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RESUMO 

A modelagem do crescimento e da produção florestal é fundamental para o 

planejamento e manejo sustentável de florestas plantadas. O modelo de Clutter, amplamente 

utilizado no Brasil, baseia-se exclusivamente em variáveis dendrométricas convencionais 

(idade, área basal e índice de sítio), não considerando fatores fisiológicos como a capacidade 

fotossintética das plantas. Assim este estudo teve como objetivo avaliar a incorporação de 

variáveis proxy de capacidade fotossintética, na modelagem do crescimento e produção 

florestal. A pesquisa foi conduzida em plantios de eucalipto na mesorregião do Vale do Rio 

Doce, Minas Gerais, utilizando dados de inventário florestal contínuo (2013-2019) fornecidos 

pela empresa CENIBRA. Foram extraídos valores de reflectância de imagens Landsat 8 sem 

cobertura de nuvens, calculando-se oito índices espectrais (NDVI, GNDVI, SAVI, SR, NBRI, 

RVI, DVI, EVI) e oito índices de textura baseados na Matriz de Co-ocorrência de Níveis de 

Cinza (Energia, Entropia, Correlação, IDM, Inércia, CS, CP, HC). Cinco algoritmos de 

aprendizado de máquina foram testados: Flroestas Aleatórias (RF), Máquina de Vetores Suporte 

(SVM), Aumento de Gradiente Extremo (XGBoost), Redes Neurais Artificiais (RNA) e K-

Vizinhos Próximos (KNN). A validação foi realizada através de validação cruzada com 5 folds, 

utilizando métricas de acurácia REMQ para selecionar o melhor modelo. Os resultados 

demonstraram que o modelo de Clutter apresentou elevada precisão, com RMSE% inferior a 

10% para volume, R² superior a 0,93 e r = 0,97. A incorporação de índices espectrais e texturais 

no modelo de Clutter promoveu melhorias modestas, reduzindo o RMSE% de 8,51% para 

8,46% com os índices SR e NBRI. Entretanto, os algoritmos de aprendizado de máquina, 

particularmente o SVM, demonstraram melhor capacidade de incorporar essas variáveis, 

resultando em ganhos de acurácia de até 0,7% em relação ao modelo tradicional. Os índices 

SR, NBRI e HC destacaram-se como os melhores preditores. Conclui-se que a inclusão de 

variáveis de sensoriamento remoto pode aprimorar discretamente a capacidade preditiva dos 

modelos tradicionais, sendo os algoritmos de aprendizado de máquina, particularmente o SVM, 

demonstraram melhor capacidade de incorporar essas variáveis, indicando um caminho 

promissor para o aperfeiçoamento dos modelos de crescimento e produção florestal.  

Palavras-chaves: Manejo florestal, sensoriamento remoto, Clutter, aprendizado de 

máquina 
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ABSTRACT 

Forest growth and yield modeling is fundamental for sustainable planning and 

management of planted forests. The Clutter model, widely used in Brazil, relies exclusively on 

conventional dendrometric variables (age, basal area, and site index), without considering 

physiological factors such as photosynthetic capacity. This study aimed to evaluate the 

incorporation of proxy variables for photosynthetic capacity, derived from remote sensing, into 

forest growth models, comparing the performance of the traditional Clutter model, its modified 

variant with spectral and textural indices, and machine learning algorithms. The research was 

conducted in commercial eucalyptus plantations in the Vale do Rio Doce region, Minas Gerais, 

using continuous forest inventory data (2013-2019) provided by CENIBRA. Reflectance values 

were extracted from cloud-free Landsat 8 images, calculating eight spectral indices (NDVI, 

GNDVI, SAVI, SR, NBRI, RVI, DVI, EVI) and eight texture indices based on the Gray Level 

Co-occurrence Matrix (Energy, Entropy, Correlation, IDM, Inertia, CS, CP, HC). Five machine 

learning algorithms were tested: Random Forest (RF), Support Vector Machine (SVM), 

Extreme Gradient Boosting (XGBoost), Artificial Neural Networks (ANN), and K-Nearest 

Neighbors (KNN). Validation was performed through 5-fold cross-validation, using RMSE, 

RMSE%, Pearson correlation (r), R², and BIAS% metrics. Results demonstrated that the 

traditional Clutter model exhibited high accuracy, with RMSE% below 10% for volume, R² 

greater than 0.93, and r = 0.97. The incorporation of spectral and textural indices into the Clutter 

model promoted modest improvements, reducing RMSE% from 8.51% to 8.46% with SR and 

NBRI indices. However, machine learning algorithms, particularly SVM, demonstrated 

superior capability in incorporating these variables, resulting in accuracy gains of up to 0.7% 

compared to the traditional model. The SR, NBRI, and HC indices stood out as the best 

predictors. It is concluded that the inclusion of remote sensing variables can discretely enhance 

the predictive capacity of traditional models, with machine learning algorithms being more 

efficient in incorporating these variables, indicating a promising path for improving forest 

growth and yield models.  

Keywords: Forest management, remote sensing, Clutter, machine learning 
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INTRODUÇÃO 

O setor florestal brasileiro ocupa uma posição de destaque no cenário mundial, com 

cerca de 10 milhões de hectares de florestas plantadas. Aproximadamente 75% dessa área é 

composta por plantações de eucalipto, enquanto os 25% restantes são distribuídos entre espécies 

como Pinus spp., seringueira (Hevea brasiliensis), acácia (Acacia mangium), teca (Tectona 

grandis) e paricá (Schizolobium amazonicum) (IBÁ, 2022). A concentração geográfica dos 

plantios de eucalipto evidencia a importância econômica desse cultivo, com 44% da área total 

localizada na região Sudeste, onde o estado de Minas Gerais se destaca como responsável por 

63% da produção regional. As demais regiões apresentam a seguinte distribuição: Centro-Oeste 

(20%), Sul (18%), Nordeste (13%) e Norte (5%) (IBÁ, 2022). 

A relevância socioeconômica do setor é incontestável. Em 2023, o Brasil registrou 

saldo positivo de 1.483.598 empregos formais, enquanto a silvicultura gerou 33 mil novos 

postos de trabalho, acumulando 2,69 milhões de empregos diretos e indiretos, sendo 690 mil 

empregos diretos. Além disso, o setor contribuiu significativamente para a economia nacional, 

gerando R$ 24,3 bilhões em tributos federais e estaduais no mesmo ano (IBÁ, 2022). Para além 

do aspecto econômico, as florestas plantadas desempenham múltiplas funções ecossistêmicas, 

incluindo sequestro de carbono, proteção do solo, conservação da biodiversidade e regulação 

do ciclo hidrológico (Sanquetta et al., 2018). 

O eucalipto, denominação atribuída ao conjunto de espécies e híbridos dos gêneros 

Eucalyptus, Angophora e Corymbia, destaca-se no setor florestal brasileiro em razão de suas 

elevadas taxas de crescimento, ampla versatilidade de uso e notável capacidade de adaptação a 

distintas condições edafoclimáticas. Dentre estes três gêneros, são cultivados em larga escala 

pelo setor florestal o gênero Eucalyptus e Corymbia. Dada relevância econômica e ambiental, 

plantio de eucalipto têm sido intensamente estudados em diversos aspectos como, por exemplo, 

sobre ciclagem de nutrientes, potencial energético, crescimento e produção florestal (Fiorentin 

et al., 2015), balanço de carbono (Baesso et al., 2010), dinâmica da evapotranspiração e 

segurança hídrica (Brasil, 2024), dentre outros. 

Diante desse contexto, o manejo eficiente das florestas plantadas depende de 

estimativas confiáveis sobre o estoque futuro de madeira produzida por estes povoamentos. 

Essas estimativas fornecem subsídios essenciais para análises econômicas e tomadas de decisão 

em diferentes escalas temporais e espaciais (Figueiredo et al., 2014; Melo et al., 2017). Como 
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destacam Campos & Leite (2006), o sucesso do manejo florestal está intrinsecamente associado 

à capacidade de projetar cenários futuros de produção com elevado grau de confiabilidade. 

Nesse cenário, os modelos matemáticos de crescimento e produção florestal são 

ferramentas indispensáveis para a gestão florestal. Entre os diversos modelos desenvolvidos ao 

longo das últimas décadas, o modelo de Clutter  (1963) destaca-se como um dos mais 

amplamente utilizados para a prognose da produtividade madeireira de floresta plantadas no 

Brasil. Em sua formulação original, esse modelo utiliza exclusivamente variáveis obtidas a 

partir do inventário florestal, como idade, área basal  e índice de sítio. 

O modelo de Clutter tem demonstrado desempenho consistente e satisfatório em 

diversos estudos aplicados a florestas de eucalipto no Brasil. Campos & Leite (2006) reportam 

que o modelo apresenta coeficientes de determinação (R²) superiores a 0,90 para projeção de 

área basal e 0,85 para volume, com erros percentuais geralmente inferiores a 10% em plantios 

comerciais bem manejados. Scolforo et al. (2008) avaliaram o modelo de Clutter em 

povoamentos de Eucalyptus grandis em Minas Gerais, obtendo R² de 0,94 para área basal e 

0,91 para volume, com erro padrão da estimativa de 8,7% e 11,3%, respectivamente. Dias et al. 

(2005) constataram que o modelo apresentou boa precisão na estimativa de volume para 

Eucalyptus spp., com erro padrão residual de 9,2% e distribuição homogênea dos resíduos.  

Apesar de seu ótimo desempenho, pesquisadores têm buscado alternativas para aprimorar os 

modelos de crescimento e produção florestal. Leite et al. (2011) desenvolveram uma 

modificação incorporando a variável área basal remanescente após desbaste, ampliando a 

aplicabilidade do modelo para povoamentos submetidos a diferentes intensidades de desbaste. 

Silva et al. (2016) propuseram a inclusão de variáveis climáticas (precipitação e temperatura) 

no modelo de Clutter para eucalipto, obtendo redução de 12% no erro padrão das estimativas 

em comparação com o modelo original. Téo et al. (2011) sugeriram modificações para incluir 

o efeito de geadas em plantios de Pinus taeda, através da inserção de variáveis indicadoras de 

ocorrência de danos. Parte deste aprimoramento tem sido no sentido de incorporar variáveis 

provenientes de sensoriamento remoto. Pereira et al. (2016) demonstraram que a inserção de 

uma variável espacial no modelo de Clutter pode melhorar o desempenho da predição de 

volume em até 6,57% quando incorporada à equação da área basal.  

Uma limitação fundamental dos modelos tradicionais é não considerar fatores 

fisiológicos que impactam o crescimento florestal. Por exemplo, a incorporação de variáveis 

que reflitam o vigor da copa e sua consequente capacidade fotossintética pode aprimorar as 
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estimativas. Como o modelo de Clutter é um modelo de projeção, que utiliza o estado atual do 

povoamento para estimar uma condição futura, variáveis que representem a capacidade 

fotossintética das plantas no momento atual podem, em princípio, atuar como bons preditores 

adicionais. O crescimento das árvores está intrinsecamente ligado à capacidade fotossintética, 

sendo a folha a estrutura responsável pela captação da radiação solar e sua conversão em 

fotoassimilados que constituem a biomassa (Binkley et al., 2003; Coops, 2015). Esta variável 

fisiológica crucial não é contemplada na formulação tradicional do modelo de Clutter, 

representando uma lacuna significativa na modelagem do crescimento florestal. 

De forma complementar, índices espectrais derivados do sensoriamento remoto, como 

o NDVI (Normalized Difference Vegetation Index), têm se mostrado promissores por sua 

correlação com parâmetros biofísicos das florestas, incluindo biomassa, área foliar e vigor 

vegetativo (Viana et al., 2016). A utilização de índices de vegetação como a Razão Simples 

(SR) e o Soil-Adjusted Vegetation Index (SAVI) tem demonstrado eficácia nas estimativas de 

volume de madeira e biomassa, com erros-padrão em torno de 12,34% em áreas de cerradão, 

conforme relatado por Miguel et al. (2015). Os avanços dos sistemas orbitais de observação da 

Terra têm possibilitado a aquisição de informações relacionadas ao vigor vegetativo em grandes 

áreas, com alta frequência temporal e relativamente baixo custo.  

Além dos índices espectrais tradicionais, uma nova dimensão de informação vem 

ganhando destaque na comunidade científica: os índices de textura derivados de sensores 

ópticos. Estes índices capturam a variabilidade espacial dos valores de pixels em uma imagem, 

fornecendo informações complementares sobre a estrutura do dossel florestal que não são 

capturadas pelos índices espectrais convencionais. A textura da imagem pode revelar aspectos 

da heterogeneidade estrutural das florestas, relacionando-se diretamente com características 

como densidade do povoamento, estrutura do dossel e, consequentemente, com a biomassa 

florestal. Estudos têm demonstrado que modelos incorporando métricas de textura apresentam 

correlações superiores a 0,86 com biomassa observada, superando significativamente 

abordagens baseadas apenas em variáveis espectrais (Kelsey & Neff, 2014). 

Além das propostas de modificação dos modelos tradicionais fundamentadas em 

regressões lineares e não lineares, observa-se uma evolução significativa nas abordagens 

analíticas disponíveis. Os modelos de aprendizado de máquina (AM) surgem como alternativas 

promissoras por sua capacidade de identificar padrões complexos entre variáveis, sem a 

necessidade de assumir relações funcionais previamente definidas (Brink et al., 2016). Esta 
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característica é muito pertinente para a incorporação de variáveis de sensoriamento remoto a 

modelos de crescimento e produção. A relação entre variáveis espectrais e atributos 

dendrométricos nem sempre é linear, demandando abordagens mais flexíveis (Santos et al., 

2023). Portanto, a integração dessas técnicas avançadas com variáveis de sensoriamento remoto 

representa uma fronteira de inovação na modelagem florestal. 

Estudos recentes têm demonstrado que a incorporação de variáveis espectrais em 

modelos de crescimento tradicionais pode resultar em melhorias significativas na acurácia das 

estimativas. Da mesma forma, a aplicação de algoritmos como Florestas Aleatórias, Máquina 

de Vetores Suporte e Redes Neurais Artificiais, combinados com parâmetros do modelo de 

Clutter e variáveis espectrais, tem mostrado resultados promissores na melhoria da acurácia das 

estimativas de produção florestal (Araujo et al., 2023). 

