
Guilherme Rimoldi Kameoka

Documentação do Desenvolvimento de um

Chatbot como Ferramenta de Apoio ao

Desenvolvimento Cognitivo de Crianças com

Transtorno do Espectro Autista

2025

Guilherme Rimoldi Kameoka

Documentação do Desenvolvimento de um Chatbot como

Ferramenta de Apoio ao Desenvolvimento Cognitivo de

Crianças com Transtorno do Espectro Autista

Orientador: Prof. Renato Aparecido Pimentel da Silva

2025

Dedico este trabalho aos meus pais, que sempre me apoiaram incondicionalmente,

acreditaram em meu potencial e me incentivaram a nunca desistir dos meus sonhos. Sem

o apoio, a confiança e o exemplo de vocês, nada disso teria sido possível.

AGRADECIMENTOS

Primeiramente, gostaria de expressar minha mais profunda e eterna gratidão aos

meus pais, cujo apoio incondicional e incentivo constante foram fundamentais para que

eu nunca desistisse dos meus sonhos. Sua confiança e exemplo de perseverança me deram

segurança e motivação ao longo de toda a minha trajetória acadêmica.

Agradeço também à minha irmã, cuja disciplina, dedicação e empenho nos estudos

sempre foram fonte de inspiração. Seu exemplo constante me incentivou a buscar excelência

em meus próprios esforços e a enfrentar os desafios com confiança e determinação.

Minha sincera gratidão se dirige à minha namorada, por seu apoio constante,

paciência e incentivo inabalável ao longo de toda a graduação. Seu encorajamento foi

fundamental para minha conquista, me fazendo a acreditar mais em meu potencial e a

superar e não desistir dos desafios que encontrei nessa jornada.

Por fim, mas não menos importante, agradeço aos amigos que fiz na FACOM,

que tornaram o percurso acadêmico mais leve, agradável e memorável. Suas companhias,

conversas e momentos compartilhados contribuíram significativamente para que minha

experiência universitária fosse enriquecedora e prazerosa.

RESUMO

Este trabalho tem por objetivo apresentar e documentar o desenvolvimento de uma

aplicação web em formato de chatbot, concebida como tecnologia assistiva destinada a

apoiar o desenvolvimento cognitivo de crianças com Transtorno do Espectro Autista

(TEA). O projeto foi conduzido no âmbito de um estágio supervisionado e fundamenta-

se em uma arquitetura de microsserviços serverless, implementada na infraestrutura

da Amazon Web Services (AWS). A solução integra serviços especializados, dentre os

quais se destacam o Amazon Lex, para processamento de linguagem natural, o Amazon

Rekognition, para análise de imagens, o Amazon Polly, para síntese de voz, bem como

a API da OpenAI, empregada para a geração de narrativas. O sistema desenvolvido

proporciona interações multimodais, permitindo que a criança expresse emoções e elabore

histórias personalizadas a partir do envio de imagens ou da seleção de cartões visuais.

Assim, esta monografia contribui com a proposição de um modelo arquitetural de caráter

replicável e economicamente viável, ao mesmo tempo em que demonstra a aplicabilidade

de tecnologias emergentes na construção de ferramentas educacionais inclusivas.

Palavras-chave: Transtorno do Espectro Autista. Tecnologia Assistiva. Chatbot. Compu-

tação em Nuvem. Inteligência Artificial.

ABSTRACT

This work presents and documents the development of a web-based chatbot application

designed as assistive technology to support cognitive development in children with Autism

Spectrum Disorder (ASD). The project was conducted as part of a supervised internship

and is built upon a serverless microservices architecture deployed on Amazon Web Services

(AWS) infrastructure. The solution integrates several specialized services, including Amazon

Lex for natural language processing, Amazon Rekognition for image analysis, Amazon

Polly for text-to-speech synthesis, and the OpenAI API for narrative generation. The

developed system enables multimodal interactions, allowing children to express emotions

and create personalized stories through image uploads or visual card selection. This

monograph contributes by proposing a replicable and cost-effective architectural model

while demonstrating the practical application of emerging technologies in developing

inclusive educational tools.

Keywords: Autism Spectrum Disorder. Assistive Technology. Chatbot. Cloud Computing.

Artificial Intelligence.

LISTA DE ILUSTRAÇÕES

Figura 1 – Evolução Histórica dos Chatbots Fonte: (NSAIF et al., 2024) 25

Figura 2 – Representação de uma Rede Neural Convolucional. Fonte: (Serviço

Federal de Processamento de Dados (Serpro), 2020-04-03) 28

Figura 3 – Representação de uma Rede Neural Convolucional. Fonte: (NVIDIA,

2025) . 29

Figura 4 – Cronograma de desenvolvimento com metodologia ágil. Fonte: Do Autor 35

Figura 5 – Diagrama de Casos de Uso do Sistema Chatbot. Fonte: Do Autor 39

Figura 6 – Principais bibliotecas utilizadas no desenvolvimento em Python. Fonte:

Do Autor . 41

Figura 7 – Dependências principais utilizadas no desenvolvimento em Node.js.

Fonte: Do Autor . 41

Figura 8 – Estrutura de diretórios do projeto, destacando a distribuição dos módu-

los e seus arquivos principais. Fonte: Do Autor 42

Figura 9 – Arquitetura distribuída do sistema, ilustrando a interação entre serviços

AWS e componentes externos. Fonte: Do Autor 43

Figura 10 – Implementação do módulo de roteamento (lambda_function.py). Fonte:

Do Autor . 46

Figura 11 – Início do handler : leitura do contexto e validação dos dados de entrada.

Nesta etapa, o módulo interpreta o evento do Amazon Lex e verifica se

os slots obrigatórios foram preenchidos corretamente. Fonte: Do Autor 47

Figura 12 – Fase de diálogo: verificação de slots obrigatórios e construção de respos-

tas adaptativas com cards visuais. Fonte: Do Autor 48

Figura 13 – Execução do atendimento: coleta das escolhas do usuário, geração do

áudio e empacotamento em payload para o chatbot. Fonte: Do Autor . . 48

Figura 14 – Finalização da sessão e inclusão do card de continuidade, permitindo a

interação contínua do usuário com o chatbot. Fonte: Do Autor 49

Figura 15 – Início do handler : captura do contexto, inicialização de variáveis e

validação dos slots. Fonte: Do Autor 50

Figura 16 – Fase de diálogo: verificação de slots e geração de respostas adaptativas

para coleta de dados do usuário. Fonte: Do Autor 50

Figura 17 – Pré-processamento e chamada ao Amazon Rekognition para análise da

imagem selecionada. Fonte: Do Autor 51

Figura 18 – Pós-processamento dos rótulos: tradução, normalização e montagem da

frase para geração da história. Fonte: Do Autor 52

Figura 19 – Orquestração assíncrona: acionamento da função Lambda para geração

da história e retorno de resposta imediata ao usuário. Fonte: Do Autor 52

Figura 20 – Resposta imediata ao usuário: mensagem de carregamento e card de

continuidade da interação. Fonte: Do Autor 53

Figura 21 – Validação e construção de cards: leitura do JSON, verificação de slots e

preparação de cards de imagem para o usuário. Fonte: Do Autor 54

Figura 22 – Início do handler : captura de intent e slots, inicialização da resposta e

validação. Fonte: Do Autor . 54

Figura 23 – Fase de diálogo: verificação de slots e respostas adaptativas para coleta

de dados do usuário. Fonte: Do Autor 55

Figura 24 – Cumprimento da intent: coleta das escolhas dos cards e composição da

frase para geração da história. Fonte: Do Autor 55

Figura 25 – Orquestração assíncrona: acionamento da função Lambda e manutenção

da responsividade da conversa. Fonte: Do Autor 56

Figura 26 – Resposta imediata ao usuário: mensagem de carregamento e card para

continuidade da interação. Fonte: Do Autor 56

Figura 27 – Exemplo da função close_session, mostrando a estrutura de retorno

padronizada para finalização de intents no Amazon Lex. Fonte: Do Autor 57

Figura 28 – Exemplo da função check_validation, mostrando como a resposta do

Amazon Lex é construída com base na validação dos slots. Fonte: Do

Autor . 58

Figura 29 – Implementação do serviço de análise de imagens (rekognition.py).

Fonte: Do Autor . 60

Figura 30 – Fluxo principal da função polly_v1 para síntese de áudio. Fonte: Do

Autor . 61

Figura 31 – Tratamento de erros e retorno padronizado da função polly_v1. Fonte:

Do Autor . 62

Figura 32 – Trecho inicial da função create_story_v1, mostrando a validação de

parâmetros e preparação da requisição à Application Programming

Interface (Interface de Programação de Aplicações) (API) da OpenAI.

Fonte: Do Autor . 63

Figura 33 – Trecho final da função create_story_v1, demonstrando a extração do

texto gerado, construção da resposta e tratamento de erros. Fonte: Do

Autor . 64

Figura 34 – Exemplo de configuração de variáveis de ambiente no arquivo serverless.yml,

incluindo chaves de API e URLs de serviços externos. Fonte: Do Autor 67

Figura 35 – Exemplo de saída do comando aws configure list, mostrando as

credenciais e a região configurada na Command Line Interface (Interface

de Linha de Comando) (CLI). Fonte: Do Autor 68

Figura 36 – Conteúdo do diretório src/serverless, incluindo serverless.yml,

package.json e scripts Python das funções Lambda. Fonte: Do Autor 70

Figura 37 – Instalação dos plugins serverless-s3-sync e serverless-finch via

npm. Fonte: Do Autor . 70

Figura 38 – Verificação das dependências instaladas no projeto utilizando npm list

–depth=0. Fonte: Do Autor . 71

Figura 39 – Estrutura do diretório do módulo conversacional, contendo arquivos

centrais para a orquestração das funções Lambda. Fonte: Do Autor . . 73

Figura 40 – Exemplo de configuração de variáveis de ambiente no arquivo serverless.yml,

incluindo credenciais de serviços externos e identificadores de recursos

AWS. Fonte: Do Autor . 74

Figura 41 – Interface do Amazon Lex V2 durante a importação do modelo de

conversação. Fonte: Do Autor . 76

Figura 42 – Fluxo de compilação (build) do modelo Amazon Lex, incluindo monito-

ramento do status do processo. Fonte: Do Autor 77

Figura 43 – Criação de um novo usuário no Identity and Access Management (Ge-

renciamento de Identidade e Acesso) (IAM). Fonte: Do Autor. 79

Figura 44 – Configuração de permissões no IAM. Fonte: Do Autor. 80

Figura 45 – Processo de geração de chave de acesso no IAM. Fonte: Do Autor. . . . 80

Figura 46 – Geração de credenciais de acesso no IAM. Fonte: Do Autor. 81

Figura 47 – Tela inicial do chatbot com as opções de interação. Fonte: Do Autor . . 83

Figura 48 – Seleção da opção de expressar-se e escolha do gênero da voz. Fonte: Do

Autor . 85

Figura 49 – Escolha do tipo de expressão: emoções ou comidas. Fonte: Do Autor . . 86

Figura 50 – Seleção da emoção Feliz dentre as opções disponíveis. Fonte: Do Autor 87

Figura 51 – Geração da resposta em áudio personalizada. Fonte: Do Autor 88

Figura 52 – Envio da imagem pelo usuário no sistema. Fonte: Do Autor 90

Figura 53 – Exemplo de história gerada a partir de uma imagem enviada pelo

usuário. Fonte: Do Autor . 91

Figura 54 – Seleção do protagonista (gato) por meio de cards visuais. Fonte: Do Autor 92

Figura 55 – Seleção do clima (chuvoso) por meio de cards visuais. Fonte: Do Autor 93

Figura 56 – Escolha do meio de locomoção (avião) por meio de cards visuais. Fonte:

Do Autor . 94

Figura 57 – Seleção do local da história (espaço) por meio de cards visuais. Fonte:

Do Autor . 95

Figura 58 – História final completa gerada pelo sistema, incorporando todas as

escolhas do usuário. Fonte: Do Autor 96

Figura 59 – Fluxo de criação de uma chave de API secreta na plataforma da OpenAI,

destacando os passos de login, navegação até a seção de API keys e

geração da chave. Fonte: Do Autor. 103

Figura 60 – Fluxo de busca da API Microsoft Translator na plataforma RapidAPI.

Fonte: Do Autor. 104

Figura 61 – Localização da chave de API no painel Code Snippets da RapidAPI.

Fonte: Do Autor. 104

Figura 62 – Configuração de um agente para integração da plataforma Kommunicate

com o Amazon Lex. Fonte: Do Autor. 105

Figura 63 – Tela de configuração dos parâmetros de integração no Kommunicate.

