamento de arquivos e o rastreamento de alteragbes, registrando cada
modificagdo realizada no projeto. Sua utilizagdo permite que multiplos
desenvolvedores trabalhem simultaneamente no mesmo conjunto de arquivos,
evitando o risco de sobrescrita de alteragdes e garantindo a integridade do cédigo
(SCHMITZ, 2015).

Uma das principais funcionalidades do GIT é a criagao de branches, que
consistem em coépias do projeto em um determinado estado. Essas ramificagbes
permitem o desenvolvimento de novas funcionalidades de forma paralela a evolugao
do projeto principal, sem interferir diretamente na versao estavel. Somente apds
serem testadas e validadas, as novas implementagdes sao integradas novamente ao
projeto principal, garantindo maior seguranga e organizagdo no desenvolvimento
(SCHMITZ, 2015).

O versionamento de arquivos GIT segue um conjunto abrangente de regras,
garantindo controle e organizagdo no desenvolvimento de projetos. Diversas
empresas adotam essas diretrizes e oferecem servigos baseados em GIT, como o
Bitbucket e o GitHub, que permitem o armazenamento, a colaboragcdo e o

gerenciamento remoto de repositérios de codigo.

Mantido pela Atlassian, o Bitbucket oferece suporte a um numero ilimitado de
repositorios privados, sendo gratuito para equipes pequenas de até cinco
desenvolvedores. Para equipes maiores ou em expansao, ha planos pagos, como o
Padréo (US$ 3 por usuario/més) e o Premium (US$ 6 por usuario/més) (BITBUCKET,
2021).

Adquirido pela Microsoft, o GitHub € uma das plataformas de controle de
versao mais populares, oferecendo suporte a repositérios publicos e privados. O
servigo é gratuito para usuarios individuais e pequenas equipes, permitindo a criagao

de repositorios privados sem custo. Para equipes maiores ou com demandas
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corporativas, o GitHub disponibiliza planos pagos, como o Team (US$ 4 por
usuario/més) e o Enterprise (US$ 21 por usudario/més), que oferecem recursos

adicionais de seguranga e gerenciamento (GITHUB, 2024).

Para garantir o versionamento e a rastreabilidade das diferentes versdes do
codigo-fonte, o GIT foi empregado ao longo do desenvolvimento deste projeto. A
ferramenta permitiu o controle eficiente das modificacbes, possibilitando a
organizacao das alteragbes, o acompanhamento da evolugcdao do software e a
colaboragédo entre diferentes versdes. Além disso, 0 uso de repositorios remotos,
como GitHub e Bitbucket, proporcionou maior seguranga no armazenamento do

cédigo e facilitou a recuperagao de versdes anteriores quando necessario.

3.1.1.2 Plataforma computacional

A plataforma computacional € um ambiente interativo de computacéo
cientifica, utilizado para calculo numérico, processamento de sinais e visualizagao de
dados. Sua popularidade deve-se, em grande parte, a sua capacidade otimizada para
manipulacdo de matrizes e vetores, facilitando a implementagcdo de algoritmos
complexos e a analise de dados em diversas areas, como engenharia, neurociéncia e
aprendizado de maquina. Além disso, a plataforma computacional oferece uma ampla
variedade de ferramentas e bibliotecas especializadas, que permitem a execucgao
eficiente de simulagdes, modelagem matematica e processamento avangado de

sinais.

3.1.1.3 Python

O Python é uma linguagem de programacéo de alto nivel, amplamente adotada para
anadlises e processamento de dados, estando em constante evolugédo e
aprimoramento. Atualmente, é considerada uma das principais ferramentas para
ciéncia de dados, aprendizado de maquina, computacao cientifica e desenvolvimento
de software (GRAMFORT et al., 2013). Sua versatilidade permite sua aplicagdo em
diversas areas, sendo utilizada em diferentes tipos de software, desde sistemas
embarcados até plataformas avancgadas de inteligéncia artificial.
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3.1.1.4 CSV

O CSV (Comma-Separated Values — Valores Separados por Virgula) € um
formato de arquivo amplamente utilizado para armazenar e organizar dados de forma
tabular. Esse tipo de arquivo pode ser criado ou editado em software como Microsoft
Excel ou em qualquer editor de texto, pois trata-se de um arquivo de texto simples,
onde os valores sao separados por virgulas (ou, em algumas configuragdes, por ponto
e virgula). Cada virgula representa uma separacao entre colunas, permitindo que os
dados sejam interpretados corretamente por diferentes programas e linguagens de
programacao (MICROSOFT, [s.d.]).

3.1.2 Metodologia

Dando continuidade ao projeto desenvolvido na dissertagdo de mestrado
(BARBOSA, 2019), iniciou-se um levantamento de linguagens de programagao que
atendessem a dois critérios essenciais: serem de cddigo aberto (open source) ou néo
exigirem o pagamento de licenga de uso. Além disso, a escolha da linguagem levou
em consideracao a familiaridade do grupo de pesquisa do Professor Doutor Jodo
Batista Destro Filho, dedicado aos estudos de eletroencefalograma, de modo a facilitar

a implementagdo e manutencéo do codigo.

Entre as linguagens analisadas, destacaram-se Python, Octave e Scilab. A
opgao pelo Python foi motivada por dois fatores principais: a expertise prévia do
coorientador da tese nessa linguagem e a adogao crescente do Python pelo grupo de

pesquisa, que ja vinha desenvolvendo outros projetos utilizando essa tecnologia.

Apods a definicdo da linguagem, foi realizado um estudo aprofundado sobre
suas melhores praticas e sintaxe, com base em documentagao oficial, materiais
didaticos, videos educacionais e cursos especializados na plataforma Alura
(plataforma de cursos online). Esse estudo teve como objetivo garantir uma
implementacgao estruturada, padronizada e alinhada com as diretrizes mais eficientes

para desenvolvimento em Python.

Concluida essa etapa, foi realizada a transcrigdo do software original,
previamente implementado na plataforma computacional, para Python. Essa

conversao mostrou-se necessaria devido as restricoes da plataforma computacional,
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que limitavam tanto o acesso quanto a reprodutibilidade do software original dentro do
grupo de pesquisa. A adogédo do Python, por ser uma linguagem de codigo aberto e
amplamente utilizada na comunidade cientifica, proporcionou maior acessibilidade,

flexibilidade e escalabilidade ao projeto.

Para assegurar a confiabilidade e robustez do codigo transcrito, foi
desenvolvida uma suite de testes unitarios, um processo essencial para a validagao
automatizada das funcionalidades implementadas. Os testes unitarios tém como
principal objetivo verificar individualmente cada moédulo ou fungdo do cadigo,
garantindo que operem corretamente de forma isolada antes de serem integrados ao

sistema completo.

A aplicagdo dessa metodologia foi fundamental para identificar rapidamente
eventuais falhas, assegurar a equivaléncia entre as versdes do software original e
Python, garantindo a reprodutibilidade dos resultados. Além disso, a implementagao
dos testes unitarios permitiu um desenvolvimento mais seguro e eficiente, reduzindo

a ocorréncia de erros sistémicos e facilitando manutengdes futuras no codigo.

A transcricdo preservou a légica e a funcionalidade do software original,
mantendo-se alinhada a proposta apresentada na dissertacdo de mestrado

(BARBOSA, 2019). O fluxo de processamento pode ser descrito da seguinte forma:

1. O software recebe um arquivo no formato .CSV, contendo os parametros de

entrada para o processamento de cada EEG.

2. Paracada linha do arquivo CSV (correspondente a um EEG), o sistema executa
as rotinas definidas e gera um arquivo de saida, contendo os quantificadores

extraidos e/ou calculados.

Essa abordagem visa garantir acessibilidade, flexibilidade e reprodutibilidade
na analise de EEG, ampliando a aplicabilidade do software para diferentes contextos

de pesquisa.

3.2 SOFTWARE NA PLATAFORMA COMPUTACIONAL

O software desenvolvido na plataforma computacional tem sua

implementagdo fundamentada no trabalho apresentado na dissertacdo de mestrado
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de (BARBOSA, 2019), na qual foi originalmente concebido. Nesse trabalho, o software
foi projetado para o processamento de sinais de EEG, permitindo a extragado e analise
de quantificadores especificos a partir dos dados registrados. Sua estrutura segue

uma organizagdo modular, garantindo maior reprodutibilidade e escalabilidade.

Nessa dissertagao, todo o codigo-fonte foi versionado e armazenado em um
repositorio privado no Bitbucket, acessivel exclusivamente pelos desenvolvedores do
grupo de pesquisa do Professor Doutor Jodo Batista Destro Filho. Esse controle de
versdo permite o rastreamento das alteragdes, assegurando a organizagao,

seguranca e integridade do desenvolvimento do software.

A documentacao detalhada das fungbes desenvolvidas no software pode ser
encontrada no APENDICE A, onde cada funcdo € descrita em termos de sua
finalidade, parametros de entrada e saida, além de seu papel no processamento dos
sinais de EEG. Complementarmente, no APENDICE B, esta o detalhamento completo
das variaveis geradas durante a execugao do software, incluindo suas definicbes e

formatos.

3.3 EVOLUCAO DO SOFTWARE NA PLATAFORMA COMPUTACIONAL

No inicio deste trabalho, foi solicitado pelos membros do grupo de pesquisa
do Professor Doutor Jodo Batista Destro Filho o aprimoramento do software de
processamento de sinais, com o objetivo de agregar novas funcionalidades e
simplificar o processamento dos EEGs pela equipe. As melhorias realizadas buscaram
atender as necessidades especificas do grupo, otimizando tanto a eficiéncia quanto a
usabilidade da ferramenta. A seguir, sdo detalhadas as principais modificacoes

implementadas.

3.3.1 Remocao de colunas do arquivo .CSV de entrada

Durante o processo de melhorias no software de processamento, uma das
alteracdes realizadas foi a remocgao de colunas especificas do arquivo de entrada no
formato .CSV. Essa modificagao visou simplificar a estrutura do arquivo e garantir que
os dados processados fossem estritamente os necessarios para as analises. As

colunas removidas, bem como suas respectivas descrigdes, estio listadas abaixo:
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e Coluna N (Qtd Ruidosos): Quantidade de canais ruidosos indicado
pelo médico;

e Coluna O a Q (Canal ruidoso X): Nome do canal ruidoso informado
pelo médico, podendo ser: FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ,
C4,T4,T5, P3, PZ, P4, T6, O1, OZ, O2;

e Coluna R (Normal/Coma): Se o valor "Normal" for encontrado nesta
coluna, o filtro passa baixa sera ajustado para 100 Hz; caso o valor seja
"COMA", o filtro sera ajustado para 30 Hz; e

e Coluna S (Filtro): Filtro passa baixa.

3.3.2 Adigao das seguintes colunas do arquivo .CSV de entrada

Como parte das melhorias implementadas no software, foram adicionadas
novas colunas ao arquivo .CSV de entrada, com o objetivo de expandir as
funcionalidades e permitir maior flexibilidade no processamento dos sinais EEG. A
descrigdo das colunas introduzidas, juntamente com suas respectivas fungdes, €

apresentada a seguir:

e ColunaB (Funcao Filtro): Define o nome da fungao responsavel pelo filtro
do sinal;

o Essa fungdo deve estar localizada no mesmo diretério que os
arquivos de script da plataforma computacional utilizados para processar
os PLGs. O nome do arquivo deve ser idéntico ao da fungao;

o A funcdo deve obrigatoriamente receber uma matriz de
dimensdes (X X Y) como entrada e retornar o sinal filtrado com dimensdes
(X1 X Y1).

e Coluna C (Limiar de erro): Indica o limiar de erro aceitavel para
determinar se um canal sera zerado. O valor padrao € 0.7;
o Utiliza-se o ponto, e ndo a virgula, para numeros decimais;
o Os valores representam:
= O representa 0%;
= 0.5 representa 50%; e
= 1 representa 100%.
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o) Um canal é considerado ruidoso se o valor maximo da poténcia
na faixa de ruido (58 a 62 Hz) ultrapassar o Limiar de erro (errorThreshold)
em relagao a poténcia maxima da faixa do sinal.

Coluna P (Medico Canais Ruidosos): Lista os canais ruidosos
identificados pelo médico. Exames com mais de 3 canais ruidosos deverao
ser descartados;

o Os canais devem ser separados por virgula. Exemplo:
FP1,FP2,F7,F3,FZ,F4,F8,T3,C3,CZ,C4,T4,T5,P3,PZ,P4,76,01,0Z,02.
Coluna Q (Filtro Passa Baixa): Define a frequéncia maxima de
processamento do exame em Hertz;

o Valor padrao: 100 Hz para individuos saudaveis;

o Recomenda-se 35 Hz para exames realizados na Unidade de
Terapia Intensiva (UTI).

Coluna R (Quantificadores): Determina os quantificadores a serem
calculados ou processados (PCP, FM, COERENCIA, PSNG, PSNE, VPN,
TODOS);

o Os valores devem ser separados por virgula. Se a palavra
"TODOS" estiver presente, todos os quantificadores serdo processados
Coluna S (Parametros): Especifica os parédmetros para o calculo dos
quantificadores. Deve-se usar o formato nome do parédmetro seguido do
operador de igual e posteriormente o valor que se deseja que ele assuma,

como no exemplo:

o taumax=300;
¢ Valor padro: taumax = fix(1.67 * fa);
o Atengao: o software diferencia maiusculas e minusculas, sendo

essencial respeitar o padrao indicado.
Coluna T (Canais a Processar): Define os canais utilizados no calculo

dos quantificadores.

o) Devem ser separados por virgula. Exemplo:
FP1,F8,T3,C3,CZ,T4,T5,02,02;
o Caso nenhum canal seja informado, o sistema utilizara os

seguintes canais presentes: FP1,FP2,F7,F3,FZ,F4,F8,T3,C3,
CZ,C4,T4,1T5,P3,PZ,P4,7T6,01,0Z,02.
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3.3.3 Alteragao de ordem de coluna

Em continuidade as adaptacdes realizadas no software, foi necessaria a
reorganizagao da ordem de determinadas colunas no arquivo .CSV de entrada. Com
essas mudancas, a coluna 'Nome Saida' passou a ocupar a ultima posicao,
identificada como Coluna V, enquanto o campo 'Gerar Excel' foi reposicionado para a
penultima posi¢ao, agora definida como Coluna U. Essas alteragdes promovem uma

estruturagdo mais légica e funcional dos dados.

3.3.4 Customizacgao da coluna “QTD EPOCAS”

A coluna “QTD EPOCAS” foi customizada para permitir maior flexibilidade no
processamento dos sinais EEG. Quando esta coluna apresentar o conteudo
SEQUENCIAL = X, onde X € um numero inteiro, o software utilizara os dados
presentes no campo Ep1 para gerar X épocas. Neste contexto, uma época é definida
como um segmento continuo do sinal EEG, delimitado por um intervalo de tempo
especifico, geralmente utilizado para analise de eventos ou estimulos. Essas épocas
serdo criadas com base no tempo especificado no referido campo e terdo uma

duracao equivalente ao valor definido na coluna D.

3.3.5 Consideragoes

As alteragdes priorizaram a reorganizagao estrutural e a inser¢édo de novas
colunas no arquivo CSV de entrada. Embora essas mudangas tenham sido
significativas, as funcionalidades essenciais do software original foram preservadas,
enquanto as personalizagbes oriundas das novas colunas incrementaram sua

flexibilidade operacional e aplicabilidade clinica (ver APENDICE E).

Como produto complementar, desenvolveu-se um manual de operagao
detalhado para orientar usuarios no processamento de exames EEG com a evolugao
do software original. Para validacao, foi conduzido um teste de regressao rigoroso,
comparando 100 exames do grupo controle (individuos saudaveis) com 100 exames
de pacientes com condi¢gdées neuroldgicas, ambos analisados nas versdes original e
aprimorada do software. Os achados demonstraram consisténcia nos resultados

mesmo apos as modificagdes, confirmando a estabilidade do software.
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3.4 SOFTWARE EM PYTHON

O processamento de sinais EEG é uma area complexa na neurociéncia,
permitindo a analise detalhada da atividade cerebral. Com o objetivo de expandir a
acessibilidade e a flexibilidade dessas analises, o software original desenvolvido na
plataforma computacional foi traduzido para Python. Essa migragdo aproveita as
vantagens do Python, como sua ampla comunidade de desenvolvedores, bibliotecas
avangadas para processamento de dados (como NumPy e SciPy), e a capacidade de

integracdo com outras ferramentas cientificas.

A escolha do Python para essa tradugao foi motivada pela sua eficiéncia em
lidar com grandes conjuntos de dados, além de sua facilidade de uso e manutencéo.
Além disso, o Python permite uma maior interoperabilidade com outras linguagens e
plataformas, facilitando a colaboragao entre pesquisadores de diferentes areas. Neste
item, detalhamos o processo de desenvolvimento do software em Python, destacando
as principais caracteristicas, desafios enfrentados e solugdes implementadas durante

a traducéo.

3.4.1 Versionamento

Para garantir a consisténcia e a rastreabilidade das modificacbes realizadas
durante a tradugao do software original da plataforma computacional para Python, foi
adotado um esquema de versionamento compativel com o utilizado no projeto original.
Uma pasta intitulada "Python" foi criada dentro do projeto, contendo todos os cddigos
relacionados a transcrigao para Python. Este esquema permite que as atualizagdes e
melhorias sejam facilmente identificadas e gerenciadas, mantendo a integridade do

desenvolvimento do software.

3.4.2 Detalhes da Implementagao

A adogéao do paradigma de programagao orientada a objetos (POO) foi uma
decisado consciente do autor, motivada pela familiaridade e experiéncia prévia com
essa abordagem. A escolha do POO foi guiada pela necessidade de garantir
modularidade e extensibilidade no desenvolvimento do software em Python, aspectos

essenciais para um sistema que requer flexibilidade e manutencao continua.
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A decisédo de utilizar o POO foi justificada por varias razdes:

e Encapsulamento e Modularidade: O POO permite encapsular dados e
comportamentos relacionados em unidades logicas (classes), facilitando a
organizagdo do codigo e a manutengdo futura. Isso foi crucial para o
desenvolvimento de um sistema que lida com dados complexos de EEG, onde a
clareza e a estruturagao sao fundamentais;

o Extensibilidade: A capacidade de criar classes que podem ser faciimente
estendidas ou modificadas foi essencial para permitir a inclusdo de novas
funcionalidades sem comprometer a estabilidade do sistema existente. Isso foi
particularmente importante, pois o software precisava ser adaptavel a diferentes
tipos de analises e processamentos de sinais EEG;

¢ Reutilizagao de Codigo: O POO facilita a reutilizagado de cddigo, uma vez que as
classes podem ser compartilhadas entre diferentes partes do sistema ou até
mesmo em outros projetos. Essa caracteristica foi vital para otimizar o
desenvolvimento, reduzindo o tempo e o esfor¢o necessarios para implementar
funcionalidades semelhantes;

o Legibilidade e Manutengao: A estruturacdo do cdédigo em classes e objetos
melhora significativamente a legibilidade, tornando mais facil para outros
desenvolvedores entenderem e contribuirem para o projeto. Além disso, a
modularidade facilita a identificacdo e correcao de erros, reduzindo o tempo de

manutencao.

Foram desenvolvidas duas classes principais, EegRecord e Epoch, com
papéis complementares no processamento dos dados de EEG. Essas classes foram
projetadas para mapear os exames e gerenciar as épocas do sinal, aproveitando
plenamente os principios da Programacgédo Orientada a Objetos (POO), o que

assegura um sistema robusto, flexivel e escalavel.

e EegRecord: responsavel pelo mapeamento do exame de EEG. Seu
diagrama de classe é apresentado na Figura 3;

e Epoch: encarregada de gerenciar as épocas do exame de EEG, com seu
diagrama de classe ilustrado na Figura 4.
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EegRecord

default wvariables description
 name

_channel list

_fa

xn

_variables description
_created at

remaining channel list
_remaining xn

_epoch list

_freq max
frequence band list

_ init

validate record

amount channsls

2

T

=

total time

| repr

read file plg

translate channel name by prefix comparator
gort_channels by name list

split channel list

customize record

epoch separator_list

epoch separator

validate fregquence band list

update freguence band list and freq max according with fregMax and fa
get list index noise channel in epoch list
computeMeanZeroPowerS5ignal RXTXFrestXMEFxmFilteredindNormfindFreqg

Figura 3 - Diagrama de Classe EegRecord

Epoch

_start at

_wWindow length

_fa

| ®xn

| frequence band list
rx

£

XF

| XM

_XFF

_xm filrered

_xm filtered normalized

| band xm filtered normalized list

_ init
auto_correlation
dft matriz v3
signal filtering
separate bands

Figura 4 - Diagrama de Classe Epoch

Nota-se que essas duas classes refletem, em esséncia, as mesmas
funcionalidades presentes no software na plataforma computacional. Para validar sua
implementagao, foram desenvolvidas duas suites de testes correspondentes, uma

para cada classe:
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e EegRecordTest: suite de testes destinada a classe EegRecord, cujo
diagrama de classe é apresentado na Figura 5;
e EpochTest: suite de testes associada a classe Epoch, com seu diagrama

de classe ilustrado na Figura 6.

unittest

[

EegRecordTest

default_channel list

build reduced channel list

default =n

msg different expected

test_validate record success

test _validate record when length channelist different xn raise exception
test_validate record when length lines xn is different raise exception
test amount channels

test total time

test _read file plg success

test_translate_channel name by prefix comparator_success

test_sort_channels by name list success

test split channel list success

test customize record success

Ttest_epoch Separator_success

test _update frequence band list and freq max according with fregMax and fa when freq max greather than half fa
test_update freguence band list and freq max according with fregMax and fa when freqg max greather than 100

test update fregquence band list and freq max according with fregMax and fa when freq max greather than one frequence band
test validate freguence band list success

test_validate frequence band list raise exception

test_serializable

Figura 5 - Diagrama de Classe EegRecordTest

unittest
Y

EpochTest

msg different expected

defaul rx

defaul XM

test auto correlation sSuccess

test dft matriz v3 raise auto correlation not computed

test dft matriz v3 Success

test signal filtering raise dsp not computed

test signal filtering succcess

test separate bands raise xm filered normalized not computed

test separate bands succcess

T

Figura 6 - Diagrama de Classe EpochTest

Os testes foram desenvolvidos com dados significativamente menores do que
aqueles encontrados na pratica, uma escolha intencional devido a simplicidade
desejada para os testes unitarios. O uso de dados excessivamente volumosos tornaria
a comparacgao dos resultados demasiadamente extensa e complexa. Assim, foi criada

uma unidade de teste adicional, dedicada a comparagao entre os resultados gerados
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em Python e aqueles obtidos com o software original na plataforma computacional, os

quais serao detalhados na sequéncia.

3.4.3 Interface grafica

A criacdo de uma interface grafica visou facilitar o uso do software de
processamento de EEG, especialmente para usuarios que nao possuem
conhecimentos avangados em programacao. Para isso, foi utilizada a biblioteca
Tkinter, padrao do Python para desenvolvimento de interfaces graficas, compativel
com os principais sistemas operacionais, como Windows, Linux e MacOS. A interface
permite que o usuario execute funcionalidades complexas do software por meio de
uma plataforma visual intuitiva, eliminando a necessidade de lidar diretamente com o
prompt de comandos ou instalar manualmente as dependéncias, etapas que

costumam ser desafiadoras para iniciantes.

Dessa forma, a interface apresenta um ponto de entrada acessivel, onde
basta executar um arquivo para que a janela principal seja exibida, disponibilizando
menus e opgdes organizados para conduzir o usuario durante o processamento dos
dados. Essa abordagem n&o s6 torna o software mais amigavel para novos
pesquisadores do grupo, como também contribui para a padronizagéao e repetibilidade
das analises realizadas, potencializando a disseminacédo e o uso da ferramenta em

diferentes contextos.

Para facilitar a utilizacéo, a interface grafica foi projetada para ser executada
por meio de um arquivo executavel unico, que abre diretamente a janela principal do

software, conforme ilustrado na Figura 7. Essa janela dispde dos seguintes menus:

e Processar EEG (arquivo .CSV): permite ao usuario selecionar um arquivo
no formato .CSV, conforme especificado anteriormente, para o
processamento dos dados de EEG;

e Topografia: oferece a possibilidade de inserir um vetor contendo 20
numeros reais, que serdao utilizados para gerar mapas topograficos da
atividade cerebral,

e Change Theme!: possibilita ao usuario alterar o tema visual da interface
grafica, modificando as cores e proporcionando uma experiéncia

personalizada durante o uso.
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§ EEG PPGER UFU — [} ®
File Help

Processar EEG (arquivo .C5V)
Topografia

Change theme!

Figura 7 - Tela inicial da interface grafica do soffware em python

Ao selecionar o primeiro menu, € exibida a tela ilustrada na Figura 8. Nesta
interface, o usuario pode escolher o arquivo .CSV para processamento clicando no
botdo “Select” ou digitando o caminho do arquivo no campo “File:”. Em seguida, o
processamento € iniciado ao clicar no botdo “Process” e os detalhes do
processamento sao exibidos em tempo real na area “Logs”. Ao término do processo,
um modal informa o sucesso da operacao, conforme mostrado na Figura 9, enquanto

uma mensagem de erro € exibida em caso de falha, ilustrada na Figura 10.



Processamento de EEG pelo arquivo .CSV

File: E:leeg_ufu_destro/pythonile.csv

Logs

Iniciando a leitura do arguivo: E:/eeg_ufu_destrolpytnnnlle.csv

Column names are Nome Arguiwvo PLG, Funcao Filtro,
(segundos), Qtd Epocas, Epl, Ep2, Ep3, Ep4,
Buidosos, Filtro Passa Baixa,
Excel, Home Saida

Eps, Ep6, Ep7,
Quantificadores, Parametros,

Close Logs

Limiar de erro,
Epg,

Figura 8 - Tela de processamento do EEG

Processam

File: E:leeg_ufu_destro/python
Logs

0 Processamento finalizado!

Arqquivo de entrada: 00
CO014401 ATIVO CM.pkl.
Processed 2 lines.

Finalizando processamento do a

Close Logs

pdo:

Q7958

]

I Select Proccess I
|

Duracao Epocas |
Epg,

Epl0, Medico Canais
Canais a Processar,

Select

Gerar

rquivo .CSV

Proccess

arquivo gerado

g8

44 segundos

Figura 9 - Tela de sucesso do processamento

Processamento de EEG pelo arquivo .CSV

File: E:leeg_ufu_destro/pyt

Cicorreu um erro no processamento!

Logs

¢ 10l COmpa E_CD Eercnce

File "EegRecord.py"™, line

File "Epoch.py", line 367, in compute coherence side left with right

File "Epoch.py", line 400, in find position channel name

AttributeError: 'numpy.ndarray' object has no attribute 'name'

Close Logs

Figura 10 - Tela de falha do processamento

Select

Proccess
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Ja o menu "Topografia" abre a janela ilustrada na Figura 11, onde o usuario
pode inserir os dados em formato de vetor contendo 20 posigdes. Ao clicar no botéao
"Preencher”, os valores correspondentes aos eletrodos localizados no lado esquerdo
da tela s&o automaticamente preenchidos. Em seguida, ao acionar o botéo
"Generate", situado no canto inferior esquerdo, a topografia € gerada e exibida no
centro da tela. Caso o usuario deseje customizar ou realgar aimagem, pode selecionar
um dos padrdes de cores disponiveis no menu "Colors", que utiliza esquemas ja
estabelecidos pela linguagem Python para destacar diferentes efeitos visuais. Por fim,
ha um checkbox no canto inferior direito que permite ativar ou desativar a exibi¢cao da

escala na topografia.

¢ EEG PPGER UFU

File Help

Topografia de Encefalo

Raw

Vetor: [1,2,3,4,5,6,7,89,10,11,12,13,14,15,16,17,12,19,20] Preencher

EPI=RY 1

FP2: 2

F: 3

P4
17.5
o5

4 6 100 1

F& 7

= 8
B 200 A
3 9

F12.5

cz 10 -10.0

¢ n 300 A

7.5
T4 12

T3 13

PR 14 4001

Pz 15

T T T T
P& 16 100 200 300 400 500
T 17

01 18

) *=162. y=291.
0z 19 Aéd PQ= [0.173. 0.173. 0.173. 0]

0 20

Colors Scale

Generate O bwr (O gnuplot2 () afmhot (O cubehelix () gnuplot O inferno (O magma @ turbo (O jet O RdBu O viridis @ exibir escala

Figura 11 - Tela para geragao topografica
Por fim, o menu "Change Theme!" permite ao usuario alternar a interface
grafica para um tema escuro (dark mode), conforme ilustrado na Figura 12. O modo
escuro reduz a emissao de luz da tela, proporcionando maior conforto visual em

ambientes com pouca iluminagdo e minimizando a fadiga ocular durante o uso
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prolongado. Além disso, o tema dark traz uma estética mais moderna e sofisticada a

interface, aprimorando a experiéncia do usuario.

0 EEG PPGEB UFU

File Help

Processar EEG (arquivo .CSV)

Topografia

Change theme!

Figura 12 - Tela com alteragao de tema da interface grafica

Assim, a interface grafica representa um diferencial para o software de

processamento de EEG desenvolvido em Python pelo grupo de pesquisa, uma vez

que simplifica a interacdo do usuario com a ferramenta. Com a interface, torna-se

possivel adequar o uso do software para pesquisadores com diferentes niveis de

conhecimento em programacao, eliminando barreiras técnicas e proporcionando uma

experiéncia mais intuitiva e eficaz. Essa facilidade de uso contribui ndo s6 para ampliar

0 acesso as analises de EEG, mas também para aumentar a produtividade e a

confiabilidade dos resultados obtidos.
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3.5 TESTES DE REGRESSAO PARA COMPARACAO ENTRE O
SOFTWARE ORIGINAL E A VERSAO EM PYTHON

Para realizar os testes de regressao, optou-se pela plataforma computacional,
uma vez que a versao do software descrita na dissertagdo de (BARBOSA, 2019) ja
continha codigos para comparagao entre versdes, permitindo o reaproveitamento
parcial desse material. O teste de regressdo empregado consistiu ha comparagao do
comportamento e dos resultados gerados pelo software original e pela versdo em
Python, assegurando que esta ultima nao introduziu falhas em funcionalidades ja
validadas (BASTOS et al.,, 2012). Esse tipo de teste é amplamente utilizado no
desenvolvimento de soffware para garantir a integridade e consisténcia dos resultados
apos alteragdes no cddigo. Nesse contexto, gerou-se, em Python, um arquivo no
formato da plataforma computacional por meio de bibliotecas existentes, que foi

posteriormente importado pela plataforma computacional.

Devido a particularidades do arquivo produzido em Python, foram necessarias
algumas adaptagbes antes de executar a rotina de comparagdo previamente
elaborada. Para avaliar os resultados gerados por ambos os software (original e em
Python), utilizou-se uma funcdo de calculo do erro relativo, desenvolvida

anteriormente e expressa na Equacgao 6.

Vcalc — Vesper

Err = (6)
Vesper
Onde:
Err - Erro relativo.
Vcalc - Valor calculado

Vesper - Valor esperado

As variaveis geradas pelos software e comparadas foram: PCP, FM e

COR_PairsOfElectrodes, as quais ja foram descritas anteriormente.
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3.6 RESULTADOS

Esta secao apresenta os resultados obtidos a partir do processamento e da
analise dos dados de EEG, com foco na validagao do software Python em comparagéo
com o software original na plataforma computacional. Os experimentos realizados
buscaram avaliar a consisténcia das saidas geradas por ambos os software, bem
como identificar eventuais discrepancias decorrentes da transcrigdo do cédigo. Os
detalhes do processamento, incluindo as revisdes realizadas e os exames utilizados,

s&o descritos nas subsecdes a seguir.

3.6.1 Processamento dos PLGs

Durante a transcricdo do codigo, foi conduzida uma revisdo tanto tedrica
quanto pratica das rotinas previamente desenvolvidas, o que permitiu identificar um
erro no calculo da fungcdo de autocorrelagdo programada, especificamente no

processo de normalizagao dos resultados.

Para verificar se o software transcrito em Python produzia resultados idénticos
aos da verséo original, foram selecionados 10 exames de EEG, coletados seguindo o
padrdao 10-20 de montagem dos eletrodos. Esses exames foram processados por
ambos os software (original e em Python), sendo cinco referentes a individuos

saudaveis e cinco a pacientes com condigdes neuroldgicas.

Para a comparacao dos tempos de execucgao das etapas de processamento
do software, foi utilizado um notebook /ltautec InfoWay, modelo W7545, equipado com
o sistema operacional Windows 10, processador Intel Core i3-2350M de 2,30 GHz e
8 GB de memodria RAM.

A Figura 13 apresenta a comparagao dos tempos de processamento para
cada etapa. Devido a uma significativa discrepancia, as etapas de pré-processamento

e processamento foram separadas e detalhadas na Figura 14.
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Tempo processamento em segundos

3, D000 O
2, 500000 O
2, 000000 O
1, SO0000 O
1, CeCeCeeCel O
0, SO0000 O
0, 000000 0 — - _—
Leitura PLG SEpara; a0 CP COEREMNC A
Epoces

m Plat = Python

Figura 13 - Tempo de processamento em todas as etapas analisadas.

Pré-Processamento e Processamento (segundos)
70, 0000000

&0,0000000
50,0000000
40,0000000
30,0000000
20,0000000

10,0000000

0,0000000 [—
Plat Python

Figura 14 - Etapa de Pré-Processamento e Processamento dos dados.

O software original na plataforma computacional, ao concluir o processamento
dos exames e/ou registros, armazena os resultados em um arquivo especifico. No
software em Python, os resultados sao salvos em um arquivo com extensao .pkl. A
Tabela 2 apresenta uma comparagédo do tamanho dos arquivos gerados por ambos

os software.
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Tabela 2 - Comparacao entre o tamanho dos arquivos gerados pelos processamentos na
plataforma computacional e Python

Plataforma Python

Nome PLG | (kBytes) (kBytes)
COMA_1 4.767 22.233
COMA_2 4.644 23.421
COMA_3 3.885 18.920
COMA_4 4115 20.519
COMA_5 4.589 20.519
NORMALA1 10.398 52.185
NORMAL2 9.330 49.088
NORMAL3 9.886 50.672
NORMAL4 8.958 44.660
NORMALS5 9.945 46.676

Observou-se que o software em Python performou mais rapidamente nas
etapas de Leitura PLG, PCP, FM e Coeréncia. Em contrapartida, o software original
na plataforma computacional demonstrou melhor desempenho nas etapas de
Separacdo de Epocas, pré-processamento e processamento. Verificou-se que, nas
fases de Leitura PLG e Separacdo de Epocas, as duas versdes exibiram

desempenhos complementares, compensando-se mutuamente.

Contudo, nas etapas de pré-processamento e processamento, o software em
Python revelou-se quase 60 vezes mais lento que o software original. Essa
discrepancia pode estar associada a forma como os objetos foram criados seguindo
0 paradigma da programacao orientada a objetos, sugerindo a necessidade de uma
investigacdo mais aprofundada para identificar as causas dessa diferenca tao

expressiva.

Com relacao aos arquivos gerados a partir do processamento dos registros
e/ou exames, constatou-se que os arquivos produzidos pelo software em Python
apresentaram um tamanho quase cinco vezes maior que os gerados pelo software

original na plataforma computacional. Entretanto, € importante destacar que, nesse
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tipo de arquivo, ainda é possivel aplicar algoritmos de compressédo, como gzip, ou
utilizar outros formatos, como HDF5, que oferece suporte a compressao nativa e

desempenho otimizado para grandes volumes de dados.

3.6.2 Execucao dos testes de regressao

A execucao dos testes comparativos segue um procedimento semelhante
ao do teste de regressao ja disponivel no software anterior, exigindo a criagao de
um arquivo CSV com duas colunas. A primeira coluna deve conter o nome do
arquivo gerado pela versdao na plataforma computacional, utilizado como
referéncia. A segunda coluna deve indicar o nome do arquivo produzido pela
versao em Python. Na interface de comandos da plataforma computacional, o
usuario deve executar a fungao testErrorPlatAndPython, e, em seguida, sera
exibida a janela apresentada na Figura 15, permitindo a sele¢éo do arquivo CSV

pelo usuario.

I:‘m - -
-Open File >
« v A <« eeg_ufu_destro » python v 'J Pesquisar python
Organizar * Nova pasta ==~ [ o b
. A 1
[ Area de Trabalhc MNome Data de modificagdc Tipo B
| Documentos B3] compara.csv 22/12/2020 12:43 Arquivo deV
4 Downloads E@ comparaMew.csv 25/04/2021 12:09 Arquivo de V e
!@ le.csv 5 Arquivo de V B
&= Imagens ]
@ Result_COMA_COMPLETO.csv 28/ 22:27 Arquive de V i
D Musicas R B
!@ Result_le.csv Arquive deV F
. -
B Objetos 3D !@ Result_teste_new.csv Arquive deV E
Videos @ ResultErrorRelative_compara.csv Arquive de V g
H =, Disco Local (C:) !@ ResulterrorRelative_comparalew.csv Arquive deV &
= maxi-ssd (D2 !@ teste.csv Arquivo de V
Maxi (E5) @ teste_new.csv Arquive de V
!E teste_novo.csv Arquive de V
- Maxi (£ B3 teste2.csv Arquivo deV o
Trash-1000 v £ >
MNome: |cnmparaNew.c5\r >
Cancelar

testErrorPlatAndPython
fr

Figura 15 - Selegdo do CSV para execucao do teste de comparagao de versao do software

Ap0s a selecao do arquivo CSV, o software inicia a comparacao das variaveis,

calculando o erro relativo para cada linha do arquivo. As variaveis em analise sdo
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exibidas na interface de comandos (Figura 16), permitindo ao usuario acompanhar a

execugao do programa e identificar em que etapa ele se encontra.

Command Window

Jx

testErrorPlatAndPython
ISt S S s s s e
Comparando linha 2
FRTTATRATATTATARRATAARAIAARAAAAAASS

Calculando error Relativo....
errorPCP =

6,1168e-13

errorFM =

2,9145e-14

Figura 16 - Janela de comandos durante a execu¢ao do testErrorPlatAndPython

Apos a execucao da funcao testErrorPlatAndPython, é gerado um arquivo
CSV com o prefixo "ResultErrorRelative_" (APENDICE F), seguido do nome do

arquivo CSV de entrada. Esse arquivo contém as mesmas informacdes do CSV de

entrada, acrescidas dos resultados da comparacao para cada variavel (PCP, FM e

Coeréncia).

A Tabela 3 apresenta os resultados do calculo do erro relativo para os 10

exames e/ou registros de EEG mencionados anteriormente. Ressalta-se que as

variaveis comparadas sdo multidimensionais, com trés dimensdes, e o valor de erro

exibido na tabela corresponde a um unico valor por exame e/ou registro. Esse valor

foi obtido por meio da média dos erros calculados em cada matriz multidimensional,

sendo o desvio padrao calculado da mesma forma para esses dados.

Tabela 3 - Erro Relativo comparagao Plataforma Computacional x Python

wome | per [ rer [ | o, | cosmenc [ SogRERGA
ERRO Padrao ERRO Padrao padrao
COMA_1 1,24E-15 2,22E-15 | 2,36E-16 | 4,75E-16 167,8058 1,51E+04
COMA_2 2,72E-15 5,69E-15 | 3,16E-16 | 5,87E-16 13 721
COMA_3 1,68E-15 3,53E-15 | 2,71E-16 | 5,68E-16 174,1348 1,63E+04
COMA_4 4,84E-15 6,42E-15 | 5,18E-16 | 5,87E-12 | Dif. Tamanho | Dif. Tamanho
COMA_5 3,02E-15 4,05E-15 461E-16 | 5,47E-16 | Dif. Tamanho Dif. Tamanho




73

Nome | yodia | Desvio | Media | Desvio | COERENCIA | COpICRA
ERRO Padrao ERRO Padréao padrao
NORMAL1 2,83E-14 5,69E-14 1,12E-15 | 2,31E-15 83,0848 7,08E+03
NORMAL2 3,75E-14 8,54E-14 1,31E-15 | 2,48E-15 193,514 1,88E+04
NORMAL3 2,07E-14 3,54E-14 7,89E-16 | 1,03E-15 10,8543 122,7668
NORMAL4 2,47E-14 4,87E-14 9,01E-16 | 1,53E-15 11,9667 196,962
NORMALS5 291E-14 5,73E-14 1,27E-15 | 2,06E-15 9,7615 178,4611

Ao analisar a Tabela 3, verifica-se que o erro relativo é bastante reduzido,
apresentando diferenca apenas na décima terceira casa decimal. Contudo, para a

variavel Coeréncia, o erro revelou-se significativamente elevado.

Diante da expressiva discrepancia observada para a Coeréncia, constatou-se
que os algoritmos utilizados pelas fungbes mscohere da plataforma computacional e
scipy.signal.coherence do Python s&o distintos. Para minimizar essa diferenga, foi
realizado um estudo aprofundado dessas fungdes, envolvendo engenharia reversa
dos processos e depuracao dos objetos, a fim de identificar o ponto exato em que os

dois algoritmos divergem.

Inicialmente, constatou-se que os parametros padréo (default) de cada
aplicagao eram distintos, especialmente no que diz respeito ao numero de pontos da
transformada de Fourier, ao nimero de janelas e a técnica de janelamento. No Python,
utiliza-se a janela Hann, enquanto a plataforma computacional emprega-se a janela
Hamming. Apos a equalizagdo dos parametros de entrada, obtiveram-se resultados

bastante semelhantes.

Essa semelhancga pode ser observada nos histogramas de diferenga entre as
duas plataformas, gerados para um exame de EEG com cinco épocas. Nesses
histogramas, a diferenca entre as épocas foi inferior a 0,04%, conforme ilustrado na

Figura 17.
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Figura 17 - Histograma diferengas Coeréncia

Com o objetivo de identificar com maior clareza a distribuigdo das diferengas,
foi plotada a curva dos resultados de coeréncia para ambas as plataformas em uma
unica imagem. Essa visualizagdo revelou que a maior divergéncia ocorre nas

frequéncias iniciais ou finais, conforme exibido na Figura 18.

0.9 T T T T T
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051 - . . o
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Figura 18 - Comparacio Coeréncia Python x Plataforma Computacional
Na tentativa de obter resultados ainda mais proximos dos exibidos pela

plataforma computacional, foi identificada a biblioteca matplotlib.mlab.cohere do

Python. Segundo sua documentagdo (HUNTER et al., 2021), essa fungado segue os
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mesmos procedimentos das implementagdes da plataforma computacional. Contudo,
ao utiliza-la com os mesmos parametros de entrada em ambas as plataformas,

constatou-se um problema.

Esse problema esta relacionado aos parametros de entrada. A fungcédo em
Python restringe o numero de pontos da transformada de Fourier (FFT) com base no
numero de pontos do sinal fornecido como argumento, respeitando o teorema da
amostragem de Nyquist, segundo o qual o numero de pontos da FFT ndo pode
exceder a metade do numero de amostras do sinal analisado. Na plataforma
computacional, essa validagdo néo € aplicada, o que resulta em divergéncias entre os

calculos das duas plataformas.

3.7 CONSIDERACAOQES FINAIS

Diante do exposto, constatou-se que a plataforma computacional se
mostrou mais veloz em comparagdo com a versao em Python. Contudo, é
importante destacar que a transcricdo para o Python foi realizada de maneira
simplificada. Para trabalhos futuros, pretende-se aprofundar o estudo da
linguagem e dos recursos disponiveis no Python, a fim de avaliar se é possivel
alcancar um desempenho semelhante ao observado na plataforma

computacional.

E importante destacar que a interface grafica criada ndo apenas simplifica
o uso do software, mas também desempenha um papel crucial na aceleracao do
aprendizado e na integragcdo de novos pesquisadores ao grupo. Ao eliminar a
necessidade de conhecimentos avancados em programacao, a interface torna o
processo mais acessivel e menos intimidante, o que contribui para uma curva de
aprendizado mais rapida. Além disso, a usabilidade aprimorada promove maior
autonomia e confiangca dos usuarios, resultando em uma aplicacido mais eficaz
das ferramentas de processamento de EEG e um avango mais consistente nas

pesquisas desenvolvidas pelo grupo.

O desenvolvimento dos testes unitarios e do teste de regressao para
comparacgao entre as duas versdes revelou-se extremamente util. Esses testes

auxiliaram na transcricdo do codigo ao identificar erros de implementagéo,
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especialmente por compararem duas plataformas distintas. Assim, pode-se
afirmar que a versdo em Python apresentou diferengas reduzidas em relagao a

versao na plataforma computacional.

No entanto, para o calculo da coeréncia, ainda néo se obteve o resultado
esperado com uma taxa de erro suficientemente baixa. O grupo de pesquisa
segue investigando abordagens alternativas para comparar a coeréncia, como a
realizacdo da média para cada banda de frequéncia (Delta, Teta, Alfa, Beta,
Gama, Supergama e Ruido) e a subsequente comparagéo dos resultados entre

as duas plataformas.
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CAPITULO 4 - ANALISE DE PADROES DE ESTIMULAGAO
MUSICAL

Este capitulo tem como objetivo apresentar e discutir os mecanismos e as
ferramentas empregados na extragdo e analise de atributos derivados de sinais
de eletroencefalograma (EEG), com foco na identificacdo de padrdes relevantes
para o escopo desta pesquisa. A analise de padrdées em EEG constitui uma etapa
fundamental para compreender fenédmenos neurofisioldgicos, sendo amplamente
reconhecida na literatura por sua capacidade de revelar informagdes sobre
estados cognitivos e patologicos (KLIMESCH, 1999). Assim, este capitulo detalha
as abordagens técnicas e metodoldgicas adotadas, estabelecendo uma base

solida para os resultados subsequentes.

4.1 MATERIAIS E METODOS

Este subitem dedica-se a descrever, de maneira concisa e sistematica, os
materiais, as tecnologias e as metodologias empregados no desenvolvimento das
analises apresentadas neste capitulo. A escolha desses recursos fundamenta-se
em sua capacidade de garantir a robustez e a reprodutibilidade dos
procedimentos, aspectos essenciais em estudos envolvendo sinais de EEG
(PERNET et al., 2020). Aqui, séo abordados desde os equipamentos utilizados na
aquisicao dos dados até as técnicas computacionais aplicadas no processamento
e na extracdo de atributos, proporcionando uma visao integrada do fluxo

metodoldgico adotado.
4.1.1 Métodos Estatisticos, Ferramentas de Analise e Visualizagao de Dados

4.1.1.1 Média

A média constitui uma das medidas estatisticas fundamentais empregadas
para determinar um valor central em um conjunto de dados amostrais. Seu calculo é

obtido pela soma de todos os valores amostrais dividida pelo nuamero total de
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elementos considerados, conforme expresso na Equacédo 7 (MORETTIN; BUSSAB,
2024). Essa medida € amplamente utilizada na analise de sinais de EEG para
sumarizar caracteristicas temporais ou espaciais dos dados, como a amplitude média
em uma janela de tempo especifica, oferecendo uma representagédo simplificada de

tendéncias centrais.

N
y = 2=k @)
N
Onde:
M - Resultado da média
Xi - i-ésimo elemento amostral
N - Quantidade de elementos amostrais

4.1.1.2 Mediana

A mediana € uma medida estatistica utilizada para determinar o valor central
de um conjunto de dados amostrais, sendo definida como o elemento que ocupa a
posicdo central apds a ordenagdao dos valores em sequéncia crescente ou
decrescente (MORETTIN; BUSSAB, 2024). Quando o numero de amostras é par,
calcula-se a mediana como a média aritmética dos dois elementos centrais. Essa
medida é particularmente util na analise de sinais de EEG, pois, ao contrario da média,
€ menos sensivel a valores extremos ou ruidos, como os causados por artefatos
musculares ou piscadas, oferecendo uma representagao robusta das tendéncias

centrais dos dados.

4.1.1.3 Desvio Padrao

O desvio padrao constitui uma medida estatistica essencial aplicada a um
conjunto de dados amostrais, destinada a quantificar o grau de dispersao dos valores
em relagdo a média (MORETTIN; BUSSAB, 2024). Quanto mais préximo de zero for
seu valor, menor € a variabilidade dos dados, indicando maior consisténcia em torno
do valor central. Na analise de sinais de EEG, o desvio padrao é frequentemente
utilizado para avaliar a estabilidade de caracteristicas como a amplitude ou a poténcia
espectral ao longo do tempo, sendo particularmente util para detectar variagbes
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anormais causadas por ruidos ou eventos neurofisioldgicos. Seu calculo é dado pela

Equacao 8, apresentada a seguir.

N (X, — M)2
DP = l=1( i ) (8)
N
Onde:

DP - Desvio Padrao

Xi - i-ésimo elemento amostral

N - Quantidade de elementos amostrais

M - Média do conjunto amostral

4.1.1.4 Teste de Friedman

O teste de Friedman é um método estatistico ndo paramétrico empregado
para comparar diferencas entre grupos em experimentos com blocos randomizados,
especialmente quando os dados amostrais sao vinculados, isto €, quando cada bloco
€ submetido a multiplas avaliagdes, testes ou condicbes (CORDER; FOREMAN,
2014).

Diferentemente de testes paramétricos, ele nao utiliza os valores numéricos
brutos diretamente, mas sim os postos (ou ranks) atribuidos aos dados apds sua
ordenacao dentro de cada bloco separadamente. O teste avalia a hipotese nula de
que a soma dos postos € igual entre os grupos, rejeitando-a caso haja diferengas
significativas (CORDER; FOREMAN, 2014). Na analise de sinais de EEG, o teste de
Friedman é particularmente util para comparar caracteristicas extraidas (como
poténcia espectral ou amplitude) em diferentes condigbes experimentais ou janelas
temporais, especialmente quando os dados ndo atendem aos pressupostos de

normalidade.
O teste de Friedman trabalha com duas hipoteses:

e H,: as distribuicbes dos k experimentos sao semelhantes;

e H;: as distribui¢cdes se diferem na localizagao.

O critério de decisao é rejeitar a hipétese nula (H,) quando o valor-p for menor

que o nivel de significancia estabelecido (geralmente o = 0,05). Assim, um resultado
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significativo indica que existe diferenca estatisticamente relevante entre os grupos

analisados.

4.1.1.5 Variagao Percentual (VAP)

A variagao percentual (VAP) é uma medida empregada para quantificar a
diferenga relativa entre duas situagdes ou condi¢des, utilizando os valores das
medianas correspondentes como base para o calculo. O procedimento consiste em
subtrair a mediana da primeira situagdo da mediana da segunda situagao, dividir o
resultado pelo maior valor de mediana entre as duas e, posteriormente, multiplicar o

quociente por 100 para expressar o resultado em porcentagem.

Na analise de sinais de EEG, a VAP é particularmente util para comparar
variacdes em caracteristicas extraidas, como a poténcia de ritmos cerebrais (ex.: alfa,
beta, teta), entre diferentes estados ou periodos experimentais, oferecendo uma
métrica quantitativa para avaliar mudancgas relativas. Esse calculo é realizado para

cada ritmo, conforme detalhado na Equacéao 9 (LIMA, 2020), apresentada a seguir.

X-Y
VAPituagso = ‘ Max(x D) 100% (9)
Onde:
VAPsituagao - Variagdo percentual entre duas situagdes
X - Mediana da primeira situagao
Y - Mediana da segunda situagao
Max(X,Y) - Maior valor entre Xe Y

4.1.1.6 Histograma

O histograma é uma ferramenta visual que possibilita a representagao grafica
da distribuicdo de frequéncias de um conjunto de dados amostrais, evidenciando a
repeticdo dos elementos dentro desse conjunto. Essa técnica permite identificar a
concentragdo predominante dos dados, destacando regides de maior densidade.

Comumente, a visualizagao é realizada por meio de um grafico de barras, no qual:

e eixo X corresponde aos valores ou intervalos de valores presentes no

conjunto amostral,



81

e eixo Y indica a frequéncia absoluta, ou seja, o numero de ocorréncias de

cada valor ou intervalo no conjunto.

Na analise de sinais de EEG, o histograma € amplamente empregado para
examinar a distribuigdo de atributos como amplitude ou poténcia espectral, auxiliando
na detecgdo de padrées ou anomalias, como assimetrias causadas por artefatos ou
eventos neurofisiolégicos. Um exemplo dessa aplicacéo pode ser observado na Figura
19, que ilustra um histograma tipico, revelando que a maior parte dos dados se

concentra entre os valores 0,6 e 0,9.
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Figura 19 - Exemplo de histograma

4.1.1.7 Arquivo Excel

O arquivo Excel € um formato de planilha digital gerado pelo software
Microsoft Excel, desenvolvido e mantido pela Microsoft. Essa ferramenta organiza
dados em tabelas estruturadas, compostas por linhas e colunas, possibilitando a
realizacdo de calculos, a manipulagcao de informacdes e a apresentacao visual de

resultados.