Diante desse cenário, este estudo parte da hipótese de que a incorporação de variáveis 

espectrais, representativas da condição fisiológica e da área foliar das árvores, pode aprimorar 

significativamente a acurácia da prognose volumétrica em relação aos modelos convencionais 

e aos baseados exclusivamente em aprendizado de máquina. Dois são os objetivos principais 

deste trabalho: a) avaliar a incorporação de variáveis espectrais na estrutura tradicional do 

modelo de Clutter e b) desenvolver e avaliar um modelo que integre as variáveis preditoras do 

modelo de Clutter com informações derivadas de sensoriamento remoto utilizando técnicas de 

aprendizado de máquina para capturar relações não-lineares entre as variáveis. 

REFERENCIAL TEÓRICO 

1.1 Crescimento de florestas plantadas 

O crescimento florestal pode ser definido como o incremento progressivo de uma 

árvore ou povoamento em dimensões como altura, diâmetro, área basal e volume ao longo do 

tempo (Pretzsch, 2009). Trata-se de um processo dinâmico que resulta da interação complexa 

entre fatores genéticos e ambientais, mediados por processos fisiológicos fundamentais, como 

fotossíntese, respiração, absorção de água e nutrientes, e alocação de carbono (Landsberg & 

Sands, 2011). 

A base do crescimento vegetal está na fotossíntese, processo pelo qual as plantas 

utilizam energia solar para converter dióxido de carbono (CO₂) e água em carboidratos, 

liberando oxigênio como subproduto. A produtividade primária bruta (PPB) representa a taxa 
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total de assimilação de carbono pela vegetação, enquanto a produtividade primária líquida 

(PPL) reflete a quantidade de carbono efetivamente incorporada na biomassa após descontar os 

gastos com respiração (Larcher, 2003). No contexto florestal, a PPL determina o potencial de 

acúmulo de biomassa lenhosa, que é o principal objetivo econômico das florestas plantadas para 

produção de celulose. 

O crescimento florestal é influenciado por uma ampla gama de fatores bióticos e 

abióticos. Entre os fatores abióticos, destacam-se a disponibilidade de luz, água e nutrientes, 

além das condições de temperatura e características do solo. A disponibilidade de luz afeta 

diretamente a taxa fotossintética, sendo particularmente relevante nas fases iniciais de 

desenvolvimento das árvores e na dinâmica de competição em povoamentos florestais (Silva et 

al., 2012). A água constitui um fator frequentemente limitante, influenciando não apenas a 

atividade fotossintética, mas também a absorção de nutrientes e a expansão celular. Segundo 

Stape et al. (2010), a disponibilidade hídrica pode explicar até 75% da variação na 

produtividade de plantações de eucalipto em diferentes regiões do Brasil. A nutrição mineral 

representa outro fator crítico para o crescimento florestal. Macronutrientes como nitrogênio, 

fósforo e potássio desempenham papéis fundamentais em processos metabólicos, estruturais e 

regulatórios nas plantas. Gonçalves et al. (2013) demonstraram que práticas adequadas de 

fertilização podem aumentar a produtividade de povoamentos de eucalipto em até 30%, 

dependendo das condições edáficas e climáticas locais. 

Entre os fatores bióticos que afetam o crescimento florestal, destacam-se a presença 

de pragas, doenças e plantas invasoras, além da competição intraespecífica. Em plantios 

comerciais de eucalipto no Brasil, pragas como o percevejo-bronzeado (Thaumastocoris 

peregrinus) e doenças como a ferrugem (Puccinia psidii) podem causar reduções significativas 

na produtividade se não adequadamente manejadas (Alfenas et al., 2004). 

O acúmulo de biomassa ao longo do tempo em um povoamento florestal segue um 

padrão característico, geralmente representado por uma curva sigmóide. Nas fases iniciais, o 

crescimento é lento devido à pequena área foliar disponível para interceptação da radiação solar. 

Com o desenvolvimento da copa e expansão do sistema radicular, o crescimento se acelera, 

atingindo seu ponto máximo quando o povoamento estabelece cobertura completa do solo. 

Posteriormente, observa-se uma desaceleração gradual do crescimento à medida que aumentam 

as demandas respiratórias e a competição por recursos (Burkhart & Tomé, 2012). 
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No contexto das florestas plantadas, o crescimento é comumente quantificado por meio 

de três índices principais: Incremento Corrente Anual (ICA), que representa o crescimento 

ocorrido apenas no último ano; Incremento Periódico Anual (IPA), que corresponde ao 

crescimento médio anual durante um período específico; e Incremento Médio Anual (IMA), 

que representa o crescimento médio anual desde o plantio até a idade atual (Campos & Leite, 

2006). A culminação do IMA, ponto em que este se iguala ao ICA, é frequentemente utilizada 

como referência para determinar a idade ótima de desbaste em povoamentos equiâneos. 

A produção florestal, por sua vez, pode ser entendida como o resultado acumulado do 

crescimento ao longo do tempo, subtraídas as perdas por mortalidade. Conforme explica 

(Campos & Leite, 2006), a produção em um povoamento florestal compreende cinco 

componentes principais: produção total, que representa o volume acumulado de todas as árvores 

(vivas e mortas) até determinada idade; produção corrente, correspondente ao volume das 

árvores vivas na idade atual; mortalidade, que representa o número ou volume de árvores que 

não sobreviveram ao longo do tempo; ingresso, referente às árvores que passaram a ser 

mensuráveis em inventários sucessivos; e colheita, que corresponde ao volume efetivamente 

removido durante operações de desbaste ou corte final. 

O eucalipto, espécie dominante nas florestas plantadas brasileiras, se caracteriza por 

um crescimento excepcionalmente rápido em comparação com outras espécies arbóreas. Em 

condições favoráveis, plantios clonais de eucalipto no Brasil podem atingir incrementos médios 

anuais superiores a 50 m³/ha/ano, posicionando o país entre os líderes mundiais em 

produtividade florestal (IBÁ, 2022). Esse desempenho resulta de décadas de melhoramento 

genético, associado ao desenvolvimento de técnicas silviculturais apropriadas às condições 

tropicais. 

As mudanças climáticas representam um desafio adicional para a compreensão e 

previsão do crescimento florestal. Segundo Laclau et al. (2013), o eucalipto pode beneficiar-se 

da elevada concentração atmosférica de CO₂; porém, é vulnerável a extremos climáticos como 

secas prolongadas e ondas de calor. Os impactos das alterações climáticas sobre essas florestas 

variam conforme a região e dependem do equilíbrio entre efeitos potencialmente positivos 

(maior concentração de CO₂) e negativos (aumento das temperaturas e alterações no regime 

hídrico). 

Estudos conduzidos por Sanquetta et al. (2018) analisaram a dinâmica do volume, 

biomassa, área de superfície e carbono das florestas plantadas no Brasil ao longo de 26 anos 
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(1990–2016). Os resultados evidenciaram um aumento significativo na área de florestas 

plantadas no país, acompanhado por um crescimento expressivo nos estoques de biomassa e 

carbono, com um acréscimo de aproximadamente 170%. Esse aumento representa a remoção 

de cerca de 5 bilhões de toneladas de CO₂ da atmosfera, demonstrando a relevância das florestas 

plantadas para a mitigação das mudanças climáticas. 

1.2 Modelagem do crescimento e da produção florestal 

A modelagem do crescimento e da produção florestal constitui uma disciplina 

fundamental para o planejamento e manejo sustentável de recursos florestais. Burkhart & Tomé 

(2012) definem modelos florestais como abstrações matemáticas que descrevem sistemas 

florestais, permitindo simular seu comportamento sob diferentes condições e cenários de 

manejo. Esses modelos evoluíram significativamente ao longo do tempo, refletindo tanto o 

avanço do conhecimento científico quanto o desenvolvimento de ferramentas computacionais 

mais sofisticadas. 

Historicamente, a modelagem florestal tem suas raízes nas tabelas de produção 

desenvolvidas na Europa Central durante os séculos XVIII e XIX. Essas tabelas, baseadas em 

observações empíricas, forneciam estimativas de produção para povoamentos homogêneos sob 

regimes de manejo específicos. Com o avanço da estatística e da computação no século XX, 

surgiram modelos mais flexíveis e dinâmicos, capazes de incorporar variabilidade espacial e 

temporal (Pretzsch, 2009). 

Os modelos de crescimento e produção florestal podem ser classificados em três 

categorias principais, de acordo com o nível de detalhe em que o sistema florestal é 

representado, conforme estabelecem Campos & Leite (2006): modelos de povoamento total, 

modelos de distribuição diamétrica e modelos de árvores individuais. Os modelos de 

povoamento total, como o próprio nome sugere, tratam o povoamento como unidade básica de 

modelagem, utilizando variáveis agregadas como idade, área basal, volume por hectare e índice 

de sítio. Esses modelos são geralmente mais simples e requerem menos dados para calibração, 

sendo amplamente utilizados no planejamento estratégico e tático do manejo florestal. Os 

modelos de distribuição diamétrica, por sua vez, incorporam informações sobre a estrutura do 

povoamento, representando a frequência de árvores em classes de diâmetro. Essa abordagem 

permite estimativas mais detalhadas da produção por classe de tamanho, informação essencial 

para a valoração de produtos florestais com diferentes especificações dimensionais. Já os 
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modelos de árvores individuais representam o nível mais detalhado de modelagem, simulando 

o crescimento de cada árvore em função de suas características individuais e de suas interações 

com árvores vizinhas e com o ambiente. Esses modelos são particularmente úteis para 

povoamentos heterogêneos e sistemas florestais complexos, embora demandem maior 

quantidade de dados e maior capacidade computacional. 

Dentro da categoria de modelos de povoamento total, destacam-se os modelos de 

densidade variável, que consideram explicitamente a influência da densidade do povoamento 

sobre o crescimento. O modelo de Clutter (Clutter, 1963) representa um dos exemplos mais 

influentes dessa abordagem, sendo amplamente adotado em empresas florestais no Brasil e 

em outras partes do mundo. Este modelo é um sistema de equações simultâneas que projeta a 

área basal e o volume do povoamento para idades futuras, com base em informações sobre a 

área basal atual, a idade e a qualidade do sítio. Matematicamente, o modelo pode ser expresso 

da seguinte forma: 

𝑙𝑛𝐺2 = 𝑙𝑛𝐺1 (
𝐼1

𝐼2
 ) + 𝛼1 (1 −

𝐼1

𝐼2
 ) + 𝛼2 (1 −

𝐼1

𝐼2
 ) ∗ 𝑆 

𝑙𝑛𝑉2 = 𝛽0 + 𝛽1 (
𝐼1

𝐼2
 ) + 𝛽2𝑆 + 𝛽3𝑙𝑛𝐺2 

Onde: 𝑙𝑛𝐺1 é a área basal de partida ou atual, 𝐼1 é a idade em meses de partida ou atual, 𝐼2 é a 

idade em meses, de interesse para prognose, 𝑆 é o índice de sítio, 𝑙𝑛𝐺2 é a área basal na idade 

de interesse para prognose , 𝑙𝑛𝑉2 é o volume do talhão na idade de interesse para prognose, 𝛼1, 

𝛼2, 𝛽0, 𝛽1, 𝛽2, 𝛽3 são coeficientes a serem estimados. 

O modelo de Clutter destaca-se por sua versatilidade e consistência matemática. A versatilidade 

deve-se ao fato de que a variável resposta (volume, m³ ha-1) é independente da distribuição de 

tamanhos das árvores, permitindo estimativas para diversos cenários de manejo. A consistência 

matemática, por sua vez, manifesta-se na capacidade do modelo de realizar projeções anuais 

sucessivas ou estimativas diretas para qualquer período futuro, mantendo a compatibilidade 

entre as estimativas (Campos & Leite, 2006). Entretanto, modelo tem limitações quanto a 

inferência sobre efeito de atributos ecofisiológicos, como a fotossíntese, alocação de carbono e 

resposta a fatores ambientais. Essa limitação torna-se particularmente relevante em um contexto 

de mudanças climáticas, onde as condições ambientais podem desviar-se significativamente 

daquelas sob as quais o modelo foi calibrado (Landsberg & Sands, 2011).Outra limitação 

importante refere-se à homogeneidade espacial assumida pelo modelo. Em condições reais, 



9 

 

fatores como topografia, características do solo e regimes microclimáticos podem variar 

consideravelmente dentro de um mesmo talhão, influenciando o crescimento de maneira 

heterogênea. Pereira et al. (2016) demonstraram que a inclusão de um componente espacial no 

modelo de Clutter pode melhorar significativamente sua capacidade preditiva, reduzindo os 

erros de estimativa em até 6,57%. 

Diante dessas limitações, pesquisadores têm buscado alternativas para aprimorar o 

modelo de Clutter e outros modelos empíricos tradicionais. Uma abordagem promissora 

envolve a incorporação de informações derivadas de sensoriamento remoto, que podem 

fornecer indicadores da condição fisiológica e do vigor vegetativo dos povoamentos florestais. 

 

1.3 Sensoriamento remoto para predição de estoque 

O sensoriamento remoto tem revolucionado a forma como monitoramos e 

gerenciamos recursos florestais, oferecendo uma visão sinóptica e temporal que seria 

impossível de obter exclusivamente por métodos tradicionais de campo. White et al. (2016) 

definem sensoriamento remoto como a ciência e a arte de obter informações sobre objetos 

através da análise de dados adquiridos por dispositivos que não estão em contato direto com 

esses objetos. No contexto florestal, essa tecnologia tem sido aplicada com sucesso em diversas 

áreas, incluindo mapeamento de cobertura vegetal, detecção de mudanças, monitoramento de 

distúrbios e, mais recentemente, na estimativa de parâmetros biofísicos e estruturais dos 

povoamentos. 

O princípio fundamental do sensoriamento remoto aplicado à vegetação baseia-se nas 

interações da radiação eletromagnética com os componentes do dossel florestal. As folhas, por 

exemplo, absorvem fortemente a radiação nas regiões do azul (400 nm a 500 nm) e do vermelho 

(620 nm a 750 nm) do espectro visível (usadas na fotossíntese), e refletem moderadamente na 

região do verde (500 nm a 570 nm) e apresentam alta reflectância no infravermelho próximo 

(700 nm a 1400 nm). Esse comportamento espectral característico, conhecido como "assinatura 

espectral", fornece a base para o desenvolvimento de índices de vegetação e algoritmos de 

estimação de parâmetros biofísicos (Ponzoni et al., 2015). 