Fonte: Do Autor. 106

Figura 64 – Processo de instalação do widget de chat do Kommunicate. Fonte: Do

Autor . 107

LISTA DE TABELAS

Tabela 1 – Tipos de chatbots segundo a IBM. Fonte: Do Autor 23

Tabela 2 – Estratégias para Geração de Identificadores Únicos. Fonte: Do Autor . 71

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface (Interface de Programação de Aplicações)

ARN Amazon Resource Name (Nome de Recurso da Amazon)

ASR Automatic Speech Recognition (Reconhecimento Automático de Fala)

AWS Amazon Web Services

BCIs Brain-Computer Interfaces (Interfaces Cérebro-Computador)

CAA Comunicação Aumentativa e Alternativa

CDC Centers for Disease Control and Prevention (Centros de Controle e Prevenção de
Doenças)

CLI Command Line Interface (Interface de Linha de Comando)

CNN Convolutional Neural Network (Rede Neural Convolucional)

DSM-5 Diagnostic and Statistical Manual of Mental Disorders (Manual Diagnóstico e
Estatístico de Transtornos Mentais)

FAQ Frequently Asked Questions (Perguntas Frequentes)

GPT Generative Pre-trained Transformer (Transformador Pré-treinado Generativo)

IA Inteligência Artificial

IAM Identity and Access Management (Gerenciamento de Identidade e Acesso)

IBGE Instituto Brasileiro de Geografia e Estatística

IDE Integrated Development Environment (Ambiente de Desenvolvimento Integrado)

IoT Internet of Things (Internet das Coisas)

LLMs Large Language Models (Modelos de Linguagem de Grande Escala)

NER Named Entity Recognition (Reconhecimento de Entidade Nomeada)

NLU Natural Language Understanding (Compreensão de Linguagem Natural)

NLP Natural Language Processing

PECS Picture Exchange Communication System (Sistema de Comunicação por Troca de
Figuras)

PLN Processamento de Linguagem Natural

RNN Recurrent Neural Network (Rede Neural Recorrente)

TA Tecnologia Assistiva

TEA Transtorno do Espectro Autista

TTS Text-to-Speech (Conversão de Texto em Fala)

UFU Universidade Federal de Uberlândia

SUMÁRIO

1 INTRODUÇÃO . 15

1.1 Objetivo Geral . 17

1.2 Objetivos Específicos . 17

1.3 Motivação . 17

1.4 Organização do Trabalho . 18

2 FUNDAMENTAÇÃO TEÓRICA . 20

2.1 Transtorno do Espectro Autista (TEA) 20

2.1.1 Histórico e Evolução do Conceito . 20

2.1.2 Avanços Recentes e o Papel das Tecnologias Assistivas 21

2.2 Chatbots e Sistemas Conversacionais 22

2.2.1 Definições, Arquiteturas e Tipologias . 22

2.2.2 Evolução Histórica dos Chatbots . 24

2.2.3 Chatbots e Transtorno do Espectro Autista (TEA) 26

2.3 Processamento de Linguagem Natural (PLN) 26

2.4 Visão Computacional e Reconhecimento de Imagens 27

2.5 Síntese de Voz (TTS) . 29

2.5.1 Definições e Abordagens Tecnológicas . 29

2.5.2 Avanços Recentes em Naturalidade e Expressividade 30

2.6 Tecnologia Assistiva (TA) . 30

2.6.1 Definições, Escopo e Classificações . 30

2.6.2 Avanços e Aplicações Específicas no Contexto do TEA 30

2.7 Arquitetura de Microsserviços na AWS 31

2.7.1 Amazon Lex . 31

2.7.2 AWS Lambda . 32

2.7.3 Amazon S3 . 32

2.7.4 Amazon Rekognition . 32

2.7.5 Amazon Polly . 32

2.7.6 Amazon API Gateway . 33

3 METODOLOGIA . 34

3.1 Processo de Desenvolvimento . 34

3.1.1 Estrutura da Equipe e Organização . 34

3.1.2 Abordagem Participativa e Coleta de Feedback 35

3.1.3 Metodologia Ágil . 36

3.1.4 Ferramentas de Gestão e Colaboração . 37

3.1.5 Fases de Desenvolvimento . 37

3.1.6 Práticas de Qualidade Implementadas . 38

3.2 Escopo Funcional do Sistema . 38

3.2.1 Descrição dos Elementos do Diagrama . 39

3.2.1.1 Usuário . 39

3.2.1.2 Casos de Uso Principais . 39

3.2.1.3 Casos de Uso de Apoio . 40

3.2.1.4 Relacionamentos . 40

3.3 Ferramentas e Tecnologias Utilizadas 40

3.4 Arquitetura de Código e Estrutura do Projeto 42

3.4.1 Justificativa das Escolhas Tecnológicas . 43

4 DESENVOLVIMENTO . 45

4.1 Módulo de Roteamento (lambda_function.py) 45

4.2 Módulo de Expressão Emocional (intent_expressar.py) 46

4.3 Módulo de Geração de Histórias . 49

4.3.1 Geração de Histórias a partir de Imagens ou Desenhos 49

4.3.2 Geração de Histórias a partir de Cards . 53

4.4 Módulo de Funções Auxiliares (functions.py) 57

4.5 Serviços Auxiliares Serverless . 59

4.5.1 Análise de Imagens (rekognition.py) . 59

4.5.2 Síntese de Voz (polly.py) . 60

4.5.3 Geração de Histórias (create_story.py) . 62

5 CONFIGURAÇÃO SISTÊMICA . 65

5.1 Especificações de Pré-requisitos . 65

5.1.1 Requisitos de Software e Dependências Tecnológicas 65

5.1.2 Credenciais e Contas de Serviço Necessárias 66

5.2 Preparação do Ambiente de Desenvolvimento 67

6 IMPLANTAÇÃO DO SISTEMA . 69

6.1 Fase I — Implantação da Infraestrutura Principal 69

6.2 Fase II — Implantação do Módulo Conversacional 72

6.2.1 Preparação do Ambiente de Bot . 72

6.2.2 Configuração de Variáveis de Ambiente e Integração com Serviços Externos 73

6.2.3 Execução da Implantação do Módulo Conversacional 74

6.3 Fase III — Configuração e Integração do Amazon Lex 75

6.3.1 Importação do Modelo Conversacional . 75

6.3.2 Compilação e Build do Modelo . 76

SUMÁRIO 14

6.3.3 Integração com AWS Lambda . 77

6.4 Fase IV — Integração com o Kommunicate 78

6.4.1 Configuração de usuário IAM especializado 79

6.4.2 Configuração no dashboard do Kommunicate 81

6.5 Fase V — Implantação do Frontend Web 82

6.5.1 Preparação para implantação do frontend 82

6.5.2 Execução da implantação do frontend . 82

7 RESULTADOS . 83

7.1 Interface Principal e Interação Inicial 83

7.2 Validação da Funcionalidade de Expressão Emocional 84

7.3 Validação da Funcionalidade de Geração de Histórias 89

7.3.1 Geração de Histórias a partir de Imagens 89

7.3.2 Geração de Histórias a partir de Cards . 91

7.4 Análise dos Resultados . 97

8 CONCLUSÃO . 98

REFERÊNCIAS . 99

A GUIA PARA OBTENÇÃO DE CREDENCIAIS DE ACESSO 102

A.1 OpenAI API . 102

A.2 Microsoft Translator API (via RapidAPI) 103

A.3 Kommunicate.io . 104

A.3.1 Integração com Amazon Lex . 105

A.3.2 Instalação do Widget no Website . 106

15

1 INTRODUÇÃO

O Transtorno do Espectro Autista (TEA) é uma condição do neurodesenvolvimento

caracterizada por dificuldades persistentes na comunicação social, na interação interpessoal

e por padrões restritivos e repetitivos de comportamento, interesses ou atividades. Por se

tratar de um espectro, o autismo manifesta-se de diferentes formas, com níveis variados

de comprometimento e habilidades, exigindo abordagens individualizadas em contextos

como educação, saúde e desenvolvimento social (World Health Organization, 2023). O

diagnóstico precoce, aliado a um acompanhamento terapêutico adequado, é considerado

essencial para o progresso da criança, especialmente durante a primeira infância, fase

crítica para o desenvolvimento de competências cognitivas, socioemocionais e de linguagem

(Associação Brasileira de Autismo, Comportamento e Intervenção (ABRACI-DF), 2024).

Nos últimos anos, as tecnologias digitais têm se consolidado como ferramentas

complementares de apoio pedagógico e terapêutico para indivíduos com TEA. A crescente

prevalência do transtorno e a sua complexidade tornam o tema relevante tanto para a

sociedade quanto para a comunidade acadêmica. Em âmbito internacional, dados divulgados

pelo Centers for Disease Control and Prevention (Centros de Controle e Prevenção de

Doenças) (CDC) referentes ao ano de 2022 indicam que aproximadamente 1 em cada 31

crianças de 8 anos nos Estados Unidos foi diagnosticada com TEA, o que corresponde a

uma prevalência estimada de 3,2% nessa faixa etária (Centers for Disease Control and

Prevention, 2023). No Brasil, a dimensão dessa realidade foi, pela primeira vez, mapeada

em escala nacional pelo Censo Demográfico de 2022, que identificou 2,4 milhões de pessoas

com diagnóstico de autismo, correspondendo a 1,2% da população do país (Instituto

Brasileiro de Geografia e Estatística (IBGE), 2024). Esses números reforçam a urgência de

políticas públicas e práticas educacionais e terapêuticas que sejam inclusivas e eficazes.

Nesse sentido, a análise dos dados nacionais evidencia um aspecto relevante para a

formulação de estratégias de intervenção. A prevalência do TEA mostra-se significativa-

mente elevada durante a infância, atingindo 2,6% na faixa etária de 5 a 9 anos (Instituto

Brasileiro de Geografia e Estatística (IBGE), 2024). Essa concentração etária configura

uma janela crítica de desenvolvimento, na qual intervenções bem estruturadas podem

potencializar a aquisição de habilidades e promover melhorias na qualidade de vida das

crianças diagnosticadas. Nesse cenário, observa-se um crescimento no uso de tecnologias

digitais como instrumentos de apoio pedagógico e terapêutico, com aplicativos interativos,

sistemas de ensino personalizados e plataformas acessíveis sendo utilizados como recursos

complementares no processo educacional, promovendo o desenvolvimento de competên-

cias sociais, comunicativas e de autonomia, de forma alinhada às especificidades de cada

Capítulo 1. Introdução 16

indivíduo.

Nesse contexto, diversas pesquisas realizadas no meio acadêmico nacional têm

explorado o uso de tecnologias como ferramenta de apoio ao desenvolvimento de crianças

com TEA. (DANTAS, 2022), por exemplo, propôs uma abordagem computacional que

combina redes neurais convolucionais e modelagem 3D em jogos sérios para aprimorar

a habilidade de reconhecimento facial. Já (DINIZ, 2023) investigou o uso da robótica

socialmente assistiva no ensino de habilidades emocionais, desenvolvendo um robô interativo

capaz de se comunicar por meio de expressões e atividades lúdicas. (RUFINO, 2020), por

sua vez, elaborou um jogo digital fundamentado na abordagem de Reuven Feuerstein, com

ênfase na mediação pedagógica como estratégia para promover o desenvolvimento cognitivo

infantil. Complementando essas iniciativas, o trabalho de (VALENTIM, 2023) analisou o

uso da Inteligência Artificial (IA) como recurso para estimular a atenção compartilhada

em crianças na primeira infância, por meio de uma abordagem adaptativa e personalizada

baseada no desempenho de cada usuário. Conjuntamente, esses estudos demonstram

o potencial das tecnologias digitais como aliadas no suporte terapêutico e educacional

de crianças com TEA, beneficiando também suas redes de apoio, incluindo familiares,

educadores e profissionais da saúde.

Apesar dos avanços, ainda existem lacunas em termos de personalização, usabilidade

e adoção de abordagens mais lúdicas e centradas na criança no desenvolvimento de

tecnologias voltadas ao público com TEA. Considerando o cenário demográfico brasileiro,

que evidencia uma alta concentração de diagnósticos na primeira e segunda infância,

a necessidade de ferramentas acessíveis e eficazes torna-se ainda mais evidente. Nesse

contexto, este trabalho tem como objetivo apresentar, contextualizar e documentar o

desenvolvimento de um aplicativo web realizado no âmbito de um programa de bolsas em

parceria com a Universidade Federal de Uberlândia (UFU). Em atendimento às normas

institucionais, não foi permitido divulgar os nomes da empresa e da instituição parceira

atendida, mas o projeto foi conduzido em conformidade com as diretrizes e metodologias

estabelecidas nesse contexto. O sistema foi concebido para auxiliar o desenvolvimento

de crianças com autismo, oferecendo funcionalidades que promovem a aprendizagem, a

comunicação e o estímulo de habilidades cognitivas e sociais, com uma abordagem acessível,

interativa e centrada no público infantil. Além disso, o trabalho discute os recursos de

personalização e acompanhamento voltados a pais, educadores e profissionais da saúde,

contribuindo para reflexões sobre o papel das tecnologias digitais na educação inclusiva e

nas práticas de intervenção terapêutica.

Capítulo 1. Introdução 17

1.1 Objetivo Geral

Apresentar, contextualizar e descrever de forma sistemática o desenvolvimento de

um aplicativo web voltado ao apoio de crianças com TEA, destacando suas funcionalidades

interativas, acessíveis e personalizáveis, com ênfase na promoção da aprendizagem, da

comunicação e no estímulo a habilidades cognitivas e sociais. O trabalho propõe documentar

a criação de uma solução fundamentada nos princípios da arquitetura de microserviços

e da computação serverless, utilizando serviços da Amazon Web Services (AWS), com o

objetivo de assegurar baixo custo operacional, flexibilidade, escalabilidade e facilidade de

manutenção.

1.2 Objetivos Específicos

1. Discutir o potencial do aplicativo enquanto tecnologia assistiva complementar em

contextos educacionais e terapêuticos, contribuindo para a promoção da inclusão, da

autonomia e da qualidade de vida de crianças com TEA.

2. Relatar de forma detalhada o processo de concepção, metodologia adotada para

o desenvolvimento do aplicativo web proposto, dando ênfase nas tecnologias e

ferramentas utilizadas ao longo do projeto.

3. Evidenciar as funcionalidades implementadas no sistema, com destaque para aquelas

voltadas ao estímulo de competências socioemocionais, comunicacionais e cognitivas,

por meio de estratégias lúdicas e interativas adaptadas ao público infantil.

4. Apresentar a arquitetura técnica da aplicação desenvolvida na nuvem AWS, justifi-

cando as decisões de projeto com base nos princípios da computação serverless e da

arquitetura de microserviços, visando garantir escalabilidade, flexibilidade e baixo

custo operacional.

