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RESUMO

A modelagem do crescimento ¢ da produgdo florestal ¢ fundamental para o
planejamento e manejo sustentavel de florestas plantadas. O modelo de Clutter, amplamente
utilizado no Brasil, baseia-se exclusivamente em variaveis dendrométricas convencionais
(idade, area basal e indice de sitio), ndo considerando fatores fisioldgicos como a capacidade
fotossintética das plantas. Assim este estudo teve como objetivo avaliar a incorporacao de
variaveis proxy de capacidade fotossintética, na modelagem do crescimento e produgdo
florestal. A pesquisa foi conduzida em plantios de eucalipto na mesorregido do Vale do Rio
Doce, Minas Gerais, utilizando dados de inventario florestal continuo (2013-2019) fornecidos
pela empresa CENIBRA. Foram extraidos valores de reflectdncia de imagens Landsat 8 sem
cobertura de nuvens, calculando-se oito indices espectrais (NDVI, GNDVI, SAVI, SR, NBRI,
RVI, DVI, EVI) e oito indices de textura baseados na Matriz de Co-ocorréncia de Niveis de
Cinza (Energia, Entropia, Correlacdo, IDM, Inércia, CS, CP, HC). Cinco algoritmos de
aprendizado de maquina foram testados: Flroestas Aleatdrias (RF), Maquina de Vetores Suporte
(SVM), Aumento de Gradiente Extremo (XGBoost), Redes Neurais Artificiais (RNA) e K-
Vizinhos Proximos (KNN). A validacao foi realizada através de validagdo cruzada com 5 folds,
utilizando métricas de acurdcia REMQ para selecionar o melhor modelo. Os resultados
demonstraram que o modelo de Clutter apresentou elevada precisdo, com RMSE% inferior a
10% para volume, R? superior a 0,93 e r = 0,97. A incorporagdo de indices espectrais e texturais
no modelo de Clutter promoveu melhorias modestas, reduzindo o RMSE% de 8,51% para
8,46% com os indices SR e NBRI. Entretanto, os algoritmos de aprendizado de maquina,
particularmente o SVM, demonstraram melhor capacidade de incorporar essas variaveis,
resultando em ganhos de acuracia de até 0,7% em relagdo ao modelo tradicional. Os indices
SR, NBRI e HC destacaram-se como os melhores preditores. Conclui-se que a inclusido de
variaveis de sensoriamento remoto pode aprimorar discretamente a capacidade preditiva dos
modelos tradicionais, sendo os algoritmos de aprendizado de maquina, particularmente o SVM,
demonstraram melhor capacidade de incorporar essas variaveis, indicando um caminho

promissor para o aperfeicoamento dos modelos de crescimento e produgdo florestal.

Palavras-chaves: Manejo florestal, sensoriamento remoto, Clutter, aprendizado de

maquina



ABSTRACT

Forest growth and yield modeling is fundamental for sustainable planning and
management of planted forests. The Clutter model, widely used in Brazil, relies exclusively on
conventional dendrometric variables (age, basal area, and site index), without considering
physiological factors such as photosynthetic capacity. This study aimed to evaluate the
incorporation of proxy variables for photosynthetic capacity, derived from remote sensing, into
forest growth models, comparing the performance of the traditional Clutter model, its modified
variant with spectral and textural indices, and machine learning algorithms. The research was
conducted in commercial eucalyptus plantations in the Vale do Rio Doce region, Minas Gerais,
using continuous forest inventory data (2013-2019) provided by CENIBRA. Reflectance values
were extracted from cloud-free Landsat 8 images, calculating eight spectral indices (NDVI,
GNDVI, SAVI, SR, NBRI, RVI, DVI, EVI) and eight texture indices based on the Gray Level
Co-occurrence Matrix (Energy, Entropy, Correlation, IDM, Inertia, CS, CP, HC). Five machine
learning algorithms were tested: Random Forest (RF), Support Vector Machine (SVM),
Extreme Gradient Boosting (XGBoost), Artificial Neural Networks (ANN), and K-Nearest
Neighbors (KNN). Validation was performed through 5-fold cross-validation, using RMSE,
RMSE%, Pearson correlation (r), R?, and BIAS% metrics. Results demonstrated that the
traditional Clutter model exhibited high accuracy, with RMSE% below 10% for volume, R?
greater than 0.93, and r=0.97. The incorporation of spectral and textural indices into the Clutter
model promoted modest improvements, reducing RMSE% from 8.51% to 8.46% with SR and
NBRI indices. However, machine learning algorithms, particularly SVM, demonstrated
superior capability in incorporating these variables, resulting in accuracy gains of up to 0.7%
compared to the traditional model. The SR, NBRI, and HC indices stood out as the best
predictors. It is concluded that the inclusion of remote sensing variables can discretely enhance
the predictive capacity of traditional models, with machine learning algorithms being more
efficient in incorporating these variables, indicating a promising path for improving forest

growth and yield models.

Keywords: Forest management, remote sensing, Clutter, machine learning
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INTRODUCAO

O setor florestal brasileiro ocupa uma posi¢ao de destaque no cenario mundial, com
cerca de 10 milhdes de hectares de florestas plantadas. Aproximadamente 75% dessa area ¢
composta por plantagdes de eucalipto, enquanto os 25% restantes sdo distribuidos entre espécies
como Pinus spp., seringueira (Hevea brasiliensis), acacia (Acacia mangium), teca (Tectona
grandis) e parica (Schizolobium amazonicum) (IBA, 2022). A concentracio geografica dos
plantios de eucalipto evidencia a importancia econdmica desse cultivo, com 44% da area total
localizada na regido Sudeste, onde o estado de Minas Gerais se destaca como responsavel por
63% da produgao regional. As demais regides apresentam a seguinte distribui¢do: Centro-Oeste

(20%), Sul (18%), Nordeste (13%) e Norte (5%) (IBA, 2022).

A relevancia socioecondmica do setor ¢ incontestavel. Em 2023, o Brasil registrou
saldo positivo de 1.483.598 empregos formais, enquanto a silvicultura gerou 33 mil novos
postos de trabalho, acumulando 2,69 milhdes de empregos diretos e indiretos, sendo 690 mil
empregos diretos. Além disso, o setor contribuiu significativamente para a economia nacional,
gerando R$ 24,3 bilhdes em tributos federais e estaduais no mesmo ano (IBA, 2022). Para além
do aspecto econdmico, as florestas plantadas desempenham multiplas fungdes ecossistémicas,
incluindo sequestro de carbono, protecdo do solo, conservagao da biodiversidade e regulacao

do ciclo hidrolégico (Sanquetta et al., 2018).

O eucalipto, denominacdo atribuida ao conjunto de espécies e hibridos dos géneros
Eucalyptus, Angophora e Corymbia, destaca-se no setor florestal brasileiro em razdo de suas
elevadas taxas de crescimento, ampla versatilidade de uso e notavel capacidade de adaptagdo a
distintas condig¢des edafoclimaticas. Dentre estes trés géneros, sao cultivados em larga escala
pelo setor florestal o género Eucalyptus e Corymbia. Dada relevancia econdmica e ambiental,
plantio de eucalipto tém sido intensamente estudados em diversos aspectos como, por exemplo,
sobre ciclagem de nutrientes, potencial energético, crescimento e producao florestal (Fiorentin
et al., 2015), balango de carbono (Baesso et al., 2010), dindmica da evapotranspiracdo e

segurancga hidrica (Brasil, 2024), dentre outros.

Diante desse contexto, o manejo eficiente das florestas plantadas depende de
estimativas confidveis sobre o estoque futuro de madeira produzida por estes povoamentos.
Essas estimativas fornecem subsidios essenciais para analises econdmicas e tomadas de decisdao

em diferentes escalas temporais e espaciais (Figueiredo et al., 2014; Melo et al., 2017). Como
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destacam Campos & Leite (2006), o sucesso do manejo florestal esta intrinsecamente associado

a capacidade de projetar cendrios futuros de producao com elevado grau de confiabilidade.

Nesse cendrio, os modelos matematicos de crescimento e producdo florestal sdo
ferramentas indispensaveis para a gestao florestal. Entre os diversos modelos desenvolvidos ao
longo das ultimas décadas, o modelo de Clutter (1963) destaca-se como um dos mais
amplamente utilizados para a prognose da produtividade madeireira de floresta plantadas no
Brasil. Em sua formulac@o original, esse modelo utiliza exclusivamente varidveis obtidas a

partir do inventario florestal, como idade, area basal e indice de sitio.

O modelo de Clutter tem demonstrado desempenho consistente e satisfatorio em
diversos estudos aplicados a florestas de eucalipto no Brasil. Campos & Leite (2006) reportam
que o modelo apresenta coeficientes de determinagao (R?) superiores a 0,90 para projecao de
area basal e 0,85 para volume, com erros percentuais geralmente inferiores a 10% em plantios
comerciais bem manejados. Scolforo et al. (2008) avaliaram o modelo de Clutter em
povoamentos de Eucalyptus grandis em Minas Gerais, obtendo R? de 0,94 para area basal e
0,91 para volume, com erro padrao da estimativa de 8,7% e 11,3%, respectivamente. Dias et al.
(2005) constataram que o modelo apresentou boa precisdo na estimativa de volume para

Eucalyptus spp., com erro padrao residual de 9,2% e distribuigdo homogénea dos residuos.

Apesar de seu 6timo desempenho, pesquisadores t€ém buscado alternativas para aprimorar os
modelos de crescimento e producdo florestal. Leite et al. (2011) desenvolveram uma
modificagdo incorporando a variavel area basal remanescente apos desbaste, ampliando a
aplicabilidade do modelo para povoamentos submetidos a diferentes intensidades de desbaste.
Silva et al. (2016) propuseram a inclusdo de varidveis climaticas (precipitacdo e temperatura)
no modelo de Clutter para eucalipto, obtendo reducao de 12% no erro padrdo das estimativas
em comparagdo com o modelo original. Téo et al. (2011) sugeriram modificagdes para incluir
o efeito de geadas em plantios de Pinus taeda, através da inser¢ao de variaveis indicadoras de
ocorréncia de danos. Parte deste aprimoramento tem sido no sentido de incorporar variaveis
provenientes de sensoriamento remoto. Pereira et al. (2016) demonstraram que a insercdo de
uma variavel espacial no modelo de Clutter pode melhorar o desempenho da predicao de

volume em até 6,57% quando incorporada a equacdo da area basal.

Uma limitagdo fundamental dos modelos tradicionais ¢ nao considerar fatores
fisiologicos que impactam o crescimento florestal. Por exemplo, a incorporacdo de variaveis
que reflitam o vigor da copa e sua consequente capacidade fotossintética pode aprimorar as
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estimativas. Como o modelo de Clutter ¢ um modelo de proje¢do, que utiliza o estado atual do
povoamento para estimar uma condicdo futura, varidveis que representem a capacidade
fotossintética das plantas no momento atual podem, em principio, atuar como bons preditores
adicionais. O crescimento das arvores esta intrinsecamente ligado a capacidade fotossintética,
sendo a folha a estrutura responsavel pela captacdo da radiagdo solar e sua conversao em
fotoassimilados que constituem a biomassa (Binkley et al., 2003; Coops, 2015). Esta variavel
fisiologica crucial ndo ¢ contemplada na formulagdo tradicional do modelo de Clutter,

representando uma lacuna significativa na modelagem do crescimento florestal.

De forma complementar, indices espectrais derivados do sensoriamento remoto, como
o NDVI (Normalized Difference Vegetation Index), t€m se mostrado promissores por sua
correlacdo com parametros biofisicos das florestas, incluindo biomassa, area foliar e vigor
vegetativo (Viana et al., 2016). A utilizagdo de indices de vegetagdo como a Razao Simples
(SR) e o Soil-Adjusted Vegetation Index (SAVI) tem demonstrado eficdcia nas estimativas de
volume de madeira e biomassa, com erros-padrao em torno de 12,34% em areas de cerradao,
conforme relatado por Miguel et al. (2015). Os avancos dos sistemas orbitais de observagao da
Terra tém possibilitado a aquisicdo de informacdes relacionadas ao vigor vegetativo em grandes

areas, com alta frequéncia temporal e relativamente baixo custo.

Além dos indices espectrais tradicionais, uma nova dimensdo de informacdo vem
ganhando destaque na comunidade cientifica: os indices de textura derivados de sensores
opticos. Estes indices capturam a variabilidade espacial dos valores de pixels em uma imagem,
fornecendo informagdes complementares sobre a estrutura do dossel florestal que ndo sdo
capturadas pelos indices espectrais convencionais. A textura da imagem pode revelar aspectos
da heterogeneidade estrutural das florestas, relacionando-se diretamente com caracteristicas
como densidade do povoamento, estrutura do dossel e, consequentemente, com a biomassa
florestal. Estudos tém demonstrado que modelos incorporando métricas de textura apresentam
correlagdes superiores a 0,86 com biomassa observada, superando significativamente

abordagens baseadas apenas em variaveis espectrais (Kelsey & Neff, 2014).

Além das propostas de modificagdo dos modelos tradicionais fundamentadas em
regressoes lineares e nao lineares, observa-se uma evolugdo significativa nas abordagens
analiticas disponiveis. Os modelos de aprendizado de maquina (AM) surgem como alternativas
promissoras por sua capacidade de identificar padrdes complexos entre varidveis, sem a

necessidade de assumir relagdes funcionais previamente definidas (Brink et al., 2016). Esta
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caracteristica ¢ muito pertinente para a incorporacao de varidveis de sensoriamento remoto a
modelos de crescimento e produgdo. A relagdo entre varidveis espectrais e atributos
dendrométricos nem sempre € linear, demandando abordagens mais flexiveis (Santos et al.,
2023). Portanto, a integracao dessas técnicas avancadas com varidveis de sensoriamento remoto

representa uma fronteira de inova¢do na modelagem florestal.