Entre os diversos sensores orbitais disponíveis para aplicações florestais, as missões 

Landsat e Sentinel destacam-se por seu equilíbrio entre resolução espacial, temporal e espectral, 
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além da disponibilidade histórica de dados e acesso gratuito. O programa Landsat, em operação 

contínua desde 1972, representa a mais longa série temporal de observações da Terra a partir 

do espaço, fornecendo um arquivo inestimável para estudos de mudanças florestais. O Landsat 

8, lançado em 2013, oferece imagens multiespectrais com resolução espacial de 30 metros e 

revisita a mesma área aproximadamente a cada 16 dias (Roy et al., 2014). 

Por sua vez, a missão Sentinel-2, parte do programa Copernicus da Agência Espacial 

Europeia, introduziu melhorias significativas em termos de resolução espacial (10-20 metros), 

espectral (13 bandas) e temporal (5 dias com dois satélites), ampliando as possibilidades para 

o monitoramento florestal de alta frequência (Drusch et al., 2012). Além desses sensores ópticos 

passivos, tecnologias como o LiDAR (Light Detection and Ranging) e radar (Radio Detection 

and Ranging) têm emergido como ferramentas complementares, especialmente valiosas em 

regiões com cobertura frequente de nuvens. 

A aplicação do sensoriamento remoto na predição de estoque florestal pode seguir 

diferentes abordagens metodológicas. De acordo com Lu et al. (2016), essas abordagens podem 

ser categorizadas em: métodos baseados em correlação espectral, métodos baseados em índices 

de vegetação, métodos de mistura espectral, métodos baseados em textura e métodos que 

integram múltiplas fontes de dados. 

Os índices de vegetação (IV) representam uma das abordagens mais amplamente 

utilizadas para a estimação de parâmetros florestais a partir de dados de sensoriamento remoto. 

Esses índices são transformações matemáticas das reflectâncias em diferentes bandas 

espectrais, projetadas para realçar o sinal da vegetação e minimizar influências indesejadas do 

solo, atmosfera e geometria de iluminação/observação. Entre os diversos IVs desenvolvidos nas 

últimas décadas, o Índice de Vegetação por Diferença Normalizada (NDVI), proposto por 

Rouse Jr et al. (1973), permanece como um dos mais utilizados devido à sua simplicidade e 

eficácia em capturar variações na biomassa verde, área foliar e atividade fotossintética. 

A relação entre índices espectrais e parâmetros biofísicos florestais tem sido 

extensivamente investigada na literatura científica. Brandão et al. (2020) demonstraram 

correlações significativas entre o NDVI derivado de imagens Landsat e a biomassa aérea em 

plantações de eucalipto em diferentes estágios de crescimento. De forma similar, Viana et al. 

(2016) encontraram correlações moderadas a fortes entre diversos índices de vegetação e 

variáveis dendrométricas como altura, diâmetro e volume em povoamentos de Eucalyptus 

urophylla. 
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Miguel et al. (2015) avaliaram o potencial de índices como SR (Simple Ratio) e SAVI 

(Soil-Adjusted Vegetation Index) para a estimativa de volume de madeira e biomassa em áreas 

de Cerrado, obtendo erros-padrão de aproximadamente 12,34%. Os autores concluíram que a 

integração de múltiplos índices pode melhorar significativamente a precisão das estimativas em 

comparação com o uso de índices isolados. 

Outra variável biofísica de grande relevância para a produtividade florestal é o Índice 

de Área Foliar (IAF), que representa a área total de folhas por unidade de área de terreno. O 

IAF está diretamente relacionado à interceptação da radiação fotossinteticamente ativa (PAR) 

e, consequentemente, à fotossíntese do dossel e à produção primária (Gower et al., 1999). Xu 

et al. (2020) identificaram quatro abordagens principais para a estimação do IAF por 

sensoriamento remoto: modelos baseados em reflectância, modelos baseados em índices de 

vegetação, modelos derivados de dados de LiDAR e modelos de aprendizado de máquina. 

Embora os índices de vegetação tradicionais apresentem correlações significativas 

com parâmetros florestais, essas relações frequentemente não são lineares e podem ser afetadas 

por fatores como saturação do sensor em áreas de alta biomassa, influência do substrato e efeitos 

atmosféricos. Além disso, a resposta espectral da vegetação é influenciada por múltiplos fatores, 

incluindo estrutura do dossel, propriedades ópticas das folhas, geometria de iluminação e 

observação, e condições atmosféricas (Ponzoni et al., 2015). 

Nesse sentido, embora os índices de vegetação tradicionais forneçam informações 

relevantes sobre a condição da vegetação, suas limitações, como saturação do sensor em áreas 

de alta biomassa e sensibilidade a fatores externos, reforçam a necessidade de incorporar 

métricas complementares. Nesse contexto, os índices de textura derivados de sensores ópticos 

surgem como uma alternativa promissora, pois permitem captar padrões espaciais de variação 

na reflectância que não são identificados pelos índices espectrais convencionais. Dessa forma, 

a integração de informações espectrais e texturais possibilita uma caracterização mais robusta 

da estrutura florestal e de seus atributos, contribuindo para análises mais precisas em estudos 

de crescimento e produção. 

1.3.1 ÍNDICES DE TEXTURA DERIVADOS DE SENSORES ÓPTICOS  

Os índices de textura representam uma dimensão complementar e fundamental na 

análise de imagens de sensoriamento remoto para aplicações florestais, capturando informações 

sobre a variabilidade espacial dos valores de pixels que não são detectadas pelos índices 
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espectrais tradicionais. A textura de uma imagem refere-se à variação sistemática dos valores 

de brilho entre pixels vizinhos, fornecendo informações valiosas sobre a estrutura espacial dos 

objetos na superfície terrestre. No contexto florestal, estes índices podem revelar características 

importantes da estrutura do dossel, densidade do povoamento, heterogeneidade da vegetação e, 

consequentemente, relacionar-se com a biomassa e volume de madeira (Haralick & 

Shanmugam, 1973). 

A matriz de co-ocorrência de níveis de cinza (Gray Level Co-occurrence Matrix - 

GLCM), desenvolvida por Haralick & Shanmugam (1973), constitui o método mais 

amplamente utilizado para extração de métricas de textura em sensoriamento remoto. Esta 

matriz descreve a frequência de ocorrência de pares de valores de pixels separados por uma 

distância específica em uma direção particular, permitindo a quantificação de propriedades 

texturais da imagem. A partir da GLCM, podem ser derivadas diversas métricas, sendo as mais 

utilizadas em estudos florestais: média (mean), variância (variance), homogeneidade 

(homogeneity), contraste (contrast), dissimilaridade (dissimilarity), entropia (entropy), segundo 

momento angular (angular second moment) e correlação (correlation) (Kelsey & Neff, 2014). 

Estudos têm demonstrado a superioridade dos índices de textura em relação aos índices 

espectrais tradicionais para estimativa de biomassa florestal. Kelsey & Neff (2014) 

investigaram oito métricas GLCM baseadas no Landsat TM em quatro tamanhos de janela (3×3, 

5×5, 7×7, 9×9) para estimativa de biomassa em florestas temperadas do Colorado, Estados 

Unidos. Os resultados indicaram que modelos incluindo variáveis de textura apresentaram 

correlação de r=0,86 com a biomassa observada, superando significativamente modelos 

baseados apenas em variáveis físicas e espectrais. As métricas de entropia, média e correlação 

calculadas da banda 2 do Landsat 7 em janela 3×3 foram as mais eficazes, demonstrando que a 

textura é particularmente sensível a mudanças na biomassa após distúrbios florestais. 

Estudos recentes têm evidenciado que a combinação de índices espectrais e de textura pode 

melhorar significativamente a acurácia das estimativas de volume. Velasco Pereira et al. (2023) 

utilizaram modelos de sinergia de sensores ALOS PALSAR-Sentinel 1-Landsat 8 para 

mudanças temporais na biomassa de florestas mediterrâneas de pinheiro, calculando variáveis 

de textura com GLCM em janela 5×5 pixels. 

Pesquisas nacionais recentes têm incorporado índices de textura em estudos de 

monitoramento ambiental. Rosa (2021) utilizou índices de textura derivados de imagens 

Landsat para análise temporal da cobertura florestal na Mata Atlântica, integrando informações 
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temporais, sazonais e de textura para classificação de uso e cobertura da terra. Almeida (2022) 

aplicou índices de textura baseados na GLCM para estimativa de biomassa em florestas do 

Amapá, concluindo que os três índices de textura principais forneceram previsões superiores 

aos métodos tradicionais. 

As métricas derivadas da GLCM fornecem informações complementares sobre 

diferentes aspectos da textura da imagem, cada uma com interpretações específicas no contexto 

florestal, conforme a Tabela 1. A compreensão destas métricas é fundamental para seleção 

apropriada de variáveis de textura em modelos de estimativa de biomassa florestal. 

Tabela 1 – Relação do Índices de Textura com o eucalipto 

Índice de Textura 
Significado 

principal 

Valor alto – 

Interpretação 

Valor baixo - 

Interpretação 

Energia 

Mede a 

uniformidade ou 

repetição dos 

tons de cinza. 

Superfície homogênea; 

povoamento denso e 

uniforme; dossel 

fechado. 

Alta variação tonal; 

clareiras, bordas, 

talhões jovens ou 

com falhas. 

Entropia 

Mede a desordem 

ou complexidade 

da textura. 

Alta heterogeneidade; 

mistura de copas, 

variação de altura, 

floresta natural. 

Estrutura simples; 

dossel contínuo e 

regular; 

povoamento 

homogêneo. 

Correlação 

Mede o grau de 

correlação entre 

tons vizinhos. 

Textura contínua; 

copas regulares; vigor 

uniforme. 

Variação abrupta; 

descontinuidade no 

dossel; falhas ou 

reboleiras. 

Momento de Diferença 

Inversa 

(IDM)/Homogeneidade 

Mede a 

homogeneidade 

local. 

Textura suave; tons 

semelhantes; floresta 

uniforme e bem 

desenvolvida. 

Textura rugosa; 

grandes diferenças 

entre pixels; áreas 

em regeneração. 

Inércia/Contraste 

Mede o contraste 

local entre tons 

de cinza. 

Forte variação 

estrutural; topografia 

acidentada, dossel 

irregular, clareiras. 

Superfície lisa e 

regular; estrutura 

uniforme do dossel. 

Sombra do Cluster 

(CS) 

Mede a 

assimetria tonal 

(predomínio de 

claro ou escuro). 

Presença de áreas 

sombreadas intensas 

ou superfícies muito 

iluminadas; 

desequilíbrio tonal. 

Distribuição tonal 

equilibrada; 

iluminação 

homogênea. 
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Proeminência do 

Cluster (CP) 

Mede a curtose 

da distribuição 

tonal (acentuação 

do contraste). 

Presença de bordas, 

estradas, clareiras, 

transições abruptas. 

Textura estável, sem 

variações bruscas de 

tons. 

Correlação de Haralick 

(HC) 

Versão robusta da 

correlação entre 

tons vizinhos. 

Textura suave e 

contínua, com relação 

linear estável. 

Padrões irregulares 

e desordenados, 

ruído tonal ou 

mistura espectral. 

Fonte: (Li et al., 2012) 

 

A incorporação de índices espectrais e texturais amplia significativamente o potencial 

do sensoriamento remoto para estimativas florestais, mas a complexidade das relações entre 

essas variáveis e os parâmetros dendrométricos demanda técnicas analíticas mais robustas. 

Nesse cenário, os modelos de aprendizado de máquina (AM) têm se destacado como 

ferramentas capazes de lidar com grandes volumes de dados multivariados e de capturar 

relações não lineares entre variáveis preditoras e resposta. Dessa forma, a integração entre 

métricas derivadas do sensoriamento remoto e algoritmos de aprendizado de máquina 

representa uma abordagem promissora para aprimorar a acurácia e a generalização das 

estimativas de biomassa, volume e outros atributos florestais, constituindo-se em uma tendência 

crescente nas pesquisas da área. 

1.4 Modelos de Aprendizado de Máquina (AM) 

O aprendizado de máquina (AM) representa um ramo da inteligência artificial que se 

concentra no desenvolvimento de algoritmos capazes de aprender padrões a partir de dados e 

realizar previsões ou decisões sem serem explicitamente programados para executar tarefas 

específicas. Diferentemente dos modelos estatísticos tradicionais, que geralmente requerem 

pressupostos sobre a distribuição dos dados e a forma funcional das relações entre variáveis, os 

algoritmos de AM podem adaptar-se automaticamente à estrutura inerente aos dados, 

identificando relações complexas e não-lineares (Hastie et al., 2009). 

No contexto da modelagem florestal, a AM oferecem vantagens significativas em 

comparação com abordagens convencionais baseadas em regressão. Enquanto os modelos de 

regressão tradicionais, como o modelo de Clutter, requerem uma forma funcional predefinida 

(geralmente baseada em conhecimento teórico ou empírico), a AM podem estabelecer relações 

complexas entre variáveis preditoras e respostas, potencialmente capturando interações e não-

linearidades que seriam difíceis de especificar a priori (Joibary, 2013). Outra vantagem 
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importante da AM é sua capacidade de lidar com grandes volumes de dados multidimensionais, 

característica particularmente relevante em aplicações que integram dados de sensoriamento 

remoto com medições convencionais de campo. Além disso, muitos algoritmos de AM são 

robustos a problemas como multicolinearidade e são capazes de lidar com dados ausentes ou 

ruidosos, situações comuns em conjuntos de dados florestais (Breiman, 2001). 

Entre os diversos algoritmos de AM aplicados à modelagem florestal, destacam-se o 

Florestas Aleatórias (RF), Máquina de Vetores Suporte (SVM) e Aumento De Gradiente 

Extremo (XGBoost). Cada um desses algoritmos possui características distintas que os tornam 

adequados para diferentes tipos de problemas e conjuntos de dados. 