1.3 Motivação

Com o aumento no número de diagnósticos de TEA, sobretudo em crianças em

idade escolar, torna-se evidente a urgência de iniciativas que promovam a inclusão, o

desenvolvimento e o bem-estar desses indivíduos. Segundo dados recentes do Instituto

Brasileiro de Geografia e Estatística (IBGE), mais de 2,4 milhões de pessoas no Brasil

já foram diagnosticadas com TEA, com a maior incidência na faixa etária de 5 a 9 anos

(Instituto Brasileiro de Geografia e Estatística (IBGE), 2024). A importância dessa etapa

do desenvolvimento é ressaltada pela Teoria do Desenvolvimento Cognitivo, proposta por

Jean Piaget, que a descreve como um período crucial em que a criança passa a desenvolver

Capítulo 1. Introdução 18

formas de pensamento mais lógicas e concretas, superando o raciocínio predominantemente

fantasioso e intuitivo das fases anteriores (PAPALIA DIANE E.; FELDMAN, 2013). Nesse

estágio, o pensamento torna-se mais estruturado e o egocentrismo infantil é gradualmente

superado, o que contribui para uma maior receptividade a intervenções pedagógicas e

terapêuticas (CARNEIRO, s.d.). Diante desse cenário, investir em ferramentas tecnológicas

que complementem as práticas já existentes revela-se essencial.

Diante desse contexto, a escolha por desenvolver um aplicativo voltado a esse público

específico foi motivada tanto pela relevância social do tema quanto pela constatação de

que muitas soluções digitais ainda carecem de personalização e adequação às necessidades

reais dos usuários. A proposta de um sistema interativo, acessível e lúdico inspira-se

nos princípios piagetianos, segundo os quais a aprendizagem é um processo ativo que se

constrói por meio da interação com o meio (CARNEIRO, s.d.), buscando, assim, suprir

essas lacunas. A atividade lúdica e a representação simbólica, fundamentais durante a

infância, são exploradas como instrumentos de mediação para o aprendizado, oferecendo

uma solução prática e adaptável que favoreça o desenvolvimento cognitivo e social das

crianças com TEA, ao mesmo tempo em que oferece apoio às famílias, educadores e

profissionais da saúde envolvidos nesse processo.

A realização deste trabalho, no âmbito do estágio obrigatório supervisionado,

permitiu a aplicação prática dos conhecimentos adquiridos ao longo da formação acadêmica,

abrangendo áreas como computação em nuvem, desenvolvimento web, usabilidade e

integração de microserviços. Assim, esta monografia busca não apenas apresentar uma

solução tecnicamente viável, mas também oferecer uma contribuição prática e socialmente

significativa, ao mesmo tempo em que propõe uma análise crítica e fundamentada das

tecnologias e conceitos contemporâneos no campo de Sistemas de Informação.

1.4 Organização do Trabalho

A estrutura deste trabalho está organizada nos capítulos descritos a seguir:

• Capítulo 3: apresenta a fundamentação teórica, abordando os conceitos sobre o

TEA, Tecnologias Assistivas, chatbots e a arquitetura de microsserviços na AWS.

• Capítulo 4: descreve a metodologia de desenvolvimento, incluindo a abordagem

ágil, as ferramentas utilizadas e a arquitetura do projeto.

• Capítulo 5: detalha a implementação técnica de cada módulo do sistema, como o

roteador de intenções e os fluxos de geração de histórias.

• Capítulo 6: apresenta os pré-requisitos e o passo a passo para a configuração do

ambiente de desenvolvimento.

Capítulo 1. Introdução 19

• Capítulo 7: fornece um guia detalhado para a implantação completa da solução,

desde a infraestrutura na nuvem até a integração com as plataformas externas.

• Capítulo 8: demonstra os resultados funcionais da aplicação, validando as funcio-

nalidades desenvolvidas.

• Capítulo 9: apresenta a conclusão do trabalho, discutindo as contribuições, as

limitações do estudo e as sugestões para trabalhos futuros.

• Apêndice: oferece um guia prático com o passo a passo para a obtenção das

credenciais de acesso (chaves de API) dos serviços externos utilizados.

20

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Transtorno do Espectro Autista (TEA)

O TEA é definido como uma condição de neurodesenvolvimento de início precoce,

caracterizada por déficits qualitativos persistentes que afetam a comunicação e interação

social e se manifestam pela presença de padrões de comportamento, interesses ou atividades

restritos e repetitivos. Esta definição, consolidada pelo Diagnostic and Statistical Manual

of Mental Disorders (Manual Diagnóstico e Estatístico de Transtornos Mentais) (DSM-5)

da Associação Americana de Psiquiatria (American Psychiatric Association, 2013), unificou

quadros anteriormente diagnosticados de forma separada, como o Autismo Infantil, a

Síndrome de Asperger e o Transtorno Desintegrativo da Infância, sob um único espectro.

A abordagem espectral reconhece a vasta heterogeneidade clínica do transtorno, cujas

manifestações variam imensamente em tipo e severidade.

As características do TEA se manifestam de maneira diversa, compondo um

espectro amplo de apresentações. No campo da comunicação social, os déficits podem ir

desde dificuldades em iniciar e manter uma conversação recíproca até a ausência completa

de linguagem verbal. Também são comuns desafios na interpretação e no uso de sinais

não verbais, como contato visual, expressões faciais e gestos. Quanto aos padrões de

comportamento restritos e repetitivos, podem incluir movimentos motores estereotipados

(como balançar as mãos), forte apego a rotinas, interesses intensamente focados e inflexíveis,

além de reações sensoriais atípicas, caracterizadas por hiper ou hipossensibilidade a

estímulos ambientais, como sons, luzes e texturas. De acordo com a Organização Mundial

da Saúde, estima-se que o TEA afete cerca de uma em cada 100 crianças no mundo,

número que reflete, em parte, o aumento da conscientização e das práticas diagnósticas ao

redor do globo (World Health Organization, 2023).

2.1.1 HISTÓRICO E EVOLUÇÃO DO CONCEITO

A trajetória histórica do conceito de autismo é marcada por significativas trans-

formações paradigmáticas. Embora Eugen Bleuler tenha introduzido o termo autismo

em 1911 para descrever o retraimento social observado em pacientes com esquizofrenia

(BLEULER, 1950), foi somente na década de 1940 que a condição começou a ser delineada

como um transtorno do desenvolvimento infantil. Em 1943, o psiquiatra Leo Kanner, em

seu trabalho seminal Autistic Disturbances of Affective Contact, descreveu um grupo de

11 crianças que exibiam uma “incapacidade inata de formar o contato afetivo, normal

e biologicamente fornecido com outras pessoas”, associada a um “desejo ansiosamente

Capítulo 2. Fundamentação Teórica 21

obsessivo pela manutenção da mesmice” (KANNER, 1943). Quase simultaneamente, na

Áustria, o pediatra Hans Asperger, cujo trabalho só foi amplamente reconhecido décadas

depois, descreveu um grupo de crianças com dificuldades sociais semelhantes, mas que

não apresentavam os mesmos atrasos significativos na linguagem e no desenvolvimento

cognitivo, cunhando a expressão “psicopatia autista” (ASPERGER, 1991).

Nas décadas de 1960 e 1970, teorias psicodinâmicas exerceram forte influência

sobre a compreensão do autismo, especialmente a ideia da “mãe-geladeira”, proposta

por (BETTELHEIM, 1967). Segundo essa visão, o transtorno teria origem em fatores

emocionais e na dinâmica familiar, em especial no comportamento frio e distante das mães.

Com o avanço das pesquisas, essa hipótese foi amplamente desacreditada e abandonada

pela comunidade científica. A virada ocorreu entre os anos 1980 e 1990, quando uma

robusta base de evidências científicas começou a apontar para uma etiologia neurobiológica

e genética (RITVO et al., 1985; BAILEY et al., 1995). Com o avanço da neurociência

e da genética, o TEA passou a ser inequivocamente reconhecido como uma condição do

cérebro (HAPPé; RONALD; PLOMIN, 2006; MUELLER, 2007). A consolidação da noção

de “espectro”, a partir dos anos 2000 e oficializada no DSM-5 em 2013, representa o auge

dessa evolução, refletindo o entendimento de que as diversas manifestações do autismo

compartilham uma base etiológica comum, mas se expressam em diferentes níveis de

intensidade e funcionalidade (American Psychiatric Association, 2013).

2.1.2 AVANÇOS RECENTES E O PAPEL DAS TECNOLOGIAS ASSISTIVAS

A interseção entre tecnologia e TEA tem se mostrado um campo fértil para a

inovação, permitindo o desenvolvimento de ferramentas assistivas que visam minimizar

os desafios centrais do transtorno e favorecer o desenvolvimento de habilidades essenciais.

Os avanços recentes em tecnologias digitais têm proporcionado soluções cada vez mais

sofisticadas e personalizadas, especialmente na área de Comunicação Aumentativa e

Alternativa (CAA). Aplicativos como o Proloquo2Go e sistemas digitais baseados no Picture

Exchange Communication System (Sistema de Comunicação por Troca de Figuras) (PECS)

vêm transformando a maneira como indivíduos não verbais ou com fala limitada se

expressam, possibilitando a construção de sentenças complexas por meio de símbolos e

síntese de voz, o que amplia significativamente as oportunidades de interação e participação

social (LIGHT; MCNAUGHTON, 2014).

Ao mesmo tempo, essas inovações tecnológicas têm se mostrado valiosas para o

desenvolvimento de habilidades sociais em pessoas com TEA, complementando a comuni-

cação assistiva com estratégias que promovem a percepção social e a regulação emocional.

Nesse contexto, (VALENTIM, 2023) propõe em sua tese uma abordagem computacio-

nal adaptativa que utiliza técnicas de IA para ajustar dinamicamente a sequência e a

complexidade dos exercícios, criando um ambiente personalizado que fortalece a atenção

Capítulo 2. Fundamentação Teórica 22

compartilhada em crianças de 4 a 5 anos com dificuldades sócio-comunicativas, oferecendo

um espaço seguro e controlado para a prática de interações sociais.

Complementando essa perspectiva, (DANTAS, 2022) desenvolveu uma ferramenta

baseada em jogos sérios que combina descritores manuais e Convolutional Neural Network

(Rede Neural Convolucional)s (CNNs) para detectar e reconhecer expressões faciais. Avali-

ada em cinco sessões e apoiada por bancos de dados públicos (CK+, FER2013, RAF-DB

e MMI), a solução demonstrou eficácia no aprimoramento das habilidades de percepção e

reconhecimento de emoções básicas em indivíduos com TEA, contribuindo para o desen-

volvimento socioemocional e para a ampliação das capacidades de interação social. Dessa

forma, essas abordagens ilustram como a integração de tecnologias digitais, IA e jogos

educativos pode potencializar o aprendizado, a comunicação e a socialização de crianças

com TEA, fornecendo recursos adaptativos que se ajustem às necessidades individuais e

que promovam experiências de aprendizado mais inclusivas e efetivas.

2.2 Chatbots e Sistemas Conversacionais

2.2.1 DEFINIÇÕES, ARQUITETURAS E TIPOLOGIAS

Chatbots, ou agentes conversacionais, são softwares projetados para interagir com

usuários humanos por meio da linguagem natural, seja escrita ou falada, simulando

conversações coerentes, contextualizadas e relevantes. Eles podem atender a diferentes

necessidades, desde respostas básicas pré-programadas até respostas complexas geradas por

IA. A arquitetura de um chatbot é definida pelo mecanismo de formulação das respostas,

que constitui o núcleo da interação.

De acordo com a IBM (IBM Brasil, 2025a), é possível classificar os chatbots em

diferentes categorias, que variam em nível de sofisticação e aplicabilidade. A seguir,

apresentam-se os principais tipos, acompanhados de uma breve descrição de suas caracte-

rísticas:

• Chatbots baseados em menus ou botões: forma mais simples de interação, em

que o usuário seleciona opções predefinidas em menus, seguindo scripts que guiam a

conversa até a resposta desejada.

• Chatbots baseados em regras: operam com fluxos de conversação definidos por

lógica condicional “se, então”. São eficientes para tarefas repetitivas ou Frequently

Asked Questions (Perguntas Frequentes)s (FAQs), mas têm limitações ao lidar com

variações linguísticas ou perguntas inesperadas.

• Chatbots de IA: utilizam Natural Language Understanding (Compreensão de Lin-

guagem Natural) (NLU) para compreender a intenção do usuário independentemente

Capítulo 2. Fundamentação Teórica 23

da formulação da pergunta. Empregam aprendizado de máquina e podem aprimorar

continuamente suas respostas.

• Voice chatbots: projetados para interação por voz, empregando técnicas de Natural

Language Processing (NLP) para interpretar comandos falados, oferecendo uma

experiência mais natural e acessível.

• Chatbots de IA generativa: representam uma nova geração de sistemas conversa-

cionais capazes de gerar respostas inéditas e contextualizadas, demonstrando empatia

e adaptando-se ao estilo de comunicação do usuário. Não dependem de respostas

pré-programadas.

• Chatbots híbridos: combinam abordagens baseadas em regras com aprendizado de

máquina, oferecendo flexibilidade e capacidade de adaptação. Automatizam tarefas

repetitivas e aprendem com as interações para melhorar continuamente as respostas.

A Tabela 1 sintetiza essa classificação, apresentando para cada tipo de chatbots

sua descrição geral e exemplos de aplicação prática, o que facilita a comparação entre as

diferentes abordagens.

Tipo Descrição Exemplo de aplicação
Menus ou botões Interação baseada na seleção

de opções predefinidas em
menus, seguindo scripts
específicos.

FAQs simples, sistemas de
triagem

Baseados em regras Fluxos de conversação
automatizados usando lógica
condicional “se, então”.

Atendimento automatizado,
respostas de FAQ

IA Utilizam NLU e aprendizado
de máquina para interpretar a
intenção do usuário e gerar
respostas adaptadas.

Assistentes virtuais inteligentes

Voice Chatbots Permitem interação por voz,
interpretando comandos
falados com NLP.

Assistentes de voz, call centers

IA generativa Utilizam IA generativa para
produzir respostas inéditas,
adaptadas ao contexto,
demonstrando empatia.

Chatbots corporativos
avançados, suporte
personalizado

Híbridos Combinam regras e
aprendizado de máquina para
maior flexibilidade e adaptação
contínua.

