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RESUMO

SILVA, T.A. Modelagem matematica e computacional da dinAmica de mancais fluidodi-
namicos usando teoria de filme fino em Coordenadas Curvilineas Modveis. 2026. 78 p.
Dissertagdo de mestrado — Faculdade de Engenharia Mecanica, Universidade Federal de Uber-
landia, Uberlandia - MG, 2026.

A modelagem de mancais fluidodindmicos tem sido historicamente dominada pelo modelo
classico de Reynolds, ferramenta eficaz para regimes permanentes e baixos niimeros de Reynolds,
mas limitada ao negligenciar termos inerciais e transientes. No presente trabalho propde-se
uma nova abordagem fisico-matematica para a simula¢do da dindmica de sistemas eixo-mancal,
fundamentada na teoria de filmes finos aplicada as equacdes de balango para a fluidodinamica
em Coordenadas Curvilineas Generalizadas e Mdveis. No modelo desenvolvido considera-
se a média das propriedades na direcdo radial, resolvendo os campos médios de pressao e
de velocidade, o que reduz drasticamente o custo computacional comparado a simulagdes
CFD 3D completas, mantendo, contudo, a capacidade de capturar efeitos de inércia advectiva
e transiente. Para discretizacdo numérica utilizou-se o Método das Diferencas Finitas com
acoplamento pressdo-velocidade via método de passos fracionados. A validacao foi realizada
comparando-se posicdes de equilibrio e coeficientes dinamicos (rigidez e amortecimento) com
dados da literatura, obtendo-se excelente concordancia qualitativa e quantitativa. As simula¢des
demonstraram que, em regimes de maior densidade ou velocidade (Re* =~ 1), a inclusao dos
termos inerciais gera desvios perceptiveis em relagcdo a teoria cldssica, justificando a necessidade
do modelo proposto. A metodologia mostrou-se robusta para a andlise de trajetdrias transientes e
estabilidade, oferecendo uma ferramenta intermedidria eficiente entre os modelos de lubrificagcdo

simplificados e a dindmica dos fluidos computacional complexa.

Palavras-chave: Filme fino, Coordenadas Curvilineas Moveis, Efeitos Inerciais, Dindmica de

Rotores, Lubrificagdao Fluidodinamica.



ABSTRACT

SILVA, T.A. Mathematical and computational modeling of fluid dynamic bearing dyna-
mics using thin-film theory in moving curvilinear coordinates.. 2026. 78 p. Dissertacao de
mestrado — Faculdade de Engenharia Mecanica, Universidade Federal de Uberlandia, Uberlandia
- MG, 2026.

The modeling of fluid dynamic bearings has historically been dominated by the classical Reynolds
model, an effective tool for steady-state regimes and low Reynolds numbers, but limited by
neglecting inertial and transient terms. This work proposes a new physical-mathematical ap-
proach for simulating the dynamics of shaft-bearing systems, based on thin film theory applied
to balance equations for fluid dynamics in Generalized and Moving Curvilinear Coordinates.
The developed model is one-dimensional in the radial direction, solving the average pressure
and velocity fields, which drastically reduces the computational cost compared to complete 3D
CFD simulations, while maintaining the ability to capture convective and transient inertia effects.
Numerical discretization used the Finite Difference Method with pressure-velocity coupling via
the fractional step method. Validation was performed by comparing equilibrium positions and
dynamic coefficients (stiffness and damping) with literature data, obtaining excellent qualitative
and quantitative agreement. Simulations demonstrated that, in regimes of higher density or
velocity (Re* ~ 1), the inclusion of inertial terms generates perceptible deviations from classical
theory, justifying the need for the proposed model. The methodology proved to be robust for
the analysis of transient trajectories and stability, offering an efficient intermediate tool between

simplified lubrication models and complex computational fluid dynamics.

Keywords: Thin film, Moving Curvilinear Coordinates, Inertial Effects, Rotor Dynamics,

Hydrodynamic Lubrication.
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CAPITULO

INTRODUCAO

O desenvolvimento da engenharia mecanica e da tecnologia industrial moderna esta
intrinsecamente ligado a capacidade de projetar e operar sistemas rotativos com eficiéncia e
confiabilidade. Mdquinas rotativas, que englobam equipamentos vitais como motores de com-
bustdo interna, geradores de energia elétrica, turbinas a gés e a vapor, e compressores industriais,
representam a espinha dorsal da infraestrutura energética e produtiva global (VANCE, 1991;
SOUTO, ; ROSSI, ). A demanda continua por maior densidade de poténcia, eficiéncia energé-
tica e durabilidade impde condi¢des operacionais cada vez mais severas a esses equipamentos,
exigindo um entendimento profundo dos fendmenos fisicos que regem seu funcionamento. Um
exemplo critico desse cendrio € a exploracdo de petréleo em dguas profundas, como na camada
do pré-sal, onde turboméquinas e sistemas de bombeamento operam sob gradientes de pressao
extremos, flutuagdes térmicas significativas e em contato com fluidos de propriedades varidveis.
Nessas condi¢des adversas, a integridade do sistema depende fundamentalmente da interface
entre as partes estaticas e as partes moveis da maquina, contexto no qual o estudo do escoamento

de fluidos lubrificantes e a dinamica de mancais assumem um papel preponderante.

Os mancais sdo elementos de méaquina projetados para suportar cargas e permitir o
movimento relativo entre componentes, minimizando o atrito e o desgaste. Conforme definido
por Castro (2007) e Norton (2013), qualquer par de superficies com movimento relativo constitui,
em esséncia, um mancal. Dentre as diversas tipologias existentes — como os de rolamento,
magnéticos e fluidodinamicos —, a escolha adequada depende das especificidades de carga,
velocidade e vida util requerida (RAMOS, 2019). Os mancais fluidodindmicos, foco deste
trabalho, operam sob o principio da separacdo completa das superficies metdlicas por meio de
um filme de fluido pressurizado pelo préprio movimento relativo das pecgas, o chamado efeito
de cunha hidrodinadmica. Segundo Alves (2011) e Mota (2020), essa substitui¢do do atrito seco
pelo atrito viscoso resulta em uma reducao drastica no desgaste, permitindo operacdes em altas
velocidades e cargas elevadas com durabilidade superior. O fluido lubrificante, que pode variar

desde 6leos minerais e sintéticos até gases (SALBU, 1964; ZHAO, 2010) e, mais recentemente,
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agua (ZHANG et al., 2015; WANG et al., 2016), desempenha o papel crucial de meio portante
de carga e agente de troca térmica, conforme ilustrado no esquema de um mancal fluidodindmico

cilindrico apresentado na Figura 1.

Figura 1 — Esquema de um mancal fluidodinamico cilindrico.

Eixo

Fluido Lubrificante

Mancal

Fonte: Ramos (2019).

A base tedrica para a andlise desses componentes remonta aos fundamentos da mecanica
cldssica e da dinamica dos fluidos. Embora Isaac Newton ndo tenha abordado diretamente a
tribologia, suas leis do movimento e a defini¢do de viscosidade para fluidos newtonianos estabe-
leceram o alicerce sobre o qual a mecénica dos fluidos foi construida. Avangos subsequentes
por Euler, Navier e Stokes culminaram nas célebres equacdes de balango para a fluidodinamica,
que descrevem a fisica completa do escoamento de fluidos. No entanto, a complexidade dessas
equacdes exigia simplificacdes para aplicacdes praticas na engenharia do século XIX, levando
ao marco inicial da teoria de lubrificagdo moderna estabelecido por Reynolds (1886). A partir
das equacdes de Navier-Stokes, Reynolds derivou uma equacao diferencial parcial simplificada
para descrever o campo de pressao em filmes finos de fluido, assumindo que as forgas de inércia
e a curvatura do filme eram negligencidveis. Esta formula¢do, conhecida como a Equacao de
Reynolds, permitiu o desenvolvimento de solu¢des analiticas € numéricas que guiaram o projeto
de mancais por mais de um século, com contribui¢des notdveis de Sommerfeld (1904 apud
MOTA et al., 2022), Ocvirk (1952), Swift (1932) e Stieber (1933), cujas abordagens cldssicas sao
amplamente documentadas em referéncias fundamentais como Hamrock (1991), Frene D Nicolas
(1997) e Ishida e Yamamoto (2013).

Apesar de sua utilidade histdrica e eficiéncia computacional, o modelo de Reynolds

possui limitacdes intrinsecas, sendo restrito a regimes de escoamento laminar com baixos
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nimeros de Reynolds modificado (Re* < 1) (WHITE, 2022). Contudo, a tendéncia moderna
de projetos de turbomdquinas frequentemente empurra a operagdo para regimes onde os efeitos
inerciais, a turbuléncia e os fendmenos térmicos nao podem ser ignorados. Além disso, a interag@o
entre o fluido e a estrutura flexivel do rotor torna-se critica, com pesquisas de Liu et al. (2009),
Concli (2020) e Kamat, Kini e Shenoy (2022) demonstrando que a deformag¢do dos componentes
e a dindmica do rotor estdo acopladas ao campo de escoamento. Para capturar esses fendmenos
complexos, a Dinamica dos Fluidos Computacional (Computational Fluid Dynamics) (CFD)
surgiu como uma ferramenta poderosa, permitindo anélises detalhadas sem as simplificacoes
severas da teoria cldssica. No entanto, o custo computacional de simula¢cdes CFD tridimensionais
completas € proibitivo para a maioria das rotinas de projeto industrial, evidenciando uma lacuna
tecnoldgica: a necessidade de modelos que sejam mais precisos que a Equacao de Reynolds, mas

com custo computacional inferior ao de uma simula¢do CFD 3D completa.

Nesse cendrio de crescente complexidade, a modelagem futura de mancais fluidodinami-
cos tende a integrar multiplos niveis espaciais e temporais, desde a microestrutura do lubrificante
e rugosidade superficial até a dindmica global do sistema rotativo. Abordagens multiescala e
modelos totalmente acoplados, que integrem simultaneamente dindmica de fluidos, transferéncia
de calor e deformacao eldstica (HABCHI et al., 2008), tornam-se essenciais. Paralelamente, o
avanco continuo em Computagdo de Alto Desempenho (High-Performance Computing) (HPC)
possibilita simulagdes cada vez mais detalhadas, como Simulagdes Numéricas Diretas (Direct
Numerical Simulation) (DNS) e Simulagdes de Grandes Escalas (Large Eddy Simulation) (LES),

que gradualmente tornam-se vidveis para aplicagdes de engenharia.

Entretanto, enquanto o custo computacional dessas simulac¢des de alta fidelidade ainda é
restritivo para muitas aplicacdes de projeto, um dos maiores desafios para modelos intermedidrios
eficientes reside na representacdo da geometria do dominio fluido. A excentricidade do eixo
cria um dominio que ndo € alinhado com sistemas de coordenadas ortogonais tradicionais. Para
contornar essa dificuldade, a formulagdo das equagdes de balanco em coordenadas curvilineas
ndo ortogonais apresenta-se como uma solucao robusta. Como discutido por Wang (1981),
Germano (1982) e Tai (1996), um sistema de coordenadas que se adapta a fronteira fisica
permite uma representacdo exata da geometria e facilita a aplicagdo das condi¢des de contorno.
Embora matematicamente mais complexa, exigindo o uso de cdlculo tensorial e geometria
diferencial (SUNGNUL, 2016; HILL; STOKES, 2018), essa abordagem permite mapear o
dominio fisico excéntrico para um dominio computacional retangular e fixo, onde métodos
numéricos podem ser aplicados com alta eficiéncia (VERSTEEG; MALALASEKERA, 2007;
MOUKALLED; MANGANI; DARWISH, 2015; HU, 2017). Além disso, a dinAmica de mancais
envolve o movimento do eixo, exigindo o uso de referenciais méveis ou coordenadas curvilineas
dependentes do tempo (OGAWA; ISHIGURO, 1987; LUO; BEWLEY, 2004), cuja correta
formulacdo € crucial para o balango de massa e quantidade de movimento durante a simulacao

da trajetéria do rotor.
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Diante do exposto, no presente trabalho de dissertacdo propde-se o desenvolvimento e a
implementa¢do de uma modelagem matemdtica e computacional para a dinamica de mancais
fluidodinamicos que preencha a lacuna entre os modelos simplificados de Reynolds e as simu-
lagdes complexas de CFD comercial. A abordagem baseia-se na aplicacdo da teoria de filme
fino as equacdes fundamentais da mecénica dos fluidos, escritas em um sistema de Coordena-
das Curvilineas Moveis que se ajusta dinamicamente a posi¢do instantanea do eixo rotativo.
Diferentemente das abordagens cldssicas, este modelo serve para reter termos significativos do
transporte de quantidade de movimento linear, permitindo uma anélise mais fiel do campo de
pressdo e das forcas resultantes. O método numérico adotado € o Método das Diferencas Finitas
(Finite Difference Method) (FDM), fundamentado nos trabalhos de Cauchy (1829) e adaptado
para malhas estruturadas curvilineas. O cédigo computacional desenvolvido permitird o cdlculo
das condicdes de equilibrio estdtico e a simulagdo transiente da érbita do eixo, possibilitando
a determinagao dos coeficientes dinamicos de rigidez e amortecimento. Por fim, os resultados
serdo validados através da comparagdo com modelos clédssicos e dados da literatura, como os
apresentados por Mota et al. (2022), buscando demonstrar que a formula¢gdo em coordenadas

curvilineas oferece uma ferramenta superior para a andlise de mancais modernos.
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CAPITULO

OBJETIVOS

O objetivo primordial estabelecido para o presente trabalho consiste no desenvolvimento,
implementagdo e validacdo de uma modelagem matemadtica e computacional avangada para a
andlise da dinamica de mancais fluidodindmicos. Esta modelagem fundamenta-se na solucdo das
equacdes de balanco de massa e de quantidade de movimento linear, integradas a teoria de filme

fino, utilizando um sistema de Coordenadas Curvilineas Generalizadas e Moveis.