1.4.1 FLORESTA ALEATÓRIA (RF) 

Floresta Aleatória (Random Forest) é um método introduzido por Breiman (2001) que 

combina as previsões de múltiplas árvores de decisão para produzir um resultado final mais 

preciso e robusto. O algoritmo baseia-se em dois princípios fundamentais: bagging (bootstrap 

aggregating) e seleção aleatória de características. No processo de bagging, cada árvore é 

treinada com uma amostra bootstrap do conjunto de dados original, ou seja, uma amostra 

aleatória com reposição que contém aproximadamente 63% dos dados originais. Os dados não 

selecionados para treinar uma árvore específica, conhecidos como "out-of-bag" (OOB), são 

utilizados para avaliar o desempenho dessa árvore, proporcionando uma validação interna 

durante o treinamento. O RF introduz aleatoriedade adicional na construção de cada árvore 

através da seleção aleatória de características. Em cada nó da árvore, apenas um subconjunto 

aleatório das variáveis preditoras está disponível para divisão, forçando diversidade entre as 

árvores do conjunto (Figura 1). Essa característica é particularmente valiosa quando existem 

fortes preditores no conjunto de dados, pois evita que todas as árvores sejam dominadas por 

esses preditores (Breiman, 2001). 
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Figura 1 – Exemplo de uma floresta aleatória 

Fonte: Adaptado de Araujo et al. (2023) 

Para problemas de regressão, como a predição de volume ou biomassa florestal, o 

resultado final do RF é obtido pela média das previsões individuais de todas as árvores no 

conjunto. Matematicamente, a previsão para uma nova observação x pode ser expressa como: 

𝑓(x) =  
1

𝑛
∑  𝑓ᵢ(𝑥)

𝑛

𝑖=1

 

Onde 𝑛 é o número total de árvores no conjunto e 𝑓ᵢ(𝑥) é a previsão da i-ésima árvore 

para a observação 𝑥. 

O RF oferece diversas vantagens para aplicações florestais. Primeiro, é relativamente 

robusto ao overfitting, especialmente quando o número de árvores é grande. Segundo, fornece 

medidas internas de importância das variáveis, permitindo identificar quais preditores 

contribuem mais significativamente para o modelo. Terceiro, pode lidar eficientemente com 

interações complexas entre variáveis e relações não-lineares, características comuns em dados 

ecológicos. Por fim, requer relativamente pouca preparação de dados e ajuste de 

hiperparâmetros em comparação com outros algoritmos avançados (Cosenza et al., 2021, 2025; 

Cutler et al., 2007). 

No campo da modelagem florestal, o RF tem sido amplamente aplicado para 

estimativas de volume, biomassa, carbono e outros parâmetros estruturais. Lima et al. (2022) 

utilizaram RF para estimar o volume de madeira em plantações de eucalipto a partir de variáveis 

dendrométricas e índices espectrais derivados de imagens Landsat, obtendo resultados 
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superiores aos modelos de regressão convencionais. De forma similar, (Gómez et al., 2012) 

aplicaram RF para mapear biomassa florestal usando dados LiDAR e multiespectrais, 

destacando a capacidade do algoritmo em capturar relações complexas entre a estrutura 

tridimensional do dossel e a biomassa aérea. 

1.4.2 AUMENTO DE GRADIENTE EXTREMO (XGBOOST) 

O Aumento de gradiente extremo (Extreme Gradient Boosting) é um algoritmo de 

aprendizado de máquina baseado em árvores de decisão que implementa o framework de 

gradient boosting com várias otimizações para eficiência computacional e desempenho 

preditivo. Desenvolvido por (Chen & Guestrin, 2016), o XGBoost rapidamente se tornou uma 

das ferramentas mais populares em competições de ciência de dados e aplicações práticas 

devido à sua eficiência computacional e precisão. 

O princípio fundamental do gradient boosting é construir um modelo forte através da 

combinação sequencial de modelos fracos (geralmente árvores de decisão rasas), onde cada 

novo modelo é treinado para corrigir os erros dos modelos anteriores (Figura 3). Diferentemente 

do Random Forest, onde as árvores são treinadas independentemente e combinadas por média 

simples, no boosting cada árvore é adicionada sequencialmente para minimizar uma função de 

perda. 
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Figura 3 – Exemplo de um XGBoost 

Fonte: Adaptado de (Zou et al., 2022a) 

Matematicamente, o modelo XGBoost pode ser representado como: 

 

ŷᵢ =  ∑  

𝑛

𝑗=1

𝑓ⱼ(𝑥ᵢ) 

Onde ŷᵢ é a previsão para a observação i, 𝑛 é o número total de árvores, e 𝑓ⱼ representa 

a j-ésima árvore de decisão. 

O objetivo de treinamento é minimizar a seguinte função regularizada: 

𝐿 =  ∑ 𝑙(𝑦ᵢ, ŷᵢ)

𝑖

+  ∑ 𝛺(𝑓ⱼ)

𝑖

 

Onde 𝑙 é a função de perda que mede a diferença entre a previsão ŷᵢ e o valor real 𝑦ᵢ, 

e 𝛺(𝑓ⱼ) é um termo de regularização que penaliza a complexidade do modelo para evitar 

overfitting (Chen & Guestrin, 2016). 
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O XGBoost introduz várias inovações em relação ao gradient boosting tradicional. 

Primeiro, utiliza uma formulação regularizada para controlar a complexidade do modelo, 

incluindo termos de penalidade para o número de folhas nas árvores e para os pesos das folhas. 

Segundo, implementa um algoritmo aproximado de divisão de árvores que permite 

processamento eficiente de grandes conjuntos de dados. Terceiro, incorpora técnicas para lidar 

eficientemente com dados esparsos e valores ausentes. Por fim, utiliza várias otimizações 

computacionais, como paralelização, cache-aware access e computação out-of-core para 

conjuntos de dados que não cabem na memória (Chen & Guestrin, 2016). 

No contexto da modelagem florestal, o XGBoost tem demonstrado excelente 

desempenho em diversas aplicações. Chen et al. (2019) utilizaram XGBoost para estimar o 

volume de madeira em florestas mistas a partir de variáveis derivadas de LiDAR e imagens 

multiespectrais, obtendo resultados superiores a métodos tradicionais de regressão. Zou et al. 

(2022) aplicaram XGBoost para prever a produtividade florestal considerando variáveis 

climáticas e edáficas, destacando a capacidade do algoritmo em capturar interações complexas 

entre fatores ambientais e crescimento. 

As principais vantagens do XGBoost para aplicações florestais incluem seu 

desempenho preditivo geralmente superior em comparação com outros algoritmos, capacidade 

de lidar com diferentes tipos de variáveis (numéricas, categóricas), robustez a outliers através 

de funções de perda personalizáveis, e interpretabilidade através de métricas de importância de 

características. Além disso, o XGBoost oferece mecanismos eficientes para evitar overfitting, 

como regularização, amostragem de características e dados, e parada antecipada baseada em 

um conjunto de validação (Chen & Guestrin, 2016). 

 

1.4.3 MÁQUINA DE VETORES DE SUPORTE (SVM) 

Máquina de Vetores de Suporte (Support Vector Machine) é um algoritmo de 

aprendizado supervisionado desenvolvido inicialmente para classificação por Vapnik (2013) e 

posteriormente estendido para problemas de regressão. O SVM baseia-se em princípios da 

teoria de aprendizado estatístico e busca encontrar um hiperplano ótimo que maximiza a 

margem entre diferentes classes (no caso de classificação) ou que melhor se ajusta aos dados 

dentro de uma margem de tolerância (no caso de regressão) conforme demonstrado na Figura 

2. 
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Figura 2 – Exemplo de um SVM 

Fonte: Adaptado de Araujo et al. (2023) 

Para problemas de regressão, a variante conhecida como Support Vector Regression 

(SVR) busca ajustar uma função que tenha no máximo ε de desvio dos valores alvo observados, 

enquanto mantém a função tão plana quanto possível. Matematicamente, para um conjunto de 

dados de treinamento {(x₁, y₁), ..., (xn, yn)}, onde x representa o vetor de características e y o 

valor alvo, o SVR procura minimizar: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

2
) ||𝑤||

2
+  𝐶 ∑  (𝜉ᵢ +  𝜉ᵢ ∗)

𝑛

𝑖=1

 

𝑠𝑢𝑗𝑒𝑖𝑡𝑜 𝑎: 𝑦ᵢ −  𝑓(𝑥ᵢ) ≤  𝜀 +  𝜉ᵢ 

𝑓(𝑥ᵢ) −  𝑦ᵢ ≤  𝜀 +  𝜉ᵢ ∗ 

𝜉ᵢ , 𝜉ᵢ ∗ ≥  0 

Onde f(x) = <w, x>+ b é a função de regressão linear, ||w||² é o termo de regularização, 

C é o parâmetro de penalização que controla o equilíbrio entre a complexidade do modelo e o 

erro de treinamento, e 𝜉ᵢ , 𝜉ᵢ ∗ são variáveis de folga que permitem violações da margem ε 

(Smola & Schölkopf, 2004). 
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Uma das principais vantagens do SVM é sua capacidade de lidar com relações não-

lineares através do chamado "truque do kernel". Essa técnica permite mapear implicitamente 

os dados para um espaço de características de maior dimensão, onde o problema pode se tornar 

linearmente separável ou mais facilmente modelável. Kernels comumente utilizados incluem o 

linear, polinomial, base radial (RBF) e sigmoide (Cortes & Vapnik, 1995). 

No contexto florestal, o SVM tem sido aplicado com sucesso em diversas tarefas de 

estimação. Gonçalves (2010) utilizou SVM para estimar a biomassa aérea em florestas tropicais 

a partir de índices espectrais, obtendo resultados competitivos em comparação com outros 

algoritmos. Cordeiro (2020) avaliou diferentes configurações de SVM na modelagem do 

crescimento e produção de eucalipto, demonstrando desempenho estatisticamente satisfatório 

para implementação no manejo florestal. 

Entre as vantagens do SVM para aplicações florestais, destacam-se sua eficácia em 

conjuntos de dados de alta dimensionalidade (como os derivados de sensoriamento remoto 

hiperespectrais), robustez a ruídos e capacidade de generalização mesmo com amostras de 

treinamento relativamente pequenas. Além disso, o SVM tende a evitar o overfitting através do 

princípio da minimização do risco estrutural, equilibrando a complexidade do modelo com seu 

desempenho nos dados de treinamento (Smola & Schölkopf, 2004). 

1.4.4 REDES NEURAIS ARTIFICIAIS (RNA) 

As Redes Neurais Artificiais (RNA) consistem em modelos projetados para imitar o 

processamento da informação realizado pelo cérebro humano, utilizando uma rede composta 

por unidades computacionais interconectadas, denominadas neurônios artificiais. Esses 

neurônios são organizados em camadas e possuem a capacidade de aprender padrões complexos 

a partir de dados de entrada, ajustando seus parâmetros internos de forma iterativa durante o 

processo de treinamento, com o objetivo de generalizar o conhecimento adquirido para novas 

situações (Haykin, 2001). 

Cada neurônio artificial representa uma unidade básica de processamento dentro da 

rede e é composto por diversos elementos funcionais. As sinapses são representadas pelos pesos 

sinápticos, que determinam a importância de cada sinal de entrada. O somador é responsável 

por calcular a combinação linear ponderada dos sinais recebidos. Em seguida, a função de 

ativação é aplicada para restringir a amplitude da saída e introduzir não linearidade ao modelo, 

o que permite à RNA representar relações complexas entre as variáveis. O termo de bias atua 
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como um deslocamento da função de ativação, ajustando o limiar de resposta do neurônio. A 

saída de cada neurônio pode servir tanto como entrada para outros neurônios em camadas 

subsequentes quanto como resultado final da rede, conforme ilustrado na Figura 4 (Haykin, 

2001) 

 

 
Figura 4 – Exemplo de um Neurônio  

Fonte: Adaptado de (Haykin, 2001) 

As Redes Neurais Artificiais (RNAs) apresentam vantagens significativas em relação 

aos métodos tradicionais de modelagem, especialmente na capacidade de capturar relações não 

lineares complexas entre variáveis. Esse tipo de algoritmo é particularmente eficiente para 

descrever sistemas influenciados por múltiplos fatores interdependentes, como condições 

climáticas, características edáficas, densidade genética e variabilidade estrutural dos 

povoamentos florestais. As RNAs são capazes de identificar padrões ocultos nos dados que 

frequentemente não são detectados por modelos de regressão tradicionais (Bentes, 2018). 

Além disso, as RNAs podem integrar variáveis de diferentes naturezas, combinando 

informações qualitativas, como genótipo, tipo de solo e espaçamento, com variáveis 

quantitativas, como diâmetro, altura e área basal. Outra característica relevante é a robustez 

frente a ruídos e falhas nos dados, bem como a capacidade de generalização, permitindo que o 

modelo apresente bom desempenho mesmo em situações não observadas durante o treinamento 

(Bentes, 2018). 

No contexto florestal, diversos estudos têm evidenciado o potencial das RNAs em 

tarefas de predição e modelagem. Azevedo et al. (2020) empregaram diferentes estratégias de 

RNA para a modelagem de multivolumes do fuste de eucaliptos, observando que essas redes 
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apresentaram maior precisão e praticidade em comparação aos modelos de regressão 

tradicionais. De forma semelhante, Bayat et al. (2019) aplicaram RNAs para prever a 

sobrevivência e a mortalidade de árvores em florestas de faia oriental no norte do Irã, avaliando 

o desempenho dos modelos por meio das métricas RMSE e R². Os resultados demonstraram a 

superioridade das RNAs, reforçando sua eficácia como ferramenta preditiva na modelagem 

florestal. Niska et al. (2010) examinaram a capacidade técnica comuns de modelagem por RNA 

para predição de atributos florestais como o volume de fuste em nível de parcela experimental 

e de povoamento florestal. Esse estudo mostrou que as RNAs sáo métodos apropriados e 

precisos para a avaliação de atributos florestais, podendo ser utilizadas como alternativas para 

a regressão linear multivariada. 

1.4.5 K-VIZINHOS PRÓXIMO 

O modelo de K-Vizinhos Mais Próximos (KNN) é um algoritmo baseado em medidas 

de similaridade entre observações. Fundamenta-se na premissa de que amostras com 

características semelhantes tendem a apresentar respostas também semelhantes. Segundo Cover 

& Hart (1967), que originalmente formularam o método, o princípio do KNN reside na 

proximidade entre vetores de características em um espaço multidimensional definido pelas 

variáveis explicativas. 

O funcionamento do modelo consiste em identificar os k pontos mais próximos de uma 

observação, calculando a distância entre ela e os demais pontos do conjunto de dados. A métrica 

de distância mais comumente utilizada é a distância euclidiana, expressa pela Equação:  

d(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑛 − 𝑥𝑗𝑛)
2𝑝

𝑛=1   

 

Onde: 𝑥𝑖 e 𝑥𝑗 são os vetores de características das amostras;  𝑝 é o número de variáveis. 

Outras métricas podem ser utilizadas, como as distâncias de Manhattan, Mahalanobis ou 

ponderadas, dependendo da natureza dos dados e do objetivo da modelagem. 