Sistemas de atendimento com
aprendizado progressivo

Tabela 1 – Tipos de chatbots segundo a IBM. Fonte: Do Autor

Capítulo 2. Fundamentação Teórica 24

2.2.2 EVOLUÇÃO HISTÓRICA DOS CHATBOTS

A história dos sistemas conversacionais, segundo Nsaif et al. (2024), remonta à

década de 1960, com o desenvolvimento do ELIZA, criado por Joseph Weizenbaum em 1966.

Este sistema pioneiro simulava uma psicoterapeuta utilizando técnicas de correspondência

de padrões (pattern-matching) e regras linguísticas simples para reformular a entrada do

usuário como uma resposta, representando um passo fundamental na interação homem-

máquina.

Em 1972, o software PARRY emulou o comportamento de uma pessoa com

esquizofrenia paranoide, evidenciando a complexidade de replicar processos cognitivos

humanos. No final da década de 1980, JabberWacky introduziu uma abordagem de

aprendizado baseada em conversas anteriores, combinando conhecimento contextual com

técnicas iniciais de aprendizado de máquina. Já em 1995, A.L.I.C.E. (Artificial Linguistic

Internet Computer Entity — Entidade Computacional Linguística Artificial da Internet)

utilizou regras baseadas em templates para simular diálogos mais naturais, ampliando a

capacidade de interação dos chatbots.

Contudo, os avanços mais significativos ocorreram com a consolidação do aprendi-

zado de máquina e, mais recentemente, com a popularização do deep learning. A partir

de 2011, assistentes virtuais como SIRI e, posteriormente, Alexa e Cortana (2014),

passaram a utilizar PLN e reconhecimento de voz para executar tarefas e fornecer infor-

mações de forma automatizada. A evolução se intensificou com o surgimento dos Large

Language Models (Modelos de Linguagem de Grande Escala) (LLMs), cujo paradigma

foi transformado com o lançamento do ChatGPT em 2020. Esses modelos, treinados

com vastos volumes de dados textuais, possibilitaram avanços expressivos na geração de

respostas contextualmente coerentes, elevando a naturalidade das interações e inaugurando

uma nova fase na evolução dos chatbots.

Capítulo 2. Fundamentação Teórica 25

Figura 1 – Evolução Histórica dos Chatbots Fonte: (NSAIF et al., 2024)

Capítulo 2. Fundamentação Teórica 26

2.2.3 CHATBOTS E TRANSTORNO DO ESPECTRO AUTISTA (TEA)

No contexto do TEA, os chatbots emergem como ferramentas tecnológicas com

potencial para o apoio à aprendizagem, comunicação e desenvolvimento de habilidades

sociais. Crianças diagnosticadas com TEA frequentemente apresentam dificuldades re-

lacionadas à interação social, comunicação verbal e interpretação de contextos sociais

complexos (PINTO, 2016). Diante dessa realidade, sistemas conversacionais adequadamente

projetados podem constituir ambientes seguros, controlados e previsíveis, propiciando

oportunidades estruturadas para a prática e o aperfeiçoamento dessas competências

essenciais.

As vantagens pedagógicas dessas ferramentas manifestam-se em múltiplas dimensões.

Em primeiro lugar, destaca-se a simplicidade da interface, visto que muitos sistemas

permitem que a criança interaja exclusivamente através de botões ou seleções em opções

pré-definidas, eliminando a necessidade de formular respostas textuais complexas (IBM

Brasil, 2025a). Essa característica reduz a frustração e promove maior autonomia do

usuário, sendo complementada pela ampla acessibilidade dos chatbots, que podem ser

utilizados em diversos dispositivos e contextos, incluindo ambientes domésticos, escolares

e terapêuticos.

Além disso, a consistência e a capacidade de repetição desses sistemas favorecem o

estabelecimento de rotinas estruturadas e o reforço de comportamentos positivos, ao mesmo

tempo em que permitem adaptações personalizadas conforme o progresso individual de

cada criança. Essas características são identificadas por estudos recentes como elementos

fundamentais em chatbots bem projetados para esse público (GU et al., 2025).

Por reunirem essas características, os chatbots atuam como facilitadores da comuni-

cação, complementando estratégias pedagógicas tradicionais. Dessa forma, apresentam-se

como ferramentas promissoras para o desenvolvimento de soluções tecnológicas inclusivas

voltadas a crianças com TEA, integrando acessibilidade, aprendizagem social e suporte ao

desenvolvimento cognitivo.

2.3 Processamento de Linguagem Natural (PLN)

O PLN surge como a disciplina que busca transpor a barreira entre a comunicação

humana e a interpretação computacional (IBM Brasil, 2025b). Seu objetivo é capacitar

máquinas não apenas a ler palavras, mas a compreender contexto, intenção e nuances

presentes em textos e falas, de forma análoga à cognição humana. Para isso, integra

conhecimentos de linguística computacional com modelos estatísticos e, mais recentemente,

de deep learning.

A linguagem humana apresenta desafios por sua natureza não estruturada. Para

Capítulo 2. Fundamentação Teórica 27

superá-los, o PLN segue etapas que transformam o texto bruto em dados estruturados e

interpretáveis. No pré-processamento, o texto é limpo e padronizado por meio de técnicas

como tokenização e lematização. Em seguida, na extração de features, o texto é convertido

em representações numéricas (vetores), processáveis pelos algoritmos de aprendizado de

máquina.

Com a linguagem em formato compreensível para máquinas, o PLN permite

executar tarefas complexas, como a identificação de entidades (Named Entity Recognition

(Reconhecimento de Entidade Nomeada) (NER)) e a análise de sentimentos, extraindo

insights de grandes volumes de dados.

A evolução das abordagens reflete a transição do determinístico para o probabilístico.

Sistemas iniciais baseavam-se em regras rígidas, pouco flexíveis e difíceis de escalar. O

paradigma mudou com modelos estatísticos e, mais impactante, com arquiteturas de deep

learning, como os Transformers, capazes de aprender padrões diretamente de dados brutos.

Isso culminou na atual era da IA generativa, exemplificada por modelos como o Generative

Pre-trained Transformer (Transformador Pré-treinado Generativo) (GPT).

2.4 Visão Computacional e Reconhecimento de Imagens

A visão computacional é um campo da IA que capacita sistemas a extrair e

interpretar informações de dados visuais, como imagens e vídeos (IBM Brasil, 2025c).

Enquanto a IA busca emular o raciocínio, a visão computacional foca em replicar a

percepção visual, permitindo que máquinas observem e compreendam o ambiente de forma

análoga à visão humana, porém com escalabilidade e velocidade superiores. Um exemplo

prático desse conceito é apresentado na Figura 2.

Capítulo 2. Fundamentação Teórica 28

Figura 2 – Representação de uma Rede Neural Convolucional. Fonte: (Serviço Federal de
Processamento de Dados (Serpro), 2020-04-03)

O aprendizado da visão computacional baseia-se no treinamento com grandes

conjuntos de dados. Por meio da análise iterativa, o sistema desenvolve a capacidade de

identificar padrões, extrair características relevantes e classificar objetos de forma autônoma.

A base tecnológica para essa tarefa são modelos de deep learning, destacando-se as CNNs,

que processam informações visuais de forma hierárquica: primeiro identificam características

de baixo nível, como bordas e texturas, e depois compõem o reconhecimento de objetos

complexos. Para sequências temporais, como vídeos, essa abordagem é frequentemente

combinada com Recurrent Neural Network (Rede Neural Recorrente)s (RNNs), capazes de

interpretar relações contextuais entre os quadros. O processo é ilustrado na Figura 3.

Capítulo 2. Fundamentação Teórica 29

Figura 3 – Representação de uma Rede Neural Convolucional. Fonte: (NVIDIA, 2025)

2.5 Síntese de Voz (TTS)

2.5.1 DEFINIÇÕES E ABORDAGENS TECNOLÓGICAS

A Síntese de Voz, ou Text-to-Speech (Conversão de Texto em Fala) (TTS), é

a tecnologia responsável pela geração artificial da fala humana a partir de um texto

escrito (TAYLOR, 2009). O objetivo é produzir uma fala que seja não apenas inteligível,

mas também natural e expressiva. Historicamente, as abordagens para TTS podem ser

agrupadas em:

1. Síntese Concatenativa: Constrói a fala unindo pequenos segmentos de áudio de

uma fala humana pré-gravada. Embora possa soar natural, é limitada pelo banco de

dados e pode soar “recortada”.

2. Síntese Paramétrica: Utiliza um modelo estatístico para gerar os parâmetros

acústicos da fala (frequência, duração), os quais são convertidos em áudio. Apesar

desse método ser mais flexível, tende a soar mais robótico.

3. Síntese Baseada em Redes Neurais Profundas: A abordagem mais moderna,

que utiliza redes neurais para mapear diretamente o texto ou representações linguís-

ticas intermediárias em formas de onda de áudio ou espectrogramas.

Capítulo 2. Fundamentação Teórica 30

2.5.2 AVANÇOS RECENTES EM NATURALIDADE E EXPRESSIVIDADE

A qualidade da síntese de voz avançou significativamente com a introdução de

modelos de deep learning. O WaveNet, desenvolvido pela DeepMind (OORD et al., 2016),

representou um marco ao gerar a forma de onda do áudio diretamente, proporcionando

uma naturalidade sem precedentes. Modelos subsequentes, como Tacotron e FastSpeech,

otimizaram esse processo, permitindo a geração de fala de alta qualidade em tempo

real. Esses avanços tornaram a fala sintetizada mais fluida, com entonação e prosódia

mais humanas, possibilitando a transmissão de nuances emocionais. As aplicações são

especialmente relevantes em tecnologias assistivas, incluindo leitores de tela para pessoas

com deficiência visual, sistemas de CAA para indivíduos com TEA ou outras condições

que afetam a fala, e ferramentas para o ensino da pronúncia em novos idiomas.

2.6 Tecnologia Assistiva (TA)

2.6.1 DEFINIÇÕES, ESCOPO E CLASSIFICAÇÕES

A TA é um termo abrangente que engloba um vasto campo de conhecimento, de

caráter interdisciplinar, que inclui produtos, recursos, metodologias, estratégias, práticas e

serviços. O objetivo da TA é promover a funcionalidade e, consequentemente, a autonomia,

independência, qualidade de vida e inclusão social de pessoas com deficiência, incapacidades

ou mobilidade reduzida (ZALLIO; OHASHI, 2022). A Lei Brasileira de Inclusão (Lei nº

13.146/2015) define TA como “produtos, equipamentos, dispositivos, recursos, metodologias,

estratégias, práticas e serviços que objetivem promover a funcionalidade, relacionada à

atividade e participação da pessoa com deficiência ou com mobilidade reduzida, visando à

sua autonomia, independência, qualidade de vida e inclusão social”. As TAs podem ser

classificadas de diversas formas, seja pelo seu grau de sofisticação tecnológica (de baixa a

alta tecnologia) ou por sua área de aplicação funcional, como comunicação, mobilidade,

acesso ao computador, adequação postural, entre outras.

2.6.2 AVANÇOS E APLICAÇÕES ESPECÍFICAS NO CONTEXTO DO TEA

No contexto do TEA, a tecnologia assistiva desempenha um papel transformador,

oferecendo suporte frente aos desafios da condição. Avanços recentes potencializaram ainda

mais esse impacto. A integração com a Internet of Things (Internet das Coisas) (IoT)

possibilita a criação de ambientes inteligentes, capazes de se adaptar às sensibilidades

sensoriais do indivíduo. A IA viabiliza a personalização em larga escala, permitindo o

desenvolvimento de jogos educativos que se ajustam dinamicamente ao nível de habilidade

e aos interesses da criança, assim como sistemas de CAA que aprendem o vocabulário e

o estilo de comunicação do usuário. As Brain-Computer Interfaces (Interfaces Cérebro-

Capítulo 2. Fundamentação Teórica 31

Computador) (BCIs), embora ainda em fase de pesquisa, representam uma fronteira

promissora para novas formas de comunicação e controle ambiental. Entre as aplicações

concretas para TEA destacam-se sistemas de CAA, aplicativos para organização de rotinas

e gerenciamento do tempo (utilizando pranchas de comunicação visual digital), além de

uma ampla gama de jogos educativos e terapêuticos projetados para o desenvolvimento de

habilidades sociais, cognitivas e de vida diária.

2.7 Arquitetura de Microsserviços na AWS

A arquitetura de microsserviços na AWS viabiliza a construção de aplicações

modernas que se caracterizam pela alta escalabilidade, resiliência e flexibilidade. Em

contraposição às arquiteturas monolíticas, nas quais as funcionalidades se encontram

fortemente acopladas em uma base de código unificada, os microsserviços adotam uma

abordagem modular. Essa abordagem segmenta o sistema em componentes menores

e independentes, onde cada um é responsável por uma funcionalidade específica. Tal

desacoplamento resulta na redução da complexidade do sistema, simplifica os processos de

manutenção e impede que falhas pontuais comprometam a aplicação em sua totalidade.

Além disso, permite que equipes de desenvolvimento atuem de forma paralela e autônoma,

o que acelera o desenvolvimento de software e possibilita ciclos de entrega mais curtos.

Outro benefício relevante é a escalabilidade granular, que permite escalar apenas os serviços

de maior demanda, otimizando a alocação de recursos e os custos operacionais. A AWS

dispõe de um ecossistema completo para suportar essa arquitetura, incluindo soluções

de contêineres, sistemas de mensageria e computação serverless, ampliando a eficiência

operacional e garantindo uma integração ágil com as diversas necessidades de negócio

(SERVICES, 2025).

2.7.1 AMAZON LEX

O Amazon Lex é um serviço de IA da AWS destinado à implementação de interfaces

conversacionais interativas, tanto por texto quanto por voz. O serviço utiliza as mesmas

tecnologias de Automatic Speech Recognition (Reconhecimento Automático de Fala) (ASR)

e NLU que fundamentam o assistente Amazon Alexa. Com isso, o Lex possibilita o

desenvolvimento de chatbots e assistentes virtuais capazes de operar em distintos cenários

de aplicação e interagir com múltiplos perfis de usuários. Sua integração nativa com outros

serviços da AWS permite a construção de fluxos de conversação automatizados, escaláveis

e personalizados, aplicáveis em setores como atendimento ao cliente, educação e saúde

(SERVICES, 2025).