Na proposta central visa-se estabelecer uma ferramenta de simulagdo para superar as
restricdes fundamentais do cldssico modelo de Reynolds, que, apesar de seu amplo uso histérico,
apresenta limitagOes severas em aplicagdes modernas. Especificamente, no presente trabalho
busca-se relaxar a exigéncia de validade restrita a regimes onde o nimero de Reynolds modificado
€ muito menor que a unidade (Re* < 1), através da inclusao explicita dos termos inerciais (nfo-
lineares) nas equagdes de balango. Adicionalmente, busca-se suprir a caréncia do modelo cldssico
em representar fendmenos inerentemente dependentes do tempo, desenvolvendo uma formulag@o
robusta para a andlise transiente da Interacdo Fluido-Estrutura (Fluid-Structure Interaction)
(FSD).

No que tange aos objetivos especificos, a pesquisa inicia-se pela deducao formal das
equacodes de Navier-Stokes e da equacdo da continuidade para um sistema de coordenadas
curvilineas nao ortogonais genérico. Nesta etapa aplica-se, de forma rigorosa, os conceitos de
geometria diferencial e cdlculo tensorial para a defini¢do das métricas e dos vetores de base,
permitindo uma descricdo matematica exata da geometria do mancal excéntrico. O intuito é
eliminar as aproximacgdes geométricas tradicionalmente empregadas para a fun¢do da espessura

do filme lubrificante, que introduzem erros em altas excentricidades.

Sequencialmente, o foca-se na implementagdo da hipétese de filme fino as equagdes
ja transformadas e completas (com termos inerciais). Este procedimento envolve a integracao
das equagdes de balango ao longo da coordenada normal a superficie do mancal. O objetivo

€ reduzir a dimensionalidade do problema fisico, convertendo a andlise tridimensional ou
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bidimensional do dominio fluido em uma formulacao de superficie mais eficiente (reduzindo,
por exemplo, de uma andlise r, 8,z para 0,z). Com essa abordagem visa-se reduzir drasticamente
o custo computacional, tornando-o vidvel em comparacao as simulagdes de CFD, sem, contudo,

desprezar a fisica do balanco de quantidade de movimento linear.

Dada a natureza dinamica do sistema, um objetivo crucial € a modelagem correta do
referencial mével. Isso implica a incorporag@o das velocidades de malha nas equagdes de balango
para acomodar a translacio e rotagcdo do eixo. A formulacdo dos fluxos relativos em um sistema
de coordenadas que se deforma no tempo busca assegurar o balanco rigoroso de massa e da

quantidade de movimento linear durante a simulacdo da trajetéria do rotor.

Por fim, visa-se a implementacdo numérica e computacional do modelo utilizando
0 Método das Diferencas Finitas em malhas estruturadas e a validagdo da metodologia. Os
resultados obtidos — tanto para o equilibrio estatico quanto para a resposta transiente — serao
confrontados com o modelo clédssico de Reynolds e com dados da literatura, quantificando o
ganho de precisdo obtido com a inclusao dos efeitos inerciais e transientes e pela representacao

geométrica exata.
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A modelagem precisa de mancais fluidodinamicos representa um desafio multidisciplinar
que combina mecénica dos fluidos, tribologia, dindmica de rotores € métodos numéricos avan-
cados. Estes componentes sdo fundamentais em maquinas rotativas, desde turbinas de grande
porte até microturbinas de Ciclo Rankine Organico (Organic Rankine Cycle) (ORC), e seu
comportamento dindmico influencia diretamente a confiabilidade, eficiéncia e vida util dos
equipamentos (HAMROCK, 1991).

A teoria cléssica de lubrificag@o fluidodinamica, fundamentada na equag@o de Reynolds,
tem sido a base para andlise de mancais desde o trabalho seminal de Osborne Reynolds no século
XIX. No entanto, as demandas crescentes por maquinas operando em velocidades mais altas,
cargas mais elevadas e condicdes transientes complexas t€ém impulsionado o desenvolvimento de
formulacdes matematicas mais sofisticadas (KICIASKI; ZYWICA, 2025).

O uso de coordenadas curvilineas moveis emerge como uma abordagem particularmente
promissora para capturar fendmenos dinamicos em interfaces que sofrem grandes deformacdes,
movimentos complexos e mudancgas topoldgicas ao longo do tempo (TEMIZER; STUPKI-
EWICZ, 2016). Esta formulag@o permite uma descri¢do mais natural da geometria dos mancais
cilindricos e possibilita a modelagem de efeitos transientes que ndo podem ser adequadamente

representados em sistemas de coordenadas fixos (VENTURI, 2009).

3.1 Fundamentos da Teoria de Filme Fino

A equagdo de Reynolds constitui o pilar fundamental da teoria de lubrificagdo fluido-
dinamica. Esta equagao diferencial parcial descreve a distribuicao de pressao em filmes finos
de fluidos viscosos, sendo derivada das equacdes de Navier-Stokes e da continuidade mediante

hipdteses simplificadoras apropriadas para escoamentos em folgas estreitas.

Para um fluido incompressivel e newtoniano em regime laminar, a equacdo de Reynolds
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em coordenadas cartesianas pode ser expressa como:

3 3
9 (h ap) a(h ap)_Uah oh o)

gx\12uox) "9z \12uaz) " 2ax "o
onde / representa a espessura do filme lubrificante, (t a viscosidade dindmica, p a pressdo, U a

velocidade de deslizamento e ¢ o tempo.

Martin (1999) desenvolveu modelo matematico e técnica de solu¢do numérica para
mancais hidrodindmicos ajustaveis, utilizando aproximagdes por diferencas finitas. Ono (2020)
apresentou equacdes de Reynolds modificadas para lubrificagdo de filme fino com camadas
superficiais de alta viscosidade, expandindo a aplicabilidade da teoria classica para condicoes

nao convencionais.

Um trabalho brasileiro recente e relevante € o de Silva et al. (2024), que propde melhorias
significativas em relacdo ao modelo cldssico de Reynolds. O autor desenvolve um modelo
unidimensional para velocidade, pressao e temperatura, proporcionando uma visao média na
direcdo radial enquanto considera a dependéncia da coordenada tangencial e do tempo. A
inovacao principal reside na forma como o movimento do eixo € integrado ao fluido, através da

modelagem das tensdes entre o fluido e o eixo, e entre o fluido e o mancal.

Os resultados apresentados por Silva et al. (2024) demonstram que o modelo de filmes
finos pode ser eficaz na simulagdo de escoamentos tangenciais e oferece uma aproximagao
precisa dos campos de pressao, velocidade e temperatura, com custo computacional reduzido

devido a sua natureza unidimensional.

A modelagem termodinamica representa uma extensiao importante da teoria cléssica,
especialmente para mancais operando em altas velocidades e cargas elevadas, onde a transforma-
¢ao de energia cinética em energia térmica por cisalhamento viscoso torna-se significativa. A
viscosidade do lubrificante varia substancialmente com a temperatura, criando um acoplamento
forte entre os campos de velocidade, pressdo e temperatura (TRACHSEL; PITTINI; DUAL,
2017).

3.2 Coordenadas Curvilineas Maéveis e Formulacoes ALE

A formulacao classica da equagdo de Reynolds assume implicitamente um sistema de
coordenadas fixo ou, no maximo, um sistema que se move com velocidade constante. Esta
limitacdo torna-se problematica quando as superficies fisicas sofrem deformagdes finitas, quando
a interface de lubrificacdo evolui dinamicamente, ou quando grandes deslocamentos transientes

ocorrem.

Temizer e Stupkiewicz (2016) apresentaram uma formulagdo pioneira da equacdo de

Reynolds em uma superficie de lubrificagdo dependente do tempo, descrita por um sistema de
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coordenadas curvilineas que evolui continuamente. Esta abordagem essencialmente endereca a
mecanica de lubrificacdo em interfaces submetidas a grandes deformacgdes e satisfaz todos os

requisitos de objetividade, caracteristicas nao presentes na equagao classica de Reynolds.

A formulagdo Arbitrary Lagrangian-Eulerian (ALE) representa uma abordagem hibrida
que combina as vantagens dos métodos lagrangianos e eulerianos (BOER; DOWSON, 2018).
No contexto de lubrificacdo, o método ALE permite que a malha computacional se mova
independentemente do fluido, acompanhando as mudancgas de geometria sem as distor¢des

excessivas tipicas de formulagdes puramente Lagrangianas.

Boer e Dowson (2018) desenvolveram uma formulagdo ALE especifica para modelar
cavitacdo em lubrificacdo elastohidrodinamica de contatos lineares. O método implementa dois

sistemas de referéncia:

1. Sistema material (estacionario): onde as equacgdes de balango sdo resolvidas

2. Sistema espacial (mdvel): onde as equacgdes de balango sdo derivadas

O movimento do sistema espacial € determinado baseado no gradiente de pressao cal-
culado no local onde a cavitagdo se inicia, permitindo uma captura precisa da transi¢cao entre
as fases liquida e vapor sem as dificuldades numéricas associadas a modelagem de fung¢des

Heaviside ou problemas de fronteira livre.

Cardall (2022) apresentou uma formulagcdo de dinamica de fluidos em coordenadas
curvilineas sem forcas ficticias, demonstrando que coordenadas curvilineas ndo-inerciais resultam
em termos andlogos aos de sistemas de referéncia rotativos ou acelerados. Venturi (2009)
desenvolveu uma formulagdo totalmente covariante de cinemética e dinamica de escoamentos de

fluidos em sistemas de coordenadas curvilineas dependentes do tempo.

Borazjani, Ge e Sotiropoulos (2008), Borazjani e Sotiropoulos (2013) desenvolveram o
método CURVIB (Curvilinear Immersed Boundary), particularmente adequado para problemas
com fronteiras méveis imersas em sistemas de referéncia ndo-inerciais. Este método tem sido

aplicado com sucesso em uma ampla gama de problemas de interag@o fluido-estrutura.

3.3 Modelagem de Cavitacao em Mancais Fluidodinami-

COS

A cavitacdo em mancais fluidodindmicos ocorre quando a pressdo local cai abaixo
da pressdo de vapor do lubrificante, resultando na formacao de bolhas de vapor e ruptura da
continuidade do filme lubrificante. Este fendmeno tem impacto significativo nas caracteristicas
de carga, rigidez e amortecimento do mancal, além de poder causar erosdo das superficies e

ruido.
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Kicinski e Zywica (2025) apresentaram conceito inovador para descrever estados di-
namicos de maquinas rotativas considerando a descontinuidade do filme lubrificante devido a
cavitacdo, com fronteiras varidveis no tempo da regidao de pressao hidrodinamica positiva. Os
autores introduzem o conceito de “pré-histéria” ou “descricdo continua”, onde o tempo nas
equacdes de movimento € tratado como varidvel independente, ndo como pardmetro, permitindo

capturar o acoplamento temporal entre estados dindmicos sucessivos.

As condi¢des de contorno de Jakobsson-Floberg-Olsson (JFO) (GUO et al., 2024) re-
presentam o tratamento mais rigoroso da cavitacao em lubrificagdo, baseado em principios de
conservacdo de massa. Estas condi¢des estabelecem que na fronteira de cavitacao tanto a pressao
quanto seu gradiente devem ser nulos, garantindo transicao suave entre as regides de filme com-
pleto e cavitado. A implementacao numérica das condi¢des JFO apresenta desafios significativos,
particularmente devido a natureza de problema de fronteira livre, onde a localizacdo da interface

liquido-vapor nao € conhecida a priori e deve ser determinada como parte da solucao.

O modelo de Elrod (1981) representa uma abordagem alternativa amplamente utilizada,
que deriva uma equagdo universal conservativa de massa para as fases liquida e vapor. Extensoes
deste modelo foram desenvolvidas por diversos pesquisadores para incluir efeitos elastohidrodi-
namicos, rugosidade superficial e relagdes pressdo-densidade arbitrarias (BAYADA; CHUPIN,
2013; SAHLIN et al., 2007).

Modelos de escoamento bifdsico baseados em fracdo volumétrica t€ém sido desenvolvidos
para evitar as dificuldades associadas a modelagem de fun¢des descontinuas, embora requeiram
malhas refinadas para capturar adequadamente a transi¢do entre fases (KUMAR; BOOKER,
1991).

3.4 Métodos Numéricos para Solucao de Equacdes de

Mancais

O método de elementos finitos (MEF) oferece maior flexibilidade para tratamento de
geometrias complexas, condi¢cdes de contorno ndo-uniformes e acoplamentos multifisicos (MCI-
VOR; FENNER, 1989). Zhou et al. (2022) propuseram novo método numérico combinando
elementos finitos e método misto para estudo das caracteristicas de lubrificagdo de mancais.
Sriram et al. (2020) desenvolveram modelo de elementos finitos para prever a pressdo do filme

de 6leo em mancais.

O Método dos Volumes Finitos (MVF) tem ganhado popularidade devido a sua con-
servagdo natural de propriedades fisicas (massa, momento, energia) e robustez para problemas
convectivos (PRATA; FERREIRA, 1988).

Métodos espectrais oferecem convergéncia exponencial para problemas suaves, sendo

particularmente eficientes para problemas de lubrificacdo elastohidrodinamica (GWYNLLYW;



Capitulo 3. Revisdo Bibliogrdfica 23

WEBSTER, 2008). Venner e Lubrecht (2000) desenvolveram métodos multinivel que permitiram
solucdo eficiente de problemas em lubrificagdo elastohidrodindmica sobre ampla gama de

condi¢des operacionais.

3.5 Dinamica de Rotores e Analise de Estabilidade

A andlise dindmica completa de sistemas rotativos deve considerar o rotor ndo isola-
damente, mas como parte de um sistema integrado que inclui mancais, vedagdes, fundagdes e
acoplamentos. As caracteristicas dindmicas dos mancais, expressas através de coeficientes de
rigidez e amortecimento, influenciam diretamente as velocidades criticas, modos de vibracdo e

limites de estabilidade do sistema.

Trabalhos brasileiros tém contribuido significativamente para esta drea. Silveira (2001)
analisou o comportamento dindmico de rotores, destacando que a instabilidade em mdquinas

rotativas ndo estd ligada apenas ao giro sub-sincrono.

Oilwhirl representa a causa mais comum de instabilidade subsincrona em mancais hi-
drodinamicos, ocorrendo quando o filme de 6leo induz movimento orbital do eixo em frequéncia
tipicamente entre 0,42 e 0,48 da velocidade de rotacao. Quando a velocidade de rotagcdo atinge
aproximadamente o dobro da primeira velocidade critica, o oilwhirl pode evoluir para oilwhip,
um fendmeno mais severo onde a frequéncia de precessdo trava na primeira frequéncia natural

do rotor.

