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RESUMO

SILVA, T.A. Modelagem matemática e computacional da dinâmica de mancais fluidodi-
nâmicos usando teoria de filme fino em Coordenadas Curvilíneas Móveis. 2026. 78 p.
Dissertação de mestrado – Faculdade de Engenharia Mecânica, Universidade Federal de Uber-
lândia, Uberlândia - MG, 2026.

A modelagem de mancais fluidodinâmicos tem sido historicamente dominada pelo modelo
clássico de Reynolds, ferramenta eficaz para regimes permanentes e baixos números de Reynolds,
mas limitada ao negligenciar termos inerciais e transientes. No presente trabalho propõe-se
uma nova abordagem físico-matemática para a simulação da dinâmica de sistemas eixo-mancal,
fundamentada na teoria de filmes finos aplicada às equações de balanço para a fluidodinâmica
em Coordenadas Curvilíneas Generalizadas e Móveis. No modelo desenvolvido considera-
se a média das propriedades na direção radial, resolvendo os campos médios de pressão e
de velocidade, o que reduz drasticamente o custo computacional comparado a simulações
CFD 3D completas, mantendo, contudo, a capacidade de capturar efeitos de inércia advectiva
e transiente. Para discretização numérica utilizou-se o Método das Diferenças Finitas com
acoplamento pressão-velocidade via método de passos fracionados. A validação foi realizada
comparando-se posições de equilíbrio e coeficientes dinâmicos (rigidez e amortecimento) com
dados da literatura, obtendo-se excelente concordância qualitativa e quantitativa. As simulações
demonstraram que, em regimes de maior densidade ou velocidade (Re∗ ≈ 1), a inclusão dos
termos inerciais gera desvios perceptíveis em relação à teoria clássica, justificando a necessidade
do modelo proposto. A metodologia mostrou-se robusta para a análise de trajetórias transientes e
estabilidade, oferecendo uma ferramenta intermediária eficiente entre os modelos de lubrificação
simplificados e a dinâmica dos fluidos computacional complexa.

Palavras-chave: Filme fino, Coordenadas Curvilíneas Móveis, Efeitos Inerciais, Dinâmica de
Rotores, Lubrificação Fluidodinâmica.



ABSTRACT

SILVA, T.A. Mathematical and computational modeling of fluid dynamic bearing dyna-
mics using thin-film theory in moving curvilinear coordinates.. 2026. 78 p. Dissertação de
mestrado – Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia
- MG, 2026.

The modeling of fluid dynamic bearings has historically been dominated by the classical Reynolds
model, an effective tool for steady-state regimes and low Reynolds numbers, but limited by
neglecting inertial and transient terms. This work proposes a new physical-mathematical ap-
proach for simulating the dynamics of shaft-bearing systems, based on thin film theory applied
to balance equations for fluid dynamics in Generalized and Moving Curvilinear Coordinates.
The developed model is one-dimensional in the radial direction, solving the average pressure
and velocity fields, which drastically reduces the computational cost compared to complete 3D
CFD simulations, while maintaining the ability to capture convective and transient inertia effects.
Numerical discretization used the Finite Difference Method with pressure-velocity coupling via
the fractional step method. Validation was performed by comparing equilibrium positions and
dynamic coefficients (stiffness and damping) with literature data, obtaining excellent qualitative
and quantitative agreement. Simulations demonstrated that, in regimes of higher density or
velocity (Re∗ ≈ 1), the inclusion of inertial terms generates perceptible deviations from classical
theory, justifying the need for the proposed model. The methodology proved to be robust for
the analysis of transient trajectories and stability, offering an efficient intermediate tool between
simplified lubrication models and complex computational fluid dynamics.

Keywords: Thin film, Moving Curvilinear Coordinates, Inertial Effects, Rotor Dynamics,
Hydrodynamic Lubrication.
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CAPÍTULO

1
INTRODUÇÃO

O desenvolvimento da engenharia mecânica e da tecnologia industrial moderna está
intrinsecamente ligado à capacidade de projetar e operar sistemas rotativos com eficiência e
confiabilidade. Máquinas rotativas, que englobam equipamentos vitais como motores de com-
bustão interna, geradores de energia elétrica, turbinas a gás e a vapor, e compressores industriais,
representam a espinha dorsal da infraestrutura energética e produtiva global (VANCE, 1991;
SOUTO, ; ROSSI, ). A demanda contínua por maior densidade de potência, eficiência energé-
tica e durabilidade impõe condições operacionais cada vez mais severas a esses equipamentos,
exigindo um entendimento profundo dos fenômenos físicos que regem seu funcionamento. Um
exemplo crítico desse cenário é a exploração de petróleo em águas profundas, como na camada
do pré-sal, onde turbomáquinas e sistemas de bombeamento operam sob gradientes de pressão
extremos, flutuações térmicas significativas e em contato com fluidos de propriedades variáveis.
Nessas condições adversas, a integridade do sistema depende fundamentalmente da interface
entre as partes estáticas e as partes móveis da máquina, contexto no qual o estudo do escoamento
de fluidos lubrificantes e a dinâmica de mancais assumem um papel preponderante.

Os mancais são elementos de máquina projetados para suportar cargas e permitir o
movimento relativo entre componentes, minimizando o atrito e o desgaste. Conforme definido
por Castro (2007) e Norton (2013), qualquer par de superfícies com movimento relativo constitui,
em essência, um mancal. Dentre as diversas tipologias existentes — como os de rolamento,
magnéticos e fluidodinâmicos —, a escolha adequada depende das especificidades de carga,
velocidade e vida útil requerida (RAMOS, 2019). Os mancais fluidodinâmicos, foco deste
trabalho, operam sob o princípio da separação completa das superfícies metálicas por meio de
um filme de fluido pressurizado pelo próprio movimento relativo das peças, o chamado efeito
de cunha hidrodinâmica. Segundo Alves (2011) e Mota (2020), essa substituição do atrito seco
pelo atrito viscoso resulta em uma redução drástica no desgaste, permitindo operações em altas
velocidades e cargas elevadas com durabilidade superior. O fluido lubrificante, que pode variar
desde óleos minerais e sintéticos até gases (SALBU, 1964; ZHAO, 2010) e, mais recentemente,
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água (ZHANG et al., 2015; WANG et al., 2016), desempenha o papel crucial de meio portante
de carga e agente de troca térmica, conforme ilustrado no esquema de um mancal fluidodinâmico
cilíndrico apresentado na Figura 1.

Figura 1 – Esquema de um mancal fluidodinâmico cilíndrico.

Fonte: Ramos (2019).

A base teórica para a análise desses componentes remonta aos fundamentos da mecânica
clássica e da dinâmica dos fluidos. Embora Isaac Newton não tenha abordado diretamente a
tribologia, suas leis do movimento e a definição de viscosidade para fluidos newtonianos estabe-
leceram o alicerce sobre o qual a mecânica dos fluidos foi construída. Avanços subsequentes
por Euler, Navier e Stokes culminaram nas célebres equações de balanço para a fluidodinâmica,
que descrevem a física completa do escoamento de fluidos. No entanto, a complexidade dessas
equações exigia simplificações para aplicações práticas na engenharia do século XIX, levando
ao marco inicial da teoria de lubrificação moderna estabelecido por Reynolds (1886). A partir
das equações de Navier-Stokes, Reynolds derivou uma equação diferencial parcial simplificada
para descrever o campo de pressão em filmes finos de fluido, assumindo que as forças de inércia
e a curvatura do filme eram negligenciáveis. Esta formulação, conhecida como a Equação de
Reynolds, permitiu o desenvolvimento de soluções analíticas e numéricas que guiaram o projeto
de mancais por mais de um século, com contribuições notáveis de Sommerfeld (1904 apud
MOTA et al., 2022), Ocvirk (1952), Swift (1932) e Stieber (1933), cujas abordagens clássicas são
amplamente documentadas em referências fundamentais como Hamrock (1991), Frene D Nicolas
(1997) e Ishida e Yamamoto (2013).

Apesar de sua utilidade histórica e eficiência computacional, o modelo de Reynolds
possui limitações intrínsecas, sendo restrito a regimes de escoamento laminar com baixos
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números de Reynolds modificado (Re∗� 1) (WHITE, 2022). Contudo, a tendência moderna
de projetos de turbomáquinas frequentemente empurra a operação para regimes onde os efeitos
inerciais, a turbulência e os fenômenos térmicos não podem ser ignorados. Além disso, a interação
entre o fluido e a estrutura flexível do rotor torna-se crítica, com pesquisas de Liu et al. (2009),
Concli (2020) e Kamat, Kini e Shenoy (2022) demonstrando que a deformação dos componentes
e a dinâmica do rotor estão acopladas ao campo de escoamento. Para capturar esses fenômenos
complexos, a Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics) (CFD)
surgiu como uma ferramenta poderosa, permitindo análises detalhadas sem as simplificações
severas da teoria clássica. No entanto, o custo computacional de simulações CFD tridimensionais
completas é proibitivo para a maioria das rotinas de projeto industrial, evidenciando uma lacuna
tecnológica: a necessidade de modelos que sejam mais precisos que a Equação de Reynolds, mas
com custo computacional inferior ao de uma simulação CFD 3D completa.

Nesse cenário de crescente complexidade, a modelagem futura de mancais fluidodinâmi-
cos tende a integrar múltiplos níveis espaciais e temporais, desde a microestrutura do lubrificante
e rugosidade superficial até a dinâmica global do sistema rotativo. Abordagens multiescala e
modelos totalmente acoplados, que integrem simultaneamente dinâmica de fluidos, transferência
de calor e deformação elástica (HABCHI et al., 2008), tornam-se essenciais. Paralelamente, o
avanço contínuo em Computação de Alto Desempenho (High-Performance Computing) (HPC)
possibilita simulações cada vez mais detalhadas, como Simulações Numéricas Diretas (Direct

Numerical Simulation) (DNS) e Simulações de Grandes Escalas (Large Eddy Simulation) (LES),
que gradualmente tornam-se viáveis para aplicações de engenharia.

Entretanto, enquanto o custo computacional dessas simulações de alta fidelidade ainda é
restritivo para muitas aplicações de projeto, um dos maiores desafios para modelos intermediários
eficientes reside na representação da geometria do domínio fluido. A excentricidade do eixo
cria um domínio que não é alinhado com sistemas de coordenadas ortogonais tradicionais. Para
contornar essa dificuldade, a formulação das equações de balanço em coordenadas curvilíneas
não ortogonais apresenta-se como uma solução robusta. Como discutido por Wang (1981),
Germano (1982) e Tai (1996), um sistema de coordenadas que se adapta à fronteira física
permite uma representação exata da geometria e facilita a aplicação das condições de contorno.
Embora matematicamente mais complexa, exigindo o uso de cálculo tensorial e geometria
diferencial (SUNGNUL, 2016; HILL; STOKES, 2018), essa abordagem permite mapear o
domínio físico excêntrico para um domínio computacional retangular e fixo, onde métodos
numéricos podem ser aplicados com alta eficiência (VERSTEEG; MALALASEKERA, 2007;
MOUKALLED; MANGANI; DARWISH, 2015; HU, 2017). Além disso, a dinâmica de mancais
envolve o movimento do eixo, exigindo o uso de referenciais móveis ou coordenadas curvilíneas
dependentes do tempo (OGAWA; ISHIGURO, 1987; LUO; BEWLEY, 2004), cuja correta
formulação é crucial para o balanço de massa e quantidade de movimento durante a simulação
da trajetória do rotor.
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Diante do exposto, no presente trabalho de dissertação propõe-se o desenvolvimento e a
implementação de uma modelagem matemática e computacional para a dinâmica de mancais
fluidodinâmicos que preencha a lacuna entre os modelos simplificados de Reynolds e as simu-
lações complexas de CFD comercial. A abordagem baseia-se na aplicação da teoria de filme
fino às equações fundamentais da mecânica dos fluidos, escritas em um sistema de Coordena-
das Curvilíneas Móveis que se ajusta dinamicamente à posição instantânea do eixo rotativo.
Diferentemente das abordagens clássicas, este modelo serve para reter termos significativos do
transporte de quantidade de movimento linear, permitindo uma análise mais fiel do campo de
pressão e das forças resultantes. O método numérico adotado é o Método das Diferenças Finitas
(Finite Difference Method) (FDM), fundamentado nos trabalhos de Cauchy (1829) e adaptado
para malhas estruturadas curvilíneas. O código computacional desenvolvido permitirá o cálculo
das condições de equilíbrio estático e a simulação transiente da órbita do eixo, possibilitando
a determinação dos coeficientes dinâmicos de rigidez e amortecimento. Por fim, os resultados
serão validados através da comparação com modelos clássicos e dados da literatura, como os
apresentados por Mota et al. (2022), buscando demonstrar que a formulação em coordenadas
curvilíneas oferece uma ferramenta superior para a análise de mancais modernos.
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CAPÍTULO

2
OBJETIVOS

O objetivo primordial estabelecido para o presente trabalho consiste no desenvolvimento,
implementação e validação de uma modelagem matemática e computacional avançada para a
análise da dinâmica de mancais fluidodinâmicos. Esta modelagem fundamenta-se na solução das
equações de balanço de massa e de quantidade de movimento linear, integradas à teoria de filme
fino, utilizando um sistema de Coordenadas Curvilíneas Generalizadas e Móveis.

Na proposta central visa-se estabelecer uma ferramenta de simulação para superar as
restrições fundamentais do clássico modelo de Reynolds, que, apesar de seu amplo uso histórico,
apresenta limitações severas em aplicações modernas. Especificamente, no presente trabalho
busca-se relaxar a exigência de validade restrita a regimes onde o número de Reynolds modificado
é muito menor que a unidade (Re∗� 1), através da inclusão explícita dos termos inerciais (não-
lineares) nas equações de balanço. Adicionalmente, busca-se suprir a carência do modelo clássico
em representar fenômenos inerentemente dependentes do tempo, desenvolvendo uma formulação
robusta para a análise transiente da Interação Fluido-Estrutura (Fluid-Structure Interaction)
(FSI).

No que tange aos objetivos específicos, a pesquisa inicia-se pela dedução formal das
equações de Navier-Stokes e da equação da continuidade para um sistema de coordenadas
curvilíneas não ortogonais genérico. Nesta etapa aplica-se, de forma rigorosa, os conceitos de
geometria diferencial e cálculo tensorial para a definição das métricas e dos vetores de base,
permitindo uma descrição matemática exata da geometria do mancal excêntrico. O intuito é
eliminar as aproximações geométricas tradicionalmente empregadas para a função da espessura
do filme lubrificante, que introduzem erros em altas excentricidades.