Capítulo 2. Fundamentação Teórica 32

2.7.2 AWS LAMBDA

O AWS Lambda é um serviço de computação serverless que executa código em

resposta a eventos, abstraindo a necessidade de provisionamento ou gerenciamento de

servidores. Essa abordagem otimiza os custos operacionais, uma vez que a cobrança é

estritamente baseada no tempo de execução do código, e eleva a eficiência do processo de

desenvolvimento ao permitir que as equipes se concentrem primordialmente na lógica de

negócio. O Lambda apresenta integração nativa com uma vasta gama de serviços da AWS,

o que o torna um componente central para a implementação de arquiteturas orientadas

a eventos, processamento de dados em tempo real e sistemas de alta escalabilidade,

ideais para aplicações modernas que demandam elasticidade e disponibilidade contínua

(SERVICES, 2025).

2.7.3 AMAZON S3

O Amazon Simple Storage Service (Amazon S3) é um serviço de armazenamento

de objetos projetado para oferecer máxima escalabilidade, durabilidade e segurança,

atendendo desde aplicações de pequeno porte até soluções corporativas em larga escala.

Sua arquitetura distribuída assegura alta disponibilidade e resiliência dos dados. Recursos

como versionamento de objetos, controle de acesso granular e integração nativa com serviços

de análise de dados e machine learning expandem significativamente suas aplicações. O

S3 é amplamente empregado em diversos cenários, que incluem backup e recuperação de

desastres, arquivamento de dados, processamento e análise de Big Data, hospedagem de

websites estáticos, armazenamento de mídias e suporte a pipelines de inteligência artificial

(SERVICES, 2025).

2.7.4 AMAZON REKOGNITION

O Amazon Rekognition é um serviço de visão computacional que utiliza algoritmos

avançados de deep learning para a análise de imagens e vídeos. O serviço permite a

identificação e rotulagem de objetos, reconhecimento facial, detecção de texto e análise

de atividades em tempo real. Suas funcionalidades incluem, ainda, a moderação de

conteúdo e a verificação de identidade baseada em biometria facial. Sua integração nativa

com o ecossistema AWS o posiciona como uma ferramenta estratégica para aplicações

de segurança, análise de mídias, acessibilidade e automação de processos inteligentes

(SERVICES, 2025).

2.7.5 AMAZON POLLY

O Amazon Polly é um serviço de conversão de texto em fala (TTS) que emprega

técnicas de deep learning para sintetizar vozes com sonoridade natural em múltiplos

Capítulo 2. Fundamentação Teórica 33

idiomas e sotaques. Essa tecnologia contribui para a ampliação da acessibilidade em

sistemas digitais, viabilizando a criação de soluções como leitores de tela automáticos,

assistentes virtuais com maior imersão e aplicações educacionais inclusivas. O Polly

disponibiliza ainda recursos para a personalização da prosódia, como entonação e ritmo

da fala, o que permite a criação de experiências auditivas mais envolventes e adaptadas a

diferentes contextos de uso (SERVICES, 2025).

2.7.6 AMAZON API GATEWAY

O Amazon API Gateway é um serviço gerenciado que funciona como uma camada de

abstração para a criação, publicação, manutenção, monitoramento e segurança de APIs em

qualquer escala. Ele atua como uma fachada (façade) unificada, servindo como a principal

porta de entrada para as requisições destinadas a serviços de backend, como funções AWS

Lambda, aplicações em contêineres ou outros serviços da AWS e on-premises. O serviço

gerencia tarefas críticas como o controle de tráfego (throttling) para prevenir sobrecargas, a

autenticação e autorização de requisições por meio de diversos mecanismos, a validação de

dados e o monitoramento de métricas em tempo real. Ao centralizar essas funcionalidades, o

API Gateway se torna um componente fundamental para a implementação de arquiteturas

de microsserviços e serverless, simplificando a exposição de serviços de forma segura e

escalável (SERVICES, 2025).

34

3 METODOLOGIA

3.1 Processo de Desenvolvimento

3.1.1 ESTRUTURA DA EQUIPE E ORGANIZAÇÃO

O desenvolvimento do sistema foi realizado no contexto de um programa de bolsas,

contando com uma equipe de seis bolsistas responsável pela concepção, implementação

e validação da solução. Para assegurar que o produto estivesse alinhado às demandas

pedagógicas e às necessidades específicas do público-alvo, estabeleceu-se uma parceria

com uma instituição de ensino. A colaboração de uma professora dessa instituição foi

um elemento central na estratégia de desenvolvimento participativo adotada pelo projeto,

conforme justificado em detalhe na Seção 3.1.2. Por normas institucionais, os nomes da

empresa responsável pelo programa e da instituição parceira não podem ser divulgados.

A interação com a professora ocorreu em dois momentos estratégicos. O primeiro

contato deu-se no início da Sprint 1, ocasião em que foram discutidas as principais

expectativas e sugeridas funcionalidades voltadas às demandas de crianças com TEA. O

segundo momento aconteceu ao início da sprint 2, ocasião em que foi apresentada uma

versão parcial do sistema, permitindo que sugestões de melhoria fossem incorporadas ainda

durante o ciclo de desenvolvimento. A Figura 4 ilustra a organização temporal do projeto,

destacando os dois pontos de feedback com a professora parceira e os principais entregáveis

de cada sprint.

Capítulo 3. Metodologia 35

Figura 4 – Cronograma de desenvolvimento com metodologia ágil. Fonte: Do Autor

Devido à limitação temporal do projeto, que contou com apenas quatro semanas,

divididas em duas sprints de duas semanas cada, não foi viável apresentar o produto

finalizado para a instituição parceira. Entretanto, como forma de encerramento do programa,

o resultado foi apresentado em um evento interno do programa de bolsas, no qual todos os

participantes compartilharam suas soluções desenvolvidas com os demais colaboradores,

destacando o processo de desenvolvimento e os principais resultados alcançados.

3.1.2 ABORDAGEM PARTICIPATIVA E COLETA DE FEEDBACK

A concepção de uma ferramenta de tecnologia assistiva, especialmente para crianças

com TEA, demanda uma abordagem que vá além dos requisitos puramente técnicos. Por

essa razão, adotou-se uma estratégia de desenvolvimento participativo, integrando a

perspectiva de um especialista de domínio ao ciclo de desenvolvimento.

A colaboração com a professora da instituição parceira materializou essa estratégia.

Desde as primeiras interações, ela apresentou contribuições substanciais que orientaram o

desenvolvimento do projeto. Destacou-se, em particular, a necessidade de que o sistema

Capítulo 3. Metodologia 36

fosse altamente visual, uma vez que muitas crianças ainda se encontravam em processo

de alfabetização e dependiam majoritariamente de recursos gráficos para compreender e

interagir com a aplicação.

A partir desse feedback, surgiram duas funcionalidades centrais: a “História por

Cards” e a funcionalidade de “Expressar Emoção”. A primeira, inspirada na familiaridade

das crianças com o uso de pranchetas, funciona como uma porta de entrada para esti-

mular a comunicação e a criatividade, permitindo que a criança participe ativamente da

construção narrativa e compare suas produções com as de colegas, refletindo sobre elas a

partir de questionamentos do professor. A segunda funcionalidade ampliou a experiência

comunicativa ao permitir que a criança não apenas indicasse visualmente seus desejos,

mas também os ouvisse por meio do chatbot, potencializando compreensão, autonomia e

engajamento no processo de interação.

A motivação para incorporar a perspectiva da professora se baseou em três pilares:

• Validação Pedagógica: Garantir que as funcionalidades propostas fossem relevantes

do ponto de vista pedagógico e adequadas ao contexto real de uso, algo que apenas

a experiência prática de um educador pode fornecer.

• Representação do Usuário: Diante da limitação de tempo do projeto e das

considerações éticas relacionadas ao contato direto com crianças, a professora atuou

como representante qualificada do público-alvo. Seu conhecimento sobre dificuldades,

interesses e formas de engajamento das crianças com TEA foi fundamental para

guiar o design da interação.

• Alinhamento com a Metodologia Ágil: O Scrum preconiza ciclos de feedback

constantes para validar e refinar o produto. As reuniões com a professora forneceram

esse retorno essencial, permitindo ajustes iterativos nos requisitos e na implementação,

evitando o risco de desenvolver uma solução inadequada às necessidades dos usuários

finais.

Portanto, a participação da professora não foi um evento isolado, mas uma decisão

metodológica deliberada, que assegurou a criação de um produto eficaz, útil e centrado no

usuário.

3.1.3 METODOLOGIA ÁGIL

A metodologia escolhida para a gestão do trabalho foi o Scrum, adotado como

framework ágil de organização (Amazon Web Services, 2025). Embora tenha sido utilizado

em um ciclo bastante reduzido, permitiu estruturar entregas incrementais, bem como

promover alinhamentos frequentes sobre o progresso. Reuniões diárias de alinhamento

Capítulo 3. Metodologia 37

foram realizadas de forma remota por meio do Microsoft Teams, com duração média

de quinze minutos. Nessas reuniões, os integrantes da equipe discutiam as atividades

concluídas no dia anterior, planejavam o trabalho do dia corrente e reportavam possíveis

impedimentos, favorecendo a transparência e a rápida resolução de bloqueios.

Alinhada a essa perspectiva, a monografia foi estruturada para refletir os princípios

da metodologia ágil, que privilegia a entrega de software funcional em detrimento de

documentação extensa. Em lugar de artefatos tradicionais da engenharia de software, como

diagramas formais e descrições detalhadas de requisitos, adotou-se uma documentação

prática, elaborada como guia das etapas de implementação, configuração e implantação,

permitindo a replicação do projeto e servindo de referência em investigações futuras. A

aplicação do Scrum em ciclo reduzido reforçou essa escolha, dispensando formalismos

cujo custo superaria o benefício e favorecendo a adaptação contínua e a priorização de

entregas incrementais. Dessa forma, o enfoque recai sobre o valor prático e a disseminação

do conhecimento gerado no desenvolvimento de uma arquitetura contemporânea alinhada

aos princípios ágeis.

3.1.4 FERRAMENTAS DE GESTÃO E COLABORAÇÃO

O controle de versão foi realizado utilizando Git em conjunto com o GitHub,

que atuou como repositório centralizado para o armazenamento e gerenciamento do

código. A colaboração da equipe foi organizada por meio de commits frequentes e Pull

Requests, acompanhados de revisões obrigatórias, de forma a assegurar a qualidade do

código. Diferentemente de projetos de maior duração, não foram utilizadas estratégias de

branching formais, como o GitFlow, nem ferramentas de automação de integração contínua,

como o GitHub Actions, em virtude da restrição temporal do programa.

As atividades de comunicação e acompanhamento de projeto foram conduzidas

majoritariamente via Microsoft Teams, que serviu como plataforma central para reuniões,

discussões técnicas e alinhamentos de tarefas, garantindo a continuidade da colaboração

entre os membros da equipe.

3.1.5 FASES DE DESENVOLVIMENTO

O ciclo de desenvolvimento foi organizado em duas sprints, cada uma com duração

de duas semanas, totalizando quatro semanas.

Na Sprint 1, foram realizadas atividades de planejamento e arquitetura. Nesse

período, a equipe se dedicou à definição dos requisitos funcionais e não funcionais, à

modelagem da arquitetura inicial do sistema, à seleção das tecnologias e serviços da AWS

que seriam empregados e à configuração do ambiente de desenvolvimento. Além disso,

ocorreu a primeira reunião com a professora da instituição parceira, que contribuiu com

Capítulo 3. Metodologia 38

sugestões a partir de sua experiência pedagógica, permitindo que as funcionalidades fossem

pensadas desde o início em consonância com o público-alvo.

Na Sprint 2, as atividades concentraram-se no desenvolvimento e integração. Foram

implementados os módulos principais do sistema, incluindo as funções Lambda e os handlers

especializados, além da integração com serviços da AWS como Lex, Rekognition e Polly.

Também foram implementadas funções auxiliares necessárias ao funcionamento da aplicação

e realizada a integração com a API da OpenAI para a geração de narrativas personalizadas.

A infraestrutura serverless foi configurada nesse mesmo período, consolidando a base

tecnológica do projeto. Ao final da sprint, uma nova reunião com a professora da instituição

parceira possibilitou a apresentação de uma versão parcial do sistema, na qual foram

discutidas percepções iniciais e sugeridos ajustes relevantes.

3.1.6 PRÁTICAS DE QUALIDADE IMPLEMENTADAS

Ainda que o tempo disponível fosse restrito, buscou-se garantir a qualidade do

código e da aplicação por meio de boas práticas de desenvolvimento. Foram utilizados

linters como o Pylint para Python, além de ferramentas de formatação automática, como

o Prettier, que asseguraram consistência no estilo e facilitaram a manutenção do código.

A documentação de funções e módulos foi obrigatória, e a nomenclatura adotada seguiu

convenções estabelecidas para cada linguagem. A estratégia de testes incluiu diferentes

dimensões de avaliação: testes de integração foram realizados para validar a comunicação

entre os serviços, testes de desempenho avaliaram os tempos de resposta do sistema, e

testes de usabilidade, conduzidos a partir do feedback da professora parceira. Alinhado

à abordagem participativa do projeto, ela atuou como uma representante experiente do

público-alvo, o que permitiu validar a relevância e a adequação das interações propostas,

contribuindo diretamente para a qualidade e adequação do sistema. Por fim, práticas de

monitoramento e observabilidade foram aplicadas com o AWS CloudWatch, permitindo

acompanhar métricas, identificar falhas e aumentar a confiabilidade da aplicação em

operação.