Estudos recentes tém demonstrado que a incorporacdo de variaveis espectrais em
modelos de crescimento tradicionais pode resultar em melhorias significativas na acuracia das
estimativas. Da mesma forma, a aplicacao de algoritmos como Florestas Aleatérias, Maquina
de Vetores Suporte e Redes Neurais Artificiais, combinados com parametros do modelo de
Clutter e variaveis espectrais, tem mostrado resultados promissores na melhoria da acuracia das

estimativas de producao florestal (Araujo et al., 2023).

Diante desse cenario, este estudo parte da hipotese de que a incorporacgdo de variaveis
espectrais, representativas da condi¢ao fisioldgica e da area foliar das arvores, pode aprimorar
significativamente a acuracia da prognose volumétrica em relagdo aos modelos convencionais
e aos baseados exclusivamente em aprendizado de maquina. Dois sdo os objetivos principais
deste trabalho: a) avaliar a incorporacdo de varidveis espectrais na estrutura tradicional do
modelo de Clutter e b) desenvolver e avaliar um modelo que integre as varidveis preditoras do
modelo de Clutter com informagdes derivadas de sensoriamento remoto utilizando técnicas de

aprendizado de maquina para capturar relacdes nao-lineares entre as variaveis.

REFERENCIAL TEORICO

1.1 Crescimento de florestas plantadas

O crescimento florestal pode ser definido como o incremento progressivo de uma
arvore ou povoamento em dimensdes como altura, diametro, area basal e volume ao longo do
tempo (Pretzsch, 2009). Trata-se de um processo dindmico que resulta da interagdo complexa
entre fatores genéticos e ambientais, mediados por processos fisiologicos fundamentais, como
fotossintese, respiracao, absorcao de agua e nutrientes, € alocagdo de carbono (Landsberg &

Sands, 2011).

A base do crescimento vegetal estd na fotossintese, processo pelo qual as plantas
utilizam energia solar para converter didxido de carbono (CO:) e dgua em carboidratos,

liberando oxigénio como subproduto. A produtividade primaria bruta (PPB) representa a taxa
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total de assimilagdo de carbono pela vegetagdo, enquanto a produtividade primaria liquida
(PPL) reflete a quantidade de carbono efetivamente incorporada na biomassa apos descontar os
gastos com respiragdo (Larcher, 2003). No contexto florestal, a PPL determina o potencial de
acumulo de biomassa lenhosa, que ¢ o principal objetivo econdmico das florestas plantadas para

producao de celulose.

O crescimento florestal ¢ influenciado por uma ampla gama de fatores bidticos e
abidticos. Entre os fatores abioticos, destacam-se a disponibilidade de luz, 4gua e nutrientes,
além das condicdes de temperatura e caracteristicas do solo. A disponibilidade de luz afeta
diretamente a taxa fotossintética, sendo particularmente relevante nas fases iniciais de
desenvolvimento das arvores e na dinamica de competi¢do em povoamentos florestais (Silva et
al., 2012). A agua constitui um fator frequentemente limitante, influenciando ndo apenas a
atividade fotossintética, mas também a absor¢ao de nutrientes e a expansao celular. Segundo
Stape et al. (2010), a disponibilidade hidrica pode explicar até 75% da variagdo na
produtividade de plantacdes de eucalipto em diferentes regides do Brasil. A nutri¢do mineral
representa outro fator critico para o crescimento florestal. Macronutrientes como nitrogénio,
fosforo e potdssio desempenham papéis fundamentais em processos metabolicos, estruturais e
regulatorios nas plantas. Gongalves et al. (2013) demonstraram que praticas adequadas de
fertilizagdo podem aumentar a produtividade de povoamentos de eucalipto em até 30%,

dependendo das condi¢des edaficas e climaticas locais.

Entre os fatores bidticos que afetam o crescimento florestal, destacam-se a presenca
de pragas, doencas e plantas invasoras, além da competicdo intraespecifica. Em plantios
comerciais de eucalipto no Brasil, pragas como o percevejo-bronzeado (Thaumastocoris
peregrinus) € doengas como a ferrugem (Puccinia psidii) podem causar redugdes significativas

na produtividade se ndo adequadamente manejadas (Alfenas et al., 2004).

O actimulo de biomassa ao longo do tempo em um povoamento florestal segue um
padrdo caracteristico, geralmente representado por uma curva sigmoide. Nas fases iniciais, o
crescimento ¢ lento devido a pequena area foliar disponivel para interceptacdo da radiacao solar.
Com o desenvolvimento da copa e expansao do sistema radicular, o crescimento se acelera,
atingindo seu ponto maximo quando o povoamento estabelece cobertura completa do solo.
Posteriormente, observa-se uma desaceleracao gradual do crescimento a medida que aumentam

as demandas respiratdrias e a competigao por recursos (Burkhart & Tomé, 2012).



No contexto das florestas plantadas, o crescimento ¢ comumente quantificado por meio
de trés indices principais: Incremento Corrente Anual (ICA), que representa o crescimento
ocorrido apenas no ultimo ano; Incremento Periddico Anual (IPA), que corresponde ao
crescimento médio anual durante um periodo especifico; e Incremento Médio Anual (IMA),
que representa o crescimento médio anual desde o plantio até a idade atual (Campos & Leite,
2006). A culminagdo do IMA, ponto em que este se iguala ao ICA, ¢ frequentemente utilizada

como referéncia para determinar a idade 6tima de desbaste em povoamentos equianeos.

A producao florestal, por sua vez, pode ser entendida como o resultado acumulado do
crescimento ao longo do tempo, subtraidas as perdas por mortalidade. Conforme explica
(Campos & Leite, 2006), a produgdo em um povoamento florestal compreende cinco
componentes principais: produgao total, que representa o volume acumulado de todas as arvores
(vivas e mortas) até¢ determinada idade; producdo corrente, correspondente ao volume das
arvores vivas na idade atual; mortalidade, que representa o nimero ou volume de arvores que
ndo sobreviveram ao longo do tempo; ingresso, referente as arvores que passaram a ser
mensuraveis em inventarios sucessivos; e colheita, que corresponde ao volume efetivamente

removido durante operagdes de desbaste ou corte final.

O eucalipto, espécie dominante nas florestas plantadas brasileiras, se caracteriza por
um crescimento excepcionalmente rapido em comparagao com outras espécies arboreas. Em
condicdes favoraveis, plantios clonais de eucalipto no Brasil podem atingir incrementos médios
anuais superiores a 50 m?/ha/ano, posicionando o pais entre os lideres mundiais em
produtividade florestal (IBA, 2022). Esse desempenho resulta de décadas de melhoramento
genético, associado ao desenvolvimento de técnicas silviculturais apropriadas as condic¢des

tropicais.

As mudangas climéaticas representam um desafio adicional para a compreensao e
previsdo do crescimento florestal. Segundo Laclau et al. (2013), o eucalipto pode beneficiar-se
da elevada concentragdo atmosférica de CO2; porém, € vulneravel a extremos climaticos como
secas prolongadas e ondas de calor. Os impactos das alteragdes climaticas sobre essas florestas
variam conforme a regido ¢ dependem do equilibrio entre efeitos potencialmente positivos
(maior concentracdo de CO:) e negativos (aumento das temperaturas e alteracdes no regime

hidrico).

Estudos conduzidos por Sanquetta et al. (2018) analisaram a dinamica do volume,

biomassa, area de superficie e carbono das florestas plantadas no Brasil ao longo de 26 anos
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(1990-2016). Os resultados evidenciaram um aumento significativo na area de florestas
plantadas no pais, acompanhado por um crescimento expressivo nos estoques de biomassa e
carbono, com um acréscimo de aproximadamente 170%. Esse aumento representa a remog¢ao
de cerca de 5 bilhdes de toneladas de CO: da atmosfera, demonstrando a relevancia das florestas

plantadas para a mitigacdo das mudancas climaticas.

1.2 Modelagem do crescimento e da producio florestal

A modelagem do crescimento e da producdo florestal constitui uma disciplina
fundamental para o planejamento ¢ manejo sustentavel de recursos florestais. Burkhart & Tomé
(2012) definem modelos florestais como abstracdes matematicas que descrevem sistemas
florestais, permitindo simular seu comportamento sob diferentes condigdes e cenarios de
manejo. Esses modelos evoluiram significativamente ao longo do tempo, refletindo tanto o
avanco do conhecimento cientifico quanto o desenvolvimento de ferramentas computacionais

mais sofisticadas.

Historicamente, a modelagem florestal tem suas raizes nas tabelas de producdo
desenvolvidas na Europa Central durante os séculos XVIII e XIX. Essas tabelas, baseadas em
observagdes empiricas, forneciam estimativas de produgdo para povoamentos homogéneos sob
regimes de manejo especificos. Com o avango da estatistica e da computacao no século XX,
surgiram modelos mais flexiveis e dindmicos, capazes de incorporar variabilidade espacial e

temporal (Pretzsch, 2009).

Os modelos de crescimento e produgdo florestal podem ser classificados em trés
categorias principais, de acordo com o nivel de detalhe em que o sistema florestal ¢é
representado, conforme estabelecem Campos & Leite (2006): modelos de povoamento total,
modelos de distribuicdo diamétrica e modelos de arvores individuais. Os modelos de
povoamento total, como o proprio nome sugere, tratam o povoamento como unidade basica de
modelagem, utilizando varidveis agregadas como idade, area basal, volume por hectare e indice
de sitio. Esses modelos s@o geralmente mais simples e requerem menos dados para calibragao,
sendo amplamente utilizados no planejamento estratégico e tatico do manejo florestal. Os
modelos de distribuicdo diamétrica, por sua vez, incorporam informacoes sobre a estrutura do
povoamento, representando a frequéncia de arvores em classes de diametro. Essa abordagem
permite estimativas mais detalhadas da produc¢do por classe de tamanho, informagao essencial

para a valoracdo de produtos florestais com diferentes especificacdes dimensionais. J& os
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modelos de arvores individuais representam o nivel mais detalhado de modelagem, simulando
o crescimento de cada arvore em fungao de suas caracteristicas individuais e de suas interagdes
com arvores vizinhas € com o ambiente. Esses modelos sdo particularmente uteis para
povoamentos heterogéneos e sistemas florestais complexos, embora demandem maior

quantidade de dados e maior capacidade computacional.

Dentro da categoria de modelos de povoamento total, destacam-se os modelos de
densidade variavel, que consideram explicitamente a influéncia da densidade do povoamento
sobre o crescimento. O modelo de Clutter (Clutter, 1963) representa um dos exemplos mais
influentes dessa abordagem, sendo amplamente adotado em empresas florestais no Brasil e
em outras partes do mundo. Este modelo ¢ um sistema de equacdes simultdneas que projeta a
area basal e o volume do povoamento para idades futuras, com base em informagdes sobre a
area basal atual, a idade e a qualidade do sitio. Matematicamente, o modelo pode ser expresso

da seguinte forma:

Iy Iy I
InG, =lnGl(1 >+a1(1—1—>+a2<1—1—)*5

I 2 2
Iy
InV, = Bo + B1 (E) + B2S + B3inG,

Onde: InG, ¢é a area basal de partida ou atual, I; é a idade em meses de partida ou atual, I, éa
idade em meses, de interesse para prognose, S € o indice de sitio, InG, ¢ a area basal na idade
de interesse para prognose , InV, ¢ o volume do talhdo na idade de interesse para prognose, @4,

as, o, P1, B2, P3 sdo coeficientes a serem estimados.

O modelo de Clutter destaca-se por sua versatilidade e consisténcia matematica. A versatilidade
deve-se ao fato de que a variavel resposta (volume, m? ha™!) ¢ independente da distribui¢io de
tamanhos das arvores, permitindo estimativas para diversos cenarios de manejo. A consisténcia
matematica, por sua vez, manifesta-se na capacidade do modelo de realizar proje¢des anuais
sucessivas ou estimativas diretas para qualquer periodo futuro, mantendo a compatibilidade
entre as estimativas (Campos & Leite, 2006). Entretanto, modelo tem limitagdes quanto a
inferéncia sobre efeito de atributos ecofisiologicos, como a fotossintese, alocagdo de carbono e
resposta a fatores ambientais. Essa limita¢ao torna-se particularmente relevante em um contexto
de mudancas climdticas, onde as condi¢des ambientais podem desviar-se significativamente
daquelas sob as quais o modelo foi calibrado (Landsberg & Sands, 2011).Outra limita¢do
importante refere-se a homogeneidade espacial assumida pelo modelo. Em condigdes reais,
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fatores como topografia, caracteristicas do solo e regimes microclimaticos podem variar
consideravelmente dentro de um mesmo talhdo, influenciando o crescimento de maneira
heterogénea. Pereira et al. (2016) demonstraram que a inclusao de um componente espacial no
modelo de Clutter pode melhorar significativamente sua capacidade preditiva, reduzindo os

erros de estimativa em até 6,57%.

Diante dessas limitagdes, pesquisadores t€ém buscado alternativas para aprimorar o
modelo de Clutter e outros modelos empiricos tradicionais. Uma abordagem promissora
envolve a incorporagdo de informagdes derivadas de sensoriamento remoto, que podem

fornecer indicadores da condigao fisiologica e do vigor vegetativo dos povoamentos florestais.

1.3 Sensoriamento remoto para predicio de estoque

O sensoriamento remoto tem revolucionado a forma como monitoramos e
gerenciamos recursos florestais, oferecendo uma visdo sindptica e temporal que seria
impossivel de obter exclusivamente por métodos tradicionais de campo. White et al. (2016)
definem sensoriamento remoto como a ciéncia e a arte de obter informagdes sobre objetos
através da analise de dados adquiridos por dispositivos que ndo estdo em contato direto com
esses objetos. No contexto florestal, essa tecnologia tem sido aplicada com sucesso em diversas
areas, incluindo mapeamento de cobertura vegetal, deteccdo de mudangas, monitoramento de
disturbios e, mais recentemente, na estimativa de parametros biofisicos e estruturais dos

povoamentos.