Sequencialmente, o foca-se na implementação da hipótese de filme fino às equações
já transformadas e completas (com termos inerciais). Este procedimento envolve a integração
das equações de balanço ao longo da coordenada normal à superfície do mancal. O objetivo
é reduzir a dimensionalidade do problema físico, convertendo a análise tridimensional ou
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bidimensional do domínio fluido em uma formulação de superfície mais eficiente (reduzindo,
por exemplo, de uma análise r,θ ,z para θ ,z). Com essa abordagem visa-se reduzir drasticamente
o custo computacional, tornando-o viável em comparação às simulações de CFD, sem, contudo,
desprezar a física do balanço de quantidade de movimento linear.

Dada a natureza dinâmica do sistema, um objetivo crucial é a modelagem correta do
referencial móvel. Isso implica a incorporação das velocidades de malha nas equações de balanço
para acomodar a translação e rotação do eixo. A formulação dos fluxos relativos em um sistema
de coordenadas que se deforma no tempo busca assegurar o balanço rigoroso de massa e da
quantidade de movimento linear durante a simulação da trajetória do rotor.

Por fim, visa-se a implementação numérica e computacional do modelo utilizando
o Método das Diferenças Finitas em malhas estruturadas e a validação da metodologia. Os
resultados obtidos — tanto para o equilíbrio estático quanto para a resposta transiente — serão
confrontados com o modelo clássico de Reynolds e com dados da literatura, quantificando o
ganho de precisão obtido com a inclusão dos efeitos inerciais e transientes e pela representação
geométrica exata.
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CAPÍTULO

3
REVISÃO BIBLIOGRÁFICA

A modelagem precisa de mancais fluidodinâmicos representa um desafio multidisciplinar
que combina mecânica dos fluidos, tribologia, dinâmica de rotores e métodos numéricos avan-
çados. Estes componentes são fundamentais em máquinas rotativas, desde turbinas de grande
porte até microturbinas de Ciclo Rankine Orgânico (Organic Rankine Cycle) (ORC), e seu
comportamento dinâmico influencia diretamente a confiabilidade, eficiência e vida útil dos
equipamentos (HAMROCK, 1991).

A teoria clássica de lubrificação fluidodinâmica, fundamentada na equação de Reynolds,
tem sido a base para análise de mancais desde o trabalho seminal de Osborne Reynolds no século
XIX. No entanto, as demandas crescentes por máquinas operando em velocidades mais altas,
cargas mais elevadas e condições transientes complexas têm impulsionado o desenvolvimento de
formulações matemáticas mais sofisticadas (KICIńSKI; ŻYWICA, 2025).

O uso de coordenadas curvilíneas móveis emerge como uma abordagem particularmente
promissora para capturar fenômenos dinâmicos em interfaces que sofrem grandes deformações,
movimentos complexos e mudanças topológicas ao longo do tempo (TEMIZER; STUPKI-
EWICZ, 2016). Esta formulação permite uma descrição mais natural da geometria dos mancais
cilíndricos e possibilita a modelagem de efeitos transientes que não podem ser adequadamente
representados em sistemas de coordenadas fixos (VENTURI, 2009).

3.1 Fundamentos da Teoria de Filme Fino
A equação de Reynolds constitui o pilar fundamental da teoria de lubrificação fluido-

dinâmica. Esta equação diferencial parcial descreve a distribuição de pressão em filmes finos
de fluidos viscosos, sendo derivada das equações de Navier-Stokes e da continuidade mediante
hipóteses simplificadoras apropriadas para escoamentos em folgas estreitas.

Para um fluido incompressível e newtoniano em regime laminar, a equação de Reynolds



Capítulo 3. Revisão Bibliográfica 20

em coordenadas cartesianas pode ser expressa como:
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(3.1)

onde h representa a espessura do filme lubrificante, µ a viscosidade dinâmica, p a pressão, U a
velocidade de deslizamento e t o tempo.

Martin (1999) desenvolveu modelo matemático e técnica de solução numérica para
mancais hidrodinâmicos ajustáveis, utilizando aproximações por diferenças finitas. Ono (2020)
apresentou equações de Reynolds modificadas para lubrificação de filme fino com camadas
superficiais de alta viscosidade, expandindo a aplicabilidade da teoria clássica para condições
não convencionais.

Um trabalho brasileiro recente e relevante é o de Silva et al. (2024), que propõe melhorias
significativas em relação ao modelo clássico de Reynolds. O autor desenvolve um modelo
unidimensional para velocidade, pressão e temperatura, proporcionando uma visão média na
direção radial enquanto considera a dependência da coordenada tangencial e do tempo. A
inovação principal reside na forma como o movimento do eixo é integrado ao fluido, através da
modelagem das tensões entre o fluido e o eixo, e entre o fluido e o mancal.

Os resultados apresentados por Silva et al. (2024) demonstram que o modelo de filmes
finos pode ser eficaz na simulação de escoamentos tangenciais e oferece uma aproximação
precisa dos campos de pressão, velocidade e temperatura, com custo computacional reduzido
devido à sua natureza unidimensional.

A modelagem termodinâmica representa uma extensão importante da teoria clássica,
especialmente para mancais operando em altas velocidades e cargas elevadas, onde a transforma-
ção de energia cinética em energia térmica por cisalhamento viscoso torna-se significativa. A
viscosidade do lubrificante varia substancialmente com a temperatura, criando um acoplamento
forte entre os campos de velocidade, pressão e temperatura (TRACHSEL; PITTINI; DUAL,
2017).

3.2 Coordenadas Curvilíneas Móveis e Formulações ALE
A formulação clássica da equação de Reynolds assume implicitamente um sistema de

coordenadas fixo ou, no máximo, um sistema que se move com velocidade constante. Esta
limitação torna-se problemática quando as superfícies físicas sofrem deformações finitas, quando
a interface de lubrificação evolui dinamicamente, ou quando grandes deslocamentos transientes
ocorrem.

Temizer e Stupkiewicz (2016) apresentaram uma formulação pioneira da equação de
Reynolds em uma superfície de lubrificação dependente do tempo, descrita por um sistema de
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coordenadas curvilíneas que evolui continuamente. Esta abordagem essencialmente endereça a
mecânica de lubrificação em interfaces submetidas a grandes deformações e satisfaz todos os
requisitos de objetividade, características não presentes na equação clássica de Reynolds.

A formulação Arbitrary Lagrangian-Eulerian (ALE) representa uma abordagem híbrida
que combina as vantagens dos métodos lagrangianos e eulerianos (BOER; DOWSON, 2018).
No contexto de lubrificação, o método ALE permite que a malha computacional se mova
independentemente do fluido, acompanhando as mudanças de geometria sem as distorções
excessivas típicas de formulações puramente Lagrangianas.

Boer e Dowson (2018) desenvolveram uma formulação ALE específica para modelar
cavitação em lubrificação elastohidrodinâmica de contatos lineares. O método implementa dois
sistemas de referência:

1. Sistema material (estacionário): onde as equações de balanço são resolvidas

2. Sistema espacial (móvel): onde as equações de balanço são derivadas

O movimento do sistema espacial é determinado baseado no gradiente de pressão cal-
culado no local onde a cavitação se inicia, permitindo uma captura precisa da transição entre
as fases líquida e vapor sem as dificuldades numéricas associadas à modelagem de funções
Heaviside ou problemas de fronteira livre.

Cardall (2022) apresentou uma formulação de dinâmica de fluidos em coordenadas
curvilíneas sem forças fictícias, demonstrando que coordenadas curvilíneas não-inerciais resultam
em termos análogos aos de sistemas de referência rotativos ou acelerados. Venturi (2009)
desenvolveu uma formulação totalmente covariante de cinemática e dinâmica de escoamentos de
fluidos em sistemas de coordenadas curvilíneas dependentes do tempo.

Borazjani, Ge e Sotiropoulos (2008), Borazjani e Sotiropoulos (2013) desenvolveram o
método CURVIB (Curvilinear Immersed Boundary), particularmente adequado para problemas
com fronteiras móveis imersas em sistemas de referência não-inerciais. Este método tem sido
aplicado com sucesso em uma ampla gama de problemas de interação fluido-estrutura.

3.3 Modelagem de Cavitação em Mancais Fluidodinâmi-
cos

A cavitação em mancais fluidodinâmicos ocorre quando a pressão local cai abaixo
da pressão de vapor do lubrificante, resultando na formação de bolhas de vapor e ruptura da
continuidade do filme lubrificante. Este fenômeno tem impacto significativo nas características
de carga, rigidez e amortecimento do mancal, além de poder causar erosão das superfícies e
ruído.
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Kiciński e Żywica (2025) apresentaram conceito inovador para descrever estados di-
nâmicos de máquinas rotativas considerando a descontinuidade do filme lubrificante devido à
cavitação, com fronteiras variáveis no tempo da região de pressão hidrodinâmica positiva. Os
autores introduzem o conceito de “pré-história” ou “descrição contínua”, onde o tempo nas
equações de movimento é tratado como variável independente, não como parâmetro, permitindo
capturar o acoplamento temporal entre estados dinâmicos sucessivos.

As condições de contorno de Jakobsson-Floberg-Olsson (JFO) (GUO et al., 2024) re-
presentam o tratamento mais rigoroso da cavitação em lubrificação, baseado em princípios de
conservação de massa. Estas condições estabelecem que na fronteira de cavitação tanto a pressão
quanto seu gradiente devem ser nulos, garantindo transição suave entre as regiões de filme com-
pleto e cavitado. A implementação numérica das condições JFO apresenta desafios significativos,
particularmente devido à natureza de problema de fronteira livre, onde a localização da interface
líquido-vapor não é conhecida a priori e deve ser determinada como parte da solução.

O modelo de Elrod (1981) representa uma abordagem alternativa amplamente utilizada,
que deriva uma equação universal conservativa de massa para as fases líquida e vapor. Extensões
deste modelo foram desenvolvidas por diversos pesquisadores para incluir efeitos elastohidrodi-
nâmicos, rugosidade superficial e relações pressão-densidade arbitrárias (BAYADA; CHUPIN,
2013; SAHLIN et al., 2007).

Modelos de escoamento bifásico baseados em fração volumétrica têm sido desenvolvidos
para evitar as dificuldades associadas à modelagem de funções descontínuas, embora requeiram
malhas refinadas para capturar adequadamente a transição entre fases (KUMAR; BOOKER,
1991).

3.4 Métodos Numéricos para Solução de Equações de
Mancais

O método de elementos finitos (MEF) oferece maior flexibilidade para tratamento de
geometrias complexas, condições de contorno não-uniformes e acoplamentos multifísicos (MCI-
VOR; FENNER, 1989). Zhou et al. (2022) propuseram novo método numérico combinando
elementos finitos e método misto para estudo das características de lubrificação de mancais.
Sriram et al. (2020) desenvolveram modelo de elementos finitos para prever a pressão do filme
de óleo em mancais.

O Método dos Volumes Finitos (MVF) tem ganhado popularidade devido à sua con-
servação natural de propriedades físicas (massa, momento, energia) e robustez para problemas
convectivos (PRATA; FERREIRA, 1988).

Métodos espectrais oferecem convergência exponencial para problemas suaves, sendo
particularmente eficientes para problemas de lubrificação elastohidrodinâmica (GWYNLLYW;
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WEBSTER, 2008). Venner e Lubrecht (2000) desenvolveram métodos multinível que permitiram
solução eficiente de problemas em lubrificação elastohidrodinâmica sobre ampla gama de
condições operacionais.

3.5 Dinâmica de Rotores e Análise de Estabilidade
A análise dinâmica completa de sistemas rotativos deve considerar o rotor não isola-

damente, mas como parte de um sistema integrado que inclui mancais, vedações, fundações e
acoplamentos. As características dinâmicas dos mancais, expressas através de coeficientes de
rigidez e amortecimento, influenciam diretamente as velocidades críticas, modos de vibração e
limites de estabilidade do sistema.

Trabalhos brasileiros têm contribuído significativamente para esta área. Silveira (2001)
analisou o comportamento dinâmico de rotores, destacando que a instabilidade em máquinas
rotativas não está ligada apenas ao giro sub-síncrono.

Oilwhirl representa a causa mais comum de instabilidade subsíncrona em mancais hi-
drodinâmicos, ocorrendo quando o filme de óleo induz movimento orbital do eixo em frequência
tipicamente entre 0,42 e 0,48 da velocidade de rotação. Quando a velocidade de rotação atinge
aproximadamente o dobro da primeira velocidade crítica, o oilwhirl pode evoluir para oilwhip,
um fenômeno mais severo onde a frequência de precessão trava na primeira frequência natural
do rotor.

Muszynska (1985) apresentou trabalho altamente influente sobre problemas de estabili-
dade rotor-mancal, desenvolvendo modelo matemático de rotor simétrico suportado por mancais
lubrificados a fluido . Meruane e Pascual (2008) desenvolveram modelo poderoso para prever
fenômenos transientes não-lineares incluindo oilwhirl e oilwhip.

Schweizer (2009) investigou oilwhirl, oilwhip e sincronização whirl/whip em sistemas
de rotores com mancais de anel flutuante completo, demonstrando que o amortecimento externo
suficientemente alto pode suprimir a instabilidade. Chen et al. (2025) realizaram investigação
analítica e experimental de fenômenos de vibração não-linear, identificando oilwhirl e oilwhip

como indicadores comuns de instabilidade do filme de óleo.

A análise linear de estabilidade, baseada em coeficientes dinâmicos linearizados, fornece
informações valiosas sobre o limiar de instabilidade e velocidades críticas. No entanto, para
grandes deslocamentos do eixo, comportamento transiente complexo e operação além do limiar
de estabilidade, análise não-linear torna-se essencial.

Li et al. (2021) propuseram abordagem unificada para modelagem dinâmica e análise
de estabilidade de sistemas rotor-mancal, investigando efeitos de rigidez tangencial e pontos
de transição. Sun et al. (2021) estudaram impacto de desalinhamento e incertezas inerentes
em mancais sobre a estabilidade do sistema. Luo e Bewley (2004) desenvolveram método para
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detecção e quantificação de instabilidade de oilwhirl em sistemas rotor-mancal.