Na analise de sinais de EEG, o uso de arquivos Excel é frequente para o
armazenamento e o pré-processamento inicial de dados amostrais, como valores de
amplitude ou poténcia espectral extraidos de experimentos, bem como para a
aplicagao de formulas estatisticas basicas, a exemplo da média ou do desvio padrao.
Sua versatilidade e acessibilidade o tornam uma escolha comum em etapas
preliminares de organizagao e analise de dados antes da utilizagao de software mais
especializados.
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4.1.2 Metodologia

Para o desenvolvimento do software destinado a geragao de insights para o
reconhecimento de padrées em sinais de EEG, foi realizada, inicialmente, uma
reunido com o grupo de pesquisa com o objetivo de definir a abordagem metodoldgica
a ser adotada no processamento. Nessa reunido, foram estabelecidas as seguintes

etapas:

1. Processamento dos exames a serem analisados:

e Nessa etapa, os exames foram configurados com janelas de
tamanho uniforme e igual quantidade de janelas em todos os
registros, garantindo consisténcia na analise temporal dos sinais.

2. Agrupamento dos quantificadores (PCP, FM e Coeréncia):

e Os quantificadores gerados na etapa anterior foram consolidados em
um unico arquivo, facilitando o armazenamento e o acesso aos dados
processados.

3. Geracgao de arquivo Excel com atributos:

e Um arquivo Excel foi criado para registrar os seguintes atributos
extraidos dos quantificadores vinculados a todos os exames: média,
mediana, desvio padrao, teste de Friedman e variagao percentual
(VAP), permitindo uma analise estatistica abrangente.

4. Visualizacao dos resultados:

e Os resultados foram representados graficamente por meio de
histogramas, possibilitando a identificagao visual da distribuicdo dos
atributos.

5. Identificagao de padrdes:

e Foram analisados os atributos extraidos para detectar padrdes

relevantes nos sinais de EEG, constituindo o objetivo final do

processamento.

Para executar essas etapas, inicialmente elaborou-se um arquivo CSV
contendo os exames a serem avaliados, conforme especificado no item 1. Esse
arquivo foi entdo processado no software de analise de EEG descrito em (BARBOSA,

2019) para a extragao dos quantificadores PCP, FM e Coeréncia.
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Em seguida, utilizando a plataforma computacional, foram desenvolvidas
funcdes especificas para realizar as demais etapas descritas. Adicionalmente, o
calculo da variagéo percentual (VAP) foi implementado tanto no Excel quanto em uma
funcdo programada na plataforma computacional, com o propdsito de validar a
precisdo da funcédo desenvolvida por meio da comparacgao entre os resultados obtidos

nas duas plataformas.

4.2 VERSIONAMENTO

Para o controle de versionamento do software desenvolvido, adotou-se a
mesma estrutura de versionamento empregada pelos software na plataforma
computacional e Python. As novas fun¢des criadas foram organizadas e armazenadas
na raiz do projeto, garantindo compatibilidade e facilidade de acesso durante o
desenvolvimento e a manutengdo do sistema. Essa abordagem permite gerenciar
eficientemente as versdes das fungdes implementadas para o processamento e
andlise de sinais de EEG, assegurando a rastreabilidade e a integracdo das

atualizagdes ao longo do projeto.

4.3 FUNCOES IMPLEMENTADAS

Para alcancar os objetivos estabelecidos na metodologia apresentada no item
4.1.2, foram desenvolvidas fungdes especificas que atendem as etapas definidas para
o processamento e analise de sinais de EEG. Essas fungdes, descritas a seguir, foram
implementadas com o propédsito de automatizar a extracdo de quantificadores, o
calculo de atributos estatisticos e a geracdo de visualizagdes, contribuindo para a

identificacdo de padrbes nos dados amostrais.

4.3.1 Fungao groupPcpAndFmAndCoerencia

A funcdo groupPcpAndFmAndCoerencia foi desenvolvida para processar
arquivos com os dados localizados em um diretério especifico, utilizando um prefixo

de nome de arquivo como critério de identificacdo. Essa funcio realiza a leitura de
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todos os arquivos correspondentes, extraindo as variaveis PCP, FM e COERENCIA

contidas em cada arquivo.

Em seguida, esses quantificadores foram organizados em variaveis distintas,
uma para cada tipo (PCP, FM e COERENCIA), agrupando os dados de todos os
exames de EEG coletados sob um mesmo estimulo. Esse processo facilita a
consolidagao dos quantificadores em um formato estruturado, permitindo sua posterior

analise conjunta para identificacdo de padrdes nos sinais de EEG.

4.3.2 Fungao generateMedianMeanStdGrouped

Essa funcao foi desenvolvida para calcular a média, a mediana e o desvio
padrdao de um conjunto de dados amostrais. Essa fungdo geralmente utiliza como
entrada um dos quantificadores agrupados pela funcao
groupPcpAndFmAndCoerencia (como PCP, FM ou COERENCIA), processando os
dados consolidados de exames de EEG. Os resultados gerados — valores de média,
mediana e desvio padrao — sao posteriormente empregados no calculo da variagao
percentual (VAP).

Essa etapa é essencial para a analise estatistica dos quantificadores,
fornecendo medidas fundamentais para a caracterizacdo e comparacao dos sinais de
EEG.

4.3.3 Fungao computePercentVariation

Funcao responsavel em calcular a variagao percentual (VAP) entre os valores
contidos em células de matrizes fornecidas como argumentos. Essa fungéo processa
os dados provenientes das analises de sinais de EEG, utilizando as medianas

extraidas de diferentes condi¢des ou periodos experimentais.

O calculo da VAP é realizado comparando pares de valores em cada matriz,
gerando uma métrica que quantifica as diferengas relativas entre os quantificadores
agrupados, como PCP, FM ou COERENCIA. Essa funcionalidade é essencial para
avaliar mudancas nos padrées dos sinais de EEG, contribuindo para a analise
estatistica e a identificacdo de variagbes significativas no conjunto de dados

amostrais.
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4.3.4 Funcao computeTestPValue

A funcdo computeTestPValue foi desenvolvida para executar o teste de
Friedman, calculando o valor-p associado as diferengas entre os valores contidos em
células de matrizes fornecidas como argumentos. Essa fungdo processa os
quantificadores extraidos dos sinais de EEG, como PCP, FM ou COERENCIA,
organizados em matrizes provenientes de diferentes condigdes ou blocos

experimentais.

O teste de Friedman é aplicado para avaliar se ha diferengas significativas
entre os grupos de dados, gerando um valor-p que indica a probabilidade de aceitagéo
da hipétese nula de igualdade entre os quantificadores. Contribuindo para a

identificacdo de padrdes e variagdes relevantes nos sinais analisados.

4.3.5 Funcao histogramPercentVariationByMaxValuelnTestPValue

Essa funcao realiza analise estatistica comparativa entre duas matrizes de

dados através de duas etapas principais:

1. Teste de Friedman para verificacdo de diferencas significativas entre
grupos;
2. Calculo da Variagdao Percentual (VAP) entre pares de valores

correspondentes.

A rotina inicia com a aplicagao do teste de Friedman, que avalia a hip6tese
nula de igualdade distribucional entre os conjuntos de dados (nivel de significancia

definido por p < Xiupye). Os resultados que ultrapassam este limiar sdo marcados

como estatisticamente relevantes.

Posteriormente, calcula-se a VAP entre cada par de elementos homadlogos
das matrizes. A associagcdo estratégica entre ambas analises ocorre através da
filtragem seletiva: somente as variagdes percentuais correspondentes as posi¢oes
com significancia estatistica no teste de Friedman sao consideradas. Essa abordagem

dual permite:

e Reduzir falsos positivos por acaso estatistico;
¢ Identificar mudangas biologicamente relevantes em sinais EEG;

e Priorizar alteragdes consistentes nos quantificadores (PCP, FM, COERENCIA).
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A etapa final gera um histograma das VAPs significativas, possibilitando a

visualizagao da distribuicdo das variagdes percentuais significativas.

4.3.6 Funcao createXIlsxByStimulus

Esta funcédo gera uma planilha no formato Excel (.xIsx) contendo seis tabelas
comparativas para um quantificador pré-definido (PCP, FM, ou Coeréncia). Cada
tabela contrasta um dos seis estimulos experimentais com um sétimo estimulo de
referéncia — este ultimo da nome a folha (ou sheet) criada. A estrutura de saida

organiza-se da seguinte forma:

1. Entrada:
e Um quantificador de EEG (variavel numérica);
e Nome do estimulo de referéncia (string).
2. Processamento:
e Criacado automatica de seis pares comparativos (estimulo experimental
vs. referéncia);
e Calculo de métricas de comparacéao para cada par.
3. Saida:
e Planilha unica com abas nomeadas segundo o estimulo de referéncia;
e Layout padronizado para andlise transversal (ver APENDICE F,
APENDICE G e APENDICE H).

4.3.7 Fungao generateFileByStimulus

Esta funcéo é responsavel pela geragcédo de trés arquivos no formato Excel
(.xIsx), cada um contendo resultados relacionados as comparagdes entre os estimulos
fornecidos como argumento para um unico quantificador (PCP, FM ou COERENCIA).

Os arquivos gerados correspondem as seguintes analises:

o Teste de Friedman: Este arquivo apresenta os resultados do teste
estatistico de Friedman, que avalia a significancia das diferengas entre os estimulos
para o quantificador analisado. O sufixo " _p value" é adicionado ao nome do arquivo

para indicar que ele contém valores de significancia (p-values);
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o Variagao Percentual (VAP): Este arquivo contém os calculos da
variagao percentual entre os estimulos, permitindo a analise das mudancas relativas
nos valores do quantificador. O sufixo " _percent_variation" identifica este arquivo;

o VAP com Teste de Friedman Significativo: Este arquivo combina os
resultados das duas analises anteriores, filtrando as variagdes percentuais que
correspondem as posi¢coes em que o teste de Friedman apresentou significancia

estatistica. O sufixo " _final" é utilizado para nomear este arquivo.

Cada planilha gerada possui sete abas (folhas ou sheets), onde cada aba
corresponde ao resultado da fungédo createXlsxByStimulus aplicada a um dos sete
estimulos experimentais — sendo o sétimo estimulo considerado como referéncia para
as comparacgoes realizadas. Exemplos dessas planilhas podem ser encontrados nos
APENDICE F, APENDICE G e APENDICE H.

4.4 BASE DE DADOS

Os dados utilizados nesta pesquisa foram reaproveitados do trabalho de
(RAMOS, 2018), conduzido entre os anos de 2017 e 2018, antes da pandemia de
COVID-19. Esse estudo foi realizado no ambito do Programa de Pés-Graduagao em
Engenharia Biomédica da Universidade Federal de Uberlandia (UFU), com foco na
estimulacdo musical e atenuacao de ruidos em sinais de EEG coletados na Unidade
de Terapia Intensiva (UTI) do Hospital de Clinicas da UFU (HCU-UFU) (RAMOS,
2018).

A coleta dos dados seguiu rigorosos protocolos éticos, sendo previamente
autorizada pelo Comité de Etica em Pesquisa da UFU (CEP-UFU) (parecer
consubstanciado CEP numero: 1.715.960 (ANEXO C)). Para garantir o cumprimento
das normas éticas aplicaveis a pesquisas envolvendo seres humanos, foi elaborado
um Termo de Consentimento Livre e Esclarecido (TCLE), que detalhava os
procedimentos da pesquisa, as responsabilidades dos pesquisadores e voluntarios,
além de outros documentos necessarios para autorizagdo do uso dos equipamentos
e instalagdées do HCU-UFU, do Laboratério de Processamento Digital de Sinais (PDS)

e do Laboratério de Engenharia Biomédica (BioLab) da Faculdade de Engenharia
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Elétrica da UFU (FEELT-UFU). Esses documentos foram avaliados e aprovados pelo
CEP-UFU.

O trabalho original utilizou métodos avancados para analise de sinais
eletroencefalograficos, incluindo técnicas de processamento digital e analise
quantitativa, com o objetivo de explorar padrdes cerebrais em resposta a estimulagéo
musical. Os dados coletados foram fundamentais para a construgdo da base utilizada
nesta pesquisa, permitindo a continuidade dos estudos sobre reconhecimento de

padroes em EEG.

O protocolo para a coleta dos exames de EEG foi desenvolvido pelo grupo de
pesquisa liderado pelo professor Doutor Jodo Batista Destro Filho e estruturado em
quatro fases principais: pré-estimulo, estimulo, pos-estimulo e gravagdo a vazio
(RAMOS, 2018). Essas fases serdo detalhadas posteriormente na tese, destacando
sua importancia para o registro sistematico das respostas cerebrais aos estimulos

aplicados.

As coletas foram realizadas utilizando o amplificador de sinais biolégicos
BrainNet BNT-EEG, juntamente com seu software proprietario de aquisicdo, o
“‘EEGCaptacgdes32”, versao REDE36 (1.0). Este equipamento conta com 21 canais,
dos quais 20 sao dedicados a aquisi¢cao digital dos sinais de EEG e um canal adicional

€ reservado para o registro de eletrocardiograma (ECG) (RAMOS, 2018).

Na utilizagdo do software de registro mencionado anteriormente, foram
realizadas as seguintes configuragbes para ajuste dos filtros e da frequéncia de

aquisicao, conforme descrito por (RAMOS, 2018):

e Para canais de EEG:

o Constante de Tempo ou Filtro Passa Alta: 0,16 s — 1,0 Hz;

o Filtro de Alta Frequéncia ou Filtro Passa Baixa: 100 Hz;

o Filtro NOTCH: ativado para eliminagao da frequéncia de 60 Hz.
e Para canais de ECG:

o Constante de Tempo: 0,16 s — 1,0 Hz;

o Filtro Passa Baixa: 70 Hz;

o Filtro NOTCH: ativado.

e Frequéncia de Amostragem: 400 Hz.
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Para a montagem dos eletrodos, foram conectados um total de 25 eletrodos
ao paciente e ao aparelho de coleta, seguindo o padrao universal de montagem 10-
20. Dos 25 eletrodos utilizados, 23 foram dedicados a coleta do EEG e dois ao ECG.
Entre os eletrodos do EEG, dois funcionaram como referenciais (bi-auriculares), um
como terra e os demais foram responsaveis pela aquisicdo dos sinais cerebrais
(RAMOS, 2018).

4.4.1 Fases da coleta dos estimulos

Neste tdpico, sdo apresentadas as fases principais da coleta dos estimulos,
que foram detalhadamente descritas em (RAMOS, 2018). Essas fases sé&o
fundamentais para a estruturagdo do protocolo experimental, garantindo a
consisténcia e a validade dos dados coletados. A seguir, sera fornecida uma visao
geral dessas etapas, que incluem a pré-estimulagéo, o estimulo propriamente dito, a

poOs-estimulagdo e a gravagao a vazio.

4.4.1.1 Pré-estimulo

Esta fase consiste na gravacgao de trés minutos de atividade cerebral com os
olhos fechados, sem qualquer estimulacdo externa, como movimentacéo, fala ou
outras atividades que possam interferir no sinal gravado. O objetivo € capturar um
padrao basal de atividade cerebral em condi¢gdes de repouso, permitindo uma
referéncia para as fases subsequentes. Durante essa etapa, o paciente deve
permanecer imoével e relaxado, minimizando qualquer artefato que possa afetar a

qualidade do registro.

4.4.1.2 Estimulo musical

Nesta etapa, realiza-se a gravacao de 60 segundos de atividade cerebral em
repouso, sob siléncio ambiental e com olhos fechados, durante a exposicdo a
estimulos sonoros controlados. O protocolo incluiu seis estimulos auditivos distintos,
selecionados para investigar respostas neurofisiolégicas a diferentes perfis acusticos

e emocionais:
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e Musica favorita: Selecionada individualmente pelo voluntario para induzir
valéncia emocional positiva;

e Musica desgostada: Escolhida pelo participante para eliciar reagbes de
aversao ou desconforto;

¢ Ruido branco: Estimulo acustico de espectro plano, utilizado como controle
neutro;

e Ruido rosa: Caracterizado por maior energia em baixas frequéncias,
contrastando com o ruido branco;

e Tom puro do: Frequéncia especifica para analise de respostas a tons
puros;

e Tom puro em ritmo baido (sol): Padrdo ritmico culturalmente relevante

(baido).

Os estimulos foram aplicados sequencialmente, com cada um durando 60
segundos, seguido imediatamente por uma fase de pds-estimulo. Para evitar
interferéncias acusticas, foi mantido um periodo de siléncio entre os estimulos. Essa
estrutura experimental visa minimizar efeitos de habituacédo e garantir a integridade
dos dados coletados (MAGALHAES et al., 2021).

A escolha de musicas com valéncia emocional oposta (favorita e desgostada)
alinha-se com estudos que demonstram padrbes assimétricos de ativagao frontal no
EEG durante estimulos emocionais (TANDLE et al., 2018). Esses padrbes sao
consistentes com a hipotese de que a ativacdo frontal lateralizada pode refletir
processos emocionais e cognitivos associados a experiéncia musical. A literatura
sugere que a musica favorita tende a induzir maior atividade no hemisfério esquerdo,
enquanto a musica desgostada pode ativar mais o hemisfério direito, refletindo
assimetrias emocionais (MAGALHAES et al., 2021).

4.4.1.3 Pos-estimulo

Esta fase consiste na gravacdao de 30 segundos de atividade cerebral em
repouso, sob siléncio ambiental e com olhos fechados. Ela é realizada imediatamente
apds cada um dos estimulos sonoros descritos anteriormente, visando capturar as
respostas cerebrais residuais ou de recuperagao apos a exposi¢ao ao estimulo. A
duragcdo de 30 segundos permite avaliar a estabilizacdo da atividade neural pos-
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estimulo, fornecendo uma referéncia para comparar com as fases pré e durante o

estimulo.

4.4 1.4 Gravacao a Vazio

Nesta etapa, ocorre a gravacdo de 60 segundos com os eletrodos
desconectados do aparelho de coleta, visando registrar os sinais estaticos (ruido
instrumental e ambiental) na auséncia de qualquer sinal fisiolégico. O objetivo é
estabelecer uma linha de base para a quantificagao do ruido intrinseco do sistema de

aquisigao, permitindo:

e |dentificacdo de artefatos técnicos:
o Caracterizagado do ruido de fundo do amplificador (input-referred
noise);
o Deteccao de interferéncias eletromagnéticas residuais.
e Calibracao instrumental:
o Validagao da impedancia dos eletrodos em circuito aberto;

o Verificagao da estabilidade térmica do sistema.

4.4.1.5 Consideracgdes Finais

O procedimento de coleta do EEG, conforme descrito por (RAMOS, 2018),

teve a sequéncia de estimulacao descrita na Tabela 4.

Tabela 4 — Sequéncia de estimulos aplicado na coleta da base de dados de estimulagao

musical
Estimulo (r:ienTJf:s)
Pré 3
Musica favorita 1
Pds 0,5
Ruido rosa 1
Pds 0,5
D6 1
Pds 0,5
Mdusica desgostada 1
Poés 0,5
Ruido branco 1




92

Estimulo (;?nTF:S)
Poés 0,5
Sol Baiao 1
Poés 0,5
Vazio 1
Total 13

Este procedimento foi aplicado a 60 voluntarios, constituindo a base de dados

utilizada para o reconhecimento de padrées em sinais de EEG.

4.5 ESTRUTURACAO E PROCESSAMENTO DOS DADOS

De acordo com as informagdes de cada exame coletado para a base de
dados, montou-se o arquivo .CSV utilizado como entrada para o software de
processamento de EEG desenvolvido pelo grupo de pesquisa descrito anteriormente,
onde pegou-se o instante inicial de cada estimulo musical conforme descrito em
(RAMOS, 2018) no qual esse instante foi considerado como o tempo inicial das

epocas.

Assim, a planilha/CSV de entrada constou de sete linhas por exame/EEG, no
qual, cada linha se refere a um estimulo sonoro, com janela de época de duragao de
dois segundos com um total de trinta épocas sequencias a partir do tempo de inicio
da estimulagdo, totalizando assim os 60 segundos da estimulagdo musical.
Configurou-se esta planilha também para que o software calcula-se os seguintes
quantificadores: PCP, FM e COERENCIA. Desta forma, o arquivo CSV ficou
configurada com 420 linhas (60 EEG x 7 estimulos).

O processamento quantitativo dos exames de EEG foi estruturado em um
arquivo CSV, configurado conforme o protocolo experimental descrito em (RAMOS,
2018). Este arquivo serve como entrada para o soffware de processamento

desenvolvido pelo grupo de pesquisa. A configuragao inclui:

o Organizagao temporal: Identificagdo do instante inicial de cada
estimulo musical, com janelas de 2 segundos por época, totalizando 30 épocas

sequenciais por estimulo, cobrindo os 60 segundos de duracéo total do estimulo.
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o Estrutura de dados: 7 linhas por exame/EEG, correspondentes aos 7
estimulos sonoros, resultando em 420 linhas no total (60 exames x 7 estimulos).

o Variaveis calculadas: Os quantificadores PCP, FM e COERENCIA
foram calculados para cada época, visando analisar a poténcia do sinal nos eletrodos,

a frequéncia mediana e a correlagao entre o hemisfério esquerdo e direito.

Para otimizar o agrupamento posterior dos estimulos musicais provenientes
dos diversos exames de EEG, foi estabelecido um padrao de nomenclatura para os
arquivos de saida gerados pelo processamento de cada linha do arquivo CSV. Esse
padrao consiste em um prefixo especifico, que identifica o tipo de estimulo sonoro,

seguido do identificador do participante (PLG) registrado durante a coleta dos dados.

Os prefixos adotados foram: PRE_, MUSIC FAVOR , DO_CONT_,
RUIDO_ROSA , MUSIC_DESGOST _, RUIDO_BRANCO_ e SOL_BAIAO_, cada um
correspondendo a um dos sete estimulos analisados. Por exemplo, o arquivo
RUIDO_BRANCO_V2801 representa o processamento do estimulo "ruido branco"
para o participante identificado como V2801. Essa convengao de nomenclatura facilita
a organizagao e a rastreabilidade dos quantificadores extraidos para cada estimulo e

paciente.

Prosseguindo com o desenvolvimento, foram aproveitadas as fungdes
programadas descritas no item 4.3 para processar os dados gerados.
Especificamente, a funcdo groupPcpAndFmAndCoerencia foi empregada para
agrupar os quantificadores calculados no processamento dos sinais de EEG (PCP,
FM e COERENCIA) organizando-os por tipo de estimulo sonoro. Para isso, executou-
se essa funcio sete vezes, uma para cada um dos sete estimulos definidos no arquivo
CSV (conforme item 4.4.1), consolidando os dados de todos os exames de EEG
correspondentes a cada estimulo em variaveis distintas. A titulo de detalhamento, as

dimensbes das variaveis geradas por esse processo sao apresentadas a seguir:

e PCP (7 x 1800 x 20)
o 7 células, representando as bandas de frequéncia: Delta, Teta, Alfa,
Beta, Gama, Supergama e Ruido;
o 1800 linhas, correspondendo as 30 épocas de cada um dos 60
exames de EEG (60 EEGs x 30 épocas);
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o 20 colunas, referentes aos eletrodos utilizados: FP1, FP2, F7, F3,

FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, OZ, O2.
e FM (7 x 1800 x 20)

o Possui estrutura idéntica a de PCP, uma vez que ambas as variaveis
foram calculadas a partir da mesma configuragdo de dados,
abrangendo as mesmas bandas de frequéncia, épocas e eletrodos.

e COERENCIA (8 x 1740 x 129)

o 8 células, representando os pares de eletrodos analisados: FP1-FP2,
F7-F8, F3-F4, T3-T4, C3-C4, T5-T6, P3-P4 e 0O1-02;

o 1740 linhas, referentes as 30 épocas de cada um dos 58 exames de
EEG (58 EEGs x 30 épocas), sendo necessaria a exclusao de dois
exames devido a divergéncias na frequéncia de amostragem que
afetaram os resultados da funcdo de coeréncia, comprometendo a
consisténcia dos dados; essa exclusdo foi realizada para assegurar
a homogeneidade do conjunto analisado e evitar distorgcbes na
analise subsequente;

o 129 colunas, correspondendo as frequéncias geradas pela fungao de

coeréncia aplicadas aos pares de eletrodos.

Em seguida, utilizou-se a fungdo generateMedianMeanStdGrouped para
calcular a mediana, média e desvio padrao das variaveis geradas anteriormente.
Esses calculos foram fundamentais para obter um panorama geral da distribuicdo dos
dados no grupo de estimulos sonoros. A analise dessas medidas de tendéncia central
e dispersao permitiu uma melhor compreensao da variabilidade e consisténcia dos
resultados, facilitando a identificacdo de padrdes nas respostas cerebrais aos

diferentes estimulos.

Continuando 0 processamento, foi executada a funcao
histogramPercentVariationByMaxValuelnTestPValue, que realiza o calculo do teste
de Friedman para identificar diferengas significativas entre um estimulo sonoro
especifico e outro. Essa fungdo gera uma matriz de 20 linhas, correspondendo aos
canais de EEG (FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6,
01, 0Z e 02), e 7 colunas, representando as bandas de frequéncia (Delta, Teta, Alfa,
Beta, Gama, Supergama e Ruido). Cada elemento dessa matriz contém o valor-p
resultante do teste de Friedman, obtido ao comparar os 1800 valores de cada
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quantificador (30 épocas x 60 EEGs) entre os estimulos analisados, adotando-se um

nivel de significancia de 0,05.

Em seguida, aplicando a mesma logica de comparagdo, calculou-se a
variagdo percentual (VAP) entre os 1800 valores de cada par de estimulos.
Posteriormente, com base no valor de significancia do teste de Friedman, foram
zerados todos os elementos da matriz de VAP cujas posigdes correspondentes na
matriz do teste apresentassem valor-p superior a 0,05, preservando apenas as
variacdes estatisticamente significativas. Por fim, um histograma foi gerado a partir
dos valores de VAP remanescentes (elementos diferentes de zero na matriz),

possibilitando a visualizagao da distribuicdo das variacdes relevantes.

Para concluir essa etapa e facilitar analises futuras, executou-se a funcéo
generateFileByStimulus, que produz trés arquivos Excel contendo os resultados de
cada fase do processamento realizado por
histogramPercentVariationByMaxValuelnTestPValue: o teste de Friedman (sufixo
p_value), a variagdo percentual (sufixo percent variation) e os valores de VAP
filtrados pelo teste estatistico (sufixo final). Diferentemente da fungéo anterior, que
compara apenas um estimulo com outro, esses arquivos apresentam uma visdo mais
abrangente, exibindo as comparag¢des de cada estimulo sonoro em relagdo a todos
os demais. Essas fungdes foram aplicadas exclusivamente aos quantificadores FM e

PCP, e os resultados obtidos sao detalhados no préximo tépico.

4.6 RESULTADOS

Esta secdo tem como objetivo apresentar os resultados quantitativos obtidos
apods a execucao das funcdes computacionais desenvolvidas para o reconhecimento
de padrdes em sinais de eletroencefalograma (EEG). Esses resultados refletem o
desempenho das analises estatisticas e visuais implementadas ao longo do
processamento dos dados, que buscaram caracterizar as respostas neurais a

diferentes estimulos sonoros.

Através da aplicacao das ferramentas descritas nos itens anteriores, como o
calculo de quantificadores (PCP, FM e COERENCIA), testes estatisticos e geragéo de
histogramas, foi possivel extrair informagdes relevantes sobre a variabilidade e as
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tendéncias dos sinais, contribuindo para a identificacao de padrdes associados aos
sete estimulos analisados. Os dados aqui apresentados sa&o organizados por
quantificador e fundamentam as discussdes subsequentes sobre as implicagdes

neurofisiolégicas dos estimulos sonoros no contexto deste estudo.

4.6.1 Quantificador Frequéncia Mediana (FM)

O quantificador Frequéncia Mediana (FM) foi analisado para avaliar as
variacbes nas respostas neurais captadas pelos sinais de EEG frente aos sete
estimulos sonoros investigados neste estudo. Esse quantificador, que representa a
frequéncia central das bandas analisadas (Delta, Teta, Alfa, Beta, Gama, Supergama
e Ruido), foi processado por meio das fungdes computacionais descritas no item 4.3,
resultando na extragcao de 1800 valores por estimulo (30 épocas x 60 EEGs) para

cada um dos 20 canais.

A partir desses dados, calculou-se a variagdo percentual (VAP) entre os
estimulos, seguida da aplicacao do teste de Friedman para identificar diferengas
estatisticamente significativas (valor-p < 0,05). Os valores de VAP filtrados, que
indicam as variagdes relevantes apos a exclusdo dos elementos néo significativos
(VAP = 0), foram organizados no arquivo Excel com o sufixo final, servindo como base

para a geragao de histogramas que ilustram a distribuicdo dessas diferengas.

A Figura 20 e Figura 21 apresentam os histogramas (sete no total) gerados a
partir desse arquivo Excel, conforme detalhado no item 4.5 Estruturagiao e
Processamento dos Dados, para os valores de VAP do quantificador Frequéncia
Mediana (FM) apds a selecdo estatistica significativa. Na constru¢do desses
histogramas, foram excluidos os elementos com valor zero, ou seja, aqueles que nao
exibiram diferengas estatisticamente relevantes com base no teste de Friedman,

destacando apenas as variagdes significativas entre os estimulos sonoros.

Cada histograma corresponde a uma folha (sheet) do arquivo Excel, nomeada
de acordo com o estimulo sonoro especifico comparado, contendo seis tabelas
comparativas que detalham as diferencas do FM em relacdo aos demais estimulos.
Essas tabelas s&o estruturadas em 20 linhas, representando os canais de EEG (FP1,
FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, 01,0Z e 02),e 7

colunas, correspondendo as bandas de frequéncia, conforme exemplificado no
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APENDICE H. Essa visualizacdo permite uma analise detalhada das alteragées na
frequéncia mediana (FM) induzidas por cada estimulo em diferentes regides do

cérebro.

Diante dos resultados apresentados, os histogramas podem conter até 840
(20 canais x 7 bandas x 6 estimulos) elementos, organizados em quatro intervalos de
valores de VAP no eixo X: 0 a 5%, 5a 10%, 10 a 15% e 15 a 20%. Esses intervalos
agrupam as variagdes percentuais significativas do quantificador FM, enquanto o eixo
Y representa a frequéncia relativa de elementos em cada intervalo, calculada como a
quantidade de elementos dentro do grupo dividida pelo total de elementos
significativos. Essa representacdo permite visualizar a distribuicdo das variagdes do
FM entre os estimulos sonoros, destacando a magnitude e a proporg¢ao das diferencas

estatisticamente relevantes nos sinais de EEG.
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Figura 20 - Histograma VAP da FM Siléncio ap6s selegao estatistica
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Figura 21 - Histograma VAP do FM demais estimulos apds selegao estatistica

Conforme observado nos histogramas da Figura 20 e Figura 21, 100% dos
valores de VAP concentraram-se no intervalo de 0 a 5%, indicando que as variagdes
do quantificador Frequéncia Mediana (FM) entre os estimulos sonoros foram minimas.
Esse resultado sugere que a metodologia empregada, apesar de identificar diferengas
estatisticamente significativas (valor-p < 0,05), néo foi eficaz em evidenciar distingdes
expressivas entre os estimulos no que diz respeito a frequéncia mediana dos sinais
de EEG. Tal concentragcdo em um intervalo de baixa variagao pode refletir uma
limitagdo na sensibilidade do quantificador FM para captar alteragoes

neurofisiolégicas induzidas pelos estimulos sonoros analisados neste estudo.
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4.6.2 Quantificador Porcentagem de Contribuigcao de Poténcia (PCP)

O quantificador Porcentagem de Contribui¢cao de Poténcia (PCP) foi analisado
para complementar a avaliagdo das respostas neurais aos estimulos sonoros nos
sinais de EEG.

A Figura 22 e Figura 23 apresentam os histogramas gerados a partir do
arquivo Excel com o sufixo final para o quantificador PCP, de maneira analoga ao
descrito no item 4.6.1 Quantificador Frequéncia Mediana (FM). Esses histogramas
ilustram a distribuicdo dos valores de variagédo percentual (VAP) do PCP apods a
selegao estatistica significativa, com base nas comparagdes entre os sete estimulos
sonoros. A unica diferenca em relacéo ao FM reside na configuragcédo do eixo X, que
para o PCP é dividido em dez intervalos de 5 unidades, abrangendo valores de 0 a
50% (0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45 e 45-50), refletindo

uma maior amplitude nas variagcdes observadas.
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Figura 22 - Histograma VAP do PCP Siléncio apos selegao estatistica
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Figura 23 - Histograma VAP do PCP demais estimulos apos selegao estatistica

Com base nos resultados observados nos histogramas apresentados na

Figura 22 e Figura 23, constata-se a presenga de uma proporgao significativa de

valores de variagao percentual (VAP) com magnitudes relevantes para o quantificador

PCP. Especificamente, 80% desses valores encontram-se concentrados nos trés

primeiros intervalos (0 a 5%, 5 a 10% e 10 a 15%), enquanto os 20% restantes

distribuem-se entre os intervalos subsequentes (15 a 50%).

No caso do histograma associado ao estimulo "siléncio", a distribuicdo dos

valores de VAP apresenta uma forma simétrica e concentrada em torno do intervalo

de 10 a 15%, o que sugere uma discrepancia estatisticamente mais acentuada para

esse estimulo em relacdo aos demais. Em contraste, a analise dos histogramas
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referentes aos outros estimulos sonoros indica uma predominancia de valores no
intervalo de 5 a 10%, sugerindo que as variagdes significativas do PCP tendem a se

concentrar em magnitudes inferiores para esses casos.

4.6.2.1 Definicdo do limiar de VAP apds selecao estatistica

Com base nos histogramas para o quantificador PCP (Figura 22 e Figura 23),
estabeleceu-se um limiar minimo de 15% para os valores de variagao percentual
(VAP), com o objetivo de identificar os canais de EEG ou bandas de frequéncia que
mais se destacam na diferenciacdo entre os estimulos sonoros. Essa escolha foi
motivada pela observacao de que aproximadamente 80% dos valores de VAP situam-

se abaixo desse patamar, conforme evidenciado na analise anterior.

Para implementar esse critério, utilizou-se 0 mesmo procedimento de filtragem
estatistica aplicado anteriormente: na planilha Excel com o sufixo final, todos os
valores de VAP inferiores a 15% foram zerados, preservando apenas aqueles que

indicam variagdes mais expressivas e relevantes para a distingdo dos estimulos.

4.6.2.2 Analise detalhada da comparagao com o siléncio

Para obter uma visdo mais detalhada das comparacgdes entre os estimulos
sonoros e identificar os canais do EEG e bandas de frequéncia mais relevantes, foram
gerados graficos de radar comparando cada estimulo sonoro com o siléncio. Esses
graficos foram construidos com base na planilha Excel com o sufixo final, que contém
os valores de VAP apds a selegao estatistica e a definicdo do limiar minimo de 15%,
conforme descrito no item 4.6.2.1 Definicdo do limiar de VAP apés selecao

estatistica.
A estrutura do grafico de radar (Figura 24) ficou da seguinte maneira:

e Extremidades do grafico: Representam os 20 canais do EEG (FP1, FP2,
F7,F3,FZ,F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, OZ, O2);
e Niveis do centro ao exterior: Correspondem aos valores de VAP,

indicando a magnitude das variagdes percentuais significativas;
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e Itens coloridos: Representam as sete bandas de frequéncia (Delta, Teta,
Alfa, Beta, Gama, Supergama e Ruido), preenchendo o grafico conforme a

distribuicao dos valores de VAP.

Adicionalmente, cada grafico inclui a contabilizagdo do numero de valores de
VAP selecionados, isto é, aqueles superiores ao limiar de 15%. Considerando que
cada tabela subjacente ao grafico € composta por 20 linhas (canais de EEG) e 7
colunas (bandas de frequéncia), totalizando 140 elementos, o grafico exibe a
quantidade de VAPs distintos de zero, oferecendo uma métrica quantitativa da

relevancia das variagdes observadas em cada comparagao.
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Figura 24 - VAP acima de 15% para PCP do estimulo Siléncio com os demais estimulos
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Ao analisar a Figura 24, observa-se que as bandas de frequéncia Delta e Alfa
apresentam valores de VAP acima de 20% em todas as comparac¢des. Para a banda
Delta, os valores mais relevantes do VAP concentram-se nos eletrodos occipitais e
temporais, enquanto para a banda Alfa, os valores de VAP se destacam nos eletrodos
frontais. Esses achados sugerem que a estimulagédo sonora tem um impacto direto na
porcentagem de contribuicao de poténcia (PCP), indicando que os estimulos sonoros

provocam respostas neurofisioldgicas mensuraveis nos pacientes.
Interpretagéo neurofisiolégica:

e Banda Delta: A concentracdo de valores significativos nos eletrodos
occipitais e temporais pode refletir a modulagdo da atividade cerebral em
regides associadas ao processamento visual e auditivo, respectivamente.
As ondas Delta estdo geralmente relacionadas ao sono profundo, mas em
contextos de vigilia, podem indicar mudancas na atividade cortical em
resposta a estimulos externos (RAMOS et al., 2020) (OLIVEIRA et al.,
2007);

e Banda Alfa: A predominancia nos eletrodos frontais sugere que a banda
Alfa esta envolvida na modulacdo da atividade cognitiva e emocional
durante a percepgcdao de estimulos sonoros. As ondas Alfa sao
frequentemente associadas a estados de relaxamento e reducido da
ansiedade, mas também podem refletir processos de atencdo e
concentracao (RAMOS et al., 2020) (OLIVEIRA et al., 2007).

4.6.2.3 Analise detalhada quando diferentes estimulos musicais sdo comparados

De forma analoga ao descrito no item 4.6.2.2 Analise detalhada da
comparagao com o siléncio, foram elaborados graficos de radar para comparar os
demais estimulos sonoros entre si. A Figura 25 apresenta os graficos das
comparagdes mais relevantes, que possuem maior quantidade de VAPs diferentes de
zero. Esses graficos permitem visualizar as diferencas significativas na modulagéo

neural entre diferentes estimulos musicais.
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Figura 25 - VAP acima de 15% para PCP outras comparagées relevantes

Conforme ilustrado na Figura 25 percebe-se que o estimulo sonoro “musica
desgostada” quando comparado aos demais estimulos apresentou maior quantidade
de VAPs diferente de zero, e outra comparacgao relevante foi entre o estimulo musica
favorita e ruido branco. Quando se analisa as comparag¢des com a musica desgostada

percebe-se que os maiores valores de VAP esta aglutinado na banda de frequéncia
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delta nos eletrodos occipitais. Vale ressaltar que também a banda de frequéncia alfa
se destaca nas comparagdes com do continuo, ruido branco e rosa, nos eletrodos
frontais e da regido esquerda do cérebro. Evidencia-se também, a banda de
frequéncia gama alta nos eletrodos da regido temporal. Ja nas comparagdes com o
estimulo sonoro “musica favorita” nota-se uma relevancia na banda de frequéncia teta

nos eletrodos occipitais e parietais.

4.7 CONSIDERACOES FINAIS

Com base nos histogramas apresentados no item anterior, observa-se que,
para o quantificador frequéncia mediana (FM), os valores de variacdo percentual
(VAP) nao alcangaram niveis significativos, permanecendo inferiores a 5%. Os
histogramas indicam uma concentragédo de 100% dos valores nesse intervalo para
todos os estimulos sonoros, sugerindo que este quantificador na metodologia adotada

para o reconhecimento de padrbes nao se mostrou eficaz.

Em contraste, para o quantificador porcentagem de contribuigdo de poténcia
(PCP), os valores de VAP exibem maior discrepancia, atingindo até 50%, conforme
demonstrado nos histogramas para todos os estimulos sonoros. Esse comportamento
revela que o PCP apresenta um elevado potencial como ferramenta para o

reconhecimento de padrdes por meio do método proposto.

Analisando os graficos de comparagao entre os estimulos sonoros (Figura 24
e Figura 25), elaborados apds a definicdo do limiar de variagdo percentual (VAP)
conforme a selecao estatistica, observa-se que o estimulo "siléncio" se diferenciou
dos demais nas bandas de frequéncia Delta e Alfa. Ressalta-se que o estimulo
"musica desgostada" também exibiu uma discrepéancia significativa em relagéo aos
outros estimulos sonoros nas mesmas bandas Delta e Alfa. Outra diferenca notavel
foi constatada na comparacao entre os estimulos "musica favorita" e "ruido branco",

na qual se verificou uma variagao mais pronunciada na banda de frequéncia Teta.

No estudo (KUMAGAI; ARVANEH; TANAKA, 2017), argumenta-se que a
lateralizagcdo hemisférica cerebral varia conforme o estimulo recebido. Os autores
sugerem que a percepgao musical nem sempre resulta em lateralizagdo, mas que uma

musica n&o familiar pode elicitar uma resposta cortical mais intensa do que uma
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musica familiar. Esses achados corroboram os resultados deste trabalho, no qual se
constatou que a "musica desgostada" apresentou uma quantidade consideravelmente
maior de valores de VAP significativos em comparagdo com os demais estimulos,

evidenciando sua maior capacidade de diferenciagao.

Diferente dos achados de (EHRLICH et al., 2019), que identificaram a
poténcia da banda Gama no hemisfério direito e modulagbes da poténcia Beta frontal
como elementos envolvidos em tarefas de interagdo, este estudo revela que o
quantificador porcentagem de contribuigdo de poténcia (PCP) para as bandas Beta e
Gama, sob estimulagdo musical em comparacdo com o "siléncio", apresenta baixa

relevancia, sendo mais pronunciado na regiao occipital.

Em (GROUSSARD et al., 2010), foi conduzido um estudo sobre memoria
semantica, definida como a memoaria de conceitos independente das circunstancias
espaciais ou temporais de aprendizagem, que permite o reconhecimento de musicas
e melodias ou a evocacao de um forte sentimento de familiaridade. Nesse trabalho
(GROUSSARD et al., 2010), os autores observaram que a ativacdo dessa memodria,
sob estimulos musicais, ocorreu nas regides temporal superior, frontal mediana e
frontal inferior do hemisfério esquerdo, bem como na regido frontal inferior do
hemisfério direito. Diferentemente, o presente estudo destaca a relevancia do PCP na
banda de frequéncia Alfa nas regides frontais e na banda Delta nas regides occipitais,

ao comparar o estimulo "siléncio" (ou repouso) com os demais estimulos sonoros.

De acordo com (MAITY et al., 2015), a decomposigado de sinais de EEG no
dominio da frequéncia, utilizando a transformada discreta de wavelet nas bandas Alfa
e Teta, seguida da analise por meio da técnica de flutuagao multifractal sem tendéncia,
revelou que uma estimulagdo musical simples impacta significativamente as
dindmicas cerebrais, manifestando-se em diferentes tipos de emocdes. Nesse estudo
(MAITY et al., 2015), pequenos sons de drone elevaram a complexidade das bandas
Teta e Alfa em todos os eletrodos frontais, um padrao também verificado no presente
trabalho, no qual a aplicagao de estimulos sonoros destacou a banda de frequéncia

Alfa na regiao frontal.

Em (TSENG et al., 2013), argumenta-se que a regido pré-frontal do cértex é
a mais apropriada para avaliar os efeitos da estimulagdo musical sobre respostas

emocionais, por ser responsavel pelas fungées como controle cognitivo,
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processamento emocional e atividades mentais cotidianas. Os autores observaram
que essa regido apresenta maior ativagdo com emogdes positivas associadas ao
prazer e menor ativagdo com emogdes negativas, como ansiedade. Especificamente,
a poténcia da banda Alfa nos hemisférios esquerdo e direito do cortex pré-frontal
mostrou-se inversamente proporcional a intensidade emocional: a poténcia Alfa no
hemisfério esquerdo diminui com musicas positivas, enquanto no hemisfério direito
essa redugao ocorre com musicas negativas, evidenciando uma assimetria funcional

relacionada a valéncia emocional.

De maneira semelhante (FOLGIERI; BERGOMI; CASTELLANI, 2014),
constatou-se que a ativacado frontal estd associada a intensidade das emocbes
evocadas pela musica, reduzindo-se com sons relacionados a medo e frustracao, e

aumentando com sons que transmitem felicidade e satisfacao.

Verifica-se a necessidade de mais estudos sobre estimulagdo musical para
ampliar a compreensao dos beneficios potenciais na area da terapia musical cognitiva.
A analise do quantificador de coeréncia permanece em desenvolvimento, uma vez

que sua estrutura de dados difere das estruturas dos quantificadores PCP e FM.
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CAPITULO 5 - APLICAGAO DE INTELIGENCIA ARTIFICIAL

O presente capitulo aborda a aplicagdo de técnicas de inteligéncia artificial
(IA) no contexto do processamento e analise de sinais neurofisiolégicos. A inteligéncia
artificial, campo da ciéncia da computagao dedicado ao desenvolvimento de sistemas
capazes de simular capacidades humanas como aprendizado, raciocinio e
reconhecimento de padrdes, tem se mostrado uma ferramenta poderosa para
solucionar problemas complexos em diversas areas, incluindo a medicina e a
engenharia biomédica. Neste capitulo, exploram-se arquiteturas e métodos de IA
empregados para a classificagdo e interpretacdo dos dados de EEG coletados,

destacando seus beneficios, desafios e resultados obtidos na pesquisa.

O processo de treinamento envolveu experimentacao extensiva com o ajuste
de hiperparametros e a aplicacédo de técnicas de otimizagao, buscando adaptar cada
modelo aos desafios inerentes aos dados de EEG, tais como a natureza nao

estacionaria, a alta suscetibilidade a ruidos e a variabilidade interindividual.

5.1 DEFINICAO FORMAL DO PROBLEMA

Formalmente, os sinais de EEG podem ser representados como Xj(e’w) (s) € X,
onde j = {1,2,:--,n} denota os pacientes, e = {1,2,::-,d} os eletrodos, w = {1,2, -, m}
o0 numero de épocas/segmentos selecionadas pelo neurologista, e s = {1,2,:-+,t} as
variagdes elétricas ao longo do tempo para cada eletrodo. Cada amostra X; esta
associada a um roétulo y; € Y, que representa o resultado esperado (por exemplo:
estimulagéo A, etiologia B, prognostico C, etc.). Este estudo tem como objetivo
aprender uma funcao de classificacdo baseada em modelos de IA, definida como
F: X — y’ a partir do conjunto de dados de EEG, tal que y' =y, permitindo assim a

classificagdo de novos exames de EEG X, ¢ X, cuja classe € desconhecida.
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5.2 ARQUITETURAS

Inicialmente, foi utilizado como base o cddigo fonte da dissertagdo de (BALDO

JUNIOR, 2023), que combina Redes Neurais Convolucionais (CNN) e Redes Neurais

Recorrentes do tipo Long Short-Term Memory (LSTM) para a classificagdo de sinais

de EEG. Esse modelo hibrido CNN-LSTM foi inicialmente projetado para processar

sinais brutos de EEG e atributos adicionais, como idade, sexo e dados estatisticos do

sinal, visando classificar a etiologia do coma ou progndéstico do paciente.

A arquitetura proposta por (BALDO JUNIOR, 2023), é composta pelos

seguintes elementos (Figura 26):

Paciente: Representa o paciente ou voluntario submetido ao EEG;

Dados do Paciente: Informagdes pertinentes ao voluntario ou paciente,
constituidas por idade, sexo, progndstico, etiologia do coma, etc;

Captura de Sinal: Etapa na qual os eletrodos conectados ao escalpo
cerebral do paciente sdo conectados ao aparelho que realiza a coleta das
oscilagdes de tensodes, capturando assim o EEG;

Selecdo de Epocas: O sinal coletado é dividido em épocas/segmentos de
tempo, comumente de 2 segundos. Essas épocas/segmentos podem ser
selecionadas por um neurologista especializado, que avalia a qualidade do
exame e seleciona trechos com a menor quantidade de ruidos e que
representem o estado do paciente. Normalmente, nesses estudos, sao
selecionadas 10 épocas/segmentos;

Extracao de Caracteristicas Estatisticas: Extracdo de caracteristicas
estatisticas das épocas/segmentos selecionadas, como média, desvio
padrdo, maior amostra, menor amostra e variancia;

Rede Neural: Elemento responsavel por extrair caracteristicas do sinal,
composto por uma camada convolucional (CNN) que extrai caracteristicas
relevantes do sinal de EEG bruto separado por épocas/segmentos. Em
seguida, esses dados extraidos sao processados por uma camada LSTM,
que modela as dependéncias temporais nos sinais de EEG;

Camada de Achatamento (Flatten): Agrupamento dos dados dos

pacientes, dados estatisticos e a saida da rede neural,
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e Camada Densa (Fully Connected): Os dados da camada de achatamento
sdo a entrada da camada densa, que realiza a classificacdo do EEG,

retornando a porcentagem do EEG analisado em determinada classe.

Essa arquitetura hibrida CNN-LSTM permite explorar tanto as caracteristicas
espaciais (CNN) quanto as temporais (LSTM) dos sinais de EEG. A inclusdo de
informacgdes adicionais do paciente e caracteristicas extraidas dos sinais de EEG,
conforme demonstrado por (BALDO JUNIOR, 2023), aprimoram o desempenho do

modelo em tarefas de classificagao de sinais de EEG.

Dados do Paciente:
idade, sexo, prognostico,
Etiologia Coma

v

Extragdo caracteristicas Camadas Densa
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Figura 26 - Arquitetura IA CNN-LSTM base adaptado de (BALDO JUNIOR, 2023)

Outra arquitetura descrita por (BALDO JUNIOR, 2023) também foi empregada
para fins de treinamento, distinguindo-se por nao utilizar os dados adicionais do
paciente nem os dados estatisticos extraidos do sinal de EEG. Nessa configuragao, o
modelo recebe apenas os sinais brutos de EEG como entrada, que sdo processados
diretamente pelas camadas convolucionais e recorrentes, sem a inclusao de atributos
complementares. Essa abordagem permite avaliar o impacto da auséncia dessas
informacdes adicionais no desempenho da classificagao. A estrutura dessa arquitetura
pode ser visualizada na Figura 27.
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Figura 27 - Arquitetura CNN-LSTM somente com sinal puro adaptado de (BALDO JUNIOR,
2023)

Além da arquitetura hibrida CNN-LSTM, para fins de comparacao, foi
implementada uma rede neural baseada em Multi Layer Perceptron (MLP). Esse
modelo recebe como entrada os dados do paciente e/ou os dados estatisticos
extraidos do sinal de EEG, retornando como resultado a probabilidade de a entrada
pertencer a uma determinada classe. A estrutura dessa abordagem esta ilustrada na
Figura 28.
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Figura 28 — Arquitetura utilizando Multi Layer Perceptron (MLP) adaptado de (BALDO JUNIOR,
2023)

Para este trabalho, estas arquiteturas foram adaptadas, incorporando novos
modelos de IA, como Transformers, com o objetivo de aprimorar a acuracia das
classificagdes, bem como adicionar outros quantificadores extraidos do sinal de EEG
e verificar a eficiéncia destes, testando regides cerebrais e eletrodos mais eficazes

para estas atividades. Com estas arquiteturas realizou-se os seguintes experimentos:

e Prognostico Clinico (Classificacao Binaria [Favoravel e Desfavoravel]);

e Transformer e prognostico clinico (Classificagdo Binaria [Favoravel e
Desfavoravel]);

e Etiologia do Coma (5 Categorias);

e Gosto Musical (Classificagao Binaria [Gostada e Desgostadal]).

5.3 TREINAMENTO

O treinamento foi realizado utilizando a validagao cruzada estratificada k-fold,
uma técnica robusta para avaliar a capacidade de generalizagcdo de modelos de
aprendizado de maquina, especialmente em cenarios com classes desbalanceadas.

A estratificacdo garante que cada particdo de validagao cruzada reflita a distribuicéo
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global das classes, evitando avaliagbes de desempenho enviesadas (BENGIO;
GRANDVALET, 2003). Essa abordagem consiste em dividir o conjunto de dados em
k partes (folds), assegurando que cada fold mantenha a mesma proporgao de classes
do conjunto original. O modelo é treinado iterativamente k vezes, utilizando um fold
diferente como conjunto de teste e os k —1 folds restantes como conjunto de

treinamento em cada iteragao.

No presente estudo, foi empregada a validagdo cruzada estratificada 5-fold
(Figura 29) com X (comumente 30) épocas por fold. Para cada época, utilizou-se um
tamanho de lote (batch size) igual a um, sendo o numero de passos por época definido
como o produto do numero de pacientes pelo numero de segmentos selecionados.
Essa configuragdo garante a consisténcia das dimensdes de entrada ao longo de
todas as iteragbes, assegurando uma convergéncia adequada e possibilitando uma
comparacgao justa entre os modelos avaliados. Além disso, foi utilizado um gerador de
dados personalizado para carregar as amostras individualmente, otimizando o fluxo

de processamento e reduzindo a carga de memoria.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Performance
Iteragdo 1 Teste ' Treino ' Treino ' Treino ' Treino "
- . . . ., Performance
Iteragao 2 Treino ' Teste ' Treino l Treino ' Treino | —>
Média
Iteragdo 3 || Treino ' Treino ' Teste ' Treino ' Treino _> Desvio Padrio
~ = . = . £ Performances
Iteragdo 4 || Treino ' Treino ' Treino ' Teste ' Treino -...,
Iteragdo 4
Iteragdo 5 Treino ' Treino ' Treino ' Treino ' Teste ~ T

Iteragdo 5

Figura 29 - Modelo k-fold de 5 adotado para treinamento das redes neurais

Durante os testes, a classificacao final foi determinada pelo calculo da moda
das previsdes obtidas para cada segmento, estratégia que aprimora a consisténcia da
avaliagao do desempenho do modelo. A medida final de desempenho dos modelos foi
reportada como a média e o desvio padrdo dos resultados obtidos em todos
os folds (Figura 29), proporcionando uma avaliagao confiavel e generalizavel.