Entre as principais vantagens do KNN destacam-se sua simplicidade conceitual e 

facilidade de implementação, além de não pressupor uma estrutura paramétrica fixa, o que o 

caracteriza como um método não paramétrico e flexível. Essa característica permite ao KNN 

adaptar-se a variações locais dos dados, capturando padrões complexos que outros modelos 
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podem não identificar. O algoritmo também apresenta boa interoperabilidade com diferentes 

tipos de variáveis e robustez em cenários com múltiplas fontes de dados.  (Souza et al., 2019) 

No contexto florestal, o uso do KNN tem se mostrado promissor. McRoberts et al. 

(2015) aplicaram o método para estimar a biomassa aérea média por unidade de área na 

Noruega, utilizando dados de inventário florestal e varredura a laser aerotransportada (ALS). 

Os resultados indicaram uma redução da dimensionalidade e um aumento de até 20% na 

variabilidade explicada no conjunto de referência. No Brasil, Amorim (2016) empregou o KNN 

combinado com dados Landsat-8 e variáveis topográficas para estimar a biomassa aérea de 

povoamentos de eucalipto, obtendo coeficientes de determinação (R²) superiores a 0,80, o que 

demonstra a eficiência do método para aplicações florestais de predição e mapeamento.  

1.5 Aprendizado de máquina na modelagem florestal 

A integração de técnicas de aprendizado de máquina na modelagem florestal tem 

ganhado impulso significativo na última década, motivada tanto pelo aumento da 

disponibilidade de dados quanto pelos avanços nas capacidades computacionais. 

Diferentemente dos modelos empíricos tradicionais, que dependem de relações funcionais 

predefinidas, a AM oferece maior flexibilidade para capturar relações complexas e não-lineares 

entre variáveis preditoras e parâmetros florestais de interesse. 

No contexto específico da modelagem de crescimento e produção florestal, os Modelos 

AM podem ser aplicados de diferentes formas: (i) como substitutos completos para modelos 

empíricos tradicionais, (ii) como componentes híbridos que complementam modelos existentes, 

ou (iii) como ferramentas auxiliares para a seleção de variáveis ou imputação de dados ausentes. 

Binoti et al. (2014) demonstraram o potencial da RNA como alternativa aos modelos 

de crescimento e produção tradicionais. Comparando RNA com o modelo de Clutter para 

projeção da área basal e volume em povoamentos de eucalipto, os autores observaram que a 

RNA proporciona estimativas mais precisas e com distribuição mais homogênea dos resíduos. 

Costa Filho et al. (2019) corroboraram esses resultados, mostrando que a RNA pode capturar 

de forma mais eficaz a variabilidade espacial da produtividade florestal em comparação com 

modelos empíricos convencionais. 

Melo (2019) avançou ainda mais nessa linha de pesquisa, investigando o potencial de 

diferentes algoritmos de ML, incluindo Random Forest e Support Vector Machine, para modelar 
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o crescimento e a produção em florestas inequiâneas de eucalipto. Os resultados indicaram que, 

embora os AM geralmente superem os modelos tradicionais em termos de precisão, a 

magnitude dessa vantagem varia conforme as características do conjunto de dados e a 

complexidade do fenômeno modelado. 

Goycochea Casas (2021) comparou métodos de regressão tradicional e RNA na 

modelagem de crescimento e produção de povoamentos de eucalipto. Embora ambas as 

abordagens tenham apresentado desempenho satisfatório, o autor observou que as RNAs foram 

particularmente eficazes para capturar padrões não-lineares nas fases iniciais de 

desenvolvimento. No entanto, recomendou cautela ao realizar projeções a partir de idades muito 

jovens (próximas a dois anos), independentemente do método utilizado. 

Uma abordagem particularmente promissora envolve a integração de variáveis 

derivadas de sensoriamento remoto com AM para melhorar as estimativas de crescimento e 

produção florestal. Araujo et al. (2023) avaliaram diferentes algoritmos de aprendizado de 

máquina para a prognose de volume, comparando o modelo de Clutter com técnicas como 

Random Forest, Support Vector Machine, k-vizinhos mais próximos e redes neurais artificiais. 

Os modelos foram ajustados com a inclusão de variáveis dendrométricas e índices espectrais 

derivados de sensoriamento remoto. Os resultados indicaram que a máquina de vetores de 

suporte, utilizando as mesmas variáveis preditoras do modelo de Clutter, apresentou uma 

modesta melhoria no desempenho. A inclusão de variáveis de sensoriamento remoto 

proporcionou um aprimoramento adicional, sendo o índice de vegetação VARI (Visible 

Atmospherically Resistant Index) aquele que resultou nas melhores estimativas. 

Santos et al. (2023) propuseram uma metodologia inovadora baseada em dados do 

satélite Landsat para prever o crescimento de povoamentos de eucalipto, comparando-a com 

métodos tradicionais. Além de avaliar os benefícios da inclusão de variáveis derivadas de 

sensores remotos, o estudo investigou a possibilidade de reduzir o número de parcelas 

inventariadas, analisando três cenários amostrais distintos. Utilizando redes neurais artificiais e 

Random Forest para estimar o crescimento do povoamento, os autores concluíram que a 

amostragem do inventário florestal poderia ser reduzida em até 88% quando informações 

complementares de sensoriamento remoto são incorporadas à modelagem, sem comprometer 

significativamente a qualidade das estimativas. 

Apesar dos resultados promissores, a aplicação de AM na modelagem florestal ainda 

enfrenta desafios importantes. Primeiro, muitos algoritmos de AM funcionam como "caixas-
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pretas", dificultando a interpretação dos processos subjacentes e limitando a transferência de 

conhecimento para sistemas diferentes daqueles em que foram treinados. Segundo a qualidade 

das previsões depende fortemente da representatividade e qualidade dos dados de treinamento, 

podendo resultar em extrapolações inadequadas quando aplicados fora do domínio de 

calibração. Terceiro, a seleção e ajuste de hiperparâmetros podem ser processos complexos e 

computacionalmente intensivos, exigindo conhecimento especializado e recursos substanciais 

(Tsakiridis et al., 2020). 

Para superar essas limitações, abordagens híbridas que combinam o conhecimento 

ecofisiológico incorporado em modelos baseados em processos com a flexibilidade e 

capacidade preditiva dos AM têm sido propostas como uma direção promissora para pesquisas 

futuras. Essas abordagens buscam aproveitar o melhor de ambos os mundos: a base teórica 

sólida dos modelos processuais e a adaptabilidade empírica dos algoritmos de aprendizado de 

máquina. 

MATERIAL E MÉTODOS 

1.6 Material 

1.6.1 ÁREA DE ESTUDO 

A área de estudo está localizada na mesorregião do Vale do Rio Doce, estado de Minas 

Gerais, Brasil (Figura 5). Os talhões estão inseridos em onze diferentes municípios, sendo o 

município de Peçanha com o maior número de talhões e a área média de 39,295 ha. A altitude 

média da região é de 860 metros, com variação de 80 metros, com índices pluviométricos médio 

anual de 1000 mm a 1500 mm. As classes de solo predominante são latossolo vermelho-amarelo 

distrófico e cambissolo háplico com argila de atividade baixa distrófico (IBGE, 2003).  
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Figura 5 – Mapa da área de localização dos talhões 

1.6.2 DADOS DE CAMPO 

Foi utilizada uma base de dados derivada de inventário florestal contínuo provida pela 

companhia Celulose Nipo-Brasileira S/A (CENIBRA). O período contemplado pelas medições 

é de junho de 2013 a julho de 2019. Foram utilizados dados de talhões com pelo menos três 

medições anuais e sobrevivência acima de 90%. A Tabela 2 mostra os valores mínimos, 

máximos e a média da área basal e volume. 

Tabela 2 – Estatísticas descritivas dos talhões 

 
Altura 

Dominante (m) 

Área Basal 

(m²/ha) 
Volume (m³/ha) 

Mínimo 11,10 5,40 20,96 

Máximo 36,70 32,38 495,33 

Média 23,96 17,40 187,90 

Desvio Padrão 4,66 4,93 82,56 
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As variáveis, em nível de unidade amostral, do inventário contínuo, incluem: data da 

medição, idade do talhão (em meses), espaçamento, área basal, altura dominante e volume 

comercial (até 5 cm de diâmetro mínimo) sem casca. A maioria dos talhões encontrava-se no 

segundo ciclo com idade média de 4 anos (Figura 6). Os talhões monoclonais, contemplam 28 

diferentes genótipos plantados em sete diferentes espaçamentos: 3 x 2,5 m; 3 x 3 m; 3 x 3,30 

m; 3 x 3,33 m; 3,33 x 2 m; 3,33 x 3 m e 4 x 2,5 m (Figura 7). 

  

 
Figura 6 – Distribuição dos talhões do inventário contínuo nas classes de idade. 

  
Figura 7 – Distribuição dos talhões do inventário por espaçamento 
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1.6.3 VARIÁVEIS DE SENSORIAMENTO REMOTO 

O satélite Landsat 8 foi escolhido devido à sua cobertura histórica compatível com o 

período do inventário florestal, além de suas especificações técnicas favoráveis. O sensor OLI 

(Operational Land Imager) possui uma resolução espacial de 30 metros, o que é ideal para o 

monitoramento de vegetação em grandes áreas. Além disso, conta com uma resolução 

radiométrica de 16 bits e uma resolução temporal de 16 dias, permitindo a aquisição frequente 

de dados. As imagens da série Landsat destacam-se pela sua alta qualidade radiométrica e 

espacial, cobertura global e aquisição contínua, tornando-se uma ferramenta confiável para o 

monitoramento ambiental e estudos florestais.  

As imagens Landsat 8 foram obtidas no site da USGS (United States Geological 

Survey) correspondentes ao período de 2013 a 2019, coincidindo com o período do inventário 

florestal. Foram selecionadas somente as imagens sem presença de nuvens e que possuíam nível 

2 de processamento, o que garante que os pixels representem valores de reflectância corrigidos 

radiometricamente e atmosfericamente, diferentemente dos valores de números digitais (ND) 

do nível 1. O sensor OLI a bordo do Landsat 8 abrange desde as bandas do visível (azul, verde 

e vermelho) até as bandas do infravermelho médio (SWIR), conforme apresentado na Tabela 3.  

TABELA 3 – Características das bandas espectrais 

Bandas Comprimento da onda Resolução Espacial 

Banda 1 Aerossol Costeiro 0,43 – 0,45 µm 30 m 

Banda 2 Azul 0,45 – 0,51 µm 30 m 

Banda 3 Verde 0,53 – 0,59 µm 30 m 

Banda 4 Vermelho 0,64 – 0,67 µm 30 m 

Banda 5 Infravermelho 

próximo 
0,85 – 0,88 µm 30 m 

Banda 6 SWIR 1,57 – 1,65 µm 30 m 

Banda 7 SWIR 2,11 – 2,29 µm 30 m 

Banda 8 Pancromática 0,50 – 0,68 µm 15 m 

Banda 9 Cirrus 1,36 – 1,38 µm 30 m 
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1.7 Processamento dos dados 

A metodologia foi seguida conforme o fluxograma da Figura 8.  

 
Figura 8 - Fluxograma das análises do estudo
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A extração dos valores de reflectância foi realizada utilizando a linguagem de 

programação R com o uso do pacote terra. O procedimento envolveu: (a) a extração do 

centroide de cada pixel contido em cada polígono (talhão), (b) a atribuição dos valores de 

reflectância a cada ponto extraído e (c) o cálculo da média dos pontos interceptados pelo 

polígono (Figura 9). Este processo foi repetido para todas as imagens sem presença de nuvens, 

resultando em um valor médio de reflectância para cada banda e para cada talhão. O arquivo 

resultante foi exportado em formato CSV (Comma Separete Value) para posterior associação 

com a base de dados do inventário. Esse procedimento foi realizado para todas as imagens 

encontradas que não apresentava nuvens. Dessa forma foi obtido um valor de reflectância médio 

de todas as bandas para todos os talhões. Esse procedimento foi realizado devido à ausência das 

parcelas georreferenciadas. 

 
Figura 9 - Processo de extração da reflectância 

A associação dos dados de reflectância com o inventário florestal foi realizada no 

ambiente virtual do (Figura 10), utilizando dois arquivos de entrada: (i) um contendo os valores 

médios de reflectância para cada talhão e (ii) outro com os dados do inventário florestal. Para 

garantir a melhor correspondência temporal, a associação considerou a menor diferença 

possível entre as datas do inventário e as datas das imagens, de modo que cada registro do 

inventário fosse vinculado à imagem mais próxima em termos de data. Foi considerado também 

nessa associação, a sobrevivência acima de 90% e três medições de parcelas. O arquivo 

resultante foi gerado no formato XLSX, contendo os valores médios de reflectância associados 

a cada talhão. Dessa forma, cada medição do inventário foi relacionada aos valores de 
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reflectância das bandas espectrais (do azul ao SWIR 2), permitindo a realização da análise 

exploratória dos dados.  

A análise exploratória dos dados foi inicialmente conduzida no Excel, com o objetivo 

de verificar a consistência das informações. Por exemplo, foram identificadas inconsistências 

como a redução na altura média em algumas parcelas e variações abruptas no DAP médio em 

medições sucessivas. Além disso, outliers decorrentes da interferência de nuvens nas imagens 

foram removidos com base em um critério estatístico de 1 desvio-padrão acima e abaixo da 

média da reflectância das bandas espectrais. Em seguida, foram construídos gráficos bivariados 

para a exploração da relação entre as variáveis dendrométricas e entre as variáveis 

dendrométricas e variáveis de sensoriamento remoto. Essas análises forneceram subsídios para 

a seleção das variáveis a serem incluídas nos modelos de Clutter e de aprendizado de máquina. 

Para cada ano das séries temporais foram calculados diferentes índices de vegetação 

(Tabela 4) para serem usados como possíveis preditores do modelo. Esses índices possuem 

relação direta com variáveis dendrométricas e biofísicas de povoamentos florestais, sendo, 

portanto, fundamentais para análises em ambientes silviculturais. Além disso, são amplamente 

utilizados na literatura atual, o que reforça sua adequação para estudos em florestas plantadas. 

Adicionalmente, foram calculados índices texturais (Tabela 5). Os índices de texturas são 

baseados nas métricas GLCM (Gray Level Co-occurrence) ou matriz de coocorrência de nível 

de cinza e são amplamente utilizados em sensoriamento remoto para quantificar a variação 

espacial dos tons de cinza em uma imagem orbital. São bastante uteis para distinguir padrões 

de cobertura vegetal, identificar variações estruturais em dossel arbóreo (Haralick et al., 1987).  