Como exemplo de aplicação prática, Kiciński e Żywica (2025) apresentaram análise de
uma microturbina de ciclo Rankine orgânico (ORC) de 100 kW. Os resultados mostraram que
na velocidade nominal de 9.000 rpm pode ocorrer instabilidade hidrodinâmica, demonstrando a
necessidade crítica de modelagens avançadas para prever amplitudes de vibração que atinjam a
folga radial. A modelagem de tais máquinas em alta velocidade apresenta desafios particulares
devido aos efeitos inerciais do fluido e geração intensa de calor, reforçando a importância da
análise de estabilidade robusta.
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CAPÍTULO

4
MODELO MATEMÁTICO-DIFERENCIAL

O desenvolvimento deste trabalho teve início com a formulação do modelo de Reynolds
em geometrias cartesianas e cilíndricas. Em seguida, foram estabelecidas as equações de balanço
da quantidade de movimento linear e da massa a partir da transformação para as coordenadas
curvilineas não-ortogonais e em seguida aplicada as hipóteses de filme fino. Por fim, foi proposta
uma modelagem para a interação fluido-estrutura com o objetivo de descrever a trajetória do
mancal até seu ponto de equilíbrio.

4.1 Teoria de filme fino
Em diversas aplicações da engenharia mecânica, empregam-se fluidos lubrificantes com

o objetivo de minimizar atrito e desgaste entre componentes móveis. Nesses sistemas, o fluido
geralmente ocupa uma região de espessura extremamente reduzida quando comparada às demais
dimensões do domínio.

Devido a essa pequena espessura, as variações das propriedades escalares do fluido,
como pressão e temperatura, ao longo da direção normal ao filme são, em geral, desprezíveis. Ao
se adotar a condição de não escorregamento — segundo a qual o fluido assume a velocidade da
superfície sólida em contato — observa-se, contudo, um gradiente elevado da velocidade nessa
direção. Ainda assim, para a maioria das aplicações envolvendo mancais fluidodinâmicos, foco
deste estudo, esse gradiente não exerce influência significativa sobre os resultados globais.

Dessa forma, tanto as grandezas escalares quanto vetoriais podem ser representadas
por valores médios ao longo da espessura do filme. Essa simplificação acarreta consequências
importantes na formulação matemática do problema. Entre elas, destaca-se o fato de que a
espessura do filme e sua variação espacial passam a aparecer explicitamente nos termos das
equações de balanço da massa e da quantidade de movimento linear. Além disso, assume-se
que não há variação das propriedades ao longo da direção normal ao filme. Admitindo que essa
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direção coincida com um eixo qualquer denominado ζ e que σ represente uma propriedade
genérica, tem-se:

∂σ

∂ζ
= 0. (4.1)

Uma consequência direta dessa hipótese é a dificuldade associada à imposição das
condições de contorno, uma vez que estas são naturalmente definidas justamente nas superfícies
limitantes do filme lubrificante. Como ilustrado na fig. 1, variáveis como a velocidade do fluido
são prescritas nessas interfaces.

Assim, torna-se necessária a adoção de estratégias de modelagem específicas para a
correta imposição das condições de contorno. Este trabalho se insere de forma pioneira nesse
contexto, apresentando e discutindo detalhadamente tais abordagens.

4.2 A hipótese do contínuo
Embora a descrição microscópica da matéria revele sua natureza discreta — composta

por átomos e partículas subatômicas —, a maior parte dos problemas de engenharia não requer o
acompanhamento individual dessas entidades. Em vez disso, interessa o comportamento médio
de um conjunto suficientemente grande de átomos.

Nesse contexto, a análise do comportamento mecânico dos fluidos insere-se no escopo da
mecânica do contínuo. Conforme descrito por Spencer (1980), essa área da mecânica considera
a matéria como continuamente distribuída no espaço, ignorando sua estrutura microscópica. Tal
hipótese permite a definição de grandezas físicas contínuas no espaço e no tempo, viabilizando o
uso de ferramentas do cálculo diferencial.

A validade dessa aproximação está condicionada à dimensão característica do problema.
Em particular, ela é adequada quando as dimensões características do domínio são superiores a
um determinado volume-limite. Abaixo desse limiar, efeitos moleculares devem ser explicita-
mente considerados; acima dele, tais efeitos são incorporados de forma média nas propriedades
macroscópicas. No caso de escoamentos fluidos, esse volume-limite é tipicamente maior que o
caminho livre médio molecular (SANTOS, 2022).

4.3 Modelo de Reynolds
Uma representação clássica e amplamente empregada em problemas de lubrificação

hidrodinâmica é o mancal de sapata deslizante, ilustrado na Figura 2. Nessa configuração
simplificada, uma das superfícies sólidas desloca-se com velocidade constante U , enquanto
a superfície oposta, separada verticalmente ao longo do eixo y por uma distância h que varia
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ao longo da componente horizontal x, permanece estacionária. Esse movimento relativo gera,
inicialmente, um escoamento puramente viscoso do tipo Couette no interior da folga.

Entretanto, devido à variação espacial da espessura do canal, o balanço de massa exige
o surgimento de um campo de pressão ao longo da direção principal do escoamento. Como
consequência, estabelece-se uma componente adicional do escoamento associada a um gradiente
de pressão, caracterizando a superposição de um perfil do tipo Poiseuille ao escoamento de
Couette.

Figura 2 – Representação esquemática de um mancal de sapata deslizante, evidenciando o escoamento
em um canal de altura variável.

Fonte: White (2022).

A dedução do modelo inicia-se a partir da equação de Navier–Stokes em coordenadas
cartesianas, considerando a componente de velocidade ao longo da direção x, expressa pela
Equação 4.2, em que u é a componente horizontal da velocidade do fluido e v a componente
vertical dessa velocidade, x e y são as componentes horizontal e vertical do plano cartesiano
- respectivamente, ρ a massa especifica do fluido, p representa a pressão e ν a viscosidade
cinemática do fluido.

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=− 1
ρ

∂ p
∂x

+ν

[
∂ 2u
∂x2 +

∂ 2u
∂y2

]
(4.2)

A partir dessa equação geral, introduzem-se hipóteses compatíveis com o regime tí-
pico de mancais hidrodinâmicos. Assume-se que o escoamento ocorre em regime permanente
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(∂u/∂ t = 0), que os efeitos inerciais são desprezíveis quando comparados aos termos viscosos
— caracterizando o regime de Stokes (|ρu∂u/∂x|<< |µ∂ 2u/∂y2|) — e que não há movimento
das superfícies sólidas na direção normal ao filme, resultando em v = 0. Sob essas condições, a
Equação 4.2 reduz-se à forma simplificada apresentada na Equação 4.3.

0 =− 1
ρ

d p
dx

+ν
d2u
dy2 . (4.3)

Para o fechamento do problema, são impostas condições de contorno associadas à
condição de não escorregamento nas superfícies sólida–fluido. Considera-se que a parede inferior
se desloca com velocidade constante U , enquanto a parede superior permanece estacionária
(u(h(x)) = 0).


d2u
dy2 = 1

µ

d p
dx = λ (x)

u(0) =U

u(h(x)) = 0

Essas condições, juntamente com a equação diferencial resultante, permitem a integração
direta do campo de velocidade ao longo da espessura do filme:


u(x,y) = λ (x)y

2 + c1(x)y+ c2(x)

u(x,0) = c2(x) =U

u(x,h(x)) = λ (x)y
2 + c1(x)y+U = 0 =⇒ c1(x) =−

(
λ (x)h(x)

2 + U
h(x)

)
O processo de integração conduz a uma solução analítica para o campo de velocidade

longitudinal, inicialmente expressa na forma geral da Equação 4.4.

u(x,y) =
1
µ

d p
dx

y2

2
−
(

1
µ

d p
dx

h(x)
2

+
U

h(x)

)
y+U (4.4)

Essa expressão pode ser reorganizada de modo a evidenciar explicitamente a contribuição
do escoamento de Couette e do escoamento induzido pelo gradiente de pressão, resultando na
forma apresentada na Equação 4.5.

u(x,y) =U
(

1− y
h(x)

)
+

h(x)2

2µ

d p
dx

[(
y

h(x)

)2

− y
h(x)

]
(4.5)

A distribuição correta do campo de pressão ao longo do canal deve garantir que o campo
de velocidade satisfaça simultaneamente a equação da continuidade e a equação de Navier-Stokes.
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A Eq. 4.6 mostra o processo de integração da equação da continuidade, também conhecida como
equação do balanço de massa.

∂u
∂x

+
∂v
∂y

= 0 =⇒ ∂u
∂x

∂y =−∂v =⇒
∫ h(x)

0

∂u
∂x

dy =−v(h)+ v(0) (4.6)

Derivando u(x,y) (Eq. 4.5) em relação à componente x:

∂u
∂x

=U
y
h2

dh
dx

+
1

2µ

(
y(y−h)

d2 p
dx2 − y

dh
dx

d p
dx

)
(4.7)

Integrando a equação 4.7 em relação à componente y, conforme a equação 4.6, tem-se:

∫ h(x)

0

∂u
∂x

dy = 6Uµ
dh
dx
− d

dx

(
h3 d p

dx

)
= 0 (4.8)

A substituição da expressão da velocidade na equação de continuidade e a posterior
integração conduzem, após simplificações algébricas, à Equação 4.9, conhecida na literatura
como a Equação de Reynolds para filmes finos em coordenadas cartesianas.

d
dx

(
h3 d p

dx

)
= 6µU

dh
dx

(4.9)

A validade do modelo de Reynolds está diretamente associada às hipóteses adotadas
durante sua dedução. Em particular, a suposição de escoamento de Stokes impõe uma restrição à
magnitude dos termos inerciais:

ρu
∂u
∂x

<< µ
∂ 2u
∂y2 → ρU

U
L
<< µ

U
h2 ; (4.10)

Essa condição é usualmente expressa por meio de um número de Reynolds modificado,
Re∗, que deve permanecer muito menor que a unidade, conforme a Equação 4.11.

ρUL
µ

h2

L2 << 1. (4.11)

Assim, mesmo que o número de Reynolds clássico não seja pequeno, o modelo perma-
nece válido desde que a razão entre a espessura do filme e o comprimento característico do canal
seja suficientemente reduzida.

O modelo de Reynolds admite solução analítica contínua apenas para geometrias em que
a variação da espessura do filme ao longo da direção x seja constante (∂h/∂x = constante). Para
geometrias mais gerais, a determinação dos campos de pressão e velocidade requer o uso de
métodos numéricos.
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Cabe ainda destacar que o escoamento de Stokes é linear e reversível. Dessa forma, a
inversão do sentido de movimento da parede móvel resulta, matematicamente, na inversão do
sinal do campo de pressão. Contudo, em fluidos reais, efeitos de compressibilidade e mudança
de fase impedem o desenvolvimento de pressões negativas significativas, levando à formação
de regiões de vapor no interior da folga — fenômeno conhecido como cavitação. Em canais
com seção em expansão, a cavitação limita a capacidade de suporte de carga e compromete
a eficiência da lubrificação. Em mancais rotativos, nos quais a folga se contrai e se expande
ciclicamente, a ocorrência de cavitação parcial é comum (WHITE, 2022).

Em uma formulação mais geral do problema de lubrificação, ambas as superfícies podem
apresentar movimentos tanto tangenciais quanto normais, e o escoamento passa a depender
também da coordenada axial z. Assume-se, entretanto, a inexistência de movimento das paredes
nessa direção. A extensão tridimensional da Equação de Reynolds para fluidos incompressíveis
segue procedimento análogo ao apresentado anteriormente, incorporando agora os gradientes de
pressão ao longo de z. Uma dedução detalhada desse caso pode ser encontrada em Szeri (1980),
sendo a equação dada pela Equação 4.12.

∂

∂x

(
h3 ∂ p

∂x

)
+

∂

∂ z

(
h3 ∂ p

∂ z

)
= 6µ

∂

∂x
[h(U(0)+U(h))]+12µ[V (h)−V (0)]. (4.12)

Para a solução desse problema, a pressão deve ser prescrita em todas as fronteiras abertas
da sapata.

Mancais rotativos constituem a configuração mais representativa de aplicações práticas
em engenharia. Esses sistemas são formados por um eixo interno rotativo e um mancal externo
estacionário, conforme ilustrado na Figura 3. O movimento de rotação do eixo é responsável
pela geração do campo de pressão no fluido lubrificante.

A dedução da Equação de Reynolds em coordenadas cilíndricas segue os mesmos
princípios adotados no caso cartesiano, sendo adaptada à geometria do problema. As formulações
completas para os campos de pressão e velocidade podem ser encontradas em trabalhos como
os de Mota et al. (2022) e Zirkelback e Andrés (1999). A equação para o campo de pressão em
mancais cilíndricos é apresentada na Equação 4.13.

1
R2

r

∂

∂θ

(
h3 ∂ p

∂θ

)
+

∂

∂ z

(
h3 ∂ p

∂ z

)
= 6µω

∂h
∂θ

(4.13)

As expressões para as componentes tangencial e axial da velocidade do fluido são dadas,
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Figura 3 – Representação geométrica de um mancal cilíndrico rotativo.
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respectivamente, pelas Equações 4.14 e 4.16.

vθ (r,θ ,z) =
1

2µ

∂ p
∂θ

[
r
(

lnr− 1
2

)
+Gr−

R2
b

r

(
lnRb +G− 1

2

)]
+

ωRrRθ(
R2

θ
−R2

b

) (r−
R2

b
r

) (4.14)

sendo G definido como:

G =
1

R2
b−R2

θ

[
R2

θ

(
lnRθ −

1
2

)
−R2

b

(
lnRb−

1
2

)]
(4.15)

vz(r,θ ,z) =
∂ p
∂ z

R2
θ

4µ

[(
r

Rθ

)2

−
(R2

b−R2
θ
)

R2
r ln(Rb/Rθ )

ln
(

r
Rθ

)
−1

]
(4.16)

De forma análoga, pode-se reescrever Re∗ em coordenadas cilíndricas sendo:

ρωRrh
µ

hRr

2π(R2
r +hRr−h2)

� 1. (4.17)



Capítulo 4. Modelo Matemático-Diferencial 32

4.4 Descrição do problema físico e geometria
O sistema físico analisado neste trabalho consiste em um mancal radial cilíndrico de

comprimento finito L. O mancal é composto por uma parte fixa, o estator, com raio Rb, e uma
parte móvel, o rotor, com raio Rr. A folga nominal, c, é definida pela diferença entre esses raios,
ou seja, c = Rb−Rr.