5.4 METRICAS DE PERFORMANCE

Para avaliar o desempenho dos modelos de classificacdo de EEGs, foram
adotadas métricas que permitem uma analise abrangente da capacidade preditiva dos

modelos, considerando tanto o desempenho global quanto o comportamento em
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classes especificas, especialmente em cenarios com classes desbalanceadas. A
escolha criteriosa dessas métricas € essencial para garantir uma avaliagao equilibrada
dos modelos, reconhecendo a possivel distribuicado desigual das classes nas bases
de dados de EEG.

A acuracia, definida como a proporcao de classificagdes corretas em relacéo
ao total de amostras, foi utilizada como uma métrica inicial para avaliar o desempenho
geral dos modelos (SOKOLOVA; LAPALME, 2009). No entanto, em problemas de
classificagdo de EEGs, onde classes desbalanceadas sdo comuns, a acuracia pode
superestimar o desempenho de um modelo que favorece a classe maijoritaria,
negligenciando erros nas classes minoritarias, conforme observado em estudos de

classificagdo de EEGs para diagndstico neuroldgico (ROY et al., 2019).

Para mitigar essa limitagdo, foram empregadas outras métricas, como
precisao e recall (revocagao), que avaliam o desempenho do modelo em cada classe
individualmente (POWERS, 2020). A precisdao, também conhecida como valor
preditivo positivo, mede a propor¢cao de amostras classificadas como pertencentes a
uma classe que realmente pertencem a essa classe, enquanto o recall, também
conhecido como sensibilidade, indica a proporcdo de amostras de uma classe que
foram corretamente identificadas. Essas métricas sdo particularmente uteis para
avaliar a capacidade do modelo de identificar corretamente casos raros, como

pacientes com maior chance de recuperagao.

De forma inversa ao recall, a especificidade mede a proporcado de amostras
classificadas como NAO pertencente a uma classe (conhecida como valor preditivo
negativo) (POWERS, 2020).

Adicionalmente, o F1 score, que representa a média harmonica entre precisao
e recall, foi utilizado para combinar essas duas métricas em uma medida Unica,
oferecendo uma visao balanceada do desempenho por classe (GOUTTE; GAUSSIER,
2005). Em cenarios desbalanceados, o F1 score (macro) foi calculado como a média
dos F1 scores de cada classe, e o F1 score (weighted) pelo suporte (nUmero de

amostras) de cada classe, proporcionando uma métrica global mais representativa.

Para o calculo dessas meétricas, utiliza-se como base a matriz de confuséo,
ilustrada na Tabela 5 para o caso de uma classificagao binaria. Essa matriz permite

visualizar o desempenho do modelo, apresentando as quantidades de verdadeiros
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positivos, verdadeiros negativos, falsos positivos e falsos negativos, que servem de

base para o calculo das métricas de avaliacao.

Tabela 5 - Exemplo de matriz de confusdo de uma classificagao binaria

Classe Classificagao | Classificagao

Dado Positiva Negativa

verdadeiro falso negativo
Classe A .
positivo (vp) (fn)

falso positivo verdadeiro
Classe B
(fp) negativo (vn)

As formulas matematicas correspondentes a cada

mencionadas sédo apresentadas na Tabela 6.

Tabela 6 - Formulas matematicas das métricas

vp fn

uma das métricas

Métrica Formula

vp +vn
vp+fn+fp+vn

Acuracia

Preciss vp
recisao —
vp + fp

Recall vp
(revocagdo) vp + fn

-f- - vn
Especificidade o+ on

2 X precisao X recall
F1 score

precisao + recall

As métricas de desempenho selecionadas, incluindo acuracia, precisao,

recall, especificidade, F1 score (macro e weighted) baseadas na matriz de confuséao,

proporcionaram uma avaliacdo equilibrada dos modelos de classificagcao de EEGs,
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Essa abordagem, fundamentada em medidas que analisam tanto o desempenho
global quanto o comportamento por classe, € essencial para identificar a capacidade
dos modelos em detectar casos raros, como pacientes com maior chance de

recuperacgdo, garantindo uma analise confiavel para aplicagdes clinicas.

5.5 QUANTIFICADORES ADICIONADOS PARA ANALISE

5.5.1 PCP

Detalhado no item 2.1.1 Porcentagem de Contribuicdo de Poténcia (PCP).

5.5.2FM

Apresentado no item 2.1.2 Frequéncia Mediana (FM).

5.5.3 Coeréncia

Discutida no item 2.1.3 Coeréncia.

5.5.4 Eletrodos Regiao Frontal

A regiao frontal do cérebro, destacada em vermelho na Figura 30, abrange os
eletrodos FP1, FP2, F7, F8, F3, F4 e Fz, conforme o sistema internacional 10-20 de
posicionamento de eletrodos. Esses eletrodos estao localizados na parte anterior do
couro cabeludo, cobrindo o lobo frontal, que desempenha um papel central em uma
ampla gama de fungdes cognitivas e comportamentais. O lobo frontal é responsavel
por processos como raciocinio, planejamento, tomada de decisdo, controle inibitério,
regulagdo emocional, atengdo, memdria de trabalho, comportamento social e controle
motor voluntario (FIRAT, 2019).

Areas especificas dessa regido, como o cértex pré-frontal, sdo cruciais para
as fungdes executivas, que incluem a capacidade de organizar, monitorar e adaptar

comportamentos para atingir objetivos (MILLER; COHEN, 2001), enquanto a area de
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Broca contribui para a produgéo da linguagem (DRONKERS et al., 2007) e o cortex

motor gerencia os movimentos voluntarios.

Figura 30 - Representacao esquematica do sistema 10-20 de posicionamento de eletrodos para
EEG, com a regido frontal destacada em vermelho. Os eletrodos FP1, FP2, F7,F8, F3,F4 e FZ
correspondem a area frontal

5.5.5 Eletrodos Regiao Central

A regido central do cérebro, destacada em amarelo na Figura 31, abrange os
eletrodos C3, C4 e Cz, conforme o sistema internacional 10-20 de posicionamento de
eletrodos. Esses eletrodos estdo posicionados ao longo da linha média e das areas
laterais do couro cabeludo, cobrindo a regiao central do cérebro, que inclui o giro pré-
central e pés-central, localizados respectivamente anterior e posterior ao sulco central

(ou fissura de Rolando).

Essa regiao é responsavel por fungdes sensoriais € motoras primarias: o giro
pré-central (logo a frente do sulco central), que contém o coértex motor primario,
gerencia os movimentos voluntarios do corpo contralateral, enquanto o giro pés-
central (logo atras do sulco central), que abrange o cortex somatossensorial primario,

processa informag¢des sensoriais tateis, de pressao, dor e temperatura (KANDEL,
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2012). Estes eletrodos centrais, sdo amplamente utilizados em estudos de imagética
motora e em interfaces cérebro-computador (BCIl), pois captam oscilagbes
relacionadas a preparagao, execugao e imaginagao de movimentos (WANG et al.,
2007).

Figura 31 - Representacao esquematica do sistema 10-20 de posicionamento de eletrodos para
EEG, com a regido central destacada em amarelo. Os eletrodos C3, C4 e CZ correspondem a
area central, localizada ao longo da linha média e das areas laterais do couro cabeludo

5.5.6 Eletrodos Regiao Occipital

A regiao occipital do cérebro, destacada em verde na Figura 32, abrange os
eletrodos O1, O2 e OZ, conforme o sistema internacional 10-20 de posicionamento de
eletrodos. Esses eletrodos estao posicionados na parte posterior do couro cabeludo,
cobrindo o lobo occipital, que é primariamente responsavel pelo processamento
visual. O cértex visual primario (area de Brodmann 17), localizado no lobo occipital,
desempenha um papel central na percepgao visual, incluindo o reconhecimento de

formas, cores, movimentos e profundidade (KANDEL, 2012).

Suas fungbes incluem a recepcado e decodificacdo de estimulos visuais,

mapeamento do campo visual, analise de cor, forma, distancia, tamanho e
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profundidade dos objetos, além do reconhecimento de faces e objetos familiares. A
atividade elétrica registrada nos eletrodos occipitais reflete, portanto, o funcionamento
do sistema visual e é fundamental tanto para a investigagdo de processos perceptivos

quanto para a detecgéo de alteragdes neuroldgicas que afetam a visao.

Figura 32 - Representagao esquematica do sistema 10-20 de posicionamento de eletrodos para
EEG, com a regido occipital destacada em verde. Os eletrodos O1, O2 e OZ correspondem a
area occipital, localizada na parte posterior do couro cabeludo, abrangendo o lobo occipital

5.5.7 Eletrodos Regiao Parietal

A regido parietal do cérebro, destacada em azul na Figura 33, abrange os
eletrodos P3, P4 e PZ, conforme o sistema internacional 10-20 de posicionamento de
eletrodos. Esses eletrodos estdo posicionados na parte superior e posterior do couro
cabeludo, cobrindo o lobo parietal, que desempenha um papel essencial na integragao

sensorial e na percepc¢ao espacial.

O lobo parietal é responsavel por funcbes como o processamento de
informagdes somatossensoriais (como tato, temperatura, pressao e dor), a

coordenagao visuomotora, a orientacao espacial, a atencdo e a integracdo de
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estimulos sensoriais para a constru¢ao de uma representagdo do ambiente (KANDEL,
2012).

Além disso, areas especificas do lobo parietal, como o cortex parietal
posterior, estdo envolvidas na memoria de trabalho e no processamento de tarefas
que requerem atencdo espacial (CORBETTA; SHULMAN, 2002). Permitindo o
reconhecimento de objetos por meio do tato, a orientagdo espacial, a percepgao da
localizagao das partes do corpo e a integracao de informagdes sensoriais com a visao
e a audi¢do. Além disso, o lobo parietal esta envolvido em processos cognitivos como
a atencéo, a linguagem e a memoria (CORBETTA; SHULMAN, 2002).

Figura 33 - Representacao esquematica do sistema 10-20 de posicionamento de eletrodos para
EEG, com a regido parietal destacada em azul. Os eletrodos P3, P4 e PZ correspondem a area
parietal, localizada na parte superior e posterior do couro cabeludo, abrangendo o lobo
parietal

5.5.8 Eletrodos Regidao Temporal

A regiao temporal do cérebro, destacada em laranja na Figura 34, abrange os
eletrodos T3, T4, TS5 e T6, conforme o sistema internacional 10-20 de posicionamento

de eletrodos. Esses eletrodos estdo posicionados nas areas laterais do couro
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cabeludo, cobrindo o lobo temporal, que desempenha um papel fundamental em

fungdes como audigéo, linguagem, memoria e emogao.

O lobo temporal contém o cértex auditivo primario (area de Brodmann 41 e
42), responsavel pelo processamento de estimulos auditivos, e areas associativas
envolvidas na compreenséo da linguagem, como a area de Wernicke no hemisfério
dominante (KANDEL, 2012). Além disso, o lobo temporal medial, que inclui o
hipocampo e a amigdala, é crucial para a formagcdo de memdérias declarativas e a
regulagdo emocional (SQUIRE; ZOLA-MORGAN, 1991).

Figura 34 - Representagao esquematica do sistema 10-20 de posicionamento de eletrodos para
EEG, com a regido temporal destacada em laranja. Os eletrodos T3, T4, T5 e T6 correspondem
a area temporal, localizada nas partes laterais do couro cabeludo, abrangendo o lobo temporal

5.5.9 Common spatial pattern (CSP)

O Common Spatial Pattern (CSP) € uma técnica amplamente empregada na
analise de sinais de EEG para identificar padrées espaciais discriminativos entre
diferentes classes de sinais cerebrais, como estados motores ou cognitivos distintos
(BLANKERTZ et al., 2008). O algoritmo decompde os sinais de EEG em componentes

espaciais, otimizados para maximizar a variancia de uma classe enquanto minimiza a
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variancia da outra, facilitando a distingdo entre as condi¢dées neurologicas estudadas
(RAMOSER; MULLER-GERKING; PFURTSCHELLER, 2000).

Matematicamente, o CSP calcula filtros espaciais a partir das matrizes de
covariancia dos sinais de EEG, resolvendo um problema de autovalores generalizado.
Esses filtros projetam os sinais originais em um novo espaco, realgando as
caracteristicas mais discriminativas e permitindo a classificagdo subsequente. A
eficacia do CSP na extragdo de caracteristicas espaciais relevantes o torna uma
ferramenta valiosa em interfaces cérebro-computador (BCI) e na analise de padrdes
cerebrais em diversos contextos clinicos e de pesquisa, incluindo a detecgao de
estados alterados de consciéncia e a classificacdo de sinais de EEG em pacientes

com disturbios neurolégicos (LOTTE et al., 2018).

5.5.10 Decomposicao de Wavelet

A decomposicao por wavelets € uma técnica de processamento de sinais que
representa um sinal em termos de fung¢des de base chamadas wavelets, que sao
oscilacdes localizadas no tempo e na frequéncia. Diferentemente da transformada de
Fourier, que fornece apenas informagdes no dominio da frequéncia, a transformada
wavelet discreta (DWT, Discrete Wavelet Transform) oferece uma analise multi-
resolucdo, capturando caracteristicas temporais e frequenciais simultaneamente
(MALLAT, 2008). Isso ¢é particularmente util para sinais nao estacionarios, como EEG,
que exibem variagcdes dinamicas ao longo do tempo. A DWT decompde o sinal em
coeficientes de aproximagédo (componentes de baixa frequéncia) e coeficientes de
detalhe (componentes de alta frequéncia) em diferentes niveis de resolugéo,

permitindo a extragcado de padroes.

A wavelet Daubechies 4 (Db4) é uma fungao wavelet ortogonal com suporte
compacto, caracterizada por quatro coeficientes de filtro que definem sua capacidade
de decompor sinais em componentes de baixa e alta frequéncia. Desenvolvida por
Ingrid Daubechies, a Db4 possui quatro momentos nulos, o que permite a
representacdo precisa de polinbmios até o grau 3, tornando-a adequada para a
analise de sinais complexos e nao estacionarios. Sua suavidade moderada, em
comparagdo com wavelets mais simples, como a Haar, aliada a eficiéncia

computacional, captura variagdes temporais e frequenciais, por exemplo, picos ou
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ondas especificas, em diferentes escalas de resolucdo (DAUBECHIES, 1992). Dessa
forma, a Db4 proporciona uma analise multirresolucdo robusta, isolando
caracteristicas do sinal que podem indicar alteragbes no estado neuroldgico,
capturando dinamicas espacgo-temporais criticas frequentemente obscurecidas em

sinais bruto.

5.6 ABREVIATURAS UTILIZADAS NO PROCESSAMENTO

Para melhorar a visualizagao das tabelas com os resultados, foram adotadas

as seguintes abreviaturas (Tabela 7):

Tabela 7 - Abreviaturas utilizadas para os resultados dos modelos de IA

Abreviatura Significado
Modelo utilizando uma camada covulocional (CNN) seguida de uma
MCL
camada recorrente de LSTM
MMLP Modelo utilizando Multi Layer Perceptron (MLP)
MT Modelo utilizando camadas de Transformer
Modelo utilizando uma camada covulocional (CNN) seguida de
MCT
camadas de Transformer
MCLT Modelo utilizando uma camada covulocional (CNN), seguida de uma
camada recorrente de LSTM, e por fim camadas de Transformer
Representa o processamento utilizando caracteristicas do paciente
CcpP (sexo, idade, etiologia do coma), totalizando 3 atributos por
época/segmento
Representa o processamento utilizando caracteristicas estatisticas
CE do sinal (média, desvio padrdo, maior amostra, menor amostra,
variancia), totalizando 5 atributos por eletrodo, e 100 atributos por
época/segmento
Representa o processamento utilizando caracteristicas do
CPCP quantificador de porcentagem de contribui¢ado de poténcia (PCP) por
banda de frequéncia, totalizando 4 a 7 atributos por eletrodo, e (80 a
140 atributos por época/segmento
Representa o processamento utilizando caracteristicas do
CFM quantificador frequéncia mediana (FM) por banda de frequéncia,
totalizando 4 a 7 atributos por eletrodo, e 80 a 140 atributos por
época/segmento.
Representa o processamento utilizando caracteristicas do
CcC quantificador Coeréncia, totalizando 129 atributos por eletrodo, e
2580 atributos por época/segmento
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Abreviatura

Significado

CPE

Representa o processamento utilizando caracteristicas do paciente e
estatisticas do sinal, totalizando 103 atributos por época/segmento.

CPPCP

Representa o processamento utilizando caracteristicas do paciente e
do quantificador de PCP

CPFM

Representa o processamento utilizando caracteristicas do paciente e
do quantificador de FM

CPC

Representa o processamento utilizando caracteristicas do paciente e
do quantificador de Coeréncia

CPEF

Representa o processamento utilizando caracteristicas do paciente e
utilizando somente os eletrodos da regido frontal (conforme Figura
30)

CPEC

Representa o processamento utilizando caracteristicas do paciente e
utilizando somente os eletrodos da regido central (conforme Figura
31)

CPEO

Representa o processamento utilizando caracteristicas do paciente e
utilizando somente os eletrodos da regiao occipital (conforme Figura
32)

CPEP

Representa o processamento utilizando caracteristicas do paciente e
utilizando somente os eletrodos da regido parietal (conforme Figura
33)

CPET

Representa o processamento utilizando caracteristicas do paciente e
utilizando somente os eletrodos da regido temporal (conforme Figura
34)

CCSPX

Representa o processamento utilizando caracteristicas extraidas
através do algoritmo Common Spatial Pattern (CSP) com X valores

CDw4

Representa o processamento utilizando caracteristicas da
Decomposi¢ao Wavelet, com 4 valores extraidos através do CSP

REA

Representa que o sinal foi reamostrado para frequéncia de 400 Hz
com 801 pontos por época/segmento

SREA

Representa que o sinal NAO foi reamostrado (SEM reamostragem)
para frequéncia de 400 Hz com 801 pontos por época/segmento

SPV

Representa que o processamento foi realizado sem utilizagdo de
placa de video

Espec.

Especificidade

ALL

Representa que o processamento foi realizado utilizando a base de
dados completa, sem agrupar os exames pertencentes ao mesmo
individuo, mesmo em cenarios nos quais existem segmentos do
mesmo exame associados a diferentes causalidades

First Half

Representa que o processamento foi realizado utilizando metade da
base de dados, mantendo os segmentos de um mesmo exame
associados exclusivamente a uma unica causalidade (A ou B),
preservando a proporcao entre as causalidades e utilizando a
primeira metade dos exames disponiveis.
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Abreviatura Significado

Representa que o processamento foi realizado utilizando metade da
base de dados, mantendo os segmentos de um mesmo exame
Other Half | associados exclusivamente a uma unica causalidade (A ou B),
preservando a proporgao entre as causalidades e utilizando a outra
metade dos exames disponiveis.

Representa que o processamento foi realizado utilizando metade da
Same Half | base de dados, mantendo os segmentos de um mesmo exame
associados as causalidades A e B.

Representa que o processamento foi realizado utilizando a base de
dados completa, assegurando que todas as causalidades associadas
a um mesmo exame estejam presentes no mesmo conjunto de
treinamento. Essa abordagem visa evitar a fragmentagao dos dados
relacionados a um unico paciente, garantindo a integridade das
informacgdes durante o aprendizado do modelo

ALL Group

5.7 CONFIGURACAO DE EXECUCAO DOS TREINAMENTOS

Os experimentos foram realizados em um notebook AVELL equipado com um
processador Intel Core i7-12700H (2,30 GHz), 32 GB de memodria RAM e uma placa
de video NVIDIA GeForce RTX 3060 (6 GB de VRAM). No entanto, durante o
processamento das redes neurais com CNN e Transformer, foi necessario desabilitar
a placa de video devido a auséncia de algoritmos deterministicos no driver da GPU, o
que resultou no seguinte erro: [GPU MaxPool gradient ops do not yet have a
deterministic XLA implementation]. Esse ajuste garantiu a estabilidade do

treinamento, embora tenha impactado o tempo de execuc¢do dos modelos.

5.8 PROGNOSTICO CLINICO

5.8.1 Definigao do problema

O progndstico de pacientes em coma é um aspecto fundamental dos cuidados
neurocriticos, influenciando diretamente a tomada de decisbes médicas, o
aconselhamento familiar e a alocagao de recursos de saude. A avaliagao prognostica
busca determinar se o paciente recuperara a consciéncia (desfecho favoravel) ou

permanecera em estado vegetativo persistente, ou ainda evoluira para 6bito (desfecho
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desfavoravel). Dentre as diversas ferramentas disponiveis para essa avaliagdo, a
eletroencefalografia (EEG) destaca-se como um biomarcador essencial na predigao
de desfechos (WESTHALL et al., 2016), fornecendo informagdes em tempo real sobre

a fungao cerebral e o potencial de recuperagao.

Os meétodos prognosticos tradicionais baseiam-se em escores clinicos,
reflexos do tronco encefélico e potenciais evocados somatossensoriais (SSEPs). No
entanto, essas abordagens podem apresentar baixa sensibilidade em determinadas
populagdes de pacientes (RUIJTER et al.,, 2019). A analise do EEG oferece uma
avaliagdo mais dindmica da atividade cerebral, permitindo a deteccao de padrdes
como reatividade a estimulos, supressdo em surtos (burst suppression) e a presencga
de oscilagcbes patologicas, fortemente correlacionadas a recuperagao neuroldgica
(SANDRONI et al., 2020). Entretanto, a interpretacdo precisa e automatizada dos
dados de EEG ainda constitui um desafio, dado que a atividade cerebral em pacientes

comatosos é altamente complexa e varia significativamente ao longo do tempo.

Diante desse cenario, este trabalho propde a utilizacdo de técnicas de
inteligéncia artificial para prever o prognéstico clinico dos pacientes, classificando-os
em desfechos favoraveis ou desfavoraveis a partir dos exames de EEG. Essa
abordagem visa aprimorar a acuracia e a objetividade na avaliagdo progndstica,
contribuindo para a tomada de decisdes clinicas mais informadas e para a melhoria

do manejo dos pacientes em coma.

5.8.2 Base de dados

A base de dados utilizada neste estudo foi coletada no Hospital de Clinicas
da Universidade Federal de Uberlandia (HC-UFU) entre os anos de 2010 e 2020,
especificamente na UTI Adulto, com aprovacédo do Comité de Etica em Pesquisa da
instituicdo (protocolo de pesquisa numero 369/11 (ANEXO A) e 2.570.022 (ANEXO
B)) (RAMOS, 2017) (RAMOS et al., 2018).

Os registros de EEG foram obtidos utilizando o amplificador de sinais
biolégicos BrainNet BNT-EEG, que conta com 21 canais, sendo 20 dedicados a
aquisicao digital de sinais EEG e um canal adicional para registro de ECG, seguindo

o padrao internacional de posicionamento de eletrodos 10-20. Foram aplicados filtros
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passa-alta de 1 Hz e passa-baixa de 35 Hz, e taxas de amostragem iguais 100 Hz (35

exames), 200 Hz (16 exames), 400 Hz (7 exames) e 600 Hz (2 exames).

Para garantir a qualidade e a relevancia dos dados, foram estabelecidos

critérios de inclusédo, que sdo listados a seguir:

e Apenas pacientes em estado de coma;

e Com idade igual ou superior a 18 anos,

e Escala de coma se aplicavel, ndo deve ser superior a oito pontos;

e Os exames devem ter duragdo minima de 20 minutos;

e Ser clinicamente viaveis, conforme avaliagdo de um neurologista
especializado;

¢ Durante as aquisi¢cdes, os pacientes nao terem sido submetidos a estimulos
externos;

e Cada registro deveria conter pelo menos dez épocas/segmentos de dois
segundos livres de artefatos visuais, selecionadas por neurologistas
especializado;

e No maximo trés eletrodos poderiam ser considerados inadequados para o
processamento, conforme apontado pelo neurologista ou devido a questdes
de sinal ruido de 60 Hz;

e A coleta do sinal de EEG deve utilizar um amplificador compativel com o
formato empregado na pesquisa;

e Deve conter informagdes do paciente, como, numero do prontuario medico,
data da coleta, motivo da solicitacdo, sexo, idade, nivel de consciéncia,

etiologia do coma, e prognostico (favoravel ou desfavoravel).

Para cada paciente, um neurologista selecionou 10 épocas/segmentos de 2
segundos dos registros de EEG, priorizando segmentos com o menor numero possivel
de artefatos e representativos da condi¢do neurolégica do individuo. O conjunto de
dados também inclui metadados clinicos relevantes, como etiologia do coma, idade,
sexo e desfecho clinico, classificado como favoravel (sobreviventes) ou desfavoravel
(6bitos).

A idade média dos pacientes foi de 49,16 + 19,18 anos, sendo 44 do sexo
masculino e 16 do sexo feminino. Para fins de treinamento dos modelos, foram

consideradas apenas as nove primeiras épocas/segmentos de cada exame, de modo
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a evitar viés na validacio, sendo a predicao final do paciente determinada pela moda
das classificagbes dessas épocas/segmentos sendo FAVORAVEL ou
DESFAVORAVEL.

Devido a heterogeneidade das frequéncias de amostragem presentes no
conjunto de dados e as limitagdes de alguns modelos da literatura que n&o suportam
taxas variaveis, os sinais e alguns treinamentos foram reamostrados para uma
frequéncia padrao de 400 Hz. Para sinais com taxas inferiores, novas amostras foram
geradas por interpolagédo; para sinais com taxas superiores, as amostras foram

reduzidas (downsampled) para adequagéao a frequéncia alvo.

Esses procedimentos asseguraram a padronizacao e a qualidade dos dados,
tornando-os adequados para a analise e o desenvolvimento dos modelos de

classificacdo de EEG em pacientes com coma.

5.8.3 Resultados

Os resultados dos modelos treinados seguem descritos detalhadamente no
APENDICE I.

5.8.4 Discussao

A analise dos modelos de inteligéncia artificial para o progndéstico de morte
com base em sinais de EEG, apresentada no APENDICE |, revela variacdes
significativas de desempenho entre diferentes abordagens, destacando a relevancia
da escolha do modelo e de sua configuracao para otimizar as métricas como acuracia,
F1 score, precisao, entre outras. Os modelos baseados em MCL (com camadas de
CNN e LSTM), superam consistentemente os modelos MMLP (Multilayer Perceptron),
especialmente quando o sinal ndo é reamostrado (SREA). Esses resultados
evidenciam a capacidade superior da arquitetura MCL em capturar padrées temporais
e espaciais complexos nos dados eletrofisiolégicos, conforme destacado na Tabela 8
que mostra os modelos que apresentaram os melhores resultados, e na Figura 46
pode-se visualizar o comportamento das métricas dos modelos em termos de cada

fold de treinamento.
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Tabela 8 - Resultados do treinamento da base de dados Prognéstico Clinico com os melhores
resultados, em negrito se destaca o melhor modelo

Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)
MCL CP SREA 0.87+0.04 0.86+0.04 0.92+0.10 0.831£0.15 0.87+0.04 533
MCL CC 0.88+0.09 0.88+0.09 0.97+0.06 0.80+0.19 0.88+0.09 1055
MCL CPEC 0.8740.09 0.87+0.09 0.884£0.10 0.87+0.13 0.87+0.09 671
MCL CE
ConviD (64/128, 0.75+0.11 | 0.75%0.10 | 0.80+0.18 | 0.73%0.13 | 0.75+0.11 859
kernel 5/3, para
128/256, kernel 3/7)
ERTNET
(LIV et al., 0.731£0.18 0.73+0.18 0.76+0.22 0.77+0.17 0.731+0.18 284
2024)
ACURACIA F1 SCORE (MACRO)
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Figura 35 - Evolugdo de cada FOLD do treinamento da base de dados Prognéstico Clinico com
os melhores resultados
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O modelo CNN-LSTM com caracteristicas de coeréncia (MCL CC), apresenta
o melhor desempenho geral, com um F1 score (macro) de 0,88 + 0,09 e precisao de
0,97 £ 0,06, embora exija um tempo de treinamento elevado (1055 segundos). Esses
resultados indicam um trade-off entre desempenho preditivo e eficiéncia
computacional, sugerindo que a inclusdo do quantificador de coeréncia, calculado em
tempo de execugao, pode comprometer marginalmente a eficiéncia em comparagéao
ao modelo Multi Layer Perceptron com caracteristicas do paciente sem reamostragem
do sinal (MMLP CP SREA) (APENDICE | - Tabela 15), que, apesar de ser o mais
rapido, com treinamento de apenas 72 segundos, apresenta métricas inferiores, com
acuracia de 0,67 + 0,09. Essa relagdo ressalta a importancia do equilibrio entre

precisao e eficiéncia computacional no contexto clinico.

A incorporagdo da wavelet Daubechies 4 (Db4) (APENDICE | - Tabela 18), no
modelo MCL CDW4, que apresentou acuracia de 0.75 + 0.11, evidencia a importancia
de utilizar wavelets para extrair caracteristicas temporais e frequenciais em sinais
EEG, especialmente devido a natureza nao estacionaria desses sinais. Em contraste,
modelos baseados em arquiteturas mais complexas, como ResNet50 e EfficientNet
(APENDICE | - Tabela 19) apresentaram desempenho inferior (acuracia de 0.45 +
0.10 e 0.43 = 0.24, respectivamente), além de demandarem maior tempo de
treinamento, indicando que a complexidade arquitetural nem sempre se traduz em

melhor desempenho para essa tarefa especifica.

A utilizagdo de subconjuntos especificos de canais eletroencefalograficos,
correspondentes a regides cerebrais delimitadas, promove elevado desempenho
preditivo e reduz significativamente a quantidade de dados processados, acelerando
o treinamento dos modelos. Por exemplo, o modelo MCL CPEC, focado na regiao
central, alcanga acuracia de 0,87 + 0,09 com tempo de treinamento de 671 segundos,
em contraste com o modelo MCL CC, que utiliza todos os canais e obtém acuracia de
0,88 + 0,09, mas exige 1055 segundos. Essa redug¢ao na dimensionalidade dos dados
diminui a complexidade computacional, permitindo a anadlise de padroes
eletrofisiolégicos especificos de areas cerebrais relevantes para o prognostico, sem
interferéncias de ruidos ou informagdes redundantes. Assim, a regionalizagdo dos
canais otimiza o equilibrio entre precisdo e eficiéncia, essencial para aplicacbes

clinicas em tempo real.
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5.9 TRANSFORMER E PROGNOSTICO CLINICO

5.9.1 Definigao do problema

O problema abordado nesta secdo € o mesmo descrito na Sec¢ao 5.8
Prognéstico Clinico, que consiste em prever o desfecho clinico (favoravel ou
desfavoravel) de pacientes em coma a partir da classificacédo dos sinais de EEG.
Entretanto, nesta etapa, adota-se uma abordagem diferenciada, empregando o
modelo Transformer para explorar sua capacidade baseada em atencao de capturar

padrées complexos nos sinais de EEG, visando aprimorar a precisdo do progndstico.

5.9.2 Base de dados

A base de dados utilizada nesta segdo € a mesma apresentada em 5.8

Prognéstico Clinico, que contém sinais de EEG de pacientes em coma.

5.9.3 Descrigao do Modelo

Os Transformers tém demonstrado potencial significativo em aplicacées de
séries temporais e biomédicas devido a sua capacidade de capturar dependéncias de

longo alcance e padrdes espago-temporais complexos.
Nesse contexto, foram propostas trés arquiteturas:

1. MT (Modelo Transformer), baseada exclusivamente em camadas de

Transformer, variando apenas o0 numero de camadas;

2. Modelo Transformer com Caracteristicas adicionais, idéntica ao MT, porém
com a adi¢ao de caracteristicas extras (e.g., idade, sexo, métricas estatisticas

do sinal) antes da camada densa de classificagao;

3. MCT (Modelo CNN-Transformer), composta por camadas convolucionais
(CNN) seguidas de camadas de Transformer, sendo estruturalmente

semelhante a arquitetura MCL.

A primeira arquitetura (MT), conforme ilustrada na Figura 36, estrutura-se em

quatro componentes principais:
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Registro de EEG: Esta etapa consiste na conexao dos eletrodos ao couro
cabeludo do paciente, registrando o sinal de EEG por meio de um
dispositivo apropriado, conforme descrito anteriormente;

Selecao de segmentos e preparagdao dos dados: Nessa fase, um
neurologista analisa o registro de EEG e seleciona 10 segmentos de 2
segundos cada, garantindo minima presengca de artefatos e
representatividade da condi¢gao neuroldgica do paciente;

Arquitetura baseada em Transformer: construido com base no
TransformerEncoder, composto por multiplos mecanismos de Self-
Attention, camadas Feed-Forward e camadas de normalizagdo. Esse
esquema permite a modelagem eficiente de dependéncias espaco-
temporais nos sinais de EEG. Para avaliar o desempenho, foram realizados
diversos treinamentos com ajustes em diferentes hiperparametros, como
numero de camadas de TransformerEncoder, quantidade de cabecas de
atencao, dimensao da camada intermediaria, taxa de dropout e numero de
épocas de treinamento;

Classificador: A etapa de classificacdo consiste em uma camada de
GlobalAveragePooling para redugdao da dimensionalidade dos dados,
seguida de uma camada densa que realiza a classificagdo. Ao final, o

modelo gera um vetor indicando as probabilidades de cada rétulo.
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Figura 36 - Arquitetura IA (Modelo Transformer MT) utilizando Transformers através de sinais

de EEG como entrada para camadas de TransformerEncoder
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Para modelar a correlagéo entre os sinais de EEG e a classificagdo, o modelo
proposto aprende representagbes latentes dos sinais ao capturar dependéncias
temporais e espaciais. O conjunto de registros X].(e'W)(s) € representado como uma

sequéncia temporal multidimensional, na qual cada eletrodo é tratado como um canal
independente. Essa sequéncia ¢é processada diretamente por um bloco
TransformerEncoder, que captura dependéncias de longo alcance entre os sinais ao
longo do tempo e entre diferentes eletrodos, dispensando operag¢des locais como
convolugdes. As camadas de saida do TransformerEncoder sao calculadas conforme

a Equacao 10:

MultiHead(Q,K,V) = Concat(head, ..., head,) )W° (10)

Onde n denota o numero de cabecas de atencdo e W? € R" %X dmodel, No

qual cada cabecga de atencgao € calculada de acordo com a Equacgéao 11:

head; = Attention(QWS2, KWX,vw}) (11)

As matrizes de projegdo s&o parametrizadas como W% € R¥moderx &k, WK e
Rémoderx dk e WY € R%moaer* dv_ QO proprio mecanismo de self-attention € definido pela

Equacao 12:

. QK"
Attention(Q,K,V) = softmax < )V (12)

Vi
Onde Q (queries/iconsultas), K (keys/chaves) e V (values/valores) sao

representagcdes do sinal de entrada, e d, é a dimensdo das chaves. A normalizagao

por ,/d, melhora a estabilidade dos gradientes durante o treinamento.

Em resumo, o modelo processa uma matriz de entrada tridimensional de
formato (j X w,s,e), em que j € o numero de pacientes, w 0 numero de segmentos
por paciente, s 0 numero de amostras por segmento e e 0 numero de canais de EEG
(eletrodos). Cada amostra na dimensao temporal atua como um token no contexto do

TransformerEncoder, formando uma sequéncia de s tokens para cada segmento.

O mddulo TransformerEncoder analisa esses tokens e emprega o mecanismo

de atencdo MultiHead com d,,,4.; = e. Essa dimensao é dividida entre N_H cabecgas

e

de atenc¢do, cada uma operando em um subespaco de dimensao d, = d, = lﬁ ,
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considerando somente a parte inteira da divisdo. Por meio desse mecanismo, o
modelo captura relagbes temporais e espaciais, permitindo enfatizar as caracteristicas
mais relevantes, preservando o formato original da entrada (j X w,s,e).
Posteriormente, aplica-se o globalAveragePooling na dimensao temporal, reduzindo
cada segmento a uma matriz de formato (j X w,e). Por fim, uma camada densa
transforma essa representagdo em uma matriz de saida de formato (j x w, Y), onde
Y representa a quantidade de categorias, fornecendo assim as probabilidades

previstas para cada segmento pertencer as categorias da classificagao.

A segunda arquitetura, denominada Modelo Transformer com caracteristicas
adicionais, conforme ilustrado na Figura 37, é bastante semelhante ao modelo MT. A
principal diferenga consiste na incorporacao de informagdes extras, como idade, sexo
e meétricas estatisticas do sinal, que sdo adicionadas antes da camada densa de

classificagado, com o objetivo de aprimorar os resultados da classificagao.
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Figura 37 - Arquitetura IA (Modelo Transformer MT) utilizando Transformers através de sinais
de EEG como entrada para camadas de TransformerEncoder, com as caracteristicas extras
adicionadas na camada densa

Por fim, a terceira arquitetura, denominada Modelo CNN-Transformer (MCT),
também segue o mesmo design do Modelo Transformer com caracteristicas
adicionais. A unica diferenca é que, antes das camadas de TransformerEnconder, é

inserida uma camada convolucional (CNN), conforme ilustrado na Figura 29. Essa



135

variagao da arquitetura visa aprimorar o desempenho do modelo, buscando a melhor

configuragao possivel para a tarefa.
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Figura 38 - Arquitetura IA (Modelo CNN-Transformer MCT) utilizando CNN e Transformers
através de sinais de EEG como entrada para o CNN seguido das camadas de
TransformerEncoder, com as caracteristicas extras adicionadas na camada densa

Para utilizar o Transformer na infraestrutura existente, foi necessario realizar
o0 downgrade do Python da versao 3.12 para 3.11, devido a incompatibilidade da
biblioteca TensorFlow Text com a versdao mais recente (3.12). Além disso, o
processamento via CUDA (GPU) foi desabilitado porque as operag¢des de gradiente
do MaxPool ndo possuem implementacao deterministica com XLA (Accelerated Linear

Algebra) quando usadas em arquiteturas CNN e Transformer.

Para melhor compreensao das tabelas de resultados, observe a legenda a

seqguir (Tabela 9):

Tabela 9 - Legenda para os hiperparametros do modelo Transformer

Nome Coluna Descricao
N_L Numero de camadas (layers) de Transformer
INT_D Dimensao da camada intermediaria do Transformer
DOUT Dropout do Transformer
N_H Numero de cabegas do Transformer
EPC Numero de épocas utilizadas no treinamento
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5.9.4 Resultados

Os resultados dos modelos treinados seguem descritos detalhadamente no
APENDICE J.

5.9.5 Discussao

Com base nas diversas configuragdes de treinamento avaliadas, esta secao
discute os principais resultados obtidos com as arquiteturas baseadas em
TransformerEncoder. A Tabela 10 apresenta uma sintese dos melhores desempenhos
alcancados, destacando as combinacdes de hiperparametros que maximizam as
meétricas de desempenho. A analise detalhada desses resultados permite
compreender como o0s hiperparametros de numero de camadas (N_L), dimensé&o
intermediaria (INT_D), dropout (DOUT), numero de cabegas de atengcdo (N_H), e
quantidade de épocas de treinamento (EPC) influenciam o desempenho dos modelos,
oferecendo insights para otimizacao futura e aplicagcbes praticas. O comportamento
das métricas dos modelos por fold de treinamento € visualizado na Figura 39 e Figura
40.

Tabela 10 - Resultado Prognostico Clinico usando Transformers variando os hiperparametros
com os melhores resultados, em negrito se destaca o melhor modelo para MT e MCT

k) [a) - O ~
® T = = o - F1 score . 25
é ZI E zl 8 & Acuracia (macro) Precisao Recall Espec. E ﬁ
MCT 8| 32 3 | 0.05 30 0.78+0.07 | 0.78+0.07 | 0.83+0.14 | 0.77+0.13 | 0.78:+0.07 | 1284
MCT CP 8| 32 3 0.1 30 0.80+0.10 | 0.80+0.10 | 0.82+0.10 | 0.77+0.17 | 0.80+0.10 | 1349
MCT CE 8| 64 1 0.1 30 0.77+0.14 | 0.77+0.14 | 0.76+0.14 | 0.80+0.16 | 0.770.14 | 863
MCT CPCP 4| 64 3 0.1 30 0.78+0.11 | 0.78+0.11 | 0.80+0.13 | 0.77+0.13 | 0.78+0.11 | 1976
MCT CFM 8| 128 | 3 | 0.05 30 0.80+0.07 | 0.80+0.07 | 0.83+0.09 | 0.77+0.08 | 0.80+0.07 | 2014
MCT CC 4| 64 1 0.1 30 0.87+0.09 | 0.86+0.09 | 0.95+0.10 | 0.80+0.19 | 0.87+0.09 | 1281
MCT CPE 4| 256 | 3 | 0.05 30 0.78+0.09 | 0.78+0.09 | 0.76+0.07 | 0.83+0.11 | 0.78:£0.09 | 1217
MCTCPPCP | 8 | 256 | 3 | 0.05 30 0.83+0.05 | 0.83+0.05 | 0.83+0.02 | 0.83+0.11 | 0.83+0.05 | 1878
MCSTREZFM 4| 128 | 3 | 0.05 30 0.87+0.04 | 0.87+0.04 | 0.94+0.08 | 0.80+0.13 | 0.87+0.04 | 736
MCT CPC 4| 32 3 0.1 30 0.90+0.06 | 0.90+0.06 | 0.97+0.06 | 0.83+0.15 | 0.90+0.06 | 1526
MT 8| 64 3 0.1 30 0.88+0.09 | 0.88+0.09 | 0.97+0.06 | 0.80+0.19 | 0.88+0.09 | 503
MT CP 4| 256 | 3 | 0.05 30 0.87+0.07 | 0.87+0.07 | 0.96+0.08 | 0.77+0.08 | 0.87+0.07 | 426
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o [ = O —~
® T | 5 o . F1 score s 25
é z| E zI 8 & Acuracia (macro) Precisao Recall Espec. § ;3’
MT CE 8 | 256 3 | 0.05 30 0.85£0.10 | 0.84+0.10 | 0.93+0.13 | 0.80+0.19 | 0.85+0.10 | 685
MT CPCP 8 | 256 3 | 0.05 30 0.87+0.04 | 0.86+0.04 | 0.95+0.10 | 0.80+0.13 | 0.87+0.04 | 1000
MT CFM 8 | 256 3 | 0.05 30 0.83+£0.05 | 0.83+0.05 | 0.96+0.08 | 0.70+£0.07 | 0.83+0.05 | 950
MT CC 4 | 256 1 0.1 30 0.87+0.11 | 0.86+0.12 | 0.92+0.10 | 0.80+0.19 | 0.87+0.11 | 632
MT CPE 4 | 128 3 | 0.05 30 0.85+£0.06 | 0.85+0.07 | 0.97+0.07 | 0.73#0.13 | 0.85+0.06 | 413
MT CPPCP 8| 64 3 0.1 30 0.83+0.08 | 0.83+0.08 | 0.93+0.13 | 0.77+0.17 | 0.83+0.08 | 1046
MTS(;TIFM 4 | 64 3 0.1 30 0.83+£0.09 | 0.83#0.10 | 0.89+0.10 | 0.77£0.17 | 0.83+0.09 | 2626
MT CPC 8| 32 3 | 0.05 30 0.87+0.04 | 0.87+0.04 | 0.91+0.07 | 0.83+0.15 | 0.87+0.04 | 1161
ACURACIA F1 SCORE (MACRO)
1,00 1,00
0,30 0,30
0,80 0,80
0,70 0,70
0,80 0,80
0,50 0,50
0,40 0,40
0,20 0,20
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0,00 0,00
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD = FOLD 4 FOLD 5
PRECISAO RECALL
1,00 1,00
0,30 \ 0,90
0,80 0,80
0,70 \ 0% o
0,60 0,60
0,50 0,50
0,40 0,40
0,30 0,30
0,20 0,20
0,10 0,10
0,00 0,00
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
E S P E C | F | C | DA D E —+— MCT (N_H=8, INT_D= 32, N_L=3, DOUT=0.05, EFC=30)
1,00 —#— MCT CP (N_H=8, INT_D=32, N_L=3, DOUT=0.1, EFC=30)
0,50 —8— MCT CE (N_H=8,INT_D=64, N_L=1, DOUT=0.1, EFC=30]
0,80
07 —de— MCT CPCF [N_H=4, INT_D=64_ N_L=3, DOUT=0.1, EFC=30]
0,60 MCT CFM (N_H=2, INT_D=128, N_L=3, DOUT=0.05, EFC=30)
0,50 —s— MCT CC (N_H=4, INT_D=54,N_L=1, DOUT=0.1, EFC=30)
z'z —a— MCT CFE [N_H=4, INT_D=258, N_L=3, DOUT=0.05, EFC=30)
0:20 ——MCT CPPCP {N_H=8, INT_D=256, N_L=3, DOUT=0.05 30}
0,10 —#— MCT CPFM SREA (N_H=4,INT_D=128_N_L=3, DOUT=005 EPC=30}
0,00
ol 1 foLD 2 foLD = - FoLp s  —#—MCTCPC{N_H=4, INT_D=32, N_L-3, DOUT=0.1, EPC=30)

Figura 39 - Evolugdo de cada FOLD do treinamento da base de dados Prognéstico Clinico MCT
com os melhores resultados
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Figura 40 - Evolugao de cada FOLD do treinamento da base de dados Prognéstico Clinico MT
com os melhores resultados

Os modelos MCT e MT demonstraram desempenhos distintos dependendo
das caracteristicas processadas e configuragcdes de hiperparametros. O modelo
CNN-Transformer com caracteristicas de paciente e coeréncia (MCT CPC) (N_H =
4,INT_D = 32,N_L = 3,DOUT = 0,1, EPC = 30) destacou-se como o0 modelo mais
preciso, alcangando 0,90 de acuracia (com preciséo de 0,97), porém com tempo de
treinamento elevado (1526 segundos). Em contrapartida, o modelo Transformer (MT)
padrdo (sem caracteristicas adicionais) obteve 0,88 de acuracia em apenas 503

segundos, evidenciando sua eficiéncia computacional.
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Configuragdes com N_L = 3 e INT_D < 128 tendem a otimizar o desempenho,
enquanto N_H = 8 ndo melhora consistentemente os resultados em comparagao
comN_H = 4. Nota-se que os modelos MCT tendem a exigir mais recursos
computacionais para resultados comparaveis. Isso indica que, embora arquiteturas
mais complexas (MCT) possam alcangar picos de precisao, as versdes otimizadas

(MT) oferecem um melhor custo-beneficio para aplicagdes praticas.

Para analisar a dimensionalidade e a natureza esparsa dos dados de EEG,
utilizou-se a técnica de visualizacdo t-SNE (t-distributed Stochastic Neighbor
Embedding), que reduz dados de alta dimenséao para representagdes bidimensionais,
preservando as relagdes de proximidade entre os pontos (VAN DER MAATEN;
HINTON, 2008). Inicialmente, os dados brutos do sinal EEG associados ao melhor
resultado MT foram visualizados com t-SNE (Figura 41), fornecendo uma percepgao
da distribuicdo original dos dados. Em seguida, aplicou-se a mesma técnica para
visualizar a versao latente dos dados apdés a passagem pelas camadas do
TransformerEncoder em cada Fold, evidenciando como o modelo promoveu uma
segregacdo mais clara dos padrdes, destacando seu papel na melhoria da
separabilidade e representatividade dos dados para a tarefa de classificacdo. Essa
evolucdo na distribuicdo dos dados pode ser visualizada na Figura 41, Figura 42 e
Figura 43.

0.0

-25 1

Dados Brutos

@ Desfavoravel
@ Favoravel

-1.5

-1.0

-05 0.0
Componente 1

0.5 10

0.2

0.0

Apos Treinamento Fold 1

@ Desfavoravel
L] @ Favoravel

. . o
. (] . ']
. -0.2 . .
. .
L ]
-1.0
™ . o —0.4 < ¢
- . g oo
g ° g * .
5 * ° ° ° E 06 * %
O -15 . (s} * ® [ ]
L] [ ] [ ] L] [ s
° . * o
-0.8
. N .
-20 L] L) LJ LA ° [ J
[} . °

2.0 25 3.0 35 4.0 45 5.0 5.5
Componente 1

Figura 41 - Visualizagao t-SNE dos dados brutos do EEG e a visao latente apés a aplicagao das
camadas de TransformerEnconder do melhor resultado do Modelo MT (N_H = 8,INT_D =
64,N_L = 3,DOUT = 0,1 e EPC = 30) para o primeiro Fold
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Figura 42 - Visualizagao t-SNE latente apos a aplicagdo das camadas de TransformerEnconder
do melhor resultado do Modelo MT (N_H = 8,INT_D = 64,N_L = 3,DOUT = 0,1 e EPC = 30) para
o segundo e terceiro Fold
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Figura 43 - Visualizagao t-SNE latente apés a aplicagao das camadas de TransformerEnconder
do melhor resultado do Modelo MT (N_H = 8,INT_D = 64,N_L = 3,DOUT = 0,1 e EPC = 30) para
o quarto e quinto Fold

Os achados, consolidados na Tabela 10, Figura 41, Figura 42 e Figura 43,

sugerem que a arquitetura Transformer é robusta para o prognéstico clinico com EEG,

mas requer otimizagao cuidadosa de hiperparametros e selecao de caracteristicas

para atender as demandas clinicas.
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5.10 ETIOLOGIA DO COMA

5.10.1 Definigao do problema

A etiologia do coma abrange uma ampla variedade de condigdes subjacentes,
tornando-se um desafio clinico significativo nos cuidados neurocriticos. Compreender
as causas do coma € fundamental para um diagndstico preciso, definicdo do
tratamento adequado e comunicacgao eficaz com familiares dos pacientes. Entre os
fatores etiologicos mais comuns estao o traumatismo cranioencefalico, desequilibrios
metabdlicos, infecgdes do sistema nervoso central e lesdes estruturais, como acidente
vascular cerebral (AVC) ou tumores. Estudos recentes apontam o traumatismo
cranioencefalico como uma das principais causas, seguido por AVC isquémico e
hemorragia intracerebral (MAHAJAN et al., 2024).

No contexto brasileiro, é frequente que pacientes cheguem as unidades de
emergéncia em coma sem identificacdo ou informagdes sobre a possivel origem do
quadro, como histérico de trauma recente, o que intensifica a necessidade de métodos
diagnosticos que auxiliem o corpo clinico na identificagdo da causa primaria, pois
fundamenta a avaliagdo progndstica e o desenvolvimento de intervengdes

terapéuticas direcionadas.

Os métodos tradicionais de diagndsticos em neurocriticos, como escores
clinicos, avaliagdo de reflexos do tronco encefalico e potenciais evocados
somatossensoriais (SSEPs), tém sido amplamente utilizados para investigar as
causas do coma. Contudo, essas abordagens frequentemente carecem de
sensibilidade e especificidade, especialmente em populagbes heterogéneas de
pacientes (WARTENBERG et al., 2019). A analise do EEG tem se destacado como
uma ferramenta valiosa, oferecendo uma avaliagdo dindmica e n&o invasiva da

atividade cerebral.

Avancos recentes em aprendizado de maquina potencializaram a analise de
EEG, permitindo a deteccdo de padroes sutis e complexos anteriormente
negligenciados (NASCIMENTO JUNIOR et al., 2025). Apesar dessas inovagdes,
desafios importantes persistem para a interpretacdo automatizada e precisa dos
dados de EEG, uma vez que a atividade cerebral em pacientes comatosos é altamente
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variavel e influenciada por multiplos fatores, incluindo o momento da avaliagdo e a

etiologia subjacente do coma.

Dessa forma, este estudo propde a classificacdo da etiologia do coma a partir
dos exames de EEG de pacientes em estado comatoso, considerando categorias
como traumatismo cranioencefalico, coma metabdlico, acidente vascular cerebral e
outras. O objetivo é identificar a causa raiz do quadro clinico, contribuindo para o

direcionamento mais eficaz do tratamento.

5.10.2 Base de dados
A base de dados utilizada nesta secdo é a mesma apresentada em 5.8
Prognéstico Clinico, que contém sinais de EEG de pacientes em coma.

Porém vale destacar a distribuicdo da etiologia do coma da base dados

conforme a Tabela 11.

Tabela 11 - Distribuicdo da base dados em coma em termos de etiologia e desfecho clinico

@ o
B9 Desfecho
T ©
Etiologia S g Rotulo | Total
§ & | Favoravel | Desfavoravel
Traumatismo Cranioencefalico 20 17 3 TCE 20
Coma Metabdlico 18 5 13 CM 18
Acidente Vascular Cerebral 12 5 7 AVC 12
Encefalopatia pds andxica 2 2 0
Neoplasia 2 0 2
Disturbios Hidroeletroliticos 1 1 0
Ferimento por arma de fogo 1 0 1
- Outros 10
Hematoma subdural cronico 1 0 1
Hidrocefalia 1 0 1
Encefalopatia hipoxica 1 0 1
Neurocisticercose 1 0 1
Total 60 30 30 - 60
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5.10.3 Resultados

Os resultados dos modelos de inteligéncia artificial voltados para a
classificagdo da etiologia do coma seguem descritos detalhadamente no APENDICE
K, APENDICE L, APENDICE M e APENDICE N.