Muszynska (1985) apresentou trabalho altamente influente sobre problemas de estabili-
dade rotor-mancal, desenvolvendo modelo matemadtico de rotor simétrico suportado por mancais
lubrificados a fluido . Meruane e Pascual (2008) desenvolveram modelo poderoso para prever

fendmenos transientes ndo-lineares incluindo oilwhirl e oilwhip.

Schweizer (2009) investigou oilwhirl, oilwhip e sincronizag¢do whirl /whip em sistemas
de rotores com mancais de anel flutuante completo, demonstrando que o amortecimento externo
suficientemente alto pode suprimir a instabilidade. Chen et al. (2025) realizaram investigacio
analitica e experimental de fendmenos de vibragcdo ndo-linear, identificando oilwhirl e oilwhip

como indicadores comuns de instabilidade do filme de dleo.

A analise linear de estabilidade, baseada em coeficientes dinAmicos linearizados, fornece
informacgdes valiosas sobre o limiar de instabilidade e velocidades criticas. No entanto, para
grandes deslocamentos do eixo, comportamento transiente complexo e operagao além do limiar

de estabilidade, analise ndo-linear torna-se essencial.

Li et al. (2021) propuseram abordagem unificada para modelagem dinamica e andlise
de estabilidade de sistemas rotor-mancal, investigando efeitos de rigidez tangencial e pontos
de transi¢do. Sun et al. (2021) estudaram impacto de desalinhamento e incertezas inerentes

em mancais sobre a estabilidade do sistema. Luo e Bewley (2004) desenvolveram método para
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deteccao e quantificacdo de instabilidade de oilwhirl em sistemas rotor-mancal.

Como exemplo de aplicacio pratica, Kiciiski e Zywica (2025) apresentaram andlise de
uma microturbina de ciclo Rankine organico (ORC) de 100 kW. Os resultados mostraram que
na velocidade nominal de 9.000 rpm pode ocorrer instabilidade hidrodinamica, demonstrando a
necessidade critica de modelagens avancadas para prever amplitudes de vibragdo que atinjam a
folga radial. A modelagem de tais maquinas em alta velocidade apresenta desafios particulares
devido aos efeitos inerciais do fluido e geracao intensa de calor, refor¢cando a importancia da

analise de estabilidade robusta.
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O desenvolvimento deste trabalho teve inicio com a formulacdo do modelo de Reynolds
em geometrias cartesianas e cilindricas. Em seguida, foram estabelecidas as equacdes de balanco
da quantidade de movimento linear e da massa a partir da transformacgdo para as coordenadas
curvilineas nao-ortogonais e em seguida aplicada as hipéteses de filme fino. Por fim, foi proposta
uma modelagem para a interagcdo fluido-estrutura com o objetivo de descrever a trajetdria do

mancal até seu ponto de equilibrio.

4.1 Teoria de filme fino

Em diversas aplicagdes da engenharia mecanica, empregam-se fluidos lubrificantes com
o objetivo de minimizar atrito e desgaste entre componentes moveis. Nesses sistemas, o fluido
geralmente ocupa uma regido de espessura extremamente reduzida quando comparada as demais

dimensodes do dominio.

Devido a essa pequena espessura, as variacdes das propriedades escalares do fluido,
como pressdo e temperatura, ao longo da dire¢do normal ao filme sdo, em geral, despreziveis. Ao
se adotar a condi¢do de nao escorregamento — segundo a qual o fluido assume a velocidade da
superficie sélida em contato — observa-se, contudo, um gradiente elevado da velocidade nessa
direcdo. Ainda assim, para a maioria das aplicacdes envolvendo mancais fluidodindmicos, foco

deste estudo, esse gradiente ndo exerce influéncia significativa sobre os resultados globais.

Dessa forma, tanto as grandezas escalares quanto vetoriais podem ser representadas
por valores médios ao longo da espessura do filme. Essa simplificagdo acarreta consequéncias
importantes na formulagdo matematica do problema. Entre elas, destaca-se o fato de que a
espessura do filme e sua variagdo espacial passam a aparecer explicitamente nos termos das
equacoes de balanco da massa e da quantidade de movimento linear. Além disso, assume-se

que ndo ha variagdo das propriedades ao longo da dire¢ao normal ao filme. Admitindo que essa
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direcdo coincida com um eixo qualquer denominado { e que o represente uma propriedade

genérica, tem-se:

Jdo
— =0. 4.1)
¢

Uma consequéncia direta dessa hipotese € a dificuldade associada a imposi¢cdo das
condicdes de contorno, uma vez que estas sao naturalmente definidas justamente nas superficies
limitantes do filme lubrificante. Como ilustrado na fig. 1, varidveis como a velocidade do fluido

sdo prescritas nessas interfaces.

Assim, torna-se necessdria a adocao de estratégias de modelagem especificas para a
correta imposi¢do das condi¢des de contorno. Este trabalho se insere de forma pioneira nesse

contexto, apresentando e discutindo detalhadamente tais abordagens.

4.2 A hipétese do continuo

Embora a descri¢do microscOpica da matéria revele sua natureza discreta — composta
por dtomos e particulas subatdmicas —, a maior parte dos problemas de engenharia nio requer o
acompanhamento individual dessas entidades. Em vez disso, interessa o comportamento médio

de um conjunto suficientemente grande de dtomos.

Nesse contexto, a andlise do comportamento mecanico dos fluidos insere-se no escopo da
mecanica do continuo. Conforme descrito por Spencer (1980), essa drea da mecénica considera
a matéria como continuamente distribuida no espago, ignorando sua estrutura microscépica. Tal
hipétese permite a definicdo de grandezas fisicas continuas no espaco e no tempo, viabilizando o

uso de ferramentas do calculo diferencial.

A validade dessa aproximagao estd condicionada a dimensao caracteristica do problema.
Em particular, ela € adequada quando as dimensdes caracteristicas do dominio sdo superiores a
um determinado volume-limite. Abaixo desse limiar, efeitos moleculares devem ser explicita-
mente considerados; acima dele, tais efeitos sdo incorporados de forma média nas propriedades
macroscépicas. No caso de escoamentos fluidos, esse volume-limite é tipicamente maior que o
caminho livre médio molecular (SANTOS, 2022).

4.3 Modelo de Reynolds

Uma representagdo cldssica e amplamente empregada em problemas de lubrificacao
hidrodinamica € o mancal de sapata deslizante, ilustrado na Figura 2. Nessa configuracio
simplificada, uma das superficies s6lidas desloca-se com velocidade constante U, enquanto

a superficie oposta, separada verticalmente ao longo do eixo y por uma distancia & que varia
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ao longo da componente horizontal x, permanece estaciondria. Esse movimento relativo gera,

inicialmente, um escoamento puramente viscoso do tipo Couette no interior da folga.

Entretanto, devido a variacao espacial da espessura do canal, o balango de massa exige
o surgimento de um campo de pressdo ao longo da dire¢do principal do escoamento. Como
consequéncia, estabelece-se uma componente adicional do escoamento associada a um gradiente
de pressao, caracterizando a superposicdo de um perfil do tipo Poiseuille ao escoamento de
Couette.

Figura 2 — Representacdo esquemadtica de um mancal de sapata deslizante, evidenciando o escoamento
em um canal de altura varidvel.
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Fonte: White (2022).

A deducdo do modelo inicia-se a partir da equacdo de Navier—Stokes em coordenadas
cartesianas, considerando a componente de velocidade ao longo da direcdo x, expressa pela
Equagdo 4.2, em que u é a componente horizontal da velocidade do fluido e v a componente
vertical dessa velocidade, x e y sd@o as componentes horizontal e vertical do plano cartesiano
- respectivamente, p a massa especifica do fluido, p representa a pressdo e Vv a viscosidade

cinematica do fluido.

Ju Jdu Jdu  1dp y {82u 82u} 42)

E‘Fua—f—va—y——ﬁx-f- W‘Fa—yz
A partir dessa equacgdo geral, introduzem-se hipéteses compativeis com o regime ti-

pico de mancais hidrodinamicos. Assume-se que 0 escoamento ocorre em regime permanente
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(du/dt = 0), que os efeitos inerciais sdo despreziveis quando comparados aos termos viscosos
— caracterizando o regime de Stokes (|pudu/dx| << |ud*u/dy?*|) — e que nio ha movimento
das superficies s6lidas na dire¢ao normal ao filme, resultando em v = 0. Sob essas condig¢des, a

Equagdo 4.2 reduz-se a forma simplificada apresentada na Equacao 4.3.

ldp  d*u

O=—-—F—4+v—s.
p dx dy?

4.3)

Para o fechamento do problema, sdo impostas condicdes de contorno associadas a
condi¢do de ndo escorregamento nas superficies s6lida—fluido. Considera-se que a parede inferior

se desloca com velocidade constante U, enquanto a parede superior permanece estaciondria

(u(h(x)) = 0).

Essas condicdes, juntamente com a equacgdo diferencial resultante, permitem a integracao

direta do campo de velocidade ao longo da espessura do filme:

u(x,y) = 2 4 o) (x)y +ea(x)

u(x,0) =c(x)=U
u(x,h(x)) = @%—cl(x)ijU =0 = c;(x) =— <7L(x)2h(x) —I—%)

O processo de integracdo conduz a uma solugdo analitica para o campo de velocidade
longitudinal, inicialmente expressa na forma geral da Equacgdo 4.4.

1dpy>? 1 dp h(x U
) = 1422 (Lnit)

‘Lde ) EET‘FW)))—FU (4.4)

Essa expressao pode ser reorganizada de modo a evidenciar explicitamente a contribuicao
do escoamento de Couette e do escoamento induzido pelo gradiente de pressao, resultando na

forma apresentada na Equacdo 4.5.

A distribui¢do correta do campo de pressdo ao longo do canal deve garantir que o campo

de velocidade satisfaca simultaneamente a equagdo da continuidade e a equacdo de Navier-Stokes.
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A Eq. 4.6 mostra o processo de integracdo da equacdo da continuidade, também conhecida como

equacgdo do balangco de massa.

du Jdv du hx) Qu
ity =0 = Gidy=—dv = /0 iy = —v(h) +v(0) 4.6)
Derivando u(x,y) (Eq. 4.5) em relagdo a componente x:

d dh 1 d> dhd
vyl ((y—h) b ”) @.7)
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Integrando a equacgdo 4.7 em relagdo a componente y, conforme a equacgdo 4.6, tem-se:

h(x) Qu dh d dp
May=eup™ — < (1322 = 4.
/o 8xdy oUn dx dx ( dx) “48)

A substitui¢do da expressdo da velocidade na equac@o de continuidade e a posterior
integracdo conduzem, apds simplificacdes algébricas, a Equagdo 4.9, conhecida na literatura

como a Equacdo de Reynolds para filmes finos em coordenadas cartesianas.

4 (h3d—p> = 6MU@ (4.9)

A validade do modelo de Reynolds estd diretamente associada as hipdteses adotadas
durante sua deducdo. Em particular, a suposicio de escoamento de Stokes impde uma restri¢ao a

magnitude dos termos inerciais:

du du U U

— — = pU— —=; 4.10
puax<<uay2 PUT <<li73 (4.10)
Essa condicao € usualmente expressa por meio de um nimero de Reynolds modificado,

Re*, que deve permanecer muito menor que a unidade, conforme a Equagdo 4.11.

— = << (4.11)
u

Assim, mesmo que o nimero de Reynolds cldssico ndo seja pequeno, o modelo perma-
nece valido desde que a razdo entre a espessura do filme e o comprimento caracteristico do canal

seja suficientemente reduzida.

O modelo de Reynolds admite solu¢do analitica continua apenas para geometrias em que
a variacdo da espessura do filme ao longo da dire¢do x seja constante (dh/dx = constante). Para
geometrias mais gerais, a determinacdo dos campos de pressao e velocidade requer o uso de

métodos numéricos.
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Cabe ainda destacar que o escoamento de Stokes € linear e reversivel. Dessa forma, a
inversdo do sentido de movimento da parede mével resulta, matematicamente, na inversao do
sinal do campo de pressao. Contudo, em fluidos reais, efeitos de compressibilidade e mudanca
de fase impedem o desenvolvimento de pressdes negativas significativas, levando a formagao
de regides de vapor no interior da folga — fendmeno conhecido como cavitagdo. Em canais
com secdo em expansdo, a cavitacao limita a capacidade de suporte de carga e compromete
a eficiéncia da lubrificacdo. Em mancais rotativos, nos quais a folga se contrai e se expande

ciclicamente, a ocorréncia de cavitagcdo parcial € comum (WHITE, 2022).

Em uma formulacio mais geral do problema de lubrificacdo, ambas as superficies podem
apresentar movimentos tanto tangenciais quanto normais, € o escoamento passa a depender
também da coordenada axial z. Assume-se, entretanto, a inexisténcia de movimento das paredes
nessa dire¢do. A extensao tridimensional da Equacdo de Reynolds para fluidos incompressiveis
segue procedimento andlogo ao apresentado anteriormente, incorporando agora os gradientes de
pressao ao longo de z. Uma dedugao detalhada desse caso pode ser encontrada em Szeri (1980),

sendo a equacgdo dada pela Equacgdo 4.12.

% (hﬁ—i’) +§Z <h33—5) — 6u%[h(U(O)+U(h))] +12u[V (k) —Vv(0)]. (4.12)

Para a solugdo desse problema, a pressdo deve ser prescrita em todas as fronteiras abertas

da sapata.

Mancais rotativos constituem a configuragdo mais representativa de aplicagdes praticas
em engenharia. Esses sistemas sdo formados por um eixo interno rotativo € um mancal externo
estaciondrio, conforme ilustrado na Figura 3. O movimento de rotacdo do eixo é responsavel

pela geracdo do campo de pressao no fluido lubrificante.

A deducao da Equacdo de Reynolds em coordenadas cilindricas segue os mesmos
principios adotados no caso cartesiano, sendo adaptada a geometria do problema. As formulagdes
completas para os campos de pressao e velocidade podem ser encontradas em trabalhos como
os de Mota et al. (2022) e Zirkelback e Andrés (1999). A equacio para o campo de pressao em

mancais cilindricos é apresentada na Equacao 4.13.