Para descrever a dinâmica do sistema, adota-se um sistema de coordenadas cartesianas
de referência (X ,Y ), com origem no centro geométrico do estator. A simulação do movimento
se inicia com o rotor em uma posição inicial concêntrica (xc(t = 0) = 0,yc(t = 0) = 0), e sua
posição evolui ao longo do tempo sob a ação de cargas externas e das forças fluidodinâmicas
geradas pelo filme de fluido. A posição do centro do rotor (xc(t),yc(t)) é um dos principais
resultados da simulação. A partir destes, a excentricidade e(t) e o ângulo de atitude φ(t) podem
ser determinados a qualquer instante pelas seguintes respectivas relações:

e =
√

x2
c + y2

c (4.18)

e

φ = atan2(yc,xc). (4.19)

A geometria do filme de fluido, ou seja, sua espessura h em qualquer posição angular
θ , é uma função direta da posição instantânea do rotor. No presente trabalho, a espessura do
filme, que também representa a distância entre o estator e a superfície do rotor (Rθ ), é calculada
utilizando a formulação desenvolvida e apresentada em Silva et al. (2024) e adaptada para a
variação temporal que a posição do rotor apresenta, conforme Eq. 4.20.

h(θ , t) =Rb−Rθ (θ , t) =

Rb−
(

e(t)cos(φ(t)−θ)+
√

e(t)2cos2(φ(t)−θ)+R2
r − e(t)2

) (4.20)

4.5 Equações de Balanço e Hipóteses Utilizadas
O escoamento do fluido lubrificante no interior do mancal é modelado com os balanços

de massa e de quantidade de movimento linear. Partiu-se da forma completa das equações para
um escoamento tridimensional, expressas na forma vetorial como:

• equação do balanço de massa: ∇ ·v = 0

• equação do balanço da quantidade de movimento linear:
ρ

(
∂v
∂ t +(v ·∇)v

)
=−∇p+µ∇2v
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onde ρ é a massa específica do fluido, µ a viscosidade dinâmica, v é o campo de
velocidades e p é o campo de pressão. Para a aplicação específica, as seguintes hipóteses são
adotadas:

1. escoamento incompressível: a massa específica ρ é considerada constante.

2. fluido newtoniano e modelo isotérmico: o fluido é newtoniano e suas propriedades (µ,ρ)
são constantes, desprezando-se efeitos térmicos.

3. escoamento laminar: assume-se que o escoamento permanece no regime laminar.

4. forças de campo desprezíveis: forças de campo, como a gravitacional, são desprezadas.

A principal simplificação feita consiste de uma hipótese dita de filme fino: assume-se
que a componente de velocidade na direção radial é desprezível (vr ≈ 0) e que os gradientes
de todas as propriedades nessa direção são nulos (∂/∂ r ≈ 0). A consequência direta é que a
pressão é considerada constante ao longo da espessura do filme (∂ p/∂ r = 0) e que as velocidades
calculadas nas outras direções (θ ,z) são tratadas como valores médios ao longo da direção radial
(r).

As condições de contorno de não-escorregamento são aplicadas indiretamente nas super-
fícies. Devido à simplificação na direção radial, seu efeito é introduzido no balanço de quantidade
de movimento linear por meio de termos fonte (λ ) que representam as tensões nas paredes.

Em coordenadas cilíndricas, o modelo com as simplificações fica:

1
r

∂vθ

∂θ
+

∂vz

∂ z
= 0; (4.21)

∂vθ

∂ t
+

vθ

r
∂vθ

∂θ
+ vz

∂vθ

∂ z
=− 1

rρ

∂ p
∂θ

+ν

[
1
r2

(
∂ 2vθ

∂θ 2 − vθ

)
+

∂ 2vθ

∂ z2

]
+λθ ; (4.22)

∂vz

∂ t
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂ z
=− 1

ρ

∂ p
∂ z

+ν

[
1
r2

∂ 2vz

∂θ 2 +
∂ 2vz

∂ z2

]
+λz. (4.23)

Os termos λ que aparecem nas equações 4.22 e 4.23 representam, respectivamente, uma
modelagem para o termo das tensões nas paredes na direção θ e na direção z.

4.6 Transformação Para Coordenadas Curvilíneas Não-
Ortogonais Dependentes do Tempo

A formulação matemática apresentada nesta seção adota uma abordagem estrutural dedu-
tiva. Inicialmente, são expostas as equações do balanço de massa e a do balanço da quantidade
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de movimento linear já transformadas para o referencial curvilíneo genérico. O objetivo dessa
apresentação preliminar é evidenciar a estrutura dos operadores diferenciais e identificar os
termos tensoriais necessários para a conclusão do modelo, tais como os tensores métricos, os
símbolos de Christoffel e as derivadas covariantes.

Cabe ressaltar que, em sistemas de coordenadas não-ortogonais, torna-se necessário
distinguir entre duas bases vetoriais distintas: a base covariante (cujos vetores são tangentes
às linhas de coordenadas) e a base contravariante (cujos vetores são normais às superfícies
coordenadas). Essa dualidade exige atenção na representação dos vetores, que podem ser expres-
sos por componentes contravariantes (índices sobrescritos, ex: ui) ou componentes covariantes
(índices subscritos, ex: ui). A derivada covariante, por sua vez, surge como uma generalização
da derivada parcial para garantir que a taxa de variação de um vetor leve em conta não apenas
a mudança do campo em si, mas também a curvatura do próprio sistema de coordenadas. Nas
subseções presentes nessa seção, cada um desses operadores e definições geométricas será
detalhado e deduzido progressivamente, partindo dos conceitos fundamentais de vetores de base
até a composição final das equações de balanço.

Para resolver computacionalmente as equações em geometria complexa e variável no
tempo, adota-se uma transformação de coordenadas que mapeia o domínio físico tridimensional
em um domínio computacional, retangular e fixo. Considerando um sistema físico cilíndrico
(r,θ ,z) a transformação para o sistema não ortogonal (ξ ,η ,γ) é definida por:

ξ (r,θ ,z, t) =
r−Rb +h(θ , t)

h(θ , t)
,

η(r,θ ,z, t) = θ

e

γ(r,θ ,z, t) = z.

A coordenada ξ normaliza a direção radial, variando de ξ = 0 na superfície do rotor a
ξ = 1 na superfície do estator, conforme mostrado na Fig. 4. A transformação das equações de
balanço requer o uso de cálculo tensorial, envolvendo tensores métricos e símbolos de Christoffel
(SUNGNUL, 2016; HU, 2017; HILL; STOKES, 2018). Como a espessura do filme h(θ , t) varia
com o tempo, a transformação é dependente do tempo, exigindo uma formulação que considere
a velocidade da malha, conforme apresentado em Luo e Bewley (2004).

Muitos passos e conexões entre as equações surgirão, por exemplo: o operador laplaciano
depende de símbolos de Christoffel que, por sua vez, dependem de tensores métricos que
dependem de vetores base. A dedução de cada operador, símbolo e transformação é bem
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Figura 4 – Visualização das linhas de ξ e η constantes.
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apresentada em trabalhos já citados como os de Wang (1981), Germano (1982), Ogawa e
Ishiguro (1987), Tuttle (1990), Tai (1996), Luo e Bewley (2004), Sungnul (2016), Hu (2017),
Hill e Stokes (2018). Assim, nesse apêndice serão demonstradas de forma breve o que precisa
ser calculado e os resultados obtidos a partir das transformações propostas na Sec. 4.6.

Como bem explicado por Luo e Bewley (2004), para um sistema de coordenadas com
fronteiras móveis, a equação do balanço de massa e do balanço de quantidade de movimento
linear são dadas, respectivamente, por:

∂ρ

∂τ
−U j ∂ρ

∂β j +(ρu j), j = 0 , (4.24)

e

∂u j

∂τ
+(ui−U i)u j

,i +uiU j
,i = f j +

1
ρ

T ji
,i (4.25)

onde u representa a velocidade na coordenada transformada, U é a velocidade da malha,
f representa a força externa aplicada, T é o tensor de tensões, os superíndices denotam as
componentes contravariantes dos vetores e o subíndice antecedido por vírgula (, i) representa a
diferenciação covariante.
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A diferenciação covariante do tensor de tensões na base contravariante (T ji
,i ) é dada, de

acordo com Hill e Stokes (2018), por:

T ji
,i =− ∂ p

∂β i g
i j +µ

[
∇

2u j +2gik
Γ

j
il

∂ul

∂β k +ulgik ∂Γ
j
ik

∂β l

]
, (4.26)

sendo p o escalar pressão, β é um componente do sistema de coordenadas curvilíneas
não ortogonais, g é um componente do tensor métrico, Γ é o símbolo de Christoffel de segunda
espécie.

Portanto serão mostrados os passos e as transformações necessárias para determinar
cada termo e cada operador a fim de reconstruir as equações mostradas em 4.5 para o problema
apresentado no trabalho.

4.6.1 Transformação dos operadores

O divergente de um campo vetorial qualquer b é um escalar. O divergente pode ser
expresso em termos das derivadas dos componentes contravariantes de b:

∇ ·b =
1√
|g|

∂

∂β i

(√
|g|bi

)
, (4.27)

onde |g| denota o determinante do tensor métrico covariante, β i é um componente
da coordenada transformada e bi é o componente contravariante do vetor b na coordenada
transformada.

A diferenciação covariante de um vetor é, também, definida por:

bi
, j =

∂bi

∂β j +Γ
i
jkbk. (4.28)

O gradiente de uma função escalar qualquer S também é um vetor definido por:

∇S =
∂S
∂β i

−→
eβ i

, (4.29)

onde
−→
eβ i

é o vetor de base contravariante das coordenadas transformadas.

Os componentes covariantes do vetor gradiente são definidos por

(∇S)i =
∂S
∂β i , (4.30)
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e os componentes contravariantes do vetor são

(∇S)i = g ji(∇S) j = g ji ∂S
∂β j , (4.31)

onde gi j é um componente do tensor métrico contravariante das coordenadas.

Agora, também é possível definir o operador laplaciano de uma função escalar S,

∇
2S = ∇ · (∇S) =

(
(∇S)i)

,i = gi j
(

∂ 2S
∂β j∂β i −Γ

k
i j

∂S
∂β k

)
, (4.32)

onde Γk
i j representa o componente i, j da matriz de símbolos de Christoffel do segundo tipo de

coordenada β k.

E a última transformação de operador necessária é a transformação do operador laplaciano
aplicado a um vetor. O laplaciano de um campo vetorial também é um campo vetorial, e os
componentes contravariantes desse vetor, após todas as simplificações muito bem mostradas por
Hill e Stokes (2018), são:

(∇2b) j = ∇
2b j +2gik

Γ
j
il

∂bl

∂β k +gikbl ∂Γ
j
ik

∂β l , (4.33)

onde

∇
2b j = gik

(
∂ 2b j

∂β k∂β i −Γ
l
ki

∂b j

∂β l

)
(4.34)

é o operador laplaciano da função escalar b j.

4.6.2 Transformação de um vetor

Nas equações mostradas na seção 4.5 o vetor de velocidade v foi usado. No entanto,
também é necessário transformar esse vetor em um vetor que represente a velocidade nas
coordenadas transformadas. Por exemplo, um vetor de velocidade em coordenadas cilíndricas
((β 1,β 2,β 3) = (r,θ ,z)) pode ser representado de três maneiras diferentes:

v = v̂rêr + v̂θ êθ + v̂zêz,

v = vr
−→e r

+ vθ
−→e θ

+ vz
−→e ze

v = vr−→e r + vθ−→e θ + vz−→e z,

onde ê j é o vetor de base unitário, −→e j é o vetor de base covariante, −→e j é o vetor de base
contravariante, v̂ j é o componente físico da velocidade, v j é o componente covariante do vetor
de velocidade e v j é o componente contravariante do vetor de velocidade.
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O vetor de velocidade transformado u = u(uβ 1,uβ 2,uβ 3) é dado em sua forma contrava-
riante por:

uβ j
= v ·−→e β j

. (4.35)

Essas formulações são úteis porque nos permitem transformar o vetor de velocidade de
qualquer sistema de coordenadas em um vetor de velocidade compatível com o novo sistema de
coordenadas não ortogonal.

4.6.3 Vetores de base

No caso de um sistema de coordenadas cartesianas, um vetor que varia no espaço pode
ser representado por suas componentes projetadas nos vetores unitários î, ĵ e k̂, que formam uma
base ortonormal fixa. Esses vetores mantêm a mesma direção e magnitude em qualquer região
do domínio, o que garante uma descrição uniforme. As componentes do vetor indicam o quanto
ele se projeta ao longo de cada um desses vetores de base.

Quando um sistema de coordenadas curvilíneas é adotado, a representação vetorial requer
uma base adaptada às direções locais das coordenadas, ou seja, vetores tangentes ou normais
às curvas que definem o sistema. Devido à possível não ortogonalidade dessas coordenadas, é
necessário distinguir entre duas opções possíveis para essa base vetorial: a base covariante e a
base contravariante. Essa distinção evita ambiguidades na formulação e interpretação de vetores
nesses sistemas.

4.6.3.1 Vetores de base covariantes

Como mencionado, vetores de base são definidos como vetores tangentes às retas coor-
denadas. Seja R = R(x1,x2,x3) um vetor qualquer que denote a posição de um ponto em um
espaço de coordenadas, curvilíneo ou não, ortogonal ou não. A posição desse ponto deve ser a
mesma em qualquer outro sistema de coordenadas. Assim, pela definição de uma reta tangente a
um ponto, os vetores da base covariante são determinados por:

−→e β j = lim
∆β j→0

R(β j +∆β j)−R(β j)

∆β j =
∂R
∂β j =

∂

∂β j (x
iêi). (4.36)

Por exemplo, um vetor R definido no sistema de coordenadas cartesianas é R(x,y,z) =

xî+y ĵ+zk̂. Enquanto o mesmo vetor em coordenadas cilíndricas é dado por R(r,θ ,z) = rêr+zêz.

É possível, então, determinar os vetores da base transformando as coordenadas de
qualquer outro sistema de coordenadas, desde que os vetores unitários da base sejam conhecidos.

4.6.3.2 Vetores da base contravariante

A base contravariante tem seus vetores normais às linhas de coordenadas. Sabe-se que,
matematicamente, o operador gradiente é a operação que permite calcular essa condição. Assim,
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os vetores da base contravariante são dados por:

−→e β j
= ∇β

j =
∂β j

∂xi êi (4.37)

Quanto aos vetores da base covariante, é possível determinar os vetores da base contra-
variante a partir de qualquer sistema de coordenadas no qual os vetores da base unitária sejam
conhecidos. Para a transformação do sistema cartesiano, temos:

−→e β j
= ∇β

j =
∂β j

∂x
î+

∂β j

∂y
ĵ+

∂β j

∂ z
k̂, (4.38)

ou, a partir de coordenadas cilíndricas:

−→e β j
= ∇β

j =
∂β j

∂ r
êr +

1
r

∂β j

∂θ
êθ +

∂β j

∂ z
êz. (4.39)

4.6.4 Tensores métricos

O tensor métrico é uma ferramenta para descrever a geometria do espaço. Ele permite
medir comprimentos, ângulos e distâncias, definindo como os vetores se relacionam com a
estrutura do sistema de coordenadas escolhido. Dependendo de como é utilizado, o tensor
métrico pode aparecer em sua forma covariante ou contravariante, cada uma com um papel
distinto na manipulação de vetores e tensores.