3.2 Escopo Funcional do Sistema

Para representar visualmente as funcionalidades centrais do sistema e a interação

do usuário com o chatbot, foi desenvolvido um diagrama de casos de uso. Apresentado na

Figura 5, o diagrama ilustra os principais objetivos que a criança, como usuária, pode

alcançar ao utilizar a aplicação, englobando as três funcionalidades principais: expressão

de sentimentos e desejos, criação de histórias por meio de imagens ou desenhos e criação

de histórias através da seleção de cartões visuais.

Capítulo 3. Metodologia 39

Figura 5 – Diagrama de Casos de Uso do Sistema Chatbot. Fonte: Do Autor

3.2.1 DESCRIÇÃO DOS ELEMENTOS DO DIAGRAMA

O diagrama apresenta as interações fundamentais entre o usuário principal e as

funcionalidades do sistema chatbot, detalhadas a seguir.

3.2.1.1 Usuário

• Criança: Representa o usuário principal do sistema, sendo a criança com TEA

que interage diretamente com o chatbot para realizar as atividades educativas e

comunicativas propostas.

3.2.1.2 Casos de Uso Principais

Os casos de uso representam as funcionalidades centrais que o sistema oferece:

• Criar História por Imagem/Desenho: Permite que a criança envie uma fotografia

ou desenho, que é processado pelo sistema através do Amazon Rekognition para iden-

tificação de elementos visuais, seguido pela geração de uma narrativa personalizada

utilizando a API da OpenAI.

• Criar História por Seleção de Cards: Funcionalidade na qual a criança constrói

uma narrativa escolhendo elementos específicos (protagonista, clima, veículo e local)

em uma sequência de cartões visuais interativos, resultando na geração de uma

história personalizada.

Capítulo 3. Metodologia 40

• Expressar Sentimentos e Desejos: Permite que a criança comunique emoções,

preferências ou necessidades de forma visual e intuitiva, selecionando itens organizados

em categorias por meio de cards interativos (emoções, comidas e brincadeiras).

3.2.1.3 Casos de Uso de Apoio

O sistema integra funcionalidades técnicas que suportam os casos principais:

• Analisar Imagem: Processamento automático de imagens utilizando Amazon

Rekognition para identificação de objetos, pessoas e contexto visual.

• Gerar Narrativa: Criação de histórias personalizadas através da API da OpenAI,

baseada nos elementos identificados ou selecionados pela criança.

• Converter para Áudio: Síntese de voz utilizando Amazon Polly para transformar

textos em áudio, garantindo a experiência multimodal do sistema com vozes infantis.

3.2.1.4 Relacionamentos

• Associação: As linhas contínuas entre o ator e os casos de uso principais indicam

que a criança inicia e participa diretamente dessas interações como usuária primária

do sistema.

• Inclusão («include»): Os relacionamentos tracejados demonstram que os casos de

uso de apoio são funcionalidades obrigatórias e automáticas, executadas pelo sistema

sempre que um caso principal é acionado, garantindo o processamento completo da

solicitação e a resposta em formato de áudio.

3.3 Ferramentas e Tecnologias Utilizadas

O desenvolvimento do sistema foi realizado no Visual Studio Code, uma Integrated

Development Environment (Ambiente de Desenvolvimento Integrado) (IDE) amplamente

adotada por oferecer suporte avançado a diversas linguagens e integração com serviços da

AWS. Para ampliar a produtividade e garantir padronização no código, foram utilizadas

extensões e ferramentas como AWS Toolkit for Visual Studio Code, Python Extension Pack

(com suporte ao Pylint para análise estática de código), GitLens e Serverless Framework

Snippets, além do Prettier voltado à formatação automática.

A principal linguagem de programação empregada foi o Python, versão 3.12.0, esco-

lhida por sua compatibilidade com os serviços AWS e ampla disponibilidade de bibliotecas

para integração com APIs. Python foi utilizado principalmente no desenvolvimento das

funções Lambda e na lógica de processamento do sistema, com destaque para as bibliotecas

representadas na Figura 6.

Capítulo 3. Metodologia 41

Figura 6 – Principais bibliotecas utilizadas no desenvolvimento em Python. Fonte: Do
Autor

Além disso, foi utilizado JavaScript/Node.js, versão 18, aplicado tanto na confi-

guração do Serverless Framework quanto na camada de frontend. A Figura 7 ilustra as

principais dependências e pacotes utilizados, destacando os componentes essenciais para o

funcionamento da infraestrutura serverless.

Figura 7 – Dependências principais utilizadas no desenvolvimento em Node.js. Fonte: Do
Autor

O controle de versão foi realizado com Git, permitindo gerenciamento distribuído

do código e organização eficiente das branches, seguindo uma estrutura simplificada com

feature, develop e main. O repositório foi hospedado no GitHub, que também serviu para

armazenamento da documentação do projeto.

A arquitetura do sistema foi construída sobre recursos da AWS, com destaque para

Amazon Lex, responsável pelo processamento de linguagem natural; AWS Lambda, para

computação serverless; Amazon S3, como armazenamento de objetos; Amazon Rekognition

e Polly, para análise de imagens e síntese de fala, respectivamente; API Gateway, para

gerenciamento de APIs; e CloudWatch, utilizado para monitoramento e geração de logs.

Para complementar as funcionalidades, foram integradas soluções externas, como

OpenAI GPT-3.5-turbo, para geração de narrativas personalizadas; Microsoft Translator

API, para tradução automática de conteúdos; e a interface web Kommunicate.io, que

permite interação conversacional integrada ao chatbot.

Capítulo 3. Metodologia 42

3.4 Arquitetura de Código e Estrutura do Projeto

O projeto foi estruturado em módulos independentes, estratégia que facilita a

manutenção, permite atualizações isoladas e garante maior escalabilidade. Cada módulo

possui responsabilidades bem definidas, promovendo um desenvolvimento mais organizado

e flexível. A Figura 8 apresenta a organização dos diretórios e arquivos, evidenciando a

distribuição do código entre os diferentes módulos.

Figura 8 – Estrutura de diretórios do projeto, destacando a distribuição dos módulos e
seus arquivos principais. Fonte: Do Autor

A arquitetura distribuída do sistema é ilustrada na Figura 9, evidenciando a

interação entre os serviços AWS e os componentes externos. O fluxo de dados inicia-se

na interface Kommunicate.io, segue pelo processamento de intenções do Amazon Lex e é

distribuído entre serviços especializados, como Rekognition, Polly e OpenAI, por meio de

funções Lambda orquestradas pelo API Gateway. Essa representação permite compreender

a lógica de integração entre os módulos e a infraestrutura serverless adotada, mostrando

como o sistema mantém modularidade, escalabilidade e eficiência no processamento das

requisições.

Capítulo 3. Metodologia 43

Figura 9 – Arquitetura distribuída do sistema, ilustrando a interação entre serviços AWS
e componentes externos. Fonte: Do Autor

O funcionamento do sistema pode ser descrito em cinco etapas principais: a en-

trada do usuário, capturada pelo Kommunicate.io; o processamento de intenções pelo

Amazon Lex; a orquestração de serviços realizada pelas funções Lambda; o processamento

especializado por serviços como Rekognition, Polly ou OpenAI; e, finalmente, a resposta

consolidada, que é entregue ao usuário em formato multimodal, podendo ser texto, imagem

ou áudio.

3.4.1 JUSTIFICATIVA DAS ESCOLHAS TECNOLÓGICAS

As escolhas tecnológicas adotadas neste trabalho foram guiadas por critérios de efi-

ciência operacional, escalabilidade e viabilidade econômica, sempre alinhados aos objetivos

da monografia. A seguir, são apresentadas as justificativas para os principais componentes

utilizados:

• Nuvem AWS: A AWS foi selecionada em razão de sua maturidade no mercado de

serviços gerenciados e pela oferta de um modelo gratuito robusto, o que possibilitou

a realização do projeto dentro das restrições orçamentárias próprias de um contexto

acadêmico.

• Arquitetura Serverless (AWS Lambda): Optou-se pela computação serverless

a fim de abstrair a administração de infraestrutura e concentrar esforços na lógica

de negócio. O modelo de cobrança do AWS Lambda, baseado no tempo de execução,

mostrou-se adequado para aplicações com uso intermitente, contribuindo para a

redução dos custos operacionais.

Capítulo 3. Metodologia 44

• Amazon API Gateway: Esse serviço foi empregado como ponto central de acesso

aos serviços de backend. Sua função foi essencial para o gerenciamento, a segurança e

o monitoramento das APIs responsáveis por acionar as funções Lambda, garantindo

maior controle sobre o tráfego e a autorização das requisições.

• Amazon S3: O Amazon Simple Storage Service (S3) foi utilizado como repositório

de objetos pela combinação de alta durabilidade, escalabilidade e baixo custo. No

projeto, teve dupla função: hospedar os arquivos estáticos do frontend e armazenar

as mídias geradas pela aplicação, como imagens enviadas pelos usuários e áudios

produzidos pelo Amazon Polly.

• Amazon Lex: Para o núcleo conversacional, o Amazon Lex foi escolhido devido à

sua capacidade avançada de PLN e à integração nativa com o AWS Lambda, que

facilitou a orquestração dos fluxos de diálogo.

• Amazon Rekognition e Polly: As funcionalidades multimodais foram viabilizadas

por serviços gerenciados de IA. O Rekognition foi empregado na análise de imagens,

eliminando a necessidade de desenvolver modelos próprios de visão computacional.

Já o Amazon Polly foi utilizado para a síntese de fala, destacando-se pela qualidade

de suas vozes neurais, aspecto relevante para a aceitação pelo público infantil.

• API da OpenAI (GPT): A API da OpenAI foi incorporada por representar o

estado da arte em geração de linguagem natural. Sua habilidade de produzir narrativas

consistentes a partir de instruções mínimas foi fundamental para a implementação

da funcionalidade de criação de histórias.

• Kommunicate.io: Por fim, a plataforma Kommunicate.io foi adotada como interface

de interação com o usuário, acelerando o desenvolvimento do frontend por meio de

um widget de fácil integração e suporte nativo ao Amazon Lex.

A integração dessas tecnologias resultou em um sistema resiliente e funcional,

entregue dentro do cronograma proposto. Dessa forma, a arquitetura desenvolvida se

confirma como um modelo eficaz para a construção de soluções em tecnologia assistiva.

45

4 DESENVOLVIMENTO

Este capítulo descreve de forma detalhada o desenvolvimento dos componentes

fundamentais do sistema, explicitando responsabilidades, definições claras de comunicação

entre módulos e principais algoritmos empregados. Foi adotada uma abordagem modu-

lar, com foco em coesão interna e baixo acoplamento entre componentes, favorecendo

extensibilidade, testabilidade e manutenção evolutiva. Os módulos foram concebidos com

descrição clara do que cada um recebe e retorna, regras de funcionamento e tratamento

sistemático de exceções, observando requisitos não funcionais como latência, resiliência e

custo operacional. Essa organização permite evoluções incrementais e auditoria técnica do

comportamento em produção.

4.1 Módulo de Roteamento (lambda_function.py)

O módulo principal, lambda_function.py, é responsável por rotear as solicitações

do Amazon Lex para as funções tratadoras de cada intenção. Ele interpreta o nome da intent,

aciona a função correspondente e centraliza a orquestração do diálogo. O mapeamento é

feito de forma direta, por meio de condicionais, garantindo despacho simples e previsível.

Quando a intent não existe, o evento está incompleto ou há inconsistências de tipo, o

sistema retorna respostas padronizadas e registra os eventos, facilitando o diagnóstico. A

implementação deste módulo é apresentada na Figura 10.

Capítulo 4. Desenvolvimento 46

Figura 10 – Implementação do módulo de roteamento (lambda_function.py). Fonte: Do
Autor

4.2 Módulo de Expressão Emocional (intent_expressar.py)

O módulo intent_expressar.py permite que a criança se comunique por meio de

cards que representam diferentes emoções, desejos ou situações, oferecendo uma interação

visual e intuitiva. O sistema carrega previamente os dados das opções disponíveis em um

arquivo JSON, contendo textos e imagens para cada categoria. Durante a interação, a

função handler verifica se todos os slots necessários, como a escolha da voz, do desejo e da

opção específica, foram preenchidos. Caso algum slot esteja incompleto, o módulo apresenta

cards visuais com as opções correspondentes, guiando a criança na seleção. Quando todas

as informações estão completas, o módulo utiliza os valores escolhidos para gerar uma

narrativa associada à seleção da criança e cria um arquivo de áudio personalizado com

a voz selecionada, retornando no formato adequado para o chatbot. Ao final, a sessão é

Capítulo 4. Desenvolvimento 47

atualizada e um card final é exibido para permitir a continuidade da interação. Dessa forma,

o módulo combina validação de entradas, orientação por imagens, geração de áudio através

do Amazon Polly e feedback contextualizado, promovendo uma experiência intuitiva.

O fluxo do módulo pode ser dividido em quatro etapas principais: leitura do

contexto e validação dos dados de entrada, fase de diálogo para coleta de slots obrigatórios,

execução do atendimento com geração de áudio e, por fim, finalização da sessão com adição

de card de continuidade. As Figuras 11 a 14 apresentam essas etapas detalhadamente.

Figura 11 – Início do handler : leitura do contexto e validação dos dados de entrada. Nesta
etapa, o módulo interpreta o evento do Amazon Lex e verifica se os slots
obrigatórios foram preenchidos corretamente. Fonte: Do Autor

Na fase de diálogo, caso haja informações faltantes ou inválidas, a função monta a

resposta adequada para o Amazon Lex solicitar o próximo slot. O sistema utiliza cards

visuais para guiar a criança na seleção da categoria, da imagem e da opção desejada,

garantindo uma interação intuitiva e pedagógica.

Capítulo 4. Desenvolvimento 48

Figura 12 – Fase de diálogo: verificação de slots obrigatórios e construção de respostas
adaptativas com cards visuais. Fonte: Do Autor

Quando todos os slots estão preenchidos, o módulo executa o atendimento. Ele

coleta a voz e as escolhas do usuário, compõe o texto de saída e seleciona a voz adequada

para a síntese de áudio. Em seguida, o áudio é gerado pelo Amazon Polly e empacotado

em um payload compatível com o chatbot, garantindo a reprodução interativa dentro da

interface.