R290 (h 86)+&z (h 5z ) = 1950 (4.13)

As expressOes para as componentes tangencial e axial da velocidade do fluido sdo dadas,
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Figura 3 — Representagdo geométrica de um mancal cilindrico rotativo.
Y
A
4
R9
Rb
h(6)
Fonte: Elaborada pelo autor.
respectivamente, pelas Equacdes 4.14 e 4.16.
14 1 R? 1
ve(r,0,2) = P r<lnr— —) +Gr—-2t <lan +G— —)
2106 2 r 2 (4.14)
®OR, Ry R '
TR e\ T
(R —R}) r
sendo G definido como:
G- 1 {RZ (1 R 1) R2(1 R 1)} (4.15)
= 5 > 0 nKg — < | — b nKy, — — .
R; — Ry 2 2
dp R > (R-R
vy(r,0,2) = L0 | (L _ R=Rg) () (4.16)
dz4u | \Re R}In(Ry/Re)  \Rg
De forma andloga, pode-se reescrever Re* em coordenadas cilindricas sendo:
ORh hR

pO=y a <1 4.17)

i 27(R2+hR, —h?)
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4.4 Descricao do problema fisico e geometria

O sistema fisico analisado neste trabalho consiste em um mancal radial cilindrico de
comprimento finito L. O mancal é composto por uma parte fixa, o estator, com raio R, € uma
parte movel, o rotor, com raio R,. A folga nominal, c, é definida pela diferenca entre esses raios,

ou seja, c = Ry, — R,.

Para descrever a dinAmica do sistema, adota-se um sistema de coordenadas cartesianas
de referéncia (X,Y), com origem no centro geométrico do estator. A simulacdo do movimento
se inicia com o rotor em uma posi¢do inicial concéntrica (x.(t = 0) = 0,y.(t = 0) = 0), e sua
posi¢ao evolui ao longo do tempo sob a ac@o de cargas externas e das forcas fluidodinamicas
geradas pelo filme de fluido. A posi¢do do centro do rotor (x.(z),y.(¢)) € um dos principais
resultados da simulac@o. A partir destes, a excentricidade e(¢) e o angulo de atitude ¢ (¢) podem

ser determinados a qualquer instante pelas seguintes respectivas relacoes:

e=1\/xz+y? (4.18)

¢ = atan2(y.,xc). (4.19)

A geometria do filme de fluido, ou seja, sua espessura & em qualquer posi¢cdo angular
0, ¢ uma funcao direta da posicao instantanea do rotor. No presente trabalho, a espessura do
filme, que também representa a distancia entre o estator e a superficie do rotor (Rg), € calculada
utilizando a formulagdo desenvolvida e apresentada em Silva et al. (2024) e adaptada para a

varia¢ao temporal que a posicao do rotor apresenta, conforme Eq. 4.20.

h(0,1) =R, — Rg(6,1) =

o~ (€l0)oos(9(0)~ 6) + /e cos?(0(0) ~ 0) + B~ (0

(4.20)

4.5 Equacoes de Balanco e Hipdteses Utilizadas

O escoamento do fluido lubrificante no interior do mancal é modelado com os balancos
de massa e de quantidade de movimento linear. Partiu-se da forma completa das equagdes para

um escoamento tridimensional, expressas na forma vetorial como:

* equacao do balan¢o de massa: V-v =10

* equacdo do balanco da quantidade de movimento linear:
o (2+(-9) Ty v
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onde p € a massa especifica do fluido, u a viscosidade dindmica, v € o campo de
velocidades e p € o campo de pressdo. Para a aplicacdo especifica, as seguintes hipdteses sdao

adotadas:

1. escoamento incompressivel: a massa especifica p é considerada constante.

2. fluido newtoniano e modelo isotérmico: o fluido € newtoniano e suas propriedades (i, p)

sao constantes, desprezando-se efeitos térmicos.
3. escoamento laminar: assume-se que o escoamento permanece no regime laminar.

4. forgas de campo despreziveis: for¢as de campo, como a gravitacional, sao desprezadas.

A principal simplificacdo feita consiste de uma hipétese dita de filme fino: assume-se
que a componente de velocidade na direcao radial é desprezivel (v, =~ 0) e que os gradientes
de todas as propriedades nessa dire¢io sdo nulos (d/dr ~ 0). A consequéncia direta é que a
pressdo é considerada constante ao longo da espessura do filme (dp/dr = 0) e que as velocidades

calculadas nas outras direcdes (0, z) sdo tratadas como valores médios ao longo da dire¢do radial
(r).

As condicdes de contorno de ndo-escorregamento sdo aplicadas indiretamente nas super-
ficies. Devido a simplificacdo na direcdo radial, seu efeito € introduzido no balango de quantidade

de movimento linear por meio de termos fonte (A) que representam as tensdes nas paredes.

Em coordenadas cilindricas, o modelo com as simplificacdes fica:

1dvg dv,

8v9 Vo an ave B 1 ap 1 821/9 82"6 .
o e " 0z __rp89+v 2\ g2 V)T 92 + Ag; (4.22)

dv, v dv; v, 1dp { 1 azvz azvz} A (4.23)
i z :

e o pa: v Raer T a2

Os termos A que aparecem nas equacdes 4.22 e 4.23 representam, respectivamente, uma

modelagem para o termo das tensdes nas paredes na dire¢ao 0 e na direcdo z.

4.6 Transformacao Para Coordenadas Curvilineas Nao-

Ortogonais Dependentes do Tempo

A formulacdo matematica apresentada nesta secdo adota uma abordagem estrutural dedu-

tiva. Inicialmente, sdo expostas as equacdes do balanco de massa e a do balanco da quantidade



Capitulo 4. Modelo Matemdtico-Diferencial 34

de movimento linear j4 transformadas para o referencial curvilineo genérico. O objetivo dessa
apresentacdo preliminar é evidenciar a estrutura dos operadores diferenciais e identificar os
termos tensoriais necessarios para a conclusao do modelo, tais como os tensores métricos, 0s

simbolos de Christoffel e as derivadas covariantes.

Cabe ressaltar que, em sistemas de coordenadas ndo-ortogonais, torna-se necessario
distinguir entre duas bases vetoriais distintas: a base covariante (cujos vetores sdao tangentes
as linhas de coordenadas) e a base contravariante (cujos vetores sdo normais as superficies
coordenadas). Essa dualidade exige atencio na representacio dos vetores, que podem ser expres-
sos por componentes contravariantes (indices sobrescritos, ex: u') ou componentes covariantes
(indices subscritos, ex: u;). A derivada covariante, por sua vez, surge como uma generalizacdo
da derivada parcial para garantir que a taxa de variagdo de um vetor leve em conta nao apenas
a mudanga do campo em si, mas também a curvatura do préprio sistema de coordenadas. Nas
subsecdes presentes nessa secdo, cada um desses operadores e definicdes geométricas serd
detalhado e deduzido progressivamente, partindo dos conceitos fundamentais de vetores de base

até a composicao final das equagdes de balanco.

Para resolver computacionalmente as equacdes em geometria complexa e varidvel no
tempo, adota-se uma transformacgao de coordenadas que mapeia o dominio fisico tridimensional
em um dominio computacional, retangular e fixo. Considerando um sistema fisico cilindrico

(r,0,z) a transformagdo para o sistema ndo ortogonal (§,1,7) é definida por:

r—Ry,+h(0,1)
h(6,t) ’

E(r,0,z,1) =

n(r,0,z,t) =06

¥(r,0,z,t) = z.

A coordenada £ normaliza a direcéo radial, variando de & = 0 na superficie do rotor a
& = 1 na superficie do estator, conforme mostrado na Fig. 4. A transformagio das equagdes de
balanco requer o uso de cdlculo tensorial, envolvendo tensores métricos e simbolos de Christoffel
(SUNGNUL, 2016; HU, 2017; HILL; STOKES, 2018). Como a espessura do filme 4(0,7) varia
com o tempo, a transformacdo € dependente do tempo, exigindo uma formulagdo que considere

a velocidade da malha, conforme apresentado em Luo e Bewley (2004).

Muitos passos e conexdes entre as equacdes surgirdo, por exemplo: o operador laplaciano
depende de simbolos de Christoffel que, por sua vez, dependem de tensores métricos que

dependem de vetores base. A deducdo de cada operador, simbolo e transformacdo é bem
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Figura 4 — Visualizagéo das linhas de & e 1 constantes.

1.00 1

0.75 1

0.50 1

0.25 1

—0.251

—0.50 1

—0.751

—1.001

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X

Fonte: Elaborada pelo autor.

apresentada em trabalhos j4 citados como os de Wang (1981), Germano (1982), Ogawa e
Ishiguro (1987), Tuttle (1990), Tai (1996), Luo e Bewley (2004), Sungnul (2016), Hu (2017),
Hill e Stokes (2018). Assim, nesse apéndice serdo demonstradas de forma breve o que precisa

ser calculado e os resultados obtidos a partir das transformacdes propostas na Sec. 4.6.

Como bem explicado por Luo e Bewley (2004), para um sistema de coordenadas com
fronteiras moveis, a equacdo do balango de massa e do balango de quantidade de movimento

linear sdo dadas, respectivamente, por:

IP 9P iy —
€
Ju/ i iN,J Tl g 1 i

onde u representa a velocidade na coordenada transformada, U € a velocidade da malha,
f representa a forca externa aplicada, 7 € o tensor de tensdes, os superindices denotam as
componentes contravariantes dos vetores e o subindice antecedido por virgula (, i) representa a

diferenciacdo covariante.
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A diferenciacdo covariante do tensor de tensdes na base contravariante (T{ i) ¢é dada, de
acordo com Hill e Stokes (2018), por:

T/ — Ip

ou or’
2 ik 1 ik 9% ik
¥ 8Bl ¢V 4+ u | V2ul + 24T —

g s G| (4.26)

sendo p o escalar pressdo, B é um componente do sistema de coordenadas curvilineas
ndo ortogonais, g € um componente do tensor métrico, I' € o simbolo de Christoffel de segunda

espécie.

Portanto serdo mostrados os passos e as transformacdes necessdrias para determinar
cada termo e cada operador a fim de reconstruir as equagdes mostradas em 4.5 para o problema

apresentado no trabalho.

4.6.1 Transformacao dos operadores

O divergente de um campo vetorial qualquer b € um escalar. O divergente pode ser

expresso em termos das derivadas dos componentes contravariantes de b:

1 Jd ;
Vb= — 2 b, 427
o (VY @427)

onde |g| denota o determinante do tensor métrico covariante, ' é um componente
da coordenada transformada e ' é o componente contravariante do vetor b na coordenada

transformada.
A diferenciagdo covariante de um vetor €, também, definida por:
b’

i i 1k
b= g5t I (4.28)

O gradiente de uma fun¢do escalar qualquer S também € um vetor definido por:

S
VS = —eP 4.29
3 B’ (4.29)
Y
onde eP’ é o vetor de base contravariante das coordenadas transformadas.
Os componentes covariantes do vetor gradiente sdo definidos por
2
(VS); = (4.30)

B
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€ 0s componentes contravariantes do vetor sao

N

(VS) =g’ (VS); =8ﬂw,

(4.31)

onde g"/ é um componente do tensor métrico contravariante das coordenadas.

Agora, também € possivel definir o operador laplaciano de uma fung¢do escalar S,

(4.32)

VZS:V-(VS>: ((VS)i)7i=g"j< 0%s k aS>’

Ipiop’~Uaopk

onde Ff?j representa o componente i, j da matriz de simbolos de Christoffel do segundo tipo de

coordenada B¥.

E a tltima transformacao de operador necessaria € a transformagdo do operador laplaciano
aplicado a um vetor. O laplaciano de um campo vetorial também € um campo vetorial, e os
componentes contravariantes desse vetor, apos todas as simplificacdes muito bem mostradas por
Hill e Stokes (2018), sdo:

. e | )
W%y:Ww+%%$aﬁ+¢Haﬁ, (4.33)
onde
e ob/
2 ik [

é o operador laplaciano da fungio escalar b/.

4.6.2 Transformacao de um vetor

Nas equagdes mostradas na secao 4.5 o vetor de velocidade v foi usado. No entanto,
também ¢é necessdrio transformar esse vetor em um vetor que represente a velocidade nas
coordenadas transformadas. Por exemplo, um vetor de velocidade em coordenadas cilindricas

((B',B2,B%) = (r,0,2)) pode ser representado de trés maneiras diferentes:

v=y"¢ +196% 4 767
0
v=v,¢ +vg e’ +v. %
v=1"¢,+vV0 ¥y +1 7.,
onde é’ € o vetor de base unitario, 7 j € o vetor de base covariante, 2/ é o vetor de base
contravariante, ¥; € o componente fisico da velocidade, v; € o componente covariante do vetor

de velocidade e v/ € o componente contravariante do vetor de velocidade.
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O vetor de velocidade transformado u = u(ul3 L ub?, uB3) ¢ dado em sua forma contrava-

riante por: '
b =v. 2P (4.35)

Essas formulacdes s@o tteis porque nos permitem transformar o vetor de velocidade de
qualquer sistema de coordenadas em um vetor de velocidade compativel com o novo sistema de

coordenadas ndo ortogonal.

4.6.3 Vetores de base

No caso de um sistema de coordenadas cartesianas, um vetor que varia no espaco pode
ser representado por suas componentes projetadas nos vetores unitdrios 7, j e k, que formam uma
base ortonormal fixa. Esses vetores mant€ém a mesma direcdo e magnitude em qualquer regidao
do dominio, o que garante uma descri¢ao uniforme. As componentes do vetor indicam o quanto

ele se projeta ao longo de cada um desses vetores de base.

Quando um sistema de coordenadas curvilineas € adotado, a representa¢do vetorial requer
uma base adaptada as dire¢des locais das coordenadas, ou seja, vetores tangentes ou normais
as curvas que definem o sistema. Devido a possivel ndo ortogonalidade dessas coordenadas, é
necessario distinguir entre duas opcdes possiveis para essa base vetorial: a base covariante e a
base contravariante. Essa distin¢do evita ambiguidades na formulagdo e interpretacdo de vetores

nesses sistemas.