4.6.4.1 Tensor métrico covariante

O tensor métrico covariante está associado à base dos vetores tangentes às curvas
coordenadas. Ele é utilizado principalmente para calcular produtos internos, medir distâncias e
abaixar índices de vetores e tensores. Sua atuação ocorre naturalmente no espaço dual, sendo
mais comum em representações com coordenadas curvilíneas.

Matematicamente, o tensor métrico covariante g = gi j é definido como o produto escalar
entre os vetores da base covariante:

gi j =
−→e β i ·−→e β j . (4.40)

Por exemplo, os conhecidos vetores da base covariante em coordenadas cilíndricas são:

−→e r = cos θ î+ sin θ ĵ+0k̂,

−→e θ = r(−sin θ î+ cos θ ĵ)+0k̂ e



Capítulo 4. Modelo Matemático-Diferencial 40

−→e z = 0î+0 ĵ+ k̂.

Aplicando, então, a Eq. 4.40 aos vetores da base, obtém-se:

gi j =


−→e r ·−→e r

−→e r ·−→e θ
−→e r ·−→e z

−→e θ ·−→e r
−→e θ ·−→e θ

−→e θ ·−→e z
−→e z ·−→e r

−→e z ·−→e θ
−→e z ·−→e z

=

1 0 0
0 r2 0
0 0 1

 .
Com o tensor métrico, é fácil determinar se as coordenadas são ortogonais. Para coorde-

nadas ortogonais, apenas os elementos da diagonal (gii) são diferentes de zero.

4.6.4.2 Tensor métrico contravariante

O tensor métrico contravariante, por sua vez, está relacionado à base de vetores que
atuam como derivadas direcionais. Ele é útil para levantar índices e transformar quantidades
covariantes em contravariantes. Em essência, ele atua como o “inverso” do tensor métrico
covariante, refletindo a estrutura do próprio espaço vetorial.

Sua forma matemática é dada, de maneira análoga ao tensor métrico covariante, por:

gi j =−→e β i
·−→e β j

. (4.41)

4.6.5 Símbolos de Christoffel

Os símbolos de Christoffel são expressões que descrevem como os vetores da base de
um sistema de coordenadas variam de ponto a ponto em um espaço curvilíneo.

Existem duas formas principais desses símbolos: os símbolos de primeira espécie, que
envolvem diretamente o tensor métrico com todos os índices abaixados, e os símbolos de segunda
espécie, que são os mais comumente utilizados em aplicações de física e engenharia.

Os símbolos de Christoffel de segunda espécie descrevem a variação das direções locais
das coordenadas e permitem calcular como um vetor se desloca ao longo de uma trajetória em um
espaço curvo. Eles dependem das derivadas do tensor métrico e capturam a geometria do sistema
de coordenadas escolhido. Na prática, são utilizados para expressar a derivada covariante e
aparecem em diversas equações diferenciais que modelam o comportamento de campos vetoriais
e tensoriais em geometrias complexas.

Os símbolos de segunda espécie podem ser calculados a partir das derivadas do tensor
métrico ou diretamente dos vetores de base. Respectivamente, são as formas:

Γ
k
i j =

gkl

2

(
∂gil

∂β j +
∂gl j

∂β i −
∂g ji

∂β l

)
, (4.42)
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ou,

Γ
k
i j =

∂
−→e i

∂β j ·
−→
eβ k

. (4.43)

4.6.6 Cinemática da Malha

Em coordenadas dependentes do tempo, definem-se as componentes contravariantes da
velocidade da malha (U j) como (LUO; BEWLEY, 2004):

U j =−∂β j

∂ t
. (4.44)

Um termo crucial na equação do momento é a derivada covariante da velocidade da
malha, que captura a deformação geométrica do sistema de coordenadas ao longo do tempo. Este
tensor é calculado por:

U j
,i =
−→e β j
·

∂
−→e β i

∂τ
, (4.45)

onde τ representa o tempo no referencial transformado.

4.7 Aplicação ao Modelo Rotor-Estator Excêntrico
As equações gerais apresentadas anteriormente são agora aplicadas à transformação de

coordenadas de um sistema rotor-estator onde o rotor está deslocado do centro do estator. Para
descrever as novas coordenadas, parte-se do princípio de que qualquer ponto R(r,θ ,z) no sistema
cilíndrico físico equivale a R(ξ ,η ,γ) no sistema transformado.

Para o problema proposto, a transformação analítica é definida como mostrada na seção
4.6, e aqui repetida por conveniência, como:

ξ (r,θ ,z, t) =
r− (Rb−h(θ , t))

h(θ , t)
=⇒ r(ξ ,η ,γ,τ) = Rb +(ξ −1)h(η ,τ), (4.46)

η(r,θ ,z, t) = θ =⇒ θ(ξ ,η ,γ,τ) = η =⇒ h(θ , t) = h(η ,τ), (4.47)

γ(r,θ ,z, t) = z =⇒ z(ξ ,η ,γ,τ) = γ. (4.48)

O vetor posição arbitrário pode então ser reescrito usando as Eqs. 4.46, :

R(ξ ,η ,γ) = [Rb +(ξ −1)h] (cosθ î+ sinθ ĵ)+ γ k̂. (4.49)
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Para determinar os vetores da base covariante, aplica-se a definição da Eq. 4.36 à Eq.
4.49:

−→e ξ = hcosη î+hsinη ĵ, (4.50)

−→e η = [−r sinη +αh′ cosη ] î+[r sinη +αh′ cosη ] ĵ, (4.51)

−→e γ = k̂, (4.52)

onde, para simplificação da escrita, definiu-se r = Rb +(ξ − 1)h, h′ = ∂h/∂η e α =

(ξ −1).

Para definir os vetores da base contravariante, utilizam-se as derivadas das Eqs. 4.46,
4.47 e 4.48 na Eq. 4.39, obtendo-se:

−→e ξ =

(
cosη

h
+

αh′

h
sinη

r

)
î+
(

sinη

h
− αh′

h
cosη

r

)
ĵ, (4.53)

−→e η =−
(

sinη

r

)
î+
(cosη

r

)
ĵ, (4.54)

−→e γ = k̂. (4.55)

Aplicando as definições de produto escalar (Eq. 4.40 e 4.41) aos vetores de base acima,
obtêm-se o tensor métrico covariante (gi j) e o tensor métrico contravariante (gi j):

gi j =

 h2 αh′h 0
αh′h r2 +(αh′)2 0

0 0 1

 , gi j =


(

αh′
hr

)2
+ 1

h2 −αh′
hr2 0

−αh′
hr2

1
r2 0

0 0 1

 . (4.56)

Finalmente, os símbolos de Christoffel para este sistema são determinados como:

Γ
ξ

i j =

 0 h′
h −

αh′
r 0

h′
h −

αh′
r

αh′′−r
h − 2(αh′)2

hr 0
0 0 0

 , Γ
η

i j =

0 h
r 0

h
r

2αh′
r 0

0 0 0

 e Γ
γ

i j = 0. (4.57)
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Considerando agora a movimentação da malha, as componentes contravariantes da
velocidade da malha (U j) e suas derivadas covariantes (U j

,i) são calculadas conforme as Eqs.
4.44 e 4.45; respectivamente, tem-se:

Uξ = α
ḣ
h

e Uη =U γ = 0. (4.58)

U j
,i =


ḣ
h 0 0

α

h

(
ḣ′− α ḣh′

r

)
ṙ
r 0

0 0 0

 (4.59)

Considerando que o rotor gira apenas em torno de seu centro, o vetor velocidade para a
condição de contorno no rotor é:

v = v̂rêr + v̂θ êθ + v̂zêz = ωrêθ , (4.60)

o vetor velocidade transformado (u) para as condições de contorno do rotor torna-se,
após a aplicação da Eq. 4.35:

uξ = v ·−→e ξ =
ωh′

h
, uη = v ·−→e η = ω e uγ = v ·−→e γ = 0. (4.61)

Com todas as métricas e transformações definidas e calculadas, finalmente substituem-se
os termos nas Eqs. 4.24 e 4.25, obtendo-se, para a transformação mostrada na seção 4.6:

• O balanço de massa:

∂ρ

∂τ
− (ξ −1)

ḣ
h

∂ρ

∂ξ
+

∂ρuξ

∂ξ
+

∂ρuη

∂η
+

∂ρuγ

∂γ
+ρ

(
uξ h

r
+uη

(
h′

h
+

αh′

r

))
= 0 (4.62)

• Balanço da quantidade de movimento linear na direção ξ :

∂uξ

∂τ
+(uξ −Uξ )

[
∂uξ

∂ξ
+uη

Γ
ξ

ξ η

]
+uη

[
∂uξ

∂η
+uξ

Γ
ξ

ηξ
+uη

Γ
ξ

ηη

]
+uγ ∂uξ

∂γ

+uξUξ

,ξ
+uηUξ

,η =− 1
ρ

(
gξ ξ ∂ p

∂ξ
+gηξ ∂ p

∂η

)
+ν

[
gξ ξ

(
∂ 2uξ

∂ξ 2 +2Γ
ξ

ξ η

∂uη

∂ξ

)

+2gξ η

 ∂ 2uξ

∂ξ ∂η
−Γ

η

ξ η

∂uξ

∂η
+Γ

ξ

ηη

∂uη

∂ξ
+uξ

∂Γ
ξ

ξ η

∂ξ
+

∂uηΓ
ξ

ξ η

∂η


+gηη

(
∂uξ

∂η2 −Γ
ξ

ηη

∂uξ

∂ξ
−Γ

η
ηη

∂uξ

∂η
+2Γ

ξ

ηξ

∂uξ

∂η
+2Γ

ξ

ηη

∂uξ

∂ξ

)

+uξ
∂Γ

ξ

ηη

∂ξ
+uη

∂Γ
ξ

ηη

∂η
+

∂ 2uξ

∂γ2

]
+ f ξ

(4.63)
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• Balanço da quantidade de movimento linear na direção η :

∂uη

∂τ
+(uξ −Uξ )

[
∂uη

∂ξ
+uη

Γ
η

ξ η

]
+uη

[
∂uη

∂η
+uξ

Γ
η

ηξ
+uη

Γ
η
ηη

]
+uγ ∂uη

∂γ
+uηUη

,η =− 1
ρ

(
gξ η ∂ p

∂ξ
+gηη ∂ p

∂η

)
+ν

[
gξ ξ

(
∂ 2uη

∂ξ 2 +2Γ
η

ξ η

∂uη

∂ξ

)
+2gξ η

(
∂ 2uη

∂ξ ∂η
−Γ

ξ

ξ η

∂uη

∂ξ
+Γ

η
ηη

∂uη

∂ξ
+

∂uξ Γ
η

ηξ

∂ξ
+uξ

∂Γ
η

ξ η

∂η

)

+gηη

(
∂ 2uη

∂η2 −Γ
ξ

ηη

∂uη

∂ξ
+2Γ

η

ηξ

∂uξ

∂η
+Γ

η
ηη

∂uη

∂η

)
+uξ

∂Γ
η
ηη

∂ξ
+uη

∂Γ
η
ηη

∂η
+

∂ 2uγ

∂γ2

]
+ f η

(4.64)

• Balanço da quantidade de movimento linear na direção γ:

∂uγ

∂τ
+(uξ −Uξ )

∂uγ

∂ξ
+uη ∂uγ

∂η
+uγ ∂uγ

∂γ
=− 1

ρ

∂ p
∂γ

+ν

[
gξ ξ ∂ 2uγ

∂ξ 2 +2gξ η

(
∂ 2uγ

∂ξ ∂η
−Γ

ξ

ξ η

∂uγ

∂ξ
−Γ

η

ξ η

∂uγ

∂η

)

+gηη

(
∂ 2uγ

∂η2 −Γ
ξ

ηη

∂uγ

∂ξ
−Γ

η
ηη

∂uγ

∂η

)
+

∂ 2uγ

∂γ2

]
+ f γ

(4.65)

As equações de balanço em coordenadas curvilíneas não-ortogonais utilizando as hipóte-
ses apresentadas na seção 4.5 ficam:

∂uη

∂η
+

∂uγ

∂γ
+uη

(
h′

h
+

αh′

r

)
= 0, (4.66)

∂uη

∂τ
−Uξ uη

Γ
η

ξ η
+uη

[
∂uη

∂η
+uη

Γ
η
ηη

]
+uγ ∂uη

∂γ
+uηUη

,η =−gηη

ρ

∂ p
∂η

+ν

[
gηη

(
∂ 2uη

∂η2 +Γ
η
ηη

∂uη

∂η

)
+uη

∂Γ
η
ηη

∂η
+

∂ 2uγ

∂γ2

]
+λη ,

(4.67)

e

∂uγ

∂τ
+uη ∂uγ

∂η
+uγ ∂uγ

∂γ
=− 1

ρ

∂ p
∂γ

+ν

[
−2gξ η

Γ
η

ξ η

∂uγ

∂η
+gηη

(
∂ 2uγ

∂η2 −Γ
η
ηη

∂uγ

∂η

)
+

∂ 2uγ

∂γ2

]
+λγ ,

(4.68)

em que os termos λη e λγ são os termos fontes a serem modelados, conforme anunciado na
seção 4.5. Vale ressaltar que a equação de balanço na direção ξ não é resolvida devido à essas
hipóteses.
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4.8 Cálculo das forças fluidodinâmicas e dinâmica do ro-
tor

A solução computacional fornece o campo de pressão p(η ,γ, t), que é constante na
direção ξ . As componentes da força fluidodinâmica resultante, FH,X e FH,Y , sobre o rotor são
obtidas pela integração da pressão em sua superfície:

FH,X(t) =−Rr

∫ L

0

∫ 2π

0
p cos(θ) dθ dz (4.69)

e

FH,Y (t) =−Rr

∫ L

0

∫ 2π

0
p sin(θ) dθ dz. (4.70)

O movimento do centro do rotor (xc(t),yc(t)), sujeito a uma carga correspondente ao seu
peso W = mg, é determinado com a segunda lei de Newton:

m
d2xc

dt2 = FH,X (4.71)

e

m
d2yc

dt2 = FH,Y −W. (4.72)

O acoplamento entre o fluido e a estrutura é completo, e a solução computacional deste
sistema de EDOs ao longo do tempo permite simular a trajetória do eixo até sua posição de
equilíbrio.