Tabela 4 – Índices de Vegetação usados 

Índice de 

vegetação 
Equação Referência 

Índice de Vegetação 

por Diferença 

Normalizada 

𝑁𝐷𝑉𝐼 =
NIR −RED

NIR + RED
 (Rouse Jr et al., 1973) 

Índice de 
Vegetação por 

Diferença 
Normalizada 

Verde 

G𝑁𝐷𝑉𝐼 =
NIR − GREEN

NIR + GREEN
 (Gitelson et al., 1996) 
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Índice de 
vegetação 

ajustado ao solo 

𝑆𝐴𝑉𝐼 = (
NIR −RED

NIR + RED + 𝐿
) + (1 + 𝐿) (Huete, 1988) 

Razão Simples 𝑆R = (
NIR

RED
) (Jordan, 1969) 

Índice de 
refletância de 

queima 
normalizado 

𝑁𝐵𝑅𝐼 =
NIR −SWIR2

NIR + SWIR2
 (García & Caselles, 1991) 

Índice de 
Vegetação 

Proporcional 

RVI = (
RED

NIR
) (Broge & Leblanc, 2001) 

Índice de 
Vegetação 
Diferencial 

DVI = 2,4 ∗ NIR − RED (Richardson, 1977) 

Índice de 
Vegetação 

Aprimorado 

EVI = 2,5 ∗
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 6 ∗ 𝑅𝐸𝐷 − 7,5 ∗ 𝐵𝐿𝑈𝐸 + 1)
 (Liu & Huete, 1995) 

 

Tabela 5 – Índices de Vegetação usados 

Índice de textura Equação 

Energia ∑ 𝑔(𝑖, 𝑗)²

𝑖,𝑗

 

Entropia 
∑ 𝑔(𝑖, 𝑗) log 𝑔(𝑖, 𝑗)

𝑖,𝑗

 

Correlação 
∑

(𝑖 − 𝜇)(𝑗 − 𝜇)𝑔(𝑖, 𝑗)

𝜎²
𝑖,𝑗

 

Momento de Diferença Inversa 
(IDM)/Homogeneidade 

∑
1

1 + (𝑖 − 𝑗)²
𝑔(𝑖, 𝑗)

𝑖,𝑗

 

Inércia/Contraste 
∑(𝑖 − 𝑗)²

𝑖,𝑗

𝑔(𝑖, 𝑗) 

Sombra do Cluster (CS) 
∑((𝑖 − 𝜇)(𝑗 − 𝜇))³𝑔(𝑖, 𝑗)

𝑖,𝑗

 

Proeminência do Cluster (CP) 
∑((𝑖 − 𝜇)(𝑗 − 𝜇))

4
𝑔(𝑖, 𝑗)

𝑖,𝑗
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Correlação de Haralick (HC) 
∑

(𝑖 − 𝜇)(𝑗 − 𝜇)𝑔(𝑖, 𝑗) − 𝜇𝑡
2

𝜎𝑡
2

𝑖,𝑗

 

Fonte: (Feature extraction — Orfeo ToolBox 9.1.0 documentation, [s.d.]) 

Onde 𝑔(𝑖, 𝑗) é o valor normalizado da matriz de coocorrência GLCM, µ a média e σ o desvio-

padrão das linhas e colunas da GLCM. 

1.7.1 AJUSTE DO MODELO DE CLUTTER 

O modelo de prognose de volume adotado foi o de Clutter (Campos & Leite, 2006). 

Este modelo consiste em um sistema de duas equações: a primeira estima a área basal em uma 

idade de interesse e a segunda estima o volume nessa mesma idade. A estimativa da área basal 

é um preditor da equação de volume como apresentado abaixo: 

𝑙𝑛𝐺2 = 𝑙𝑛𝐺1 (
𝐼1

𝐼2
 ) + 𝛼1 (1 −

𝐼1

𝐼2
 ) + 𝛼2 (1 −

𝐼1

𝐼2
 ) ∗ 𝑆 

𝑙𝑛𝑉2 = 𝛽0 + 𝛽1 (
1

𝐼2
 ) + 𝛽2𝑆 + 𝛽3𝑙𝑛𝐺2 

Onde: 𝑙𝑛𝐺1 é a área basal atual, 𝐼1 é a idade atual em meses, 𝐼2 é a idade de interesse 

em meses, 𝑆 é o índice de sítio em metros, 𝑙𝑛𝐺2 é a área basal na idade interesse em m², 𝑙𝑛𝑉2 é 

o volume do talhão na idade de interesse em m³, 𝛼1, 𝛼2, 𝛽0, 𝛽1, 𝛽2, 𝛽3 são coeficientes do 

modelo. Para a realização do ajustamento do modelo, foi utilizado o Método Mínimos 

Quadrado (MMQ) em dois estágios, conforme Leite e Campos (2017). 

Para estimativa do índice de sítio usado como variável do modelo de Clutter foram 

avaliados o modelo de Schumacher, Logístico e Gompertz (Tabela 6). O índice de sítio é dado 

pela altura dominante em uma idade de referência, geralmente aos 7 anos para eucalipto no 

Brasil. É um índice de capacidade produtiva de um talhão e utilizado dentro do manejo florestal 

para classificar e comparar diferentes áreas de povoamento florestal com base no potencial 

crescimento das árvores. A escolha do melhor modelo se deu através do cálculo das medidas de 

acurácia REMQ, R², e EMA calculadas via validação cruzada. Já o modelo de Clutter foi 

ajustado usando no R usando o pacote dplyr e caret seguindo o método dos mínimos quadrado 

em dois estágios, conforme Leite e Campos (2017). 

Tabela 6 – Modelos de índice de sítio pelo método da curva-guia 
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Modelo Equação base 
Equação de sítio 

Método da curva-guia 

Schumacher 𝑙𝑛(𝐻𝑑𝑜𝑚) =  𝛽0 + 𝛽1 (
1

𝐼1
) ln(𝑆) = 𝑙𝑛(𝐻𝑑𝑜𝑚) − 𝛽1 [(

1

𝐼1
) − (

1

𝐼2
)] 

Logístico 𝐻𝑑𝑜𝑚 =  
𝛽0

(1 + 𝛽1𝑒(−𝛽2𝐼1))
 𝑆 = 𝐻𝑑𝑜𝑚 ∗  

(1 + 𝛽1𝑒(−𝛽2𝐼1))

(1 + 𝛽1𝑒(−𝛽2𝐼2))
 

Gompertz 𝐻𝑑𝑜𝑚 =  𝛽0 [𝑒−𝑒(𝛽1−𝛽2𝐼1)
] 𝑆 = 𝐻𝑑𝑜𝑚 ∗

(𝑒−𝑒(𝛽1−𝛽2𝐼2)
)

(𝑒−𝑒(𝛽1−𝛽2𝐼1)
)
 

 

Para incorporar a variável que representam a capacidade fotossintética, os índices 

espectrais e texturais calculados foram adicionados à equação da área basal. A inclusão dos 

índices espectrais foi definida com base em análises preliminares e em evidências apresentadas 

na literatura (Pereira et al., 2016), as quais indicaram sua relevância para a melhoria do ajuste 

do modelo, em virtude de sua relação direta com a área foliar e com a biomassa do povoamento. 

Assim, os índices foram inseridos empiricamente na equação correspondente à área basal.  

𝑙𝑛𝐺2 = 𝑙𝑛𝐺1 (
𝐼1

𝐼2
 ) + 𝛼1 (1 −

𝐼1

𝐼2
 ) + 𝛼2 (1 −

𝐼1

𝐼2
 ) ∗ 𝑆 + 𝛼3 (1 −

𝐼1

𝐼2
) ∗ Ω 

Onde Ω corresponde ao índice espectral, 𝛼3 corresponde ao parâmetro de ajuste da 

equação, e foi adicionado (1 −
𝐼1

𝐼2
 ) pois quando 𝐼2 = 𝐼1 a área basal corresponderá a mesma 

área basal na data do inventário e o modelo continuará consistente. Foram testados os seguintes 

IE e IT: 𝑁𝐷𝑉𝐼, G𝑁𝐷𝑉𝐼, 𝑆𝐴𝑉𝐼, 𝑆𝑅, 𝑅𝑉𝐼, 𝐷𝑉𝐼, 𝑁𝐵𝑅𝐼, 𝐸𝑉𝐼, Energy, Entropy, Correlation, IDM, 

Inertia, CS, CP, HC .  

A inclusão dessas formas busca representar mais fielmente o comportamento da 

vegetação captado pelos sensores orbitais, que muitas vezes apresenta crescimento assintótico 

ou respostas parabólicas frente a diferentes fases de desenvolvimento do povoamento. O ajuste 

do modelo de Clutter modificado também foi realizado através do método dos mínimos 

quadrados em dois estágios. Para a equação de volume, optou-se por não incluir o parâmetro 

Ω, uma vez que sua adição resultou em um aumento do RMSE%, indicando uma redução na 

precisão do modelo. Além disso, o estudo de Pereira et al., (2016) incorporou uma componente 

espacial na equação de área basal e identificou uma dependência espacial dessa variável e o 

volume não apresentou correlação espacial. 
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1.7.2 TREINAMENTO DOS MODELOS DE APRENDIZADO DE MÁQUINA 

 Os métodos RF, SVM, XGBoost, RNA e KNN foram implementados no software R 

(versão 4.4.1), com o uso dos pacotes ranger, e1071, kernlab, xgboost e nnet, respectivamente. 

Todas as variáveis foram normalizadas por meio da função de normalização mínimo-máximo, 

a fim de padronizar as escalas e evitar influência desproporcional de variáveis com magnitudes 

distintas e ao final foram convertidas para a unidade original para o cálculo das estatísticas de 

qualidade. 

𝑧 =
𝑥 − 𝑚𝑖𝑛(𝑥)

[𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)]
 

    𝑥 = 𝑧 [𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)] + min (𝑥) 

Onde 𝑧 é o valor normalizado, 𝑥 é o valor original da variável, 𝑚𝑎𝑥(𝑥) 𝑒 𝑚𝑖𝑛(𝑥) são, 

respectivamente, os valores máximo e mínimo observados para a variável. 

Como variáveis preditoras, adotaram-se as mesmas variáveis do modelo de Clutter, a 

saber: idade atual, idade de interesse, área basal atual e índice de sítio. Os parâmetros dos 

modelos foram ajustados por meio de uma busca em grade (“grid search”), na qual se avaliaram 

diferentes combinações de hiperparâmetros. Ao final, selecionou-se o modelo com o melhor 

desempenho e os respectivos hiperparâmetros para a geração do mapa de erro. Os 

hiperparâmetros testados foram: 

• XGBoost: 

o Número de árvores: 100 e 200 

o Profundidade máxima das árvores: 2, 4 e 5 (profundidade rasa, 

profunda e ainda mais profunda, respectivamente) 

o Taxa de aprendizado: 0,01; 0,1 e 0,3 (taxa de aprendizagem baixa, 

média e alta, respectivamente) 

o Valor mínimo para redução de perda: 0 (não há restrição para divisão) 

o Proporção de coluna: 1 (todas as variáveis são consideradas) 

o Peso mínimo da soma dos gradientes: 1 (arvores mais complexas) 

o Proporção das amostras: 1 (todas as amostras são usadas) 

• SVM: 

o Parâmetro de regularização variando de 2-5 até 22  

o Parâmetro do kernel radial variando de 2-5 até 22 
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• RF 

o Número de variáveis: 2, 4 e 5 (2, 4 ou 5 variáveis aleatórias para decidir 

a divisão) 

o Critério de divisão do nós: variância 

o Número de observações em um nó terminal: 5 e 10 

• RNA 

o Número de neurônio testados: 5, 10 e 15 

o Parâmetro de regularização: 0,01; 0,1 e 0,5 

o Número de camada oculta: 1 

o A função de ativação: logística 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

o Número máximo de iterações: 100 

• KNN 

o Número de vizinhos considerados: 3, 5, 7, 9, 11, 13 e 15 

o Distância utilizada: distância Euclidiana 

Na versão ampliada dos modelos, incorporaram-se índices espectrais e de texturas às 

variáveis preditoras do modelo de Clutter. As combinações testadas incluíram: 

1. IE únicos: NDVI, GNDVI, SAVI, SR, RVI, DVI, NBRI, EVI, Energy, Entropy, 

Correlation, IDM, CShade, CProminence, HC, Inertia 

2. Combinações binárias: NDVI+GNDVI, NDVI+SAVI, NDVI+SR, GNDVI+SAVI, 

GNDVI+SR, SAVI+SR 

3. Combinações ternárias: NDVI + GNDVI + SAVI, NDVI + GNDVI + SR, GNDVI + 

SAVI + SR 

4. Combinação quaternária: NDVI + GNDVI + SAVI + SR, RVI + DVI + NBRI + EVI, 

Energy + Entropy + Correlation + IDM, CShade + CProminence + HC + Inertia. 

5. Combinação de oito: NDVI + GNDVI + SAVI + SR + RVI + DVI + NBRI + EVI, 

Energy + Entropy + Correlation + IDM + CShade + CProminence + HC + Inertia. 
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1.7.3 AVALIAÇÃO DOS MODELOS 

Para a avaliação dos modelos de sítio (usados dentro do modelo de Clutter), do modelo 

de Clutter e dos modelos de aprendizado de máquina, foi adotado o método de Cross-Validation 

(CV) utilizando 5 folds como demonstrado na Figura 11. 

 
Figura 11 – modelo de validação CV 

A validação cruzada (Cross Validation – CV) é uma das técnicas mais comuns em 

modelagem estatística e aprendizado de máquina, utilizada para avaliar o desempenho e a 

capacidade de generalização dos modelos. Nesse procedimento, o conjunto de dados é dividido 

aleatoriamente em cinco subconjuntos (folds), dos quais quatro são utilizados para o 

treinamento do modelo e um para a validação. Esse processo é repetido até que todos os 

subconjuntos tenham sido utilizados como conjunto de validação. A aplicação da CV reduz o 

risco de enviesamento dos conjuntos de teste, tornando as métricas de desempenho, como 

RMSE, R² e MAE, mais estáveis e representativas. Além disso, contribui para a detecção do 

overfitting (sobreajuste dos dados) e pode ser empregada tanto em modelos paramétricos, 

empíricos quanto em modelos de aprendizado de máquina (Browne, 2000). Adicionalmente, 

foram calculadas as estatísticas de desvio-padrão, valores mínimos e máximos para todos os 

folds, de modo a fornecer uma referência sobre a variação das métricas descritivas ao longo da 

validação cruzada. 