4.6.3.1 Vetores de base covariantes

Como mencionado, vetores de base sdo definidos como vetores tangentes as retas coor-
denadas. Seja R = R(x!,x?,x*) um vetor qualquer que denote a posicio de um ponto em um
espaco de coordenadas, curvilineo ou nao, ortogonal ou ndo. A posicdo desse ponto deve ser a
mesma em qualquer outro sistema de coordenadas. Assim, pela definicdo de uma reta tangente a

um ponto, os vetores da base covariante sao determinados por:

— . R(B/+AB))-R(B)) OR 9
Y —Allg}in_1>0 ABJ =B aﬁj(xe). (4.36)

Por exemplo, um vetor R definido no sistema de coordenadas cartesianas é R(x,y,z) =

xi+yj+ zk. Enquanto o mesmo vetor em coordenadas cilindricas é dado por R(r,0,z) = ré" 4 zé*.

E possivel, entdo, determinar os vetores da base transformando as coordenadas de

qualquer outro sistema de coordenadas, desde que os vetores unitdrios da base sejam conhecidos.

4.6.3.2 \Vetores da base contravariante

A base contravariante tem seus vetores normais as linhas de coordenadas. Sabe-se que,

matematicamente, o operador gradiente € a operacdo que permite calcular essa condicdo. Assim,
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os vetores da base contravariante sao dados por:

. ) J .
?””::Vﬁf::aﬁ.a (4.37)
oxi

Quanto aos vetores da base covariante, € possivel determinar os vetores da base contra-
variante a partir de qualquer sistema de coordenadas no qual os vetores da base unitdria sejam

conhecidos. Para a transformacao do sistema cartesiano, temos:

. | i, 9Bi. 9Bi.
—Wsz:aﬁ iy 2P 0P

4.38
¢ ox dy Tt dz ' (4.38)
ou, a partir de coordenadas cilindricas:
o aBi. 19B ., aBi.
B _vygi= s 50 ¥4
7 B i T el (4.39)

4.6.4 Tensores métricos

O tensor métrico é uma ferramenta para descrever a geometria do espago. Ele permite
medir comprimentos, angulos e distancias, definindo como os vetores se relacionam com a
estrutura do sistema de coordenadas escolhido. Dependendo de como € utilizado, o tensor
métrico pode aparecer em sua forma covariante ou contravariante, cada uma com um papel

distinto na manipulagdo de vetores e tensores.

4.6.4.1 Tensor métrico covariante

O tensor métrico covariante estd associado a base dos vetores tangentes as curvas
coordenadas. Ele € utilizado principalmente para calcular produtos internos, medir distancias e
abaixar indices de vetores e tensores. Sua atuac¢io ocorre naturalmente no espago dual, sendo

mais comum em representacdes com coordenadas curvilineas.

Matematicamente, o tensor métrico covariante g = g;; € definido como o produto escalar

entre os vetores da base covariante:

gijZ?ﬁi-?ﬁj. (4.40)

Por exemplo, os conhecidos vetores da base covariante em coordenadas cilindricas sdo:

¢, = cos 0 +sin 6]+ Ok,

@9 =r(—sin Bi+cos 0) 40k e
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C.=0i+0j+k

Aplicando, entdo, a Eq. 4.40 aos vetores da base, obtém-se:

el Erdy il 1 00
gij: ?9'?;’ ?9-79 ?9-?1 =10 1’2 0
e, €, o €. € 0 0 1

Com o tensor métrico, € facil determinar se as coordenadas sdo ortogonais. Para coorde-

nadas ortogonais, apenas os elementos da diagonal (g;;) sdo diferentes de zero.

4.6.4.2 Tensor métrico contravariante

O tensor métrico contravariante, por sua vez, estd relacionado a base de vetores que
atuam como derivadas direcionais. Ele € util para levantar indices e transformar quantidades
covariantes em contravariantes. Em esséncia, ele atua como o “inverso” do tensor métrico

covariante, refletindo a estrutura do proprio espago vetorial.

Sua forma matemadtica é dada, de maneira andloga ao tensor métrico covariante, por:
gl =P . P (4.41)

4.6.5 Simbolos de Christoffel

Os simbolos de Christoffel sdo expressdes que descrevem como os vetores da base de

um sistema de coordenadas variam de ponto a ponto em um espaco curvilineo.

Existem duas formas principais desses simbolos: os simbolos de primeira espécie, que
envolvem diretamente o tensor métrico com todos os indices abaixados, e os simbolos de segunda

espécie, que sdao os mais comumente utilizados em aplicacdes de fisica e engenharia.

Os simbolos de Christoffel de segunda espécie descrevem a variacao das direcdes locais
das coordenadas e permitem calcular como um vetor se desloca ao longo de uma trajetoria em um
espaco curvo. Eles dependem das derivadas do tensor métrico e capturam a geometria do sistema
de coordenadas escolhido. Na prética, sdo utilizados para expressar a derivada covariante e
aparecem em diversas equagdes diferenciais que modelam o comportamento de campos vetoriais

e tensoriais em geometrias complexas.

Os simbolos de segunda espécie podem ser calculados a partir das derivadas do tensor

métrico ou diretamente dos vetores de base. Respectivamente, sdo as formas:

(4.42)

ok — g" (3&'1 dgi; 3gji>
17 - Y

2 \opi T ap " ap!
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ou,
0¢; St
ko 21 B

Lij=%p7 ¢ (4.43)

4.6.6 Cinematica da Malha

Em coordenadas dependentes do tempo, definem-se as componentes contravariantes da
velocidade da malha (U/) como (LUO; BEWLEY, 2004):

9P’
ot

Um termo crucial na equacdo do momento € a derivada covariante da velocidade da

U/ = (4.44)

malha, que captura a deformagdo geométrica do sistema de coordenadas ao longo do tempo. Este

tensor € calculado por:

_>
Uf:?ﬁj.ﬂ
* ot '’

onde 7 representa o tempo no referencial transformado.

(4.45)

4.7 Aplicacao ao Modelo Rotor-Estator Excéntrico

As equacgdes gerais apresentadas anteriormente sao agora aplicadas a transformacao de
coordenadas de um sistema rotor-estator onde o rotor estd deslocado do centro do estator. Para
descrever as novas coordenadas, parte-se do principio de que qualquer ponto R(r, 8,z) no sistema

cilindrico fisico equivale a R(&,7,¥) no sistema transformado.

Para o problema proposto, a transformacao analitica € definida como mostrada na se¢do

4.6, e aqui repetida por conveniéncia, como:

r—(Rp,—h(0,1))

n(r,0,z,t) =0 = 6(5,n,7,7)=n = h(6,1) =h(n,7), (4.47)
Y(r0.,2,t) =z = z(&,n,7,7T) = V. (4.48)

O vetor posi¢do arbitrario pode entdo ser reescrito usando as Eqs. 4.46, :

R(E,n,7) = [Ry+ (& — 1)h] (cos i +sin 6 ) + Yk. (4.49)
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Para determinar os vetores da base covariante, aplica-se a definicao da Eq. 4.36 a Eq.

4.49:
- 2 . 2
€ ¢ =hcosni+hsinn j, (4.50)
?Tl — [—rsinn + ok’ cosn]i+ [rsinn + ok’ cosn] j, (4.51)
7y =k, (4.52)

onde, para simplifica¢do da escrita, definiu-se r = R, + (& — 1)h, ' = dh/dn e a =
(E—1).

Para definir os vetores da base contravariante, utilizam-se as derivadas das Eqs. 4.46,
4.47 e 4.48 na Eq. 4.39, obtendo-se:

¢_ (cosn ai'sinn\ . (sinn ok cosn . 4
7 <h+hr i+ ) (4.53)
A (S";”) i (Cojn> h (4.54)
7Y =k (4.55)

Aplicando as defini¢des de produto escalar (Eq. 4.40 e 4.41) aos vetores de base acima,

obtém-se o tensor métrico covariante (g;;) € o tensor métrico contravariante (g"/):

/ 2 !
woalh 0] () -0
gij= |ah'h P+(al)* 0, g/=| _oy Lo (4.56)
0 0o 1 0 0 1

Finalmente, os simbolos de Christoffel para este sistema sdo determinados como:

4 4 h
0 Foet o 0 40
7= i ol aitor WP ) pl— b 2wl g e [l =0 (4.57)
0 0 0 0 0 0
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Considerando agora a movimentacdo da malha, as componentes contravariantes da
velocidade da malha (U’) e suas derivadas covariantes (Uj) sdo calculadas conforme as Egs.

4.44 e 4.45; respectivamente, tem-se:

h
Uézocz e UT=U"=0. (4.58)
i
vj= |a (i) 45
0 0

Considerando que o rotor gira apenas em torno de seu centro, o vetor velocidade para a

condi¢ao de contorno no rotor €:

v="1"¢+196% + 76 = wré?, (4.60)

o vetor velocidade transformado (u) para as condi¢Oes de contorno do rotor torna-se,

apos a aplicagdo da Eq. 4.35:

oh’'
W =v-e¢=— ul =v-

el
e
h

—w e u=v-er'=0. (4.61)

Com todas as métricas e transformacgdes definidas e calculadas, finalmente substituem-se

os termos nas Eqgs. 4.24 e 4.25, obtendo-se, para a transformagdo mostrada na se¢ao 4.6:

* O balan¢o de massa:

ap hdp dpus dpu dpu? eh o (W al\\
5; — (& 1)h8§+ JE + P + 7y +plu r-i—u h-l— . =0 (4.62)

* Balango da quantidade de movimento linear na direc¢do &:

ou- E_ ey |98 s n|o% | &g n 5 you-

37 +(u>—-U>) 85 —l—u Ten | tu an +urly e +ullay | +u a7
¢

L bUE e anp = L (5290 | e P ge [ 97u u

WU +ulUs, p( 5618 an)+v g (a§2 i gE

S S
92ué o %—i— ¢ ul e 81“51] +8u’71“5n
dEan “Snon M E dE on

ous ous dus dus ous
nn [ 9% € n g & ous
+g <8n2 Fingg ~Tin gy + e 5 + 20 5

S &
9%, 9T 92us
85 on Y2

+2g%M (4.63)

+f*
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* Balanco da quantidade de movimento linear na dire¢do 7:

du" du du
- S_pUS) | 2= 4, U DS o n
81’+<u U)[aé—i-ul“ ]4—14 {an—i-ul“é—i—ul" ]
du" d d
yOUT L onpn — 2 ,En%P 9P
+u Jy +u'Upy p(g 85 +g (977)
92um ou 92u oul oyt outT! or?
&& n 94 én S n ne , & ¢&n
+Vvig (8&2 ~|—2an 8§)+2g (868 Fén JE +1n, 9E + JE +u an
92u ou du® Ju" Iy | pOlmy | %’
m (24 & U n W 13 nn n
+g (81‘12 I 78 +207, an + Ty an)—Fu ag +u an + 77 +f
(4.64)
* Balanco da quantidade de movimento linear na direcao ¥:
du” du” du’ du” 10
AN S §i n yow __19p
8r+(u U)88§ +u an +u a7 a7
d%u¥ %u¥ du? du”
44 &n s 2% 9%
| G 2 (g TG Ty ) (4.65)

o2uY ou” ou” 0%uY
nn (W 5 oUW g OU y
w0 (Gas TG Thy )+ y] o

As equagdes de balanco em coordenadas curvilineas ndo-ortogonais utilizando as hipéte-
ses apresentadas na secdo 4.5 ficam:

du  Jdu¥ nooal
ow’ o o (BT
on oy " (h+ ) > (00
du" dul du" nm g
I el yoH o ongn — 8 9P
s —U%u F€n+u [an +u an}+u 9y +u'Upy o on
- aZun 1"’7 oul nargn azuy A (4.67)
VIS gz Timgy ) T Ty T | T
€
u? ou? du’ 1dp
n yow _ _29P
ek tu an Tt ay p Yy
(4.68)

v &non on? " "Moan 72

2, Y 2,7
2657 du? 4 g (a I a_”>+a ”] + Ay,

em que os termos A, e Ay sdo os termos fontes a serem modelados, conforme anunciado na

se¢do 4.5. Vale ressaltar que a equagio de balango na dire¢do & ndo € resolvida devido a essas
hipdteses.
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4.8 Calculo das forcas fluidodinamicas e dinamica do ro-

tor

A solugido computacional fornece o campo de pressdo p(1,7,t), que é constante na
dire¢do £. As componentes da for¢a fluidodinaAmica resultante, Fy x € Fy y, sobre o rotor sao

obtidas pela integracdo da pressdo em sua superficie:

L 2
Fux(t) = —R, /0 /0 p cos(0) d dz (4.69)

L /mw
Fry(t) = —Rr/o /0 psin(0) dO dz. (4.70)

O movimento do centro do rotor (x.(t),y.(t)), sujeito a uma carga correspondente ao seu

peso W = mg, € determinado com a segunda lei de Newton:

d*x,
mdt2 :FH,X (4.71)
€
d’ye
m dl‘z = FH,Y —W. (472)

O acoplamento entre o fluido e a estrutura é completo, e a solucdo computacional deste
sistema de EDOs ao longo do tempo permite simular a trajetdria do eixo até sua posicdo de

equilibrio.

4.9 Calculo dos coeficientes de rigidez e de amorteci-

mento do sistema

Para a determinac@o dos coeficientes de rigidez (k;;) e amortecimento (c;;) do mancal,
utilizou-se o método das Orbitas elipticas, conforme proposto por Sun et al. (2019) e detalhado
em Rossi et al. (2025). Este método fundamenta-se na hipdtese de pequenas amplitudes de
movimento do eixo (Aex,Aey) em torno de sua posi¢io de equilibrio estético (ex,, ey,), 0 que
permite a linearizagdo das for¢as hidrodindmicas de suporte (Fy, Fy) através de uma expansao

em série de Taylor.
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A relacdo linearizada entre as perturbagdes das forcas hidrodinamicas, os deslocamentos

e as velocidades do centro do eixo € expressa na forma matricial pela Equagao 4.73:

AFx _ kxx kxy| JAex | |cxx cxy| ) Aéx 4.73)
AFy kyx kyy| |Aey cyx cyy| |Aéy

onde os subindices indicam as dire¢des das forgas e dos movimentos, sendo AF; = F; — Fj; a

variagdo da for¢a dinamica em relacdo a forga de equilibrio estatico.