4.9 Cálculo dos coeficientes de rigidez e de amorteci-
mento do sistema

Para a determinação dos coeficientes de rigidez (ki j) e amortecimento (ci j) do mancal,
utilizou-se o método das órbitas elípticas, conforme proposto por Sun et al. (2019) e detalhado
em Rossi et al. (2025). Este método fundamenta-se na hipótese de pequenas amplitudes de
movimento do eixo (∆eX ,∆eY ) em torno de sua posição de equilíbrio estático (eX0,eY0), o que
permite a linearização das forças hidrodinâmicas de suporte (FX ,FY ) através de uma expansão
em série de Taylor.
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A relação linearizada entre as perturbações das forças hidrodinâmicas, os deslocamentos
e as velocidades do centro do eixo é expressa na forma matricial pela Equação 4.73:

{
∆FX

∆FY

}
=−

[
kXX kXY

kY X kYY

]{
∆eX

∆eY

}
−

[
cXX cXY

cY X cYY

]{
∆ėX

∆ėY

}
(4.73)

onde os subíndices indicam as direções das forças e dos movimentos, sendo ∆Fi = Fi−Fi0 a
variação da força dinâmica em relação à força de equilíbrio estático.

No procedimento numérico adotado, impõe-se que o centro do rotor, além de rotacionar
em torno de seu eixo com velocidade angular ω , descreva uma trajetória de whirl elíptica com
frequência de excitação Ω em torno da posição de equilíbrio. Para compor o sistema de equações
necessário à resolução dos oito coeficientes dinâmicos desconhecidos, são simuladas duas órbitas
independentes, definidas pelos semi-eixos maior (a) e menor (b):

• Órbita 1: O eixo maior da elipse é alinhado com a direção X , tal que ∆eX = acos(Ωt) e
∆eY = bsin(Ωt);

• Órbita 2: O eixo maior da elipse é alinhado com a direção Y , tal que ∆eX = bcos(Ωt) e
∆eY = asin(Ωt).

Na imagem 5 é mostrado como são dadas essas orbitas.

Figura 5 – Representação método das orbitas elípticas.
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(a) Orbita 1.
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(b) Orbita 2.

Fonte: Rossi et al. (2025).

As forças hidrodinâmicas resultantes dessas perturbações são amostradas em dois ins-
tantes de tempo específicos para cada órbita: t = 0 e t = T/4, onde T = 2π/Ω representa o
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período do movimento de whirl. A substituição desses valores na Equação 4.73 resulta em um
sistema linear de equações algébricas, cuja solução isola e determina os termos de rigidez e
amortecimento.

Para o presente estudo, a frequência de excitação da perturbação foi definida como
síncrona, ou seja, igual à velocidade de rotação do rotor (Ω = ω). As amplitudes de perturbação
a e b foram fixadas, respectivamente, em 0,5% e 1% da folga radial nominal (c), valores estes
que asseguram a validade da hipótese de linearidade das forças no filme fluido.
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CAPÍTULO

5
MODELO NUMÉRICO-COMPUTACIONAL

Nesta seção é apresentada, em detalhes, a metodologia numérica empregada para a solu-
ção das equações do escoamento no interior do mancal hidrodinâmico, bem como o acoplamento
com a dinâmica do rotor. São descritos os procedimentos de geração da malha computacional,
as estratégias de discretização espacial e temporal, o algoritmo de solução adotado para o aco-
plamento pressão–velocidade, o modelo de cavitação considerado e, por fim, os critérios de
estabilidade e convergência utilizados ao longo das simulações.

5.1 Geração Da Malha Computacional
A solução das equações de balanço é realizada por meio do método das diferenças finitas,

aplicado ao domínio computacional bidimensional definido pelas coordenadas transformadas
(η ,γ). Conforme discutido na Seção 4.6, a transformação de coordenadas permite mapear o
domínio físico, de geometria variável no tempo, em um domínio retangular fixo, o que simplifica
significativamente a implementação numérica.

Sobre esse domínio computacional é construída uma malha estruturada, uniforme e
cartesiana, caracterizada por espaçamentos constantes ∆η e ∆γ . A escolha por uma malha
estruturada decorre da regularidade do domínio transformado, permitindo uma implementação
eficiente dos operadores diferenciais e reduzindo o custo computacional em comparação com
malhas não estruturadas.

Para os casos de estudo apresentados neste trabalho, foram adotadas resoluções típicas
de Nη = 120 volumes na direção circunferencial e Nγ = 40 volumes na direção axial. Ensaios
preliminares de independência de malha foram realizados, indicando que refinamentos adici-
onais nessas direções não resultam em variações significativas nos campos de pressão, forças
fluidodinâmicas ou trajetória do rotor, quando comparados ao aumento substancial do custo
computacional. Dessa forma, a malha escolhida representa um compromisso adequado entre
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precisão numérica e eficiência computacional.

Adota-se uma estratégia de malha deslocada, na qual as componentes do vetor velocidade
são calculadas e armazenadas nas faces dos volumes de controle, enquanto o campo de pressão
é definido no centro de cada volume. Essa abordagem, amplamente utilizada em métodos
clássicos de CFD para escoamentos incompressíveis, evita o desacoplamento pressão–velocidade
(VERSTEEG; MALALASEKERA, 2007; PATANKAR; SPALDING, 1972) e o surgimento
de padrões espúrios no campo de pressão, além de garantir uma discretização mais robusta do
operador divergente.

5.2 Algoritmo De Solução E Modelo De Cavitação
O acoplamento entre os campos de pressão e velocidade, característico de escoamentos

incompressíveis, é tratado por meio do método dos passos fracionados, pertencente à classe
dos métodos de projeção. Este método é amplamente utilizado em CFD devido à sua robustez,
simplicidade de implementação e boa eficiência computacional.

O algoritmo utilizado neste trabalho, detalhado em Santos (2022), pode ser resumido nos
seguintes passos para a evolução da solução do instante tn para tn+1:

1. Passo de predição: resolve-se a equação da quantidade de movimento linear utilizando o
campo de pressão conhecido no tempo tn, obtendo-se um campo de velocidades interme-
diário v∗ que, em geral, não satisfaz a condição de divergente nulo.

2. Passo de correção: impõe-se a condição de conservação de massa (∇ ·vn+1 = 0), o que
conduz a uma equação de Poisson para a correção de pressão p′ = pn+1− pn. O ope-
rador laplaciano dessa equação é discretizado utilizando um esquema de quarta ordem,
aumentando a precisão espacial do campo de pressão.

3. Resolução do sistema linear: o sistema linear esparso resultante da discretização da equação
de Poisson é resolvido pelo método iterativo dos Gradientes Conjugados Bi-Estabilizados
(Bi-CGSTAB), escolhido por sua boa performance em matrizes não simétricas e mal
condicionadas.

4. Passo de projeção: o campo de pressão é atualizado para o tempo tn+1, e o campo de
velocidades é corrigido utilizando o gradiente da correção de pressão, garantindo um
campo final vn+1 livre de divergência.

Após a obtenção do campo de pressão corrigido, é aplicado um modelo de cavitação. Neste
trabalho, adota-se a condição de meio-Sommerfeld, amplamente utilizada em problemas de
lubrificação hidrodinâmica. De acordo com esse modelo, qualquer valor de pressão inferior a uma
pressão de vaporização pré-definida (pvap) é truncado para esse valor mínimo. Tal abordagem
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simula a formação de regiões cavitadas no filme lubrificante, nas quais o fluido perde a capacidade
de transmitir esforços normais, impactando diretamente a capacidade de carga do mancal.

5.3 Discretização E Estratégia De Solução Numérica
A discretização das equações de balanço foi realizada através do FDM, abordando a

dependência espacial, a evolução temporal e o acoplamento fluido-estrutura.

Para a discretização espacial, os termos advectivos e difusivos das equações da quantidade
de movimento linear foram aproximados por esquemas de diferenças centradas com precisão
de segunda ordem. A escolha por esquemas centrados, em detrimento de esquemas upwind,
justifica-se pela natureza predominantemente laminar do escoamento no filme lubrificante. Essa
abordagem minimiza a difusão numérica artificial, garantindo maior fidelidade na previsão dos
gradientes de pressão e das forças de sustentação. Dado o rigoroso controle do passo de tempo
imposto pelos critérios de estabilidade, as baixas velocidades características permitem que o
esquema centrado ofereça precisão espacial superior sem introduzir oscilações espúrias.

No domínio temporal, a evolução das variáveis utiliza uma formulação explícita. A inte-
ração entre o escoamento do fluido e a dinâmica do rotor é tratada por meio de um acoplamento
fraco. Nesse esquema, as forças fluidodinâmicas calculadas no instante atual são utilizadas para
atualizar a posição do rotor no próximo passo, sem sub-iterações. Embora apresente menor custo
computacional por passo, essa abordagem impõe restrições severas à estabilidade, exigindo
passos de tempo reduzidos para evitar instabilidades decorrentes do atraso temporal na aplicação
das forças.

Para a integração temporal, empregou-se um esquema de três pontos com precisão de
segunda ordem (O(∆t2)). Como esse método requer informações de dois passos anteriores (t
e t−∆t), a inicialização (primeiro passo) é feita via método de Euler, e o esquema de segunda
ordem assume a partir do segundo passo. A dedução fundamenta-se na expansão em série de
Taylor de uma função genérica f (t) em torno de (t +∆t) em direção ao passado, conforme Eqs.
5.1 e 5.2:

f (t) = f (t +∆t)− f ′(t +∆t)∆t +
f ′′(t +∆t)∆t2

2!
+O(∆t3) (5.1)

f (t−∆t) = f (t +∆t)− f ′(t +∆t)(2∆t)+
f ′′(t +∆t)(2∆t)2

2!
+O(∆t3) (5.2)

Ao multiplicar a Eq. 5.1 por 4, subtrair a Eq. 5.2 e negligenciar os erros de truncamento
de ordem superior, isola-se a derivada temporal, resultando na discretização utilizada:

∂ f
∂ t

∣∣∣∣
t+∆t
≈ 3 f (t +∆t)−4 f (t)+ f (t−∆t)

2∆t
(5.3)
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Devido à natureza explícita e ao acoplamento fraco, o cálculo do passo de tempo máximo
admissível é crítico e segue os critérios de estabilidade de Strikwerda (1989), adaptados para as
coordenadas curvilíneas. Os limites impostos pelos termos difusivos (∆td) e advectivos (∆ta) são:

∆td ≤
ρ

2µ

(
∆η

Rb+Rr
2 ∆γ

)2

(
∆η

Rb+Rr
2

)2
+∆γ2

(5.4)

e
∆ta ≤

∆η

ω
. (5.5)

O passo de tempo global é determinado pela condição mais restritiva, ponderada pelo
número de Courant-Friedrichs-Lewy (CFL) (VILLAR, 2007), adotando-se um valor conservador
de CFL=0,01:

∆t = CFL ·min(∆td,∆ta) (5.6)

Adicionalmente, para assegurar a estabilidade durante o transiente inicial — onde o
acoplamento fluido-estrutura é mais severo — adota-se uma estratégia de rampa temporal, onde
o ∆t é incrementado gradualmente até atingir o valor de projeto.

Por fim, os critérios de convergência são monitorados em dois níveis. O solver Bi-
CGSTAB, usado na correção de pressão, encerra suas iterações quando o resíduo relativo é
inferior a 10−6. Já a convergência global da simulação (equilíbrio do rotor) é atingida após
um mínimo de 1000 passos e quando as forças fluidodinâmicas equilibram a carga externa,
obedecendo:|FH,X |<W ×10−4 e |FH,Y −W |<W ×10−4. Essa condição assegura que o sistema
atingiu um regime estacionário dinâmico, no qual a posição do eixo permanece estável ao longo
do tempo.
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CAPÍTULO

6
MODELAGEM DOS TERMOS-FONTE

6.1 Modelagem dos Termos Fonte: Evolução e Formula-
ção

Esta seção detalha o desenvolvimento da modelagem dos termos fonte responsáveis pela
indução do movimento no fluido lubrificante. O modelo visa a determinação dos campos médios
de pressão e velocidade ao longo da coordenada normal à parede, assumindo valores médios no
volume de controle.

A formulação final aqui apresentada é resultado de um processo evolutivo que envolveu
a análise crítica da literatura e investigações preliminares conduzidas pelo autor, as quais
evidenciaram a necessidade de um tratamento matemático rigoroso para superar limitações de
estabilidade e convergência em geometrias complexas.

6.1.1 Contexto e Limitações em Trabalhos Anteriores

Historicamente, a literatura técnica tem enfrentado obstáculos significativos na represen-
tação de termos fonte em mancais fluidodinâmicos. Silva, Cavalini e Neto (2023), empregando
uma metodologia de volumes finitos, propuseram uma função de ajuste para o termo viscoso
que dependia do fator de excentricidade. Embora essa abordagem tenha produzido valores con-
sistentes para cenários estáticos e mancais bidimensionais (infinitos), a dependência de ajustes
empíricos restringiu a generalização do modelo.

Posteriormente, Silva et al. (2024) avançaram com modelos analíticos e discretos que
eliminavam a necessidade de tais funções de ajuste, alcançando boa concordância com o modelo
de Reynolds em situações simplificadas. No entanto, ao incorporar a direção longitudinal
(tridimensional), a convergência para os resultados esperados não foi obtida, evidenciando
lacunas na representação física das tensões nas fronteiras do volume de controle.
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6.1.2 Desenvolvimento da Formulação das Tensões Viscosas

As forças líquidas em um fluido não são geradas pelas tensões em si, mas sim pelas suas
diferenças. É evidente que a presença de uma superfície em movimento relativo a outra gera uma
disparidade de tensões entre essas paredes. Consequentemente, o termo das forças externas é
definido como a diferença entre as tensões aplicadas na parede superior e a tensão aplicada na
parede inferior:

Fext = Asupτsup−Ain f τin f . (6.1)

Portanto, o objetivo primordial é a determinação dos valores dessas tensões. O problema
da sapata deslizante serve como uma aproximação do cenário real de um mancal cilíndrico. Uma
tentativa inicial envolveu a busca por uma modelagem contínua para o campo de velocidade, per-
mitindo assim a determinação das tensões. Para isso, um pseudo-eixo com raio Ri foi empregado
para estabelecer uma coordenada ζ centrada na origem desse eixo, conforme ilustrado na figura
6.