O principio fundamental do sensoriamento remoto aplicado a vegetacao baseia-se nas
interagdes da radiagdo eletromagnética com os componentes do dossel florestal. As folhas, por
exemplo, absorvem fortemente a radiagao nas regides do azul (400 nm a 500 nm) e do vermelho
(620 nm a 750 nm) do espectro visivel (usadas na fotossintese), e refletem moderadamente na
regido do verde (500 nm a 570 nm) e apresentam alta reflectancia no infravermelho préximo
(700 nm a 1400 nm). Esse comportamento espectral caracteristico, conhecido como "assinatura
espectral”, fornece a base para o desenvolvimento de indices de vegetacdo e algoritmos de

estimagao de parametros biofisicos (Ponzoni et al., 2015).

Entre os diversos sensores orbitais disponiveis para aplicagdes florestais, as missoes

Landsat e Sentinel destacam-se por seu equilibrio entre resolucao espacial, temporal e espectral,



além da disponibilidade histérica de dados e acesso gratuito. O programa Landsat, em operagao
continua desde 1972, representa a mais longa série temporal de observacoes da Terra a partir
do espago, fornecendo um arquivo inestimavel para estudos de mudancas florestais. O Landsat
8, langado em 2013, oferece imagens multiespectrais com resolugdo espacial de 30 metros e

revisita a mesma area aproximadamente a cada 16 dias (Roy et al., 2014).

Por sua vez, a missdo Sentinel-2, parte do programa Copernicus da Agéncia Espacial
Europeia, introduziu melhorias significativas em termos de resolugdo espacial (10-20 metros),
espectral (13 bandas) e temporal (5 dias com dois satélites), ampliando as possibilidades para
o monitoramento florestal de alta frequéncia (Drusch et al., 2012). Além desses sensores Opticos
passivos, tecnologias como o LiDAR (Light Detection and Ranging) e radar (Radio Detection
and Ranging) t€ém emergido como ferramentas complementares, especialmente valiosas em

regioes com cobertura frequente de nuvens.

A aplica¢do do sensoriamento remoto na predicdo de estoque florestal pode seguir
diferentes abordagens metodologicas. De acordo com Lu et al. (2016), essas abordagens podem
ser categorizadas em: métodos baseados em correlagdo espectral, métodos baseados em indices
de vegetagdo, métodos de mistura espectral, métodos baseados em textura e métodos que

integram multiplas fontes de dados.

Os indices de vegetacdo (IV) representam uma das abordagens mais amplamente
utilizadas para a estimagdo de parametros florestais a partir de dados de sensoriamento remoto.
Esses indices sdao transformac¢des matematicas das reflectincias em diferentes bandas
espectrais, projetadas para realgar o sinal da vegetagdao e minimizar influéncias indesejadas do
solo, atmosfera e geometria de iluminagao/observagao. Entre os diversos IVs desenvolvidos nas
Gltimas décadas, o Indice de Vegetagdo por Diferenga Normalizada (NDVI), proposto por
Rouse Jr et al. (1973), permanece como um dos mais utilizados devido a sua simplicidade e

eficacia em capturar variagdes na biomassa verde, area foliar e atividade fotossintética.

A relacdo entre indices espectrais e parametros biofisicos florestais tem sido
extensivamente investigada na literatura cientifica. Branddo et al. (2020) demonstraram
correlagdes significativas entre o NDVI derivado de imagens Landsat e a biomassa aérea em
plantacdes de eucalipto em diferentes estagios de crescimento. De forma similar, Viana et al.
(2016) encontraram correlagdes moderadas a fortes entre diversos indices de vegetacao e
variaveis dendrométricas como altura, didmetro e volume em povoamentos de Eucalyptus
urophylla.
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Miguel et al. (2015) avaliaram o potencial de indices como SR (Simple Ratio) e SAVI
(Soil-Adjusted Vegetation Index) para a estimativa de volume de madeira e biomassa em areas
de Cerrado, obtendo erros-padrdo de aproximadamente 12,34%. Os autores concluiram que a
integracdo de multiplos indices pode melhorar significativamente a precisao das estimativas em

comparagdo com o uso de indices isolados.

Outra variavel biofisica de grande relevancia para a produtividade florestal é o Indice
de Area Foliar (IAF), que representa a area total de folhas por unidade de area de terreno. O
IAF esta diretamente relacionado a interceptacao da radiagdo fotossinteticamente ativa (PAR)
e, consequentemente, a fotossintese do dossel e a produgdo primaria (Gower et al., 1999). Xu
et al. (2020) identificaram quatro abordagens principais para a estimagdo do IAF por
sensoriamento remoto: modelos baseados em reflectincia, modelos baseados em indices de

vegetacao, modelos derivados de dados de LIDAR e modelos de aprendizado de maquina.

Embora os indices de vegetagdo tradicionais apresentem correlagdes significativas
com parametros florestais, essas relagdes frequentemente nao sao lineares e podem ser afetadas
por fatores como saturacao do sensor em areas de alta biomassa, influéncia do substrato e efeitos
atmosféricos. Além disso, a resposta espectral da vegetagdo ¢ influenciada por multiplos fatores,
incluindo estrutura do dossel, propriedades Opticas das folhas, geometria de iluminagdo e

observagao, e condi¢des atmosféricas (Ponzoni et al., 2015).

Nesse sentido, embora os indices de vegetacdo tradicionais fornecam informacdes
relevantes sobre a condicao da vegetagao, suas limitagdes, como saturacdo do sensor em areas
de alta biomassa e sensibilidade a fatores externos, reforcam a necessidade de incorporar
métricas complementares. Nesse contexto, os indices de textura derivados de sensores Opticos
surgem como uma alternativa promissora, pois permitem captar padrdes espaciais de variagao
na reflectancia que nao sao identificados pelos indices espectrais convencionais. Dessa forma,
a integracao de informagdes espectrais e texturais possibilita uma caracterizacao mais robusta
da estrutura florestal e de seus atributos, contribuindo para analises mais precisas em estudos

de crescimento e produgao.
1.3.1 INDICES DE TEXTURA DERIVADOS DE SENSORES OPTICOS

Os indices de textura representam uma dimensao complementar ¢ fundamental na
analise de imagens de sensoriamento remoto para aplicagdes florestais, capturando informagdes

sobre a variabilidade espacial dos valores de pixels que ndo sdo detectadas pelos indices
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espectrais tradicionais. A textura de uma imagem refere-se a variagdo sistematica dos valores
de brilho entre pixels vizinhos, fornecendo informagdes valiosas sobre a estrutura espacial dos
objetos na superficie terrestre. No contexto florestal, estes indices podem revelar caracteristicas
importantes da estrutura do dossel, densidade do povoamento, heterogeneidade da vegetacao e,
consequentemente, relacionar-se com a biomassa e volume de madeira (Haralick &

Shanmugam, 1973).

A matriz de co-ocorréncia de niveis de cinza (Gray Level Co-occurrence Matrix -
GLCM), desenvolvida por Haralick & Shanmugam (1973), constitui o método mais
amplamente utilizado para extracdo de métricas de textura em sensoriamento remoto. Esta
matriz descreve a frequéncia de ocorréncia de pares de valores de pixels separados por uma
distancia especifica em uma dire¢do particular, permitindo a quantificacdo de propriedades
texturais da imagem. A partir da GLCM, podem ser derivadas diversas métricas, sendo as mais
utilizadas em estudos florestais: média (mean), variancia (variance), homogeneidade
(homogeneity), contraste (contrast), dissimilaridade (dissimilarity), entropia (entropy), segundo

momento angular (angular second moment) e correlacdo (correlation) (Kelsey & Neft, 2014).

Estudos tém demonstrado a superioridade dos indices de textura em relagdo aos indices
espectrais tradicionais para estimativa de biomassa florestal. Kelsey & Neff (2014)
investigaram oito métricas GLCM baseadas no Landsat TM em quatro tamanhos de janela (3%3,
5x5, 7x7, 9x9) para estimativa de biomassa em florestas temperadas do Colorado, Estados
Unidos. Os resultados indicaram que modelos incluindo varidveis de textura apresentaram
correlacdo de r=0,86 com a biomassa observada, superando significativamente modelos
baseados apenas em variaveis fisicas e espectrais. As métricas de entropia, média e correlagao
calculadas da banda 2 do Landsat 7 em janela 3%3 foram as mais eficazes, demonstrando que a

textura ¢ particularmente sensivel a mudancas na biomassa ap6s disturbios florestais.

Estudos recentes t€ém evidenciado que a combinagdo de indices espectrais e de textura pode
melhorar significativamente a acuracia das estimativas de volume. Velasco Pereira et al. (2023)
utilizaram modelos de sinergia de sensores ALOS PALSAR-Sentinel 1-Landsat 8 para
mudangas temporais na biomassa de florestas mediterraneas de pinheiro, calculando variaveis

de textura com GLCM em janela 5x5 pixels.

Pesquisas nacionais recentes t€ém incorporado indices de textura em estudos de
monitoramento ambiental. Rosa (2021) utilizou indices de textura derivados de imagens

Landsat para analise temporal da cobertura florestal na Mata Atlantica, integrando informagdes
12



temporais, sazonais e de textura para classificacdo de uso e cobertura da terra. Almeida (2022)
aplicou indices de textura baseados na GLCM para estimativa de biomassa em florestas do
Amapa, concluindo que os trés indices de textura principais forneceram previsdes superiores

aos métodos tradicionais.

As métricas derivadas da GLCM fornecem informacdes complementares sobre
diferentes aspectos da textura da imagem, cada uma com interpretagdes especificas no contexto
florestal, conforme a Tabela 1. A compreensdo destas métricas ¢ fundamental para selecao

apropriada de variaveis de textura em modelos de estimativa de biomassa florestal.

Tabela 1 — Relagdo do Indices de Textura com o eucalipto

, Significado Valor alto — Valor baixo -
Indice de Textura
principal Interpretacgio Interpretacgio
Mede a Superficie homogénea; Alta variacdo tonal;

Energia

Entropia

Correlagdo

Momento de Diferenca
Inversa
(IDM)/Homogeneidade

Inércia/Contraste

Sombra do Cluster
(CS)

uniformidade ou
repeticdo dos
tons de cinza.

Mede a desordem
ou complexidade
da textura.

Mede o grau de
correlacdo entre
tons vizinhos.

Mede a
homogeneidade
local.

Mede o contraste
local entre tons
de cinza.

Mede a
assimetria tonal
(predominio de
claro ou escuro).

povoamento denso e
uniforme; dossel
fechado.

Alta heterogeneidade;
mistura de copas,
variagao de altura,

floresta natural.

Textura continua;
copas regulares; vigor
uniforme.

Textura suave; tons
semelhantes; floresta
uniforme e bem
desenvolvida.

Forte variagao
estrutural; topografia
acidentada, dossel
irregular, clareiras.

Presenca de areas
sombreadas intensas
ou superficies muito

1luminadas;
desequilibrio tonal.
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clareiras, bordas,
talhdes jovens ou
com falhas.

Estrutura simples;
dossel continuo e
regular;
povoamento
homogéneo.

Variacao abrupta;
descontinuidade no
dossel; falhas ou
reboleiras.

Textura rugosa;
grandes diferencas
entre pixels; areas

em regeneracao.

Superficie lisa e
regular; estrutura
uniforme do dossel.

Distribuigao tonal
equilibrada;
iluminagao
homogénea.



Mede a curtose ,
Presencga de bordas,  Textura estavel, sem

Proeminéncia do da distribuigao . -
~ estradas, clareiras, variacoes bruscas de
Cluster (CP) tonal (acentuacao o~
transi¢cdes abruptas. tons.
do contraste).
~ Padroes irregulares
~ . Versao robusta da Textura suave e &
Correlacao de Haralick ~ . ~ e desordenados,
correlagdo entre  continua, com relagdo .
(HC) T . ; ruido tonal ou
tons vizinhos. linear estavel.

mistura espectral.

Fonte: (Liet al., 2012)

A incorporagdo de indices espectrais e texturais amplia significativamente o potencial
do sensoriamento remoto para estimativas florestais, mas a complexidade das relacdes entre
essas variaveis e os parametros dendrométricos demanda técnicas analiticas mais robustas.
Nesse cenario, os modelos de aprendizado de maquina (AM) tém se destacado como
ferramentas capazes de lidar com grandes volumes de dados multivariados e de capturar
relagdes ndo lineares entre varidveis preditoras e resposta. Dessa forma, a integragdo entre
métricas derivadas do sensoriamento remoto e algoritmos de aprendizado de maquina
representa uma abordagem promissora para aprimorar a acuracia € a generalizacdo das
estimativas de biomassa, volume e outros atributos florestais, constituindo-se em uma tendéncia

crescente nas pesquisas da area.

1.4 Modelos de Aprendizado de Maquina (AM)

O aprendizado de méaquina (AM) representa um ramo da inteligéncia artificial que se
concentra no desenvolvimento de algoritmos capazes de aprender padrdes a partir de dados e
realizar previsdes ou decisdes sem serem explicitamente programados para executar tarefas
especificas. Diferentemente dos modelos estatisticos tradicionais, que geralmente requerem
pressupostos sobre a distribui¢do dos dados e a forma funcional das relagdes entre variaveis, os

algoritmos de AM podem adaptar-se automaticamente a estrutura inerente aos dados,

identificando relagdes complexas e ndo-lineares (Hastie et al., 2009).