1.8 Critérios de seleção de modelos 

Para as análises de estatística de qualidade dos modelos, foram utilizadas as estatísticas 

de Raiz do Erro Médio Quadrático (RQEM), Raiz do Erro Médio Quadrático (RQEM%), 

correlação de Pearson (r), coeficiente de determinação (R²) e Viés%. 
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𝑅𝐸𝑀𝑄 = √
∑ (𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜𝑖 − 𝑉𝑟𝑒𝑎𝑙𝑖)2𝑛

𝑖=1

𝑛
 

𝑅𝐸𝑀𝑄% =

√∑ (𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜𝑖 − 𝑉𝑟𝑒𝑎𝑙𝑖)2𝑛
𝑖=1

𝑛
∑ 𝑉𝑟𝑒𝑎𝑙𝑖

𝑛
𝑖=1

∗ 𝑛 ∗ 100 

𝑉𝑖é𝑠% =
∑ (𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜𝑖 − 𝑉𝑟𝑒𝑎𝑙𝑖)

𝑛
𝑖=1

∑ 𝑉𝑟𝑒𝑎𝑙𝑖
𝑛
𝑖=1

∗ 100 

𝑟 =
∑ (𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜𝑖 − 𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜)(𝑉𝑟𝑒𝑎𝑙𝑖 − 𝑉𝑟𝑒𝑎𝑙)𝑛

𝑖=1

√(∑ (𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜𝑖 − 𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜)
2

𝑛
𝑖=1 ) (∑ (𝑉𝑟𝑒𝑎𝑙𝑖 − 𝑉𝑟𝑒𝑎𝑙)

2
𝑛
𝑖=1 )

 

𝑅2 = 1 −
∑ (𝑉𝑟𝑒𝑎𝑙𝑖 − 𝑉𝑝𝑟𝑒𝑑𝑖𝑡𝑜𝑖)

2𝑛
𝑖=1

∑ (𝑉𝑟𝑒𝑎𝑙𝑖 − 𝑉𝑟𝑒𝑎𝑙)
2

𝑛
𝑖=1

 

O REMQ mede o erro médio entre os valores observados e preditos. De forma simples 

mostra o quão longe, em média, as previsões estão da realidade. REMQ% é o REMQ em 

porcentagem e permite comparar modelos em diferentes escalas, facilitando a interpretação 

prática dos erros. Viés% indica se os modelos tendem a superestimar ou subestima os valores. 

Um viés mais baixo indica que o modelo não possui tendência sistemáticas. r é o coeficiente de 

correlação de Pearson onde mede a força da relação linear entre os valores observados e valores 

preditos. R² mostra a proporção da variabilidade dos dados observados explicadas pelo modelo. 

As análises estatísticas foram realizadas para todos os processamentos, desde a seleção do 

índice de sítio até nos ajustes do modelo de Clutter e modelo de aprendizado de máquina. 

RESULTADOS  

1.9 Análise exploratória 

Nas Figuras 12, 13 e 14 são apresentados os gráficos correspondentes às variáveis 

biométricas altura dominante, área basal e volume, respectivamente. Em todos os gráficos, as 

linhas que conectam os pontos representam a trajetória temporal de cada talhão ao longo do 

período analisado. 
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Figura 12 – Gráfico da altura dominante e idade 

 
Figura 13 – Gráfico da  área basal e idade 
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Figura 14 – Gráfico de volume e idade 

A análise exploratória da variável altura dominante indica um padrão de dispersão 

coerente com a dinâmica de crescimento florestal, caracterizado pelo aumento dos valores em 

função da idade e pela tendência à estabilização a partir de aproximadamente 70 meses. 

Observa-se, contudo, elevada dispersão dos dados, refletindo a heterogeneidade dos talhões 

avaliados. Para a área basal, verificou-se comportamento semelhante e esperado ao longo do 

tempo, com rápido incremento nos primeiros anos de desenvolvimento, seguido de 

estabilização após cerca de 60 meses. Em relação ao volume, não foi observada redução na taxa 

de crescimento, sendo predominante um comportamento aproximadamente linear em função 

do tempo. Adicionalmente, os gráficos evidenciam significativa dispersão dos dados ao longo 

da série temporal, associada às diferenças entre talhões e genótipos analisados. 

 

A Figura 15 apresenta a relação entre os índices espectral e de textura, representados 

no eixo y, e a idade dos talhões, expressa em anos no eixo x. Enquanto a Figura 16 apresenta a 

relação dos índices e do volume. A linha azul da Figura 15 e 16 representa a tendência média 

das observações ao longo do tempo, obtida por meio de um ajuste suavizado (smooth).
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Figura 15 – Gráfico da relação entre IE/IT e Idade 
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Figura 16 – Gráfico da relação entre IE/IT e Volume.
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Na Figura 15, observa-se que os índices espectrais apresentam variação limitada ao 

longo da idade, com tendências suaves de aumento ou estabilização após os primeiros anos. 

Esse comportamento é típico de povoamentos florestais homogêneos e manejados, nos quais o 

rápido fechamento do dossel ocorre ainda nas fases iniciais do crescimento. O NDVI, SAVI e 

EVI exibem valores relativamente elevados já a partir dos primeiros anos, mantendo-se estáveis 

ao longo do tempo. Esse padrão indica que o aumento inicial da área foliar promove rápida 

elevação da reflectância no infravermelho próximo e redução no vermelho, refletindo maior 

interceptação de radiação fotossinteticamente ativa e maior eficiência fotossintética. 

Os índices de textura apresentam maior dispersão e variabilidade ao longo da idade, 

refletindo mudanças na heterogeneidade espacial do dossel. O aumento gradual da Energia e 

do IDM (Homogeneidade) indica que, com o avanço da idade, o povoamento tende a se tornar 

mais estruturalmente uniforme, com copas mais contínuas e redução de variações locais de tons 

de cinza. 

Já na Figura 16, de forma geral, observa-se que os índices espectrais apresentam 

tendências fracas a moderadas em relação ao volume, com padrões não lineares e grande 

dispersão dos dados, especialmente em volumes mais elevados. NDVI, GNDVI e SAVI exibem 

comportamento de leve decréscimo ou estabilização à medida que o volume aumenta. Esse 

padrão é consistente com o fenômeno de saturação espectral, no qual incrementos adicionais de 

biomassa e área foliar não resultam em variações proporcionais nos índices baseados na razão 

entre o infravermelho próximo e o vermelho (ou verde). Em volumes baixos a intermediários, 

os índices apresentam maior sensibilidade, refletindo o aumento da área foliar, maior 

interceptação da radiação fotossinteticamente ativa e maior acúmulo de biomassa. Entretanto, 

em talhões com volumes elevados, a capacidade discriminatória desses índices diminui 

substancialmente.  

Em contraste com os índices espectrais, os índices de textura apresentam respostas 

mais consistentes ao longo do gradiente de volume, refletindo alterações na organização 

espacial do dossel. A Energia e o IDM (Homogeneidade) tendem a aumentar com o volume, 

indicando que povoamentos mais volumosos apresentam estrutura espacial mais uniforme, com 

copas contínuas e menor variação local de tons de cinza. A Entropia mantém valores 

relativamente constantes, com leve aumento em volumes intermediários, sugerindo maior 

heterogeneidade estrutural durante fases de crescimento mais intenso, seguida de estabilização 

em povoamentos maduros. Esses resultados evidenciam que os índices de textura capturam 
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informações estruturais do povoamento que não são diretamente representadas pelos índices 

espectrais médios. De modo geral, todos os índices apresentaram baixa correlação com a idade, 

sugerindo pouca variação espectral ao longo dos anos.  

1.9.1 SELEÇÃO DO MODELO DE ÍNDICE DE SÍTIO  

A Tabela 7 apresenta os coeficientes estimados dos modelos de índice de sítio, assim 

como as respectivas estatísticas de qualidade do ajuste, para os três modelos de equação de sítio 

descritos na Tabela 5. Os resultados demonstraram alta significância estatística para todos os 

coeficientes avaliados, com valores de p inferiores a 0,0001, indicando que os parâmetros dos 

modelos apresentam contribuição significativa para as estimativas. Na comparação de 

desempenho entre os modelos testados, o modelo de Gompertz e Logístico mostraram-se mais 

preciso, apresentando menor valor de REMQ% para predição do índice de sítio. A Figura 17 

mostra as curvas dos modelos de sítio ajustado. 

Tabela 7 – Coeficientes estimados e estatística de qualidade de cada modelo. Os valores em 

parênteses indicam o p-valor 

  Coeficientes Estimados Estatísticas de qualidade 

Modelo β1 β2 β3 REMQ% Bias r R² 

Schumacher 
35,533 -178,209 

- 12,57 0,208 0,76 0,57 
(<0,0001) (<0,0001) 

Gompertz 
43,3130 0,2713 0,0161 

11,87 0,002 0,79 0,62 
(<0,0001) (<0,0001) (<0,0001) 

Logístico 
38,5921 21,431 0,0250 

11,87 0,002 0,79 0,62 
(<0,0001) (<0,0001) (<0,0001) 
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Figura 17  – curvas dos índices de sítio 

Observa-se que todos os modelos são capazes de representar a tendência geral de 

crescimento em altura, caracterizada por um rápido incremento inicial seguido de redução 

gradual da taxa de crescimento com o avanço da idade, comportamento típico de espécies 

florestais de rápido crescimento. 

1.9.2 COMPARAÇÃO ENTRE O MODELO DE EM SUA ESTRUTURA TRADICIONAL E ADICIONADO DE 

IE/IT 

A Figura 18 apresenta a média da métrica de acurácia REMQ% para a estimativa da 

área basal (a) e do volume (b). Os resultados indicam elevada precisão dos modelos, com 

valores de REMQ% inferiores a 10%, coeficiente de determinação (R²) superior a 80% e 

coeficiente de correlação (r) acima de 90% na predição da área basal. Para o volume, o REMQ% 

manteve-se inferior a 10%, com valores de R² e r superiores a 90%, evidenciando alto 

desempenho preditivo. 

Na Tabela 8 (Apêndice), observa-se que os valores de p foram inferiores a 0,01 para 

todos os índices espectrais (IE), indicando significância estatística dos coeficientes estimados 

no modelo. Em relação aos índices de textura (IT), apenas as métricas Entropy, CP, HC, IDM, 

CS e Inertia não apresentaram valores de p significativos. Os demais parâmetros apresentados 

na Tabela 11 mostraram significância estatística no modelo. Além disso, conforme ilustrado na 
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Figura 18, a incorporação dos índices espectrais e de textura não resultou em diferenças 

expressivas em relação ao modelo de Clutter tradicional, indicando desempenho semelhante 

entre as abordagens. 

 
Figura 18  – Gráfico de valores máximos, médios e mínimos da raiz quadrada do erro 

médio quadrático para as variáveis área basal (a) e volume (b) estimados pelo modelo de 

Clutter em sua estrutura tradicional e com a inserção de índices espectrais e texturais.   

1.9.3 MODELOS DE APRENDIZADO DE MÁQUINA   

A Figura 19 apresenta o gráfico de REMQ% dos modelos de aprendizagem de 

máquina, utilizando apenas as variáveis do modelo de Clutter com inserção dos IE/ITs.  A 

Figura 21 apresenta o mapa de erro dos volumes preditos pelo melhor modelo de aprendizagem 

de máquina, que foi o SVM, utilizando os hiperparâmetros: sigma = 0,25; C = 4, e a figura 22 

é apresentado o erro em modulo do modelo em relação a idade dos talhões. 
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Figura 19  – Gráfico de valores máximos, médios e mínimos da raiz quadrada do erro médio quadrático para o Volume. 
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Observa-se na Figura 20 que os modelos de AM somente com as variáveis usuais do 

modelo de Clutter, ou seja, mesmo sem a inclusão de variáveis de sensoriamento remoto, já 

obtiveram uma melhora na acurácia da prognose. A figura apresenta o desempenho dos modelos 

de aprendizado de máquina SVM, XGBoost, RNA, RF e KNN, avaliados por meio do REMQ% 

do volume, considerando diferentes combinações de variáveis dendrométricas, índices 

espectrais e índices de textura. As barras representam as distribuições do erro associadas a cada 

combinação, enquanto os pontos indicam medidas centrais e dispersão. Observa-se que os 

modelos apresentam desempenhos distintos, evidenciando diferenças na capacidade de capturar 

relações complexas entre as variáveis explicativas e o volume florestal. 

Dentro os modelos testados, o SVM apresentou os menores valores médios de REMQ, 

situando-se predominantemente entre aproximadamente 6% e 9%, indicando elevada 

capacidade de generalização. Esse desempenho sugere que o SVM foi eficiente em modelar 

relações não lineares entre variáveis dendrométricas e espectrais, mesmo em um contexto de 

alta dimensionalidade. XGBoost e RNA apresentaram desempenhos intermediários, com 

valores de REMQ levemente superiores aos do SVM, porém ainda relativamente estáveis entre 

as diferentes combinações de variáveis. Isso indica boa robustez, embora com menor 

sensibilidade a ganhos incrementais decorrentes da inclusão de múltiplos IE e IT. Random 

Forest apresentou REMQs ligeiramente mais elevados e maior variabilidade, o que pode estar 

associado à sua sensibilidade à correlação entre variáveis e à presença de ruído, especialmente 

quando muitas combinações espectrais e texturais são incluídas simultaneamente. KNN 

apresentou os maiores valores de REMQ e maior dispersão, evidenciando menor capacidade de 

generalização. Esse comportamento é consistente com a natureza do algoritmo, que é 

fortemente dependente da distribuição local dos dados e sensível à dimensionalidade do espaço 

de atributos. 

DISCUSSÕES 

A melhora da capacidade preditiva dos modelos de aprendizado de máquinas em 

relação ao sistema de equações usual de Clutter, ainda que discreta, sugere que estes modelos 

tem potencial de melhor captar relações complexas entre as variáveis. O sistema de equações 

de Clutter, sendo um sistema de regressão linear, presume que a forma da relação entre as 

variáveis resposta e explicativas seja explicitada no ajuste ao passo os modelos de aprendizado 

de máquinas compõem esta forma de relação entre variáveis ao longo do treinamento 
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Em relação à adição dos índices espectrais e de textura ao modelo de Clutter e aos 

modelos de AM, apesar dos ganhos observados, a magnitude das melhorias também foi sutil. 

Quando as variáveis espectrais foram inseridas empiricamente no modelo de Clutter, as 

variações na capacidade preditiva do modelo foram praticamente imperceptíveis, com 

diferenças na segunda casa decimal.  Quando as mesmas variáveis foram utilizadas em modelos 

de aprendizado de máquina, o ganho foi mais perceptível, embora ainda pequeno chegando a 

0,7%, o que indica que esses algoritmos capturam melhor, ainda que minimamente, efeito das 

variáveis espectrais sobre a variável resposta.  