Figura 6 – Representação do eixo ζ para determinação das tensões nas paredes.

Fonte: Elaborada pelo autor.

O método escolhido para a determinação das tensões foi a transformada de Laplace. Ao
reescrever o modelo diferencial nesta nova coordenada, obtém-se:

[ ∂u
∂ t =

∂ 2u
∂ζ 2 . ]

Cujas condições de contorno e inicial são:

[ u(0, t) =U(t) u(h, t) = 0 u(ζ ,0) = 0. ]
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Isso resulta em um modelo contínuo no plano laplaciano da seguinte forma:

uL(ζ ,s) = c1eκζ + c2e−κζ . (6.2)

O sub-índice L denota que a função está sendo avaliada no plano laplaciano. Aplicando
as condições de contorno, tem-se:

[ u(0, t) =U(t) =⇒ uL(0,s) =UL(s) = c1 + c2 u(h, t) = 0 =⇒ uL(h,s) = 0 = c1eκh + c2e−κh. ]

Após a determinação das constantes, uma função para o campo de velocidade no plano
laplaciano é estabelecida, cuja inversa fornece a função contínua do campo de velocidade
temporal:

uL(ζ ,s) =
sUL(s)sen(h

√
s/α(h−ζ ))

ssen(h2
√

s/α)
=⇒ u(ζ , t) = L−1 L[U ′(t)]sen(h

√
s/α(h−ζ ))

ssen(h2
√

s/α)
.

(6.3)

Pelo teorema da convolução, sabe-se que:

L−1 [U ′L(s)AL(ζ ,s)
]
=
∫ t

0
A(ζ ,σ)

dU
dt

(t−σ)dσ , (6.4)

onde

A(ζ , t) = L−1

[
sen(h

√
s/α(h−ζ )

ssen(h2
√

s/α)

]
=

(
1− ζ

h

)
− 2

π

∞

∑
n=1

1
n

sen(nπζ/h)e−(nπ)2 αt
h2 , (6.5)

substituindo na equação 6.4, obtém-se:

u(ζ , t) =
∫ t

0

(
1− ζ

h

)
− 2

π

∞

∑
n=1

1
n

sen(nπζ/h)e−(nπ)2 ασ

h2
dU
dt

(t−σ)dσ . (6.6)

A velocidade do eixo foi especificada como uma função do tempo da forma:

U(t) =UT (1− e−at) =⇒ dU
dt

=UT ae−at (6.7)

sendo que UT representa a velocidade terminal do pseudo-eixo e a é uma constante de
tempo relacionada à aceleração do eixo desde o repouso até atingir UT .

Substituindo a equação 6.7 na equação 6.6, chega-se a:

u(ζ , t) =
∫ t

0

(
1− ζ

h

)
UT ae−a(t−σ)dσ − 2

π

∞

∑
n=1

1
n

sen
(

nπ
ζ

h

)∫ t

0
e−(nπ)2 ασ

h2 UT ae−a(t−σ)dσ ,

(6.8)



Capítulo 6. Modelagem dos termos-fonte 55

resolvendo a integral, alterando a coordenada ζ para y, com a origem de coordenadas no
centro do pseudo-eixo de raio Ri (0≤ y≤ Ri +h =⇒ ζ = y−Ri), e substituindo α por µ/ρ ,
obtém-se finalmente:

u(y, t) =UT

[(
1− y−Ri

h

)
(1− e−at)

− 2
π

∞

∑
n=1

1
n

1(
1− µ(nπ)2)

aρh2

) sen
(

nπ
y−Ri

h

)
(e
−(nπ)2 µt

ρh2 − e−at)

 . (6.9)

Com a solução contínua para o campo de velocidade u determinada, é possível calcular
as tensões nas paredes, dado que:

τxy = µ
∂u
∂y

. (6.10)

Ao substituir a equação 6.9 na equação 6.10 nas respectivas paredes, as tensões nas
paredes superior e inferior são determinadas, resultando em:

τsup =−µ
∂u
∂y

∣∣∣∣y = Ri +h=−µ

UT

h
(1− e−at)+

2UT

h ∑n = 1∞ (−1)n

1− (nπ)2µ

ρah2

(e
−(nπ)2 µt

ρh2 − e−at)


(6.11)

e

τin f =−µ
∂u
∂y

∣∣∣∣y = Ri +h=−µ

UT

h
(1− e−at)+

2UT

h ∑n = 1∞ 1

1− (nπ)2µ

ρah2

(e
−(nπ)2 µt

ρh2 − e−at)

 .
(6.12)

Assim, é viável determinar o termo Fext,xy conhecendo as áreas de atuação dessas tensões.
Aproximando a área superior da área inferior, devido à inclinação geralmente mínima da parede
superior, tem-se: Asup = Ain f = ∆x, assumindo que a componente de profundidade é unitária
(∆z = 1). Substituindo as equações 6.12 e 6.11 na equação 6.1, chega-se finalmente a:

Fextx,y =

2µUT

h

∞

∑
n=1

1− (−1)n

1− (nπ)2µ

ρah2

(e−at− e
−(nπ)2µt

ρh )

∆x. (6.13)

Ao comparar os resultados das tensões obtidos por este método com aqueles proveni-
entes do modelo de Reynolds (substituindo a equação 4.5 na equação 6.10), observou-se uma
concordância muito satisfatória para os valores de tensão, o que valida a formulação proposta.
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Um dos diversos resultados obtidos para a tensão é apresentado na figura 7. As subfiguras 7a,
7b, 7c e 7d exibem valores distintos, pois representam as tensões em diferentes configurações
geométricas de canais. As configurações de sapatas utilizadas estão dispostas nas Tab. 1 e 2 e
uma representação visual da geometria é encontrada na Fig. 8. A Fig. 7a é respectiva à geometria
mostrada na Fig. 8a, a Fig. 7b à Fig. 8b, a Fig. 7c à Fig. 8c e a Fig. 7d à Fig. 8d.

Figura 7 – Comparação entre os resultados obtidos para os valores das tensões nas paredes da sapata
deslizante.
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Fonte: Silva et al. (2024).

Tabela 1 – Propriedades fluidodinâmicas e de operação das sapatas.

Propriedade Valor
Viscosidade (µ) 9,0 [Pa.s]
Massa especifica (ρ) 998,0 [kg/m3]
Velocidade da parede (U) 1,0 [m/s]

Fonte: Adaptada de Silva et al. (2024).
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Tabela 2 – Configurações geométricas dos canais cartesianos.

Canal Comprimento (m) h(x = 0) (m) h(x = L/2) (m) Re∗ []
Parábola positiva 1,00E-1 51,25E-5 50,00E-5 2,91E-4
Parábola negativa 1,00E-1 48,75E-5 50,00E-5 2,77E-4
V positivo 1,00E-1 55,00E-4 50,00E-4 3,35E-2
V negativo 1,00E-1 45,00E-4 50,00E-4 2,77E-2

Fonte: Silva et al. (2024).

Embora a formulação se mostre elegante e produza resultados idênticos aos do modelo
de Reynolds, sua aplicação direta ao modelo numérico-computacional, derivado do balanço da
quantidade de movimento linear com base na teoria de filme fino, não demonstrou convergên-
cia computacional. Consequentemente, tornou-se imperativo o desenvolvimento de uma nova
formulação para a obtenção do termo Fext,xy.

A formulação correta deveria incorporar as condições de contorno do problema e, simul-
taneamente, depender da própria velocidade média a ser calculada na célula. Isso se justifica
pelas pequenas variações numéricas computacionais. Apesar de serem mínimas, essas flutuações
numéricas são de alta relevância, pois em sistemas fechados, como o da sapata deslizante ou do
mancal cilíndrico, tais flutuações ocorrem em todas as células, exigindo que o sistema se adapte
a elas.

Uma abordagem inicial para impor as condições de contorno consistiu na adaptação da
discretização da equação 6.10, utilizando apenas a velocidade média conhecida no centro da
célula e as condições de contorno. Matematicamente, aproximando a derivada pelo método das
diferenças finitas de segunda ordem, isso se expressa como:

τxy|in f ≈ µ
−3U +4u

h
(6.14)

e

τxy|sup≈ µ
U−4u

h
. (6.15)

Assim, substituindo as equações 6.14 e 6.15 na equação 6.1, e considerando a mesma
área ∆x, obtém-se que:

Fext,xy ≈ µ∆x
4(U−2u)

h
. (6.16)

Esta modelagem demonstra dependência tanto das condições de contorno da sapata
deslizante quanto da velocidade a ser calculada. A modelagem apresentou convergência numérica,
exibindo uma convergência qualitativa, mas não quantitativa. A figura 9 ilustra alguns resultados
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Figura 8 – Representação dos canais analisados em coordenadas retangulares.
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Fonte: Silva et al. (2024).

preliminares com esta primeira modelagem. As configurações de sapata são as mesmas utilizadas
nos resultados mostrados na Fig. 7.

Os resultados apresentados na figura 9 seguem o padrão de crescimento e decaimento de
pressão do modelo de Reynolds. Contudo, não reproduzem os mesmos resultados quantitativos.
Em diversas simulações realizadas, variando a velocidade, o perfil do canal, as propriedades
físicas, entre outros parâmetros, notou-se que a diferença entre os valores das pressões se
aproximava da constante

√
2. Dessa forma, a equação 6.16 foi reescrita como:

Fext,xy ≈
√

2µ∆x
4(U−4u)

h
. (6.17)
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Figura 9 – Comparação entre os resultados obtidos para os valores das pressões com a modelagem
discretizada.
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Fonte: Silva et al. (2024).

6.1.3 Formulação Proposta: Expansão em Série de Taylor

Para superar tanto as limitações apontadas por Silva, Cavalini e Neto (2023) e Silva et

al. (2024) quanto os problemas de precisão observados na fase preliminar, o presente trabalho
desenvolveu uma modelagem fundamentada rigorosamente na expansão em série de Taylor.

Diferente das tentativas anteriores que buscavam ajustes empíricos, esta abordagem parte
da definição matemática. Expandindo uma função f (x) em torno do centro do volume de controle
(x0) em direção às fronteiras (x0±∆x):

f (x0 +∆x) = f (x0)+ f ′(x0)∆x+
f ′′(x0)

2
(∆x)2 +

f ′′′(x0)

6
(∆x)3 +O((∆x)4) (6.18)

f (x0−∆x) = f (x0)− f ′(x0)∆x+
f ′′(x0)

2
(∆x)2− f ′′′(x0)

6
(∆x)3 +O((∆x)4) (6.19)
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Subtraindo as equações, isola-se a derivada (cisalhamento) com precisão de segunda
ordem, eliminando a necessidade de fatores de correção:

f ′(x0)≈
f (x0 +∆x)− f (x0−∆x)

2∆x
− f ′′′(x0)

6
(∆x)2. (6.20)

Aplicando este conceito ao sistema de coordenadas curvilíneas não-ortogonais — o que
constitui a inovação final deste trabalho — obtêm-se as expressões definitivas para os termos
fonte λ , que garantem a estabilidade e a precisão desejadas:

λη =3ν

[
2

((
h′

h(2Rb−h)

)2

+
1
h2

)
(ω−2uη)

−ω

(
2

h(2Rb−h)
− h′2

h2(2Rb−h)2 −
h′′

h(2Rb−h)2

)]
+

ḣω

2h

(6.21)

λγ =−12ν

[(
h′

h(2Rb−h)

)2

+
1
h2

]
uγ . (6.22)
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CAPÍTULO

7
RESULTADOS

7.1 Validação do modelo
Para a validação do modelo proposto, adotou-se o caso de estudo de um mancal radial

cilíndrico cujas propriedades geométricas, propriedades físicas do fluido e de operação foram
analisadas por Mota et al. (2022). Os dados de referência utilizados para comparação foram
gerados por meio da biblioteca de código aberto ROSS (TIMBó et al., 2020), que emprega uma
solução baseada na equação de Reynolds para determinar as características estáticas e dinâmicas
de mancais.

Os parâmetros utilizados na simulação, idênticos aos adotados na referência, estão
detalhados na Tab. 3. A carga aplicada corresponde a W = 100 [N]. A análise foi realizada para
8 velocidades de rotação, distribuídas linearmente entre 200 e 550 rad/s.

Tabela 3 – Parâmetros do mancal utilizado no caso de estudo.

Parâmetro Símbolo Valor
Raio do Mancal Rb 15.00 [mm]
Raio do Rotor Rr 14.91 [mm]
Folga Radial c 0.09 [mm]
Comprimento do Mancal L 20.0 [mm]
Massa do Rotor m 10.1938 [kg]
Peso do Rotor W 100 [N]
Viscosidade Dinâmica µ 54.49×10−3 [Pa.s]
Massa específica ρ 881 [kg/m3]
Pressão de vaporização Pvap 1.0×105 [Pa]
Velocidade de rotação ω 200≤ ω ≤ 550 [rad/s]
Reynolds modificado Re∗ 4.0×10−3 < Re∗ < 1.2×10−2

Fonte: Adaptada de Mota et al. (2022).
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7.1.1 Comparação Dos Resultados De Equilíbrio

As simulações computacionais foram executadas para cada velocidade de rotação até
que a posição de equilíbrio do rotor fosse atingida. Os resultados obtidos com o modelo proposto
foram então comparados com os dados reportados por Mota et al. (2022), obtidos via ROSS. As
Figs. 10 e 11 apresentam essa comparação.

Na Fig. 10a compara-se a razão de excentricidade de equilíbrio (e/c) em função da
velocidade de rotação. Observa-se uma excelente concordância qualitativa e quantitativa entre
os resultados. Ambos os modelos capturam corretamente a física do problema, mostrando a
redução da excentricidade com o aumento da velocidade. Nota-se que o modelo proposto prevê
valores ligeiramente inferiores aos da referência em toda a faixa analisada, mantendo, contudo,
uma diferença percentual pequena e uniforme.

A Fig. 10b exibe a comparação para o ângulo de atitude (φ ). Observa-se que ambas as
curvas apresentam um comportamento suave e monotônico, condizente com o esperado para
mancais cilíndricos nesta faixa de operação. A correlação entre os resultados é alta.

Figura 10 – Comparação da posição de equilíbrio do rotor em função da velocidade de rotação
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(a) Razão de excentricidade vs. Velocidade.
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Fonte: Elaborada pelo autor.