No contexto da modelagem florestal, a AM oferecem vantagens significativas em
comparagdo com abordagens convencionais baseadas em regressao. Enquanto os modelos de
regressao tradicionais, como o modelo de Clutter, requerem uma forma funcional predefinida
(geralmente baseada em conhecimento tedrico ou empirico), a AM podem estabelecer relagdes
complexas entre variaveis preditoras e respostas, potencialmente capturando interagdes € nao-

linearidades que seriam dificeis de especificar a priori (Joibary, 2013). Outra vantagem
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importante da AM ¢ sua capacidade de lidar com grandes volumes de dados multidimensionais,
caracteristica particularmente relevante em aplicagdes que integram dados de sensoriamento
remoto com medigdes convencionais de campo. Além disso, muitos algoritmos de AM sao
robustos a problemas como multicolinearidade e sdo capazes de lidar com dados ausentes ou

ruidosos, situagdes comuns em conjuntos de dados florestais (Breiman, 2001).

Entre os diversos algoritmos de AM aplicados a modelagem florestal, destacam-se o
Florestas Aleatorias (RF), Méaquina de Vetores Suporte (SVM) e Aumento De Gradiente
Extremo (XGBoost). Cada um desses algoritmos possui caracteristicas distintas que os tornam

adequados para diferentes tipos de problemas e conjuntos de dados.

1.4.1 FLORESTA ALEATORIA (RF)

Floresta Aleatoria (Random Forest) ¢ um método introduzido por Breiman (2001) que
combina as previsdoes de multiplas arvores de decisao para produzir um resultado final mais
preciso e robusto. O algoritmo baseia-se em dois principios fundamentais: bagging (bootstrap
aggregating) ¢ selecdo aleatoria de caracteristicas. No processo de bagging, cada arvore é
treinada com uma amostra bootstrap do conjunto de dados original, ou seja, uma amostra
aleatdria com reposi¢do que contém aproximadamente 63% dos dados originais. Os dados ndo
selecionados para treinar uma arvore especifica, conhecidos como "out-of-bag" (OOB), sao
utilizados para avaliar o desempenho dessa arvore, proporcionando uma valida¢do interna
durante o treinamento. O RF introduz aleatoriedade adicional na construgdo de cada arvore
através da selecdo aleatdria de caracteristicas. Em cada n6 da arvore, apenas um subconjunto
aleatorio das varidveis preditoras esta disponivel para divisdo, for¢ando diversidade entre as
arvores do conjunto (Figura 1). Essa caracteristica ¢ particularmente valiosa quando existem
fortes preditores no conjunto de dados, pois evita que todas as arvores sejam dominadas por

esses preditores (Breiman, 2001).
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Figura 1 — Exemplo de uma floresta aleatoria

Fonte: Adaptado de Araujo et al. (2023)

Para problemas de regressao, como a predicdo de volume ou biomassa florestal, o
resultado final do RF ¢ obtido pela média das previsdes individuais de todas as arvores no

conjunto. Matematicamente, a previsao para uma nova observacao x pode ser expressa como:
1 n
== fito
foo=1) fi
=1

Onde n é o niimero total de arvores no conjunto e f;(x) é a previsio da i-ésima arvore

para a observagao x.

O RF oferece diversas vantagens para aplicagdes florestais. Primeiro, € relativamente
robusto ao overfitting, especialmente quando o nimero de arvores ¢ grande. Segundo, fornece
medidas internas de importancia das variaveis, permitindo identificar quais preditores
contribuem mais significativamente para o modelo. Terceiro, pode lidar eficientemente com
interagdes complexas entre varidveis e relagdes ndo-lineares, caracteristicas comuns em dados
ecologicos. Por fim, requer relativamente pouca preparacdo de dados e ajuste de
hiperparametros em comparagao com outros algoritmos avangados (Cosenza et al., 2021, 2025;

Cutler et al., 2007).

No campo da modelagem florestal, o RF tem sido amplamente aplicado para
estimativas de volume, biomassa, carbono e outros parametros estruturais. Lima et al. (2022)
utilizaram RF para estimar o volume de madeira em plantagdes de eucalipto a partir de variaveis

dendrométricas e indices espectrais derivados de imagens Landsat, obtendo resultados
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superiores aos modelos de regressdo convencionais. De forma similar, (Gémez et al., 2012)
aplicaram RF para mapear biomassa florestal usando dados LiDAR e multiespectrais,
destacando a capacidade do algoritmo em capturar relacdes complexas entre a estrutura

tridimensional do dossel e a biomassa aérea.

1.4.2 AUMENTO DE GRADIENTE EXTREMO (XGBOOST)

O Aumento de gradiente extremo (Extreme Gradient Boosting) ¢ um algoritmo de
aprendizado de maquina baseado em arvores de decisdo que implementa o framework de
gradient boosting com varias otimizacdes para eficiéncia computacional e desempenho
preditivo. Desenvolvido por (Chen & Guestrin, 2016), o XGBoost rapidamente se tornou uma
das ferramentas mais populares em competi¢cdes de ciéncia de dados e aplicagdes praticas

devido a sua eficiéncia computacional e precisao.

O principio fundamental do gradient boosting ¢ construir um modelo forte através da
combinagdo sequencial de modelos fracos (geralmente arvores de decisdo rasas), onde cada
novo modelo ¢ treinado para corrigir os erros dos modelos anteriores (Figura 3). Diferentemente
do Random Forest, onde as arvores sdo treinadas independentemente e combinadas por média
simples, no boosting cada arvore ¢ adicionada sequencialmente para minimizar uma funcao de

perda.
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Figura 3 — Exemplo de um XGBoost
Fonte: Adaptado de (Zou et al., 2022a)

Matematicamente, o modelo XGBoost pode ser representado como:

yi = zn: fi(x:)
=1

Onde §; ¢ a previsdo para a observagdo 1, n € o niimero total de arvores, ¢ fj representa

a j-ésima arvore de decisdo.

O objetivo de treinamento € minimizar a seguinte fun¢ao regularizada:

L = Zl(}’i;f’i)‘l' Zﬂ(fi)

Onde [ ¢ a fungdo de perda que mede a diferenga entre a previsao ¥; e o valor real y;,
e 2(f;) é um termo de regularizagdo que penaliza a complexidade do modelo para evitar

overfitting (Chen & Guestrin, 2016).
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O XGBoost introduz varias inovagdes em relagdo ao gradient boosting tradicional.
Primeiro, utiliza uma formulagdo regularizada para controlar a complexidade do modelo,
incluindo termos de penalidade para o nimero de folhas nas arvores e para os pesos das folhas.
Segundo, implementa um algoritmo aproximado de divisdo de arvores que permite
processamento eficiente de grandes conjuntos de dados. Terceiro, incorpora técnicas para lidar
eficientemente com dados esparsos e valores ausentes. Por fim, utiliza varias otimizagdes
computacionais, como paralelizagdo, cache-aware access € computagdo out-of-core para

conjuntos de dados que ndo cabem na memoria (Chen & Guestrin, 2016).

No contexto da modelagem florestal, o XGBoost tem demonstrado excelente
desempenho em diversas aplicagdes. Chen et al. (2019) utilizaram XGBoost para estimar o
volume de madeira em florestas mistas a partir de varidveis derivadas de LiDAR e imagens
multiespectrais, obtendo resultados superiores a métodos tradicionais de regressdao. Zou et al.
(2022) aplicaram XGBoost para prever a produtividade florestal considerando variaveis
climaticas e edaficas, destacando a capacidade do algoritmo em capturar interagdes complexas

entre fatores ambientais e crescimento.

As principais vantagens do XGBoost para aplicacdes florestais incluem seu
desempenho preditivo geralmente superior em comparacdo com outros algoritmos, capacidade
de lidar com diferentes tipos de varidveis (numéricas, categdricas), robustez a outliers através
de fungdes de perda personalizaveis, e interpretabilidade através de métricas de importancia de
caracteristicas. Além disso, 0 XGBoost oferece mecanismos eficientes para evitar overfitting,
como regularizacdo, amostragem de caracteristicas e dados, e parada antecipada baseada em

um conjunto de validagdo (Chen & Guestrin, 2016).

1.4.3 MAQUINA DE VETORES DE SUPORTE (SVM)

Maquina de Vetores de Suporte (Support Vector Machine) ¢ um algoritmo de
aprendizado supervisionado desenvolvido inicialmente para classificagdo por Vapnik (2013) e
posteriormente estendido para problemas de regressdo. O SVM baseia-se em principios da
teoria de aprendizado estatistico e busca encontrar um hiperplano 6timo que maximiza a
margem entre diferentes classes (no caso de classificacao) ou que melhor se ajusta aos dados
dentro de uma margem de tolerancia (no caso de regressdao) conforme demonstrado na Figura

2.
19



y = <w,x>+b

Figura 2 — Exemplo de um SVM
Fonte: Adaptado de Araujo et al. (2023)

Para problemas de regressdo, a variante conhecida como Support Vector Regression
(SVR) busca ajustar uma funcao que tenha no maximo ¢ de desvio dos valores alvo observados,
enquanto mantém a fung¢ado tao plana quanto possivel. Matematicamente, para um conjunto de
dados de treinamento {(xi, y1), ..., (Xn, yn)}, onde x representa o vetor de caracteristicas ¢ y o

valor alvo, o SVR procura minimizar:
n
1 2
minimize (§> ||W|| + C Z (& + &%)
i=1

sujeitoa:y; — f(x) < € + &
f)—yi < e+ &+
fi,fi*z 0

Onde f(x) = <w, x>+ b ¢ a fun¢do de regressao linear, ||w|]* € o termo de regularizagao,
C ¢ o parametro de penalizacao que controla o equilibrio entre a complexidade do modelo e o
erro de treinamento, e &;,&; * sdo varidveis de folga que permitem violagdes da margem ¢

(Smola & Schoélkopf, 2004).
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Uma das principais vantagens do SVM ¢ sua capacidade de lidar com relagdes ndo-
lineares através do chamado "truque do kernel". Essa técnica permite mapear implicitamente
os dados para um espago de caracteristicas de maior dimensao, onde o problema pode se tornar
linearmente separavel ou mais facilmente modeldvel. Kernels comumente utilizados incluem o

linear, polinomial, base radial (RBF) e sigmoide (Cortes & Vapnik, 1995).

No contexto florestal, o SVM tem sido aplicado com sucesso em diversas tarefas de
estimagdo. Gongalves (2010) utilizou SVM para estimar a biomassa aérea em florestas tropicais
a partir de indices espectrais, obtendo resultados competitivos em comparagcdo com outros
algoritmos. Cordeiro (2020) avaliou diferentes configuragdes de SVM na modelagem do
crescimento e produgdo de eucalipto, demonstrando desempenho estatisticamente satisfatorio

para implementag@o no manejo florestal.

Entre as vantagens do SVM para aplicacdes florestais, destacam-se sua eficacia em
conjuntos de dados de alta dimensionalidade (como os derivados de sensoriamento remoto
hiperespectrais), robustez a ruidos e capacidade de generalizagdo mesmo com amostras de
treinamento relativamente pequenas. Além disso, o SVM tende a evitar o overfitting através do
principio da minimizagao do risco estrutural, equilibrando a complexidade do modelo com seu

desempenho nos dados de treinamento (Smola & Scholkopf, 2004).

1.4.4 REDES NEURAIS ARTIFICIAIS (RNA)

As Redes Neurais Artificiais (RNA) consistem em modelos projetados para imitar o
processamento da informagdo realizado pelo cérebro humano, utilizando uma rede composta
por unidades computacionais interconectadas, denominadas neurdnios artificiais. Esses
neurdnios sdo organizados em camadas e possuem a capacidade de aprender padrdes complexos
a partir de dados de entrada, ajustando seus parametros internos de forma iterativa durante o
processo de treinamento, com o objetivo de generalizar o conhecimento adquirido para novas

situacdes (Haykin, 2001).

Cada neuronio artificial representa uma unidade basica de processamento dentro da
rede e € composto por diversos elementos funcionais. As sinapses sdo representadas pelos pesos
sinapticos, que determinam a importancia de cada sinal de entrada. O somador ¢ responsavel
por calcular a combinagdo linear ponderada dos sinais recebidos. Em seguida, a funcdo de
ativacdo ¢ aplicada para restringir a amplitude da saida e introduzir nao linearidade ao modelo,

o que permite & RNA representar relagdes complexas entre as variaveis. O termo de bias atua
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como um deslocamento da func¢ao de ativagdo, ajustando o limiar de resposta do neurdnio. A
saida de cada neuronio pode servir tanto como entrada para outros neurdnios em camadas
subsequentes quanto como resultado final da rede, conforme ilustrado na Figura 4 (Haykin,

2001)

Bias
by

Variavel de entrada 1 o—p-
Funcéo de Ativacéo

Variavel de entrada 2 ¢———— .
L » Saida
Yk
: : Juncéo Aditiva
Variavel de entrada n 0——» °

Pesos

Figura 4 — Exemplo de um Neurénio
Fonte: Adaptado de (Haykin, 2001)

As Redes Neurais Artificiais (RNAs) apresentam vantagens significativas em relagdo
aos métodos tradicionais de modelagem, especialmente na capacidade de capturar relagdes ndo
lineares complexas entre variaveis. Esse tipo de algoritmo ¢ particularmente eficiente para
descrever sistemas influenciados por multiplos fatores interdependentes, como condigdes
climaticas, caracteristicas edaficas, densidade genética e variabilidade estrutural dos
povoamentos florestais. As RNAs sdo capazes de identificar padrdes ocultos nos dados que

frequentemente ndo sdo detectados por modelos de regressao tradicionais (Bentes, 2018).

Além disso, as RNAs podem integrar variaveis de diferentes naturezas, combinando
informagdes qualitativas, como genotipo, tipo de solo e espagamento, com variaveis
quantitativas, como diametro, altura e area basal. Outra caracteristica relevante ¢ a robustez
frente a ruidos e falhas nos dados, bem como a capacidade de generalizagdo, permitindo que o
modelo apresente bom desempenho mesmo em situagdes ndo observadas durante o treinamento

(Bentes, 2018).