Dentre os índices testados, o SR, o NBRI e o HC destacaram-se por apresentarem os 

menores erros, refletindo diretamente o vigor fisiológico das árvores. Árvores com folhas mais 

saudáveis realizam fotossíntese de forma mais eficiente, resultando em maior produção de 

fotoassimilados que é a base fisiológica para o acúmulo de biomassa e volume. O teor de 

clorofila, por sua vez, é um indicador importante da produtividade florestal, uma vez que 

regiões com menor concentração de clorofila tendem a apresentar menor crescimento 

(Azevedo, 2022). A absorção de clorofila ocorre predominantemente no comprimento de onda 

de 680 nm (faixa do vermelho), enquanto a região entre 690 e 740 nm (borda vermelha e 

infravermelho próximo) é altamente sensível à presença desse pigmento, constituindo-se em 

uma métrica relevante para avaliar o estado fisiológico das plantas (Coops, 2015). Assim, o 

aumento da banda do infravermelho próximo está associado a uma maior área foliar, com maior 

refletância no NIR e menor no vermelho, o que indica copas mais fechadas, maior eficiência 

fotossintética e, consequentemente, maior acúmulo de biomassa e volume. 

Contudo, índices baseados no infravermelho próximo, como o NDVI, apresentam 

limitação de saturação em florestas densas (Berger et al., 2019). Nesses casos, mesmo com o 

aumento da biomassa, o índice tende a estabilizar ou crescer mais lentamente, tornando-se 

menos sensível às variações de vigor em níveis elevados de fechamento de copa. Essa limitação 

justifica o uso de índices alternativos, como o SR e o NBRI, que são menos suscetíveis à 

saturação, além da adoção de índices de textura, capazes de representar a homogeneidade 

estrutural dos talhões. Outra abordagem promissora consiste na utilização de séries históricas 

de índices espectrais, como o NDVI acumulado, em conjunto com variáveis bioclimáticas. 

Quando processadas por algoritmos de Floresta Aleatória, essas informações têm demonstrado 

capacidade de explicar mais de 90% da variabilidade do volume de madeira, além de contribuir 

significativamente para a estimativa e a contabilização de estoques de carbono em escalas 

regional e até nacional. (le Maire et al., 2011).  
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Entretanto, o pequeno ganho marginal observado nas estimativas dos modelos com a 

inclusão dos índices espectrais e texturais pode estar associado à ausência de 

georreferenciamento das parcelas de inventário. A utilização de valores médios dos índices por 

talhão tende a reduzir a variabilidade espacial dos dados, considerando que os talhões florestais 

apresentam heterogeneidade intrínseca. Assim, a agregação por média pode suprimir diferenças 

locais relevantes, limitando a capacidade dos modelos em captar variações intra-talhão. Nesse 

sentido, estudos futuros devem priorizar a associação dos índices espectrais diretamente à área 

das parcelas amostrais, em detrimento de médias por talhão, a fim de preservar a variabilidade 

espacial e, consequentemente, aumentar a precisão das estimativas. 

Ressalta-se que foram utilizadas imagens do satélite Landsat 8, de acesso gratuito, o 

que confere viabilidade operacional ao fluxo metodológico proposto para aplicação em 

empresas florestais. Ademais, a incorporação de sensores com maior resolução espacial e 

espectral tende a potencializar os resultados, contribuindo para o aprimoramento do 

desempenho dos modelos preditivos. A resolução espacial e, principalmente, a resolução 

temporal do Landsat 8 representaram limitações relevantes neste estudo. Para um 

monitoramento contínuo e eficiente de plantios florestais, é desejável o uso de satélites com 

revisita mais frequente e maior nível de detalhe espacial. Nesse contexto, o sensoriamento 

remoto, aliado ao inventário florestal, mostra-se uma ferramenta poderosa, oferecendo uma 

visão abrangente de grandes áreas, inclusive aquelas de difícil acesso. Contudo, o 

sensoriamento remoto não substitui o inventário tradicional, mas o complementa, auxiliando na 

espacialização de variáveis como volume e área basal e aprimorando o planejamento de colheita 

e manejo. Assim, consolida-se como um componente essencial da silvicultura de precisão, 

atendendo às demandas crescentes do setor florestal moderno (Santos et al., 2023). Dedicar um 

parágrafo a respeito da saturação (“estouro”) dos índices espectrais e texturais. Citar referências 

que mostram isso. Mencionar a existência de outros índices ou sensores que possam minimizar 

esta questão.  

Estudos anteriores reforçam a aplicabilidade dessas metodologias. Santos et al. (2023), 

na região do Vale do Rio Doce, utilizaram RNA e RF para prognose do crescimento de 

povoamentos de Eucalyptus grandis × E. urophylla com dados Landsat 7 e obtiveram bons 

RQEM%, mesmo com redução do esforço amostral, onde variaram de 7,9% a 14,5% para 

predição contínua e 6,8% a 11,8% para predição. Dos Reis et al. (2019) combinaram dados 

Landsat 8, RADAR e MDE com Random forest para estimar volume de eucaliptos, obtendo 

RMSE% de 12,88%. Alcântara et al. (2018), ao estimar rendimento volumétrico de eucaliptos 
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em Minas Gerais com RNA, incorporando variáveis ambientais e edáficas, alcançaram 

RMSE% de 22,22%. Esses resultados corroboram as evidências encontradas neste estudo 

quanto à viabilidade de integrar dados de sensoriamento remoto e técnicas de aprendizado de 

máquina na modelagem florestal. 

CONCLUSÃO 

A inclusão de índices espectrais e texturais, especialmente o SR, NBRI e HC, 

promoveu uma melhora modesta na acurácia das projeções volumétricas. Entretanto, foi na 

aplicação dos modelos de aprendizado de máquinas que se observou um ganho um pouco mais 

expressivo de desempenho. As máquinas de vetor de suporte destacaram-se como o melhor 

modelo, superando os outros modelos testados, tais quais Florestas Aleatórias, K-Vizinho 

Próximo, redes neurais artificiais e Aumento de Gradiente Extremo.  

Em síntese, os achados sugerem que inclusão de variáveis de sensoriamento remoto 

pode melhorar, ainda que discretamente, a capacidade preditiva dos modelos tradicionais. Os 

algoritmos de inteligência computacional, como os modelos de aprendizado de máquinas, 

mostraram-se mais eficientes na incorporação dessas variáveis, indicando um caminho 

promissor para o aprimoramento dos modelos de crescimento e produção florestal. 
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APENDICE 

Tabela 8– Estimativas dos coeficientes da equação área basal do modelo de Clutter para 

base de dados 100%. Também é apresentado estatística de qualidade da Validação 

Cruzada. 

Entrada de 
IE/IT 

Coeficientes estimados Estatística de qualidade 

Modelo α1 α2 α3 RQEM% Bias r R² 

Clutter usual 2,284136 0,037946 NA 6,31 0,01 0,92 0,81 

Cluter + 

NDVI 
2,030995 0,036274 0,72738 6,26 0,03 0,93 0,86 

Clutter + 

GNDVI 
2,048182 0,036611 0,68044 6,25 0,04 0,93 0,86 

Clutter + 

SAVI 
2,030996 0,036274 0,48493 6,28 0,03 0,93 0,86 

Clutter + SR 1,974079 0,036104 0,14858 6,28 0,04 0,93 0,86 

Clutter + 

RVI 
2,598044 0,036379 -0,64526 6,28 0,03 0,93 0,84 

Clutter + 

DVI 
2,010441 0,038146 0,00001 6,28 0,08 0,93 0,87 

Clutter + 

NBRI 
2,05384 0,035878 0,77260 6,31 0,03 0,93 0,85 

Clutter + 

EVI 
2,140198 0,036693 -0,53322 6,29 0,02 0,92 0,83 

Clutter + 

Energy 
2,363668 0,037825 -0,25516 6,31 0,01 0,92 0,82 

Clutter + 

Entropy 
2,221749 0,037837 0,02824 6,31 -0,01 0,92 0,83 

Clutter + 

Correlation 
2,350172 0,037748 -0,03539 6,33 0,01 0,92 0,82 

Clutter + 

IDM 
2,322118 0,037911 -0,04238 6,32 -0,01 0,92 0,81 

Clutter + 

Inertia 
2,286939 0,037845 0,00076 6,31 0,1 0,95 0,9 

Clutter + 

Cshade 
2,288042 0,037774 0,00004 6,30 0,01 0,92 0,81 

Clutter + 

Cprominence 
2,305727 0,037912 -0,00005 6,30 0,01 0,92 0,81 

Clutter + HC 2,280803 0,037737 0,03335 6,32 -0,02 0,92 0,81 
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Tabela 9 – Valores do p-valor dos coeficientes da equação da área basal 

Entrada de IE/IT Coeficientes estimados 

Modelo p-valor de α1 p-valor de α2 p-valor de α3 

Clutter usual 6,62E-103 1,88E-36 NA 

Cluter + NDVI 6,00E-65 6,19E-34 4,79E-05 

Clutter + GNDVI 5,08E-62 2,62E-34 5,71E-04 

Clutter + SAVI 6,00E-65 6,19E-34 4,79E-05 

Clutter + SR 2,86E-60 5,76E-34 3,07E-06 

Clutter + RVI 3,03E-78 5,61E-34 1,63E-04 

Clutter + DVI 4,91E-47 3,95E-37 3,94E-03 

Clutter + NBRI 6,03E-75 1,34E-33 1,24E-06 

Clutter + EVI 3,86E-85 8,16E-35 7,16E-05 

Clutter + Energy 1,91E-100 1,46E-36 7,54E-03 

Clutter + Entropy 4,74E-86 2,55E-36 1,26E-01 

Clutter + Correlation 6,34E-101 2,31E-36 1,39E-02 

Clutter + IDM 4,75E-17 3,97E-36 8,81E-01 

Clutter + Inertia 1,07E-102 4,06E-36 5,81E-01 

Clutter + Cshade 6,44E-103 4,89E-36 3,45E-01 

Clutter + Cprominence 3,15E-103 1,61E-36 6,04E-02 

Clutter + HC 2,09E-102 8,63E-36 4,57E-01 
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Tabela 10 – Estimativas dos coeficientes da equação Volume do modelo de Clutter para 

base de dados 100%. Também é apresentado estatística de qualidade da Validação 

Cruzada.  

Entrada de 

IE/IT 
Coeficientes estimados Estatística de qualidade 

Modelo β0 β1 β2 β3 RQEM% Bias r R² 

Clutter Puro 1,5623 -16,6823 0,0269 1,1058 8,51 1,06 0,97 0,93 

Cluter + 

NDVI 
1,5600 -16,6544 0,0269 1,1067 8,49 1,02 0,97 0,94 

Clutter + 

GNDVI 
1,5631 -16,6924 0,0269 1,1055 8,51 1,02 0,97 0,93 

Clutter + 

SAVI 
1,5600 -16,6544 0,0269 1,1067 8,49 1,02 0,97 0,94 

Clutter + SR 1,5581 -16,6307 0,0269 1,1074 8,46 0,99 0,97 0,94 

Clutter + RVI 1,5606 -16,6612 0,0269 1,1065 8,50 1,03 0,97 0,93 

Clutter + 

DVI 
1,5618 -16,6769 0,0269 1,1060 8,53 1,06 0,97 0,93 

Clutter + 

NBRI 
1,5566 -16,6115 0,0269 1,1080 8,46 1,01 0,97 0,94 

Clutter + EVI 1,5637 -16,7003 0,0270 1,1052 8,50 1,01 0,97 0,93 

Clutter + 

Energy 
1,5798 -16,9015 0,0272 1,0988 8,58 1,04 0,97 0,93 

Clutter + 

Entropy 
1,5760 -16,8541 0,0271 1,1003 8,59 1,05 0,97 0,93 

Clutter + 

Correlation 
1,5786 -16,8872 0,0271 1,0993 8,59 1,05 0,97 0,93 

Clutter + 

IDM 
1,5670 -16,7418 0,0270 1,1039 8,55 1,06 0,97 0,93 

Clutter + 

Inertia 
1,5627 -16,6878 0,0269 1,1056 8,52 1,07 0,97 0,93 

Clutter + 

Cshade 
1,5644 -16,7092 0,0270 1,1049 8,53 1,06 0,97 0,93 

Clutter + 

Cprominence 
1,5517 -16,5494 0,0268 1,1100 8,43 1,02 0,97 0,94 

Clutter + HC 1,5661 -16,7300 0,0270 1,1043 8,55 1,06 0,97 0,93 
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Tabela 9 – Valores do p-valor dos coeficientes da equação do Volume. 

Entrada de IE/IT Coeficientes estimados 

Modelo p-valor de β0 p-valor de β1 p-valor de β2 p-valor de β3 

Clutter usual 2,55E-53 1,91E-31 2,30E-54 4,33E-137 

Cluter + NDVI 1,45E-54 3,79E-32 1,68E-55 4,69E-140 

Clutter + GNDVI 3,14E-54 5,68E-32 3,69E-55 7,53E-139 

Clutter + SAVI 1,45E-54 3,79E-32 1,68E-55 4,69E-140 

Clutter + SR 5,00E-55 2,11E-32 6,13E-56 2,49E-141 

Clutter + RVI 2,26E-54 4,86E-32 2,54E-55 1,46E-139 

Clutter + DVI 3,46E-54 6,11E-32 3,86E-55 5,71E-139 

Clutter + NBRI 4,22E-55 1,95E-32 5,00E-56 9,61E-142 

Clutter + EVI 1,76E-54 4,04E-32 2,25E-55 2,89E-139 

Clutter + Energy 3,40E-54 4,78E-32 6,82E-55 5,27E-136 

Clutter + Entropy 1,10E-53 9,86E-32 1,70E-54 1,41E-135 

Clutter + 

Correlation 
4,67E-54 5,83E-32 8,70E-55 6,57E-136 

Clutter + IDM 2,26E-53 1,68E-31 2,41E-54 2,07E-136 

Clutter + Inertia 2,54E-53 1,90E-31 2,33E-54 5,08E-137 

Clutter + Cshade 2,44E-53 1,81E-31 2,37E-54 8,95E-137 

Clutter + 

Cprominence 
1,70E-53 1,74E-31 1,13E-54 3,10E-139 

Clutter + HC 2,40E-53 1,76E-31 2,47E-54 1,64E-136 

 

 

 