O lugar geométrico dos pontos de equilíbrio é apresentado em coordenadas cartesianas
(Fig. 11a) e polares (Fig. 11b). As figuras demonstram que a trajetória de equilíbrio prevista
pelo presente trabalho é coerente com os dados de referência. O deslocamento do centro do eixo
(subindo e movendo-se lateralmente com o aumento da rotação) segue o mesmo padrão em ambos
os casos. A proximidade das curvas confirma a capacidade do modelo em coordenadas curvilíneas
de reproduzir com fidelidade o comportamento estático previsto por solvers tradicionais baseados
na equação de Reynolds.
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Figura 11 – Lugar geométrico dos pontos de equilíbrio do rotor para a faixa de velocidades analisada
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(a) Lugar geométrico em coordenadas cartesianas.
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(b) Lugar geométrico em coordenadas polares.

Fonte: Elaborada pelo autor.

7.1.2 Comparação Dos Coeficientes Dinâmicos

Para a determinação dos coeficientes de rigidez (ki j) e amortecimento (ci j) do mancal,
utilizou-se o método das órbitas elípticas proposto por Sun et al. (2019) e também bem explicado
e detalhado em Rossi et al. (2025). Este método baseia-se na aplicação de pequenas perturbações
no deslocamento e na velocidade do centro do eixo em torno da posição de equilíbrio estático.
Para o presente estudo, a frequência de excitação da perturbação (Ω) foi definida como síncrona,
ou seja, igual à velocidade de rotação do rotor (ω), tal que Ω = ω .

As Figuras 12 e 13 apresentam a comparação entre os coeficientes obtidos com o modelo
atual e os dados de referência de Mota et al. (2022), considerando uma margem de incerteza de
±10% para a referência.

7.1.2.1 Coeficientes de Rigidez

Na Fig. 12, observa-se que o modelo proposto é capaz de reproduzir corretamente o
comportamento qualitativo dos coeficientes de rigidez em função da rotação. As inclinações das
curvas são consistentes com a física do problema e com a referência.

Quantitativamente, nota-se que para os coeficientes cruzados (kxy, kyx) e para a rigidez
direta na direção vertical (kyy), o modelo atual tende a subestimar os valores em comparação aos
resultados obtidos via equação de Reynolds (ROSS), situando-se abaixo da margem de 10%.
Por outro lado, para a rigidez direta na direção horizontal (kxx), o modelo apresenta valores
ligeiramente superiores à referência, demonstrando uma maior rigidez nessa direção específica.
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Figura 12 – Comparação dos coeficientes de rigidez em função da velocidade de rotação
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Fonte: Elaborada pelo autor.

7.1.2.2 Coeficientes de Amortecimento

A comparação dos coeficientes de amortecimento é apresentada na Fig. 13. De forma
análoga à rigidez, as tendências de variação com a velocidade são bem capturadas com o modelo
em coordenadas curvilíneas.

Destaca-se a boa concordância nos termos cruzados (cxy e cyx), onde os resultados
do presente trabalho se aproximam significativamente da faixa de referência, especialmente
em rotações mais elevadas. O termo direto cyy segue o padrão de subestimação observado na
rigidez. Já para o coeficiente cxx, embora a tendência de redução com o aumento da velocidade
seja respeitada, observa-se uma divergência de magnitude significativa em relação aos dados
de Mota et al. (2022), indicando que o modelo atual prevê um amortecimento horizontal
consideravelmente menor.



Capítulo 7. Resultados 65

Figura 13 – Comparação dos coeficientes de amortecimento em função da velocidade de rotação
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Fonte: Elaborada pelo autor.

7.2 RESULTADOS E DISCUSSÕES

7.2.1 Análise da Trajetória Dinâmica do Rotor

Uma das principais vantagens do modelo desenvolvido é a capacidade de simular a
trajetória completa do rotor desde uma condição inicial arbitrária até a sua posição de equilíbrio
final. Na Fig. 14 apresenta-se a evolução temporal da razão de excentricidade e do ângulo de
atitude para as duas velocidades analisadas (250 e 500 rad/s), enquanto a Fig. 15 exibe a trajetória
correspondente do centro do eixo no plano X−Y .

Para ambas as rotações, partindo de uma condição inicial concêntrica (e/c = 0), o rotor
exibe um comportamento dinâmico característico de sistemas subamortecidos de segunda ordem.
Observa-se um overshoot inicial, onde a excentricidade ultrapassa momentaneamente seu valor
de estabilização, seguido por oscilações que decaem exponencialmente até o estado estacionário.
Esse comportamento transiente permite uma visualização direta da estabilidade do sistema e da
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Figura 14 – Evolução temporal das coordenadas polares do rotor para duas velocidades de rotação distin-
tas.
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(a) Ângulo de atitude para 250 rad/s
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(b) Ângulo de atitude para 500 rad/s
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(c) Razão de excentricidade para 250 rad/s
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(d) Razão de excentricidade para 500 rad/s

Fonte: Elaborada pelo autor.

atuação das forças de amortecimento do filme fluido, uma análise que complementa os métodos
tradicionais de perturbação.

As trajetórias no plano X−Y (Fig. 15) descrevem uma espiral que converge para o ponto
de equilíbrio. Os pontos finais atingidos são consistentes com os valores discutidos na análise
estática (Seção 7.1.1), mantendo a coerência com os pequenos desvios observados em relação
aos dados de referência de Mota et al. (2022). A suavidade das curvas de trajetória reforça a
robustez numérica do esquema de integração temporal adotado.

7.2.2 Análise do Campo de Pressão Fluidodinâmico

A força motriz que define a trajetória e a posição de equilíbrio do rotor advém da
distribuição de pressão no filme lubrificante. A Fig. 16 ilustra os campos de pressão calculados
com o modelo para as posições de equilíbrio a 250 e 500 rad/s.



Capítulo 7. Resultados 67

Figura 15 – Posição do centro do rotor para diferentes velocidades.
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(a) Trajetória no plano X-Y para 250 rad/s.
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(b) Trajetória no plano X-Y para 500 rad/s.

Fonte: Elaborada pelo autor.

Figura 16 – Campos de pressão fluidodinâmicos para as posições de equilíbrio.
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(a) Campo de pressão de equilíbrio ω = 250 rad/s.

0 50 100 150 200 250 300 350
 [deg]

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0

z [
mm]

100
150
200
250
300
350
400
450

Pr
es

sã
o 

[k
Pa

]

Pressure Field 500 [rad/s]

100

150

200

250

300

350

400

450

Pr
es

sã
o 

[k
Pa

]

(b) Campo de pressão de equilíbrio ω = 500 rad/s.

Fonte: Elaborada pelo autor.

Com as superfícies demonstram-se o comportamento típico de um mancal de com-
primento finito: o perfil de pressão exibe uma forma aproximadamente senoidal na direção
circunferencial (θ ) e parabólica na direção axial (z), decaindo para a pressão ambiente nas
bordas (z = 0 e z = L). Destaca-se a extensa zona de cavitação, tratada com o modelo de meio-
Sommerfeld, onde a pressão é truncada no valor de vaporização, ocupando metade do domínio
circunferencial.
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Na Fig. 17, compara-se os perfis de pressão no plano central (z = L/2). Embora a
localização angular do pico de pressão permaneça quase inalterada, a magnitude deste pico é
consideravelmente maior para a rotação de 500 rad/s. Este aumento na pressão é o mecanismo
físico responsável pela maior capacidade de carga em altas rotações, resultando na diminuição
da excentricidade observada anteriormente.

Figura 17 – Comparação dos perfis de pressão no plano central do mancal (z = L/2).
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Fonte: Elaborada pelo autor.

7.2.3 Influência da Inércia do Fluido (Re∗ 6� 1)

Uma distinção fundamental entre o modelo proposto e a clássica equação de Reynolds
reside na consideração dos termos de inércia convectiva e transiente nas equações de quantidade
de movimento. Enquanto a abordagem de Reynolds pressupõe que o número de Reynolds
modificado é muito menor que a unidade (Re∗� 1), desprezando a influência da massa específica
ρ na geração de pressão hidrodinâmica laminar, o presente modelo mantém esses termos.

Para investigar os limites de validade da hipótese de filme fino clássica e quantificar a
influência da inércia no comportamento do mancal, realizou-se um estudo paramétrico utilizando
as mesmas propriedades mostradas na tabela 3 com ω = 500 rad/s variando a massa específica
do fluido, mantendo constante as outras propriedades. Essa variação altera diretamente o valor
de Re∗ sem modificar as forças viscosas que dominam o regime de lubrificação tradicional.

A Figura 18 ilustra o comportamento da pressão máxima e da posição de equilíbrio ao
variar o parâmetro de inércia.
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Figura 18 – Influência da variação da massa específica (ρ) e do número de Reynolds modificado (Re∗)
nas características do mancal.
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Fonte: Elaborada pelo autor.

Observa-se que, para baixos valores de ρ (onde Re∗ � 1), os resultados do modelo
proposto convergem assintoticamente para a solução da equação de Reynolds. Contudo, à
medida que a massa específica aumenta e os efeitos inerciais tornam-se relevantes (Re∗ ∼ 1 ou
Re∗ > 1), nota-se um desvio progressivo. Esse comportamento evidencia que, em regimes de
operação onde a inércia do fluido é significativa (como em fluidos de baixa viscosidade ou altas
velocidades tangenciais), a utilização de modelos completos baseados em Navier-Stokes se faz
necessária para uma predição precisa da capacidade de carga e estabilidade.

7.2.4 Discussão

Os resultados apresentados validam o modelo numérico-computacional proposto em
coordenadas curvilíneas como uma ferramenta robusta para a análise de mancais fluidodinâmicos.
A comparação com os dados de Mota et al. (2022) confirmou a potencialidade intrínseca ao
modelo para prever com boa precisão a posição de equilíbrio estático. A concordância verificada
nas curvas de equilíbrio (Fig. 10) e no localização do eixo (Fig. 11) valida a implementação das
coordenadas curvilíneas móveis, demonstrando que o mapeamento do domínio físico excêntrico
para o computacional preserva o balanço de massa e de quantidade de movimento, apresentando
curvas suaves e fisicamente consistentes.

No que tange aos coeficientes dinâmicos, a análise revelou que o modelo captura corre-
tamente as tendências de rigidez e de amortecimento. Contudo, observou-se uma divergência
notável, porém esperada: a subestimação da rigidez vertical (kyy) e do amortecimento horizontal
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(cxx) em comparação ao modelo de Reynolds. Esta discrepância não indica erro, mas sim a
influência física dos termos de inércia (convectiva e temporal) e da formulação não-ortogonal,
que são retidos no presente modelo e desprezados na formulação clássica. A inércia do fluido
atua como uma resistência adicional à mudança de movimento, alterando a resposta de fase entre
o deslocamento do eixo e a força hidrodinâmica resultante, capturando nuances do escoamento
que a equação de Reynolds simplifica.

Para investigar essa influência, a análise paramétrica do Número de Reynolds modificado
(Re∗) (Fig. 18) constitui uma das contribuições mais significativas deste estudo. Observou-se
que, para fluidos de baixa densidade (Re∗� 1), o modelo converge assintoticamente para a
solução de Reynolds. Entretanto, à medida que a massa específica ρ aumenta, o desvio torna-se
pronunciado. Isso evidencia que, para aplicações modernas envolvendo fluidos de processo ou
altas velocidades tangenciais, a hipótese de escoamento de Stokes torna-se insuficiente, exigindo
modelos como o aqui proposto, que consideram a quantidade de movimento completa do fluido.

Outra contribuição relevante do presente trabalho é a eficiência na simulação transiente.
Enquanto modelos baseados em Reynolds focam predominantemente no estado estacionário ou
linearizado, a abordagem apresentada permite a análise direta da evolução temporal não-linear
do rotor (Figs. 14 e 15). O modelo foi capaz de revelar o comportamento subamortecido do
sistema e o overshoot da excentricidade — fenômenos que análises puramente estáticas são
incapazes de prever — com um custo computacional (cerca de 30 minutos por simulação em
processamento serial) muito inferior ao de simulações com CFD 3D completas.

Por fim, ressalta-se a necessidade de aprimoramentos futuros, como a inclusão da equação
da energia para capturar efeitos térmicos na viscosidade e a implementação de modelos de
cavitação mais representativos, superando as limitações da condição de meio-Sommerfeld aqui
empregada.
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CAPÍTULO

8
CONCLUSÃO

O presente trabalho atingiu seu objetivo principal ao desenvolver, implementar e validar
uma modelagem matemática e computacional para mancais fluidodinâmicos baseada na teoria
de filme fino em coordenadas curvilíneas generalizadas e móveis. A metodologia proposta
preencheu com êxito a lacuna existente entre os modelos simplificados de Reynolds e as si-
mulações complexas de CFD, oferecendo uma ferramenta que equilibra precisão física e custo
computacional.

Os resultados obtidos demonstraram que o modelo reproduz com alta fidelidade os
campos de pressão e a posição de equilíbrio do rotor quando comparado aos dados de referência
da literatura, o que valida a robustez tanto da transformação de coordenadas quanto do algoritmo
numérico empregado. Mais do que apenas replicar resultados clássicos, o estudo confirmou
que a negligência dos termos inerciais é uma aproximação válida apenas para baixos números
de Reynolds modificado. O novo modelo evidenciou sua superioridade ao capturar os efeitos
da massa específica na dinâmica do mancal, apresentando diferenças sensíveis e fisicamente
justificáveis nos coeficientes dinâmicos e na capacidade de carga em regimes onde a inércia do
fluido se torna relevante.

Além da precisão estática, a formulação dependente do tempo permitiu a simulação
realista da trajetória do rotor desde condições iniciais arbitrárias até o equilíbrio. Essa capacidade
de análise transiente não linear, que revelou comportamentos como o overshoot da excentricidade,
representa um avanço significativo em relação a modelos quase-estáticos tradicionais. Ressalta-se
que tal detalhamento físico foi alcançado mantendo-se uma elevada eficiência computacional,
graças à estratégia de redução dimensional pela integração na direção radial, que provou ser
eficaz para manter a representatividade física com um custo de processamento muito inferior ao
de abordagens volumétricas tridimensionais.

Como direcionamento para trabalhos futuros, o aprimoramento da estabilidade no aco-
plamento fluido-estrutura, possivelmente através da implementação de integradores temporais
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de ordem superior, como métodos de Runge-Kutta implícitos. A expansão do modelo para
considerar escoamentos compressíveis e variações de viscosidade com a temperatura também se
apresenta como um caminho promissor para aproximar ainda mais as simulações das condições
operacionais reais de turbomáquinas modernas. Outra simplificação que pode ser explorada é
considerar h

Rb
� 1, o que reduziria o número de termos nas equações de balanço.
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