No contexto florestal, diversos estudos tém evidenciado o potencial das RNAs em
tarefas de predicao e modelagem. Azevedo et al. (2020) empregaram diferentes estratégias de

RNA para a modelagem de multivolumes do fuste de eucaliptos, observando que essas redes
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apresentaram maior precisdo e praticidade em comparacdo aos modelos de regressdo
tradicionais. De forma semelhante, Bayat et al. (2019) aplicaram RNAs para prever a
sobrevivéncia e a mortalidade de arvores em florestas de faia oriental no norte do Ira, avaliando
o desempenho dos modelos por meio das métricas RMSE e R2. Os resultados demonstraram a
superioridade das RNAs, reforcando sua eficacia como ferramenta preditiva na modelagem
florestal. Niska et al. (2010) examinaram a capacidade técnica comuns de modelagem por RNA
para predi¢do de atributos florestais como o volume de fuste em nivel de parcela experimental
e de povoamento florestal. Esse estudo mostrou que as RNAs sao métodos apropriados ¢
precisos para a avaliagdo de atributos florestais, podendo ser utilizadas como alternativas para

a regressdo linear multivariada.

1.4.5 K-VIZINHOS PROXIMO

O modelo de K-Vizinhos Mais Proximos (KNN) ¢ um algoritmo baseado em medidas
de similaridade entre observa¢des. Fundamenta-se na premissa de que amostras com
caracteristicas semelhantes tendem a apresentar respostas também semelhantes. Segundo Cover
& Hart (1967), que originalmente formularam o método, o principio do KNN reside na
proximidade entre vetores de caracteristicas em um espaco multidimensional definido pelas

variaveis explicativas.

O funcionamento do modelo consiste em identificar os k pontos mais préximos de uma
observagao, calculando a distancia entre ela e os demais pontos do conjunto de dados. A métrica

de distancia mais comumente utilizada ¢ a distancia euclidiana, expressa pela Equagao:

A1) = {EsCin = 50)°

Onde: x; e x; s3o os vetores de caracteristicas das amostras; p € o namero de variaveis.

Outras métricas podem ser utilizadas, como as distdncias de Manhattan, Mahalanobis ou

ponderadas, dependendo da natureza dos dados e do objetivo da modelagem.

Entre as principais vantagens do KNN destacam-se sua simplicidade conceitual e
facilidade de implementacao, além de ndo pressupor uma estrutura paramétrica fixa, o que o
caracteriza como um método ndo paramétrico e flexivel. Essa caracteristica permite ao KNN

adaptar-se a variacdes locais dos dados, capturando padrdes complexos que outros modelos
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podem ndo identificar. O algoritmo também apresenta boa interoperabilidade com diferentes

tipos de variaveis e robustez em cenarios com multiplas fontes de dados. (Souza et al., 2019)

No contexto florestal, o0 uso do KNN tem se mostrado promissor. McRoberts et al.
(2015) aplicaram o método para estimar a biomassa aérea média por unidade de area na
Noruega, utilizando dados de inventario florestal e varredura a laser aerotransportada (ALS).
Os resultados indicaram uma redugdo da dimensionalidade ¢ um aumento de até¢ 20% na
variabilidade explicada no conjunto de referéncia. No Brasil, Amorim (2016) empregou o KNN
combinado com dados Landsat-8 e varidveis topograficas para estimar a biomassa aérea de
povoamentos de eucalipto, obtendo coeficientes de determinacao (R?) superiores a 0,80, o que

demonstra a eficiéncia do método para aplicagdes florestais de predigdo e mapeamento.

1.5 Aprendizado de maquina na modelagem florestal

A integragdo de técnicas de aprendizado de maquina na modelagem florestal tem
ganhado impulso significativo na ultima década, motivada tanto pelo aumento da
disponibilidade de dados quanto pelos avangos nas capacidades computacionais.
Diferentemente dos modelos empiricos tradicionais, que dependem de relacdes funcionais
predefinidas, a AM oferece maior flexibilidade para capturar relagdes complexas e ndo-lineares

entre varidveis preditoras e parametros florestais de interesse.

No contexto especifico da modelagem de crescimento e produgao florestal, os Modelos
AM podem ser aplicados de diferentes formas: (i) como substitutos completos para modelos
empiricos tradicionais, (ii) como componentes hibridos que complementam modelos existentes,

ou (iii) como ferramentas auxiliares para a sele¢do de variaveis ou imputacao de dados ausentes.

Binoti et al. (2014) demonstraram o potencial da RNA como alternativa aos modelos
de crescimento e producdo tradicionais. Comparando RNA com o modelo de Clutter para
projecao da area basal e volume em povoamentos de eucalipto, os autores observaram que a
RNA proporciona estimativas mais precisas € com distribuigdo mais homogénea dos residuos.
Costa Filho et al. (2019) corroboraram esses resultados, mostrando que a RNA pode capturar
de forma mais eficaz a variabilidade espacial da produtividade florestal em compara¢do com

modelos empiricos convencionais.

Melo (2019) avancou ainda mais nessa linha de pesquisa, investigando o potencial de

diferentes algoritmos de ML, incluindo Random Forest e Support Vector Machine, para modelar
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o crescimento e a producdo em florestas inequidneas de eucalipto. Os resultados indicaram que,
embora os AM geralmente superem os modelos tradicionais em termos de precisdo, a
magnitude dessa vantagem varia conforme as caracteristicas do conjunto de dados e a

complexidade do fendmeno modelado.

Goycochea Casas (2021) comparou métodos de regressdao tradicional ¢ RNA na
modelagem de crescimento e producdo de povoamentos de eucalipto. Embora ambas as
abordagens tenham apresentado desempenho satisfatorio, o autor observou que as RNAs foram
particularmente eficazes para capturar padroes nado-lineares nas fases iniciais de
desenvolvimento. No entanto, recomendou cautela ao realizar projecdes a partir de idades muito

jovens (proximas a dois anos), independentemente do método utilizado.

Uma abordagem particularmente promissora envolve a integracdo de variaveis
derivadas de sensoriamento remoto com AM para melhorar as estimativas de crescimento e
producdo florestal. Araujo et al. (2023) avaliaram diferentes algoritmos de aprendizado de
maquina para a prognose de volume, comparando o modelo de Clutter com técnicas como
Random Forest, Support Vector Machine, k-vizinhos mais proximos e redes neurais artificiais.
Os modelos foram ajustados com a inclusdo de varidveis dendrométricas e indices espectrais
derivados de sensoriamento remoto. Os resultados indicaram que a maquina de vetores de
suporte, utilizando as mesmas varidveis preditoras do modelo de Clutter, apresentou uma
modesta melhoria no desempenho. A inclusdo de varidveis de sensoriamento remoto
proporcionou um aprimoramento adicional, sendo o indice de vegetacdo VARI (Visible

Atmospherically Resistant Index) aquele que resultou nas melhores estimativas.

Santos et al. (2023) propuseram uma metodologia inovadora baseada em dados do
satélite Landsat para prever o crescimento de povoamentos de eucalipto, comparando-a com
métodos tradicionais. Além de avaliar os beneficios da inclusdo de variaveis derivadas de
sensores remotos, o estudo investigou a possibilidade de reduzir o nimero de parcelas
inventariadas, analisando trés cenarios amostrais distintos. Utilizando redes neurais artificiais e
Random Forest para estimar o crescimento do povoamento, os autores concluiram que a
amostragem do inventario florestal poderia ser reduzida em até 88% quando informacdes
complementares de sensoriamento remoto sao incorporadas a modelagem, sem comprometer

significativamente a qualidade das estimativas.

Apesar dos resultados promissores, a aplicagdo de AM na modelagem florestal ainda

enfrenta desafios importantes. Primeiro, muitos algoritmos de AM funcionam como "caixas-

25



pretas", dificultando a interpretagdo dos processos subjacentes e limitando a transferéncia de
conhecimento para sistemas diferentes daqueles em que foram treinados. Segundo a qualidade
das previsdes depende fortemente da representatividade e qualidade dos dados de treinamento,
podendo resultar em extrapolagdes inadequadas quando aplicados fora do dominio de
calibragdo. Terceiro, a sele¢do e ajuste de hiperparametros podem ser processos complexos e

computacionalmente intensivos, exigindo conhecimento especializado e recursos substanciais

(Tsakiridis et al., 2020).

Para superar essas limitagdes, abordagens hibridas que combinam o conhecimento
ecofisiologico incorporado em modelos baseados em processos com a flexibilidade e
capacidade preditiva dos AM tém sido propostas como uma dire¢do promissora para pesquisas
futuras. Essas abordagens buscam aproveitar o melhor de ambos os mundos: a base teorica
solida dos modelos processuais e a adaptabilidade empirica dos algoritmos de aprendizado de

maquina.
MATERIAL E METODOS
1.6 Material
1.6.1 AREA DE ESTUDO

A érea de estudo esta localizada na mesorregiao do Vale do Rio Doce, estado de Minas
Gerais, Brasil (Figura 5). Os talhdes estdao inseridos em onze diferentes municipios, sendo o
municipio de Peganha com o maior nimero de talhdes e a drea média de 39,295 ha. A altitude
média da regido ¢ de 860 metros, com variagao de 80 metros, com indices pluviométricos médio
anual de 1000 mm a 1500 mm. As classes de solo predominante sao latossolo vermelho-amarelo

distrofico e cambissolo haplico com argila de atividade baixa distrofico (IBGE, 2003).
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Figura 5 — Mapa da area de localizag¢do dos talhoes

1.6.2 DADOS DE CAMPO

Foi utilizada uma base de dados derivada de inventario florestal continuo provida pela
companhia Celulose Nipo-Brasileira S/A (CENIBRA). O periodo contemplado pelas medigdes
¢ de junho de 2013 a julho de 2019. Foram utilizados dados de talhdes com pelo menos trés
medigdes anuais e sobrevivéncia acima de 90%. A Tabela 2 mostra os valores minimos,

maximos e a média da area basal e volume.

Tabela 2 — Estatisticas descritivas dos talhoes

Dom?lllglill;i (m) Al('f:z/]ls;;al Volume (m?ha)
Minimo 11,10 5,40 20,96
Maximo 36,70 32,38 495,33
Média 23,96 17,40 187,90
Desvio Padriao 4,66 493 82,56
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As variaveis, em nivel de unidade amostral, do inventario continuo, incluem: data da
medi¢do, idade do talhdo (em meses), espagamento, area basal, altura dominante e volume
comercial (até 5 cm de didmetro minimo) sem casca. A maioria dos talhdes encontrava-se no
segundo ciclo com idade média de 4 anos (Figura 6). Os talhdes monoclonais, contemplam 28
diferentes genotipos plantados em sete diferentes espacamentos: 3 x 2,5 m; 3 x 3 m; 3 x 3,30

m; 3x3,33m;3,33x2m; 3,33x3me4x2,5m (Figura 7).

Distribuicéo dos Talhdes por Classe de Idade
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Figura 6 — Distribui¢do dos talhoes do inventdrio continuo nas classes de idade.

Distribuicao de Talhdes por Espagcamento
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Figura 7 — Distribui¢do dos talhoes do inventadrio por espagamento
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1.6.3 VARIAVEIS DE SENSORIAMENTO REMOTO

O satélite Landsat 8 foi escolhido devido a sua cobertura histérica compativel com o
periodo do inventario florestal, além de suas especificagdes técnicas favoraveis. O sensor OLI
(Operational Land Imager) possui uma resolucao espacial de 30 metros, o que ¢ ideal para o
monitoramento de vegetagdo em grandes areas. Além disso, conta com uma resolucao
radiométrica de 16 bits e uma resolugdo temporal de 16 dias, permitindo a aquisi¢io frequente
de dados. As imagens da série Landsat destacam-se pela sua alta qualidade radiométrica e
espacial, cobertura global e aquisi¢do continua, tornando-se uma ferramenta confiavel para o

monitoramento ambiental e estudos florestais.

As imagens Landsat 8 foram obtidas no site da USGS (United States Geological
Survey) correspondentes ao periodo de 2013 a 2019, coincidindo com o periodo do inventario
florestal. Foram selecionadas somente as imagens sem presenca de nuvens e que possuiam nivel
2 de processamento, o que garante que os pixels representem valores de reflectancia corrigidos
radiometricamente e atmosfericamente, diferentemente dos valores de numeros digitais (ND)
do nivel 1. O sensor OLI a bordo do Landsat 8 abrange desde as bandas do visivel (azul, verde

e vermelho) até as bandas do infravermelho médio (SWIR), conforme apresentado na Tabela 3.

TABELA 3 — Caracteristicas das bandas espectrais

Bandas Comprimento da onda Resolucido Espacial
Banda 1 Aerossol Costeiro 0,43 - 0,45 pum 30 m
Banda 2 Azul 0,45-0,51 pum 30 m
Banda 3 Verde 0,53 - 0,59 um 30 m
Banda 4 Vermelho 0,64 — 0,67 um 30 m
Banda i Infravermelho 0,85 0,88 um 30m
Banda 6 SWIR 1,57 — 1,65 um 30 m
Banda 7 SWIR 2,11 -2,29 pym 30 m
Banda 8 Pancromatica 0,50 - 0,68 um 15m
Banda 9 Cirrus 1,36 — 1,38 um 30m
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1.7 Processamento dos dados

A metodologia foi seguida conforme o fluxograma da Figura 8.
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Figura 8 - Fluxograma das andlises do estudo
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A extracdo dos valores de reflectdncia foi realizada utilizando a linguagem de
programacao R com o uso do pacote ferra. O procedimento envolveu: (a) a extragdo do
centroide de cada pixel contido em cada poligono (talhdo), (b) a atribuigdo dos valores de
reflectancia a cada ponto extraido e (c¢) o calculo da média dos pontos interceptados pelo
poligono (Figura 9). Este processo foi repetido para todas as imagens sem presenca de nuvens,
resultando em um valor médio de reflectancia para cada banda e para cada talhdo. O arquivo
resultante foi exportado em formato CSV (Comma Separete Value) para posterior associagao
com a base de dados do inventario. Esse procedimento foi realizado para todas as imagens
encontradas que ndo apresentava nuvens. Dessa forma foi obtido um valor de reflectancia médio
de todas as bandas para todos os talhdes. Esse procedimento foi realizado devido a auséncia das

parcelas georreferenciadas.