5.10.4 Discussao

Com base nos resultados apresentados na Tabela 12, esta secéo discute a
classificagdo da etiologia do coma utilizando diferentes configuracbes de modelos
baseados em aprendizado profundo. Observa-se que o modelo CNN-LSTM com
caracteristicas do paciente e eletrodos frontais (MCL CPEF) alcangou a melhor
acuracia (0,63 £ 0,14) e F1 score (macro) (0,59 + 0,16), indicando maior capacidade
de discriminagao entre as diferentes causas do coma. Por outro lado, modelos como
CNN-Transformer com caracteristicas dos eletrodos temporais (MCT CET) ou com
caracteristicas do paciente e Frequéncia Mediana (MCT CPFM) apresentaram
desempenho inferior, evidenciando as dificuldades inerentes a classificacao etiolégica

nessa base de dados.

A analise dos hiperparametros, como numero de cabecas de atencéo,
dimensao intermediaria e taxa de dropout, demonstra sua influéncia significativa nos
resultados, reforgcando a importancia do ajuste fino desses parametros para otimizar
o desempenho. Além disso, os tempos de treinamento variaram consideravelmente
entre os modelos, 0 que ressalta a necessidade de equilibrio entre eficiéncia
computacional e acuracia para aplicagdes clinicas praticas. Esses achados fornecem
subsidios importantes para o desenvolvimento de sistemas assistivos que possam

auxiliar no diagnéstico etiolégico do coma.

Tabela 12 - Resultados do treinamento da base de dados Etiologia do Coma, melhores
resultados, em negrito se destaca o melhor modelo

o a - 0 ~

] T | =) O - F1 score - 25

é ZI E z| 8 & Acuracia (macro) Precisao Recall Espec. E f"_’,
MCL CP 0.60+0.11 | 0.53+0.13 | 0.58+0.17 | 0.56+0.10 | 0.86+0.03 | 787
MCL CPFM 0.53+0.13 | 0.46+0.10 | 0.47+0.11 | 0.49+0.12 | 0.84+0.04 | 968
MCL CPEF 0.63+0.14 | 0.59+0.16 | 0.65+0.21 | 0.62+0.14 | 0.87+0.04 | 813
MCLT CPEF | 4 | 64 1 0.1 30 0.58+0.15 | 0.56+0.17 | 0.62+0.20 | 0.57+0.17 | 0.86+0.05 | 871
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3 r 241 5|¢ F1 23
[} . . .

° I |—I | 8 o Acuracia score Precisao Recall Espec. £
g z =z =z a w (macro) gL

MCT CPE 8|25 | 3 | 005 | 30 0.57+0.12 | 0.49+0.14 | 0.49+0.17 | 0.53+0.13 | 0.85+0.04 | 1758
MCTCPFM | 8 | 256 | 3 | 0.05 | 30 0.52+0.14 | 0.44+0.07 | 0.45+0.06 | 0.47+0.12 | 0.83+0.05 | 1933
MCT CET 31128 | 3 0.2 60 0.47+0.04 | 0.39+0.09 | 0.46+0.11 | 0.41+0.06 | 0.82+0.02 | 2333

Complementarmente, a Figura 44 apresenta o comportamento das métricas
dos modelos com os melhores resultados em cada fold durante o treinamento,
permitindo uma analise detalhada da consisténcia e variagdo do desempenho ao

longo das diferentes divisbes dos dados.

ACURACIA F1 SCORE (MACRO)

09

08 //J
B &

01 01
0 0
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
PRECISAO RECALL
1 1
09
08
07
06 4
0,5
04
0,3
0,2 0,2
01 01
0 0
FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD &
ESPECIFICIDADE
1
08 -
og F ——MCLCP —e—MCLCPFM
0,7
0.8 —m— MCL CPEF MCLT CPEF
05
0,4
03 MCT CPE ——MCT CPFM
0,2
0,1
o —a— MCTCET
FOLD 1 FOLD 2 FOLD 3 FOLD & FOLD &

Figura 44 - Evolucao de cada FOLD do treinamento da base de dados Etiologia do Coma
melhores performances
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Baseando-se na Tabela 13 que apresenta os resultados do treinamento
realizados na base de dados da etiologia do coma, excluindo os exames rotulados
como "outros". Observa-se que o modelo MCL CPEF se destacou, apresentando a
melhor acuracia (0,70 + 0,14) e F1 score macro (0,68 + 0,18), indicando uma
capacidade superior para distinguir as diferentes causas do coma quando os rétulos
menos frequentes sdo removidos. O modelo MCL CPFM, MT e MCT CEC também
apresentou desempenho competitivo, reforgcando a eficacia da selegao de atributos e
das configuragdes com ajuste refinado dos hiperparametros. Em contraste, modelos
como MCT CET mostraram resultados inferiores, refletindo desafios na classificacao
devido a complexidade e variabilidade dos dados clinicos. Os tempos de treinamento
permaneceram relativamente moderados, o que sugere um equilibrio adequado entre
precisdo e eficiéncia computacional. Esses resultados enfatizam a importancia da
curadoria dos dados e da calibragdo dos modelos para otimizar o diagnostico assistido

por IA na etiologia do coma.

Tabela 13 - Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, melhores resultados, em negrito se destaca o melhor modelo

o o~
§ ;I El ;| § E Acuracia '::n:g?;;e Precisao Recall Espec. EE
MCL CPE 0.60+0.14 | 0.56+0.16 | 0.61+0.18 | 0.59+0.15 | 0.80+0.06 | 625
MCL CPFM 0.64+0.17 | 0.60+0.20 | 0.66+0.23 | 0.62+0.18 | 0.81+0.09 | 942
MCL CPEF 0.70%+0.14 | 0.68+0.18 | 0.72+0.18 | 0.70+0.16 | 0.85+0.07 | 733
MT 8| 128 | 3 0.2 60 0.62+0.19 | 0.62+0.19 | 0.68+0.17 | 0.64+0.20 | 0.81+0.10 | 832
MT CP 8| 256 | 3 | 0.05| 30 0.62+0.18 | 0.59+0.19 | 0.63x0.22 | 0.60+0.19 | 0.81x0.09 | 691
MT CPCP 8| 128 | 3 0.2 60 0.60+0.17 | 0.59+0.16 | 0.69+0.18 | 0.63+0.19 | 0.81+0.08 | 1503
MCT CEC 3128 | 3 0.2 60 0.64+0.16 | 0.60+0.16 | 0.67+0.20 | 0.63%0.16 | 0.82+0.08 | 1961

Adicionalmente, a Figura 45 ilustra a variagdo das métricas dos modelos com
os melhores desempenhos sem os exames do rotulo “OUTROS” em cada fold ao
longo do treinamento, possibilitando uma avaliagcado detalhada da consisténcia e das

flutuagdes no desempenho em diferentes divisbes dos dados.
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ACURACIA F1 SCORE (MACRO)
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Figura 45 - Evolucdo de cada FOLD do treinamento da base de dados Etiologia do Coma SEM
exames pertencentes ao rotulo outros, melhores performances

A exclusao dos exames rotulados como "outros" reduziu a base de dados de
60 para 50 pacientes, eliminando casos com causas de coma menos frequentes e
mais heterogéneas. Essa remocgdo resultou na simplificagdo do problema de
classificagao, que passou de 4 para 3 classes, diminuindo a variabilidade e o ruido
associados a rétulos menos representativos. Assim, a redugao do numero de classes
favoreceu a distingao entre as causas mais prevalentes, contribuindo para aprimorar

a capacidade de aprendizagem e o desempenho dos modelos de classificagao.
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5.11 GOSTO MUSICAL

5.11.1 Definigao do problema

O estudo das respostas cerebrais associadas ao gosto musical representa um
desafio multidisciplinar, envolvendo neurociéncia, psicologia e ciéncia de dados. A
musica exerce um papel central na experiéncia humana, sendo capaz de evocar
emocoes intensas, memorias e estados afetivos distintos. No entanto, a forma como
diferentes estilos ou faixas musicais impactam o cérebro de maneira individualizada
ainda nao é totalmente compreendida. A identificagdo neural de musicas favoritas
(selecionadas individualmente pelo voluntario para induzir valéncia emocional
positiva) e musicas desgostadas (escolhidas pelo voluntario para eliciar reagdes de
aversao ou desconforto) pode fornecer insights valiosos sobre os mecanismos de
processamento emocional e preferéncias pessoais, além de explorar as bases
neurofisiolégicas das emogdes e suas aplicagdes em areas como musicoterapia,

neuromarketing e diagndstico de disturbios afetivos.

Tradicionalmente, a avaliacdo do gosto musical tem se baseado em
autorrelatos e questionarios subjetivos que, embora uteis, apresentam limitagdes
quanto a objetividade e a padronizagao das respostas (NORTH; HARGREAVES,
2008). No contexto brasileiro, a diversidade -cultural influencia fortemente as
preferéncias musicais, o que potencializa a necessidade de métodos objetivos para
analisar respostas emocionais. Nesse sentido, a analise do EEG surge como uma
alternativa promissora, permitindo a investigacdo direta da atividade cerebral em
tempo real durante a escuta musical. Contudo, a variabilidade interindividual e a
complexidade dos padrbes eletroencefalograficos associados a diferentes estados
emocionais tornam a classificacdo automatizada um desafio significativo (ALLURI et
al., 2012).

Avancos em aprendizado de maquina tém possibilitado a identificagdo de
padroes sutis em sinais de EEG, porém, os desafios mencionados anteriormente
ainda dificultam a generalizagdo de modelos preditivos para diferentes populagdes e
géneros musicais (HASANZADEH; ANNABESTANI; MOGHIMI, 2021; HE et al., 2024;
PANDEY et al., 2021). A compreensao e a classificacdo precisas dessas respostas

podem nao apenas avangar o conhecimento cientifico sobre cognigdo musical, mas
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também abrir caminho para aplicagdes em musicoterapia, entretenimento

personalizado e interfaces cérebro-computador adaptativas.

Dessa forma, este trabalho propde a utilizacdo de exames de EEG como
entrada para modelos de inteligéncia artificial, visando a classificacdo automatizada

desses exames em musicas favoritas e musicas desgostadas.

5.11.2 Base de dados

A base de dados utilizada nesta secdo é a mesma apresentada no CAPITULO
4 - ANALISE DE PADROES DE ESTIMULAGAO MUSICAL subitem 4.4 Base de
dados, que contém sinais de EEG de individuos normais submetidos a estimulacao

musical.

5.11.3 Resultados

Os resultados dos modelos treinados seguem descritos detalhadamente no
APENDICE O, APENDICE P e APENDICE Q.

5.11.4 Discussao

A analise comparativa dos modelos treinados para classificagao de respostas
neurais a estimulagdo musical (musicas favoritas vs. desgostadas) revela insights
significativos sobre o desempenho de diferentes arquiteturas de redes neurais e
estratégias de processamento de dados. A Tabela 14, apresentada a seguir, sintetiza
os melhores desempenhos alcangados, destacando as combinagdes de modelos e
configuragbes que maximizam as métricas de desempenho. E na Figura 46 pode-se

visualizar o comportamento dos modelos em termos de cada fold de treinamento.

Tabela 14 - Resultados do treinamento base de dados Estimulagdo musical (Favorita e
Desgostada) melhores performances, em negrito se destaca o melhor modelo

o o = O ~

© T = > o - F1 score s 25

3 ZI E z| 8 & Acuracia (macro) Precisao Recall Espec. g @

= = 2L
MMLP All 30 | 0.53£0.09 | 0.52+0.09 | 0.53+0.07 | 0.67£0.14 | 0.53+0.09 | 223
MCL CFM All 30 | 0.4340.11 | 0.43#0.11 | 0.44+0.10 | 0.43+0.12 | 0.43+0.11 | 1540
MCL CPEC All 30 | 0.44+0.03 | 0.44+0.04 | 0.44+0.04 | 0.42+0.08 | 0.44+0.03 | 1484
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o (=) - O ~
g ;l |£| ; § E Acuracia T:n:z?;;e Precisio Recall Espec. gg
MG'\c(I;Z:w 30 | 0.63+0.07 | 0.62+0.08 | 0.62+0.08 | 0.65+0.14 | 0.63+0.08 | 232
Mcérizi Al 30 | 0.65%£0.11 | 0.641+0.11 | 0.66+0.10 | 0.62%+0.19 | 0.65+0.11 | 1616
MCLGf:f; All 30 | 0.62+0.03 | 0.61+0.03 | 0.62+0.04 | 0.60+0.10 | 0.62+0.03 | 1560
MCL CPC All
Group
Aumento do
Dropout para
0.5 nas 30 | 0.68+0.09 | 0.67:0.09 | 0.67:0.08 | 0.700.16 | 0.680.09 | 1577
camadas que
usam 0.2
(kernel_regul
arizer=regular
izers.12(1e-4))
McT ;zlfs"me 8 | 64| 1 | 03 |30 042:0.14 | 0.41£0.14 | 0.43:0.16 | 0.37:0.07 | 0.42+0.14 | 846
ACURACIA F1 SCORE (MACRO)
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Figura 46 — Evolugao de cada FOLD do treinamento base de dados Estimulagdo musical
(Favorita e Desgostada) melhores performances
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A interpretagédo dos resultados apresentados na Tabela 14 evidencia que o
modelo MCL CPC All Group, que incorporou um aumento na taxa de dropout para 0,5
nas camadas originalmente configuradas com 0,2 (utilizando regularizagdo L2 com
coeficiente 1e~*), atingiu o melhor desempenho geral. Este modelo alcangou F1 score
e precisdo em torno de 67%, destacando-se pela combinacdo das caracteristicas
clinicas dos pacientes com medidas de coeréncia (CPC) associadas aos sinais de
EEG. Esses resultados sugerem que ajustes cuidadosos nos hiperparametros, como
a taxa de dropout e a regularizagdo, podem contribuir significativamente para a

melhoria da performance dos modelos nesta tarefa complexa.

Em comparacao, os modelos Multi Layer Perceptron (MMLP), embora mais
simples e eficientes em termos de tempo de treinamento (por exemplo, MMLP All com
223 segundos), apresentaram desempenhos inferiores (acuracia maxima de 63% para
MMLP All Group). Isso indica que, apesar da eficiéncia computacional, os modelos
MLP podem nao ser suficientes para capturar a complexidade dos padrdes
emocionais em EEG, corroborando com a literatura que mostra a superioridade de
redes mais profundas, como CNNs e LSTMs, em tarefas de classificagcdo de emocgdes
(GUO et al., 2018).

Os modelos CNN-LSTM (MCL) com a configuragao "All Group" apresentaram
desempenhos superiores em comparagao com as configuragdes "All" ou "Same Half",
destacando a importancia da estratégia de segregag¢ao dos dados para aprimorar a
generalizagdo dos modelos. Por exemplo, o0 modelo MCL CPC All Group alcangou
uma acuracia de 65%, enquanto o modelo MCT CP Same Half obteve apenas 42%,
sugerindo que a utilizacdo de segmentos provenientes do mesmo voluntario tanto no
treinamento quanto na validagdo pode introduzir vieses intraindividuais que
comprometem a capacidade de generalizagdo. Contudo, ao manter esses segmentos
agrupados exclusivamente no conjunto de treinamento ou de validagao, a

performance dos modelos é significativamente melhorada.

Estes achados tém implicacbes no campo da neurociéncia afetiva e para
aplicagbes praticas, como a terapia musical e o neuromarketing. A capacidade de
classificar respostas emocionais a estimulos musicais com precisao pode auxiliar no
desenvolvimento de intervencdes personalizadas e na compreensao das bases

neurais das preferéncias musicais. Mostrando que é possivel identificar padrdes
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emocionais com um grau razoavel de confiabilidade, o que pode ser util em contextos

terapéuticos para personalizar playlists musicais.

No entanto, os resultados também revelam limitacbes. A acuracia maxima
alcangada é de aproximadamente 68%, o que, embora significativo, ainda deixa
espaco para melhorias. Isso pode ser devido a variabilidade interindividual nas

respostas emocionais ou a complexidade dos padrdes neurais envolvidos.

Para futuras pesquisas, sugere-se investigar a influéncia de diferentes
géneros musicais e culturais, considerando a rica diversidade cultural brasileira. Essa
abordagem pode fornecer insights valiosos sobre a capacidade de generalizagdo dos
modelos, além de contribuir para o desenvolvimento de sistemas mais robustos e

adaptados a pluralidade de contextos presentes no pais.

Em conclusao, os resultados obtidos demonstram que é possivel classificar
respostas emocionais a estimulos musicais com um grau razoavel de precisdo usando
EEG e redes neurais, mas que ainda ha espaco para otimizagao e refinamento das
técnicas empregadas, especialmente no que diz respeito a eficiéncia computacional e

a generalizagao para diferentes populagdes.
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CAPITULO 6 - CONCLUSOES E TRABALHOS FUTUROS

Destaca-se neste capitulo os aspectos da pesquisa e conclusdes do trabalho
apresentado nesta tese. Ademais, sdo apresentadas algumas sugestbes para

trabalhos futuros e a contribuigao cientifica do presente trabalho.

6.1 CONCLUSOES

Considerando o crescimento exponencial no interesse pelo entendimento dos
processos mentais, o EEG tem se destacado como uma ferramenta poderosa para
fornecer respostas importantes nesse campo. Para facilitar a identificagdo dessas
respostas, ha uma necessidade crescente de ferramentas automatizadas para
processar os dados de EEG, preferencialmente de cédigo aberto, que amplie o acesso
das pessoas a essas analises. Diante disso, este trabalho propds a transcrigao do
software de processamento de EEG desenvolvido pelo grupo de pesquisa na
plataforma computacional para Python, uma linguagem de programagao de codigo

aberto.

Durante o processo de transcrigdo, foram identificadas necessidades
especificas que resultaram em aprimoramentos significativos no software
originalmente desenvolvido na plataforma computacional. Entre essas melhorias,
destacam-se a inclusdo de fungbes customizadas para o pré-processamento dos
sinais, a definicao de limiares para o descarte de canais ruidosos, a possibilidade de
selegcdo dos quantificadores a serem calculados, bem como a configuragcdo de
parametros ajustaveis para o processamento, tais como o parametro taumax, a
definicdo das épocas sequenciais e a escolha dos canais a serem analisados. Esses
aprimoramentos tornaram a ferramenta mais robusta e flexivel, permitindo ao grupo
conduzir suas pesquisas de forma mais agil e otimizar o processamento dos exames

de EEG antes mesmo da conclusao da transcrigéo.

A transcri¢ao do software para a linguagem Python teve como objetivo migrar
0 codigo para uma linguagem de programagao openSource (de codigo aberto)

gratuita. Na analise comparativa das duas versdes, observou-se que a versado da
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plataforma computacional apresentou desempenho superior, conforme evidenciado
nos resultados do capitulo PROCESSAMENTO DO EEG. Especificamente, o pré-
processamento e o processamento realizados em Python foram quase 60 vezes mais
lentos, possivelmente devido a metodologia utilizada na transcrigdo, que incluiu a
adaptacdo para o paradigma de programacdo orientado a objetos. Além disso, o
arquivo final gerado em Python, que armazena os dados do EEG e os quantificadores
extraidos, teve um tamanho quase cinco vezes maior que o0 correspondente na
plataforma computacional. Técnicas adicionais, como algoritmos de compressao,

podem ser aplicadas para reduzir esse tamanho e otimizar o armazenamento.

Para garantir a equivaléncia da transcricdo da versdo do software na
plataforma computacional para Python, foi realizado um conjunto de testes de
regressdo que verificaram que o erro relativo da transcrigdo ficou na ordem de 10-'2,
um valor irrelevante para o processo, com exce¢ao do quantificador de coeréncia, que
necessita de uma analise com outra abordagem. Além disso, a criagcdo de uma
interface grafica acessivel permitiu a adogédo da plataforma por pesquisadores com

diferentes niveis de experiéncia, acelerando o treinamento e a producéo cientifica do
grupo.

Ademais, visando compreender como as estimulagdes musicais influenciam
a atividade elétrica cerebral, foram desenvolvidas rotinas estatisticas para destacar os
eletrodos e as bandas de frequéncia mais relevantes na comparacao entre diferentes
estimulos. No software de suporte ao reconhecimento de padrdes, verificou-se que o
quantificador frequéncia mediana (FM) nao foi eficaz. Por outro lado, o quantificador
de porcentagem de contribuicdo de poténcia (PCP) revelou insights significativos,
destacando diferengas substanciais entre os estimulos sonoros de siléncio e musica
desgostada em comparagdo com os demais estimulos. Essa discrepancia foi mais
pronunciada nas bandas de frequéncia delta e alfa, que apresentaram variacdes
marcantes nos atributos extraidos pelo software, corroborando achados da literatura

que evidenciam a importancia dessas bandas na resposta cerebral a musica.

Aprofundando na andlise dos sinais de EEG, foram aplicadas diversas
técnicas de inteligéncia artificial visando classificar bases de dados com o objetivo de
desenvolver mecanismos automatizados que auxiliem o corpo clinico na tomada de

decisbes mais embasadas. Entre as metodologias empregadas destacam-se redes
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neurais convolucionais (CNNs), redes de memoria de longo curto prazo (LSTMs),

perceptrons multicamadas (MLPs), Transformers e modelos hibridos.

Para a base de dados de pacientes em coma, na classificagao do prognéstico
entre favoravel e desfavoravel, destaca-se o modelo MCT CPC alcangando F1 Score
(macro) de 90%. Na classificagdo da etiologia do coma, o modelo MCL CPEF obteve
63% de acuracia, e ao remover da base os exames pertencentes a categoria "outros",
o desempenho do mesmo modelo manteve-se superior, alcan¢gando 70% de acuracia.
Por fim, na base de dados relativa a classificacdo da estimulagao musical entre musica
gostada e desgostada, o modelo MCL CPC All Group com ajustes nos

hiperparametros destacou-se com 67% de preciséo.

Espera-se que este trabalho promova a disseminacgao de tecnologias abertas
e reprodutiveis na area de analise de sinais neurofisiolégicos, incentivando melhorias

continuas e avangos futuros.

6.2 TRABALHOS FUTUROS

Para a ferramenta de processamento de dados de EEG, os trabalhos futuros

incluem:

e Otimizar o desempenho do processamento no software em Python, visando
igualar ou superar a performance alcancada na implementacao da plataforma

computacional;

e Explorar o uso de algoritmos de compressao e formatos otimizados, como

HDF5, para reduzir o tamanho dos arquivos gerados pelo software em Python.

No que diz respeito ao reconhecimento de padrdes em multiplos sinais, as

direcdes futuras sao:

o Automatizar o processo de reconhecimento, tornando-o mais eficiente e menos

dependente de intervengdo manual;

« Implementar rotinas capazes de lidar com formatos de dados de entrada
distintos de PCP e FM, incluindo especialmente dados derivados de coeréncia.
Por fim, em relagdo a aplicagéo de inteligéncia artificial para a classificagao

de exames de EEG, os proximos passos consistem em:



155

e Aprofundar a compreensao sobre a relagédo entre os achados dos modelos e

os fundamentos neurocientificos subjacentes;

o Realizar testes estatisticos para verificar a diferenga significativa entre os

modelos de classificagao avaliados na comparacao dos resultados;

o Testar modelos de classificacdo pré-treinados, explorando o potencial de
transferéncia de aprendizado para melhorar a performance em conjuntos de

dados menores;

o Expandir a comparacéao incluindo novos modelos de aprendizado de maquina

e deep learning;

o Validar a capacidade de generalizagdo dos modelos aplicando-os a outras

bases de dados abrangendo diferentes popula¢des e condigdes clinicas.

6.3 CONSIDERACOES FINAIS

Este trabalho contemplou a transcricdo do software desenvolvido pelo grupo
de pesquisa em uma plataforma computacional para a linguagem Python,
incorporando melhorias que atendem as novas demandas do grupo. Além disso, foi
implementado um mecanismo para auxiliar na busca de padrdes entre multiplos
registros de EEG, bem como a aplicagao de técnicas de inteligéncia artificial para a

classificagao dos sinais.

As aplicagdes desenvolvidas visam simplificar e otimizar o cotidiano dos
trabalhos envolvendo EEG, tornando o processo mais automatizado e facilitando o

reconhecimento de padrdes relevantes.
Do ponto de vista cientifico, as principais contribuicées deste trabalho incluem:

a) Otimizagao do tempo do pesquisador, ao possibilitar o processamento paralelo
dos registros de EEG e outras atividades, gragcas a automacgédo dos
procedimentos;

b) Disponibilizagdo de um software openSource para processamento de EEG,
ampliando o acesso e possibilitando customizacdes futuras;

c) Desenvolvimento de um mecanismo eficiente de reconhecimento de padrbes e

classificacdo dos exames de EEG;
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d) Implementacdo e avaliagdo de modelos de inteligéncia artificial que

demonstraram boa performance e precisao na classificagao dos sinais.

Estes avangos representam um passo importante para o aprimoramento das

ferramentas de analise de EEG, com potencial aplicagao clinica e pesquisa cientifica.
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APENDICE A - Programas / Fungdes Software de Processamento de

EEG Versao Plataforma computacional

A seguir, sdo apresentadas as fungdes implementadas no software de
processamento de EEG, conforme desenvolvido na dissertacdo de mestrado de
(BARBOSA, 2019). Cada funcdo desempenha um papel especifico na extragéo,
andlise e manipulacdo dos dados de EEG, contribuindo para a eficiéncia e

reprodutibilidade do processamento.

1 readFilePLG
Realiza a leitura de arquivos no formato PLG (*.plg), correspondentes a
exames de eletroencefalograma (EEG), permitindo que os dados registrados sejam

interpretados e processados na plataforma computacional.

2 customizeRecordEEG

Personaliza o registro do EEG ao traduzir os nomes dos canais com base em
uma variavel de tradugao e reorganiza-los conforme uma lista de ordenacéao definida
como parametro. Esse processo assegura a padronizagao e a correta disposi¢géo dos

canais, facilitando a analise e interpretacao dos dados.

3 translateChannelNamesByPrefixComparator

Realiza a tradugdo dos nomes dos canais de EEG com base em um
mapeamento fornecido como parametro. O mapeamento consiste em uma matriz de
duas colunas, onde a primeira coluna contém os prefixos a serem traduzidos e a

segunda coluna define os respectivos valores traduzidos.

Cabe ressaltar que o mapeamento nao precisa ser um para um, ou seja, a
traducao pode ser consolidada em um unico valor, mesmo que a matriz de entrada
contenha multiplas linhas. Esse processo permite maior flexibilidade e padronizacao

na nomenclatura dos canais, facilitando a analise e interpretagdo dos dados.

4 sortChannelsByListNames

Realiza a ordenagéo dos canais de EEG com base nos nomes contidos nas

variaveis xn, nameChannels e typeChannels, seguindo a lista de ordenagéao fornecida
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como parametro. Esse procedimento assegura que os canais sejam organizados de

forma padronizada e consistente, facilitando a analise e processamento dos dados.

5 splitChannels

Separa os canais de EEG com base em uma lista de referéncia fornecida
como parametro, retornando duas listas distintas: uma contendo os canais
especificados no parametro e outra com os canais restantes. Esse processo permite
a organizagcdo e categorizagdo dos canais, faciltando analises segmentadas e

comparativas conforme a necessidade do estudo.

6 findTypeChannel

Localiza a posi¢cao da primeira ocorréncia de um tipo de canal especifico,
conforme o argumento fornecido. Caso o tipo de canal seja encontrado, a fungéo
retorna sua posigao na lista; caso contrario, retorna -1. Esse procedimento permite a
identificacdo rapida e eficiente de canais especificos, auxiliando na organizagao e

manipulagédo dos dados de EEG.

7 findNameChannel

Busca a posi¢cao da primeira ocorréncia de um nome de canal especifico,
conforme o argumento fornecido. Se o canal for encontrado, a fungcao retorna sua
posicao na lista; caso contrario, retorna -1. Esse procedimento permite a identificacao

eficiente de canais, facilitando a manipulagéo e organizagdo dos dados de EEG.

8 verifyAllValuesininterval

Verifica se todos os valores de uma matriz fornecida como argumento estéao
dentro de um intervalo especificado como parametro. Caso todos os elementos
satisfagam a condigcdo, a fungdo confirma a validade dos dados; caso contrario,
identifica a presencga de valores fora do intervalo. Esse procedimento € essencial para
controle de qualidade e integridade dos dados, garantindo que os valores estejam

dentro dos limites esperados para a analise de EEG.

9 epochSeparator

Funcao responsavel pela segmentacdo das épocas do EEG, permitindo a

divisdo do sinal com base em intervalos de tempo previamente definidos. Recebe
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como argumentos o tamanho da época e uma string no formato
MM:SS|MM:SS|MM:SS, em que cada MM:SS representa o instante inicial de uma
época. Esse processo assegura a consisténcia na extragao das épocas, garantindo a

integridade dos dados para analises subsequentes.

10 validateChannels

Este programa tem como objetivo validar o sinal EEG com base no nivel de
ruido detectado nos eletrodos. Para isso, realiza um calculo fundamentado na

densidade espectral de poténcia, determinando:
e O nivel do sinal em porcentagem na faixa de 1-40 Hz;
e O nivel de ruido na faixa de 58-62 Hz.

Para que um sinal seja totalmente aprovado, os eletrodos devem atender a
seguinte condi¢do: o valor maximo de poténcia na faixa de ruido deve ser igual ou
inferior a metade do valor maximo de poténcia na faixa do sinal, garantindo

consisténcia no processo de validacao dos sinais de EEG.

11 computeMeanZeroPowerSignalRXTXFtestXMXFxmFilteredAndNormAndFre
q

Este programa tem como objetivo calcular métricas especificas do sinal EEG,

incluindo:
o Meédia Zero;

¢ Poténcia do Sinal;

e RxeTx;

e XM e XF;

o fTest;

« XM Filtrado;

¢ M Normalizado.

Esses calculos sao essenciais para a analise quantitativa do sinal EEG,
permitindo a extracdo de informacdes relevantes para diferentes aplicagdes em

processamento de sinais e neurociéncia.
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12 computePCPsavelnMatAndExcel

Este programa tem como objetivo calcular a Porcentagem da Contribuigao de

Poténcia (PCP) para cada faixa de frequéncia definida, incluindo:
o Delta, Teta, Alfa, Beta, Gama, Super Gama e Ruido.

Os valores calculados sao armazenados em um arquivo especificado como
referéncia. Além disso, caso a opg¢ao FLAG de geragao de Excel esteja ativada, o
programa também exporta os resultados para um arquivo no formato Excel, facilitando

a analise e interpretacido dos dados.

13 computeFMsavelnMatAndExcel

O calculo da Frequéncia Mediana é realizado para cada faixa de frequéncia

pré-definida, incluindo:
o Delta, Teta, Alfa, Beta, Gama, Super Gama e Ruido.

Os valores obtidos sdao armazenados em um arquivo especificado como
referéncia. Além disso, caso a opgao FLAG de geragédo de Excel esteja ativada, os
resultados também sao exportados para um arquivo no formato Excel, facilitando a

analise e organizag¢ao dos dados.

14 computeCoherenceLeftWithRightHeadSaveMatAndExcel
O sinal EEG segmentado em épocas é submetido a analise de coeréncia
utilizando a funcdo 'mscohere' da plataforma computacional. Para esse processo,

foram criadas duas matrizes:

e IleftHEAD, correspondente aos eletrodos do lado esquerdo do escalpo cerebral
(FP1, F7,F3, T3, C3, T5, P3 e O1);

e rightHEAD, correspondente aos eletrodos do lado direito do escalpo cerebral
(FP2, F8, F4, T4, C4, T6, P4 e O2).

Com base nessas matrizes, foram calculadas as coeréncias entre pares de
eletrodos simétricos, considerando as seguintes combinagdes: FP1-FP2, F7-F8, F3-
F4, T3-T4, C3-C4, T5-T6, P3-P4 e O1-0O2. Os valores obtidos sdo armazenados no

arquivo especificado como referéncia. Além disso, caso a opg¢ao FLAG de geracao de
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Excel esteja ativada, os resultados também s&o exportados para um arquivo no

formato Excel, permitindo uma andlise mais acessivel e organizada dos dados.

15 processRecords

Este programa realiza a leitura de um arquivo CSV, estruturado de acordo
com um formato especifico, cujo exemplo pode ser visualizado no APENDICE C.
Cada linha desse arquivo representa um exame de EEG a ser processado, gerando
um arquivo de dados correspondente, no qual sdo armazenados os calculos

realizados conforme os parametros fornecidos.
O arquivo CSV contém as seguintes colunas:

e Coluna A (Nome Arquivo) — Nome do arquivo .PLG a ser processado (sem a

extenséo);
« Coluna B (Duragao Epocas) — Duracéo das épocas em segundos;
« Coluna C (Qtd Epocas) — Numero de épocas a serem segmentadas;

e« Colunas D a M (EpX) — Instante de inicio de cada época, no formato mm:ss

(minutos:segundos);

o A quantidade de colunas de épocas & definida pelo valor do campo "Qtd

Epocas".

e« Coluna N (Qtd Ruidosos) — Numero de canais identificados como ruidosos
pelo médico. Se houver mais de trés canais ruidosos, 0 exame deve ser

descartado;

o A quantidade de colunas para canais ruidosos € determinada pelo valor

do campo "Qtd Ruidosos".

e« Colunas O a Q (Canal Ruidoso X) — Lista de canais ruidosos identificados
(ex.: FP1, FP2, F7, F3, CZ, P4, etc.);

o Coluna R (Normal/Coma) — Identifica se o exame é Normal (100 Hz) ou Coma
(30 Hz);

o Qualquer valor diferente de "COMA" sera considerado como "NORMAL".
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e« Coluna S (Filtro) — Define a frequéncia maxima para o processamento do

exame,;

e Coluna T (Nome Saida) — Nome do arquivo de dados gerado apds o

processamento da linha correspondente;

e Coluna U (Gera Excel) — Define se devem ser gerados arquivos Excel para os

calculos de PCP, FM e Coeréncia.

o Deve-se utilizar "NAQO" para um processamento mais rapido.

Cada linha do arquivo CSV representa um exame a ser processado, e 0s

calculos realizados incluem:

e Conversdo do arquivo .PLG para o especificado pela plataforma

computacional;
e Segmentacao das épocas do EEG;

» Validagcao do exame, verificando se o nivel de ruido (58-62 Hz) excede o valor

do sinal;
e Calculo da Porcentagem da Contribuicdo de Poténcia (PCP);
o Calculo da Frequéncia Mediana (FM);
o Calculo da Coeréncia entre hemisfério esquerdo e hemisfério direito;
o Calculo da Variagao da Poténcia Cerebral (VPC);
o Calculo da Porcentagem de Segmentos Nao Gaussianos (PSNG);

e Cdlculo da Porcentagem de Segmentos Nao Estacionarios (PSNE).

Ao final da execucdo, é gerado um arquivo de saida no formato
Result X.CSV, onde X representa o nome do arquivo de entrada. Esse arquivo é salvo
no mesmo diretério do arquivo CSV original, juntamente com os arquivos de dados

correspondentes.
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O arquivo Result_X.CSV mantém os mesmos dados do arquivo de entrada,
porém com a adicdo das seguintes colunas, conforme exemplificado no APENDICE
D:

e Coluna V (Conversao?) — Indica se a conversdo do arquivo .PLG para o

formato esperado pela plataforma computacional foi bem-sucedida (SIM/NAO);

e Coluna W (Canais Ruidosos) — Lista dos canais identificados como ruidosos

na validagao por software;

e Coluna X [Exame Valido (Pouco Ruido?)] — Indica se o exame contém até

trés canais ruidosos (SIM/NAO);

e Coluna Y (PCP) — Confirma se o calculo do PCP foi realizado com sucesso
(SIM/NAO);

e Coluna Z (Frequéncia Mediana) — Confirma se o calculo da FM foi realizado
com sucesso (SIM/NAO);

e Coluna AA (Coeréncia) — Confirma se o calculo da coeréncia foi realizado com
sucesso (SIM/NAO);

e Coluna AB (FreqMax Adotada) — Informa o valor da frequéncia maxima

adotada nos calculos.

Nota: Todos os arquivos .PLG a serem processados devem estar no mesmo

diretério que o arquivo CSV de entrada.

16 readFileCSVForProcessRecords

Realiza a leitura de um arquivo CSV, seguindo a mesma estrutura definida
para o programa 15 processRecords. Esse processo assegura a correta interpretacao
dos dados, permitindo que as informagdes sejam extraidas e processadas de acordo

com os parametros estabelecidos no arquivo.

17 saveFileMAT

Realiza a conversao do arquivo .PLG para o formato especifico da plataforma
computacional, armazenando os valores dos atributos e quantificadores extraidos.
Esse processo permite que os dados sejam estruturados de forma compativel para

analises subsequentes, garantindo a integridade e acessibilidade das informagdes.
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18 updateFreqgMaxAccordingWithBands

Define as novas bandas ou faixas de frequéncia com base na frequéncia
maxima do exame, retornando também os nomes das bandas ajustadas e a nova

frequéncia maxima permitida.

O algoritmo exclui as faixas que ultrapassam o limite definido, assegurando
que apenas as bandas integralmente contidas dentro da frequéncia maxima
estabelecida sejam mantidas. Caso a frequéncia maxima ocorra dentro de uma faixa,
seu valor sera ajustado para o limite inferior dessa faixa, garantindo a consisténcia

dos intervalos de analise.

Além disso, a frequéncia maxima nao pode exceder metade da frequéncia de
amostragem nem ser superior a 100 Hz. Quando um novo valor de frequéncia maxima
€ definido, as faixas preservadas serao aquelas cujo limite superior permaneca abaixo

desse novo valor ajustado.

19 groupEpochsByFrequences

O programa agrega os valores de frequéncia de cada época, consolidando-
0s em uma estrutura do tipo cell na plataforma computacional. Esse processo permite
a unificacdo das informacdes de todas as épocas, possibilitando uma analise

abrangente e organizada dos dados de EEG.

20 brainPowerVariation

Realiza o calculo da Variacdo da Poténcia Cerebral (VPC), analisando as
flutuagdes da poténcia do sinal EEG ao longo do tempo. Esse parametro é essencial
para avaliar mudancas dinamicas na atividade cerebral, auxiliando na interpretagao

de padrdes associados a diferentes estados cognitivos e fisioldgicos.

21 MRT

Executa o Teste Razdo Média (MRT — Mean Ratio Test), um método
estatistico utilizado para comparar as fungdes de distribuicdo espectral de
subconjuntos de amostras. Esse teste permite avaliar a estacionariedade do sinal
EEG, identificando possiveis variacdes na distribuicdo espectral ao longo do tempo
(DESTRO-FILHO; FARIA, 2018).
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22 myfunc

Executa o teste ndo paramétrico de Jarque-Bera (JB), um método estatistico
amplamente utilizado para verificar a normalidade de uma distribuicdo. Esse teste
apresenta boas propriedades assintoticas de poder e desempenho eficiente em
amostras finitas. A construgao do teste de gaussianidade baseia-se no principio do
método multiplicador de Lagrange (LM — Lagrange Muiltiplier), permitindo a avaliagao
da simetria e curtose da distribuicdo dos dados (DESTRO-FILHO; FARIA, 2018).

23 psngAndPsne

Computa a Porcentagem de Segmentos Nao Gaussianos (PSNG), baseada
nos resultados do teste de Jarque-Bera (JB), que avalia a normalidade da distribuigao
dos dados. Além disso, calcula a Porcentagem de Segmentos Nao Estacionarios
(PSNE), determinada a partir do teste Razao Média (MRT — Mean Ratio Test), que
analisa a estacionariedade do sinal EEG. Esses parametros sao fundamentais para
caracterizar a natureza estatistica dos segmentos do sinal, auxiliando na identificagao

de padrdes irregulares e variagdes dindamicas.

24 isEqualsErrorRelative

Compara duas variaveis fornecidas como parametro, verificando se seus
valores sdo iguais dentro de um limiar de erro relativo, também especificado como
parametro. Essa abordagem permite considerar pequenas variagdbes numericas,

garantindo maior precisao na validagcdo de dados e robustez na analise de igualdade.

25 isEqualsExamsProcessedErrorRelative

Compara dois exames processados a partir dos arquivos de dados gerados,
verificando se apresentam equivaléncia dentro de um erro relativo aceitavel, definido
como parametro. Essa verificacdo assegura a consisténcia dos resultados, permitindo
a deteccao de diferengas numéricas sutis e garantindo maior precisao na validagéao

da reprodutibilidade dos dados.

26 isEqualsFriedman

Compara duas variaveis fornecidas como parametro, verificando sua

equivaléncia linha a linha por meio do teste de Friedman. Esse teste estatistico ndo
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paramétrico avalia diferengas entre distribuicdes emparelhadas, permitindo a

deteccgéao de variagdes significativas entre os conjuntos de dados.

27 validateFriedmanCellVector

Compara dois vetores do tipo cell (A e B) na plataforma computacional,

avaliando sua equivaléncia estatistica por meio do teste de Friedman.

28 isEqualsExamsProcessedFriedman

Compara dois arquivos gerados a partir de processamentos anteriores,
avaliando sua equivaléncia estatistica com base em um p-valor aceitavel. Essa
verificacdo permite identificar diferencas estatisticamente significativas entre os

resultados, assegurando maior precisao na validagao da reprodutibilidade dos dados.

29 testCompareExameByCsv

Realiza a leitura de um arquivo CSV, no qual a primeira coluna contém o
arquivo de referéncia e a segunda coluna especifica o arquivo a ser comparado. Ao
final do processamento, sado gerados dois arquivos de resultado, apresentando, linha
a linha, a saida da comparagdo baseada no erro relativo e no teste estatistico de
Friedman. Essa abordagem permite uma avaliagdo detalhada da equivaléncia dos
dados, assegurando maior precisdo na analise estatistica das diferencas entre os

arquivos comparados.



176

APENDICE B - Descrigao das variaveis importantes do Software de

Processamento de EEG Versao Plataforma computacional

A seguir, sao descritas as principais variaveis geradas pelo processamento
do EEG durante a execugao da funcao processRecords, conforme documentado em
(BARBOSA, 2019). Essas variaveis representam o0s principais parametros e
quantificadores extraidos, sendo fundamentais para a analise e interpretagao dos

dados processados.

1 nameChannels (vetor de cellstr)
Vetor de tamanho L, onde L representa a quantidade de canais EEG no
registro (comumente, L = numberChannels = 20). Os nomes dos canais possuem

correspondéncia direta com as variaveis "xn" e "typeChannels", seguindo a ordem:

Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz,
02.

2 typeChannels (vetor cellstr)

Vetor de tamanho L, onde L representa a quantidade de canais EEG no
registro (comumente, L = numberChannels = 20). Esse vetor armazena o tipo
correspondente a cada canal, que pode assumir valores como EEG, FOTO, EKG,
entre outros. Os tipos dos canais possuem correspondéncia direta com as variaveis
"xn" e "nameChannels", garantindo a correta identificacdo e categorizagao dos sinais

registrados.

3 xn (matriz de escalares)

Matriz de dimensao L x N, onde L representa a quantidade de canais EEG e
N corresponde ao tempo discreto do registro. Essa matriz contém o sinal EEG

convertido para o formato especifico da plataforma computacional, onde:
e As L linhas correspondem aos canais identificados no vetor "nameChannels";
e As N colunas representam os instantes de tempo discretizados.

Cada elemento da matriz esta expresso em microvolts (uV), representando a

amplitude do sinal EEG em um determinado instante. A organizagado da matriz segue
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a convencgao: L = numberChannels (numero de canais EEG) e N = numero de

amostras temporais.

4 numberChannels (escalar)

Numero total de canais na matriz "xn", onde numberChannels ¢é igual a L,

representando a quantidade de canais EEG no registro.

5 N (escalar)

Numero total de amostras por canal, representando a quantidade de instantes
temporais discretizados registrados para cada canal EEG. Esse parametro define a
resolucao temporal do sinal, sendo fundamental para a analise e processamento dos

dados adquiridos.

6 T (escalar)
Periodo de amostragem, expresso em segundos, determinado com base na
taxa de amostragem do sinal EEG. Esse valor representa o intervalo de tempo entre

amostras consecutivas.

7 Fa (escalar)

Frequéncia de amostragem da aquisicao do sinal EEG, expressa em hertz
(Hz). Esse parametro define o numero de amostras coletadas por segundo,
influenciando diretamente a resolugédo temporal do registro e a fidelidade da

representacao do sinal cerebral.

8 t (vetor de escalares)

Vetor de tempo, expresso em segundos, com dimensao N, correspondente a
quantidade de amostras do sinal EEG. Esse vetor é utilizado para a representacao
temporal dos dados, permitindo a correta plotagem e analise da evolugéo do sinal ao
longo do tempo.

9 totalTime (escalar)

Tempo total do exame, expresso em segundos, correspondente a duragao
completa do registro EEG. Esse parametro € obtido a partir do numero total de
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amostras (N) e da frequéncia de amostragem, sendo fundamental para a analise

temporal do sinal.

10 freqMax (escalar)

Frequéncia de corte, expressa em hertz (Hz), correspondente ao filtro passa-
baixa que deve ser aplicado ao sinal EEG. O valor do corte varia conforme a condigéo
do exame, sendo definido como 100 Hz para exames normais e 30 Hz para exames
em coma. Esse parametro € essencial para a eliminagdo de altas frequéncias

indesejadas, preservando apenas as componentes relevantes do sinal.

11 variablesinformation (matriz de cellString)

Fornece uma descricdo resumida das variaveis armazenadas no arquivo dos
dados, detalhando seus significados e fungdes no processamento do sinal EEG.
Essas variaveis representam os principais parametros extraidos e calculados, sendo

fundamentais para a analise e interpretacao dos dados registrados.

12 dayOfConversion (string)
Registra a data de conversdo do arquivo PLG para o arquivo de dados,
permitindo o rastreamento do momento em que o processamento foi realizado. Esse

dado é essencial para a organizacao, auditoria e reprodutibilidade dos resultados.

13 remainingChannels (matriz de escalares)
Armazena os registros de canais do EEG convertidos para o formato da
plataforma computacional, que nao estdo presentes na lista especificada em

listChannels. A matriz gerada possui dimensao LR x N, onde:

e LR representa a quantidade de canais EEG que n&o pertencem a listChannels

(comumente LR = 1, correspondente ao canal FOTO);

« N corresponde ao numero total de amostras, cujos valores estao expressos em

microvolts (uV) e representam a amplitude do sinal em cada instante.

Essa estrutura permite o armazenamento separado de canais auxiliares,
garantindo a integridade dos dados principais e preservando informagdes relevantes

para analises complementares.
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14 remainingChannelsName (vetor cellstr)
Lista os nomes dos canais presentes no exame .PLG, mas que ndo estao
incluidos na relagao especificada em listChannels. Esse vetor possui dimensao LR,

onde LR representa a quantidade de canais EEG restantes.

Cada elemento desse vetor tem correspondéncia direta com as variaveis
"remainingChannelsType" e "remainingChannels", assegurando a correta

identificacdo dos canais auxiliares que foram excluidos da lista principal.

15 remainingChannelsType (vetor cellstr)
Armazena os tipos dos canais presentes no exame .PLG, mas que nao fazem
parte da lista definida em listChannels. Esse vetor possui dimensdo LR, onde LR

representa a quantidade de canais EEG restantes.

Cada elemento desse vetor tem correspondéncia direta com as variaveis
"remainingChannels" e "remainingChannelsName", garantindo a correta

categorizagao dos canais auxiliares excluidos da lista principal.

16 epochsValues (vetor de cell)

Vetor de dimensao nEpochs, onde nEpochs representa o numero de épocas
definidas pelo usuario (comumente 10 épocas). Cada posicdo desse vetor contém

uma célula que armazena uma matriz de dimensao L x NAE, onde:
e L corresponde a quantidade de canais EEG no registro (comumente L = 20);

o NAE representa o numero de amostras por época, calculado como fa x duracéo

da época (segundos), onde fa é a frequéncia de amostragem.

Essa estrutura permite a segmentacédo e organizagdo dos dados EEG por

épocas, facilitando a analise temporal do sinal.

17 epochsTimes (vetor de cell)
Vetor que armazena a representacédo dos instantes de tempo associados a
cada época, com dimensao nEpochs, onde nEpochs corresponde ao numero de

épocas definidas pelo usuario.
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Cada posicao desse vetor contém uma célula que armazena um vetor de

tamanho NAE, onde:

« NAE representa o numero de amostras por época, determinado por fa x

duragéo da época (em segundos), sendo fa a frequéncia de amostragem;

o Cada célula contém o conjunto de instantes de tempo associados aos dados

registrados na respectiva época.

Essa estrutura permite a associagcao precisa entre os dados do EEG e os

instantes de tempo correspondentes, facilitando a analise temporal do sinal.

18 epochsValuesZerosinNoiseChannel (vetor de cell)

Semelhante a epochsValues, porém com os valores dos canais considerados
ruidosos substituidos por zeros. A remogao dos dados ocorre tanto para os canais
identificados como ruidosos durante o processamento quanto para aqueles

classificados como ruidosos na avaliagao médica.

Essa abordagem permite a manutengao da estrutura dos dados temporais, ao

mesmo tempo que elimina a influéncia de canais comprometidos.

19 PCP (vetor de cell)
Vetor de dimensao nFrequences, onde nFrequences corresponde ao numero
de faixas de frequéncia analisadas (comumente nFrequences = 7, abrangendo Delta,

Teta, Alfa, Beta, Gama, Super Gama e Ruido).

Cada elemento desse vetor contém uma matriz de dimensao L x nEpochs,

onde:
« L representa a quantidade de canais EEG do registro (comumente L = 20);

e nEpochs corresponde ao numero de épocas do exame (comumente nEpochs
=10).

Essa matriz armazena valores escalares que representam a contribuicdo de
poténcia de cada ritmo cerebral em cada época, possibilitando a analise da

distribuicdo espectral do sinal EEG ao longo do tempo.
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20 powerSignal (matriz de escalares)

Matriz de dimensé&o L x nEpochs, onde:
o L representa a quantidade de canais EEG do registro (comumente L = 20);

e nEpochs corresponde ao numero de épocas do exame (comumente nEpochs
=10).

Essa matriz armazena a poténcia total de cada época para cada canal EEG,
permitindo a analise da distribuicdo de energia do sinal ao longo do tempo e a

comparacgao entre diferentes periodos do exame.

21 frequencesNamePCP (vetor de cellstr)
Vetor de dimensdao nFrequences, armazenando os nomes das faixas de
frequéncia associadas a variavel PCP. Os valores contidos nesse vetor correspondem

as principais bandas do EEG, sendo:
o Delta, Teta, Alfa, Beta, Gama, Supergama e Ruido.

Os nomes das frequéncias sao idénticos aos armazenados na variavel
"frequencesName", garantindo consisténcia na nomenclatura utilizada no

processamento e analise do sinal EEG.

22 frequencesPCP (matriz de escalares)

Matriz de dimensdo nFrequences x 2, armazenando os intervalos de
frequéncia (em Hz) associados a variavel PCP. Cada linha dessa matriz corresponde
a uma das faixas de frequéncia analisadas, apresentando os limites inferior e superior

de cada banda espectral.

Essa matriz possui uma relacdo direta com as linhas da variavel
"frequencesNamePCP", garantindo consisténcia na definicdo das faixas espectrais

utilizadas no processamento do EEG.

23 FM (vetor de cell)
Vetor de dimensao nFrequences, onde nFrequences corresponde ao humero
de faixas de frequéncia analisadas (comumente nFrequences = 7, abrangendo Delta,

Teta, Alfa, Beta, Gama, Supergama e Ruido).
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Cada elemento desse vetor contém uma matriz de dimenséo L x nEpochs,

onde:
o L representa a quantidade de canais EEG do registro (comumente L = 20);

e nEpochs corresponde ao numero de épocas do exame (comumente nEpochs
=10).

Essa matriz armazena valores escalares que representam a Frequéncia
Mediana de cada ritmo cerebral ao longo das épocas, possibilitando a analise da

distribuicdo espectral do sinal EEG e suas variagdes temporais.

24 frequencesNameFM (vetor de cellstr)

Vetor de dimensado nFrequences, armazenando os nomes das faixas de

frequéncia (em Hz) associadas a variavel FM. As frequéncias representadas incluem:
o Delta, Teta, Alfa, Beta, Gama, Supergama e Ruido.

Os valores contidos nesse vetor sdo idénticos aos da variavel
"frequencesName", garantindo consisténcia na nomenclatura das bandas espectrais

utilizadas na analise da Frequéncia Mediana do sinal EEG.

25 frequencesFM (matriz de escalares)

Matriz de dimensdo nFrequences x 2, armazenando os intervalos de
frequéncia (em Hz) associados a variavel FM. Cada linha dessa matriz corresponde a
uma das faixas de frequéncia analisadas, apresentando os limites inferior e superior

de cada banda espectral.

Essa matriz possui uma relagcdo direta com as linhas da variavel
"frequencesNameFM", garantindo consisténcia na definicdo das faixas espectrais

utilizadas no processamento do EEG.

26 COR_PairsOfElectrodes (vetor de cell)
Vetor de dimensao nPairsOfElectrodes, onde nPairsOfElectrodes representa

0 numero de pares de eletrodos analisados na coeréncia (comumente
nPairsOfElectrodes = 8).
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Cada elemento desse vetor contém uma matriz de dimensao nEpochs x Y,

onde:

e nEpochs corresponde a quantidade de épocas selecionadas no exame

(comumente nEpochs = 10);

e Y representa o numero de frequéncias geradas pela fungdo 'mscohere' da

plataforma computacional, utilizada para o calculo da coeréncia.