No procedimento numérico adotado, impde-se que o centro do rotor, além de rotacionar
em torno de seu eixo com velocidade angular w, descreva uma trajetéria de whirl eliptica com
frequéncia de excitacdo € em torno da posicao de equilibrio. Para compor o sistema de equacdes
necessdrio a resolucao dos oito coeficientes dindmicos desconhecidos, sdo simuladas duas 6rbitas

independentes, definidas pelos semi-eixos maior (a) e menor (b):
« Orbita 1: O eixo maior da elipse € alinhado com a diregdo X, tal que Aex = acos(Qr) e
Aey = bsin(Qt);
« Orbita 2: O eixo maior da elipse ¢ alinhado com a diregdo Y, tal que Aex = bcos(Qt) e
Aey = asin(Qr).
Na imagem 5 € mostrado como sao dadas essas orbitas.

Figura 5 — Representacdo método das orbitas elipticas.

A Y A Y
Mancal Mancal

(a) Orbita 1. (b) Orbita 2.

Fonte: Rossi et al. (2025).

As forgas hidrodinamicas resultantes dessas perturbacdes sdo amostradas em dois ins-

tantes de tempo especificos para cada orbita: t =0 e r = T /4, onde T = 27/ representa o
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periodo do movimento de whirl. A substitui¢do desses valores na Equacgdo 4.73 resulta em um
sistema linear de equagdes algébricas, cuja solucao isola e determina os termos de rigidez e

amortecimento.

Para o presente estudo, a frequéncia de excitacdo da perturbacdo foi definida como
sincrona, ou seja, igual a velocidade de rotag@o do rotor (2 = ). As amplitudes de perturbacdo
a e b foram fixadas, respectivamente, em 0,5% e 1% da folga radial nominal (c), valores estes

que asseguram a validade da hipétese de linearidade das for¢as no filme fluido.
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CAPITULO

MODELO NUMERICO-COMPUTACIONAL

Nesta secdo € apresentada, em detalhes, a metodologia numérica empregada para a solu-
cdo das equagdes do escoamento no interior do mancal hidrodindmico, bem como o acoplamento
com a dindmica do rotor. Sdo descritos os procedimentos de geracao da malha computacional,
as estratégias de discretizacdo espacial e temporal, o algoritmo de solu¢do adotado para o aco-
plamento pressdo—velocidade, o modelo de cavitagdo considerado e, por fim, os critérios de

estabilidade e convergéncia utilizados ao longo das simulagdes.

5.1 Geracao Da Malha Computacional

A solugdo das equagdes de balango € realizada por meio do método das diferencas finitas,
aplicado ao dominio computacional bidimensional definido pelas coordenadas transformadas
(1n,7). Conforme discutido na Sec¢do 4.6, a transformag@o de coordenadas permite mapear o
dominio fisico, de geometria varidvel no tempo, em um dominio retangular fixo, o que simplifica

significativamente a implementa¢ao numérica.

Sobre esse dominio computacional é construida uma malha estruturada, uniforme e
cartesiana, caracterizada por espacamentos constantes An e Ay. A escolha por uma malha
estruturada decorre da regularidade do dominio transformado, permitindo uma implementacao
eficiente dos operadores diferenciais e reduzindo o custo computacional em comparacao com

malhas nao estruturadas.

Para os casos de estudo apresentados neste trabalho, foram adotadas resolugdes tipicas
de N = 120 volumes na direg¢ao circunferencial € Ny = 40 volumes na dire¢ao axial. Ensaios
preliminares de independéncia de malha foram realizados, indicando que refinamentos adici-
onais nessas dire¢des ndo resultam em variagdes significativas nos campos de pressao, forcas
fluidodindmicas ou trajetéria do rotor, quando comparados ao aumento substancial do custo

computacional. Dessa forma, a malha escolhida representa um compromisso adequado entre
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precisdo numérica e eficiéncia computacional.

Adota-se uma estratégia de malha deslocada, na qual as componentes do vetor velocidade
sao calculadas e armazenadas nas faces dos volumes de controle, enquanto o campo de pressao
¢ definido no centro de cada volume. Essa abordagem, amplamente utilizada em métodos
classicos de CFD para escoamentos incompressiveis, evita o desacoplamento pressao—velocidade
(VERSTEEG; MALALASEKERA, 2007; PATANKAR; SPALDING, 1972) e o surgimento
de padrdes espurios no campo de pressdo, além de garantir uma discretizacdo mais robusta do

operador divergente.

5.2 Algoritmo De Solucao E Modelo De Cavitacao

O acoplamento entre os campos de pressdo e velocidade, caracteristico de escoamentos
incompressiveis, € tratado por meio do método dos passos fracionados, pertencente a classe
dos métodos de projecao. Este método € amplamente utilizado em CFD devido a sua robustez,

simplicidade de implementacdo e boa eficiéncia computacional.

O algoritmo utilizado neste trabalho, detalhado em Santos (2022), pode ser resumido nos
seguintes passos para a evolucio da solugdo do instante " para "1

1. Passo de predi¢do: resolve-se a equacdo da quantidade de movimento linear utilizando o

campo de pressao conhecido no tempo t", obtendo-se um campo de velocidades interme-

didrio v* que, em geral, ndo satisfaz a condi¢@o de divergente nulo.

2. Passo de corregiio: impde-se a condicdo de conservacio de massa (V- v"T! = 0), o que
conduz a uma equagio de Poisson para a corregdo de pressio p’ = p"*! — p". O ope-
rador laplaciano dessa equacao € discretizado utilizando um esquema de quarta ordem,

aumentando a precisdo espacial do campo de pressao.

3. Resoluc¢do do sistema linear: o sistema linear esparso resultante da discretizacdo da equagao
de Poisson € resolvido pelo método iterativo dos Gradientes Conjugados Bi-Estabilizados
(Bi-CGSTAB), escolhido por sua boa performance em matrizes nao simétricas e mal

condicionadas.

4. Passo de projecdo: o campo de pressdo é atualizado para o tempo #"*!, e o campo de
velocidades € corrigido utilizando o gradiente da correcao de pressao, garantindo um

campo final v"*! livre de divergéncia.

Apbs a obtencdo do campo de pressao corrigido, € aplicado um modelo de cavitagdo. Neste
trabalho, adota-se a condi¢do de meio-Sommerfeld, amplamente utilizada em problemas de
lubrificacao hidrodindmica. De acordo com esse modelo, qualquer valor de pressdo inferior a uma

pressdo de vaporizacdo pré-definida (pyqp) € truncado para esse valor minimo. Tal abordagem
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simula a formacao de regides cavitadas no filme lubrificante, nas quais o fluido perde a capacidade

de transmitir esforcos normais, impactando diretamente a capacidade de carga do mancal.

5.3 Discretizacao E Estratégia De Solucao Numérica

A discretizacdo das equacdes de balanco foi realizada através do FDM, abordando a

dependéncia espacial, a evolugdo temporal e o acoplamento fluido-estrutura.

Para a discretizac@o espacial, os termos advectivos e difusivos das equacdes da quantidade
de movimento linear foram aproximados por esquemas de diferengas centradas com precisao
de segunda ordem. A escolha por esquemas centrados, em detrimento de esquemas upwind,
justifica-se pela natureza predominantemente laminar do escoamento no filme lubrificante. Essa
abordagem minimiza a difusdo numérica artificial, garantindo maior fidelidade na previsao dos
gradientes de pressdo e das forcas de sustentacdo. Dado o rigoroso controle do passo de tempo
imposto pelos critérios de estabilidade, as baixas velocidades caracteristicas permitem que o

esquema centrado ofereca precisdo espacial superior sem introduzir oscilacdes espurias.

No dominio temporal, a evolucdo das varidveis utiliza uma formulacao explicita. A inte-
racdo entre o escoamento do fluido e a dinamica do rotor € tratada por meio de um acoplamento
fraco. Nesse esquema, as forcas fluidodinamicas calculadas no instante atual sdo utilizadas para
atualizar a posicdo do rotor no préximo passo, sem sub-iteragdes. Embora apresente menor custo
computacional por passo, essa abordagem impde restricdes severas a estabilidade, exigindo
passos de tempo reduzidos para evitar instabilidades decorrentes do atraso temporal na aplica¢ao

das forgas.

Para a integracdo temporal, empregou-se um esquema de trés pontos com precisao de
segunda ordem (O(At?)). Como esse método requer informagdes de dois passos anteriores (t
e t — At), a inicializag@o (primeiro passo) € feita via método de Euler, e o esquema de segunda
ordem assume a partir do segundo passo. A deducdo fundamenta-se na expansao em série de
Taylor de uma fung¢do genérica f(z) em torno de (¢ + At) em direc¢do ao passado, conforme Egs.
5.1e5.2:

f(t + At)Ar?

5 + 0(AP) (5.1)

f(t) = ft+Ar) — f/(t +Ar) At +

f"(t+Ar)(2A¢)?

51 + O(A?) (5.2)

flt—At) = f(t+At) — f/(t +Ar)(2A1) +

Ao multiplicar a Eq. 5.1 por 4, subtrair a Eq. 5.2 e negligenciar os erros de truncamento

de ordem superior, isola-se a derivada temporal, resultando na discretizacdo utilizada:

af U3 f(e A —Af()+ f(t —Ar)

= = (5.3)
ot |, nr 2At
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Devido a natureza explicita e ao acoplamento fraco, o calculo do passo de tempo maximo
admissivel € critico e segue os critérios de estabilidade de Strikwerda (1989), adaptados para as

coordenadas curvilineas. Os limites impostos pelos termos difusivos (At;) e advectivos (At,) sdo:

o (an #AYY

tg < —— (5.4)
2 2
H (An R@&) LAY
© A
A, < 20 (5.5)
w

O passo de tempo global € determinado pela condi¢cao mais restritiva, ponderada pelo
nimero de Courant-Friedrichs-Lewy (CFL) (VILLAR, 2007), adotando-se um valor conservador
de CFL=0,01:

At = CFL - min(Aty, At,) (5.6)

Adicionalmente, para assegurar a estabilidade durante o transiente inicial — onde o
acoplamento fluido-estrutura € mais severo — adota-se uma estratégia de rampa temporal, onde

o At € incrementado gradualmente até atingir o valor de projeto.

Por fim, os critérios de convergéncia sdo monitorados em dois niveis. O solver Bi-
CGSTAB, usado na correc¢do de pressao, encerra suas iteracdes quando o residuo relativo é
inferior a 1075, J4 a convergéncia global da simulacdo (equilibrio do rotor) é atingida apés
um minimo de 1000 passos e quando as for¢as fluidodinamicas equilibram a carga externa,
obedecendo: |Fy x| < W X 107%e |[Fry —W|<W x 10—, Essa condicfio assegura que o sistema
atingiu um regime estaciondrio dindmico, no qual a posicdo do eixo permanece estavel ao longo

do tempo.
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CAPITULO

MODELAGEM DOS TERMOS-FONTE

6.1 Modelagem dos Termos Fonte: Evolucao e Formula-
cao

Esta secdo detalha o desenvolvimento da modelagem dos termos fonte responsdveis pela
inducdo do movimento no fluido lubrificante. O modelo visa a determinacdo dos campos médios
de pressdo e velocidade ao longo da coordenada normal a parede, assumindo valores médios no

volume de controle.

A formulacdo final aqui apresentada € resultado de um processo evolutivo que envolveu
a andlise critica da literatura e investigacdes preliminares conduzidas pelo autor, as quais
evidenciaram a necessidade de um tratamento matematico rigoroso para superar limitacoes de

estabilidade e convergéncia em geometrias complexas.

6.1.1 Contexto e Limitacoes em Trabalhos Anteriores

Historicamente, a literatura técnica tem enfrentado obstdculos significativos na represen-
tacdo de termos fonte em mancais fluidodindmicos. Silva, Cavalini e Neto (2023), empregando
uma metodologia de volumes finitos, propuseram uma func¢ao de ajuste para o termo viscoso
que dependia do fator de excentricidade. Embora essa abordagem tenha produzido valores con-
sistentes para cendrios estiticos e mancais bidimensionais (infinitos), a dependéncia de ajustes

empiricos restringiu a generalizacdo do modelo.

Posteriormente, Silva et al. (2024) avancaram com modelos analiticos e discretos que
eliminavam a necessidade de tais funcdes de ajuste, alcangando boa concordancia com o modelo
de Reynolds em situagdes simplificadas. No entanto, ao incorporar a dire¢do longitudinal
(tridimensional), a convergéncia para os resultados esperados nao foi obtida, evidenciando

lacunas na representagdo fisica das tensoes nas fronteiras do volume de controle.
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6.1.2 Desenvolvimento da Formulacao das Tensoes Viscosas

As forgas liquidas em um fluido nao sdo geradas pelas tensdes em si, mas sim pelas suas
diferencas. E evidente que a presenca de uma superficie em movimento relativo a outra gera uma
disparidade de tensdes entre essas paredes. Consequentemente, o termo das forcas externas é
definido como a diferenca entre as tensdes aplicadas na parede superior e a tensdo aplicada na

parede inferior:

Foxr = Asustup _Ainffinf- (6.1)

Portanto, o objetivo primordial € a determina¢do dos valores dessas tensdes. O problema
da sapata deslizante serve como uma aproximagao do cendrio real de um mancal cilindrico. Uma
tentativa inicial envolveu a busca por uma modelagem continua para o campo de velocidade, per-
mitindo assim a determinacdo das tensdes. Para isso, um pseudo-eixo com raio R; foi empregado
para estabelecer uma coordenada { centrada na origem desse eixo, conforme ilustrado na figura
6.

Figura 6 — Representagdo do eixo { para determinagdo das tensdes nas paredes.

A

¢
l&&\\YVQOGAN\\
?

\N\YV%OAAN\\\\

v R U (,U

Fonte: Elaborada pelo autor.