Figura 9 - Processo de extragdo da reflectancia

A associacao dos dados de reflectancia com o inventario florestal foi realizada no
ambiente virtual do (Figura 10), utilizando dois arquivos de entrada: (i) um contendo os valores
médios de reflectancia para cada talhdo e (i1) outro com os dados do inventario florestal. Para
garantir a melhor correspondéncia temporal, a associacdo considerou a menor diferenga
possivel entre as datas do inventario e as datas das imagens, de modo que cada registro do
inventario fosse vinculado a imagem mais proxima em termos de data. Foi considerado também
nessa associacao, a sobrevivéncia acima de 90% e trés medi¢des de parcelas. O arquivo
resultante foi gerado no formato XLSX, contendo os valores médios de reflectancia associados

a cada talhdo. Dessa forma, cada medigdo do inventario foi relacionada aos valores de
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reflectancia das bandas espectrais (do azul ao SWIR 2), permitindo a realizacdo da andlise

exploratoria dos dados.

A anélise exploratoria dos dados foi inicialmente conduzida no Excel, com o objetivo
de verificar a consisténcia das informacdes. Por exemplo, foram identificadas inconsisténcias
como a reducdo na altura média em algumas parcelas e variagdes abruptas no DAP médio em
medicdes sucessivas. Além disso, outliers decorrentes da interferéncia de nuvens nas imagens
foram removidos com base em um critério estatistico de 1 desvio-padrdo acima e abaixo da
média da reflectancia das bandas espectrais. Em seguida, foram construidos graficos bivariados
para a exploracdo da relacdo entre as variaveis dendrométricas e entre as varidveis
dendrométricas e variaveis de sensoriamento remoto. Essas andlises forneceram subsidios para

a selecdo das variaveis a serem incluidas nos modelos de Clutter e de aprendizado de maquina.

Para cada ano das séries temporais foram calculados diferentes indices de vegetacao
(Tabela 4) para serem usados como possiveis preditores do modelo. Esses indices possuem
relagdo direta com variaveis dendrométricas e biofisicas de povoamentos florestais, sendo,
portanto, fundamentais para analises em ambientes silviculturais. Além disso, sio amplamente
utilizados na literatura atual, o que refor¢a sua adequacao para estudos em florestas plantadas.
Adicionalmente, foram calculados indices texturais (Tabela 5). Os indices de texturas sdo
baseados nas métricas GLCM (Gray Level Co-occurrence) ou matriz de coocorréncia de nivel
de cinza e sdo amplamente utilizados em sensoriamento remoto para quantificar a variacao
espacial dos tons de cinza em uma imagem orbital. S0 bastante uteis para distinguir padrdes

de cobertura vegetal, identificar varia¢des estruturais em dossel arbéreo (Haralick et al., 1987).

Tabela 4 — Indices de Vegetagdo usados

Indice de
Equacao Referéncia
vegetacio
Indice de Vegetacio NIR —=RED
por Dife.renga NDVI = m (Rouse Jret al., 1973)
Normalizada
indice de
Vegetacado por NIR — GREEN
i GNDV] = —— Gitelson et al., 1996
Diferenga NIR + GREEN ( )
Normalizada
Verde
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Indice de NIR —RED . 05
_ vegetagdo SAVE= (NIR T RED + L> +(+1) (Huete, 1988)
ajustado ao solo
NIR
Razdo Simples SR = (@) (Jordan, 1969)
Indice de NIR —SWIR2
refletancia de NBR] = ——— (Garcia & Caselles, 1991)
queima NIR + SWIR2
normalizado
Indice de
Vegetacao (Broge & Leblanc, 2001)
Proporcional
indice de '
Vegetacdo DVI = 2,4 « NIR — RED (Richardson, 1977)
Diferencial
Indice de (NIR — RED) ‘
Aprimorado

Tabela 5 — Indices de Vegetagdo usados

Indice de textura Equacio
Energia 2 g, j)?
Lj
1 ..
Entropia Z 9@, j)log g (i, j)
l’]
Z (-G -mygl,j)
Correlagdo o2
iJj

Momento de Diferenca Inversa
(IDM)/Homogeneidade

Inércia/Contraste
Sombra do Cluster (CS)

Proeminéncia do Cluster (CP)

L
;mg(w)
2. G=Pg))

Lj
PR(EIIEINI)

ij

D (-wG-w)'g@p
Lj
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2;(1 u)O-—LOg(lJ) ui
Correlacao de Haralick (HC)

Fonte: (Feature extraction — Orfeo ToolBox 9.1.0 documentation, [s.d.])

Onde g(i,j) ¢ o valor normalizado da matriz de coocorréncia GLCM, p a média e ¢ o desvio-

padrao das linhas e colunas da GLCM.
1.7.1 AJUSTE DO MODELO DE CLUTTER

O modelo de prognose de volume adotado foi o de Clutter (Campos & Leite, 2006).
Este modelo consiste em um sistema de duas equacdes: a primeira estima a area basal em uma
idade de interesse e a segunda estima o volume nessa mesma idade. A estimativa da area basal

¢ um preditor da equacao de volume como apresentado abaixo:

I, I, I
lnGZ—lnGl( >+a1(1——>+a2<1——)*5
2 A I
InV, = By +.31( >+,825+ﬁ3ln62

Onde: InG, ¢ a area basal atual, I; ¢ a idade atual em meses, I, ¢ a idade de interesse
em meses, S € o indice de sitio em metros, [nG, ¢ a area basal na idade interesse em m?, InV, ¢
o volume do talhdo na idade de interesse em m?, @, @5, By, B1, B2, B3 sdo coeficientes do
modelo. Para a realizagdo do ajustamento do modelo, foi utilizado o Método Minimos

Quadrado (MMQ) em dois estagios, conforme Leite ¢ Campos (2017).

Para estimativa do indice de sitio usado como variavel do modelo de Clutter foram
avaliados o modelo de Schumacher, Logistico e Gompertz (Tabela 6). O indice de sitio ¢ dado
pela altura dominante em uma idade de referéncia, geralmente aos 7 anos para eucalipto no
Brasil. E um indice de capacidade produtiva de um talhdo e utilizado dentro do manejo florestal
para classificar e comparar diferentes areas de povoamento florestal com base no potencial
crescimento das arvores. A escolha do melhor modelo se deu através do célculo das medidas de
acuracia REMQ, R?, e EMA calculadas via validagao cruzada. J& o modelo de Clutter foi
ajustado usando no R usando o pacote dplyr e caret seguindo o método dos minimos quadrado

em dois estagios, conforme Leite e Campos (2017).

Tabela 6 — Modelos de indice de sitio pelo método da curva-guia
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Equacao de sitio

Modelo Equacio base Método da curva-guia

Schumacher In(Hdom) = By + p; <%> In(S) = In(Hdom) — B, [(l) _ (1)}

L) \I
. Bo (1+ pietF=1)
Logi = =
ogistico Hdom (1 + BeCFn) S = Hdom * A+ peCF)
—e(B1—B212)
_ e ®
Gompertz Hdom = f3, [e"e(ﬁ1 lel)] S = Hdom = ( )

(6—3(31—5211))

Para incorporar a varidvel que representam a capacidade fotossintética, os indices
espectrais e texturais calculados foram adicionados a equacao da area basal. A inclusdo dos
indices espectrais foi definida com base em analises preliminares e em evidéncias apresentadas
na literatura (Pereira et al., 2016), as quais indicaram sua relevancia para a melhoria do ajuste
do modelo, em virtude de sua relacao direta com a area foliar e com a biomassa do povoamento.

Assim, os indices foram inseridos empiricamente na equagao correspondente a area basal.

I L I I
2 2 2 2

Onde Q corresponde ao indice espectral, a3 corresponde ao parametro de ajuste da

~ o I . , ,
equagao, ¢ foi adicionado (1 - 1—1) pois quando I, = I; a area basal correspondera a mesma
2

area basal na data do inventario e o modelo continuaré consistente. Foram testados os seguintes
IE e IT: NDVI,GNDVI, SAVI, SR, RVI, DVI, NBRI, EVI, Energy, Entropy; Correlation, IDM,
Inertia, CS, CE HC .

A inclusdo dessas formas busca representar mais fielmente o comportamento da
vegetacao captado pelos sensores orbitais, que muitas vezes apresenta crescimento assintotico
ou respostas parabolicas frente a diferentes fases de desenvolvimento do povoamento. O ajuste
do modelo de Clutter modificado também foi realizado através do método dos minimos
quadrados em dois estagios. Para a equacdo de volume, optou-se por ndo incluir o parametro
Q, uma vez que sua adi¢do resultou em um aumento do RMSE%, indicando uma redugao na
precisao do modelo. Além disso, o estudo de Pereira et al., (2016) incorporou uma componente
espacial na equacdo de area basal e identificou uma dependéncia espacial dessa variavel e o

volume ndo apresentou correlagdo espacial.
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1.7.2 TREINAMENTO DOS MODELOS DE APRENDIZADO DE MAQUINA

Os métodos RF, SVM, XGBoost, RNA e KNN foram implementados no software R
(versdo 4.4.1), com o uso dos pacotes ranger, e1071, kernlab, xgboost e nnet, respectivamente.
Todas as variaveis foram normalizadas por meio da fungdo de normalizagdo minimo-maximo,
a fim de padronizar as escalas e evitar influéncia desproporcional de variaveis com magnitudes
distintas e ao final foram convertidas para a unidade original para o calculo das estatisticas de

qualidade.

x —min(x)

[max(x) — min(x)]
x = z [max(x) — min(x)] + min (x)

Onde z é o valor normalizado, x € o valor original da variavel, max(x) e min(x) sdo,

respectivamente, os valores maximo e minimo observados para a variavel.

Como variaveis preditoras, adotaram-se as mesmas varidveis do modelo de Clutter, a
saber: idade atual, idade de interesse, area basal atual e indice de sitio. Os pardmetros dos
modelos foram ajustados por meio de uma busca em grade (“grid search’), na qual se avaliaram
diferentes combinagdes de hiperparametros. Ao final, selecionou-se o modelo com o melhor
desempenho e os respectivos hiperpardmetros para a geracdo do mapa de erro. Os

hiperparametros testados foram:

e XGBoost:

o Numero de arvores: 100 e 200

o Profundidade méaxima das arvores: 2, 4 e 5 (profundidade rasa,
profunda e ainda mais profunda, respectivamente)

o Taxa de aprendizado: 0,01; 0,1 e 0,3 (taxa de aprendizagem baixa,
média e alta, respectivamente)

o Valor minimo para reducdo de perda: 0 (ndo ha restri¢do para divisdo)

o Proporg¢ao de coluna: 1 (todas as variaveis sao consideradas)

o Peso minimo da soma dos gradientes: 1 (arvores mais complexas)

o Propor¢ao das amostras: 1 (todas as amostras sdo usadas)

o ParAmetro de regularizagdo variando de 27 até 2°

o Pardmetro do kernel radial variando de 2 até 22
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o)
e KNN
o)

(@)

Numero de variaveis: 2,4 e 5 (2,4 ou 5 varidveis aleatdrias para decidir
a divisao)
Critério de divisdo do nos: variancia

Numero de observagdes em um né terminal: 5 e 10

Numero de neuronio testados: 5, 10 e 15
Parametro de regularizagdo: 0,01; 0,1 ¢ 0,5
Numero de camada oculta: 1

A funcao de ativacao: logistica

f(x):1+e"‘

Numero maximo de iteragdes: 100

Numero de vizinhos considerados: 3,5, 7,9, 11, 13 e 15

Distancia utilizada: distancia Euclidiana

Na versdo ampliada dos modelos, incorporaram-se indices espectrais e de texturas as

varidveis preditoras do modelo de Clutter. As combinagdes testadas incluiram:

1. IE unicos: NDVI, GNDVI, SAVI, SR, RVI, DVI, NBRI, EVI, Energy, Entropy,
Correlation, IDM, CShade, CProminence, HC, Inertia

2. Combinag¢des binarias: NDVI+GNDVI, NDVI+SAVI, NDVI+SR, GNDVI+SAVI,
GNDVI+SR, SAVI+SR

3. Combinacoées ternarias: NDVI + GNDVI + SAVI, NDVI + GNDVI + SR, GNDVI +

SAVI + SR

4. Combinacio quaternaria: NDVI + GNDVI + SAVI + SR, RVI + DVI + NBRI + EVI,
Energy + Entropy + Correlation + IDM, CShade + CProminence + HC + Inertia.

5. Combinac¢iao de oito: NDVI + GNDVI + SAVI + SR + RVI + DVI + NBRI + EVI,
Energy + Entropy + Correlation + IDM + CShade + CProminence + HC + Inertia.
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1.7.3 AVALIACAO DOS MODELOS

Para a avaliacdo dos modelos de sitio (usados dentro do modelo de Clutter), do modelo
de Clutter e dos modelos de aprendizado de maquina, foi adotado o método de Cross-Validation

(CV) utilizando 5 folds como demonstrado na Figura 11.