Cada matriz armazena os valores de coeréncia calculados para um par

especifico de eletrodos, seguindo a seguinte ordenacéo:

1. FP1—FP2
2. F7-F8
3. F3—F4
4. T3-T4
5. C3-C4
6. T5-T6
7. P3—P4
8. 0O1-02

Essa estrutura permite a analise detalhada da conectividade funcional entre
pares de eletrodos, facilitando a interpretacao das relagdes entre diferentes regides

cerebrais ao longo das épocas do exame.

27 CORRELATION (vetor de cell)

Vetor de dimensao nFrequences, onde nFrequences representa o numero de
faixas de frequéncia analisadas (comumente nFrequences = 7, abrangendo Delta,

Teta, Alfa, Beta, Gama, Supergama e Ruido).

Cada elemento desse vetor contém um vetor de cells de dimenséao
nPairsOfElectrodes, onde nPairsOfElectrodes corresponde ao niumero de pares de
eletrodos formados pela combinacado dos eletrodos do hemisfério esquerdo com os

do hemisfério direito (comumente nPairsOfElectrodes = 8).
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Cada elemento do vetor de pares armazena uma matriz de dimensao nEpochs
x NY, onde:

e nEpochs representa a quantidade de épocas selecionadas no exame

(comumente nEpochs = 10);

e NY corresponde a quantidade de frequéncias analisadas por banda ou faixa de

frequéncia, conforme a variavel Y de "COR_PairsOfElectrodes".

Essa estrutura possibilita a analise da coeréncia entre pares de eletrodos para
cada banda de frequéncia, fornecendo informacdes sobre a conectividade funcional

do cérebro ao longo do tempo.

28 frequencesNameCORR (vetor de cellstr)

Vetor de dimensdao nFrequences, armazenando os nomes das faixas de

frequéncia associadas a variavel CORRELATION. Essas faixas incluem:
o Delta, Teta, Alfa, Beta, Gama, Supergama e Ruido.

Os valores contidos nesse vetor sdo idénticos aos da variavel
"frequencesName", garantindo consisténcia na nomenclatura das bandas espectrais

utilizadas na analise de coeréncia do sinal EEG.

29 frequencesCORR (matriz de escalares)

Matriz de dimensdo nFrequences x 2, armazenando os intervalos de
frequéncia (em Hz) associados a variavel CORRELATION. Cada linha dessa matriz
corresponde a uma das faixas de frequéncia analisadas, apresentando os limites

inferior e superior de cada banda espectral.

Essa matriz possui uma relagcdo direta com as linhas da variavel
"frequencesNameCORR", garantindo consisténcia na definicdo das faixas espectrais

utilizadas no processamento do EEG.

30 F_cor (vetor de escalares)

Vetor de frequéncias em hertz (Hz), com dimenséo Y, gerado pela fungéo

'mscohere’ da plataforma computacional. Esse vetor contém os valores de frequéncia
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analisados durante o calculo da coeréncia, sendo essencial para a interpretagao dos

resultados espectrais do sinal EEG.



APENDICE C - Arquivo .CSV de entrada para o processRecords
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Nome | Duragao | Qtd. Qtd | Canal | Canal | Canal Normal | Fil- Gerar
Arquivo | Epocas |Epo-| Epl Ep2 | Ep3 | Ep4 | Ep5 | Ep6 | Ep7 | Ep8 | Ep9 | Ep10 | Ruido- | Ruido | Ruido | Ruido Nome Saida
/Coma |tro Excel
PLG (seg) cas Sos 1 2 3
0011901' 2 10 | 01:49 |01:51|01:53|01:55|01:58 | 02:00 | 02:14 | 02:23 | 02:41 | 02:45 COMA | 35 COocl)t?rORlaé\/lE SIM
C0013501_ME
0013501' 2 10 | 12:28 [12:30|12:32|12:34|12:36|12:3812:42|12:49|12:56|13:13 3 FP1 FP2 Fa COMA | 35 _COMA SIM
_METABOLICO
0303001' 2 10 | 03:56 |03:58 | 04:05 | 04:07 | 04:26 | 05:13 | 06:06 | 06:21 | 08:27 | 09:29 COMA | 35 C03giOTOR162AE SIM
0372501' 2 10 | 15:44 |16:11|17:23|17:44 | 18:21 | 18:36 | 18:48 | 18:50 | 19:00 | 19:02 3 F4 F8 0Oz COMA | 35 C03C7)2USTOR162/IE SIM
C0373701_
0373701' 2 10 | 09:53 |09:55|09:57 | 10:01 | 10:03 | 10:28 | 10:35|11:02 | 11:52 | 12:17 2 T5 F7 COMA | 35 COMA _ SIM
METABOLICO
C0375201_ME
0375201' 2 10 | 10:36 |10:38|10:40|10:42 | 10:44 | 11:23 | 11:28 | 11:35| 12:16 | 12:23 1 0Oz COMA | 35 _COMA_ SIM
METABOLICO
0726001' 2 10 | 00:32 |00:34 | 00:36 | 00:38 | 00:46 | 01:00 | 01:39 | 02:05 | 02:45 | 03:01 2 FP2 FA COMA | 35 CO%?JOTOR%:AE SIM
0932801' 2 10 | 00:01 |00:03|00:05 | 00:07 | 00:22 | 00:27 | 00:44 | 01:04 | 01:15 | 01:38 1 FP2 COMA | 35 nggﬁioRlo_:A SIM
1045901" 2 10 | 02:54 |02:56|02:58 | 03:00 | 03:10 | 04:36 | 05:23 | 06:30 | 06:50 | 09:23 COMA | 35 C1045:32—ME SIM
1048001" 2 10 | 00:48 |00:50|00:52 | 00:54 | 01:33 | 02:24 | 03:03 | 05:00 | 07:26 | 07:39 COMA | 35 C1048$2El_ME SIM
1054001" 2 10 | 00:56 |04:04 |04:37 | 05:43 | 06:08 | 06:54 | 07:25|07:27 | 07:29 | 07:31 COMA | 35 C10E54£3;—M SIM




APENDICE D - Arquivo .CSV de resultado do processamento do APENDICE C apenas com as colunas adicionais

Nomepf(r;quwo Conversao? | Canais Ruidosos Exame ;/S:gig)(:,POUCO PCP F;:::; r:‘c;a Coeréncia F;j:::::
0011901' SUCCESS SIM SIM SIM SIM 30.00
0013501" SUCCESS SIM SIM SIM SIM 30.00
0303001' SUCCESS F7 SIM SIM SIM SIM 30.00
0372501' SUCCESS F7 NAO SIM SIM SIM 30.00
0373701 SUCCESS F7 SIM SIM SIM SIM 30.00
0375201' SUCCESS F7 SIM SIM SIM SIM 30.00
0726001' SUCCESS SIM SIM SIM SIM 30.00
0932801' SUCCESS SIM SIM SIM SIM 30.00
1045901" SUCCESS SIM SIM SIM SIM 30.00
1048001 SUCCESS SIM SIM SIM SIM 30.00
1054001" SUCCESS SIM SIM SIM SIM 30.00
1054501 SUCCESS SIM SIM SIM SIM 30.00
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APENDICE E - Arquivo .CSV de entrada para o processRecords ap6s melhorias

Nome Fun | Limiar [:Euf::: Qtd Medico | Filtro Canaisa | Gerar Nome
Arquivo | cao de P Epl | Ep2 | Ep3 | Ep4 | Ep5 | Canais |Passa|Quantificadores | Parametros .

. (segu Epocas . . Processar | Excel Saida

PLG Filtro| erro Ruidosos | Baixa
ndos)

'0005201' | teste 2 5 3:14 | 3:16 | 3:18 | 3:20 | 3:23 | O2,FP1 PCP,VPC Taumax=30 02 NAO Vteste
1109101' | teste 2 5 9:55 | 9:57 | 9:59 |10:01|05:57 02 35 FM,PSNG 02,FP1 NAO Vpassou
'0013201' | teste 2 5 04:25|04:42| 04:53 | 05:06 | 05:16 TODOS NAO V78
'0013201' | teste 2 SEQUEN 04:25 COERENCIA NAO VSEQ

CIAL=8
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APENDICE F - Exemplo de um arquivo Excel de saida de calculo do teste de Friedman
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SILENCIO MUSICA FAVORITA MUSICA DESGOSTADA

DELTA TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA TETA ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO
FP1 | 0,023652 | 0,000236 | 0,001586 | 7,7E-08 | 0,143918 0,023652 0,081125 0,09896 | 0,322199 | 0,278263 | 0,053266 | 0,509275 7,5€-05 0,509275 0,065992 | 0,924886 1 0,008294 | 0,108984 0,539991 0,203092
FP2 | 0081125 | 1,29E-07 | 0,042658 | 5,03E-05 | 0,004033 0,571608 5,92€-08 0,09896 | 0,053266 | 0,257899 | 0,777297 | 0,539991 0,00721 0,131428 0,450701 | 0,299694 | 0,571608 | 0,000236 | 0,604078 0,396144 0,157299
F7 | 0813664 |0,186858 | 0,01621 | 1,16E-05 | 0,143918 0,157299 1,44E-05 0,777297 0,4795 | 0,962401 | 0,089686 | 0,186858 0,008294 0,345779 0,37043 | 0,065992 | 0,509275 | 0,089686 | 0,089686 0,509275 0,203092
F3 | 0345779 | 0,005414 | 7,52E-06 | 0,089686 | 0,143918 0,053266 3,35E-05 0,171602 | 0,203092 | 0,345779 | 0,962401 | 0,887537 0,081125 5,03E-05 0,509275 | 0,571608 | 0,637352 | 0,924886 | 0,571608 0,962401 0,777297
FZ | 0038063 | 0,018422 | 2,72€-05 | 0,345779 | 0,22033 0,509275 3,84E-06 0,422907 0,4795 0,4795 | 0,203092 | 0,396144 0,186858 0,000817 0,850436 | 0,450701 | 0,22033 | 0,22033 | 0,962401 0,143918 0,422907
FA | 0001348 | 0,002979 | 0,012474 | 0,238593 | 0,203092 0,000817 9,37E-06 0,741413 | 0,073239 | 0,813664 | 0,4795 | 0,671373 0,004033 0,033895 1 0,962401 | 0,777297 | 0,012474 | 0,604078 0,706082 0,850436
F8 | 0539991 | 0,004678 | 0,012474 | 0,108984 | 0,850436 0,010909 1,44E-10 0,008294 | 0,009522 | 0,887537 | 0,345779 | 0,053266 0,002183 0,000284 0,571608 | 0,299694 | 0,539991 | 0,014234 | 0,059346 0,813664 0,081125
T3 | 0604078 | 0,059346 | 4,54E-08 | 1,06E-10 | 0,038063 0,005414 1,07€-14 0,108984 | 0,038063 | 0,005414 | 0,396144 | 0,777297 0,000134 0,053266 0,4795 | 0,026719 | 0,571608 | 0,00034 | 0,014234 0,008294 2,72€-05
C3 | 0887537 | 0,038063 | 8,86E-09 | 0,131428 | 0,047715 0,422907 0,00034 0,741413 | 0,345779 | 0,450701 | 0,539991 | 0,322199 0,539991 0,030124 0,089686 | 0,887537 | 0,604078 | 0,850436 | 0,01621 0,038063 0,014234
CZ | 0924886 | 0,004678 | 9,37E-06 | 0,637352 | 0,571608 0,396144 0,000407 0,22033 | 0,059346 | 0,018422 | 0,604078 | 0,850436 0,924886 0,053266 0,257899 | 0,924886 | 0,157299 | 0,37043 | 0,962401 0,038063 0,539991
C4 | 0813664 | 0,008294 | 0,000817 | 0,637352 | 0,059346 0,119795 0,000486 0,009522 | 0,009522 | 0,081125 | 0,299694 | 0,741413 0,020895 0,171602 0,509275 | 0,422907 | 0,143918 | 0,850436 | 0,143918 0,108984 0,012474
T4 | 0509275 | 0,001143 | 0,00034 | 6,03E-06 | 4,11E-05 0,000284 3,48E-16 0,023652 | 0,741413 | 0,509275 | 0,171602 | 0,604078 0,012474 4,54E-08 0,962401 | 0,813664 | 0,345779 | 0,089686 | 0,026719 0,059346 2,21€-05
T5 | 0,850436 | 0,000967 | 1,92E-06 | 0,257899 | 0,171602 0,322199 0,089686 0,038063 | 0,887537 | 0,257899 | 0,004678 | 0,018422 0,22033 0,887537 0,322199 | 0,089686 | 0,059346 | 0,278263 | 0,059346 0,143918 0,000967
P3 | 0601029 | 0,002745 | 1,24E-06 | 0,234654 | 0,183165 0,81212 0,008933 0,140566 | 0,634514 | 0,128203 | 0,010256 | 0,73931 0,849189 0,775468 0,087011 | 0,568366 | 0,962084 | 0,703718 | 0,419004 0,096145 0,057233
PZ | 0171602 | 0,171602 | 3,84E-06 | 0,924886 | 0,008294 0,741413 0,006254 0,010909 | 0,777297 | 0,143918 1 0,278263 0,023652 0,637352 0,257899 | 0,186858 | 0,278263 | 0,450701 | 0,01621 0,671373 0,026719
P4 | 0777297 | 0,005414 | 2,43E-06 | 0,637352 | 0,014234 0,065992 0,00347 0,143918 | 0,073239 | 0,157299 | 0,539991 | 0,396144 0,065992 0,157299 0,396144 | 0,37043 | 0,038063 | 0,604078 | 0,37043 0,131428 0,09896
T6 | 0604078 | 0,004033 | 6,61E-14 | 0,637352 | 0,047715 0,00721 0,00034 0,01621 | 0,741413 | 0,023652 | 0,131428 | 0,299694 0,006254 0,020895 0,131428 | 0,157299 | 0,299694 | 0,924886 | 0,008294 0,37043 0,000284
01 | 0706082 | 0,023652 | 3,21E-14 | 0,008294 | 0,119795 0,203092 0,008294 0,203092 | 0,157299 | 0,065992 | 0,012474 | 0,850436 0,278263 0,396144 0,033895 | 1,44E-05 | 0,004678 | 0,813664 | 0,278263 0,345779 0,09896
oz 1 0,005414 | 1,54E-08 | 0,171602 | 0,450701 0,047715 0,000967 0,059346 | 0,186858 | 0,038063 | 0,042658 | 0,131428 0,278263 0,450701 0,009522 | 0,00721 | 0,203092 | 0,924886 | 0,073239 0,706082 0,026719
02 | 0924886 | 0,002553 | 1,54E-12 | 0,741413 | 0,004678 0,345779 1,92€-06 0,047715 0,4795 | 0,143918 | 0,030124 | 0,741413 0,038063 0,01621 0,073239 | 0,000689 | 0,000284 | 0,741413 | 0,777297 0,671373 0,741413

DO CONTINUO SOL BAIAO RUIDO BRANCO

DELTA TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA TETA ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO

FP1 | 0,005414 | 0,000817 | 0,081125 | 0,257899 | 0,396144 0,157299 0,119795 0,143918 | 0,924886 | 0,238593 | 0,813664 | 0,012474 0,637352 8,86E-09 0,741413 | 0,119795 | 0,322199 | 0,203092 | 0,257899 0,450701 0,108984
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FP2 0,850436 9,99E-08 | 0,37043 | 0,539991 | 0,143918 0,09896 0,604078 1 0,887537 | 0,777297 | 0,37043 | 0,108984 0,020895 4,11E-05 0,671373 | 0,108984 | 0,119795 | 0,604078 | 0,637352 0,089686 0,238593
F7 0,157299 0,539991 | 0,4795 | 0,345779 | 0,396144 0,671373 0,539991 0,020895 0,09896 0,059346 | 0,042658 | 0,924886 0,637352 3,06E-06 0,020895 | 0,741413 | 0,000196 | 0,000111 | 0,962401 0,637352 0,157299
F3 0,671373 0,081125 | 0,37043 | 0,924886 | 0,396144 0,604078 0,038063 0,4795 0,322199 | 0,539991 | 0,962401 | 0,671373 0,203092 0,000162 0,604078 | 0,539991 | 0,203092 | 0,257899 | 0,422907 0,171602 0,09896
Fz 0,604078 0,119795 | 0,777297 | 0,706082 | 0,09896 0,278263 0,37043 0,539991 0,813664 | 0,706082 | 0,509275 | 0,238593 0,604078 4,11E-05 0,257899 | 0,539991 | 0,37043 | 0,887537 | 0,604078 0,777297 0,023652
F4 0,813664 0,030124 | 0,637352 | 0,396144 | 0,509275 0,257899 0,038063 0,671373 0,238593 | 0,637352 | 0,322199 | 0,706082 0,033895 0,001348 0,924886 | 0,322199 | 0,450701 | 0,741413 | 0,509275 0,4795 0,186858
F8 0,777297 0,023652 | 0,033895 | 0,604078 | 0,238593 0,026719 0,539991 0,539991 0,539991 1 0,203092 | 0,396144 0,962401 0,010909 0,450701 | 0,047715 | 0,962401 | 0,509275 | 0,604078 0,604078 0,813664
T3 0,073239 0,299694 | 0,089686 | 0,924886 | 0,962401 0,887537 0,01621 0,131428 0,042658 0,4795 0,000407 | 0,005414 0,637352 1,92E-06 0,813664 | 0,671373 | 0,962401 | 0,396144 | 0,637352 0,706082 0,741413
Cc3 0,509275 0,081125 | 0,004678 | 0,278263 | 0,813664 0,604078 0,637352 0,065992 0,813664 | 0,450701 | 0,571608 | 0,509275 0,089686 0,000196 0,257899 | 0,131428 | 0,850436 1 0,4795 0,924886 0,238593
Ccz 0,887537 0,257899 | 0,081125 | 0,37043 0,37043 0,073239 0,850436 0,053266 0,422907 | 0,089686 | 0,257899 | 0,706082 0,22033 0,000817 0,171602 | 0,322199 | 0,741413 | 0,299694 | 0,396144 0,539991 0,033895
c4 0,813664 0,047715 | 0,119795 | 0,065992 | 0,671373 0,033895 0,850436 0,108984 0,539991 | 0,637352 | 0,422907 | 0,539991 0,278263 0,001143 0,033895 | 0,637352 | 0,962401 | 0,924886 | 0,186858 0,604078 0,299694
T4 0,887537 0,001863 | 0,299694 | 0,059346 | 0,37043 0,09896 0,186858 0,962401 0,924886 | 0,509275 | 0,345779 | 0,006254 0,143918 7,76E-13 0,887537 | 0,322199 | 0,450701 | 0,186858 | 0,047715 0,539991 0,000967
T5 1 0,065992 | 0,171602 | 0,053266 1 0,4795 0,777297 0,4795 0,962401 | 0,671373 1 0,238593 0,345779 0,000817 0,322199 | 0,813664 | 0,422907 | 0,450701 | 0,119795 0,850436 0,422907
P3 0,849189 0,096145 | 0,153826 1 0,253904 0,274227 0,4758 0,003734 0,634514 | 0,601029 | 0,703718 | 0,366405 0,703718 0,318132 0,032418 | 0,536577 | 0,253904 | 0,849189 | 0,536577 0,21646 0,106029
Pz 0,257899 0,813664 | 0,081125 | 0,018422 | 0,571608 0,962401 0,887537 0,004678 0,450701 | 0,741413 | 0,203092 | 0,887537 0,018422 0,053266 0,006254 | 0,962401 | 0,278263 | 0,203092 | 0,131428 0,143918 0,186858
P4 0,706082 0,238593 | 0,813664 | 0,887537 | 0,422907 0,671373 0,131428 0,962401 0,030124 | 0,637352 | 0,038063 | 0,396144 0,257899 0,065992 0,186858 | 0,157299 | 0,604078 | 0,671373 | 0,299694 0,604078 0,089686
T6 0,813664 0,010909 | 0,023652 | 0,042658 | 0,238593 0,020895 0,850436 0,741413 0,238593 | 0,257899 | 0,278263 | 0,637352 0,00347 0,203092 0,081125 | 0,047715 | 0,026719 | 0,962401 | 0,299694 0,009522 0,073239
o1 0,4795 1 0,00347 | 0,450701 | 0,089686 0,322199 0,22033 0,850436 0,396144 | 0,706082 | 0,604078 | 0,924886 0,22033 0,012474 0,509275 | 0,422907 | 0,924886 | 0,089686 | 0,422907 0,924886 0,962401
0oz 0,322199 0,065992 | 0,157299 | 0,571608 | 0,671373 0,157299 0,962401 0,604078 0,604078 | 0,238593 | 0,171602 | 0,637352 0,637352 0,005414 0,777297 | 0,706082 | 0,171602 | 0,604078 | 0,322199 0,278263 0,09896
02 0,604078 0,131428 | 0,030124 | 0,422907 | 0,01621 0,706082 0,033895 0,887537 0,706082 | 0,924886 | 0,278263 | 0,509275 0,887537 6,15E-05 0,962401 | 0,706082 | 0,924886 | 0,604078 | 0,604078 0,322199 0,000579
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APENDICE G - Exemplo de um arquivo Excel de saida do calculo do VAP

SILENCIO MUSICA FAVORITA MUSICA DESGOSTADA

DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO
FP1 0,595768 0,87009 | 0,259956 | 0,316259 | 0,090268 0,016973 0,001812 1,194153 0,070018 | 0,165669 | 0,135871 | 0,034423 0,027143 0,000894 0,231098 | 0,010624 | 0,061997 0,0845 0,117522 0,003494 0,001135
FP2 0,841157 0,968848 | 0,118659 | 0,185927 | 0,247707 0,003693 0,002762 0,580901 0,22257 0,033174 | 0,04875 | 0,021857 0,019032 4,56E-05 0,060831 | 0,111802 | 0,07541 | 0,127447 | 0,101485 0,005587 0,001354
F7 0,100812 0,447685 | 0,111703 | 0,249798 0,1016 0,003482 0,003384 0,680415 0,234233 | 0,129694 | 0,071264 | 0,103651 0,016715 0,001167 0,118884 | 0,326511 | 0,028536 | 0,078738 | 0,072481 0,006861 0,000265
F3 0,802337 0,593241 | 0,233814 | 0,21623 0,12919 0,012364 0,001566 0,746025 0,081298 | 0,125294 | 0,049551 | 0,052737 0,016366 0,000884 0,55486 | 0,302941 | 0,085922 | 0,074153 | 0,116635 0,00278 0,001606
Fz 1,220249 1,103765 | 0,351018 | 0,148131 | 0,170803 0,002096 0,003182 0,002474 0,237588 | 0,015623 | 0,137978 | 0,020239 0,014218 0,001528 0,465123 | 0,040607 | 0,183472 | 0,20062 | 0,102097 0,013392 0,000587
F4 1,417652 0,782454 | 0,161873 | 0,039497 | 0,11543 0,012444 0,00183 0,063204 0,388215 | 0,219216 | 0,191286 | 0,105064 0,01787 0,000302 0,421018 | 0,230413 | 0,126361 | 0,248263 | 0,006502 0,001409 0,000873
F8 0,334084 0,827649 | 0,304923 | 0,266913 | 0,117089 0,025826 0,004453 1,054843 0,458895 | 0,270228 | 0,053122 | 0,235478 0,030943 0,001809 0,344164 | 0,11265 | 0,252466 | 0,159937 | 0,328428 0,00464 0,002178
T3 0,093229 0,490714 | 0,617214 | 0,571319 | 0,17662 0,035254 0,006291 1,203961 0,78414 0,365087 | 0,295182 | 0,146858 0,049381 0,001092 0,769734 | 0,873576 | 0,138364 | 0,529608 | 0,454545 0,058112 0,007222
C3 0,38463 0,742916 | 0,571433 | 0,050461 | 0,069973 0,012148 0,001677 0,715608 0,213236 | 0,158208 | 0,049848 | 0,015907 0,010285 0,001518 0,987762 | 0,26985 | 0,068035 | 0,006757 | 0,103764 0,02064 0,001428
cz 0,155539 0,501053 | 0,353531 | 0,127143 | 0,010999 0,010564 0,001519 0,674348 0,378654 | 0,418251 | 0,188961 | 0,01085 0,009193 0,000578 0,655418 | 0,37478 0,28438 | 0,092795 | 0,123028 0,004543 0,000501
ca 0,1149 0,926192 | 0,440222 | 0,075633 | 0,169607 0,017318 0,002063 1,118511 0,442846 | 0,206013 | 0,014186 | 0,025011 0,01859 7,29E-05 1,006737 | 0,121336 | 0,308309 | 0,131486 | 0,123531 0,009319 0,001649
T4 0,506144 1,195034 | 0,579707 | 0,768204 | 0,450421 0,030686 0,007142 1,099557 0,396413 | 0,132582 | 0,16891 | 0,050356 0,024892 0,001509 0,230889 | 0,097096 | 0,014971 | 0,144818 | 0,191009 0,037895 0,0044
T5 0,560703 1,336285 | 0,728461 | 0,032832 | 0,085702 0,0094 0,001098 0,742546 0,141332 | 0,149544 | 0,454682 | 0,314168 0,015863 0,000119 0,51543 | 0,743569 | 0,273174 | 0,178521 | 0,272147 0,00149 0,002192
P3 0,150899 0,896863 | 0,357998 | 0,055094 | 0,087976 0,000151 0,000322 0,623005 0,151914 | 0,091214 | 0,154402 | 0,024343 0,001802 0,000471 0,76816 | 0,219163 | 0,385205 | 0,062172 | 0,088874 0,022102 0,001664
Pz 0,079334 1,089736 | 0,417561 | 0,222579 | 0,173357 0,002935 0,00152 1,519129 0,053681 | 0,185168 | 0,065906 | 0,234743 0,016068 0,001271 0,891543 | 0,518816 | 0,25812 | 0,036177 | 0,254184 0,000318 0,002268
P4 0,134106 0,624801 | 0,573596 | 0,168705 | 0,213661 0,005233 0,00274 1,227517 0,300564 | 0,077168 | 0,104916 | 0,119754 0,007457 0,000268 0,797669 | 0,271167 | 0,354279 | 0,055187 | 0,085058 0,010509 0,000969
T6 0,988035 1,444386 | 0,774728 | 0,099487 | 0,010429 0,020192 0,002907 1,219627 0,071788 | 0,173884 | 0,169421 | 0,255772 0,02589 0,00079 0,494893 | 0,805922 | 0,166282 | 0,292263 | 0,335911 0,003357 0,002607
01 0,369817 1,284894 | 0,888519 | 0,07282 | 0,192045 0,00125 0,002317 1,330678 0,611184 | 0,227753 | 0,208227 | 0,027222 0,00764 0,000563 1,344151 | 1,313259 | 0,265216 | 0,098713 | 0,010549 0,004665 0,001223
0oz 0,423165 1,34282 | 0,896317 | 0,103013 | 0,237875 0,000982 0,002816 1,440096 0,40746 0,28609 | 0,118972 | 0,150678 0,003382 5,45E-05 1,112802 | 0,715989 | 0,210891 | 0,039545 | 0,051141 0,005216 0,000682
02 0,309195 0,903936 | 0,983046 | 0,024451 | 0,276322 0,002082 0,003779 0,919053 0,398915 0,16237 | 0,042094 | 0,110923 0,019403 0,000658 0,912628 | 1,285001 | 0,323655 | 0,06671 | 0,101271 0,003086 8,19E-05

DO CONTINUO SOL BAIAQ RUIDO BRANCO

DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO

FP1 0,447944 0,341924 | 0,220192 | 0,121369 | 0,053172 0,014114 0,000847 0,695204 0,163582 | 0,094191 | 0,014467 | 0,183254 0,005627 0,005041 0,283336 | 0,164912 | 0,17573 | 0,064163 | 0,0625 0,001605 0,001857
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FP2 0,529909 | 0,532468 | 0,086499 | 0,037606 | 0,109096 0,009019 6,86E-05 0,62466 | 0,175922 | 0,074199 | 0,010213 | 0,130491 0,011509 0,001132 0,116832 | 0,20357 | 0,125418 | 0,001216 | 0,089289 0,003109 0,00086
F7 0,346904 | 0,063395 | 0,062869 | 0,081247 | 0,01079 0,002239 0,000701 1,000394 | 0,223703 | 0,148901 | 0,101051 | 0,189399 0,00101 0,0049 0,909085 | 0,139506 | 0,225636 | 0,112774 | 0,07076 0,003473 0,0023
F3 0,141458 | 0,361458 | 0,001337 | 0,008538 | 0,222151 0,007366 0,000928 0,09173 0,16033 | 0,268447 | 0,001646 | 0,131059 0,009493 0,001023 0,517405 | 0,007924 | 0,473686 | 0,138305 | 0,035881 0,01138 5,3€-05
Fz 0,464325 | 0,775563 | 0,220138 | 0,00634 | 0,063881 0,008185 0,001143 0,38335 | 0,402509 | 0,030137 | 0,09582 | 0,128795 0,007968 0,002313 0,363202 | 0,353108 | 0,248688 | 0,006618 | 0,02272 0,003215 0,000982
Fa 0,29671 | 0,369615 | 0,107807 | 0,001829 | 0,169761 0,009487 0,001003 0,049861 | 0,344562 | 0,075958 | 0,077206 | 0,127267 0,009883 0,0014 0,092518 | 0,014144 | 0,319019 | 0,09697 | 0,039905 0,004177 0,000149
F8 0,735243 | 0,470208 | 0,254305 | 0,125643 | 0,068538 0,027662 0,000342 0,374512 | 0,428027 | 0,082814 | 0,058121 | 0,030476 0,007218 0,002235 0,863534 | 0,441858 | 0,121161 | 0,027924 | 0,102587 0,004878 0,000235
T3 0,597538 | 0,232402 | 0,255019 | 0,116072 | 0,03695 0,003419 0,002558 0,409832 | 0,625987 | 0,118319 | 0,265963 | 0,236044 0,004996 0,004924 0,163193 | 0,020952 | 0,031362 | 0,038097 | 0,043077 0,010327 0,001016
c3 0,459737 | 0,327146 | 0,328723 | 0,071575 | 0,028159 0,003703 0,001011 1,023983 | 0,02448 | 0,207627 | 0,056285 | 0,159498 0,003784 0,002451 0,672346 | 0,225111 | 0,197379 | 0,077311 | 0,040365 0,001678 0,000378
cz 0,075136 | 0,394335 | 0,111311 | 0,070107 | 0,016064 0,011671 4,53E-05 0,733234 | 0,095264 | 0,273148 | 0,04291 | 0,116912 0,010924 0,001532 0,416341 | 0,250703 | 0,406172 | 0,130543 | 0,011328 0,009224 0,001011
ca 0,164537 | 0,623829 | 0,039067 | 0,021268 | 0,064435 0,010019 0,000486 0,647657 | 0,341934 | 0,197793 | 0,187541 | 0,068268 0,00884 0,000613 0,781091 | 0,160558 | 0,423352 | 0,00399 | 0,10271 0,003673 0,000313
T4 0,102984 | 1,046021 | 0,286487 | 0,30926 | 0,179574 0,01421 0,001966 0,043864 | 0,391885 | 0,099063 | 0,326702 | 0,15255 0,01942 0,005157 0,299527 | 0,334281 | 0,051934 | 0,193941 | 0,241403 0,007814 0,001544
T5 0,139532 | 0,526217 | 0,291303 | 0,2494 | 0,033486 0,00715 0,000695 0,297032 | 0,028615 | 0,055306 | 5,89E-05 | 0,094145 0,000681 0,001854 0,403071 | 0,074227 | 0,069307 | 0,137174 | 0,242611 0,005311 0,001118
P3 0,018526 | 0,446499 | 0,21215 | 0,24841 | 0,006818 0,003056 0,000501 1,038688 | 0,364912 | 0,006174 | 0,002845 | 0,052479 0,008434 0,001463 0,72319 | 0,293195 | 0,365115 | 0,186871 | 0,053797 0,01036 0,001369
PZ 0,017068 | 0,372099 | 0,091748 | 0,197411 | 0,118126 0,012751 0,001875 0,714679 | 0,630758 | 0,117346 | 0,158355 | 0,028001 0,007435 0,000174 1,097002 | 0,071788 | 0,301508 | 0,263256 | 0,242506 0,005477 0,001099
P4 0,06268 | 0,43635 | 0,137282 | 0,146898 | 0,13764 0,004577 0,001044 0,067237 | 0,391464 | 0,297559 | 0,124806 | 0,206647 0,00129 0,001119 0,015514 | 0,039721 | 0,311284 | 0,129843 | 0,009388 0,007073 0,000684
T6 0,246972 | 0,42084 | 0,200788 | 0,325242 | 0,266948 0,017351 0,00048 0,492382 | 0,735779 | 0,028155 | 0,172913 | 0,114799 0,024315 0,000873 0,22155 | 0,461387 | 0,314878 | 0,016845 | 0,205199 0,01128 0,001045
01 0,016028 | 0,210646 | 0,150938 | 0,11839 | 0,152839 0,001157 0,000423 0,128847 | 0,062113 | 0,238268 | 0,048684 | 0,043989 0,005675 0,001408 0,359089 | 0,131415 | 0,172818 | 0,058592 | 0,049881 0,001477 0,000348
oz 0,153039 | 0,496134 | 0,17728 | 0,198581 | 0,013782 0,00682 0,000473 0,366053 | 0,091636 | 0,220942 | 0,195902 | 0,004073 0,00274 0,002293 0,195477 | 0,006235 | 0,226539 | 0,125495 | 0,064529 0,002917 0,001528
02 0,262531 | 0,340161 | 0,172344 | 0,097296 | 0,22763 0,001452 0,001544 0,470061 | 0,161232 | 0,298304 | 0,145724 | 0,098916 0,003169 0,002959 0,707588 | 0,177538 | 0,122828 | 0,153797 | 0,041546 0,010368 0,002679
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APENDICE H - Exemplo de um arquivo Excel de saida do calculo do VAP selecionado de acordo com teste de
Friedman ( < 0,05)

SILENCIO MUSICA FAVORITA MUSICA DESGOSTADA
DELTA TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA TETA ALFA BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO
FP1 0,595768 | 0,87009 | 0,259956 | 0,316259 0 0,016973 0 0 0 0 0 0 0,027143 0 0 0 0 0,0845 0 0 0
FP2 0 0,968848 | 0,118659 | 0,185927 | 0,247707 0 0,002762 0 0 0 0 0 0,019032 0 0 0 0 0,127447 0 0 0
F7 0 0 0,111703 | 0,249798 0 0 0,003384 0 0 0 0 0 0,016715 0 0 0 0 0 0 0 0
F3 0 0,593241 | 0,233814 0 0 0 0,001566 0 0 0 0 0 0 0,000884 0 0 0 0 0 0 0
Fz 1,220249 | 1,103765 | 0,351018 0 0 0 0,003182 0 0 0 0 0 0 0,001528 0 0 0 0 0 0 0
F4 1,417652 | 0,782454 | 0,161873 0 0 0,012444 0,00183 0 0 0 0 0 0,01787 0,000302 0 0 0 0,248263 0 0 0
F8 0 0,827649 | 0,304923 0 0 0,025826 0,004453 1,054843 | 0,458895 0 0 0 0,030943 0,001809 0 0 0 0,159937 0 0 0
T3 0 0 0,617214 | 0,571319 | 0,17662 0,035254 0,006291 0 0,78414 | 0,365087 0 0 0,049381 0 0 0,873576 0 0,529608 | 0,454545 0,058112 0,007222
Cc3 [o 0,742916 | 0,571433 0 0,069973 0 0,001677 0 0 0 0 0 0 0,001518 0 0 0 0 0,103764 0,02064 0,001428
Ccz 0 0,501053 | 0,353531 0 0 0 0,001519 0 0 0,418251 0 0 0 0 0 0 0 0 0 0,004543 0
ca4 [o 0,926192 | 0,440222 0 0 0 0,002063 1,118511 | 0,442846 0 0 0 0,01859 0 0 0 0 0 0 0 0,001649
T4 0 1,195034 | 0,579707 | 0,768204 | 0,450421 0,030686 0,007142 1,099557 0 0 0 0 0,024892 0,001509 0 0 0 0 0,191009 0 0,0044
T5 0 1,336285 | 0,728461 0 0 0 0 0,742546 0 0 0,454682 | 0,314168 0 0 0 0 0 0 0 0 0,002192
P3 [o 0,896863 | 0,357998 0 0 0 0,000322 0 0 0 0,154402 0 0 0 0 0 0 0 0 0 0
Pz 0 0 0,417561 0 0,173357 0 0,00152 1,519129 0 0 0 0 0,016068 0 0 0 0 0 0,254184 0 0,002268
P4 [o 0,624801 | 0,573596 0 0,213661 0 0,00274 0 0 0 0 0 0 0 0 0 0,354279 0 0 0 0
T6 0 1,444386 | 0,774728 0 0,010429 0,020192 0,002907 1,219627 0 0,173884 0 0 0,02589 0,00079 0 0 0 0 0,335911 0 0,002607
o1 0 1,284894 | 0,888519 | 0,07282 0 0 0,002317 0 0 0 0,208227 0 0 0 1,344151 | 1,313259 | 0,265216 0 0 0 0
oz 0 1,34282 | 0,896317 0 0 0,000982 0,002816 0 0 0,28609 | 0,118972 0 0 0 1,112802 | 0,715989 0 0 0 0 0,000682
02 0 0,903936 | 0,983046 0 0,276322 0 0,003779 0,919053 0 0 0,042094 0 0,019403 0,000658 0 1,285001 | 0,323655 0 0 0 0
DO CONTINUO SOL BAIAO RUIDO BRANCO
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DELTA TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA TETA ALFA | BETA | GAMA | GAMA ALTA | RUIDO DELTA | TETA | ALFA | BETA | GAMA | GAMA ALTA | RUIDO
FP1 0,447944 | 0,341924 0 0 0 0 0 0 0 0 0 0,183254 0 0,005041 0 0 0 0 0 0 0
FP2 0 0,532468 0 0 0 0 0 0 0 0 0 0 0,011509 0,001132 0 0 0 0 0 0 0
F7 0 0 0 0 0 0 0 1,000394 0 0 0,101051 0 0 0,0049 0,909085 0 0,225636 | 0,112774 0 0 0
F3 0 0 0 0 0 0 0,000928 0 0 0 0 0 0 0,001023 0 0 0 0 0 0 0
Fz 0 0 0 0 0 0 0 0 0 0 0 0 0 0,002313 0 0 0 0 0 0 0,000982
F4 0 0,369615 0 0 0 0 0,001003 0 0 0 0 0 0,009883 0,0014 0 0 0 0 0 0 0
F8 0 0,470208 | 0,254305 0 0 0,027662 0 0 0 0 0 0 0 0,002235 0 0,441858 0 0 0 0 0
T3 0 0 0 0 0 0 0,002558 0 0,625987 0 0,265963 | 0,236044 0 0,004924 0 0 0 0 0 0 0
c3 0 0 0,328723 0 0 0 0 0 0 0 0 0 0 0,002451 0 0 0 0 0 0 0
Ccz 0 0 0 0 0 0 0 0 0 0 0 0 0 0,001532 0 0 0 0 0 0 0,001011
Cca 0 0,623829 0 0 0 0,010019 0 0 0 0 0 0 0 0,000613 0,781091 0 0 0 0 0 0
T4 0 1,046021 0 0 0 0 0 0 0 0 0 0,15255 0 0,005157 0 0 0 0 0,241403 0 0,001544
T5 0 0 0 0 0 0 0 0 0 0 0 0 0 0,001854 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 1,038688 0 0 0 0 0 0 0,72319 0 0 0 0 0 0
PZ 0 0 0 0,197411 0 0 0 0,714679 0 0 0 0 0,007435 0 1,097002 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0,391464 0 0,124806 0 0 0 0 0 0 0 0 0 0
T6 0 0,42084 | 0,200788 | 0,325242 0 0,017351 0 0 0 0 0 0 0,024315 0 0 0,461387 | 0,314878 0 0 0,01128 0
o1 0 0 0,150938 0 0 0 0 0 0 0 0 0 0 0,001408 0 0 0 0 0 0 0
oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0,002293 0 0 0 0 0 0 0
02 0 0 0,172344 0 0,22763 0 0,001544 0 0 0 0 0 0 0,002959 0 0 0 0 0 0 0,002679
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APENDICE | - Resultados do Treinamento Prognostico Clinico

Os primeiros modelos que foram treinados basearam-se na arquitetura

mencionada no item 5.2 Arquiteturas.

Os resultados apresentados na Tabela 15 representam uma adaptagao do

processamento realizado por (BALDO JUNIOR, 2023), incorporando reajustes na

arquitetura original para permitir o treinamento com outros modelos, bem como a

reamostragem do sinal de EEG.

Tabela 15 — Resultados do treinamento da base de dados Prognéstico Clinico para o sinal
puro, com caracteristicas do paciente e estatisticas, em negrito se destaca o melhor modelo

Modelo Acuracia lz:n:g?;;a Precisao Recall Espec. 1;2?950_
MMLP SREA 0.78+0.09 | 0.78+0.09 0.84+0.09 | 0.70£0.13 | 0.78£0.09 105
MMLP 0.70+0.15 | 0.69+0.15 | 0.81+0.21 | 0.60+0.08 | 0.70+£0.15 120
MMLP CP SREA | 0.67+0.09 | 0.66+0.10 | 0.68+0.09 | 0.63+0.16 | 0.67 +0.09 72
MMLP CP 0.67+0.09 | 0.66+0.10 | 0.68+0.09 | 0.63+0.16 | 0.67 £0.09 76
MMLP CE SREA | 0.65+0.13 | 0.65+0.14 | 0.65+0.14 | 0.63+0.19 | 0.65+0.13 74
MMLP CE 0.63+0.14 | 0.63+0.14 | 0.64+0.15 | 0.60+0.17 | 0.63+0.14 86
MMLP CPE SREA | 0.52+0.13 | 0.51+0.14 0.49+0.14 | 0.50+£0.24 | 0.52+£0.13 75
MMLP CPE 0.48+0.19 | 0.48+0.19 | 0.48+0.15 | 0.53+0.25 | 0.48+£0.19 82
MCL SREA 0.78+0.11 | 0.78+0.11 | 0.84+0.16 | 0.73+0.08 | 0.78 £0.11 497
MCL 0.77+0.03 | 0.77+0.03 | 0.79+0.04 | 0.73+0.08 | 0.77 £0.03 741
MCLCPSREA | 0.87+0.04 | 0.86+0.04 | 0.92+0.10 | 0.83+0.15 | 0.87 £0.04 533
MCL CP 0.78+0.07 | 0.78+0.07 | 0.75+0.08 | 0.87+£0.07 | 0.78 £0.07 683
MCLCESREA | 0.78+0.16 | 0.78+0.16 | 0.86+0.20 | 0.73+0.08 | 0.78+0.16 548
MCL CE 0.73+0.10 | 0.73+0.10 | 0.76+0.14 | 0.73+0.17 | 0.73+0.10 701
MCL CPESREA | 0.85+0.06 | 0.85+0.06 | 0.90+0.09 | 0.80+0.13 | 0.85+0.06 543
MCL CPE 0.72+0.13 | 0.71+0.13 | 0.71+0.12 | 0.77+0.13 | 0.72+0.13 706

Os resultados apresentados na Tabela 15 mostraram-se bastante proximos

aos obtidos por (BALDO JUNIOR, 2023), evidenciando que, apesar de algumas

modificagdes no algoritmo base, os resultados permaneceram consistentes, mesmo

com diferentes configuragcbes de hardware nos experimentos. Destaca-se o

desempenho superior do modelo MCL CP SREA (CNN-LSTM com caracteristicas do

paciente e sem reamostragem do sinal), assim como da base de dados sem
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reamostragem, que apresentou resultados melhores em comparagao com a versao

reamostrada.

Em busca de melhorar os resultados utilizou-se no treinamento os atributos

extraidos pelo software de processamento de EEG como: Participacao de contribuicdo

de Poténcia - PCP, Frequéncia Mediana — FM, e Coeréncia. Obtendo-se os resultados

da Tabela 16:

Tabela 16 - Resultados do treinamento da base de dados Prognéstico Clinico para os atributos
PCP, FM e Coeréncia, em negrito se destaca o melhor modelo

. F1 score L Tempo

Modelo Acuracia (macro) Precisao Recall Espec. (seg.)

MCL CPCP SREA | 0.80+0.09 | 0.80+0.09 | 0.86+0.13 | 0.73+0.08 | 0.80+0.09 649

MCL CPCP 0.75+0.07 | 0.75+£0.08 | 0.78+0.12 | 0.73+0.17 | 0.75+0.08 1048

MCL CPPCP SREA | 0.80+0.07 | 0.80+0.07 | 0.83+0.10 | 0.77+£0.13 | 0.80%0.07 631

MCL CPPCP 0.82+0.06 | 0.82+0.06 | 0.84+0.09 | 0.80+0.13 | 0.82+0.06 877

MCL CFM SREA 0.82+0.10 | 0.82+0.10 | 0.87+0.13 | 0.77+0.13 | 0.820.10 701

MCL CFM 0.80+0.04 | 0.80+0.03 | 0.82+0.11 | 0.80+0.07 | 0.80x0.04 1084

MCL CFM REA
(REA exceto no 0.77+0.06 | 0.77+0.06 | 0.79+0.12 | 0.77+0.08 | 0.77 £0.06 868
FM)

MCL CPFM SREA | 0.82+0.06 | 0.81+0.06 | 0.87+0.11 | 0.77£0.13 | 0.82+£0.06 728

MCL CPFM 0.77+0.03 | 0.77+£0.03 | 0.77+£0.05 | 0.77+0.08 | 0.77 £0.03 906

MCL CC 0.88+0.09 | 0.88+0.09 | 0.97 +0.06 | 0.80+0.19 | 0.88 +0.09 1055

MCL CPC 0.88+0.04 | 0.88+0.04 | 0.94+0.07 | 0.83+0.15 | 0.88+0.04 3624
MCL CPC Aumento

do Dropout para
0.5 nas camadas

gue usam 0.2 0.85+0.06 | 0.85+0.07 | 0.92+0.10 | 0.80+0.19 | 0.85%0.06 1105
(kernel_regularize
r=regularizers.12(1

e-4))

Na Tabela 16, o modelo com atributos de coeréncia ndo possui uma versao

sem reamostragem, pois a coeréncia esta diretamente relacionada ao espectro de

frequéncia. Dados com frequéncias diferentes geram quantidades distintas de

atributos, o que pode causar erros na arquitetura do modelo. Vale destacar que o

modelo MCL com caracteristicas de coeréncia apresentou o melhor desempenho

entre as configura¢des avaliadas.
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Posteriormente, foi realizado o treinamento do modelo utilizando sinais de

EEG das regides cerebrais frontal, central, occipital, parietal e temporal, conforme
detalhado na Tabela 17.

Tabela 17 - Resultados do treinamento da base de dados Prognéstico Clinico com
caracteristicas do paciente e regides cerebrais: frontal, central, occipital, parietal e temporal,
em negrito se destaca o melhor modelo

Modelo Acuracia I::nzz:);;a Precisao Recall Espec. 1;2:‘;;)
MCL CPEFSREA | 0.80+0.09 | 0.80+0.09 | 0.78+0.07 | 0.83+0.15 | 0.80+0.09 526
MCL CPEF 0.77+0.06 | 0.77 £0.06 0.77+0.06 | 0.77+£0.13 | 0.77 £0.06 696
MCLCPECSREA | 0.80+0.14 | 0.80+0.14 | 0.80+0.13 | 0.80+0.16 | 0.80+0.14 489
MCL CPEC 0.87+0.09 | 0.87+0.09 | 0.88+0.10 | 0.87+0.13 | 0.87 +0.09 671
MCL CPEO SREA | 0.82+0.10 | 0.82+0.10 0.84+0.11 | 0.80+0.16 | 0.82+0.10 488
MCL CPEO 0.87+0.09 | 0.86+0.09 | 0.92+0.11 | 0.83+0.18 | 0.87+0.09 673
MCL CPEPSREA | 0.82+0.08 | 0.82+0.08 | 0.81+0.05 | 0.83+0.15 | 0.82+0.08 517
MCL CPEP 0.83+0.09 | 0.83+0.10 | 0.87+0.11 | 0.80+0.16 | 0.83 £0.09 700
MCL CPETSREA | 0.75+0.05 | 0.75+0.05 | 0.75+0.06 | 0.77+0.08 | 0.75+0.05 482
MCL CPET 0.83+0.05| 0.83+0.06 | 0.87+0.13 | 0.83+0.11 | 0.83+0.05 688

Esse processo permitiu avaliar o impacto das diferentes areas cerebrais na
classificagdo dos sinais de EEG para o progndstico de coma, destacando o
desempenho superior das regides central e occipital quando o sinal foi reamostrado,
alcancando uma acuracia de 0,87. Esses resultados evidenciam a relevancia da
reamostragem, contribuindo para a predicdo mais precisa do estado clinico dos

pacientes nestas regides em especifico.

O proximo passo consistiu em testar o modelo utilizando atributos extraidos
por meio do Common Spatial Pattern (CSP), também com os dados extraidos da
decomposicao wavelet, e realizando alteragdes na arquitetura como adicdo de um
layer com Transformer ou alteracdes de hiperparametros, conforme apresentado na
Tabela 18. Essa abordagem combinada permite capturar tanto padrbées espaciais (via
CSP), quanto caracteristicas temporais e frequenciais (via decomposigdo wavelet)
dos sinais de EEG.



198

Tabela 18 - Resultados do treinamento da base de dados Prognéstico Clinico para CSP,
decomposicao de Wavelet, e alteragées na arquitetura do modelo, em negrito se destaca o
melhor modelo

Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)

MCL CCSP4 0.60+0.11 | 0.55+0.18 | 0.58+0.13 | 0.53+0.22 | 0.60+0.11 993
MCL CCSP10 0.47+0.10 | 0.34+0.22 | 0.37+0.22 | 0.33+0.24 | 0.47+0.10 1012
MCL CCSP20 0.40+0.14 | 0.32+0.26 | 0.31+0.26 | 0.33+0.28 | 0.40+0.14 908
MCL CDW4 0.75+0.11 | 0.75+0.11 | 0.75+0.11 | 0.77+0.08 | 0.75+0.11 932

MCL CE
ConviD(64/128, | 0 754+0,11 | 0.75+0.10 | 0.80+0.18 | 0.73+0.13 | 0.75+0.11 859
kernel 5/3, para

128/256, kernel 3/7)
MCLT CE 0.75+0.05 | 0.75+0.05 | 0.79+0.12 | 0.73+0.17 | 0.75+0.05 1054

Conforme observado na Tabela 18, o CSP nao apresentou resultados

satisfatérios, enquanto a decomposi¢cdo wavelet demonstrou um desempenho

superior, alcangcando um F1 score de 0,75, e alterando o modelo base melhora-se o

desempenho.

Ainda foi realizado testes utilizando outros modelos de redes neurais o qual o

resultado pode ser visualizado na Tabela 19.

Tabela 19 - Resultados do treinamento da base de dados Prognéstico Clinico com outros
modelos de rede neural, em negrito se destaca o melhor modelo

Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)

INCEPTION
(ISMAIL FAWAZ | 0.58+0.09 | 0.55+0.11 | 0.65+0.19 | 0.60+0.20 | 0.58+0.09 | 1479

etal., 2019)

RESNET
(ISMAIL FAWAZ | 0.67+0.12 | 0.64+0.14 | 0.73+0.17 | 0.67+0.21 | 0.67+0.12 | 1539

etal., 2019)

ResNet50 0.45+0.10 | 0.32+0.04 | 0.36+0.20 | 0.67+0.42 | 0.45+0.10 | 6859

ResNet101 0.48+0.03 | 0.33+0.02 | 0.25+0.01 | 0.48+0.03 | 0.48+0.03 | 14655

ERTNET
0.73+0.18 | 0.73+0.18 | 0.76 +0.22 | 0.77 £0.17 | 0.73+0.18 284
(LIU et al., 2024)

EfficientNet 0.43+0.24 | 0.38+0.23 | 0.27+0.24 | 0.40+0.39 | 0.43%0.24 884
EfficientNetBO | 0.48+0.12 | 0.41+0.13 | 0.39+0.21 | 0.63+0.36 | 0.48+0.12 | 1227
EfficientNetB1 | 0.50+0.00 | 0.33+0.00 | 0.30+0.25 | 0.60+0.49 | 0.50+0.00 | 3669
EfficientNetB2 | 0.55+0.10 | 0.45+0.16 | 0.56+0.12 | 0.80+0.27 | 0.55+0.10 | 4132
EfficientNetB3 | 0.37+0.09 | 0.30+0.03 | 0.35+0.12 | 0.50+0.35 | 0.37+0.09 | 4517
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Modelo Acuracia Iz;]zgz;';a Precisao Recall Espec. -I;'::‘grf;)
EfficientNetB4 | 0.47+0.09 | 0.39+0.12 | 0.2340.29 | 0.1740.21 | 0.47+0.09 | 5254
EfficientNetB5 | 0.32+0.17 | 0.23+0.10 | 0.34+0.16 | 0.60+0.37 | 0.32+0.17 | 6861
EfficientNetB6 | 0.48+0.03 | 0.43+0.06 | 0.48+0.04 | 0.50+0.30 | 0.48+0.03 | 8464

EfficientNetV2M | 0.50+0.11 | 0.4140.13 | 0.42+0.21 | 0.73+0.39 | 0.50+0.11 | 4515
EfficientNetV2ZM | 54,011 | 0414013 | 0424021 | 0.73+039 | 0.50+0.11 | 4116

(preprocessing=true)




200

APENDICE J - Resultados do Treinamento Transformer e Prognostico

Clinico

1 Sinal Puro

A andlise inicial considerou exclusivamente o sinal EEG bruto para a
classificacdo, com os resultados apresentados nas Tabela 20 e Tabela 21, utilizando
a legenda da Tabela 9 como referéncia. Essa abordagem permite avaliar a influéncia
dos hiperparametros no desempenho dos modelos, destacando o impacto de

configuragdes especificas na acuracia e no tempo de treinamento.