Figura 13 – Execução do atendimento: coleta das escolhas do usuário, geração do áudio e
empacotamento em payload para o chatbot. Fonte: Do Autor

Capítulo 4. Desenvolvimento 49

Por fim, a sessão é finalizada de forma padronizada e um card de continuidade

é adicionado à resposta, permitindo que a criança escolha a próxima ação. Esta etapa

garante previsibilidade no encerramento das intents, facilita a manutenção e mantém a

consistência das interações.

Figura 14 – Finalização da sessão e inclusão do card de continuidade, permitindo a intera-
ção contínua do usuário com o chatbot. Fonte: Do Autor

4.3 Módulo de Geração de Histórias

4.3.1 GERAÇÃO DE HISTÓRIAS A PARTIR DE IMAGENS OU DESENHOS

O módulo intent_historia.py é responsável por receber a imagem ou desenho

feito pela criança através do chatbot e processá-la para criar narrativas personalizadas.

Inicialmente, a entrada selecionada é analisada pelo Amazon Rekognition, que identifica

elementos visuais e retorna labels e informações relevantes sobre o conteúdo. Esses dados

são enviados à API da OpenAI, que utiliza as características extraídas para gerar uma

história coerente e contextualizada, refletindo os elementos presentes na imagem ou no

desenho. O texto gerado é convertido automaticamente em áudio pelo Amazon Polly,

permitindo que a criança ouça a narrativa de forma interativa. Todo o fluxo combina

validação de entradas, análise visual, geração de conteúdo textual e produção de áudio,

proporcionando uma experiência pedagógica, multimídia e intuitiva.

A função ObterHistoria_handler organiza o fluxo em etapas que incluem va-

lidação dos slots, preparação dos dados de entrada e orquestração do processamento

assíncrono. A Figura 15 ilustra o início desse processo, destacando a captura do contexto,

a inicialização das variáveis e a validação dos slots recebidos.

Capítulo 4. Desenvolvimento 50

Figura 15 – Início do handler : captura do contexto, inicialização de variáveis e validação
dos slots. Fonte: Do Autor

Na fase de diálogo, quando há dados faltantes ou inválidos, a função constrói a

resposta para o Lex solicitar o próximo slot e encerrar o ciclo atual. Esse comportamento

está representado na Figura 16, que mostra a verificação de informações e a geração de

respostas adaptativas.

Figura 16 – Fase de diálogo: verificação de slots e geração de respostas adaptativas para
coleta de dados do usuário. Fonte: Do Autor

No pré-processamento, a aplicação identifica a origem da imagem, prepara a

chamada ao serviço de análise (Rekognition) e recebe o retorno inicial com os rótulos

Capítulo 4. Desenvolvimento 51

detectados. Esse fluxo é apresentado na Figura 17.

Figura 17 – Pré-processamento e chamada ao Amazon Rekognition para análise da imagem
selecionada. Fonte: Do Autor

Em seguida, ocorre o pós-processamento, no qual os rótulos retornados são tradu-

zidos, normalizados e organizados em frases que servirão como base para a narrativa. A

Figura 18 mostra esse processo de transformação dos dados brutos em insumos para a

geração da história.

Capítulo 4. Desenvolvimento 52

Figura 18 – Pós-processamento dos rótulos: tradução, normalização e montagem da frase
para geração da história. Fonte: Do Autor

A orquestração assíncrona, representada na Figura 19, aciona a função Lambda

encarregada de gerar a história e, ao mesmo tempo, mantém a interface responsiva,

enviando ao usuário uma mensagem de carregamento.

Figura 19 – Orquestração assíncrona: acionamento da função Lambda para geração da
história e retorno de resposta imediata ao usuário. Fonte: Do Autor

Capítulo 4. Desenvolvimento 53

Por fim, o sistema envia uma resposta imediata ao usuário, encerrando a intent e

exibindo um card de continuidade. Esse comportamento é mostrado na Figura 20, que

evidencia a preocupação em manter a interação fluida e engajante.

Figura 20 – Resposta imediata ao usuário: mensagem de carregamento e card de continui-
dade da interação. Fonte: Do Autor

4.3.2 GERAÇÃO DE HISTÓRIAS A PARTIR DE CARDS

O módulo intent_historia_cards.py permite que a criança componha uma

história selecionando cartões visuais que representam protagonistas, clima, veículo e local.

O fluxo valida cada escolha, apresenta cards quando algum slot está ausente e, ao final,

aciona a geração assíncrona da narrativa com base nas opções selecionadas. A Figura 21

apresenta a lógica de validação inicial e a construção dos cards de imagem a partir de

dados armazenados em JSON.

Capítulo 4. Desenvolvimento 54

Figura 21 – Validação e construção de cards: leitura do JSON, verificação de slots e
preparação de cards de imagem para o usuário. Fonte: Do Autor

O início do handler é mostrado na Figura 22, que ilustra a captura do contexto

da intent, a inicialização de variáveis e a verificação dos slots, garantindo que os dados

mínimos necessários estejam presentes antes do avanço do fluxo.

Figura 22 – Início do handler : captura de intent e slots, inicialização da resposta e validação.
Fonte: Do Autor

Na fase de diálogo, se algum slot ainda estiver faltando, o sistema gera uma

resposta orientando o Amazon Lex a elicitar a próxima informação. Esse comportamento

Capítulo 4. Desenvolvimento 55

está representado na Figura 23, que mostra a construção de respostas adaptativas para a

coleta dos dados.

Figura 23 – Fase de diálogo: verificação de slots e respostas adaptativas para coleta de
dados do usuário. Fonte: Do Autor

No cumprimento da intent, todas as escolhas realizadas pela criança são reunidas

para formar a base da narrativa. A Figura 24 ilustra essa etapa, onde as informações de

cada card são organizadas e transformadas em uma frase inicial que dará origem à história.

Figura 24 – Cumprimento da intent: coleta das escolhas dos cards e composição da frase
para geração da história. Fonte: Do Autor

A orquestração assíncrona, apresentada na Figura 25, aciona a função Lambda

responsável pela geração da história, mantendo a interface responsiva e proporcionando ao

usuário um retorno imediato de que o processamento está em andamento.

Capítulo 4. Desenvolvimento 56

Figura 25 – Orquestração assíncrona: acionamento da função Lambda e manutenção da
responsividade da conversa. Fonte: Do Autor

Finalmente, o módulo retorna uma mensagem de carregamento e encerra a intent

atual, exibindo um card de continuidade para o usuário. A Figura 26 mostra esse momento,

reforçando o aspecto pedagógico e interativo da aplicação.

Figura 26 – Resposta imediata ao usuário: mensagem de carregamento e card para conti-
nuidade da interação. Fonte: Do Autor

Capítulo 4. Desenvolvimento 57

4.4 Módulo de Funções Auxiliares (functions.py)

O módulo functions.py concentra utilitários reutilizáveis que implementam pa-

drões de resposta do Amazon Lex e suportam o gerenciamento do estado conversacional.

Ele funciona como uma camada de infraestrutura para os demais módulos, garantindo

consistência na comunicação, padronização das respostas e tratamento centralizado de

exceções. A utilização deste módulo reduz a duplicação de código entre intents, facilita

a manutenção e evoluções futuras, e permite a inclusão de metadados relacionados à

acessibilidade e instrumentação.

A função close_session é responsável por finalizar uma sessão de diálogo de forma

padronizada, sinalizando ao Amazon Lex que a intenção foi atendida. Ela recebe o nome da

intent e os slots preenchidos, retornando a estrutura sessionState com dialogAction do

tipo Close e estado Fulfilled. Essa padronização garante previsibilidade na finalização

de intents e simplifica a implementação de handlers adicionais. A Figura 27 apresenta a

implementação da função.

Figura 27 – Exemplo da função close_session, mostrando a estrutura de retorno padro-
nizada para finalização de intents no Amazon Lex. Fonte: Do Autor

A função check_validation constrói a resposta do Lex com base no resultado

da validação. Quando há dados faltantes, a função orienta qual slot deve ser solicitado

por meio de ElicitSlot; quando a validação é bem-sucedida, delega a continuidade do

Capítulo 4. Desenvolvimento 58

diálogo via Delegate. Essa função garante que a lógica de coleta de dados seja consistente

entre todas as intents do sistema. A Figura 28 mostra a implementação ilustrativa de

check_validation.

Figura 28 – Exemplo da função check_validation, mostrando como a resposta do Ama-
zon Lex é construída com base na validação dos slots. Fonte: Do Autor

Em síntese, o módulo functions.py atua como uma camada de apoio estruturada,

fornecendo mecanismos padronizados para finalização de intents e coleta de informações

Capítulo 4. Desenvolvimento 59

via slots. Isso garante consistência, reutilização de código e facilidade de manutenção,

permitindo que todos os módulos do sistema operem de forma uniforme e assegurem

respostas confiáveis no ambiente do Amazon Lex.

4.5 Serviços Auxiliares Serverless

O sistema foi desenvolvido com uma arquitetura de microserviços, baseada em

funções Lambda especializadas, em que cada serviço possui responsabilidades bem definidas

e atua de forma independente. Isso facilita tanto a manutenção quanto a escalabilidade da

aplicação. A comunicação entre os serviços ocorre por meio do API Gateway, e sempre que

possível, os serviços são implementam para produzir resultados consistentes em execuções

repetidas, evitando efeitos colaterais. Além disso, cada serviço conta com tratamento

explícito para erros recuperáveis e irreversíveis. Essa abordagem reduz o acoplamento entre

os componentes, permitindo que o sistema evolua sem comprometer seu funcionamento.

4.5.1 ANÁLISE DE IMAGENS (REKOGNITION.PY)

O módulo rekignition.py é utilizado para realizar a análise de imagens enviadas

pelos usuários. O conteúdo visual é processado e submetido à detecção de objetos, cenas e

conceitos, retornando rótulos acompanhados de seus respectivos níveis de confiança. O

serviço suporta o envio de imagens codificadas em base64, aplica limiares de confiança

para filtrar os resultados e organiza a saída em um formato estruturado, adequado ao

consumo pela aplicação. Além disso, leva em consideração limitações como o tamanho do

payload e o tempo de execução da função, bem como a variação na qualidade das imagens

recebidas, que pode influenciar a precisão dos rótulos gerados.A implementação do serviço

de análise de imagens pode ser observada na Figura 29.

Capítulo 4. Desenvolvimento 60

Figura 29 – Implementação do serviço de análise de imagens (rekognition.py). Fonte:
Do Autor

4.5.2 SÍNTESE DE VOZ (POLLY.PY)

O módulo polly.py converte texto em áudio por meio do Amazon Polly, permitindo

configuração de voz, velocidade e tom, e disponibiliza o arquivo MP3 no S3. O fluxo principal

da função polly_v1 inclui validação dos parâmetros, seleção da voz, conversão em áudio e

retorno da URL resultante, como demonstrado na Figura 30.

Capítulo 4. Desenvolvimento 61

Figura 30 – Fluxo principal da função polly_v1 para síntese de áudio. Fonte: Do Autor

A função garante tratamento de erros e retorno padronizado, assegurando robustez

na comunicação com o chatbot, como mostrado na Figura 31.

Capítulo 4. Desenvolvimento 62

Figura 31 – Tratamento de erros e retorno padronizado da função polly_v1. Fonte: Do
Autor

Quando a operação é bem-sucedida, os metadados do objeto gerado são recuperados,

o corpo de retorno é composto com a frase recebida, a URL do áudio e a data de criação,

e a resposta é enviada com código 200. Em caso de falha, um retorno padronizado com

código 500 é fornecido, garantindo previsibilidade no comportamento do serviço.

4.5.3 GERAÇÃO DE HISTÓRIAS (CREATE_STORY.PY)

O módulo create_story.py concentra a lógica de criação narrativa mediante

integração com a API da OpenAI. Ele processa elementos estruturados fornecidos pelo

usuário, compõe prompts contextualizados e integra-se a modelos de linguagem GPT para

gerar histórias personalizadas para o público infantil. O conteúdo produzido é validado e

formatado antes da entrega, atendendo requisitos de clareza, coerência textual e adequação

etária. Além disso, mecanismos de validação e mensagens de fallback garantem continuidade

da experiência em caso de falhas na geração do texto.

A função principal do módulo, create_story_v1, inicia verificando se os parâmetros

obrigatórios foram recebidos, construindo a requisição para a API da OpenAI e tratando

possíveis falhas de comunicação. O fluxo da função é apresentado na Figura 32.

Capítulo 4. Desenvolvimento 63

Figura 32 – Trecho inicial da função create_story_v1, mostrando a validação de parâ-
metros e preparação da requisição à API da OpenAI. Fonte: Do Autor

Quando a chamada à API é bem-sucedida, o texto da história é extraído da resposta,

encapsulado em um objeto JSON e retornado com código 200. Caso ocorra qualquer falha

durante o processo, é enviado um retorno padronizado com código 500 e mensagem de erro,

garantindo previsibilidade no comportamento do serviço, como mostrado na Figura 33.

Capítulo 4. Desenvolvimento 64

Figura 33 – Trecho final da função create_story_v1, demonstrando a extração do texto
gerado, construção da resposta e tratamento de erros. Fonte: Do Autor

65

5 CONFIGURAÇÃO SISTÊMICA

A fase de configuração sistêmica é um pré-requisito essencial para o processo de

implantação, garantindo que o ambiente de desenvolvimento esteja devidamente preparado

e que todas as dependências, credenciais e ferramentas tecnológicas necessárias estejam

corretamente instaladas e validadas. Este capítulo detalha os pré-requisitos de software,

as contas de serviço indispensáveis e os procedimentos para preparar o ambiente local,

estabelecendo os alicerces operacionais para a implantação da infraestrutura em nuvem.