O método escolhido para a determinacao das tensdes foi a transformada de Laplace. Ao
reescrever o modelo diferencial nesta nova coordenada, obtém-se:

[@_3_2'4]
ot~ ol

Cujas condi¢des de contorno e inicial sdo:

[ u(0,6) = U(t) u(h,t) = 0 u({,0) =0.]
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Isso resulta em um modelo continuo no plano laplaciano da seguinte forma:

ur(g,s) = c165¢ + cre <€, (6.2)
O sub-indice L denota que a fungdo estd sendo avaliada no plano laplaciano. Aplicando
as condic¢des de contorno, tem-se:
[u(0,6) =U(t) = ur(0,s) = UL(s) = c1 +ca u(h,t) =0 = ur(h,s) =0=cre +cre " ]

ApOs a determinacdo das constantes, uma funcdo para o campo de velocidade no plano

laplaciano € estabelecida, cuja inversa fornece a funcdo continua do campo de velocidade

temporal:
ur(C.s) = sUL(s)sen(hy/s/o(h—)) e u(C) =L L[U'(t)]sen(h+/s/a(h—{))
ssen(h2\/s/a) ssen(h?\/s/a)
(6.3)
Pelo teorema da convolugdo, sabe-se que:
! du
L [UH9AL(E9)] = [ 4(C.0) = 0)do, (64

onde

_ o fsen(hy/s/ah=8)| _ ([ &) 2¢ 1 sen(n mr)zh
Al =L [ ssen(h?\/s/a) ]_(1 h> Jtn;ln 76/he 65)

substituindo na equagdo 6.4, obtém-se:

u(g,r) = /Ot (1 - %) —% i %sen(nng/h)e("ﬂ)zi‘g Cil_lr](t —o)do. (6.6)

n=1

A velocidade do eixo foi especificada como uma fun¢do do tempo da forma:

du
Uit)=Ur(1—-e %) = E—Urae (6.7)

sendo que Ut representa a velocidade terminal do pseudo-eixo e a € uma constante de

tempo relacionada a aceleracio do eixo desde o repouso até atingir Ur.

Substituindo a equacdo 6.7 na equacdo 6.6, chega-se a:

! oo
u(g,1) :/ (1 — E) Urae “"~%)do — = Z —sen (er> / ("”)zﬁUTae*“(f*G)dG,
0 h T i=n 0

(6.8)
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resolvendo a integral, alterando a coordenada { para y, com a origem de coordenadas no
centro do pseudo-eixo de raio R; (0 <y < R;+h = { =y—R;), e substituindo & por i /p,

obtém-se finalmente:

281 1 YR s (©9)
——Z——zsen nt—— | (e phe — e~ )
=1 (i h
aph?

Com a solugdo continua para o campo de velocidade u determinada, € possivel calcular

as tensdes nas paredes, dado que:

d
Ty = ua—;‘. (6.10)

Ao substituir a equacdo 6.9 na equacdo 6.10 nas respectivas paredes, as tensdes nas

paredes superior e inferior sdo determinadas, resultando em:

du Ur —ary , 2Ur w (—1)" —(nm)? Ly
Tsup:_.ua_y‘y:Ri‘l‘h:—,u 7(1—6 )—I—TZn:l W(e pl )
pa
(6.11)
€
u Ur —a 2UT - 1 —( n)2Lt u
Tinf:_,ua—y‘y:Ri—f—h:—,u 7(1—6 I)—I—TZn:] W(e n P2 _ l)

pah?
(6.12)
Assim, € vidvel determinar o termo Fgy »y conhecendo as dreas de atuacgdo dessas tensoes.
Aproximando a drea superior da drea inferior, devido a inclinagcdo geralmente minima da parede
superior, tem-se: Ay, = A,y = Ax, assumindo que a componente de profundidade € unitdria
(Az = 1). Substituindo as equagdes 6.12 e 6.11 na equacio 6.1, chega-se finalmente a:

2uUr & 1—(-1)" _ —(nm)?pt
Foxt,, = a ; ! ) Em)z)u (e —e P )| Ax. (6.13)
n=11— W

Ao comparar os resultados das tensdes obtidos por este método com aqueles proveni-
entes do modelo de Reynolds (substituindo a equagdo 4.5 na equacgao 6.10), observou-se uma

concordancia muito satisfatéria para os valores de tensdo, o que valida a formulag¢ao proposta.
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Um dos diversos resultados obtidos para a tensdo € apresentado na figura 7. As subfiguras 7a,

7b, 7c e 7d exibem valores distintos, pois representam as tensdes em diferentes configuracdes

geométricas de canais. As configuracdes de sapatas utilizadas estdo dispostas nas Tab. 1 e 2 e

uma representagdo visual da geometria é encontrada na Fig. 8. A Fig. 7a é respectiva a geometria

mostrada na Fig. 8a, a Fig. 7b a Fig. 8b, a Fig. 7c a Fig. 8c e a Fig. 7d a Fig. 8d.

Figura 7 — Comparagdo entre os resultados obtidos para os valores das tensdes nas paredes da sapata

deslizante.
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Fonte: Silva et al. (2024).

11150V VISLUSA [Fd]

Tensdao Viscosa [Pa]

Distribuicdo de Tensdo vs. Comprimento

—2000

—4000

—6000

—8000 -

—10000 -

—— Parede mével - Modelo de Reynolds
Parede mével - Modelo continuo
—— Parede fixa - Modelo de Reynolds
— - Parede fixa - Modelo continuo
h/2 - Modelo de Reynolds
=+ h/2 - Modelo continuo

T T
0.04 0.06
Comprimento [m]

(b)

T
0.02

Distribuicdo de Tensdo vs. Comprimento

—6500 -

—6600 1

—6700 A

—6800 -

—6900 1

—7000 A

—7100 A

—7200 -

—— Parede mével - Modelo de Reynolds
Parede mével - Modelo continuo
—— Parede fixa - Modelo de Reynolds
— - Parede fixa - Modelo continuo
h/2 - Modelo de Reynolds
=+ h/2 - Modelo continuo

T T T
0.04 0.06 0.08

Comprimento [m]

(d)

T
0.02

Tabela 1 — Propriedades fluidodindmicas e de operacdo das sapatas.

Propriedade Valor
Viscosidade (1) 9,0 [Pa.s]
Massa especifica (p) 998.,0 [kg / m3]
Velocidade da parede (U) 1,0 [m/s]

Fonte: Adaptada de Silva er al. (2024).
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Tabela 2 — Configuracdes geométricas dos canais cartesianos.

Canal Comprimento (m) h(x=0)(m) h(x=L/2)(m) Re*[]

Pardbola positiva 1,00E-1 51,25E-5 50,00E-5 291E-4
Parédbola negativa 1,00E-1 48, 75E-5 50,00E-5 2, 7TE-4
V positivo 1,00E-1 55,00E-4 50,00E-4 3,35E-2
V negativo 1,00E-1 45,00E-4 50,00E-4 2,77E-2

Fonte: Silva et al. (2024).

Embora a formulagdo se mostre elegante e produza resultados idénticos aos do modelo
de Reynolds, sua aplicacao direta ao modelo numérico-computacional, derivado do balanco da
quantidade de movimento linear com base na teoria de filme fino, ndo demonstrou convergén-
cia computacional. Consequentemente, tornou-se imperativo o desenvolvimento de uma nova

formulagio para a obteng@o do termo Fiys yy.

A formulag@o correta deveria incorporar as condi¢des de contorno do problema e, simul-
taneamente, depender da prépria velocidade média a ser calculada na célula. Isso se justifica
pelas pequenas variacdes numéricas computacionais. Apesar de serem minimas, essas flutuagdes
numéricas sao de alta relevancia, pois em sistemas fechados, como o da sapata deslizante ou do
mancal cilindrico, tais flutuagcdes ocorrem em todas as células, exigindo que o sistema se adapte

a elas.

Uma abordagem inicial para impor as condi¢des de contorno consistiu na adaptagao da
discretizagdo da equagdo 6.10, utilizando apenas a velocidade média conhecida no centro da
célula e as condicdes de contorno. Matematicamente, aproximando a derivada pelo método das

diferencas finitas de segunda ordem, isso se expressa como:

—3U +4u
Taylinf = e (6.14)
c
U—4u
Tyy|SUp = 1 PR (6.15)

Assim, substituindo as equagdes 6.14 e 6.15 na equagdo 6.1, e considerando a mesma

area Ax, obtém-se que:

4(U —2u)

N (6.16)

Fext,xy ~ ,UAX

Esta modelagem demonstra dependéncia tanto das condi¢cdes de contorno da sapata
deslizante quanto da velocidade a ser calculada. A modelagem apresentou convergéncia numérica,

exibindo uma convergéncia qualitativa, mas ndo quantitativa. A figura 9 ilustra alguns resultados
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Figura 8 — Representagdo dos canais analisados em coordenadas retangulares.
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Fonte: Silva et al. (2024).

preliminares com esta primeira modelagem. As configuracdes de sapata sdo as mesmas utilizadas

nos resultados mostrados na Fig. 7.

Os resultados apresentados na figura 9 seguem o padrdo de crescimento e decaimento de
pressdo do modelo de Reynolds. Contudo, ndo reproduzem os mesmos resultados quantitativos.
Em diversas simula¢des realizadas, variando a velocidade, o perfil do canal, as propriedades
fisicas, entre outros parametros, notou-se que a diferenca entre os valores das pressdes se

aproximava da constante /2. Dessa forma, a equacio 6.16 foi reescrita como:

(U —4u)

4
Fot oy = V211 AX ; (6.17)
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Figura 9 — Comparagdo entre os resultados obtidos para os valores das pressdes com a modelagem
discretizada.
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Fonte: Silva et al. (2024).

6.1.3 Formulacao Proposta: Expansao em Série de Taylor

Para superar tanto as limitagdes apontadas por Silva, Cavalini e Neto (2023) e Silva et
al. (2024) quanto os problemas de precisao observados na fase preliminar, o presente trabalho

desenvolveu uma modelagem fundamentada rigorosamente na expansao em série de Taylor.

Diferente das tentativas anteriores que buscavam ajustes empiricos, esta abordagem parte
da defini¢do matematica. Expandindo uma fun¢@o f(x) em torno do centro do volume de controle

(xo) em direcdo as fronteiras (xo £ Ax):

Fla+ &) = £s0) + £ o) e+ L0 L) sy pag) o18)
Fla &0 = ) — oy T a2 L g a9
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Subtraindo as equagdes, isola-se a derivada (cisalhamento) com precisdo de segunda

ordem, eliminando a necessidade de fatores de correcao:

f(xo+Ax) — fxo—Ax) " (x0)
2Ax 6

f(x0) ~ (Ax)2. (6.20)

Aplicando este conceito ao sistema de coordenadas curvilineas ndo-ortogonais — o que

constitui a inovacao final deste trabalho — obtém-se as expressoes definitivas para os termos

fonte A, que garantem a estabilidade e a precisdo desejadas:

W o

(6.21)
C» 2 B h/2 B h// N h_w
h(2Ry —h)  12(2R,—h)2  h(2R, —h)? 2h
H P,
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CAPITULO

RESULTADOS

7.1 Validacao do modelo

Para a validacao do modelo proposto, adotou-se o caso de estudo de um mancal radial
cilindrico cujas propriedades geométricas, propriedades fisicas do fluido e de operacdo foram
analisadas por Mota et al. (2022). Os dados de referéncia utilizados para comparacio foram
gerados por meio da biblioteca de cédigo aberto ROSS (TIMBS et al., 2020), que emprega uma
solu¢do baseada na equacdo de Reynolds para determinar as caracteristicas estaticas e dinamicas

de mancais.

Os parametros utilizados na simulagdo, idénticos aos adotados na referéncia, estao
detalhados na Tab. 3. A carga aplicada corresponde a W = 100 [N]. A andlise foi realizada para

8 velocidades de rotacdo, distribuidas linearmente entre 200 e 550 rad/s.

Tabela 3 — Parametros do mancal utilizado no caso de estudo.

Parametro Simbolo Valor
Raio do Mancal Ry, 15.00 [mm]
Raio do Rotor R, 14.91 [mm]
Folga Radial c 0.09 [mm]
Comprimento do Mancal L 20.0 [mm]
Massa do Rotor m 10.1938 [kg]
Peso do Rotor w 100 [N]
Viscosidade Dinamica u 54.49 x 1073 [Pa.s]
Massa especifica p 881 [kg/m’]
Pressdo de vaporizacdo Poap 1.0 x 10° [Pa]
Velocidade de rotacao 0} 200 < o < 550 [rad/s]

Reynolds modificado Re*  4.0x1073 <Re* <1.2x1072
Fonte: Adaptada de Mota et al. (2022).
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7.1.1 Comparacao Dos Resultados De Equilibrio

As simulacdes computacionais foram executadas para cada velocidade de rotacao até
que a posi¢ao de equilibrio do rotor fosse atingida. Os resultados obtidos com o modelo proposto
foram entdo comparados com os dados reportados por Mota et al. (2022), obtidos via ROSS. As

Figs. 10 e 11 apresentam essa comparacao.

Na Fig. 10a compara-se a razdo de excentricidade de equilibrio (¢/c) em funcdo da
velocidade de rotagdo. Observa-se uma excelente concordancia qualitativa e quantitativa entre
os resultados. Ambos os modelos capturam corretamente a fisica do problema, mostrando a
reducgdo da excentricidade com o aumento da velocidade. Nota-se que o modelo proposto prevé
valores ligeiramente inferiores aos da referéncia em toda a faixa analisada, mantendo, contudo,

uma diferenca percentual pequena e uniforme.

A Fig. 10b exibe a comparacao para o angulo de atitude (¢). Observa-se que ambas as
curvas apresentam um comportamento suave € monotdnico, condizente com o esperado para

mancais cilindricos nesta faixa de operagdo. A correlacdo entre os resultados € alta.

Figura 10 — Comparag@o da posi¢ao de equilibrio do rotor em fun¢do da velocidade de rotagdo
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0.60 -1
' —— Present Work T
— 0.551 Mota et.al (2021) = P
S S e Mota et.al (2021) + 10% S —201
v 0.504 S
3 k)
© 0.45 2 25+
2 ©
2 0.401 S
£ 5 —301
g 0.351 = = Present Work
= ] i g Mota et.al (2021)
0.30 |
=351 %7 e Mota et.al (2021) * 10%
0.251— - - - r - - - v " v " v " . T
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Rotation speed w [rad/s] Rotation speed w [rad/s]
(a) Razao de excentricidade vs. Velocidade. (b) Angulo de atitude vs. Velocidade.

Fonte: Elaborada pelo autor.