Na Tabela 20, observa-se o efeito da variacdo dos hiperparametros no modelo
com camadas de TransformerEncoder (MT). O aumento do numero de camadas (Ny,,
de 1 para 3) geralmente eleva a acuracia, mas implica maior tempo de treinamento.
Por exemplo, o modelo MT com N_H = 8,INT_D = 64,N_L = 1,DOUT = 0,1 e EPC =
30 alcanga acuracia de 0,78 £ 0,16, enquanto o modelo com N_L = 3 obtém 0,88 +
0,09, um ganho de 10%, mas com tempo de treinamento mais que duplicado (de 228
para 503 segundos). Valores menores de dimens&o interna (INT_D) reduzem a
quantidade de atributos capturados, porém podem melhorar a acuracia, enquanto
taxas de dropout (DOUT) mais elevadas tendem a diminuir o desempenho. Aumentar
o numero de épocas (EPC, de 30 para 60) nao garante ganhos significativos, sugerindo

convergéncia precoce dos modelos.

Adicionalmente, o processamento sem placa de video (SPV) aumenta
consideravelmente o tempo de treinamento, como no caso de MT SPV com N_H =
8,INT_D = 64,N_L = 3,DOUT = 0,05 e EPC = 60 (6037 segundos), com prejuizo ao
desempenho (acuracia de 0,85 + 0,10), reforcando a importéncia de recursos

computacionais otimizados para aplicagdes clinicas.

Tabela 20 - Resultado Prognostico Clinico usando Transformers com Sinal Puro variando os
hiperparametros do modelo MT, em negrito se destaca o melhor modelo

Mod. | N.H | INT.D | N.L | DOUT | EPC | Acuracia | F156° | precisso | Recall Espec. | rempo
(macro) (seg.)
ggr/ 4 32 3 | 005 | 30 | 0.83:0.12 | 0.83:0.12 | 0.88:0.15 | 0.800.19 | 0.83:0.12 | 2628
MT | 4 32 3 | 005 | 30 | 0.85:0.06 | 0.85:0.07 | 0.9740.07 | 0.730.13 | 0.85+0.06 | 502
MT | 4 64 1 0.1 | 30 | 0.78:0.07 | 0.73:0.10 | 0.81:0.17 | 0.63£0.07 | 0.73£0.10 | 190
MT | 4 64 1 0.1 | 60 | 0.800.04 | 0.77+0.05 | 0.96+0.08 | 0.60:0.08 | 0.780.04 | 372
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Mod. | N_H | INT_D | N_L | DOUT | EPC | Acuracia '::nzg:’;f Precisdo | Recall Espec. T(:;"g'?;’
MT | 4 64 1 0.2 | 30 | 0.78£0.07 | 0.78£0.07 | 0.90£0.13 | 0.67+0.11 | 0.78£0.07 | 193
MT | 4 64 1 0.2 | 60 | 0.80£0.04 | 0.79+0.04 | 0.94%0.11 | 0.67+0.11 | 0.80:0.04 | 364
MT | 4 64 3 0.1 | 30 | 0.830.05 | 0.83+0.06 | 0.93:0.08 | 0.73+0.13 | 0.83£0.05 | 425
MT | 4 64 3 0.1 | 60 | 0.800.04 | 0.80+0.04 | 0.89+0.09 | 0.70+0.07 | 0.80+0.04 | 786
MT | 4 64 3 0.2 | 30 | 0.80%0.11 | 0.80+0.11 | 0.84£0.15 | 0.77+0.17 | 0.80£0.11 | 420
MT | 4 64 3 0.2 | 60 | 0.87+0.04 | 0.87+0.04 | 0.9740.07 | 0.77+0.08 | 0.87+0.04 | 765
MT | 4 | 128 | 1 0.1 | 30 | 0.80£0.09 | 0.80+0.09 | 0.89£0.13 | 0.70+0.13 | 0.80£0.09 | 202
MT | 4 | 128 | 1 0.1 | 60 | 0.82¢0.10 | 0.81+0.10 | 0.85:0.12 | 0.80+0.19 | 0.82+0.10 | 367
MT | 4 | 128 | 1 0.2 | 30 | 0.83%0.09 | 0.83:0.10 | 0.9240.10 | 0.73+0.17 | 0.83+0.09 | 206
MT | 4 | 128 | 1 0.2 | 60 | 0.82t0.06 | 0.81+0.07 | 0.8740.07 | 0.77¢0.17 | 0.82+t0.06 | 378
;\:I)'\F/ 4 | 128 | 3 | 005 | 30 | 0.78:0.09 | 0.78+0.09 | 0.83+0.14 | 0.77+0.17 | 0.78+0.09 | 2779
MT | 4 | 128 | 3 | 005 | 30 | 0.80+0.07 | 0.79£0.07 | 0.880.15 | 0.77+0.17 | 0.80£0.07 | 391
MT | 4 | 128 | 3 0.1 | 30 | 0.78:0.11 | 0.78+0.11 | 0.81+0.16 | 0.7740.17 | 0.78+0.11 | 390
MT | 4 | 128 | 3 0.1 | 60 | 0.78£0.07 | 0.77£0.07 | 0.88£0.15 | 0.73+0.20 | 0.78+0.07 | 734
MT | 4 | 128 | 3 0.2 | 30 | 0.87:0.11 | 0.86+0.12 | 0.94%0.11 | 0.80£0.19 | 0.87+0.11 | 415
MT | 4 | 128 | 3 0.2 | 60 | 0.82t0.06 | 0.81+0.06 | 0.85:0.12 | 0.80+0.13 | 0.82+0.06 | 768
MT | 4 | 128 | 5 | 005 | 30 | 0.80+0.13 | 0.80£0.13 | 0.88+0.16 | 0.70:0.13 | 0.80+0.13 | 602
MT | 4 | 128 | 10 | 005 | 30 | 0.83:0.11 | 0.82¢0.12 | 0.93+0.09 | 0.73+0.23 | 0.83:0.10 | 1142
MT | 8 32 3 | 005 | 30 | 0.78:0.09 | 0.78+0.09 | 0.89+0.14 | 0.67+0.11 | 0.78+0.09 | 525
MT | 8 64 1 0.1 | 30 | 0.78%0.16 | 0.77+0.18 | 0.86£0.20 | 0.630.25 | 0.78+0.16 | 228
MT | 8 64 1 0.1 | 60 | 0.82:0.12 | 0.80+0.16 | 0.97+0.07 | 0.6740.26 | 0.820.12 | 419
MT | 8 64 1 0.2 | 30 | 0.7740.14 | 0.75:0.17 | 0.86£0.20 | 0.60+0.23 | 0.7740.14 | 242
MT | 8 64 1 0.2 | 60 | 0.78:0.11 | 0.76:0.14 | 0.93+0.09 | 0.63£0.25 | 0.78+0.11 | 459
MT | 8 64 3 | 005 | 30 | 0.85:0.10 | 0.85+0.10 | 0.93+0.09 | 0.77+0.17 | 0.85:0.10 | 499
MT | 8 64 3 | 005 | 60 | 0.88:0.09 | 0.88+0.09 | 0.97+0.06 | 0.800.19 | 0.88+0.09 | 983
;\;I)\T/ 8 64 3 | 005 | 60 | 0.850.10 | 0.85:0.10 | 0.96:0.08 | 0.73+0.17 | 0.85+0.10 | 6037
MT | 8 64 3 | 0.1 | 30 |0.88£0.09 | 0.88+0.09 | 0.97+0.06 | 0.80+0.19 | 0.88+0.09 | 503
MT | 8 64 3 0.1 | 60 | 0.880.09 | 0.88+0.09 | 0.9740.06 | 0.80+0.19 | 0.88+0.09 | 939
MT | 8 64 3 0.2 | 30 | 0.830.09 | 0.82+0.11 | 1.00£0.00 | 0.67+0.18 | 0.83+0.09 | 534
MT | 8 64 3 0.2 | 60 | 0.800.10 | 0.79:0.11 | 0.94£0.11 | 0.67+0.21 | 0.80£0.10 | 987
MT | 8 | 128 | 1 0.1 | 30 | 0.800.04 | 0.79+0.04 | 0.96:0.08 | 0.63+0.07 | 0.80+0.04 | 246
MT | 8 | 128 | 1 0.1 | 60 | 0.820.03 | 0.81+0.04 | 0.9740.07 | 0.67+0.11 | 0.82£0.03 | 451
MT | 8 | 128 | 1 0.2 | 30 | 0.82t0.06 | 0.81+0.07 | 0.96£0.08 | 0.67+0.11 | 0.82+0.06 | 244
MT | 8 | 128 | 1 0.2 | 60 | 0.82t0.06 | 0.81+0.07 | 0.96:0.08 | 0.67+0.11 | 0.82+0.06 | 447
MT | 8 | 128 | 3 | 005 | 30 | 0.82:0.06 | 0.81£0.07 | 0.97+0.07 | 0.67+0.15 | 0.82t0.06 | 509
MT | 8 | 128 | 3 0.1 | 30 | 0.800.04 | 0.79+0.05 | 0.97+0.07 | 0.630.13 | 0.80+0.04 | 508
MT | 8 | 128 | 3 0.1 | 60 | 0.83t0.05 | 0.83+0.06 | 0.9740.07 | 0.70+0.13 | 0.83£0.05 | 935
MT | 8 | 128 | 3 0.2 | 30 | 0.800.09 | 0.79+0.10 | 1.00£0.00 | 0.60+0.17 | 0.80£0.09 | 531
MT | 8 | 128 | 3 0.2 | 60 | 0.82:0.03 | 0.81+0.04 | 0.9740.07 | 0.67+0.11 | 0.82+t0.03 | 996
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A Tabela 21 evidencia o impacto da variagdo dos hiperparametros no
desempenho do modelo convolucional e transformer (MCT), que combina camadas
convolucionais e TransformerEncoder. Configuragdes com numero de cabecgas de
atencao (N_H) igual a 4 ou 8 apresentam desempenhos semelhantes, com variagoes
minimas na acuracia. O aumento da dimensao interna (INT_D) de 32 para 128
promove ligeira melhoria na acuracia e preciséo, refletindo maior capacidade de
captura de padrdes complexos nos sinais EEG. Modelos com trés camadas (N_L = 3)
superam consistentemente aqueles com 5 ou 10 camadas, que exibem desempenho
inferior e maior custo computacional. A elevagao do numero de épocas (EPC) de 30
para 60 nao resulta em ganhos significativos, podendo, em alguns casos, reduzir a
acuracia devido a convergéncia precoce ou ao sobreajuste. Esses resultados
destacam a importancia de configuragdes otimizadas, como N_H = 4,INT_D =
128,N_L = 3,DOUT = 0,05 e EPC = 300u N_H =8,INT_D =32,N_L = 3,DOUT =
0,05 e EPC = 30, para equilibrar precisdo e eficiéncia em aplicagbes clinicas de

progndstico de morte.

Tabela 21 - Resultado Prognostico Clinico usando Transformers com Sinal Puro variando os
hiperparametros do modelo MCT, em negrito se destaca o melhor modelo

Mod. | N.H | INT.D | N_L | DOUT | EPC | Acuracia ':;1:2:’;;* Precisio | Recall Espec. T(::‘g'?;’
MCT | 4 32 3 | 005 | 30 |0.7320.06 | 0.73+0.06 | 0.73:0.07 | 0.77+0.13 | 0.73£0.06 | 1560
MCT | 4 32 3 | 005 | 60 | 0.70£0.07 | 0.69:0.07 | 0.66£0.05 | 0.83+0.15 | 0.70£0.07 | 3121
MCT | 4 32 3 | 02 | 30 |0.73t0.06 | 0.73:0.06 | 0.730.07 | 0.77+0.13 | 0.73:0.06 | 1662
MCT | 4 32 3 | 02 | 60 | 0.70£0.07 | 0.69:0.07 | 0.66£0.05 | 0.83+0.15 | 0.70£0.07 | 3052
MCT | 4 64 3 | 005 | 30 |0.750.05 | 0.75:0.05 | 0.80£0.11 | 0.70+0.07 | 0.75:0.05 | 1654
MCT | 4 64 3 | 005 | 60 |0.75:0.07 | 0.75:0.08 | 0.77£0.13 | 0.77£0.13 | 0.75:0.08 | 3034
MCT | 4 64 3 | 01 | 30 |0.73t0.06 | 0.73:0.06 | 0.730.07 | 0.77:0.13 | 0.73:0.06 | 1553
MCT | 4 64 3 | 01 | 60 |0.75$0.07 | 0.75:0.08 | 0.7740.13 | 0.77+0.13 | 0.75:0.08 | 3217
MCT | 4 64 3 | 02 | 30 |0.73t0.06 | 0.73:0.06 | 0.730.07 | 0.77:0.13 | 0.730.06 | 1683
MCT | 4 64 3 | 02 | 60 |0.75$0.07 | 0.75:0.08 | 0.7740.13 | 0.77+0.13 | 0.75:0.08 | 3262
MCT | 4 | 128 | 3 | 005 | 30 | 0.78:0.09 | 0.78£0.08 | 0.810.12 | 0.77+0.13 | 0.78£0.09 | 1104
MCT | 4 | 128 | 3 | 01 | 30 | 0.75:0.09 | 0.75£0.09 | 0.7740.13 | 0.73+0.17 | 0.75£0.09 | 1095
MCT | 4 | 128 | 5 | 005 | 30 | 0.70:0.14 | 0.70£0.13 | 0.73%0.17 | 0.67+0.18 | 0.70£0.14 | 1542
MCT | 4 | 128 | 10 | 0.05 | 30 | 0.67:0.09 | 0.65:0.11 | 0.75:0.14 | 0.60+0.27 | 0.67+0.09 | 2706
MCT | 8 32 3 | 005 | 30 |0.78£0.07 | 0.78:0.07 | 0.83:0.14 | 0.77+0.13 | 0.78:0.07 | 1284
MCT | 8 32 3 | 005 | 60 |0.75£0.07 | 0.75:0.08 | 0.77£0.13 | 0.77+0.13 | 0.75:0.08 | 3064
MCT | 8 32 3 | 02 | 30 |0.73t0.06 | 0.73:0.06 | 0.730.07 | 0.77:0.13 | 0.730.06 | 1663
MCT | 8 32 3 | 02 | 60 |0.75$0.07 | 0.75:0.08 | 0.7740.13 | 0.77+0.13 | 0.750.08 | 3105
MCcT | 8 64 3 | 005 | 30 |0.73t0.06 | 0.73:0.06 | 0.730.07 | 0.77:0.13 | 0.73:0.06 | 1357
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Mod. | N.H | INT.D | N_L | DOUT | EPC | Acuracia '::nzz:’;f Precisdo | Recall Espec. T(:;"g'?;’
MCT | 8 64 3 | 005 | 60 | 0.75:0.07 | 0.750.08 | 0.7740.13 | 0.77£0.13 | 0.75:0.08 | 2572
MCT | 8 64 3 0.2 | 30 | 0.73:0.06 | 0.73:0.06 | 0.730.07 | 0.77+0.13 | 0.73+0.06 | 1631
MCT | 8 64 3 02 | 60 | 0.75£0.07 | 0.75:0.08 | 0.77£0.13 | 0.77+0.13 | 0.75:0.08 | 2862
MCT | 8 | 128 | 3 | 005 | 30 | 0.77:0.11 | 0.76£0.11 | 0.83%0.16 | 0.70+0.19 | 0.77+0.11 | 1369
mMcT | 8 | 128 | 3 0.1 | 30 | 0.750.05 | 0.75:0.05 | 0.80+0.11 | 0.70£0.07 | 0.75:0.05 | 1618
mMcT | 8 | 128 | 3 0.2 | 30 | 0.75:0.05 | 0.75:0.05 | 0.80£0.11 | 0.70+0.07 | 0.75:0.05 | 1605
MCT | 8 | 128 | 5 | 005 | 30 | 0.73:0.06 | 0.73£0.06 | 0.73£0.07 | 0.7740.13 | 0.73:0.06 | 1633
MCT | 8 | 128 | 10 | 0.05 | 30 | 0.75:0.05 | 0.75:0.05 | 0.80£0.11 | 0.70+0.07 | 0.75:0.05 | 1616

2 Sinal com caracteristicas do paciente

Na base de dados utilizada, houve a catalogacéo das seguintes informacoes

do paciente:

e |dade em anos;
e Género/sexo (Masculino ou Feminino);
e Etiologia do coma (acidente vascular cerebral — AVC (12), coma

metabdlico (18), Traumatismo cranioencefalico — TCE (20) e Outros (10)).

As informagdes acima foram colocadas como entrada da arquitetura da rede
neural, no qual o género e etiologia passou por uma tradugéo de caracteres para
numero inteiro (OneHotEncoder), assim, foi adicionado trés novos valores como
entrada para cada paciente, os resultados desses treinamentos sdo apresentados na
Tabela 22, Tabela 23, Tabela 24, Tabela 25, Tabela 26, Tabela 27 e Tabela 28.

Na Tabela 22 com N.H = 4eINT_D = 32 os modelos MT CP superam
consistentemente os MCT CP em acuracia, F1 score e precisao, além de
apresentarem maior eficiéncia computacional, com tempo de treinamento
aproximadamente 29% menor. O aumento do numero de camadas (N_L. = 50ou10)
nos modelos MT CP nao resulta em ganhos substanciais, € o incremento do numero
de épocas (de 30 para 60 ou 120) tende a reduzir a acuracia, indicando que
configuragbes mais profundas e treinamentos prolongados podem levar a sobreajuste

ou degradacao do desempenho.
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Tabela 22 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperparametros com N_H = 4 e INT_D = 32, em negrito se destaca o
melhor resultado para MT e MCT

% - E' - 'é 4 Acuracia P4 score Preciséo Recall Espec. Te;n P

2 =z =z z a w (macro) (seg.)
MCTCP | 4 32 1| 01 | 30 | 0.77#0.06 | 0.76+0.06 | 0.80+0.11 | 0.73+0.13 | 0.77+0.06 940
MT CP 4 32 1| 01 | 30 | 0.85+0.03 | 0.85+0.03 | 0.87+0.07 | 0.83+0.00 | 0.85+0.03 304
MT CP 4 32 1| 01 | 60 | 0.83+0.05 | 0.83+0.05 | 0.88+0.11 | 0.80+0.07 | 0.83%0.05 385
MT CP 4 32 1 | 01 | 120 | 0.78+0.04 | 0.78+0.04 | 0.81+0.02 | 0.73+0.08 | 0.78%0.04 795
MCTCP | 4 32 3 | 005 | 30 | 0.78+0.11 | 0.78+0.11 | 0.78+0.13 | 0.80+0.13 | 0.78+0.11 | 1.244
MT CP 4 32 3 | 005 | 30 | 0.85+0.06 | 0.85+0.07 | 0.95+0.10 | 0.77+0.17 | 0.850.06 562
MT CP 4 32 3 | 005 | 60 | 0.85+0.10 | 0.85+0.10 | 0.92#0.10 | 0.77+0.17 | 0.85%0.10 | 1.055
MCTCP | 4 32 3 | 01 | 30 | 0.75%0.09 | 0.75+0.09 | 0.7740.10 | 0.73%0.08 | 0.75%0.09 | 1.263
MTCP | 4 32 3 | 01 | 30 | 0.85%0.06 | 0.85+0.07 | 0.95:+0.10 | 0.77+0.17 | 0.85+0.06 536
MT CP 4 32 3 |01 | 60 | 0.82+0.10 | 0.81+0.10 | 0.89+0.13 | 0.73%0.13 | 0.82¢0.10 | 1.033
MT CP 4 32 5| 01 | 30 | 0.80+0.09 | 0.79+0.10 | 0.88+0.11 | 0.73%0.23 | 0.80+0.09 | 1048
MT CP 4 32 | 10| 0.1 | 30 | 0.82+0.08 | 0.81+0.09 | 0.90+0.12 | 0.73+0.13 | 0.82+0.08 | 1590

JanaTabela23comNH = 4eINT. D = 64 os modelos MCT CP mostram-

se mais competitivos em termos de desempenho, porém, ao desabilitar a placa de

video para o modelo MT CP, este apresenta o melhor resultado geral, embora o tempo

de processamento aumente significativamente.

Tabela 23 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperparametros com N.H = 4 e INT_D = 64, em negrito se destaca o
melhor resultado para MT e MCT

o
:qg’ :I ;' ;I g E Acuracia ':;]:g?;;a Precisao Recall Espec. Te:1 P
= = (seg.)

MCTCP | 4 64 1 0.1 30 | 0.80+0.09 | 0.80+0.09 | 0.80+0.12 | 0.83*0.11 | 0.80+0.09 754

MT CP 4 64 1 0.1 30 0.77+0.08 0.76+0.09 | 0.87+0.11 | 0.63%0.13 0.77+0.08 219
MCTCP | 4 64 3 | 005 | 30 0.77+0.08 | 0.77+0.08 | 0.78+0.12 | 0.77+0.08 | 0.77+0.08 | 1059
MT CP 4 64 3 0.05 30 0.80+0.09 0.7940.10 | 0.93+0.09 | 0.67+0.18 0.80+0.09 433

MT CP

SPV 4 64 3 | 0.05 | 30 | 0.82+0.08 | 0.81+0.09 | 0.86+0.08 | 0.77+0.17 | 0.82+0.08 | 1806
MCT CP 4 64 3 0.1 30 0.77+0.03 0.76+0.03 | 0.79+0.11 | 0.77+0.08 0.77+0.03 991
MT CP 4 64 3 0.1 30 0.77+0.06 | 0.76:+0.07 | 0.82+0.10 | 0.70+0.13 | 0.77+0.06 440

Avaliando a Tabela24 comN H = 4eINT.D = 128 os modelos MT CP com

3 camadas (N_L =3) e dropout moderado (0.05 ou 0.1) apresentam melhor

desempenho (acuracia até 0.83), enquanto configuragdes mais simples (N_L = 1)
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mantém acuracia proxima de 0.80 com tempo de treino menor (ex: 210s). Aumentar
eépocas (EPC = 120) reduz ligeiramente a acuracia (ex: 0.78), indicando possivel
sobreajuste. Modelos MCT CP tém desempenho inferior (acuracia <0.73) e maior

tempo de processamento.

Tabela 24 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperparametros com N_H = 4 e INT_D = 128, em negrito se destaca o
melhor resultado para MT e MCT

o
% :| ;' ;I 'é E Acuracia '::n:g);)e Precisao Recall Espec. Te:)n P
= = a (seg.)

MT CP 4 128 1 | 0.01 | 120 | 0.78+0.07 | 0.78+0.07 | 0.79+0.12 | 0.80+0.13 | 0.78%0.07 969

MT CP 4 128 1 |0.05 ]| 30 0.80+0.10 | 0.80+0.10 | 0.87#0.11 | 0.70+0.13 | 0.80%0.10 210

MCTCP | 4 128 1 0.1 30 0.70+0.15 | 0.69+0.16 | 0.67+0.18 | 0.70+0.29 | 0.70%0.15 895

MT CP 4 128 1 0.1 30 0.80+0.10 | 0.80+0.10 | 0.87#0.11 | 0.70+0.13 | 0.80%0.10 213

MT CP 4 128 1 0.1 60 0.83+0.08 | 0.83+0.08 | 0.90+0.09 | 0.77+0.17 | 0.83x0.08 401

MT CP 4 128 1 0.1 | 120 | 0.78+0.07 | 0.78+0.07 | 0.78%0.06 | 0.80+0.13 | 0.78+0.07 953

MCTCP | 4 128 1 0.2 30 0.73+0.08 | 0.73+0.08 | 0.74+0.09 | 0.73+0.17 | 0.73+0.08 869

MT CP 4 128 1 0.2 30 0.80+0.07 | 0.80+0.07 | 0.89%£0.09 | 0.70+0.13 | 0.80%0.07 214

MT CP 4 128 3 1005 ]| 30 0.82+0.06 | 0.81+0.07 | 0.91+0.12 | 0.73+0.13 | 0.82+0.06 440

MT CP 4 128 3 |1 005 | 60 0.82+0.06 | 0.81+0.07 | 0.91:0.12 | 0.73%0.13 | 0.82%0.06 1074

MT CP 4 128 3 0.1 30 0.83+0.09 | 0.83+0.10 | 0.92%+0.11 | 0.73+0.13 | 0.83+0.09 736

Com N_H = 4eINT_D = 256 conforme apresentado na Tabela 25, os
modelos MT CP destacam-se pelo desempenho superior, especialmente para a
configuragdo com 3 camadas (N_L = 3) e DOUT = 0.05 no qual ambos modelos MT e

MCT alcanga o melhor desempenho nessa configuragao.

Tabela 25 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperpardmetros com N_H = 4 e INT_D = 256, em negrito se destaca o
melhor resultado para MT e MCT

% ;I E' ;I 'é 8 Acuracia F1 score Precisédo Recall Espec. Te;np

2 =z a w (macro) (seg.)
MCTCP | 4 | 256 | 1 0.1 | 30 | 0.75#0.09 | 0.75+0.09 | 0.79+0.12 | 0.70+0.13 | 0.75%0.09 752
MT CP 4 ] 256 | 1 0.1 | 30 | 0.80+0.07 | 0.80+0.07 | 0.89+0.09 | 0.70+0.13 | 0.80%0.07 314
MCTCP | 4 | 256 | 3 | 0.05 | 30 | 0.78+0.09 | 0.78+0.09 | 0.78+0.08 | 0.80+0.13 | 0.78+0.09 | 1170
MTCP | 4 | 256 | 3 | 0.05 | 30 | 0.87+0.07 | 0.87+0.07 | 0.96+0.08 | 0.77+0.08 | 0.87+0.07 426
MCTCP | 4 | 256 | 3 0.1 | 30 | 0.73#0.06 | 0.72+0.07 | 0.77+0.15 | 0.77#0.17 | 0.73+0.06 | 1231
MT CP 4 | 256 | 3 0.1 | 30 | 0.83+#0.09 | 0.83+0.10 | 0.95+0.10 | 0.70+0.13 | 0.83%0.09 439
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Analisando a Tabela 26 com N.H = 8e INT_D = 32, os modelos MT CP,
especialmente com 3 camadas, apresentam melhor desempenho, alcangando
acuracia e F1 score de até 0,83, além de maior precisdo (até 1,00) com tempos de
treinamento significativamente menores (entre 283 e 782 segundos) em comparagao
aos modelos MCT CP. Embora os MCT CP apresentem desempenho competitivo,
eles demandam tempos de processamento mais longos (acima de 1000 segundos),
indicando que MT CP oferece melhor equilibrio entre eficiéncia e precisdo para as

configuragdes avaliadas.

Tabela 26 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperparametros com N.H = 8 e INT_D = 32, em negrito se destaca o
melhor resultado para MT e MCT

o

% :| ;' ;I 'é E Acuracia '::n:g?:)a Precisao Recall Espec. Te:1 b

= = a (seg.)
MCTCP | 8 32 1 0.1 30 0.80+0.09 | 0.80+0.09 | 0.81+0.12 | 0.80+0.07 | 0.80+0.09 1070
MT CP 8 32 1 0.1 30 0.77+0.06 | 0.76+0.07 | 0.82%#0.10 | 0.70%0.13 | 0.770.06 283
MCTCP | 8 32 1 0.1 60 0.78+0.09 | 0.78+0.09 | 0.77+0.09 | 0.83+0.11 | 0.78+0.09 1419
MT CP 8 32 1 0.1 60 0.82+0.06 | 0.82+0.06 | 0.85+0.08 | 0.77+0.08 | 0.82+0.06 483
MCTCP | 8 32 3 1005 | 30 0.78+0.07 | 0.78+0.07 | 0.78+0.12 | 0.83x0.11 | 0.78%0.07 1310
MT CP 8 32 3 1005 | 30 0.83+0.05 | 0.83+#0.05 | 0.93#0.09 | 0.73x0.08 | 0.83x0.05 551
MCTCP | 8 32 3 0.1 30 0.80+0.10 | 0.80+0.10 | 0.82%+0.10 | 0.77+0.17 | 0.80+0.10 | 1349
MT CP 8 32 3 0.1 30 0.83+0.05 | 0.83+0.06 | 1.00+0.00 | 0.67+0.11 | 0.83+0.05 782

Observando a Tabela 27 com N.H = 8e INT_.D = 64, os modelos MT CP
com 3 camadas novamente apresentam os melhores resultados. O processamento
sem placa de video (MT CP SPV) eleva a acuracia para 0,85, porém aumenta
significativamente o tempo de treinamento (3202 segundos). Modelos com menos
camadas ou MCT CP tém desempenho inferior e maior tempo de processamento.
Configuragdes com 5 camadas mantém desempenho similar, enquanto 10 camadas

aumentam o tempo sem ganhos expressivos.
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Tabela 27 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperparametros com N.H = 8 e INT_D = 64, em negrito se destaca o
melhor resultado para MT e MCT

o
o [a) = Temp
o T 4 o ) .

] 1 'l 3 a Acurdcia | F1score | o isdo Recall Espec. o

0 =z =2 =z a w (macro)

= Z (seg.)

MCTCP | 8 64 1 0.1 30 0.73+0.11 | 0.72#0.12 | 0.78+0.13 | 0.67+0.24 | 0.73#0.11 1059
MT CP 8 64 1 0.1 30 0.78+0.09 | 0.78+0.09 | 0.88+0.10 | 0.67+0.15 | 0.78+0.09 282
MT CP 8 64 3 1005 ]| 30 0.80+0.09 | 0.80+0.09 | 0.87+0.13 | 0.73+0.13 | 0.80+0.09 543

NSF-,\(/:P 8 64 3 1005 ]| 30 0.85+0.06 | 0.85#0.07 | 0.95+0.10 | 0.77+0.17 | 0.85*0.06 3202
MCTCP | 8 64 3 0.1 30 0.78+£0.07 | 0.78+0.07 | 0.80+0.12 | 0.80+0.13 | 0.78%0.07 1356
MT CP 8 64 3 0.1 30 0.85+£0.06 | 0.8510.07 | 0.97+0.07 | 0.73+0.13 | 0.85%0.06 911
MT CP 8 64 3 0.1 60 0.78+0.09 | 0.78+0.09 | 0.85+0.14 | 0.73+0.13 | 0.78+0.09 1055
MT CP 8 64 5 1005 | 30 0.85+0.06 | 0.85#0.07 | 0.97+0.07 | 0.73+0.13 | 0.85+0.06 1308
MT CP 8 64 10 | 0.05 | 30 0.83+0.08 | 0.83+0.08 | 0.94+0.11 | 0.73+0.13 | 0.83+0.08 2213

Visualizando a Tabela 28 com N_.H = 8 e INT_D = 128, os modelos MT CP

superam os MCT CP em acuracia e precisao, com destaque para 3 camadas (N_L=3).

Tabela 28 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente variando os hiperpardmetros com N_H = 8 e INT_D = 128, em negrito se destaca o
melhor resultado para MT e MCT

o

% ;I ;' ;I 'é E Acuracia ':;1:2?;;3 Precisao Recall Espec. Te:‘ P

= = a (seg.)
MCTCP | 8 128 1 0.1 30 0.77+0.08 | 0.76+0.08 | 0.78+0.05 | 0.73+0.17 | 0.77+0.08 866
MT CP 8 128 1 0.1 30 0.78+0.09 | 0.78+0.09 | 0.88+0.10 | 0.67+0.15 | 0.78+0.09 340
MCTCP | 8 128 3 1005 | 30 0.77+0.12 | 0.77£0.12 | 0.794#0.13 | 0.73x0.17 | 0.77%0.12 1371
MT CP 8 128 3 1005 | 30 0.83+0.05 | 0.83#0.05 | 0.93#0.09 | 0.73x0.08 | 0.83x0.05 573
MCTCP | 8 128 3 0.1 30 0.73+0.10 | 0.73#0.10 | 0.71%0.09 | 0.80+0.13 | 0.73%0.10 1375
MT CP 8 128 3 0.1 30 0.83+0.05 | 0.83+0.06 | 0.97+0.07 | 0.70+0.13 | 0.83+0.05 903

A melhor configuragao geral observada foi o modelo MT CP com 4 cabecgas
de atencdo (N_H = 4), dimensao intermediaria (INT_D = 256), 3 camadas (N_L = 3),
dropout de 0,05 (DOUT = 0.05) e 30 épocas (EPC = 30), que alcangou F1 score
(macro) de 0,87 £ 0,07 e precisao de 0,96 + 0,08, com tempo de treinamento de 426
segundos. Em comparacdo, o modelo MCT CP com N_H = 8,INT_D =32,N_L =
3,DOUT = 0,1 e EPC = 30 com F1 score de 0,80 + 0,10 e tempo de processamento
significativamente maior (1349 segundos). Esses resultados ressaltam que

configuragbes com 3 camadas proporcionam o melhor desempenho, enquanto o
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modelo MT CP oferece vantagens claras em termos de eficiéncia computacional,

apresentando tempos de treinamento mais baixos sem comprometer a precisao.

3 Sinal com caracteristicas estatisticas

Nesta secdo, o processamento do sinal EEG foi realizado por meio da
extracdo de caracteristicas estatisticas, incluindo média, desvio padrdo, valores
maximo e minimo, e variancia. Para cada um dos 20 canais utilizados, foram extraidos
cinco atributos, totalizando 100 atributos por segmento. Essa abordagem permite
capturar informagdes temporais e variacionais do sinal, possibilitando a avaliacéo do
impacto da variagao dos hiperparametros nas métricas de desempenho dos modelos

durante o treinamento.

Na Tabela 29 podemos notar que os modelos MT CE apresentam
desempenho consistentemente superior aos MCT CE em termos de acuracia, F1
score e precisdo, especialmente em configuragcbes com 3 camadas (N_L =3), e
dimensdes intermediarias maiores (INT_D = 128 ou 256). Destaca-se o modelo MT
N_H = 8,INT_D = 256,N_L = 3,DOUT = 0,05, EPC = 30, que alcanc¢a acuracia de 0,85
e precisédo de 0,93, com tempos de treinamento relativamente baixos (em torno de
685 segundos). Ja os modelos MCT CE, embora apresentem desempenho razoavel,
geralmente exibem acuracia inferior (em torno de 0,70 a 0,77) e tempos de
processamento mais elevados. Além disso, observa-se que o aumento do numero de
cabecgas de atenc¢do ndo garante melhoria significativa no desempenho, enquanto a
escolha adequada da dimenséo intermediaria e do numero de camadas é crucial para

otimizar os resultados.

Tabela 29 - Resultado Prognostico Clinico usando Transformers com caracteristicas
estatisticas variando os hiperparametros, em negrito se destaca o melhor resultado para MT e

MCT

% T D| - '5 1S F1 score Temp

o I = I o o Acuracia Precisdo Recall Espec. o

0 =z = =z a w (macro)

2 z (seg.)
MCTCE | 4 32 3 0.1 30 0.77+0.06 | 0.77+0.06 | 0.75+0.06 | 0.80+0.13 | 0.77+0.06 | 1114
MT CE 4 32 3 0.1 30 0.83+0.08 | 0.83+0.08 | 0.94+0.11 | 0.73£0.13 | 0.830.08 614
MCTCE | 4 64 1 0.1 30 0.77+0.12 | 0.76+0.12 | 0.7740.15 | 0.80+0.19 | 0.77£0.12 631
MT CE 4 64 1 0.1 30 0.75£0.05 | 0.75£0.05 | 0.80+0.11 | 0.70+0.13 | 0.75%0.05 205
MCTCE | 4 | 128 | 3 | 0.05 | 30 0.75£0.09 | 0.75£0.09 | 0.79+0.13 | 0.70£0.16 | 0.75£0.09 | 1372
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o

% ;I ;' ;I 'é E Acuracia '::nzz:);)e Precisdo Recall Espec. Te‘r)n P

= = o (seg.)
MT CE 4 | 128 | 3 | 0.05 | 30 | 0.83x0.08 | 0.83+0.08 | 0.89+0.11 | 0.80+0.19 | 0.83+0.08 422
MCTCE | 4 | 256 | 3 | 0.05 | 30 | 0.75%0.12 | 0.74#0.13 | 0.75%0.07 | 0.73#0.25 | 0.75%0.12 | 1170
MT CE 4 | 256 | 3 | 0.05 | 30 | 0.83x0.08 | 0.83+0.08 | 0.91#0.11 | 0.77¢0.17 | 0.83%0.08 547
MCTCE | 8 32 3 | 005 | 30 | 0.73%0.12 | 0.73#0.12 | 0.73#0.15 | 0.77+0.17 | 0.73%0.12 | 1680
MT CE 8 32 3 | 005 | 30 | 0.77¢0.06 | 0.75+0.08 | 0.94+0.11 | 0.60+0.17 | 0.77+0.06 500
MCTCE | 8 32 3 | 01 | 30 | 072#0.11 | 0.71#0.11 | 0.71#0.11 | 0.73%0.17 | 0.72+0.11 | 1649
MT CE 8 32 3 | 01 | 30 | 0.77¢0.10 | 0.75#0.11 | 0.93#0.13 | 0.60+0.17 | 0.77+0.10 831
MCTCE | 8 64 1| 01 | 30 | 0.77#0.14 | 0.77£0.14 | 0.76+0.14 | 0.80+0.16 | 0.77+0.14 863
MT CE 8 64 1| 01 | 30 | 0.73%x0.21 | 0.7240.23 | 0.78+0.28 | 0.63%0.29 | 0.73+0.21 218
MCTCE | 8 64 3 | 005 | 30 | 0.70£0.10 | 0.70+0.10 | 0.70+0.10 | 0.70+0.16 | 0.70+0.10 | 1686
MCTCE | 8 64 3 | 005 | 60 | 0.75+0.09 | 0.75+0.09 | 0.74+0.13 | 0.80+0.13 | 0.75%0.09 | 2501
MCTCE | 8 64 3 | 01 | 30 | 0.75%0.12 | 0.75#0.12 | 0.76%0.14 | 0.77+0.13 | 0.75%0.12 | 1384
MT CE 8 64 3 | 01 | 30 | 0.80+0.09 | 0.79+0.10 | 0.96+0.08 | 0.63+0.16 | 0.80+0.09 682
MCTCE | 8 | 128 | 3 | 0.1 | 30 | 0.72%0.07 | 0.71%0.07 | 0.77¢0.14 | 0.67+0.18 | 0.72+0.07 | 1695
MT CE 8 | 128 | 3 | 0.1 | 30 | 0.82+0.06 | 0.81+0.07 | 0.94+0.11 | 0.70+0.13 | 0.82+0.06 540
MCTCE | 8 | 256 | 3 | 0.05 | 30 | 0.73%0.13 | 0.73%0.14 | 0.76x0.14 | 0.70+0.22 | 0.73#0.13 | 1523
MT CE 8 | 256 | 3 | 0.05 | 30 | 0.85+0.10 | 0.84+0.10 | 0.93+0.13 | 0.80+0.19 | 0.85%0.10 685

4 Sinal com caracteristicas de PCP

Nesta secdo, o processamento do sinal EEG foi realizado por meio da
extracao dos valores de PCP nas bandas de frequéncia delta, teta, alfa e beta. Para
cada um dos 20 canais, foram obtidos quatro atributos (um por banda), resultando em
uma matriz de 20 x 4 elementos, totalizando 80 caracteristicas adicionais por paciente
como entrada para o treinamento dos modelos. Os resultados dessa abordagem sao
apresentados na Tabela 30, evidenciando o impacto dessas caracteristicas e das

alteracdes dos hiperparametros nas métricas de desempenho.

Conforme observado na Tabela 30 os modelos MT CPCP superam os MCT
CPCP em acuracia e precisdo, com destaque para MT CPCP (N_H = 8,INT_D =
256,N_L = 3,DOUT = 0,05, EPC = 30), que atinge acuracia de 0,87 e precisao de 0,95
em 1000 segundos. Configuragdes MCT CPCP apresentam desempenho inferior (em
torno de 0,70 a 0,78) e tempos maiores (chegando a 2225 segundos). Modelos com
N_L = 3 eINT_D > 64 oferecem melhor desempenho, enquanto N_H = 8 maximiza a
precisao em MT CPCP.
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Tabela 30 - Resultado Prognostico Clinico usando Transformers com caracteristicas de PCP
variando os hiperparametros, em negrito se destaca o melhor resultado para MT e MCT

° P
E ;I ;l ;'| § § Acuracia '::nzg?;;e Precisdo Recall Espec. gg’"
MCT CPCP | 4 32 3 0.1 30 0.70+0.09 0.70+0.09 0.70+0.10 0.73+0.08 0.70+0.09 | 1606
MT CPCP 4 32 3 0.1 30 0.83+0.09 0.83+0.10 0.91+0.11 0.77+0.20 0.83+0.09 824
MCT CPCP | 4 64 1 0.1 30 0.72+0.09 0.71+0.09 0.73+0.15 0.77+0.13 0.72+£0.09 | 1127
MT CPCP 4 64 1 0.1 30 0.80+0.07 0.80+0.07 0.83+0.10 0.77+0.13 0.80+0.07 896
MCTCPCP | 4 64 3 0.1 30 0.78+0.11 0.78+0.11 0.80+0.13 0.77+0.13 0.78+0.11 | 1976
MTCPCP | 4 64 3 0.1 30 0.85+0.06 0.85+0.07 0.97+0.07 0.7340.13 0.85+0.06 779
MCTCPCP | 4 | 128 3 0.05 30 0.7040.13 0.6910.13 0.7610.21 0.70+0.07 0.70+0.13 | 1897
MT CPCP 4 | 128 3 0.05 30 0.85+0.11 0.85+0.11 0.90+0.12 0.80+0.19 0.85+0.11 713
MCTCPCP | 4 | 128 3 0.1 30 0.7510.07 0.7510.08 0.78+0.06 0.70+0.13 0.7520.08 | 1400
MT CPCP 4 | 128 3 0.1 30 0.85+0.10 0.85+0.10 0.94+0.11 0.77+0.17 0.85+0.10 769
MCT CPCP | 4 | 256 3 0.05 30 0.7040.11 0.70+0.11 0.71+0.16 0.73+0.17 0.70+0.11 | 1842
MTCPCP | 4 | 256 3 0.05 30 0.85+0.10 0.84+0.10 | 0.93+0.13 0.80+0.19 0.85+0.10 | 1038
MCT CPCP | 8 32 3 0.05 30 0.7510.05 0.75%0.05 0.7610.03 0.73+0.17 0.7520.05 | 1968
MT CPCP 8 32 3 0.05 30 0.78+0.13 0.78+0.13 0.81+0.11 0.73+0.17 0.78+0.13 | 1124
MCT CPCP | 8 32 3 0.1 30 0.78+0.09 0.78+0.09 0.7610.12 0.87+0.13 0.78+0.09 | 1876
MT CPCP 8 32 3 0.1 30 0.80+0.11 0.80+0.12 0.88+0.15 0.70+0.13 0.80+0.11 | 1125
MT CPCP 8 64 1 0.1 30 0.8210.10 0.81+0.10 0.83+0.10 0.80+0.16 0.8210.10 589
MCT CPCP | 8 64 3 0.1 30 0.75+0.14 0.75+0.14 0.750.16 0.77+0.17 0.75+0.14 | 1913
MT CPCP 8 64 3 0.1 30 0.83+0.05 0.83+0.06 0.97+0.07 0.70+0.13 0.83+0.05 765
MCTCPCP | 8 | 128 3 0.05 30 0.70+0.07 0.7010.07 0.69+0.07 0.73+0.17 0.70+0.07 | 2035
MT CPCP 8 | 128 3 0.05 30 0.82+0.06 0.81+0.07 0.94+0.11 0.70+0.13 0.82+0.06 | 1009
MCT CPCP | 8 | 256 3 0.05 30 0.7210.07 0.71+0.07 0.68+0.05 0.83+0.15 0.7210.07 | 2225
MTCPCP | 8 | 256 3 0.05 30 0.87+0.04 0.86+0.04 | 0.95+0.10 0.80+0.13 0.87+0.04 | 1000

5 Sinal com caracteristicas de FM

De forma analoga ao processamento com PCP, o sinal EEG foi processado
por meio da extragao da frequéncia mediana (FM) nas bandas delta, teta, alfa e beta.
Para cada um dos 20 canais, obtiveram-se quatro atributos (um por banda), formando
uma matriz de 20 x 4 elementos, totalizando 80 caracteristicas adicionais por paciente
como entrada para o treinamento dos modelos. Os resultados dessa abordagem,
apresentados na Tabela 31, evidenciam o impacto dessas caracteristicas e da

variagao dos hiperparametros nas métricas de desempenho dos modelos.

Avaliando a Tabela 31, os modelos MT CFM superam os MCT CFM em
acuracia e precisao, com destaque para MT CFM (N_H = 8,INT_D = 256,N_L =
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3,DOUT = 0,05, EPC = 30), que alcanga acuracia de 0,83 e precisdo de 0,96 em 950
segundos. Configuragdes MCT CFM apresentam desempenho inferior (em torno de
0,77) e tempos maiores (chegando a 2241 segundos). Modelos com N_L=3e
INT_D > 128 oferecem melhor desempenho, enquanto N_H =8ndo melhora

consistentemente os resultados.

Tabela 31 - Resultado Prognostico Clinico usando Transformers com caracteristicas de FM
variando os hiperparametros, em negrito se destaca o melhor resultado para MT e MCT

o o~
E :| El ;| § é’j Acuracia ':;122?:)3 Precisao Recall Espec. §§
MCTCFM | 4 | 32 3 0.1 30 0.75£0.09 | 0.75x0.09 | 0.77%0.14 0.77£0.13 | 0.75%0.09 | 1665
MTCFM | 4 | 32 3 0.1 30 0.80+0.09 | 0.80+0.08 | 0.88%0.15 0.73+0.08 | 0.80+0.09 | 698
MCTCFM | 4 | 64 1 0.1 30 0.75£0.15 | 0.75x0.15 | 0.78%0.20 0.77£0.17 | 0.75%0.15 | 1109
MTCFM | 4 | 64 1 0.1 30 0.75+0.07 | 0.75+0.08 | 0.75+0.08 0.77+0.13 | 0.75+0.08 | 674
MCTCFM | 4 | 64 3 0.1 30 0.73#0.12 | 0.73x0.12 | 0.75%0.16 0.73£0.17 | 0.73%0.12 | 1908
MTCFM | 4 | 64 3 0.1 30 0.75+0.07 | 0.75+0.08 | 0.75+0.08 0.77+0.13 | 0.75+0.08 | 827
MCTCFM | 4 | 128 | 3 | 0.05 | 30 0.77£0.08 | 0.76x0.08 | 0.81%0.16 0.77£0.13 | 0.77+0.08 | 1909
MTCFM | 4| 128 | 3 | 0.05 | 30 0.82+0.10 | 0.81+0.10 | 0.89+0.14 0.77+0.17 | 0.82+0.10 | 711
MCTCFM | 4| 256 | 3 | 0.05 | 30 0.75£0.09 | 0.74%0.09 | 0.81%0.17 0.73+0.17 | 0.75%0.09 | 1774
MTCFM | 4| 256 | 3 | 0.05 | 30 0.83£0.08 | 0.83+0.08 | 0.9110.13 0.80+0.19 | 0.83%£0.08 | 995
MCTCFM | 8 | 32 3 |1005 | 30 0.72+0.07 | 0.71x0.07 | 0.76%0.12 0.70+0.22 | 0.72+0.07 | 1847
MTCFM | 8 | 32 3 1005 | 30 0.75£0.05 | 0.75+0.05 | 0.85%0.13 0.63£0.07 | 0.75%0.05 | 1149
MCTCFM | 8 | 32 3 0.1 30 0.72+0.07 | 0.71x0.07 | 0.76%0.12 0.70+0.22 | 0.72+0.07 | 1900
MTCFM | 8 | 32 3 0.1 30 0.73£0.10 | 0.72%0.10 | 0.88%0.16 0.574#0.13 | 0.73+0.10 | 1151
MTCFM | 8 | 64 1 0.1 30 0.75+0.05 | 0.75x0.05 | 0.80%0.12 0.70+0.13 | 0.75%0.05 | 612
MCTCFM | 8 | 64 3 0.1 30 0.78£0.11 | 0.78x0.12 | 0.83%0.16 0.774£0.17 | 0.78+0.11 | 1796
MTCFM | 8 | 64 3 0.1 30 0.82+0.06 | 0.81x0.07 | 0.96%0.08 0.67+0.11 | 0.82+0.06 | 937
MCTCFM | 8 | 128 | 3 | 0.05 | 30 0.80+0.07 | 0.80+0.07 | 0.83+0.09 | 0.77+0.08 | 0.80+0.07 | 2014
MTCFM | 8 | 128 | 3 | 0.05 | 30 0.78+0.10 | 0.78+0.10 | 0.88%0.15 0.67+0.11 | 0.78+0.10 | 936
MCTCFM | 8 | 256 | 3 | 0.05 | 30 0.754#0.14 | 0.73#0.16 | 0.86%0.15 0.63£0.29 | 0.75%0.14 | 2241
MTCFM | 8 | 256 | 3 | 0.05 | 30 0.83+0.05 | 0.83+0.05 | 0.96+0.08 | 0.70+0.07 | 0.83%0.05 | 950

6 Sinal com caracteristicas de Coeréncia

A seguir, a analise concentra-se nas caracteristicas de coeréncia extraidas
dos sinais, avaliando seu impacto no desempenho dos modelos. Essas caracteristicas
sao fundamentais para capturar a sincronizagcdo e a conectividade funcional entre

diferentes regides do cérebro.
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Ao observar a Tabela 32, os dados mostram que os modelos MCT CC
geralmente apresentam desempenho ligeiramente superior ao MT CC, especialmente
em configuragdes com menor numero de cabegas de atencdo (4) e dimensdes
intermediarias médias (64 a 256). Com destaque para MCT CC (N_H = 4,INT_D =
64,N_L = 1,DOUT = 0,1, EPC = 30), que alcanga acuracia de 0,87 e precisao de 0,95
em 1281 segundos. No entanto, os modelos MT CC tendem a apresentar tempos de
treinamento menores, oferecendo maior eficiéncia computacional. Além disso,
modelos com N_L = 3 ndo melhoram consistentemente o desempenho, enquanto

N_H = 4 oferece melhores resultados que N_H = 8.

Tabela 32 - Resultado Prognostico Clinico usando Transformers com caracteristicas de
Coeréncia variando os hiperparametros, em negrito se destaca o melhor resultado para MT e

MCT

o 0~

§ ;I ;l ;'| § § Acuracia '::n:g?;;e Precisao Recall Espec. §§
MCT CC 4 32 3 0.1 30 0.85+0.11 0.84+0.13 | 0.95+0.10 0.7740.25 0.85+0.11 | 1646
MT CC 4 32 3 0.1 30 0.83+0.09 0.83+0.10 | 0.86%0.08 0.80+0.19 0.83+0.09 980
MCTCC |4 | 64 1 0.1 30 0.87+0.09 | 0.86+0.09 | 0.95:+0.10 | 0.80+0.19 | 0.87+0.09 | 1281
MT CC 4 64 1 0.1 30 0.83+0.09 0.83+0.10 | 0.86%0.08 0.80+0.19 0.83+0.09 648
MCTCC |4 | 64 3 0.1 30 0.85+0.06 | 0.85%0.07 | 0.92+0.10 | 0.80+0.19 | 0.85+0.06 | 1611
MT CC 4| 64 3 0.1 30 0.80+0.13 | 0.79%0.13 | 0.82+0.12 | 0.77+0.25 | 0.80+0.13 | 1085
MCT CC 4 | 128 3 0.05 30 0.85+0.06 0.85+0.07 | 0.92%0.10 0.80+0.19 0.85+0.06 | 2156
MT CC 4128 | 3 | 005 | 30 0.83+0.14 | 0.83%0.15 | 0.87+#0.12 | 0.77+0.25 | 0.83+0.14 | 725
MCT CC 4 | 256 1 0.1 30 0.85+0.06 0.85+0.07 | 0.92%0.10 0.80+0.19 0.85+0.06 | 1083
MT CC 4| 25 | 1 0.1 30 0.87+0.11 | 0.86+0.12 | 0.92+0.10 | 0.80+0.19 | 0.87+0.11 | 632
MCT CC 4 | 256 3 0.05 30 0.83+0.05 0.83+0.06 | 0.90+0.12 0.80+0.19 0.83+0.05 | 1744
MT CC 4256 | 3 | 005 | 30 0.80+0.09 | 0.80+0.09 | 0.81+0.11 | 0.80+0.19 | 0.80+0.09 | 902
MCT CC 8 32 3 0.05 30 0.87+0.09 0.86+0.09 | 0.95%0.10 0.80+0.19 0.87+0.09 | 1884
MT CC 8| 32 3 1005 | 30 0.83+0.14 | 0.83%0.15 | 0.86+0.13 | 0.80+0.27 | 0.83+0.14 | 1138
MCT CC 8 32 3 0.1 30 0.85+0.06 0.85+0.07 | 0.9240.10 0.80+0.19 0.85+0.06 | 1890
MT CC 8| 32 3 0.1 30 0.83+0.12 | 0.83%0.12 | 0.86+0.12 | 0.80+0.19 | 0.83+0.12 | 1135
MT CC 8 64 1 0.1 30 0.82+0.08 0.81+0.09 | 0.84+0.09 0.80+0.19 0.82+0.08 718
MCT CC 8| 64 3 0.1 30 0.85+0.11 | 0.84%0.13 | 0.95+0.10 | 0.77+0.25 | 0.85+0.11 | 1903
MT CC 8 64 3 0.1 30 0.83+0.09 0.83+0.10 | 0.86+0.08 0.80+0.19 0.83+0.09 | 1188
MCT CC 8| 128 | 3 | 0.05 | 30 0.85+0.06 | 0.85+0.07 | 0.92+0.10 | 0.80+0.19 | 0.85+0.06 | 2020
MT CC 8 | 128 3 0.05 30 0.80+0.10 0.79+0.10 | 0.84+0.10 0.77+0.23 0.80+0.10 | 1028
MCT CC 8| 256 | 3 | 0.05| 30 0.85+0.06 | 0.85%0.07 | 0.92+0.10 | 0.80+0.19 | 0.85+0.06 | 2078
MT CC 8 | 256 3 0.05 30 0.78+0.10 0.78+0.11 | 0.80+0.11 0.77+0.25 0.78+0.10 | 1189
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7 Sinal com caracteristicas do paciente e estatisticas

Nesta configuragdo, foram adicionadas 103 caracteristicas ao conjunto de
entrada para cada paciente, sendo 3 referentes as informag¢des clinicas e 100
derivadas dos dados estatisticos previamente mencionados. Os resultados do

treinamento com essa configuragao estao apresentados na Tabela 33.