Fold 1 Teste ] [ Treino ] l Treino ] [ Treino ] [ Treino ] —

Fold 2 Treino ] [ Teste ] [ Treino ] [ Treino ] [ Treino ] —

Treino ] [ Treino ] [ Teste ] [ Treino ] [ Treino —
da fold 3 performance

Treino Treino Treino Teste Treino e Perfomance
da fold 4

Fold 3

Fold 4

— —— —— —

Fold 5 [ Treino ] [ Treino ] l Treino ] [ Treino ] l Teste ] —

Figura 11 — modelo de valida¢dao CV

A validacao cruzada (Cross Validation — CV) € uma das técnicas mais comuns em
modelagem estatistica e aprendizado de maquina, utilizada para avaliar o desempenho e a
capacidade de generalizagdo dos modelos. Nesse procedimento, o conjunto de dados ¢ dividido
aleatoriamente em cinco subconjuntos (folds), dos quais quatro sdo utilizados para o
treinamento do modelo e um para a validacdo. Esse processo ¢ repetido até que todos os
subconjuntos tenham sido utilizados como conjunto de validagdo. A aplicagao da CV reduz o
risco de enviesamento dos conjuntos de teste, tornando as métricas de desempenho, como
RMSE, R? e MAE, mais estaveis e representativas. Além disso, contribui para a detec¢do do
overfitting (sobreajuste dos dados) e pode ser empregada tanto em modelos paramétricos,
empiricos quanto em modelos de aprendizado de maquina (Browne, 2000). Adicionalmente,
foram calculadas as estatisticas de desvio-padrdo, valores minimos e maximos para todos os
folds, de modo a fornecer uma referéncia sobre a variacdo das métricas descritivas ao longo da

validacao cruzada.

1.8 Critérios de selecao de modelos

Para as analises de estatistica de qualidade dos modelos, foram utilizadas as estatisticas
de Raiz do Erro Médio Quadratico (RQEM), Raiz do Erro Médio Quadratico (RQEM%),

correlacdo de Pearson (1), coeficiente de determinagdo (R?) e Viés%.
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O REMQ mede o erro médio entre os valores observados e preditos. De forma simples
mostra o quao longe, em média, as previsdes estdo da realidade. REMQ% ¢ o REMQ em
porcentagem e permite comparar modelos em diferentes escalas, facilitando a interpretagao
pratica dos erros. Viés% indica se os modelos tendem a superestimar ou subestima os valores.
Um viés mais baixo indica que o modelo ndo possui tendéncia sistematicas. r € o coeficiente de
correlagdo de Pearson onde mede a forca da relagdo linear entre os valores observados e valores
preditos. R? mostra a proporcao da variabilidade dos dados observados explicadas pelo modelo.
As andlises estatisticas foram realizadas para todos os processamentos, desde a selecdo do

indice de sitio até nos ajustes do modelo de Clutter e modelo de aprendizado de maquina.

RESULTADOS

1.9 Analise exploratoria

Nas Figuras 12, 13 e 14 sdo apresentados os graficos correspondentes as variaveis
biométricas altura dominante, area basal e volume, respectivamente. Em todos os graficos, as
linhas que conectam os pontos representam a trajetoria temporal de cada talhdo ao longo do

periodo analisado.
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Figura 13 — Grdfico da drea basal e idade
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A analise exploratéria da varidvel altura dominante indica um padrao de dispersao
coerente com a dindmica de crescimento florestal, caracterizado pelo aumento dos valores em
fun¢do da idade e pela tendéncia a estabilizagdo a partir de aproximadamente 70 meses.
Observa-se, contudo, elevada dispersdao dos dados, refletindo a heterogeneidade dos talhdes
avaliados. Para a area basal, verificou-se comportamento semelhante e esperado ao longo do
tempo, com rapido incremento nos primeiros anos de desenvolvimento, seguido de
estabilizacdo apos cerca de 60 meses. Em relagdo ao volume, nao foi observada redugdo na taxa
de crescimento, sendo predominante um comportamento aproximadamente linear em funcdo
do tempo. Adicionalmente, os graficos evidenciam significativa dispersdao dos dados ao longo

da série temporal, associada as diferencas entre talhdes e gendtipos analisados.

A Figura 15 apresenta a relagao entre os indices espectral e de textura, representados
no eixo y, ¢ a idade dos talhdes, expressa em anos no eixo x. Enquanto a Figura 16 apresenta a
relacdo dos indices e do volume. A linha azul da Figura 15 e 16 representa a tendéncia média

das observagdes ao longo do tempo, obtida por meio de um ajuste suavizado (smooth).
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Na Figura 15, observa-se que os indices espectrais apresentam varia¢do limitada ao
longo da idade, com tendéncias suaves de aumento ou estabilizacdo apos os primeiros anos.
Esse comportamento ¢ tipico de povoamentos florestais homogéneos € manejados, nos quais o
rapido fechamento do dossel ocorre ainda nas fases iniciais do crescimento. O NDVI, SAVI e
EVI exibem valores relativamente elevados ja a partir dos primeiros anos, mantendo-se estaveis
ao longo do tempo. Esse padrdo indica que o aumento inicial da éarea foliar promove rapida
elevacdo da reflectancia no infravermelho proximo e redugdo no vermelho, refletindo maior

interceptacdo de radiagdo fotossinteticamente ativa e maior eficiéncia fotossintética.

Os indices de textura apresentam maior dispersdo e variabilidade ao longo da idade,
refletindo mudangas na heterogeneidade espacial do dossel. O aumento gradual da Energia e
do IDM (Homogeneidade) indica que, com o avango da idade, o povoamento tende a se tornar
mais estruturalmente uniforme, com copas mais continuas e reducao de variagdes locais de tons

de cinza.

Ja na Figura 16, de forma geral, observa-se que os indices espectrais apresentam
tendéncias fracas a moderadas em relagdo ao volume, com padrdes ndo lineares e grande
dispersao dos dados, especialmente em volumes mais elevados. NDVI, GNDVI e SAVI exibem
comportamento de leve decréscimo ou estabilizagdo a medida que o volume aumenta. Esse
padrao ¢ consistente com o fendmeno de saturacao espectral, no qual incrementos adicionais de
biomassa e area foliar nao resultam em variagdes proporcionais nos indices baseados na razao
entre o infravermelho préximo e o vermelho (ou verde). Em volumes baixos a intermediarios,
os indices apresentam maior sensibilidade, refletindo o aumento da 4area foliar, maior
interceptacao da radiagdo fotossinteticamente ativa e maior acumulo de biomassa. Entretanto,
em talhdes com volumes elevados, a capacidade discriminatoria desses indices diminui

substancialmente.

Em contraste com os indices espectrais, os indices de textura apresentam respostas
mais consistentes ao longo do gradiente de volume, refletindo alteragdes na organizagdo
espacial do dossel. A Energia e o IDM (Homogeneidade) tendem a aumentar com o volume,
indicando que povoamentos mais volumosos apresentam estrutura espacial mais uniforme, com
copas continuas e menor variagdo local de tons de cinza. A Entropia mantém valores
relativamente constantes, com leve aumento em volumes intermedidrios, sugerindo maior
heterogeneidade estrutural durante fases de crescimento mais intenso, seguida de estabilizagao

em povoamentos maduros. Esses resultados evidenciam que os indices de textura capturam
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informacdes estruturais do povoamento que ndo sdo diretamente representadas pelos indices
espectrais médios. De modo geral, todos os indices apresentaram baixa correlacdo com a idade,

sugerindo pouca variacao espectral ao longo dos anos.

1.9.1 SELECAO DO MODELO DE INDICE DE SITIO

A Tabela 7 apresenta os coeficientes estimados dos modelos de indice de sitio, assim
como as respectivas estatisticas de qualidade do ajuste, para os trés modelos de equagdo de sitio
descritos na Tabela 5. Os resultados demonstraram alta significancia estatistica para todos os
coeficientes avaliados, com valores de p inferiores a 0,0001, indicando que os parametros dos
modelos apresentam contribuigdo significativa para as estimativas. Na comparacdo de
desempenho entre os modelos testados, o modelo de Gompertz e Logistico mostraram-se mais
preciso, apresentando menor valor de REMQ% para predi¢cao do indice de sitio. A Figura 17
mostra as curvas dos modelos de sitio ajustado.

Tabela 7 — Coeficientes estimados e estatistica de qualidade de cada modelo. Os valores em
parénteses indicam o p-valor

Coeficientes Estimados Estatisticas de qualidade
Modelo B B2 B3 REMQ%  Bias r R?
35,533 -178,209
Schumacher ’ ’ . 12,57 0,208 0,76 0,57

(<0,0001) (<0,0001)

433130 02713 0,0161
rt : ’ ’ 11,87 0,002 079 062
Gompertz 0001y (<0.0001) (<0,0001) : ’ :

Lowisti 38,5921 21,431 00250 o0 002 079 0,62
1st1
B (<0,0001) (<0,0001) (<0,0001) ’ ’ ,
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Observa-se que todos os modelos sdo capazes de representar a tendéncia geral de
crescimento em altura, caracterizada por um répido incremento inicial seguido de redugao
gradual da taxa de crescimento com o avanco da idade, comportamento tipico de espécies

florestais de rapido crescimento.

1.9.2 COMPARACAO ENTRE O MODELO DE EM SUA ESTRUTURA TRADICIONAL E ADICIONADO DE
IE/IT

A Figura 18 apresenta a média da métrica de acuracia REMQ% para a estimativa da
area basal (a) e do volume (b). Os resultados indicam elevada precisdo dos modelos, com
valores de REMQ% inferiores a 10%, coeficiente de determinagdo (R?) superior a 80% e
coeficiente de correlagdo (r) acima de 90% na predigdo da 4rea basal. Para o volume, o REMQ%
manteve-se inferior a 10%, com valores de R? e r superiores a 90%, evidenciando alto

desempenho preditivo.

Na Tabela 8 (Apéndice), observa-se que os valores de p foram inferiores a 0,01 para
todos os indices espectrais (IE), indicando significancia estatistica dos coeficientes estimados
no modelo. Em relag@o aos indices de textura (IT), apenas as métricas Entropy, CP, HC, IDM,
CS e Inertia ndo apresentaram valores de p significativos. Os demais parametros apresentados

na Tabela 11 mostraram significancia estatistica no modelo. Além disso, conforme ilustrado na
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Figura 18, a incorporacdo dos indices espectrais e de textura ndo resultou em diferencas
expressivas em relagdo ao modelo de Clutter tradicional, indicando desempenho semelhante

entre as abordagens.
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Figura 18 — Grafico de valores mdximos, médios e minimos da raiz quadrada do erro
médio quadratico para as variaveis area basal (a) e volume (b) estimados pelo modelo de
Clutter em sua estrutura tradicional e com a inser¢do de indices espectrais e texturais.

1.9.3 MODELOS DE APRENDIZADO DE MAQUINA

A Figura 19 apresenta o grafico de REMQ% dos modelos de aprendizagem de
maquina, utilizando apenas as variaveis do modelo de Clutter com inser¢do dos IE/ITs. A
Figura 21 apresenta o mapa de erro dos volumes preditos pelo melhor modelo de aprendizagem
de maquina, que foi o SVM, utilizando os hiperparametros: sigma = 0,25; C =4, e a figura 22

¢ apresentado o erro em modulo do modelo em relacao a idade dos talhdes.
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Observa-se na Figura 20 que os modelos de AM somente com as varidveis usuais do
modelo de Clutter, ou seja, mesmo sem a inclusao de variaveis de sensoriamento remoto, ja
obtiveram uma melhora na acuracia da prognose. A figura apresenta o desempenho dos modelos
de aprendizado de maquina SVM, XGBoost, RNA, RF e KNN, avaliados por meio do REMQ%
do volume, considerando diferentes combinagdes de variaveis dendrométricas, indices
espectrais e indices de textura. As barras representam as distribui¢des do erro associadas a cada
combinagdo, enquanto os pontos indicam medidas centrais e dispersao. Observa-se que o0s
modelos apresentam desempenhos distintos, evidenciando diferencas na capacidade de capturar

relagdes complexas entre as variaveis explicativas e o volume florestal.

Dentro os modelos testados, o0 SVM apresentou os menores valores médios de REMQ,
situando-se predominantemente entre aproximadamente 6% e 9%, indicando elevada
capacidade de generalizacdo. Esse desempenho sugere que o SVM foi eficiente em modelar
relagdes nao lineares entre variaveis dendrométricas e espectrais, mesmo em um contexto de
alta dimensionalidade. XGBoost ¢ RNA apresentaram desempenhos intermedidrios, com
valores de REMQ levemente superiores aos do SVM, porém ainda relativamente estaveis entre
as diferentes combinacdes de variaveis. Isso indica boa robustez, embora com menor
sensibilidade a ganhos incrementais decorrentes da inclusao de multiplos IE e IT. Random
Forest apresentou REMQs ligeiramente mais elevados e maior variabilidade, o que pode estar
associado a sua sensibilidade a correlacdo entre variaveis e a presenc¢a de ruido, especialmente
quando muitas combinacdes espectrais e texturais sdo incluidas simultaneamente. KNN
apresentou os maiores valores de REMQ e maior dispersao, evidenciando menor capacidade de
generalizagdo. Esse comportamento € consistente com a natureza do algoritmo, que ¢
fortemente dependente da distribui¢ao local dos dados e sensivel a dimensionalidade do espago

de atributos.

DISCUSSOES

A melhora da capacidade preditiva dos modelos de aprendizado de maquinas em
relagdo ao sistema de equagdes usual de Clutter, ainda que discreta, sugere que estes modelos
tem potencial de melhor captar relagdes complexas entre as variaveis. O sistema de equagoes
de Clutter, sendo um sistema de regressdo linear, presume que a forma da relagdo entre as
variaveis resposta e explicativas seja explicitada no ajuste ao passo os modelos de aprendizado

de maquinas compdem esta forma de relagdo entre variaveis ao longo do treinamento
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Em relacdo a adi¢dao dos indices espectrais e de textura ao modelo de Clutter e aos
modelos de AM, apesar dos ganhos observados, a magnitude das melhorias também foi sutil.
Quando as variaveis espectrais foram inseridas empiricamente no modelo de Clutter, as
variagdes na capacidade preditiva do modelo foram praticamente imperceptiveis, com
diferencas na segunda casa decimal. Quando as mesmas variaveis foram utilizadas em modelos
de aprendizado de maquina, o ganho foi mais perceptivel, embora ainda pequeno chegando a
0,7%, o que indica que esses algoritmos capturam melhor, ainda que minimamente, efeito das

variaveis espectrais sobre a variavel resposta.