O lugar geométrico dos pontos de equilibrio € apresentado em coordenadas cartesianas
(Fig. 11a) e polares (Fig. 11b). As figuras demonstram que a trajetéria de equilibrio prevista
pelo presente trabalho € coerente com os dados de referéncia. O deslocamento do centro do eixo
(subindo e movendo-se lateralmente com o aumento da rotacdo) segue 0 mesmo padrdo em ambos
os casos. A proximidade das curvas confirma a capacidade do modelo em coordenadas curvilineas
de reproduzir com fidelidade o comportamento estatico previsto por solvers tradicionais baseados

na equacao de Reynolds.
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Figura 11 — Lugar geométrico dos pontos de equilibrio do rotor para a faixa de velocidades analisada
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(a) Lugar geométrico em coordenadas cartesianas. (b) Lugar geométrico em coordenadas polares.

Fonte: Elaborada pelo autor.

7.1.2 Comparacao Dos Coeficientes Dinamicos

Para a determinac@o dos coeficientes de rigidez (k;;) e amortecimento (c;;) do mancal,
utilizou-se o método das drbitas elipticas proposto por Sun et al. (2019) e também bem explicado
e detalhado em Rossi ef al. (2025). Este método baseia-se na aplicag@o de pequenas perturbacoes
no deslocamento e na velocidade do centro do eixo em torno da posi¢do de equilibrio estatico.
Para o presente estudo, a frequéncia de excitagdo da perturbagdo (€2) foi definida como sincrona,

ou seja, igual a velocidade de rotac@o do rotor (), tal que Q = .

As Figuras 12 e 13 apresentam a comparacao entre os coeficientes obtidos com o modelo
atual e os dados de referéncia de Mota et al. (2022), considerando uma margem de incerteza de

+10% para a referéncia.

7.1.2.1 Coeficientes de Rigidez

Na Fig. 12, observa-se que o modelo proposto € capaz de reproduzir corretamente o
comportamento qualitativo dos coeficientes de rigidez em funcdo da rotacdo. As inclinagdes das

curvas sdo consistentes com a fisica do problema e com a referéncia.

Quantitativamente, nota-se que para os coeficientes cruzados (kyy, ky,) € para a rigidez
direta na diregao vertical (kyy), 0 modelo atual tende a subestimar os valores em comparac@o aos
resultados obtidos via equagdo de Reynolds (ROSS), situando-se abaixo da margem de 10%.
Por outro lado, para a rigidez direta na dire¢do horizontal (k,,), 0 modelo apresenta valores

ligeiramente superiores a referéncia, demonstrando uma maior rigidez nessa direcao especifica.
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Figura 12 — Comparag@o dos coeficientes de rigidez em funcio da velocidade de rotacdo
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Fonte: Elaborada pelo autor.

7.1.2.2 Coeficientes de Amortecimento

A comparagao dos coeficientes de amortecimento € apresentada na Fig. 13. De forma

analoga a rigidez, as tendéncias de variacdo com a velocidade sdo bem capturadas com o modelo

em coordenadas curvilineas.

Destaca-se a boa concordancia nos termos cruzados (cxy € ¢yy), onde os resultados

do presente trabalho se aproximam significativamente da faixa de referéncia, especialmente

em rota¢Oes mais elevadas. O termo direto ¢y, segue o padrdo de subestimag@do observado na

rigidez. Ja para o coeficiente cy,, embora a tendéncia de reducdo com o aumento da velocidade

seja respeitada, observa-se uma divergéncia de magnitude significativa em relacdo aos dados

de Mota et al. (2022), indicando que o modelo atual prevé um amortecimento horizontal

consideravelmente menor.
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Figura 13 — Comparagdo dos coeficientes de amortecimento em funcio da velocidade de rotacio
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Fonte: Elaborada pelo autor.

7.2 RESULTADOS E DISCUSSOES

7.2.1 Analise da Trajetéria Dinamica do Rotor

Uma das principais vantagens do modelo desenvolvido € a capacidade de simular a
trajetdria completa do rotor desde uma condi¢do inicial arbitrdria até a sua posi¢do de equilibrio
final. Na Fig. 14 apresenta-se a evolucao temporal da razdo de excentricidade e do angulo de
atitude para as duas velocidades analisadas (250 e 500 rad/s), enquanto a Fig. 15 exibe a trajetoria

correspondente do centro do eixo no plano X —Y.

Para ambas as rotagdes, partindo de uma condigéo inicial concéntrica (e/c = 0), o rotor
exibe um comportamento dindmico caracteristico de sistemas subamortecidos de segunda ordem.
Observa-se um overshoot inicial, onde a excentricidade ultrapassa momentaneamente seu valor
de estabilizagdo, seguido por oscilacdes que decaem exponencialmente até o estado estaciondrio.

Esse comportamento transiente permite uma visualizagc@o direta da estabilidade do sistema e da
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Figura 14 — Evolugdo temporal das coordenadas polares do rotor para duas velocidades de rotagdo distin-

tas.
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Fonte: Elaborada pelo autor.

atuacdo das forgcas de amortecimento do filme fluido, uma andlise que complementa os métodos

tradicionais de perturbagao.

As trajetorias no plano X —Y (Fig. 15) descrevem uma espiral que converge para o ponto
de equilibrio. Os pontos finais atingidos sao consistentes com os valores discutidos na analise
estatica (Se¢do 7.1.1), mantendo a coeréncia com os pequenos desvios observados em relacao
aos dados de referéncia de Mota et al. (2022). A suavidade das curvas de trajetoria reforga a

robustez numérica do esquema de integracdo temporal adotado.

7.2.2 Analise do Campo de Pressao Fluidodinamico

A for¢ca motriz que define a trajetdria e a posicdo de equilibrio do rotor advém da
distribui¢do de pressao no filme lubrificante. A Fig. 16 ilustra os campos de pressao calculados

com o modelo para as posi¢des de equilibrio a 250 e 500 rad/s.
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Figura 15 — Posic¢ao do centro do rotor para diferentes velocidades.
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Fonte: Elaborada pelo autor.

Figura 16 — Campos de pressao fluidodindmicos para as posi¢des de equilibrio.
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Fonte: Elaborada pelo autor.

Com as superficies demonstram-se o comportamento tipico de um mancal de com-
primento finito: o perfil de pressdao exibe uma forma aproximadamente senoidal na direcdo
circunferencial (0) e parabdlica na direcao axial (z), decaindo para a pressdo ambiente nas
bordas (z =0 e z = L). Destaca-se a extensa zona de cavitacdo, tratada com o modelo de meio-
Sommerfeld, onde a pressdo € truncada no valor de vaporizagdo, ocupando metade do dominio

circunferencial.
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Na Fig. 17, compara-se os perfis de pressdo no plano central (z = L/2). Embora a
localizacdo angular do pico de pressao permaneca quase inalterada, a magnitude deste pico é
consideravelmente maior para a rotagao de 500 rad/s. Este aumento na pressao € o0 mecanismo
fisico responsavel pela maior capacidade de carga em altas rotagdes, resultando na diminuicao

da excentricidade observada anteriormente.

Figura 17 — Comparag@o dos perfis de pressdo no plano central do mancal (z = L/2).
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Fonte: Elaborada pelo autor.

7.2.3 Influéncia da Inércia do Fluido (Re* 4« 1)

Uma distin¢do fundamental entre o modelo proposto e a classica equagdo de Reynolds
reside na considerag¢ao dos termos de inércia convectiva e transiente nas equagdes de quantidade
de movimento. Enquanto a abordagem de Reynolds pressupde que o nimero de Reynolds
modificado € muito menor que a unidade (Re* < 1), desprezando a influéncia da massa especifica

p na geracao de pressdo hidrodinamica laminar, o presente modelo mantém esses termos.

Para investigar os limites de validade da hipétese de filme fino classica e quantificar a
influéncia da inércia no comportamento do mancal, realizou-se um estudo paramétrico utilizando
as mesmas propriedades mostradas na tabela 3 com @ = 500 rad/s variando a massa especifica
do fluido, mantendo constante as outras propriedades. Essa variacdo altera diretamente o valor

de Re* sem modificar as forcas viscosas que dominam o regime de lubrificacdo tradicional.

A Figura 18 ilustra o comportamento da pressdo mdxima e da posi¢do de equilibrio ao

variar o parametro de inércia.
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Figura 18 — Influéncia da variacdo da massa especifica (p) e do niimero de Reynolds modificado (Re*)
nas caracteristicas do mancal.
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Observa-se que, para baixos valores de p (onde Re* < 1), os resultados do modelo
proposto convergem assintoticamente para a solucao da equagdo de Reynolds. Contudo, a
medida que a massa especifica aumenta e os efeitos inerciais tornam-se relevantes (Re* ~ 1 ou
Re* > 1), nota-se um desvio progressivo. Esse comportamento evidencia que, em regimes de
operacao onde a inércia do fluido € significativa (como em fluidos de baixa viscosidade ou altas
velocidades tangenciais), a utilizagdo de modelos completos baseados em Navier-Stokes se faz

necessdria para uma predicao precisa da capacidade de carga e estabilidade.

7.2.4 Discussao

Os resultados apresentados validam o modelo numérico-computacional proposto em
coordenadas curvilineas como uma ferramenta robusta para a anélise de mancais fluidodindmicos.
A comparagdo com os dados de Mota et al. (2022) confirmou a potencialidade intrinseca ao
modelo para prever com boa precisdo a posicao de equilibrio estitico. A concordancia verificada
nas curvas de equilibrio (Fig. 10) e no localizacio do eixo (Fig. 11) valida a implementagdo das
coordenadas curvilineas moveis, demonstrando que o mapeamento do dominio fisico excéntrico
para o computacional preserva o balanco de massa e de quantidade de movimento, apresentando

curvas suaves e fisicamente consistentes.

No que tange aos coeficientes dinamicos, a andlise revelou que o modelo captura corre-
tamente as tendéncias de rigidez e de amortecimento. Contudo, observou-se uma divergéncia

notavel, porém esperada: a subestimacao da rigidez vertical (kyy) € do amortecimento horizontal
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(cxx) em comparagdo ao modelo de Reynolds. Esta discrepancia nao indica erro, mas sim a
influéncia fisica dos termos de inércia (convectiva e temporal) e da formulacdo ndo-ortogonal,
que sdo retidos no presente modelo e desprezados na formulagao cléssica. A inércia do fluido
atua como uma resisténcia adicional 2 mudanca de movimento, alterando a resposta de fase entre
o deslocamento do eixo e a for¢ca hidrodinamica resultante, capturando nuances do escoamento

que a equagdo de Reynolds simplifica.

Para investigar essa influéncia, a andlise paramétrica do Numero de Reynolds modificado
(Re*) (Fig. 18) constitui uma das contribui¢des mais significativas deste estudo. Observou-se
que, para fluidos de baixa densidade (Re* < 1), o modelo converge assintoticamente para a
solu¢do de Reynolds. Entretanto, a medida que a massa especifica p aumenta, o desvio torna-se
pronunciado. Isso evidencia que, para aplicagdes modernas envolvendo fluidos de processo ou
altas velocidades tangenciais, a hipétese de escoamento de Stokes torna-se insuficiente, exigindo

modelos como o aqui proposto, que consideram a quantidade de movimento completa do fluido.

Outra contribuicao relevante do presente trabalho € a eficiéncia na simulacao transiente.
Enquanto modelos baseados em Reynolds focam predominantemente no estado estaciondrio ou
linearizado, a abordagem apresentada permite a analise direta da evolugdo temporal nao-linear
do rotor (Figs. 14 e 15). O modelo foi capaz de revelar o comportamento subamortecido do
sistema e o overshoot da excentricidade — fendmenos que andlises puramente estdticas sao
incapazes de prever — com um custo computacional (cerca de 30 minutos por simulagdo em

processamento serial) muito inferior ao de simulacdes com CFD 3D completas.

Por fim, ressalta-se a necessidade de aprimoramentos futuros, como a inclusio da equacao
da energia para capturar efeitos térmicos na viscosidade e a implementacdo de modelos de
cavitacao mais representativos, superando as limita¢gdes da condi¢do de meio-Sommerfeld aqui

empregada.
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CAPITULO

CONCLUSAO

O presente trabalho atingiu seu objetivo principal ao desenvolver, implementar e validar
uma modelagem matemdtica e computacional para mancais fluidodindmicos baseada na teoria
de filme fino em coordenadas curvilineas generalizadas e méveis. A metodologia proposta
preencheu com éxito a lacuna existente entre os modelos simplificados de Reynolds e as si-
mulacdes complexas de CFD, oferecendo uma ferramenta que equilibra precisao fisica e custo

computacional.

Os resultados obtidos demonstraram que o modelo reproduz com alta fidelidade os
campos de pressao e a posi¢cdo de equilibrio do rotor quando comparado aos dados de referéncia
da literatura, o que valida a robustez tanto da transformacao de coordenadas quanto do algoritmo
numérico empregado. Mais do que apenas replicar resultados cldssicos, o estudo confirmou
que a negligéncia dos termos inerciais € uma aproximacao valida apenas para baixos nimeros
de Reynolds modificado. O novo modelo evidenciou sua superioridade ao capturar os efeitos
da massa especifica na dindmica do mancal, apresentando diferencgas sensiveis e fisicamente
justificaveis nos coeficientes dindmicos e na capacidade de carga em regimes onde a inércia do

fluido se torna relevante.

Além da precisao estdtica, a formulacdo dependente do tempo permitiu a simulagdo
realista da trajetdria do rotor desde condic¢des iniciais arbitrarias até o equilibrio. Essa capacidade
de andlise transiente nao linear, que revelou comportamentos como o overshoot da excentricidade,
representa um avanco significativo em relacdo a modelos quase-estaticos tradicionais. Ressalta-se
que tal detalhamento fisico foi alcangcado mantendo-se uma elevada eficiéncia computacional,
gracas a estratégia de reducdo dimensional pela integracdo na direcao radial, que provou ser
eficaz para manter a representatividade fisica com um custo de processamento muito inferior ao

de abordagens volumétricas tridimensionais.

Como direcionamento para trabalhos futuros, o aprimoramento da estabilidade no aco-

plamento fluido-estrutura, possivelmente através da implementacao de integradores temporais



Capitulo 8. Conclusdo 72

de ordem superior, como métodos de Runge-Kutta implicitos. A expansdo do modelo para
considerar escoamentos compressiveis e variacdes de viscosidade com a temperatura também se
apresenta como um caminho promissor para aproximar ainda mais as simulagdes das condi¢des
operacionais reais de turbomdquinas modernas. Outra simplificacdo que pode ser explorada é

considerar R% < 1, o que reduziria o numero de termos nas equacdes de balango.
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