Os resultados exibidos na Tabela 33, evidenciam que os modelos MT CPE
superam os MCT CPE em termos de acuracia, F1 score e precisao, com destaque
para MT CPE (N_H =4,INT_D = 128,N_L = 3,DOUT = 0,05, EPC = 30), que alcanga
acuracia de 0,85 e precisdo de 0,97 em 413 segundos, enquanto os modelos MCT
CPE apresentam acuracia maxima proximo a 0,78 e tempos mais longos, acima de
900 segundos. Modelos com N_L = 3 e INT_D > 128 oferecem melhor desempenho,
enquanto N_H = 8 mantém resultados similares a N_H = 4, mas com maior custo

computacional.

Tabela 33 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente e estatisticas variando os hiperparametros, em negrito se destaca o melhor resultado
para MT e MCT

o o~
g ;I El ;| § E Acuracia ':;1:2?;;2 Precisao Recall Espec. §§
MCTCPE | 4 | 32 3 0.1 30 0.774£0.03 | 0.77+0.03 | 0.76%0.05 0.80£0.07 | 0.77+0.03 | 1163
MT CPE 4| 32 3 0.1 30 0.83+0.11 | 0.83x0.11 | 0.88%0.10 0.77+0.17 | 0.83+#0.11 | 385
MCTCPE | 4 | 64 1 0.1 30 0.75£0.05 | 0.74%0.06 | 0.80%0.10 0.70£0.19 | 0.75%0.05 | 941
MT CPE 4| 64 1 0.1 30 0.78+0.09 | 0.78x0.09 | 0.82%0.11 0.73£0.08 | 0.78+0.09 | 209
MCTCPE | 4| 64 3 0.1 30 0.75£0.05 | 0.75x0.06 | 0.74%0.07 0.80£0.07 | 0.75%0.05 | 1130
MT CPE 4 | 64 3 0.1 30 0.80+0.07 | 0.80+0.07 | 0.89+0.09 0.70+0.13 | 0.80+0.07 | 413
MCTCPE |4 | 128 | 3 | 0.05 | 30 0.75+£0.07 | 0.74+0.09 | 0.72%0.09 0.87£0.13 | 0.75+0.08 | 1408
MT CPE 4| 128 | 3 | 0.05 | 30 0.85+0.06 | 0.85+0.07 | 0.97+0.07 | 0.73+0.13 | 0.85%0.06 | 413
MCTCPE | 4 | 128 | 3 0.1 30 0.73+0.10 | 0.73x0.10 | 0.75%0.10 0.70£0.13 | 0.73%0.10 | 1265
MT CPE 4| 128 | 3 0.1 30 0.85+0.06 | 0.85+0.07 | 0.97+0.07 0.73£0.13 | 0.85+0.06 | 420
MCTCPE |4 | 256 | 3 | 0.05 | 30 0.78+0.09 | 0.78+0.09 | 0.76%0.07 | 0.83+0.11 | 0.78+0.09 | 1217
MT CPE 4|25 | 3 | 005 | 30 0.83£0.05 | 0.83x0.06 | 0.93+0.08 0.73£0.13 | 0.83+0.05 | 418
MCTCPE | 8 | 32 3 |1005 | 30 0.73£0.10 | 0.73x0.10 | 0.74%0.15 0.80+0.07 | 0.73%0.10 | 1267
MT CPE 8| 32 3 /1005 | 30 0.85+0.06 | 0.85+0.07 | 0.97+0.07 0.73£0.13 | 0.85+0.06 | 824
MCTCPE | 8 | 32 3 0.1 30 0.73+0.10 | 0.73x0.10 | 0.71%0.08 0.77+0.17 | 0.73%0.10 | 1564
MT CPE 8| 32 3 0.1 30 0.85+0.06 | 0.85+0.07 | 0.97+0.07 0.73£0.13 | 0.85+0.06 | 824
MT CPE 8| 64 1 0.1 30 0.72+0.09 | 0.71x0.09 | 0.76%0.08 0.63£0.13 | 0.72+0.09 | 347
MCTCPE | 8 | 64 3 0.1 30 0.73£0.06 | 0.73x0.06 | 0.73%0.07 0.774£0.13 | 0.73+0.06 | 1649




214

o o~

g ;I ;l ;| § E Acuracia '::nzz:);)e Precisao Recall Espec. gg
MT CPE 8| 64 3 0.1 30 0.83+0.08 | 0.83+0.08 | 0.96+0.08 0.704£0.13 | 0.83+0.08 | 582
MT CPE 8| 128 | 3 | 0.05 | 30 0.82+0.08 | 0.81x0.09 | 0.89%0.14 0.77£0.17 | 0.82+0.08 | 578
MCTCPE | 8 | 128 | 3 0.1 30 0.75£0.09 | 0.75+0.09 | 0.76%0.15 0.80£0.13 | 0.75+0.09 | 1404
MT CPE 8| 128 | 3 0.1 30 0.8210.06 | 0.81x0.07 | 0.94%0.11 0.70£0.13 | 0.82+0.06 | 688
MCTCPE |8 | 256 | 3 | 0.05 | 30 0.7740.06 | 0.76x0.07 | 0.75%0.09 0.83+0.11 | 0.77+0.06 | 1532
MT CPE 8| 256 | 3 | 0.05 | 30 0.83+0.08 | 0.83x0.08 | 0.93%0.09 0.73#0.17 | 0.83%#0.08 | 711

8 Sinal com caracteristicas do paciente e PCP

Para esta configuragdo, 83 caracteristicas sdo adicionadas ao treinamento
para cada paciente, no qual 3 sao caracteristicas de paciente e as 80 demais sao as
caracteristicas de PCP mencionadas anteriormente. Os resultados do treinamento

com essa configuragao estdo apresentados na Tabela 34.

Os resultados da Tabela 34 indicam que, em geral, os modelos MT CPPCP
apresentam desempenho superior aos MCT CPPCP em acuracia e precisao, com
destaque para MT CPPCP (N_H = 8,INT_D = 64,N_L = 3,DOUT = 0,1, EPC = 30), que
alcanca acuracia de 0,83 e precisdo de 0,93 em 1046 segundos. Em contraste, os
modelos MCT CPPCP apresentam acuracia maxima em torno de 0,83, mas com
tempos de processamento consideravelmente maiores, chegando a 2090 segundos.
Modelos com N_L = 3 e INT_D > 64 oferecem melhor desempenho, enquanto N_H =

8 ndo melhora significativamente os resultados.

Tabela 34 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente e PCP variando os hiperparametros, em negrito se destaca o melhor resultado para

MT e MCT

o o~

§ :I El ;'| g E Acuracia '2'1‘:2'?;;3 Precisao Recall Espec. gi
MCT CPPCP | 4 | 32 3 0.1 30 0.80+0.09 | 0.80+0.08 | 0.84+0.14 | 0.77+0.13 | 0.80+0.09 | 1600
MT CPPCP 4| 32 3 0.1 30 0.83+0.08 | 0.83+0.08 | 0.90+0.09 | 0.77+0.17 | 0.83+0.08 | 778
MCT CPPCP | 4 | 64 1 005 | 30 0.78+0.09 | 0.78+0.09 | 0.79+0.13 | 0.83+#0.11 | 0.78+0.09 | 1169
MT CPPCP 4| 64 1 005 | 30 0.82+0.06 | 0.82+0.06 | 0.84+0.09 | 0.80+0.13 | 0.82+0.06 | 779
MCT CPPCP | 4 | 64 1 0.1 30 0.80+0.07 | 0.80+0.07 | 0.82+0.02 | 0.77+0.13 | 0.80+0.07 | 917
MT CPPCP 4| 64 1 0.1 30 0.80+0.07 | 0.80+0.07 | 0.81+0.10 | 0.80+0.13 | 0.80+0.07 | 964
MCTCPPCP | 4 | 128 | 3 | 0.05 | 30 0.78+0.04 | 0.78+£0.04 | 0.78+0.04 | 0.80+0.13 | 0.78+0.04 | 1554
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o o~
g ;I El ;| § E Acuracia i;:g?g? Precisdo Recall Espec. EE
MT CPPCP 41128 | 3 | 005 | 30 0.7840.09 | 0.78+0.09 | 0.82+0.10 | 0.73+0.13 | 0.78+0.09 | 709
MCTCPPCP | 4 | 128 | 3 0.1 30 0.77+0.03 | 0.76£0.03 | 0.81+0.11 | 0.73+0.08 | 0.77+0.03 | 1362
MT CPPCP 4| 128 | 3 0.1 30 0.8210.06 | 0.81+0.07 | 0.93+0.09 | 0.70+0.13 | 0.82+0.06 | 795
MCTCPPCP | 4 | 256 | 3 | 0.05 | 30 0.80+0.07 | 0.80+0.07 | 0.80+0.11 | 0.83+#0.11 | 0.80+0.07 | 1690
MT CPPCP 41256 | 3 | 005 30 0.83+0.05 | 0.83+0.06 | 0.92+0.11 | 0.77+0.17 | 0.83+0.05 | 1125
MCT CPPCP | 8 | 32 3 1005 | 30 0.77+0.11 | 0.76%0.11 | 0.77+0.13 | 0.77%0.17 | 0.77%0.11 | 2064
MT CPPCP 8| 32 3 1005 | 30 0.80+0.07 | 0.80+0.07 | 0.90+0.13 | 0.70+0.07 | 0.80+0.07 | 1151
MT CPPCP 8| 32 3 0.1 30 0.80+0.09 | 0.80+0.09 | 0.86+0.13 | 0.73+0.08 | 0.80+0.09 | 1143
MCT CPPCP | 8 | 32 3 0.1 30 0.70+0.07 | 0.69+0.07 | 0.68+0.08 | 0.80+0.13 | 0.70+0.07 | 1735
MT CPPCP 8| 64 1 0.1 30 0.82+0.03 | 0.82+0.03 | 0.86+0.07 | 0.77+0.08 | 0.82+0.03 | 670
MCTCPPCP | 8 | 64 3 0.1 30 0.78+0.04 | 0.78+0.04 | 0.78+0.05 | 0.80+0.07 | 0.78+0.04 | 2090
MT CPPCP 8| 64 3 0.1 30 0.83+0.08 | 0.83+0.08 | 0.93+0.13 | 0.77+0.17 | 0.83+0.08 | 1046
MCTCPPCP | 8 | 128 | 3 | 0.05 | 30 0.73£0.06 | 0.73+0.06 | 0.73+0.08 | 0.77+0.08 | 0.73+0.06 | 1863
MT CPPCP 8| 128 | 3 | 0.05 | 30 0.80+0.07 | 0.80+0.07 | 0.89+0.09 | 0.70+0.13 | 0.80+0.07 | 931
MCTCPPCP | 8 | 256 | 3 | 0.05 | 30 0.83+0.05 | 0.83+0.05 | 0.83+0.02 | 0.83+0.11 | 0.83+0.05 | 1878
MT CPPCP 8| 256 | 3 | 0.05| 30 0.83+0.05 | 0.83+£0.06 | 0.92+0.11 | 0.77#0.17 | 0.83+0.05 | 945

9 Sinal com caracteristicas do paciente e FM

Nesta configuracao, utiliza-se 80 valores referente as caracteristicas de FM
mencionados anteriormente, combinado com 3 caracteristicas clinicas do paciente,
totalizando 83 valores adicionais para cada paciente que compds o treinamento. Os

resultados do treinamento com essa combinacéo sdo apresentados na Tabela 35.

Analisando a Tabela 35, os modelos MT CPFM apresentam desempenho
superior aos MCT CPFM, com destaque para MT CPFM SPV (N_H = 4,INT_D =
64,N_L = 3,DOUT = 0,1, EPC = 30), que alcanga acuracia de 0,83 e precisao de 0,89
em 2626 segundos. A variante MCT CPFM SREA (N_H =4,INT_D = 128,N_L =
3,DOUT = 0,05) atinge a maior acuracia (0,87), com tempo menor (736 segundos).
Ressalva-se também que o processamento sem placa de video (MT CPFM SPV) néo
garantiu melhoria significativa no desempenho, mas aumentou o tempo de
treinamento. Além disso, percebe-se que nao reamostrar o sinal para MCT melhora a

performance das métricas.
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Tabela 35 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente e FM variando os hiperparametros, em negrito se destaca o melhor resultado para MT

e MCT
k) [=) - o~
© T = = &) L. F1 score . 25
I

é ZI E > 8 & Acuracia (macro) Precisdo Recall Espec. E ;3,
MCT CPFM 4| 32 1 | 0.05 30 0.70+0.09 | 0.69+0.09 | 0.71+0.08 | 0.70+0.19 | 0.70+0.09 | 1571
MT CPFM 4| 32 1 | 0.05 30 0.82+0.14 | 0.82+0.15 | 0.85+0.15 | 0.77+0.17 | 0.82+0.14 | 571
MCT CPFM 4| 32 1 0.1 30 0.75+0.12 | 0.75%#0.12 | 0.78+0.15 | 0.73+0.17 | 0.75+0.12 | 1060
MT CPFM 4| 32 1 0.1 30 0.83+0.12 | 0.83#0.12 | 0.86+0.13 | 0.80+0.13 | 0.83+0.12 | 568
MCT CPFM 4| 32 3 0.1 30 0.75+0.05 | 0.74+0.06 | 0.75+0.06 | 0.77+0.17 | 0.75+0.05 | 1756
MT CPFM 4 | 32 3 0.1 30 0.80+0.11 | 0.80+0.12 | 0.88+0.15 | 0.70+0.13 | 0.80+0.11 | 936
MCT CPFM 4 | 64 1 0.1 30 0.82+0.06 | 0.82+0.06 | 0.82+0.10 | 0.83+0.11 | 0.82+0.06 | 966
MTSE\P/FM 4 | 64 1 0.1 30 0.75+0.05 | 0.75%£0.05 | 0.75+0.06 | 0.77+0.08 | 0.75+0.05 | 1673
MT CPFM 4 | 64 1 0.1 30 0.75+0.05 | 0.75£0.05 | 0.80+0.11 | 0.70+0.07 | 0.75+0.05 | 549
MCS-I-REZFM 4 | 64 3 0.1 30 0.85+0.03 | 0.85+0.03 | 0.93+0.08 | 0.77+0.08 | 0.85+0.03 | 815
MCT CPFM 4 | 64 3 0.1 30 0.77+0.10 | 0.76%0.10 | 0.76+0.09 | 0.80+0.13 | 0.77+0.10 | 1568
MTS(:/FM 4| 64 3 0.1 30 0.8310.09 | 0.83+0.10 | 0.89+0.10 | 0.77+0.17 | 0.83+0.09 | 2626
MT CPFM 4| 64 3 0.1 30 0.80+0.09 | 0.80+0.09 | 0.88+0.10 | 0.70+0.13 | 0.80+0.09 | 728
MCS-I-REZFM 4| 128 | 3 | 0.05 30 0.8710.04 | 0.87+0.04 | 0.94+0.08 | 0.80+0.13 | 0.87+0.04 | 736
MCT CPFM 4 | 128 3 | 0.05 30 0.73+0.06 | 0.73+0.06 | 0.76+0.13 | 0.73+0.08 | 0.73+0.06 | 1468
MT CPFM 4 | 128 3 | 0.05 30 0.82+0.08 | 0.81+0.09 | 0.87+0.11 | 0.77+0.17 | 0.82+0.08 | 701
MCT CPFM 4 | 256 3 | 0.05 30 0.77+0.06 | 0.76+£0.07 | 0.76+0.07 | 0.80+0.13 | 0.77+0.06 | 1860
MT CPFM 4 | 256 3 | 0.05 30 0.77+0.12 | 0.77£0.12 | 0.79+0.14 | 0.73+0.13 | 0.77+0.12 | 888
MCT CPFM 8| 32 3 | 0.05 30 0.77+0.06 | 0.76+£0.07 | 0.79+0.13 | 0.77+0.08 | 0.77+0.06 | 1925
MT CPFM 8| 32 3 | 0.05 30 0.77+0.08 | 0.77+0.08 | 0.81+0.11 | 0.70+0.07 | 0.77+0.08 | 1166
MCT CPFM 8| 32 3 0.1 30 0.75+0.07 | 0.75%£0.08 | 0.79+0.13 | 0.73+0.08 | 0.75+0.08 | 1978
MT CPFM 8| 32 3 0.1 30 0.78+0.07 | 0.78+0.07 | 0.84+0.08 | 0.70+0.07 | 0.78+0.07 | 1169
MT CPFM 8| 64 1 0.1 30 0.78+0.09 | 0.78+0.09 | 0.85+0.14 | 0.73+0.13 | 0.78+0.09 | 592
MCT CPFM 8| 64 3 0.1 30 0.75+0.07 | 0.74+0.08 | 0.79+0.12 | 0.73+0.17 | 0.75+0.08 | 1937
MT CPFM 8| 64 3 0.1 30 0.82+0.10 | 0.81+0.10 | 0.91+0.11 | 0.70+0.13 | 0.82+0.10 | 894
MCT CPFM 8 | 128 3 | 0.05 30 0.78+0.04 | 0.78+0.04 | 0.81+0.11 | 0.77+0.08 | 0.78+0.04 | 1936
MT CPFM 8 | 128 3 | 0.05 30 0.80+0.11 | 0.80+0.12 | 0.88+0.15 | 0.70+0.13 | 0.80+0.11 | 848
MCT CPFM 8 | 256 3 | 0.05 30 0.77+0.08 | 0.76+0.09 | 0.85+0.14 | 0.70+0.13 | 0.77+0.08 | 1984
MT CPFM 8 | 256 3 | 0.05 30 0.82+0.06 | 0.82+0.06 | 0.87+0.11 | 0.77+0.08 | 0.82+0.06 | 1001

10 Sinal com caracteristicas do paciente e Coeréncia

Para esta configuragéo, além das caracteristicas de coeréncia extraidas dos

sinais EEG, sdo incorporadas as caracteristicas clinicas do paciente. Os resultados
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do treinamento com essa combinagao s&o apresentados na Tabela 36, destacando o

impacto dessas caracteristicas nas métricas de desempenho dos modelos.

Observando a Tabela 36, percebe-se que os modelos MCT CPC superam
ligeiramente os MT CPC em acuracia e precisdao, com destaque para MCT CPC
(N_H =4,INT_D = 32,N_L = 3,DOUT = 0,1, EPC = 30), que alcanga acuracia de 0,90 e
precisao de 0,97 em 1526 segundos. Configuragdes MT CPC apresentam
desempenho competitivo, mas com tempos menores. Modelos com N_L = 3 e INT_D <
64 oferecem os melhores resultados, enquanto N_H=8ndo melhora
significativamente a acuracia. O processamento sem placa de video (MT CPC SPV)
nao mostrou ganhos expressivos em desempenho, mas aumentou o tempo de

processamento.

Tabela 36 - Resultado Prognostico Clinico usando Transformers com caracteristicas do
paciente e Coeréncia variando os hiperparametros, em negrito se destaca o melhor resultado
para MT e MCT

o o~
§ ;I El ;'| § § Acuracia '2;122:’;7 Precisao Recall Espec. gé’
MCT CPC 4| 32 1 0.1 30 | 0.87+0.04 | 0.86+0.04 | 0.92+0.10 | 0.83+0.15 | 0.87+0.04 | 1070
MT CPC 4 32 1 0.1 30 0.87+0.07 | 0.87+0.07 | 0.90+0.08 0.83+0.15 | 0.87+0.07 | 658
MTCPCSPV | 4 | 32 1 0.1 30 | 0.87+0.07 | 0.87+0.07 | 0.90+0.08 | 0.83+0.15 | 0.87+0.07 | 1257
MCT CPC 4 32 3 0.1 30 0.90+0.06 | 0.90+0.06 | 0.97+0.06 | 0.83+0.15 | 0.90+0.06 | 1526
MT CPC 4| 32 3 0.1 30 | 0.85x0.06 | 0.85+0.06 | 0.87+0.07 | 0.83+0.15 | 0.85+0.06 | 917
MCT CPC 4 64 1 0.1 30 0.88+0.04 | 0.88+0.04 | 0.94+0.07 0.83+0.15 | 0.88+0.04 | 922
MT CPC 4| 64 1 0.1 30 | 0.85x0.06 | 0.85+0.06 | 0.87+0.07 | 0.83+0.15 | 0.85+0.06 | 587
MCT CPC 4 | 128 3 | 0.05 30 0.88+0.04 | 0.88+0.04 | 0.94+0.07 0.83+0.15 | 0.88+0.04 | 1505
MT CPC 4| 128 | 3 | 0.05| 30 | 0.80+0.07 | 0.80+0.07 | 0.81+0.12 | 0.83+0.15 | 0.80+0.07 | 738
MCT CPC 8 32 3 | 0.05 30 0.88+0.04 | 0.88+0.04 | 0.94+0.07 0.83+0.15 | 0.88+0.04 | 1917
MT CPC 8| 32 3 [ 0.05| 30 | 0.87+0.04 | 0.87+0.04 | 0.91+0.07 | 0.830.15 | 0.87+0.04 | 1161
MCT CPC 8 32 3 0.1 30 0.85+0.06 | 0.85+0.07 | 0.92+0.10 | 0.80+0.19 | 0.85+0.06 | 1981
MT CPC 8| 32 3 0.1 30 | 0.85+0.06 | 0.85+0.06 | 0.87+0.07 | 0.83+0.15 | 0.85+0.06 | 1165
MT CPC 8| 64 1 0.1 30 | 0.85+0.06 | 0.85+0.06 | 0.87+0.07 | 0.83+0.15 | 0.85+0.06 | 693
MCT CPC 8 64 3 0.1 30 0.88+0.04 | 0.88+0.04 | 0.94+0.07 0.83+0.15 | 0.88+0.04 | 1974
MT CPC 8| 64 3 0.1 30 | 0.85+0.06 | 0.85+0.06 | 0.87+0.07 | 0.83+0.15 | 0.85+0.06 | 927
MCT CPC 8 | 128 3 | 0.05 30 0.88+0.04 | 0.88+0.04 | 0.94+0.07 0.83+0.15 | 0.88+0.04 | 1943
MT CPC 8128 | 3 | 0.05 | 30 | 0.85+0.06 | 0.85+0.06 | 0.87+0.07 | 0.83%0.15 | 0.85+0.06 | 980
MCT CPC 8 | 256 3 | 0.05 30 0.88+0.04 | 0.88+0.04 | 0.94+0.07 0.83+0.15 | 0.88+0.04 | 1867
MT CPC 8256 | 3 |0.05| 30 | 0.85£0.06 | 0.85+0.06 | 0.87+0.07 | 0.83%0.15 | 0.85+0.06 | 920
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APENDICE K - Resultados do Treinamento Etiologia do Coma

Conforme detalhado na Tabela 37, os modelos, fundamentados nas

arquiteturas descritas no item 5.2 Arquiteturas, foram treinados utilizando sinais

puros de EEG, complementados por caracteristicas clinicas dos pacientes e

estatisticas descritivas. O processamento dos dados seguiu uma adaptacdo da

metodologia proposta por (BALDO JUNIOR, 2023), incorporando ajustes na

arquitetura original para otimizar a integracédo de diferentes modelos de aprendizado

de maquina, bem como a reamostragem do sinal de EEG.

Tabela 37 — Resultados do treinamento da base de dados Etiologia do Coma para o sinal puro,
com caracteristicas do paciente e estatisticas, em negrito se destaca o melhor modelo

Modelo Acuracia lz:n:g?;;a Precisao Recall Espec. 'I;tsarengp.;)
MMLP 0.32+0.08 0.21+0.07 0.21+0.10 0.26+0.06 0.75+0.03 93
MMLP SREA 0.40+0.13 0.25+0.08 0.23+0.09 0.31+0.09 0.78+0.04 98
MCL 0.4040.11 0.3040.10 0.28+0.12 | 0.35+0.11 | 0.79+0.04 670
MCL SREA 0.4040.13 0.31+0.14 0.32#0.16 | 0.35+0.12 | 0.80+0.05 476
MMLP CP 0.42+0.14 0.30+0.16 0.28+0.17 0.36%0.15 0.79+0.05 92
MMLP CP SREA | 0.42+0.14 | 0.3040.16 0.2840.17 | 0.36+0.15 | 0.79+0.05 91
MCL CP 0.60+0.11 | 0.53%0.13 0.58+0.17 | 0.56+0.10 | 0.86+0.03 787
MCL CP SREA | 0.60+0.12 0.51+0.11 0.48+0.11 | 0.54+0.11 | 0.86+0.04 594
MMLP CE 0.45+0.13 0.3410.10 0.32#0.10 | 0.38+0.09 | 0.81+0.04 98
MMLP CE SREA | 0.42+0.12 0.31+0.09 0.2940.09 | 0.34+0.09 | 0.80+0.04 99
MCL CE 0.35£0.10 | 0.25+0.07 0.24+0.09 | 0.29+0.08 | 0.77+0.03 702
MCL CE SREA | 0.40+0.11 0.27+0.08 0.25+0.09 | 0.32+0.08 | 0.79+0.03 527
MMLP CPE 0.3310.09 0.27+0.08 0.35+0.14 | 0.29+0.09 | 0.76+0.03 100
M'\QFIEE:PE 0.27£0.06 | 0.15+0.04 0.13£0.06 | 0.20+0.05 | 0.74+0.02 97
MCL CPE 0.5240.13 0.44+0.10 0.48+0.09 | 0.48+0.11 | 0.83+0.04 787
MCL CPE SREA | 0.47+0.16 | 0.40+0.17 0.41+0.22 | 0.42+0.17 | 0.82+0.05 524

Analisando a Tabela 37, observa-se que os modelos baseados em Multi Layer

Perceptron (MMLP) apresentaram os menores indices de acuracia e F1 score,

evidenciando limitagcdes na capacidade de capturar a complexidade dos dados. Em

contrapartida, os modelos que combinam camadas convolucionais seguidas de

camadas recorrentes (MCL) demonstraram desempenho superior, com destaque para
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aqueles que incorporaram caracteristicas clinicas dos pacientes (CP), alcangando

acuracia média de 60% e especificidade de 86%.

Esses resultados ressaltam a importancia da inclusdo de atributos clinicos
para aprimorar a classificacdo. Ademais, os desempenhos obtidos sdo bastante
proximos aos reportados por (BALDO JUNIOR, 2023), o que reforca a consisténcia
dos resultados mesmo diante de modificagdes na arquitetura base e variagbes nas
configuragcbes de hardware utilizadas nos experimentos. A reamostragem do sinal
para 400 Hz (ausente nos modelos SREA) apresentou impacto variavel, promovendo
ligeiras melhorias em alguns modelos. Por fim, os tempos de processamento indicam
que os modelos MCL demandam maior custo computacional em comparagdo aos

MMLP, refletindo a maior complexidade dessas arquiteturas.

Para aprimorar o desempenho dos modelos na classificagcdo da etiologia do
coma, foram incorporados atributos extraidos por meio de software de processamento
de EEG, incluindo o quantificador de Porcentagem de Contribuicdo de Poténcia
(PCP), Frequéncia Mediana (FM) e Coeréncia. Esses atributos, que capturam
caracteristicas especificas das bandas de frequéncia e da conectividade cerebral,

com os resultados apresentados na Tabela 38.

Tabela 38 — Resultados do treinamento da base de dados Etiologia do Coma para os atributos
PCP, FM e Coeréncia, em negrito se destaca o melhor modelo

L . F1 score - Tempo
Modelo Acuracia (macro) Precisao Recall Espec. (seg.)

MCL CPCP 0.43+0.10 0.36+0.09 0.36+0.10 0.39+0.10 0.81+0.03 1053
MCL CPCP SREA | 0.45%0.16 0.32+0.11 0.31+0.11 0.38+0.14 0.81+0.05 610
MCL CPPCP 0.48+0.19 0.39+0.13 0.41+0.08 0.41+0.15 0.82+0.06 1046

MC;'RCIEIZPCP 0.50+0.11 0.35+0.05 0.32+0.05 0.40+0.07 0.83+0.03 661
MCL CFM 0.3210.13 0.22+0.08 0.21+0.09 0.28+0.11 0.7610.04 959

MCL CFM SREA | 0.45+0.11 0.33+0.07 0.37+0.08 0.38+0.10 0.81+0.04 662
MCL CPFM 0.53+0.13 0.46+0.10 0.47+0.11 0.49+0.12 0.84+0.04 968
MCL CPFM SREA | 0.53%0.15 0.41+0.11 0.42+0.10 0.45+0.13 0.84+0.05 588
MCL CC 0.48+0.10 0.41+0.09 0.41+0.10 0.44+0.11 0.82+0.03 1115
MCL CPC 0.45+0.16 0.38+0.15 0.43+0.21 0.42+0.17 0.81+0.05 1124
MCL CPC SPV 0.47+0.17 0.40+0.19 0.42+0.23 0.43+0.19 0.82+0.06 2772
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Os resultados da Tabela 38 mostram que o modelo MCL CPFM obteve o
melhor desempenho, com F1 score (macro) de 0,46 e especificidade de 0,84,
destacando-se pela integracdo de caracteristicas do paciente e frequéncia mediana.
A néo utilizacao de placa de video (SPV) quase triplica tempo de processamento, sem

ganhos expressivos nas métricas.

Em seguida, realizou-se o treinamento dos modelos utilizando sinais de EEG
provenientes das regides cerebrais frontal, central, occipital, parietal e temporal,
conforme detalhado na Tabela 39. Essa abordagem buscou avaliar o impacto da

analise regionalizada do sinal EEG na classificacdo das etiologias do coma.

Tabela 39 — Resultados do treinamento da base de dados Etiologia do Coma com
caracteristicas do paciente e regides cerebrais: frontal, central, occipital, parietal e temporal,
em negrito se destaca o melhor modelo

Modelo Acuracia lz:n:g?;;a Precisao Recall Espec. 1;2?950_
MCL CPEF 0.63+0.14 | 0.59+0.16 | 0.65+0.21 | 0.62+0.14 | 0.87 +0.04 813
MCL CPEF SREA | 0.60+0.11 | 0.53+0.07 | 0.56+0.07 | 0.55+0.08 | 0.86+0.04 579
MCL CPEC 0.58+0.14 | 0.54+0.17 | 0.60+0.24 | 0.54+0.14 | 0.86+0.04 912
MCL CPEC SREA | 0.55+0.11 | 0.49+0.12 | 0.52+0.16 | 0.50+0.10 | 0.85+0.04 569
MCL CPEO 0.57+0.19 | 0.48+0.20 | 0.51+0.22 | 0.51+£0.19 | 0.85+0.06 909
MCL CPEO SREA | 0.47+0.17 | 0.43+0.17 | 0.47+0.18 | 0.44+0.17 | 0.82+0.05 506
MCL CPEP 0.57+0.13 | 0.52+0.18 | 0.60+0.23 | 0.52+0.14 | 0.85+0.04 771
MCL CPEP SREA | 0.50+0.17 | 0.43+0.18 | 0.48+0.22 | 0.45+0.16 | 0.83£0.06 579
MCL CPET 0.63+0.15| 0.61+0.13 | 0.69+0.15 | 0.61+0.12 | 0.87 +0.04 922
MCL CPET SREA | 0.58+0.13 | 0.48+0.17 | 0.51+0.23 | 0.53+0.13 | 0.85+0.05 588

Ao analisar a Tabela 39, observa-se que o modelo MCL CPEF apresentou o

melhor desempenho, alcangando acuracia de 0,63 e especificidade de 87%,
evidenciando a importancia da regido frontal na identificagcado das etiologias do coma.
A auséncia de reamostragem do sinal (SREA) comprometeu a acuracia em todas as
regides avaliadas, indicando que a reamostragem contribui para a melhoria da

qualidade dos dados e, consequentemente, do desempenho dos modelos.

Para ampliar a analise, foram testadas outras abordagens no treinamento da
base de dados voltada para a etiologia do coma, buscando aprimorar a classificagao
das diferentes causas do coma. Os resultados obtidos com essas metodologias estao

apresentados na Tabela 40.
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Tabela 40 — Resultados do treinamento da base de dados Etiologia do Coma testando outras

abordagens, em negrito se destaca o melhor modelo

Modelo Acuracia 'z:nzzfg;a Precisao Recall Espec. 1;2?950_

MCLT CE 0.47+0.14 0.36+0.11 0.35+0.11 0.39+0.13 0.82+0.05 1412
MCLT CPEF 0.58+0.15 0.5610.17 0.62+0.20 | 0.57+0.17 | 0.86%0.05 871
MCL CDW4 0.4310.10 0.35+0.09 0.34+0.11 0.3940.10 0.80+0.03 948
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APENDICE L - Resultados do Treinamento Etiologia do Coma usando

Transformer

Nesta secdo, sao apresentados os resultados do treinamento da base de
dados do Coma para a classificacdo da etiologia do mesmo, utilizando modelos
baseados em arquiteturas TransformerEncoder, especificamente as variacbes dos
modelos MT e MCT.

A primeira analise que é apresentada na Tabela 41, considerou sinais puros
de EEG, complementados por caracteristicas clinicas dos pacientes e estatisticas
descritivas, com o objetivo de avaliar o impacto dos diferentes hiperparametros na

performance dos modelos.

Tabela 41 - Resultados do treinamento da base de dados Etiologia do Coma usando
Transformers variando os hiperparametros do modelo MT e MCT para o sinal puro, com
caracteristicas do paciente e estatisticas, em negrito se destaca o melhor modelo

o o~
E :| El ;| § é’j Acuracia '::n:g?;)e Precisdo Recall Espec. gg
MT 8| 128 | 3 0.2 60 0.3840.15 | 0.32+0.14 | 0.30+0.13 | 0.36+0.16 | 0.79+0.05 | 852
MCT 8| 256 | 3 |0.05]| 30 0.32#0.16 | 0.26+0.14 | 0.28+0.18 | 0.28+0.14 | 0.76+0.05 | 1628
MT CP 4| 64 3 0.1 30 0.50+0.14 | 0.37£0.10 | 0.38+0.13 | 0.45+0.13 | 0.83+0.05 | 501
MT CP 8| 128 | 3 0.2 60 0.53#0.18 | 0.44+0.19 | 0.47+0.24 | 0.49+0.19 | 0.84+0.06 | 1250
MCT CP 8| 256 | 3 | 0.05| 30 0.47+0.11 | 0.38+£0.09 | 0.38+0.12 | 0.42+0.11 | 0.81+0.04 | 1707
MT CE 4| 64 3 0.1 30 0.42+0.15 | 0.33+#0.14 | 0.35+0.18 | 0.37+0.15 | 0.80+0.05 | 517
MT CE 8| 128 | 3 0.2 60 0.37+0.16 | 0.27£0.14 | 0.24+0.13 | 0.33+0.16 | 0.78+0.06 | 1539
MCT CE 8| 256 | 3 |0.05]| 30 0.32+0.10 | 0.23+0.08 | 0.24+0.10 | 0.28+0.08 | 0.76+0.03 | 1788
MT CPE 4| 64 3 0.1 30 0.52#0.14 | 0.43+£0.16 | 0.47+0.20 | 0.47+0.17 | 0.83+0.05 | 365
MT CPE 8| 128 | 3 0.2 60 0.50+0.14 | 0.42+0.14 | 0.45%0.17 | 0.47+0.16 | 0.83+0.05 | 1534
MT CPE 8| 256 | 3 | 0.05| 30 0.47+0.16 | 0.40£0.15 | 0.41+0.17 | 0.42+0.16 | 0.81+0.05 | 548
MCT CPE 8| 256 | 3 | 0.05 | 30 0.57+0.12 | 0.49+0.14 | 0.49+0.17 | 0.53+0.13 | 0.85+0.04 | 1758

Os resultados da Tabela 41 indicam que os modelos que incorporaram
caracteristicas do paciente (CP) apresentaram desempenho superior em comparagao
aos demais, ressaltando a importadncia da inclusdo de atributos clinicos na
classificagao da etiologia do coma. Destaca-se o modelo MCT CPE (N_H = 8,INT_D =
256,N_L = 3,DOUT = 0,05,EPC = 30), que obteve o melhor desempenho, com
acuracia de 0,57 e especificidade de 0,85. Ressalta-se ainda que os modelos

baseados na arquitetura MCT demandaram maior tempo computacional, em parte
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devido a execugao sem o uso de placa de video, conforme limitacdo previamente

mencionada.

Para ampliar a avaliagcido dos modelos baseados em arquiteturas Transformer,
foram testadas variagdes dos hiperparametros, aplicados aos atributos extraidos do
EEG referentes a Participacdo de Contribuicdo de Poténcia (PCP), Frequéncia
Mediana (FM) e Coeréncia. Os resultados obtidos com essas configuragdes estao

apresentados na Tabela 42.

Tabela 42 - Resultados do treinamento da base de dados Etiologia do Coma usando
Transformers variando os hiperparametros do modelo MT e MCT, para os atributos PCP, FM e
Coeréncia, em negrito se destaca o melhor modelo

o o~
§ ;I El ;'| § § Acuracia '2;122:’;7 Precisao Recall Espec. gi

MT CPCP 4 64 3 0.1 30 0.35+0.06 | 0.30+0.07 | 0.29+0.07 0.31+0.07 | 0.78+0.02 | 744
MT CPCP 8 | 128 3 0.2 60 0.37£0.20 | 0.32+0.19 | 0.33#0.21 0.35+0.20 | 0.78+0.07 | 1876
MCT CPCP 8256 | 3 |0.05| 30 | 0.43#0.13 | 0.33#0.09 | 0.36%0.12 | 0.36x0.10 | 0.80+0.04 | 2046
MT CPPCP 4 64 3 0.1 30 0.43+0.16 | 0.39+0.16 | 0.42+0.23 0.40+0.17 | 0.81+0.05 | 804
MT CPPCP 8| 128 | 3 0.2 60 | 0.45%0.23 | 0.39+0.22 | 0.41+0.23 | 0.41+0.23 | 0.81x0.07 | 1873
MCT CPPCP | 8 | 256 3 | 0.05 30 0.48+0.03 | 0.41+0.06 | 0.44+0.08 0.45+0.06 | 0.82+0.01 | 2023
MT CFM 4| 64 3 0.1 30 | 0.40+0.08 | 0.32+0.07 | 0.33#0.11 | 0.37+#0.09 | 0.79+0.03 | 783
MT CFM 8 | 128 3 0.2 60 0.47+0.13 | 0.38+0.12 | 0.40+0.10 | 0.42+0.13 | 0.81+0.04 | 1855
MCT CFM 8256 | 3 |0.05| 30 | 0.28+0.11 | 0.194+0.07 | 0.24+0.11 | 0.23+0.08 | 0.75+0.04 | 1926
MT CPFM 4 64 3 0.1 30 0.45+0.07 | 0.38+0.05 | 0.43+0.07 0.41+0.06 | 0.82+0.02 | 791
MT CPFM 8| 128 | 3 0.2 60 | 0.45%0.14 | 0.35+#0.12 | 0.36%0.12 | 0.40£0.14 | 0.81+0.05 | 1847
MT CPFM 8 | 256 3 | 0.05 30 0.50+0.14 | 0.41+0.14 | 0.42%+0.11 0.43+0.15 | 0.82+0.05 | 957
MCTCPFM | 8 | 256 | 3 | 0.05 | 30 | 0.52#0.14 | 0.44%0.07 | 0.45+0.06 | 0.47+0.12 | 0.83+0.05 | 1933
MT CC 4 64 3 0.1 30 0.37+0.09 | 0.31+0.09 | 0.30+0.07 0.33+0.12 | 0.78+0.03 | 686
MT CC 8 | 128 3 0.2 60 0.32+0.13 | 0.26+0.12 | 0.28+0.10 | 0.30+0.16 | 0.77+0.04 | 1746
MCT CC 8| 256 | 3 |0.05| 30 | 0.45+0.16 | 0.36+0.15 | 0.38+0.21 | 0.39+0.17 | 0.81+0.05 | 1997
MT CPC 4 64 3 0.1 30 0.42+0.12 | 0.34+0.14 | 0.34%0.17 0.37+0.14 | 0.80+0.04 | 753
MT CPC 8128 | 3 0.2 60 | 0.43%0.14 | 0.36+0.15 | 0.35£0.15 | 0.40+0.15 | 0.81x0.05 | 1673
MCT CPC 8 | 256 3 | 0.05 30 0.37+0.07 | 0.31+0.06 | 0.32+0.11 0.33+0.07 | 0.79+0.03 | 1963

Os resultados apresentados na Tabela 42 indicam que o modelo MCT CPFM
(N_H = 8,INT_D = 256,N_L = 3,DOUT = 0,05, EPC = 30) obteve o melhor
desempenho, alcancando um F1 score macro de 0,44 e especificidade de 0,83,
evidenciando a eficacia da integragao entre caracteristicas clinicas dos pacientes e a
frequéncia mediana do EEG. Observa-se que o aumento do numero de cabecgas de
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atencdo (N_H) e da dimensao intermediaria (INT_D) contribui, em geral, para a
melhoria dos resultados, embora implique em maior tempo de processamento. Diante
do exposto, percebe-se que os modelos que incorporaram caracteristicas do paciente
combinadas com os quantificadores apresentaram desempenho superior em relacao

as demais configuragoes.

Na etapa seguinte, foram avaliados os resultados do treinamento dos modelos
baseados em arquitetura Transformer utilizando sinais puros de EEG provenientes
das regides cerebrais frontal, central, occipital, parietal e temporal. Os resultados,
apresentados na Tabela 43, analisam o desempenho dessas configuragdes na

identificacédo de etiologias.

Tabela 43 - Resultados do treinamento da base de dados Etiologia do Coma usando
Transformers com Sinal Puro variando os hiperparametros do modelo MT para as regides
cerebrais: frontal, central, occipital, parietal e temporal, em negrito se destaca o melhor

modelo

o o~

§ ;I El ;'| § § Acuracia '::n:gn?;;e Precisao Recall Espec. §§
MCT CEF 31128 | 3 0.2 60 | 0.40+0.16 | 0.34+0.18 | 0.36%0.21 | 0.38+0.18 | 0.79+0.06 | 2374
MT CEF 7 | 128 3 0.2 60 0.47+0.13 | 0.38+0.11 | 0.42+0.10 | 0.44+0.14 | 0.82+0.04 | 681
MT CEF 3| 128 3 0.2 60 0.45+0.07 | 0.37+0.08 | 0.35+0.09 0.43+0.08 | 0.81+0.02 | 687
MCT CEC 31128 | 3 0.2 60 | 0.47+0.10 | 0.39+0.08 | 0.39+0.11 | 0.43+0.11 | 0.82+0.04 | 2344
MT CEC 3| 128 3 0.2 60 0.38+0.10 | 0.24+0.11 | 0.24+0.14 | 0.33+0.10 | 0.78+0.04 | 632
MCT CEP 3| 128 | 3 0.2 60 | 0.40+0.21 | 0.35+0.21 | 0.36+0.21 | 0.37+£0.22 | 0.800.06 | 2345
MT CEP 3| 128 3 0.2 60 0.38+0.10 | 0.22+0.08 | 0.20+0.09 0.30+0.09 | 0.77+0.04 | 538
MCT CEO 31128 | 3 0.2 60 | 0.33x0.14 | 0.27+0.12 | 0.274#0.13 | 0.30£0.12 | 0.78%0.05 | 2315
MT CEO 3| 128 3 0.2 60 0.28+0.13 | 0.17+0.08 | 0.17+0.10 | 0.23+0.08 | 0.74+0.04 | 544
MCT CET 31128 | 3 0.2 60 | 0.47+0.04 | 0.3910.09 | 0.46x0.11 | 0.41+0.06 | 0.82+0.02 | 2333
MT CET 3| 128 3 0.2 60 0.30+0.10 | 0.20+0.09 | 0.21+0.12 0.25+0.09 | 0.75%+0.03 | 586

Os resultados da Tabela 43 indicam que o modelo MCT CET (N_H =
3,INT_D = 128,N_L = 3,DOUT = 0,2, EPC = 60) apresentou o melhor desempenho,
alcangando acuracia de 0,47 e precisao de 0,46, ressaltando a importancia da regiao
temporal na identificagéo das etiologias do coma. Os modelos MT CEF e MCT CEC
também obtiveram resultados expressivos, com acuracia proxima a 0,47, enquanto as
configuragdes aplicadas a regido occipital (CEO) apresentaram desempenho inferior,

com acuracia inferior a 0,33.
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APENDICE M - Resultados do Treinamento Etiologia do Coma

removendo os exames pertencentes ao rotulo OUTROS

Com o objetivo de aprimorar a acuracia na classificagao da etiologia do coma,
foi implementada a sugest&o do coorientador Murillo de remover da base de dados os
exames de eletroencefalograma (EEG) pertencentes ao rétulo OUTROS, conforme
apresentado a seguir. Essa decisao fundamenta-se na heterogeneidade do grupo
OUTROS, que engloba diversas etiologias do coma, o que pode dificultar a
capacidade dos modelos de aprendizado de maquina em classifica-los com preciséo
devido a grande variabilidade de padrdes cerebrais. Ao excluir esses exames, espera-
se aumentar a assertividade dos modelos, uma vez que a gama de etiologias a serem
classificadas torna-se mais especifica, permitindo uma analise mais focada em
condigdes como traumatismo cranioencefalico, coma metabdlico e acidente vascular

cerebral, conforme descrito no item 5.10.2 Base de dados.

Conforme a metodologia apresentada anteriormente, a primeira analise
baseou-se nos modelos fundamentados nas arquiteturas descritas no item 5.2
Arquiteturas, que foram treinados utilizando sinais puros de EEG, complementados
por caracteristicas clinicas dos pacientes e estatisticas descritivas. Os resultados

desse treinamento, apresentados na Tabela 44.

Tabela 44 — Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, para o sinal puro, com caracteristicas do paciente e
estatisticas, em negrito se destaca o melhor modelo

Modelo Acuracia 7:":?;;3 Precisao Recall Espec. 1;:‘;";;)
MMLP 0.44+0.15 0.3610.12 0.35£0.12 | 0.38+0.12 | 0.71+0.08 147
MCL 0.541+0.16 | 0.49+0.18 0.51+0.20 | 0.52+0.17 | 0.76+0.09 664
MMLP CP 0.3840.19 0.3310.20 0.31+0.21 | 0.37+0.20 | 0.67+0.10 78
MCL CP 0.5810.12 0.51+0.08 0.54+0.07 | 0.54+0.08 | 0.78+0.05 546
MMLP CE 0.50+0.14 0.44+0.14 0.47+0.18 0.48+0.15 0.7510.07 84
MCL CE 0.56+0.10 | 0.50+0.10 0.50+0.13 | 0.54+0.12 | 0.78+0.06 643
MMLP CPE 0.34£0.08 | 0.24+0.09 0.211+0.11 | 0.31+0.08 | 0.65+0.04 78
MCL CPE 0.60+0.14 | 0.56%0.16 0.61+0.18 | 0.59+0.15 | 0.80+0.06 625

Os resultados da Tabela 44, indicam que os modelos baseados em Multi

Layer Perceptron (MMLP) apresentaram desempenho inferior em relacdo aos
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modelos com camadas convolucionais recorrentes (MCL). O modelo MCL CPE, que
combina sinais puros de EEG com caracteristicas do paciente e estatisticos,
destacou-se com a maior acuracia meédia de 60% e especificidade elevada de 80%.
Os tempos de processamento dos modelos MCL foram consideravelmente maiores,

refletindo a maior complexidade computacional dessas arquiteturas.

A sequir, na Tabela 45, sdao apresentados os resultados do treinamento

utilizando os atributos extraidos do EEG, especificamente PCP, FM e Coeréncia.

Tabela 45 — Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, para os atributos PCP, FM e Coeréncia, em negrito se destaca o
melhor modelo

Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)

MCL CPCP 0.54+0.14 0.47+0.12 0.48+0.13 0.49+0.11 0.76%0.08 936
MCL CPPCP 0.58+0.13 0.50+0.13 0.53+0.13 0.55+0.11 0.79+0.06 847

MCL CFM 0.52+0.17 0.49+0.18 0.55+0.24 0.49+0.17 0.75+0.09 949
MCL CPFM 0.64+0.17 0.60+0.20 0.66+0.23 0.62+0.18 0.81+0.09 942
MCL CC 0.54+0.17 0.48+0.17 0.50+0.19 0.51+0.18 0.77+0.09 942
MCL CPC 0.62+0.16 0.58+0.18 0.64+0.20 0.61+0.17 0.81+0.08 871

Os resultados da Tabela 45 mostram que o modelo MCL CPFM obteve o
melhor desempenho, com acuracia de 0,64 e especificidade de 0,81, destacando a
eficacia da integracdo de caracteristicas do paciente e frequéncia mediana para
identificar etiologias. Os tempos de processamento foram relativamente semelhantes

entre os modelos, variando entre 847 e 949 segundos.

A Tabela 46 apresenta os resultados do treinamento considerando as regides
cerebrais frontal, central, occipital, parietal e temporal, permitindo avaliar o
desempenho dos modelos em diferentes areas do cérebro. Essa analise visa
compreender a contribuicao especifica de cada regido na classificagao da etiologia do
coma, considerando a complexidade e a diversidade funcional das areas cerebrais

envolvidas.
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Tabela 46 — Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, com regides cerebrais: frontal, central, occipital, parietal e

temporal, em negrito se destaca o melhor modelo

Modelo Acuracia '::n:z?(;)e Precisao Recall Espec. 1;2::‘9?)0

MCL CEF 0.6810.16 0.64+0.18 0.6910.21 0.67+0.18 0.84+0.08 1483
MCL CEC 0.60+0.16 0.56+0.16 0.61+0.18 0.58+0.16 0.80+0.08 1484
MCL CEO 0.4610.16 0.42+0.17 0.45+0.23 0.47+0.20 0.72+0.09 1095
MCL CEP 0.50+0.13 0.46%0.10 0.48+0.12 0.47+0.11 0.7510.06 1414

MCL CET 0.54+0.17 0.48+0.17 0.51+0.19 0.50+0.16 0.77+0.09 1418
MCL CPEF 0.70+0.14 0.68+0.18 0.72+0.18 0.70+0.16 0.85+0.07 733
MCL CPEF

FA=200 0.6210.12 0.60+0.16 0.6510.17 0.62+0.15 0.81+0.06 462
400 pontos
MCL CPEC 0.64+0.19 0.60+0.21 0.64+0.19 0.62+0.18 0.81+0.08 734
MCL CPEO 0.62+0.19 0.59+0.22 0.64+0.23 0.60+0.20 0.80+0.10 753
MCL CPEO

FA=200 0.62+0.20 0.58+0.23 0.60+0.26 0.60+0.21 0.80+0.10 467
400 pontos

MCL CPEP 0.6410.16 0.60+0.18 0.64+0.19 0.61+0.16 0.82+0.07 763
MCL CPET 0.70+0.14 0.67+0.16 0.71+0.18 0.67+0.15 0.84+0.07 715
MCL CEEF 0.58+0.16 0.55+0.13 0.64+0.12 0.5610.15 0.79+0.08 747
MCL CEEC 0.58+0.12 0.55+0.10 0.62+0.11 0.55+0.10 0.79+0.05 745
MCL CEEO 0.58+0.12 0.51+0.09 0.54+0.12 0.53+0.09 0.79+0.06 741
MCL CEEP 0.54+0.05 0.49+0.07 0.54+0.12 0.50+0.05 0.77+0.04 751
MCL CEET 0.58+0.17 0.51+0.17 0.54+0.18 0.54+0.18 0.79+0.08 736

Os resultados apresentados na Tabela 46 destacam que as regides frontal e

temporal, quando combinadas com caracteristicas do paciente, alcangaram uma

acuracia de 70%, com o modelo MCL CPEF apresentando a melhor performance

geral. A reamostragem dos dados (FA=200, 400 pontos) contribuiu para a redugéo do

tempo computacional, como observado no modelo MCL CPEF, cujo tempo diminuiu

de 733 para 462 segundos. Contudo, essa redugao no tempo foi acompanhada por

uma queda na acuracia, evidenciando um trade-off entre eficiéncia computacional e

desempenho do modelo.
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APENDICE N - Resultados do Treinamento Etiologia do Coma usando
Transformer removendo os exames pertencentes ao rotulo
OUTROS

De forma anéloga ao descrito no APENDICE L - Resultados do Treinamento
Etiologia do Coma usando Transformer, foram realizados experimentos com
arquiteturas Transformer (MT e MCT), utilizando a base de dados sem os exames do
rétulo OUTROS. Os resultados, apresentados nas tabelas subsequentes, avaliam o

desempenho dessas configuragdes na classificagdo de etiologias.