Dentre os indices testados, o SR, o NBRI e o HC destacaram-se por apresentarem os
menores erros, refletindo diretamente o vigor fisiologico das arvores. Arvores com folhas mais
saudaveis realizam fotossintese de forma mais eficiente, resultando em maior produgdo de
fotoassimilados que ¢ a base fisiologica para o acumulo de biomassa e volume. O teor de
clorofila, por sua vez, ¢ um indicador importante da produtividade florestal, uma vez que
regides com menor concentragdo de clorofila tendem a apresentar menor crescimento
(Azevedo, 2022). A absor¢ao de clorofila ocorre predominantemente no comprimento de onda
de 680 nm (faixa do vermelho), enquanto a regido entre 690 e 740 nm (borda vermelha e
infravermelho proximo) ¢ altamente sensivel a presenga desse pigmento, constituindo-se em
uma métrica relevante para avaliar o estado fisioldgico das plantas (Coops, 2015). Assim, o
aumento da banda do infravermelho proximo esta associado a uma maior area foliar, com maior
refletancia no NIR e menor no vermelho, o que indica copas mais fechadas, maior eficiéncia

fotossintética e, consequentemente, maior acumulo de biomassa e volume.

Contudo, indices baseados no infravermelho proximo, como o NDVI, apresentam
limita¢do de saturacdo em florestas densas (Berger et al., 2019). Nesses casos, mesmo com o
aumento da biomassa, o indice tende a estabilizar ou crescer mais lentamente, tornando-se
menos sensivel as variagdes de vigor em niveis elevados de fechamento de copa. Essa limitagao
justifica o uso de indices alternativos, como o SR e o NBRI, que sdo menos suscetiveis a
saturacdo, além da adocao de indices de textura, capazes de representar a homogeneidade
estrutural dos talhdes. Outra abordagem promissora consiste na utilizacdo de séries historicas
de indices espectrais, como o NDVI acumulado, em conjunto com variaveis bioclimaticas.
Quando processadas por algoritmos de Floresta Aleatoria, essas informagdes t€m demonstrado
capacidade de explicar mais de 90% da variabilidade do volume de madeira, além de contribuir
significativamente para a estimativa ¢ a contabiliza¢do de estoques de carbono em escalas

regional e até nacional. (le Maire et al., 2011).
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Entretanto, o pequeno ganho marginal observado nas estimativas dos modelos com a
inclusdo dos indices espectrais e texturais pode estar associado a auséncia de
georreferenciamento das parcelas de inventario. A utilizagao de valores médios dos indices por
talhdo tende a reduzir a variabilidade espacial dos dados, considerando que os talhdes florestais
apresentam heterogeneidade intrinseca. Assim, a agregacao por média pode suprimir diferengas
locais relevantes, limitando a capacidade dos modelos em captar variagdes intra-talhdo. Nesse
sentido, estudos futuros devem priorizar a associacdo dos indices espectrais diretamente a area
das parcelas amostrais, em detrimento de médias por talhdo, a fim de preservar a variabilidade

espacial e, consequentemente, aumentar a precisao das estimativas.

Ressalta-se que foram utilizadas imagens do satélite Landsat 8, de acesso gratuito, o
que confere viabilidade operacional ao fluxo metodolégico proposto para aplicagdo em
empresas florestais. Ademais, a incorporacdo de sensores com maior resolugdo espacial e
espectral tende a potencializar os resultados, contribuindo para o aprimoramento do
desempenho dos modelos preditivos. A resolugdo espacial e, principalmente, a resolu¢do
temporal do Landsat 8 representaram limitagdes relevantes neste estudo. Para um
monitoramento continuo e eficiente de plantios florestais, ¢ desejavel o uso de satélites com
revisita mais frequente e maior nivel de detalhe espacial. Nesse contexto, o sensoriamento
remoto, aliado ao inventéario florestal, mostra-se uma ferramenta poderosa, oferecendo uma
visdo abrangente de grandes 4areas, inclusive aquelas de dificil acesso. Contudo, o
sensoriamento remoto nao substitui o inventario tradicional, mas o complementa, auxiliando na
espacializacdo de varidveis como volume e area basal e aprimorando o planejamento de colheita
e manejo. Assim, consolida-se como um componente essencial da silvicultura de precisao,
atendendo as demandas crescentes do setor florestal moderno (Santos et al., 2023). Dedicar um
paragrafo a respeito da saturacdo (“estouro”) dos indices espectrais e texturais. Citar referéncias
que mostram isso. Mencionar a existéncia de outros indices ou sensores que possam minimizar

esta questao.

Estudos anteriores refor¢am a aplicabilidade dessas metodologias. Santos et al. (2023),
na regido do Vale do Rio Doce, utilizaram RNA e RF para prognose do crescimento de
povoamentos de Eucalyptus grandis X E. urophylla com dados Landsat 7 e obtiveram bons
RQEM%, mesmo com redugdo do esforco amostral, onde variaram de 7,9% a 14,5% para
predi¢do continua e 6,8% a 11,8% para predicdo. Dos Reis et al. (2019) combinaram dados
Landsat 8, RADAR e MDE com Random forest para estimar volume de eucaliptos, obtendo

RMSE% de 12,88%. Alcantara et al. (2018), ao estimar rendimento volumétrico de eucaliptos
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em Minas Gerais com RNA, incorporando varidveis ambientais e edaficas, alcangaram
RMSE% de 22,22%. Esses resultados corroboram as evidéncias encontradas neste estudo
quanto a viabilidade de integrar dados de sensoriamento remoto e técnicas de aprendizado de

maquina na modelagem florestal.
CONCLUSAO

A inclusdao de indices espectrais e texturais, especialmente o SR, NBRI e¢ HC,
promoveu uma melhora modesta na acuracia das projecdes volumétricas. Entretanto, foi na
aplica¢do dos modelos de aprendizado de maquinas que se observou um ganho um pouco mais
expressivo de desempenho. As maquinas de vetor de suporte destacaram-se como o melhor
modelo, superando os outros modelos testados, tais quais Florestas Aleatorias, K-Vizinho

Préximo, redes neurais artificiais e Aumento de Gradiente Extremo.

Em sintese, os achados sugerem que inclusao de variaveis de sensoriamento remoto
pode melhorar, ainda que discretamente, a capacidade preditiva dos modelos tradicionais. Os
algoritmos de inteligéncia computacional, como os modelos de aprendizado de maquinas,
mostraram-se mais eficientes na incorporacdo dessas varidveis, indicando um caminho

promissor para o aprimoramento dos modelos de crescimento e producgdo florestal.
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APENDICE

Tabela 8— Estimativas dos coeficientes da equacgdo area basal do modelo de Clutter para
base de dados 100%. Também é apresentado estatistica de qualidade da Validagdo

Cruzada.
Entrada de . . ;L. .

E/IT Coeficientes estimados Estatistica de qualidade
Modelo al 02 o3 RQEM% Bias r R?
Clutter usual  2,284136 0,037946 NA 631 001 092 0.81
Cluter + 5 030095 0,036274  0,72738 6,26 0,03 093 0.86
NDVI t H L ’ b b b

Clutter +

GubDu 2048182 0036611  0,68044 625 004 093 0.86
Cls‘f\e,&* 2030996 0,036274  0,48493 6,28 0,03 0,93 0,86
Clutter + SR 1.974079 0036104  0,14858 628 004 093 0.86
Cl‘ﬁt\tflr T 2598044 0036379  -0,64526 628 003 093 0,84
Clg{flr T 2010441 0,038146  0,00001 628 008 093 0,87
Clutter +

BRI 205384 0035878  0.77260 631 003 093 0,85
Cl‘ét\tflr T 2140198 0,036693  -0,53322 629 002 092 0,83
Clutter + = 353668 0,037825  -0,25516 631 001 092 0,82
Energy

Clutter + 5 591749 0,037837  0,02824 631  -001 092 0,83
Entropy

Clutter + 5 350172 0,037748  -0,03539 633 001 092 0,82
Correlation

le‘éff 2322118 0037911  -0,04238 632  -001 092 0,81
Clutter + 5 586039 0,037845  0,00076 6,31 0.1 095 0.9
Inertia

Clutter ¥, 588042 0,037774  0,00004 630 001 092 0,81
Cshade

Clutter + 5 3405797  0,037912  -0,00005 630 001 092 0,81
Cprominence
Clutter + HC 2,280803 0,037737  0,03335 632  -002 092 0.81
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Tabela 9 — Valores do p-valor dos coeficientes da equacdo da area basal

Entrada de IE/IT

Coeficientes estimados

Modelo

Clutter usual

Cluter + NDVI

Clutter + GNDVI

Clutter + SAVI

Clutter + SR

Clutter + RVI

Clutter + DVI

Clutter + NBRI

Clutter + EVI

Clutter + Energy

Clutter + Entropy

Clutter + Correlation

Clutter + IDM

Clutter + Inertia

Clutter + Cshade

Clutter + Cprominence

Clutter + HC

p-valor de al

6,62E-103

6,00E-65

5,08E-62

6,00E-65

2,86E-60

3,03E-78

4,91E-47

6,03E-75

3,86E-85

1,91E-100

4,74E-86

6,34E-101

4,75E-17

1,07E-102

6,44E-103

3,15E-103

2,09E-102

p-valor de a2

1,88E-36

6,19E-34

2,62E-34

6,19E-34

5,76E-34

5,61E-34

3,95E-37

1,34E-33

8,16E-35

1,46E-36

2,55E-36

2,31E-36

3,97E-36

4,06E-36

4,89E-36

1,61E-36

8,63E-36

p-valor de a3

NA

4,79E-05

5,71E-04

4,79E-05

3,07E-06

1,63E-04

3,94E-03

1,24E-06

7,16E-05

7,54E-03

1,26E-01

1,39E-02

8,81E-01

5,81E-01

3,45E-01

6,04E-02

4,57E-01
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Tabela 10 — Estimativas dos coeficientes da equagdo Volume do modelo de Clutter para
base de dados 100%. Também é apresentado estatistica de qualidade da Validagdo

Cruzada.
Entrada de Coeficientes estimados Estatistica de qualidade
IEAT
Modelo BO Bl B2 B3 RQEM% Bias r R2
Clutter Puro  1,5623 -16,6823  0,0269  1,1058 851 1,06 097 0,93
Cluter +
NDVI 1,5600 -16,6544 0,0269 1,1067 849 1,02 097 094
Clutter +
GNDyl | 13631 16,6924 0,0269  1,1055 851 1,02 097 093
Clgge” 1,5600 -16,6544  0,0269  1,1067 849 1,02 097 0,9
VI
Clutter + SR 1,5581 -16,6307 0,0269  1,1074 846 0,99 097 0,94
Clutter + RVI  1,5606 -16,6612  0,0269  1,1065 850 1,03 097 0093
Cher™ 15618 -16,6769 00269 11060 853 106 097 093
Clutter +
NBRI 1,5566 -16,6115 0,0269 1,080 846 1,01 097 0,94
Clutter + EVI  1,5637 -16,7003  0,0270  1,1052 850 1,01 097 0,93
CElu“er* 1,5798 -16,9015 0,0272  1,0988 858 1,04 097 0,93
nergy
CE“*““* 1,5760 -16,8541  0,0271  1,1003 859 105 097 0,93
ntropy
Cluter * 15786 -16,8872 0,271 10993 859 105 097 093
Correlation
Cl}*Sﬁ* 1,5670 -16,7418  0,0270  1,1039 855 1,06 097 0,93
Cllutte.” 1,5627 -16,6878 00269  1,1056 852 1,07 097 093
nertia
et 15644 -16,7092 00270  1,1049 853 106 097 093
Cshade
coluter® 15517 .16,5494 00268 11100 843 102 097 094
prominence
Clutter + HC  1,5661 -16,7300  0,0270  1,1043 855 1,06 0,97 0,93
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Tabela 9 — Valores do p-valor dos coeficientes da equagdo do Volume.

Entrada de IE/IT

Coeficientes estimados

Modelo

Clutter usual

Cluter + NDVI

Clutter + GNDVI

Clutter + SAVI

Clutter + SR

Clutter + RVI

Clutter + DVI

Clutter + NBRI

Clutter + EVI

Clutter + Energy

Clutter + Entropy

Clutter +
Correlation

Clutter + IDM

Clutter + Inertia

Clutter + Cshade

Clutter +
Cprominence

Clutter + HC

p-valor de 0

2,55E-53

1,45E-54

3,14E-54

1,45E-54

5,00E-55

2,26E-54

3,46E-54

4,22E-55

1,76E-54

3,40E-54

1,10E-53

4,67E-54

2,26E-53

2,54E-53

2,44E-53

1,70E-53

2,40E-53

p-valor de 1

1,91E-31

3,79E-32

5,68E-32

3,79E-32

2,11E-32

4,86E-32

6,11E-32

1,95E-32

4,04E-32

4,78E-32

9,86E-32

5,83E-32

1,68E-31

1,90E-31

1,81E-31

1,74E-31

1,76E-31

p-valor de 2

2,30E-54

1,68E-55

3,69E-55

1,68E-55

6,13E-56

2,54E-55

3,86E-55

5,00E-56

2,25E-55

6,82E-55

1,70E-54

8,70E-55

2,41E-54

2,33E-54

2,37E-54

1,13E-54

2,47E-54

p-valor de 33

4,33E-137

4,69E-140

7,53E-139

4,69E-140

2,49E-141

1,46E-139

5,71E-139

9,61E-142

2,89E-139

5,27E-136

1,41E-135

6,57E-136

2,07E-136

5,08E-137

8,95E-137

3,10E-139

1,64E-136
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