Os resultados apresentados na Tabela 47 avaliam o desempenho do modelo

Transformer (MT), com variagéo de hiperparametros, utilizando sinais puros de EEG.

Tabela 47 - Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, usando Transformers com Sinal Puro variando os
hiperparametros do modelo MT, em negrito se destaca o melhor modelo

L . F1 score . Temp

Mod. | N_.H | INT_D | N_L | DOUT | EPC | Acuracia (macro) Precisao Recall Espec. o
(seg.)

MT 4 64 1 0.1 30 | 0.42+0.10 | 0.35+0.11 | 0.33+#0.11 | 0.40+0.11 | 0.69+0.05 164
MT 4 64 1 0.1 60 | 0.46%0.15 | 0.41+0.14 | 0.41+0.14 | 0.43+0.15 | 0.72%0.07 298
MT 4 64 1 0.2 30 | 0.42+0.10 | 0.38+0.14 | 0.39+0.16 | 0.40+0.14 | 0.70%0.05 167
MT 4 64 1 0.2 60 | 0.42+0.12 | 0.38+0.14 | 0.38+0.15 | 0.41+0.14 | 0.70%0.06 294
MT 4 64 3 0.1 30 | 0.56x0.05 | 0.49+0.09 | 0.48+0.13 | 0.55+0.11 | 0.77%0.03 360
MT 4 64 3 0.1 60 | 0.62+0.08 | 0.53+0.09 | 0.51+0.12 | 0.60+0.07 | 0.81+0.04 642
MT 4 64 3 0.1 120 | 0.54+0.05 | 0.45+0.07 | 0.46£0.13 | 0.52+0.11 | 0.76x0.04 | 1255
MT 4 64 3 0.2 30 | 0.48+0.13 | 0.45+0.12 | 0.51+0.16 | 0.48+0.15 | 0.73%0.06 366
MT 4 64 3 0.2 60 | 0.52+0.12 | 0.48+0.13 | 0.52+0.14 | 0.53+0.15 | 0.76%0.06 649
MT 4 128 1 0.1 30 | 0.48+0.12 | 0.37+0.11 | 0.41+0.18 | 0.43+0.10 | 0.73%0.06 150
MT 4 128 1 0.1 60 | 0.50+0.09 | 0.44+0.08 | 0.52+0.10 | 0.47+0.09 | 0.74%0.05 315
MT 4 128 1 0.2 30 | 0.44+0.14 | 0.34%0.13 | 0.34+0.19 | 0.40+0.12 | 0.71%0.07 162
MT 4 128 1 0.2 60 | 0.52+0.10 | 0.46+0.10 | 0.53+0.14 | 0.50+0.13 | 0.76%0.06 308
MT 4 128 1 0.2 120 | 0.56+0.14 | 0.52+0.16 | 0.54%0.18 | 0.54+0.17 | 0.78+0.08 647
MT 4 128 3 0.1 30 | 0.48+0.12 | 0.45+0.12 | 0.53+0.13 | 0.48+0.13 | 0.73%0.06 360
MT 4 128 3 0.1 60 | 0.56%0.20 | 0.52+0.21 | 0.55%0.19 | 0.55+0.21 | 0.78%0.10 655
MT 4 128 3 0.2 30 | 0.48+0.16 | 0.45+0.17 | 0.50+0.19 | 0.50+0.18 | 0.74+0.08 357
MT 4 128 3 0.2 60 | 0.54+0.14 | 0.47+0.13 | 0.53+0.16 | 0.52+0.16 | 0.77+0.07 651
MT 4 128 3 0.2 120 | 0.58+0.10 | 0.55+0.10 | 0.64+0.15 | 0.58+0.12 | 0.79+0.06 | 1286
MT 4 128 3 0.2 160 | 0.60+0.18 | 0.56%0.19 | 0.65%0.20 | 0.60+0.20 | 0.80+0.09 | 1668
MT 8 64 1 0.1 30 | 0.46%0.14 | 0.374#0.10 | 0.35+0.11 | 0.41+0.10 | 0.71%0.07 213
MT 8 64 1 0.1 60 | 0.48+0.10 | 0.45+0.12 | 0.47+0.15 | 0.48+0.12 | 0.73%0.04 399
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- F1 score - Temp

Mod. | N_H [ INT_D | N_L | DOUT | EPC | Acuracia (macro) Precisao Recall Espec. o
(seg.)

MT 8 64 1 0.2 30 | 0.48+0.13 | 0.394+0.09 | 0.37+0.10 | 0.43+0.10 | 0.72+0.07 209
MT 8 64 1 0.2 60 | 0.48+0.08 | 0.43+0.04 | 0.44+0.05 | 0.45+0.05 | 0.73%0.03 399
MT 8 64 3 0.1 30 | 0.60+0.14 | 0.56%0.17 | 0.58+0.17 | 0.58+0.17 | 0.80+0.08 441
MT 8 64 3 0.1 60 | 0.60+0.17 | 0.56+0.20 | 0.62+0.25 | 0.59+0.18 | 0.80+0.08 878
MT 8 64 3 0.2 30 | 0.52+0.20 | 0.50%+0.21 | 0.54+0.20 | 0.54+0.23 | 0.77%0.10 451
MT 8 64 3 0.2 60 | 0.48+0.15 | 0.45+0.17 | 0.49+0.21 | 0.50+0.18 | 0.75%0.07 851
MT 8 128 1 0.1 30 | 0.50+0.06 | 0.40%0.06 | 0.36+0.08 | 0.46%0.06 | 0.74%0.03 206
MT 8 128 1 0.1 60 | 0.58+0.10 | 0.50+0.14 | 0.52+0.19 | 0.55+0.13 | 0.78%0.05 383
MT 8 128 1 0.2 30 | 0.50+0.06 | 0.40+0.07 | 0.38+0.10 | 0.46%0.06 | 0.74%0.03 218
MT 8 128 1 0.2 60 | 0.48+0.17 | 0.45+0.17 | 0.49+0.23 | 0.48+0.18 | 0.74+0.08 386
MT 8 128 3 0.05 60 | 0.56x0.08 | 0.51+0.10 | 0.53+0.16 | 0.55+0.11 | 0.78%0.05 1070
MT 8 128 3 0.1 30 | 0.54+0.14 | 0.50+0.12 | 0.61+0.14 | 0.55+0.15 | 0.77+0.07 469
MT 8 128 3 0.1 60 | 0.60+0.21 | 0.57%0.22 | 0.62+0.27 | 0.61+0.21 | 0.81%0.10 850
MT 8 128 3 0.2 30 | 0.54+0.14 | 0.52+0.12 | 0.63+0.15 | 0.57+0.16 | 0.78+0.07 428
MT 8 128 3 0.2 60 | 0.62+0.19 | 0.62%0.19 | 0.68+0.17 | 0.64+0.20 | 0.8110.10 832
MT 8 128 3 0.2 120 | 0.64+0.16 | 0.60+0.22 | 0.62+0.24 | 0.64+0.20 | 0.82+0.09 | 1622
MT 8 128 3 0.2 160 | 0.62+0.18 | 0.60+0.21 | 0.62%0.21 | 0.62+0.22 | 0.81+0.10 | 2162
MT 8 256 3 0.05 30 | 0.66+0.15 | 0.61+0.13 | 0.64+0.14 | 0.63+0.14 | 0.83+0.07 682

Os dados apresentados na Tabela 47 demonstram que o desempenho dos
modelos Transformer (MT) varia significativamente conforme a configuragcdo dos
hiperparametros, especialmente o niumero de camadas (N_L), a taxa de dropout
(DOUT) e o numero de épocas (EPC). Modelos com trés camadas (N_L=3) e maior
numero de épocas tendem a alcangar melhores resultados, com F1 score (macro)
chegando a 62%, precisdo de 0,68 e especificidade de 0,81, como observado na
configuragdo MT com N_H = 8,INT_D = 128,N_L = 3,DOUT = 0,20, EPC = 60. Além
disso, o aumento do numero de cabegas de atencdo (N_H) e da dimensao
intermediaria (INT_D) também contribui para a melhora do desempenho, embora
impacte diretamente no tempo de processamento, que pode variar de 164 a 2162

segundos.

Configuragdes com N_L = 3 e EPC = 60 apresentaram melhores resultados
(acuracia de 0,54-0,64) em comparagdao com N_L = 1 (acuracia < 0,58). O tempo
computacional aumentou com EPC mais alto, como em MT (EPC =120, 1622
segundos) e MT (EPC = 160, 2162 segundos), indicando um trade-off entre preciséo

e custo computacional. Configuragbées com menor dropout (0,1) e maior numero de
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épocas tendem a promover maior estabilidade e precisdo nos resultados. Esses
achados indicam que a otimizagdo dos hiperparametros € fundamental para
maximizar a eficacia dos modelos Transformer na classificacdo da etiologia,

equilibrando desempenho e custo computacional.

Os resultados apresentados na Tabela 48 avaliam o desempenho dos
modelos Transformer (MT e MCT) na base de dados, utilizando sinais puros de EEG,

complementados por caracteristicas do paciente e estatisticas descritivas.

Tabela 48 — Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, usando Transformers, com o sinal puro, caracteristicas do
paciente e estatisticas, em negrito se destaca o melhor modelo

o o~
§ ;I El ;'| § § Acuracia '2;122:’;7 Precisao Recall Espec. §§
MCT 8256 | 3 |0.05| 30 | 0.42#0.12 | 0.34+0.09 | 0.39+0.13 | 0.38+0.10 | 0.70+0.05 | 1208
MT CP 8 | 128 3 0.2 60 0.60+0.21 | 0.59+0.22 | 0.65%0.23 0.61+0.24 | 0.81+0.11 | 928
MT CP 8| 256 | 3 | 0.05| 30 | 0.62+0.18 | 0.59+0.19 | 0.63+0.22 | 0.60+0.19 | 0.81:+0.09 | 691
MCT CP 8 | 256 3 | 0.05 30 0.50+0.11 | 0.47+0.12 | 0.62%0.13 0.48+0.10 | 0.74+0.05 | 1426
MT CE 8128 | 3 0.2 60 | 0.54%0.08 | 0.51+0.11 | 0.53#0.18 | 0.57+£0.10 | 0.77x0.04 | 1321
MCT CE 8 | 256 3 | 0.05 30 0.60+0.13 | 0.54+0.15 | 0.55%0.15 0.56+0.13 | 0.79+0.06 | 1453
MT CPE 8| 128 | 3 0.2 60 | 0.50+0.17 | 0.47+0.18 | 0.49+0.18 | 0.51+0.20 | 0.75+0.08 | 1323
MCT CPE 8 | 256 3 | 0.05 30 0.60+0.17 | 0.59+0.19 | 0.64%0.19 0.60+0.19 | 0.80+0.08 | 1257

Ao analisar a Tabela 48, observa-se que o modelo MT CP (N_H = 8,INT_D =
256,N_L = 3,DOUT = 0.05, EPC = 30) apresentou o melhor desempenho, alcangando
acuracia de 62% e um F1 score macro de 0,59, evidenciando a eficacia da
incorporagao das caracteristicas do paciente na identificagdo das etiologias. Os
modelos MCT CPE e MCT CE também obtiveram resultados expressivos, com
acuracia proxima a 0,60, enquanto o modelo MCT isolado apresentou desempenho
inferior, com acuracia de 42%. Esses resultados ressaltam a importancia da
integracéo de informacgdes clinicas para aprimorar a assertividade dos modelos na

classificagao da etiologia do coma.

Na Tabela 49, sdo apresentados os resultados do treinamento da base de
dados utilizando os atributos extraidos do EEG: PCP, FM e Coeréncia. Esses

quantificadores avaliam diferentes caracteristicas do sinal no dominio da frequéncia,
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fornecendo informagdes complementares sobre a atividade cerebral para a

classificagao da etiologia do coma.

Tabela 49 — Resultados do treinamento da base de dados Etiologia do Coma SEM exames
pertencentes ao rotulo outros, usando Transformers, para os atributos PCP, FM e Coeréncia,
em negrito se destaca o melhor modelo

o o~
g ;I El ;| § E Acuracia i;:g?g? Precisdo Recall Espec. gg{

MT CPCP 8| 128 | 3 0.2 60 0.60+0.17 | 0.59+0.16 | 0.69+0.18 | 0.63+0.19 | 0.81+0.08 | 1503
MCT CPCP 8| 256 | 3 |0.05]| 30 0.42+0.16 | 0.34+0.12 | 0.33#0.13 | 0.37+0.13 | 0.70+0.08 | 1708
MCT CPPCP | 8 | 64 3 1005 | 30 0.52+0.19 | 0.43£0.20 | 0.47+0.25 | 0.47+0.18 | 0.75%0.09 | 1590
MCT CPPCP | 8 | 64 3 1005 | 60 0.54+0.17 | 0.46%0.17 | 0.49+0.21 | 0.49+0.15 | 0.76+0.08 | 2600
MCTCPPCP | 8 | 128 | 3 | 0.05 | 30 0.52+0.17 | 0.45+0.16 | 0.47+0.17 | 0.47+0.15 | 0.76+0.08 | 1556
MT CPPCP 8| 128 | 3 0.2 60 0.560.16 | 0.54+0.16 | 0.55+0.15 | 0.58+0.18 | 0.79+0.08 | 1523
MCTCPPCP | 8 | 256 | 3 | 0.05 | 30 0.56+0.27 | 0.51+0.27 | 0.52+0.26 | 0.52+0.27 | 0.78+0.13 | 1800
MCT CFM 8| 64 3 1005 | 30 0.38+0.16 | 0.30£0.13 | 0.31+0.17 | 0.35%#0.13 | 0.68+0.08 | 1557
MT CFM 8| 128 | 3 0.2 60 0.54+0.14 | 0.51+0.14 | 0.56+0.22 | 0.56+0.15 | 0.77+0.07 | 1307
MCT CFM 8| 256 | 3 | 0.05| 30 0.42+0.19 | 0.32+0.16 | 0.30+0.16 | 0.37+0.17 | 0.70+0.10 | 1711
MT CPFM 8| 128 | 3 0.2 60 0.54+0.17 | 0.51+0.19 | 0.53#0.21 | 0.55+0.20 | 0.77+0.08 | 1314
MT CPFM 8| 256 | 3 | 0.05| 30 0.56+0.14 | 0.51+0.16 | 0.52+0.21 | 0.53+0.13 | 0.77+0.07 | 938
MCTCPFM | 8 | 256 | 3 | 0.05 | 30 0.50+0.18 | 0.40+0.14 | 0.45+0.17 | 0.44+0.12 | 0.74+0.08 | 1668
MT CC 8| 128 | 3 0.2 60 0.48+0.12 | 0.44+0.11 | 0.44+0.14 | 0.49+0.13 | 0.74+0.06 | 1152
MCT CC 8| 256 | 3 |0.05| 30 0.50+0.09 | 0.45+0.10 | 0.46+0.13 | 0.48+0.12 | 0.75+0.05 | 1694
MT CPC 8| 128 | 3 0.2 60 0.58+0.12 | 0.58+0.12 | 0.65+0.13 | 0.59+0.11 | 0.80+0.05 | 1149
MT CPCP 8| 256 | 3 |0.05]| 30 0.56+0.10 | 0.50+0.12 | 0.53+0.17 | 0.54+0.14 | 0.78+0.05 | 947
MCT CPC 8| 256 | 3 | 0.05| 30 0.54+0.10 | 0.48+0.10 | 0.51+0.16 | 0.52+0.13 | 0.77+0.06 | 1692

Os resultados da Tabela 49 indicam que os modelos baseados na arquitetura
Transformer (MT) geralmente superam os modelos hibridos (MCT) quando treinados
com os atributos PCP e FM isoladamente ou em combinagdo, com excegao da
Coeréncia. O modelo MT CPCP (N_H = 8,INT_D = 128,N_L = 3,DOUT = 0,2,EPC =
60) obteve o melhor desempenho, alcangando uma acuracia média de 60% e
especificidade de 0,81. Modelos treinados apenas com o atributo FM exibiram os
menores indices de acuracia e F1 score, evidenciando que essa caracteristica isolada

pode ser menos discriminativa para a tarefa.

Os resultados apresentados na Tabela 50 avaliam o desempenho utilizando
sinais puros de EEG das regides frontal, central, occipital, parietal e temporal.
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Tabela 50 - Resultados do treinamento da base de dados Etiologia do Coma SEM exames

pertencentes ao rotulo outros, usando Transformers com Sinal Puro, variando os

hiperparametros do modelo MT para as regides cerebrais: frontal, central, occipital, parietal e
temporal, em negrito se destaca o melhor modelo

° P
E ;I El ;'| § § Acuracia ':;1:2?;;3 Preciséo Recall Espec. gg
MT CEF 4 64 3 0.1 60 0.52+0.13 | 0.50+0.14 | 0.53+0.17 0.55+0.15 | 0.78+0.08 584
MT CEC 3 64 3 0.1 60 0.36£0.14 | 0.23#0.10 | 0.24%0.15 0.31+0.12 | 0.66%0.07 516
MT CEP 3 64 3 0.1 60 0.44+0.08 | 0.29+0.09 | 0.29+0.14 0.37+0.07 | 0.69+0.04 526
MT CEO 3 64 3 0.1 60 0.36+0.10 | 0.21+0.09 | 0.17%0.10 0.30+0.09 | 0.65%0.05 451
MT CET 4 64 3 0.1 60 0.58+0.08 | 0.47+0.07 | 0.50+0.08 0.53+0.04 | 0.79+0.03 596
MCT CEF 3| 128 3 0.2 60 0.56+0.17 | 0.53+0.15 | 0.57%+0.17 0.55+0.16 | 0.79+0.09 | 1991
MT CEF 4 | 128 3 0.2 60 0.58+0.10 | 0.57+0.10 | 0.61%0.12 0.61+0.11 | 0.80+0.05 474
MT CEF 7 | 128 3 0.2 60 0.54+0.14 | 0.51+0.15 | 0.65%0.21 0.58+0.14 | 0.79+0.07 510
MCT CEC 3| 128 3 0.2 60 0.64+0.16 | 0.60+0.16 | 0.67%0.20 0.63+0.16 | 0.82+0.08 | 1961
MT CEC 3| 128 3 0.2 60 0.40+0.06 | 0.22+0.08 | 0.17+0.08 0.33+0.05 | 0.67+0.03 526
MCT CEP 3| 128 3 0.2 60 0.50+0.14 | 0.48+0.15 | 0.52%0.19 0.50+0.16 | 0.75%0.07 | 1936
MT CEP 3| 128 3 0.2 60 0.40+0.06 | 0.21+0.06 | 0.20+0.14 0.33+0.05 | 0.67+0.03 555
MCT CEO 3| 128 3 0.2 60 0.48+0.10 | 0.44+0.08 | 0.47%0.08 0.44+0.09 | 0.74+0.05 | 1932
MT CEO 3| 128 3 0.2 60 0.36+£0.10 | 0.20+0.08 | 0.19+0.15 0.30+0.09 | 0.65+0.05 571
MCT CET 3| 128 3 0.2 60 0.48+0.13 | 0.43+0.12 | 0.45%0.14 0.44+0.13 | 0.74+0.07 | 1946
MT CET 4 | 128 3 0.2 60 0.48+0.08 | 0.42+0.07 | 0.43+0.09 0.48+0.04 | 0.7410.03 568

A analise dos dados da Tabela 50 revela uma variagcdo significativa no

desempenho dos modelos Transformer (MT) e hibridos (MCT) aplicados as diferentes
regides cerebrais. O modelo MCT CEC (N_H = 3,INT_D = 128,N_L = 3,DOUT =

0.2, EPC = 60) obteve o melhor desempenho, com acuracia de 0,64 e especificidade

de 0,82, indicando melhor capacidade discriminativa nessa regido. Modelos aplicados

a regiao frontal (CEF) também mostraram desempenho relativamente elevado, com

acuracia entre 52% e 58%, especialmente quando a dimensao intermediaria foi

aumentada para 128.
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APENDICE O - Resultados do Treinamento Gosto Musical

Os resultados apresentados a seguir referem-se ao treinamento dos modelos

de inteligéncia artificial voltados para a classificagdo do gosto musical.

Para o estudo do gosto musical, o procedimento adotado foi analogo ao
utilizado para o progndstico clinico e a etiologia do coma, empregando as mesmas
arquiteturas. Conforme detalhado na Tabela 51, os modelos, fundamentados nas
arquiteturas descritas no item 5.2 Arquiteturas, foram treinados utilizando sinais
puros de EEG, complementados por caracteristicas clinicas dos voluntarios e

estatisticas descritivas.

Tabela 51 - Resultados do treinamento da base de dados Estimulagdao musical (Favorita e
Desgostada) para o sinal puro, com caracteristicas do paciente e estatisticas, em negrito se
destaca o melhor modelo

Modelo Acuracia I;;L:g:);)e Precisao Recall Espec. 1;2':;;)
MMLP All 0.53+0.09 0.52+0.09 0.53+0.07 | 0.67+0.14 | 0.53+0.09 223
MCL All 0.43+0.08 0.35+0.07 0.24+0.20 | 0.23+0.22 | 0.43+0.08 1413
MMLP CP All 0.29+0.08 0.28+0.09 0.25+0.13 | 0.23+0.12 | 0.29+0.08 143
MCL CP All 0.35+0.06 0.350.06 0.34+0.06 | 0.33+0.09 | 0.35+0.06 1565
MMLP CE All 0.48+0.07 0.46x0.06 0.50+0.12 | 0.30+0.07 | 0.48+0.07 136
MCL CE All 0.41+0.09 0.38+0.07 0.40+0.15 | 0.23+0.06 | 0.41+0.09 1589
MMLP CPE All | 0.30+0.03 0.30+0.03 0.28+0.03 | 0.27+0.06 | 0.30+0.03 149
MCL CPE All 0.36+0.06 0.35+0.06 0.34+0.07 | 0.32+0.12 | 0.36+0.05 1550

Os resultados da Tabela 51 mostram que o modelo MMLP ALL obteve o
melhor desempenho, com F1 score (macro) de 0,52 e especificidade de 53%,
indicando maior capacidade de identificar padrdes neurais sem caracteristicas
adicionais, esse modelo também se destacou pelo elevado valor de recall (0,67),
indicando uma maior sensibilidade na identificacdo correta das classes. Em
comparagao, os modelos baseados em MCL apresentaram desempenho inferior, com
acuracia variando entre 35% e 43%, sugerindo menor capacidade discriminativa,
especialmente quando utilizados em conjunto com atributos especificos (como CP ou
CE). O tempo computacional foi significativamente menor para modelos MMLP (média
de 163 segundos) em comparagdo com MCL (média de 1530 segundos), sugerindo

maior eficiéncia do MMLP na classificagao.
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O treinamento subsequente foi realizado utilizando atributos extraidos do sinal
eletroencefalografico (EEG) por meio do software de processamento, especificamente
a PCP, FM e Coeréncia, que caracterizam diferentes aspectos do sinal no dominio da
frequéncia, na qual a Tabela 52 apresenta os resultados obtidos com essa

configuragao.

Tabela 52 - Resultados do treinamento da base de dados Estimulagdao musical (Favorita e
Desgostada) para o sinal puro, com os atributos PCP, FM e Coeréncia, em negrito se destaca o
melhor modelo

F1 score Tempo

(macro) Precisao Recall Espec. (seg.)

Modelo Acuracia

MCL CPCP All 0.32+0.04 0.31+0.04 0.33+0.04 0.37+0.09 0.32+0.04 1529

MCL CPPCP All | 0.24%0.08 0.23+0.08 0.25+0.06 | 0.27+0.10 0.24+0.08 1497

MCL CFM All 0.43+0.11 0.4310.11 0.4410.10 | 0.43+0.12 | 0.43#0.11 1540

MCL CPFM All 0.30+0.06 0.30+0.06 0.30+£0.06 | 0.30+0.06 0.30+0.06 1772

MCL CC All 0.41+0.09 0.39+0.10 0.39+0.10 0.41+0.09 0.41+0.09 1754

MCL CPC All 0.38+0.11 0.37+£0.11 0.37#0.11 | 0.38%0.11 0.38+0.11 1834

Avaliando a Tabela 52 percebe-se que o modelo MCL CFM All obteve o
melhor desempenho, com F1 score (macro) e especificidade de 43%, evidenciando a
relevancia da frequéncia mediana para identificar padrdes neurais associados a
preferéncias musicais. Enquanto MCL CPPCP All obteve o menor desempenho

(acuracia de 0,24).

Em seguida, realizou-se o treinamento dos modelos utilizando sinais de EEG
provenientes das regides cerebrais frontal, central, occipital, parietal e temporal,
conforme detalhado na Tabela 53. Essa abordagem buscou avaliar o impacto da
andlise regionalizada do sinal EEG na classificacdo de respostas emocionais a

estimulos musicais (favorita vs. desgostada).

Tabela 53 - Resultados do treinamento da base de dados Estimulagdao musical (Favorita e
Desgostada) com caracteristicas do voluntario e as regides cerebrais: frontal, central,
occipital, parietal e temporal, em negrito se destaca o melhor modelo

F1 score Tempo

(macro) Precisao Recall Espec. (seg.)

Modelo Acuracia

MCL CPEF All 0.37+0.02 0.35+0.03 0.31+0.08 | 0.28+0.16 | 0.37+0.02 1478

MCL CPEC All 0.44+0.03 0.4410.04 0.4410.04 | 0.42+0.08 | 0.4410.03 1484

MCL CPEO All 0.26%0.03 0.25+0.04 0.24+0.06 | 0.23+0.08 0.2610.03 1676

MCL CPEP All 0.30+0.05 0.29+0.05 0.30+0.06 | 0.32%#0.11 0.30+0.05 1919
MCL CPET All 0.43+0.04 0.42+0.05 0.41+0.08 | 0.35%+0.13 0.43+0.04 1920
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Os resultados apresentados na Tabela 53 indicam que o modelo MCL CPEC
All obteve o melhor desempenho, com F1 score (macro) e especificidade de 44%, o
que evidencia a importéncia da regido central na identificagdo de padrdes neurais
associados as preferéncias musicais. O modelo baseado nos eletrodos da regiao
temporal (CPET) apresentou resultados préximos, demonstrando também relevancia
dessa area para a tarefa. Em contrapartida, o modelo que utilizou sinais da regido
occipital (CPEQO) obteve o menor desempenho, sugerindo menor contribuicdo dessa

regido para a discriminagéo das respostas neurais a estimulos musicais.



236

APENDICE P - Resultados do Treinamento Gosto Musical segregando a

base de dados

Nesta etapa, foi realizado o treinamento dos modelos com a base de dados
segregada de diferentes formas, com o objetivo de investigar o impacto da divisdo dos
exames de musica gostada e desgostada na performance da classificagdo. Foram

conduzidas quatro segregagodes:

e First Half. utilizando metade dos exames de musica favorita e a outra
metade de musica desgostada de pacientes distintos;

e Other Half: utilizando o conjunto complementar ndo selecionado em First
Half;

e Same Half: empregando apenas metade da base de dados, no qual, os
mesmos exames de musica favorita e desgostada foram utilizados;

e All Group: agrupando exames de musica favorita e desgostada do mesmo

paciente no mesmo conjunto de treino ou validagao.

Essa abordagem foi motivada pela observacdo do APENDICE O -
Resultados do Treinamento Gosto Musical de que a classificagdao binaria entre
gostada e desgostada apresentou desempenho inferior a estratégia mais simples, que
consiste na escolha constante de um unico resultado, sugerindo limitagdes na
generalizagdo dos modelos. Os resultados detalhados desses experimentos estdo

apresentados na Tabela 54, Tabela 55 e Tabela 56.

Tabela 54 - Resultados do treinamento segregando a base de dados Estimulagdao musical
(Favorita e Desgostada) para o sinal puro, com caracteristicas do paciente e estatisticas, em
negrito se destaca o melhor modelo com All Group

Modelo Acuracia F1 score Precisao Recall Espec. Tempo

(macro) (seg.)
MMLP Al 0.63+0.07 0.6210.08 0.62+0.08 | 0.65+0.14 | 0.63+0.08 232

Group

MMIL_ZJ;“'”e 0.67:0.15 | 0.66:0.15 | 0.68+0.18 | 0.63:0.19 | 0.670.15 120
MMI/._/F;Z)(ther 0.7710.11 0.76+0.11 0.82+0.17 | 0.73#0.20 | 0.77+0.11 111
MMLP First Half | 0.84+0.11 0.84+0.11 0.831+0.13 | 0.85%0.15 0.84+0.11 117
MCL All Group | 0.58+0.09 0.49+0.14 0.58+0.35 | 0.52+0.38 | 0.5810.09 1829
MCL Same Half | 0.47+0.04 0.37+0.04 0.23£0.20 | 0.10+0.08 | 0.47+0.04 697
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Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)
MCL Other Half | 0.55+0.04 | 0.43+0.08 | 0.60+0.49 | 0.10+0.08 | 0.55+0.04 882
MCL First Half | 0.58+0.15 | 0.49+0.21 | 0.37+0.33 | 0.53+0.44 | 0.60+0.13 845
MCLCPAIL | 474003 | 0.45:0.04 | 0.47:0.03 | 0.55:0.15 | 0.47£0.03 1745
Group
MCLZZ;ame 0.2240.16 | 0.19+0.15 | 0.14+0.20 | 0.20+0.32 | 0.22+0.16 959
MCL /SZ /J? ther | 572:0.00 | 0.71:008 | 0.75:0.14 | 0.70:0.19 | 0.720.09 0
MCL,faF;fF ISt | 0.86£0.16 | 0.86:0.16 | 0.84%0.18 | 0.89+0.16 | 0.86:0.16 719
MCLCEAI 1 ) 564005 | 0.54£0.07 | 0.65:0.11 | 0.35£0.19 | 0.58£0.05 1723
Group
MCLEEIJ{ame 0424011 | 0.41+0.11 | 0.41+0.12 | 0.43+0.17 | 0.42+0.11 985
MCLISE /J? ther | 073:0.19 | 0.73¢0.20 | 0.74t0.17 | 0.73:0.25 | 0.73:0.19 984
MCLI_ICaElfF ISt | 0734020 | 073:021 | 0724026 | 0.7080.27 | 0.73£0.20 745
MCLCPEAI | ) 524006 | 0.49:0.05 | 0.60£0.20 | 0.53£022 | 0.52+0.06 1746
Group
MCL ilelfsame 0.30+0.09 | 0.28+0.07 | 0.22+#0.13 | 0.20+0.13 | 0.30+0.09 978
McL (ij fOther 0.87+0.09 | 0.86+0.09 | 0.94+0.08 | 0.80+0.19 | 0.87+0.09 985
MCL:‘IZ;F ISt | 0844017 | 0844017 | 0.84%0.17 | 0.85:0.15 | 0.84+0.17 757

Observando os resultados da Tabela 54 percebe-se variagcdes significativas
no desempenho dos modelos em fungdo da estratégia de segregacédo da base de
dados. Fica evidente uma discrepancia marcante entre os grupos Same Half e All
Group, em comparacao com as versoes Other Half e First Half. Por exemplo, enquanto
o modelo MCL CPE Same Half apresentou precisao de apenas 22%, a versao Other
Half alcangou uma precisdo de 94%. Esse contraste sugere que a distribuigdo
assimétrica dos dados entre as particoes pode introduzir viés de seleg¢ao, impactando

diretamente a capacidade de generalizagdo dos modelos.

Os resultados apresentados na Tabela 55 evidenciam, mais uma vez, uma
divergéncia significativa entre as estratégias de segregacao: as configuragcbes Same

Half e All Group apresentaram métricas inferiores em comparagdo com First Half e
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Other Half. I1sso sugere que a inclusao de estimulos musicais provenientes do mesmo
voluntario no mesmo conjunto de dados compromete a capacidade de generalizagao
do modelo, possivelmente devido a vieses intraindividuais presentes nos padrbes
neurais. Vale destacar que, ao utilizar caracteristicas de Coeréncia, o modelo

apresentou um desempenho superior.

Tabela 55 - Resultados do treinamento segregando a base de dados Estimulagdao musical
(Favorita e Desgostada) para o sinal puro, com os atributos PCP, FM e Coeréncia, em negrito
se destaca o melhor modelo All Group

Modelo Acuracia F1 score Preciséo Recall Espec. Tempo
(macro) (seg.)
MCL CPCP AL 1 5 5240.03 | 0514003 | 0.52:0.03 | 0.53:0.11 | 0.52:0.03 | 1699
Group
MCL c:s;&vm ®| 0482008 | 047:0.07 | 0.48:0.08 | 053019 | 0.48:0.08 | 976
Mct C:z;mhe’ 0.67:0.20 | 0.66:0.21 | 0.71#0.25 | 0.6040.27 | 0.6740.20 | 965
Mct %PGC; st | 0.84:0.14 | 0.84:0.14 | 0.84:0.16 | 0.85:015 | 0.84:0.13 | 708
MCLCPPCP AT | 5 5940.05 | 0.59:0.05 | 0.60:0.06 | 0.57¢0.14 | 0.59+0.05 | 1725
Group
MCLCPPCP 1 5375013 | 0341012 | 0.20:019 | 033:030 | 0.37:013 | 971
Same Half
MELCPPCP 1 070£007 | 0.70:0.07 | 0.69:0.07 | 0.73t0.08 | 0.70:0.07 | 963
Other Half
MCL C;Z;P At 0.89:0.18 | 0.80:018 | 087:0.19 | 0.88:024 | 089:0.18 | 728
MCLCEMAI | 0 561000 | 056009 | 0.56:010 | 0.52:0.10 | 056009 | 1717
Group
MCL C:';;' fs"me 0.43:0.08 | 0.42¢0.08 | 0.43+0.09 | 0.43:0.08 | 0.43+0.08 | 905
MCL C:/g//' fOthe’ 0.72¢0.17 | 0.700.18 | 0.74#0.17 | 0.72:017 | 0.72¢0.17 | 911
MCL CHZIZI‘ FISt | 0821013 | 082£0.13 | 0.84:0.12 | 0.82:012 | 0.82:012 | 871
MCLGCrZLFIZ" Al 0.56:0.09 | 0.56£0.09 | 0.56:0.09 | 0.56:0.09 | 0.56:0.09 | 1660
MCLCPFM 1 0235012 | 023012 | 0.23:013 | 023:0.12 | 0.23:012 | 89
Same Half
MCLCPFM 1 0624013 | 0.612013 | 0.624013 | 0.62£0.13 | 0.62¢013 | 901
Other Half
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Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)
MCL C:;,'}A First | 0.84+0.16 | 0.8410.16 | 0.86:0.16 | 0.84:0.16 | 0.84:0.16 838
MCLCCAIl 1 60008 | 0.60£0.08 | 0.60:0.08 | 0.60£0.08 | 0.60+0.08 1760
Group
MCLISE;G”’E 0.42+0.11 | 0.41+0.11 | 0.42+#0.11 | 0.42+0.11 | 0.42+0.11 887
McL ISZ /J? ther | 587:011 | 0.86:0.13 | 0.9120.07 | 0.87:0.11 | 0.87+0.11 908
MCL:GCI fF' St 1 0.8410.13 | 0.84:013 | 0.87+0.11 | 0.85:0.12 | 0.85:0.12 887
MCLCPCAII | (54011 | 0.64£0.11 | 0.66£0.10 | 0.62¢0.19 | 0.65:0.11 1616
Group
MCL i/PaC/fS ame 1 035+0.11 | 0.35+0.11 | 0.35+0.11 | 0.35+0.11 | 0.35+0.11 910
MCL C:acl fomer 0.87+0.11 | 0.86+0.13 | 0.91+0.07 | 0.87+0.11 | 0.87+0.11 906
MCL EZ; First | 0826019 | 082019 | 0.84:0.17 | 0.83:0.18 | 0.83:0.18 845

A partir dos resultados da Tabela 56, fica ainda mais evidente que as

estratégias de segregacao Same Half e All Group apresentam desempenho inferior

em comparacgao com as segregacoes First Half e Other Half. Contudo, vale ressaltar

que as regides centrais (CPEC) e temporais (CPET), na configuragao All Group, se

destacaram ao apresentar desempenho superior em relagdo as demais regides

analisadas.

Tabela 56 - Resultados do treinamento segregando a base de dados Estimulagdao musical
(Favorita e Desgostada) com caracteristicas do voluntario e as regides cerebrais: frontal,
central, occipital, parietal e temporal, em negrito se destaca o melhor modelo para All Group

Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)
MCES:;: Al 1 050000 | 0.490.01 | 0.50£0.00 | 0.430.14 | 0.50£0.00 1714
MCL CHPE;S"me 0.30+0.16 | 0.28+0.15 | 0.28+0.19 | 0.30+0.22 | 0.30+0.16 957
MCL C/_P/E;Othe’ 0.82+0.12 | 0.82+0.12 | 0.82+#0.14 | 0.83+0.15 | 0.82+0.12 906
MCL (/:_/F;E/Jf First | 0895013 | 0.89:0.14 | 0.86:0.16 | 0.96£0.08 | 0.89+0.13 693
MCLCPECAII | 631003 | 0.61£0.03 | 0.620.04 | 0.60£0.10 | 0.62+0.03 1560

Group
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Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)
MCL C;E;Same 0.40+0.06 | 0.38+0.05 | 0.39+0.08 | 0.33+0.15 | 0.40+0.06 954
MCL C;E;Othe’ 0.75+0.09 | 0.74+0.10 | 0.75#0.06 | 0.73#0.23 | 0.75+0.09 907
MCL (l:jaEl; First | 584:020 | 0.84:021 | 085:022 | 0.85:0.15 | 0.840.20 690
MCLCPEO AL | g e31011 | 052¢012 | 0574011 | 0.52¢0.11 | 0.53+0.11 1674
Group
MCL C:E;Same 0.2740.10 | 0.25+0.10 | 0.16#0.15 | 0.13+0.13 | 0.27+0.10 926
MCL CPEO 0.78+0.09 | 0.77+0.10 | 0.93+0.09 | 0.63+0.19 | 0.78+0.09 921
Other Half
MCL fj}? First 10795017 | 079017 | 0774020 | 0.81:024 | 0.79+0.17 885
MCLCPET Al 1 624006 | 0.60:0.06 | 0.68£0.09 | 0.48£0.13 | 0.62+0.06 1732
Group
MCL C;E;f”me 0.45+0.13 | 0.44+0.13 | 0.45+0.17 | 0.40+0.13 | 0.45+0.13 933
MCL C;E;Othe' 0.67+0.05 | 0.66+0.06 | 0.67+0.03 | 0.67+0.18 | 0.67+0.05 927
MCL EZE/; First | 0794017 | 0.78:017 | 0.76£0.20 | 0.81£0.22 | 0.79+0.17 862
MCLCPEP Al | ) c74006 | 0.56£0.05 | 0.58:0.08 | 0.58+0.12 | 0.57+0.06 1750
Group
MCL CZE? ame | 933+0.08 | 0.33+0.08 | 0.30+0.10 | 0.27+0.13 | 0.33+0.08 923
MCL CZE;O”’” 0.75+0.12 | 0.74+0.12 | 0.77+0.15 | 0.77+0.23 | 0.75+0.12 922
MCL iIPaE/]I: First | 082+011 | 082012 | 0.83:0.11 | 0.78:023 | 0.82:0.12 858

Buscando aprimorar os resultados da classificacao de respostas emocionais
a estimulos musicais (favorita vs. desgostada), realizou-se alteragées nas arquiteturas
de inteligéncia artificial, incluindo o uso de TransformerEncoder, Common Spatial
Patterns (CSP) e a aplicagao do Multi-Layer Perceptron (MLP) restrito a bandas de
frequéncia especificas do sinal EEG. Essas modificagdes visam explorar diferentes
aspectos do sinal de EEG para melhorar a capacidade discriminativa dos modelos na
classificagdo das respostas a estimulos musicais. Os resultados obtidos com essas

novas arquiteturas sao apresentados na Tabela 57.
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Tabela 57 - Resultados do treinamento segregando a base de dados Estimulagdao musical
(Favorita e Desgostada) com outras arquiteturas, em negrito se destaca o melhor modelo para

All Group
Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)
MCLT CE All Group 0.55+0.10 | 0.50+0.14 | 0.50+0.18 | 0.55+0.10 | 0.55+0.10 533
MCL CCSP4 All Group 0.49+£0.02 | 0.36+0.05 | 0.29+0.08 | 0.49+0.02 | 0.49+0.02 1465
MCL CCSP4 Same Half | 0.38+0.13 | 0.31+0.10 | 0.33%0.22 | 0.38+£0.13 | 0.38+0.13 989
MCL CCSP4 Other Half 0.85+0.11 | 0.84+0.13 | 0.89+0.07 | 0.85£0.11 | 0.85+0.11 891
MCL CCSP4 First Half 0.81+0.20 | 0.81+0.20 | 0.82+0.20 | 0.81+0.20 | 0.81+0.20 849
MCL CCSP10 All Group 0.52+0.07 | 0.47+0.10 | 0.46+0.13 | 0.52+£0.07 | 0.52+0.07 1704
MCL CCSP10 Same Half | 0.4310.23 | 0.3740.23 | 0.35+0.26 | 0.43+0.23 | 0.4340.23 809
MCL CCSP10 Other Half | 0.87+0.14 | 0.86+0.14 | 0.89+0.13 | 0.87+0.14 | 0.87+0.14 904
MCL CCSP10 First Half 0.84+0.13 | 0.84+0.13 | 0.85+0.13 | 0.84+0.13 | 0.84+0.13 850
MCL CCSP20 A/l Group 0.55+0.07 | 0.47+0.13 | 0.50+0.14 | 0.55+0.07 | 0.55+0.07 1851
MCL CCSP20 Same Half | 0.37£0.20 | 0.35+0.20 | 0.35+0.22 | 0.37+0.20 | 0.37+0.20 747
MCL CCSP20 Other Half | 0.85+0.10 | 0.85+0.10 | 0.86+0.10 | 0.85+0.10 | 0.85+0.10 896
MCL CCSP20 First Half 0.88+0.14 | 0.87+0.14 | 0.89+0.13 | 0.88+0.13 | 0.88+0.13 861
MMLP CPCP All Group 0.49+0.08 | 0.49+0.08 | 0.49+0.08 | 0.52+0.10 | 0.49+0.08 808
MMLP CPCP Alfa All 0.50+£0.05 | 0.50+0.05 | 0.50+0.06 | 0.47+0.09 | 0.50+0.05 380
Group
MMLP CPCP Beta All 0.50+0.10 | 0.48+0.09 | 0.47+0.10 | 0.53+0.30 | 0.50+0.10 148
Group
MMLP CPCP Gama All | c310.06 | 0.520.05 | 0.520.04 | 0.630.15 | 0.53£0.06 | 138
Group
MMLP CPCP Super 1 4 5540.07 | 0.54+0.07 | 0.5420.05 | 0.67+0.14 | 0.55£0.07 | 148
Gama All Group
MMLP CPCP Teta All 0.54+0.03 | 0.54+0.03 | 0.54+0.02 | 0.60+0.06 | 0.54+0.03 135
Group
MMLP CPCP Delta All 0.52+0.08 | 0.52+0.08 | 0.51+0.07 | 0.55+0.11 | 0.52+0.08 134
Group
MMLP CPCP DeltaTeta | ) oo, 07 | 0.5420.07 | 0.55£0.06 | 0.650.12 | 0.55£0.07 | 136
Super Gama All Group
MCL CPC All Group
Aumento do Dropout
para0.5nascamadas | ca.0 09 | 0.67+0.09 | 0.67:0.08 | 0.70£0.16 | 0.68£0.09 | 1577
que usam 0.2
(kernel_regularizer=reg
ularizers.12(1e-4))
MCT CPC All Group
usando 30 segmentos 0.60+0.03 | 0.59+0.04 | 0.61+0.03 | 0.60+£0.03 | 0.60+0.03 4914
aoinvés de 10
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Modelo Acuracia F1 score Precisao Recall Espec. Tempo
(macro) (seg.)

MCT CPC All Group
usando 30 segmentos 0.58+0.05 | 0.57+0.05 | 0.59+0.04 | 0.58+0.05 | 0.58+0.05 7348
ao invés de 10

MCL CPC All Group
usando 30 segmentos 0.63+0.04 | 0.63+0.04 | 0.64+0.04 | 0.631+0.04 | 0.63+0.04 6236
aoinves de 10

MCL CE T3 T4 Pz 02 0z 0.64+£0.11 | 0.63+0.12 | 0.67+0.11 | 0.57£0.19 | 0.64+0.11 1663

All Group
MCL CP T3 T4 Pz 02 Oz 0.60+0.07 | 0.60+0.07 | 0.60+0.09 | 0.62+0.13 | 0.60+0.07 1502
All Group
MCL CPE T3 T4 Pz 02 0.6310.074 | 0.62+0.04 | 0.65%£0.06 | 0.57+0.14 | 0.63%£0.04 1632
Oz All Group

Os resultados apresentados na Tabela 57 evidenciam que as versdes dos
modelos com maior numero de filtros CSP tendem a apresentar métricas superiores,
refletindo uma melhor extracdo das caracteristicas espaciais relevantes do sinal EEG.
Embora os modelos baseados em MMLP tenham exibido desempenho mais modesto,
eles mostraram resultados consistentes ao longo de diferentes bandas de frequéncia,
com acuracias na faixa de 50% a 55%, sugerindo que a segmentagdo espectral
oferece informagcbes complementares, porém insuficientes quando utilizadas

isoladamente para a tarefa.

Além disso, observou-se que o ajuste de hiperparametros, como o aumento
do dropout e alteragdo do kernel _regularizer no modelo MCL CPC All Group,
promoveu uma melhora significativa no desempenho, alcangando acuracia de 68%, o
que indica que estratégias de regularizagédo sao interessantes para evitar overfitting e
aprimorar a capacidade de generalizacdo dos modelos. Vale destacar ainda que a
utilizagao exclusiva dos eletrodos com maior relevancia para a distingdo entre musica
favorita e desgostada, conforme identificado na secéo 4.6.2.3 Anadlise detalhada
quando diferentes estimulos musicais sao comparados, resultou em uma melhora
significativa na performance do modelo, reforgando a importancia da selecao criteriosa

dos eletrodos para otimizar a classificagao.
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APENDICE Q - Resultados do Treinamento Gosto Musical usando

Tranformer

Com o objetivo de aprimorar o desempenho dos modelos, foram realizados
experimentos ajustando os hiperparametros das arquiteturas baseadas em
transformers. Essa etapa buscou identificar configuragcdes que potencializassem a
capacidade de discriminagdo dos modelos na classificagado das respostas neurais a
estimulos musicais. Os resultados obtidos a partir dessas variagbes encontram-se
detalhados na Tabela 58. Esta analise foi realizada apenas com a segregacao Same

Half, pois é a configuragdo com menor desempenho.

Tabela 58 - Resultados do treinamento da base de dados Estimulagdao musical (Favorita e
Desgostada) usando arquitetura com transformer, para o sinal puro, com caracteristicas do
paciente e estatisticas, em negrito se destaca o melhor modelo

P F1 score . Temp
Mod. N_H [ INT_D | N_L | DOUT | EPC | Acuracia (macro) Precisao Recall Espec. o
(seg.)

MCT

S;::ve 4 256 1 0.1 30 | 0.38+0.15 | 0.35+0.14 | 0.38+0.15 | 0.40+0.29 | 0.38+0.15 730
Half

idem 4 128 1 0.1 30 0.30+0.14 | 0.2940.13 | 0.30+0.12 | 0.27+0.08 | 0.30+0.14 727
idem 4 64 1 0.1 30 0.32+0.13 | 0.27+0.10 | 0.22+0.13 | 0.20+0.13 | 0.32+0.13 735
idem 4 32 1 0.1 30 | 0.40+0.16 | 0.37+0.16 | 0.34+0.25 | 0.30+0.19 | 0.40+0.16 707
idem 4 32 1 0.2 30 0.35+0.13 | 0.32+0.13 | 0.25+0.22 | 0.13+0.13 | 0.35+0.13 682
idem 4 32 1 0.3 30 | 0.32+0.10 | 0.2940.09 | 0.23+0.13 | 0.17+0.11 | 0.32+0.10 718
idem 6 256 1 0.1 30 0.33+0.11 | 0.30+0.09 | 0.25+0.17 | 0.17+0.11 | 0.33+0.11 807
idem 6 128 1 0.1 30 0.33+0.05 | 0.31+0.07 | 0.26+0.14 | 0.23+0.17 | 0.33+0.05 798
idem 6 128 1 0.2 30 0.27+0.12 | 0.24+0.11 | 0.16+0.15 | 0.13+0.13 | 0.27+0.12 762
idem 6 128 1 0.3 30 0.37+0.10 | 0.34+0.11 | 0.29+0.18 | 0.23+0.17 | 0.37+0.10 777
idem 6 64 1 0.1 30 0.27+0.11 | 0.24+0.11 | 0.15+0.15 | 0.13+0.13 | 0.27+0.11 791
idem 6 32 1 0.1 30 0.3240.14 | 0.2940.13 | 0.27+0.17 | 0.17+0.11 | 0.32+0.14 792
idem 8 256 1 0.1 30 | 0.33+0.14 | 0.31+0.15 | 0.28+0.19 | 0.27+0.17 | 0.33+0.14 879
idem 8 128 1 0.1 30 0.2840.04 | 0.27+0.05 | 0.26+0.13 | 0.30+0.16 | 0.28+0.04 868
idem 8 64 1 0.1 30 | 0.32+0.10 | 0.27+0.09 | 0.14+0.18 | 0.13+0.19 | 0.32+0.10 843
idem 8 64 1 0.2 30 0.35+0.19 | 0.33+0.20 | 0.26+0.24 | 0.27+0.31 | 0.35+0.19 860
idem 8 64 1 0.3 30 0.42+0.14 | 0.41%0.14 | 0.43%0.16 | 0.37%0.07 | 0.42+0.14 846
idem 8 32 1 0.1 30 0.35+0.11 | 0.33+0.12 | 0.304+0.17 | 0.33+0.21 | 0.35+0.11 847
idem 4 256 1 0.1 30 | 0.38+0.15 | 0.35+0.14 | 0.38+0.15 | 0.40+0.29 | 0.38+0.15 730
idem 4 128 1 0.1 30 0.30+0.14 | 0.2940.13 | 0.30+0.12 | 0.27+0.08 | 0.30+0.14 727
idem 4 64 1 0.1 30 0.32+0.13 | 0.27+0.10 | 0.22+0.13 | 0.204+0.13 | 0.32+0.13 735
idem 4 32 1 0.1 30 0.40+0.16 | 0.37+0.16 | 0.34+0.25 | 0.30+0.19 | 0.40+0.16 707
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F1 score Temp

Mod. N_H [ INT_D | N_L | DOUT | EPC | Acuracia Precisao Recall Espec. o
(macro)

(seg.)

idem 4 32 1 0.2 30 0.35+0.13 | 0.32+0.13 | 0.25+0.22 | 0.13+0.13 | 0.35+0.13 682

A analise dos resultados apresentados na Tabela 58 destaca um desempenho
relativamente modesto dos modelos avaliados, com acuracia e F1 score (macro)
variando na faixa de aproximadamente 24% a 42%, refletindo o desafio inerente da
tarefa. Observa-se que o modelo com a melhor performance, identificado como MCT
CP Same Half com N_H = 8,INT_D = 64,N_L = 1 e DOUT = 0.3 atingiu um F1 score
de 41% e acuracia de 42%. Note-se que a variagdo nos hiperparametros, como o
numero de cabecas de atencao (N_H) e dimensdao da camada intermediaria do
TransformerEncoder (INT_D) e taxa de dropout (DOUT), apresenta impacto claro nos
resultados, indicando a sensibilidade desse modelo a tais ajustes. Além disso, o tempo
de treinamento, apesar de relativamente estavel na faixa de 682 a 879 segundos, n&o
parece correlacionar diretamente com a melhora do desempenho, sugerindo que
otimizacdes no ajuste dos hiperparametros podem ser mais efetivas para ganhos
preditivos do que o simples aumento do tempo computacional. Estes resultados
apontam para a necessidade de abordagens mais robustas e potencialmente novas

arquiteturas para melhorar a classificacao nesta base de dados complexa.
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