5.1 Especificações de Pré-requisitos

5.1.1 REQUISITOS DE SOFTWARE E DEPENDÊNCIAS TECNOLÓGICAS

Para configurar o ambiente de desenvolvimento, é necessário instalar e parametrizar

um conjunto de softwares fundamentais, capazes de assegurar a interoperabilidade e o

funcionamento adequado do sistema. Entre os componentes essenciais, destacam-se:

• Node.js (versão 18.x ou superior), utilizado no gerenciamento de pacotes e como

suporte ao Serverless Framework, viabilizando a execução de rotinas de implantação

e compilação (build).

• Command Line Interface (Interface de Linha de Comando) (CLI), que

permite a comunicação direta com os serviços da AWS, incluindo a criação de recursos

e a execução de comandos de deploy.

• Serverless Framework (versão 3.x), responsável por orquestrar a infraestrutura

serverless, integrando funções Lambda, buckets S3 e endpoints do API Gateway.

• Python (versão 3.12 ou superior), utilizado no desenvolvimento das funções

Lambda e no processamento interno de dados, garantindo compatibilidade com

bibliotecas específicas e com o runtime da AWS.

• Git: Sistema de controle de versão distribuído, essencial para clonar o repositório

do projeto e gerenciar o código-fonte.

A verificação das versões instaladas é uma etapa importante, pois assegura que

todos os componentes atendam aos requisitos definidos.

Capítulo 5. Configuração Sistêmica 66

5.1.2 CREDENCIAIS E CONTAS DE SERVIÇO NECESSÁRIAS

Além dos softwares locais, o funcionamento do sistema depende de credenciais

válidas associadas a serviços de computação em nuvem e plataformas de terceiros. Entre

os principais serviços utilizados, destacam-se:

• AWS: exige uma conta com privilégios administrativos para criação e gerenciamento

de recursos serverless, como funções Lambda, buckets S3 e endpoints do API Gateway.

A configuração correta das credenciais é essencial para evitar falhas de autenticação.

• Kommunicate.io: fornece a interface conversacional web, permitindo a interação

direta do usuário com o chatbot e simplificando a gestão do diálogo.

• Microsoft Translator API: acessível via RapidAPI, oferece suporte multilíngue

por meio de tradução automática, proporcionando uma experiência globalizada ao

usuário.

• OpenAI API: utilizada para a geração de narrativas e respostas contextuais,

incorporando modelos avançados de linguagem natural ao fluxo de interação.

Para cada serviço externo, recomenda-se validar previamente a criação das contas,

obter as chaves de API correspondentes e configurar corretamente as variáveis de ambiente.

Essas variáveis, incluindo chaves de acesso e URLs de endpoints, devem ser declaradas no

arquivo serverless.yml do projeto, assegurando acesso seguro e consistente a todos os

módulos do sistema, como ilustrado na Figura 34. Um guia detalhado para a obtenção das

chaves de API está disponibilizado no último capítulo (Apêndice).

Capítulo 5. Configuração Sistêmica 67

Figura 34 – Exemplo de configuração de variáveis de ambiente no arquivo serverless.yml,
incluindo chaves de API e URLs de serviços externos. Fonte: Do Autor

5.2 Preparação do Ambiente de Desenvolvimento

A primeira etapa na preparação do ambiente consiste em obter o código-fonte do

projeto. O repositório está hospedado no GitHub e pode ser clonado para o ambiente de

desenvolvimento local utilizando o seguinte comando no terminal:

git clone https://github.com/guilhermekameoka/chatbot.git

A execução deste comando criará um diretório chamado chatbot-main, contendo

todos os arquivos necessários para a configuração e implantação do sistema.

Com o código-fonte disponível localmente, inicia-se a preparação do ambiente de

desenvolvimento, cujo objetivo é assegurar a instalação correta e a parametrização das

ferramentas essenciais, em versões compatíveis com os requisitos do projeto. Esta fase é

fundamental para garantir o funcionamento coeso e consistente dos módulos subsequentes.

O primeiro procedimento nesta etapa envolve a verificação da configuração do CLI.

A inspeção das credenciais pode ser realizada por meio do comando aws configure list,

cuja saída é exemplificada na Figura 35.

Capítulo 5. Configuração Sistêmica 68

Figura 35 – Exemplo de saída do comando aws configure list, mostrando as credenciais
e a região configurada na CLI. Fonte: Do Autor

Em seguida, recomenda-se validar a versão do Serverless Framework por meio

do comando serverless –version, sendo recomendada a utilização da versão 3.x ou

superior.

A configuração das credenciais da AWS pode ser realizada por dois métodos

distintos:

• Configuração permanente via CLI: indicada para ambientes de desenvolvimento

persistentes. As credenciais são armazenadas localmente nos arquivos .aws/credentials

e .aws/config através do comando aws configure, que solicita:

– AWS Access Key ID: identificador da chave de acesso;

– AWS Secret Access Key: chave secreta associada à conta;

– Default region name: região padrão recomendada (us-east-1);

– Default output format: formato de saída sugerido (json).

• Configuração temporária via variáveis de ambiente: adequada para execuções

efêmeras ou compartilhadas, em que as credenciais permanecem ativas apenas durante

a sessão do terminal:

– export AWS_ACCESS_KEY_ID="sua_access_key";

– export AWS_SECRET_ACCESS_KEY="sua_secret_key";

– export AWS_DEFAULT_REGION="us-east-1".

Ao término desta etapa, o ambiente de desenvolvimento estará totalmente preparado,

com todas as ferramentas nas versões corretas e as credenciais devidamente configuradas e

validadas.

69

6 IMPLANTAÇÃO DO SISTEMA

A implantação e configuração do sistema foram estruturadas em etapas progressivas,

iniciando-se após a conclusão da configuração sistêmica e avançando até a integração

com serviços externos. Este capítulo tem como objetivo apresentar detalhadamente esses

procedimentos, evidenciando a justificativa técnica de cada decisão e assegurando que o

processo possa ser reproduzido de forma consistente em diferentes ambientes.

6.1 Fase I — Implantação da Infraestrutura Principal

Com o ambiente de desenvolvimento devidamente configurado, o próximo passo

consiste em preparar o diretório da aplicação, que concentra os arquivos essenciais para a

orquestração da infraestrutura. Entre os principais arquivos, destacam-se:

• serverless.yml: define os recursos e serviços da AWS, incluindo funções Lambda,

buckets S3 e endpoints do API Gateway.

• package.json: gerencia dependências JavaScript necessárias para a execução de

scripts de build e plugins do Serverless Framework.

• Scripts Python (*.py): implementam a lógica das funções Lambda e demais proces-

samentos internos do sistema.

Para acessar o diretório responsável pela orquestração da infraestrutura, utiliza-se

o comando cd src/serverless. Em seguida, a listagem detalhada do conteúdo pode ser

obtida por meio de ls -la, que exibe todos os arquivos, incluindo os ocultos, juntamente

com informações sobre permissões, proprietários e tamanhos. Essa verificação é fundamental

para confirmar que todos os arquivos centrais estão presentes e que a estrutura está

adequada para a instalação das dependências e para a subsequente implantação da

infraestrutura.

Na Figura 36, os números 1 e 2 destacam, respectivamente, a execução dos comandos

cd src/serverless e ls -la. A imagem ilustra a presença dos arquivos essenciais, como

serverless.yml, package.json e os módulos Python necessários para as funções Lambda.

Capítulo 6. Implantação do Sistema 70

Figura 36 – Conteúdo do diretório src/serverless, incluindo serverless.yml,
package.json e scripts Python das funções Lambda. Fonte: Do Autor

Nesta etapa, dois plugins do Serverless Framework são fundamentais: o serverless-s3-sync,

responsável por sincronizar arquivos estáticos com o Amazon S3, e o serverless-finch,

utilizado para a implantação automatizada da camada de frontend. A instalação dos

plugins é realizada por meio do comando:

npm install serverless-s3-sync serverless-finch –save-dev

A execução desse comando pode ser visualizada na Figura 37, que ilustra a instalação

dos pacotes no projeto.

Figura 37 – Instalação dos plugins serverless-s3-sync e serverless-finch via npm.
Fonte: Do Autor

Capítulo 6. Implantação do Sistema 71

Após a instalação, recomenda-se verificar se os pacotes foram corretamente adicio-

nados ao projeto, utilizando o comando npm list –depth=0

A Figura 38 exibe a saída do comando, permitindo verificar que todos os plugins

necessários foram corretamente instalados. Dessa forma, é possível confirmar que o ambiente

está devidamente preparado para a implantação da infraestrutura.

Figura 38 – Verificação das dependências instaladas no projeto utilizando npm list

–depth=0. Fonte: Do Autor

Outro ponto crítico nesta fase é a configuração de identificadores únicos para os

buckets S3, uma vez que o namespace deste serviço é global. Caso dois usuários tentem

criar buckets com o mesmo nome, ocorrerá conflito, impedindo a criação correta dos

recursos. Para contornar essa restrição, o arquivo serverless.yml deve ser editado na

seção environment, substituindo o valor da variável BUCKET_IMAGES por um identificador

exclusivo.

Diversas estratégias práticas podem ser adotadas para garantir a unicidade, in-

cluindo a concatenação de datas em formato ISO, a utilização de iniciais do desenvolvedor

ou a aplicação de funções hash. Essas abordagens são detalhadas na Tabela 2, que

apresenta exemplos e vantagens de cada método. É fundamental substituir o marcador

<SEU_IDENTIFICADOR_UNICO> para evitar conflitos de nomenclatura durante o processo

de implantação.

Método Exemplo
Data ISO rogerio-conta-historias-polly-bucket-20250902
Iniciais + Timestamp rogerio-conta-historias-polly-bucket-gk2025
UUID Simplificado rogerio-conta-historias-polly-bucket-a1b2c3
Hash MD5 Parcial rogerio-conta-historias-polly-bucket-7f8a9b

Tabela 2 – Estratégias para Geração de Identificadores Únicos. Fonte: Do Autor

Com as dependências instaladas e os identificadores devidamente configurados, a

implantação pode ser executada com o comando: sls deploy

Esse procedimento dispara uma série de operações automáticas, incluindo a valida-

ção da sintaxe do serverless.yml, o empacotamento do código das funções Lambda, a

Capítulo 6. Implantação do Sistema 72

criação de uma stack no AWS CloudFormation e a provisão de recursos como buckets S3,

endpoints no API Gateway e permissões IAM. Ao término da execução, são exibidos os

artefatos gerados, entre eles os endpoints da API, que servirão de base para a configuração

posterior do módulo conversacional.

6.2 Fase II — Implantação do Módulo Conversacional

O módulo de processamento conversacional representa o núcleo da lógica do sistema,

responsável pelo gerenciamento das intenções do usuário, integração com serviços de IA e

orquestração das respostas multimodais. A implantação deste módulo envolve a preparação

do ambiente, configuração de variáveis de ambiente para integração com serviços externos

e execução do deploy das funções Lambda.

6.2.1 PREPARAÇÃO DO AMBIENTE DE BOT

Para iniciar, é necessário acessar o diretório que contém os arquivos do módulo

conversacional. Este diretório inclui:

• lambda_function.py: responsável pelo roteamento das intents.

• serverless.yml: define a infraestrutura serverless.

• Scripts intent_*.py: implementam as diferentes intenções.

• functions.py: concentra funções auxiliares para interação com Amazon Lex e

serviços externos.

A partir da raiz do projeto, a navegação e verificação da estrutura podem ser

realizadas com os comandos cd src/bot_function seguido por ls -la, como ilustrado

na Figura 39. Esta etapa é essencial para confirmar que todos os arquivos centrais estão

presentes e que a estrutura do diretório está adequada para a instalação das dependências

e subsequente implantação.

Capítulo 6. Implantação do Sistema 73

Figura 39 – Estrutura do diretório do módulo conversacional, contendo arquivos centrais
para a orquestração das funções Lambda. Fonte: Do Autor

6.2.2 CONFIGURAÇÃO DE VARIÁVEIS DE AMBIENTE E INTEGRAÇÃO

COM SERVIÇOS EXTERNOS

Para que o módulo interaja com APIs externas e utilize recursos da nuvem de forma

segura, é necessário a configuração de variáveis de ambiente. Estas incluem credenciais para

a Microsoft Translator API, Kommunicate.io e OpenAI GPT, além de identificadores de

buckets S3 e funções assíncronas. A Figura 40 ilustra um exemplo de configuração dessas

variáveis no arquivo serverless.yml, demonstrando como os dados sensíveis podem ser

integrados de maneira segura à infraestrutura.

Capítulo 6. Implantação do Sistema 74

Figura 40 – Exemplo de configuração de variáveis de ambiente no arquivo serverless.yml,
incluindo credenciais de serviços externos e identificadores de recursos AWS.
Fonte: Do Autor

A obtenção das credenciais deve seguir os procedimentos específicos de cada serviço,

resumidos a seguir. Um guia detalhado com o passo a passo para cada plataforma

encontra-se no Apêndice A.

• Microsoft Translator API (RapidAPI): criar conta, subscrever ao plano gratuito

e copiar a chave X-RapidAPI-Key.

• Kommunicate API: criar conta, acessar API Keys no dashboard e gerar chave com

permissões de bot integration.

• OpenAI API: criar chave secreta na plataforma OpenAI, nomeá-la e armazenar

com segurança.

6.2.3 EXECUÇÃO DA IMPLANTAÇÃO DO MÓDULO CONVERSACIONAL

Com o ambiente preparado e as credenciais configuradas, o deploy do módulo é

realizado utilizando o Serverless Framework. A execução do comando sls deploy inicia a

criação das funções Lambda, configuração de triggers e provisionamento de permissões

IAM. Ao final do processo, os artefatos gerados incluem:

• botFunction-dev-botFunction: função principal de processamento conversacional.

Capítulo 6. Implantação do Sistema 75

• botFunction-dev-AsyncBotMessage: função para execução assíncrona de men-

sagens.

• Roles IAM: permissões automaticamente configuradas para acesso seguro aos

serviços AWS.

Esta fase garante que o módulo de processamento conversacional esteja operacional,

totalmente integrado aos serviços externos e pronto para receber requisições de usuários

em tempo real, estabelecendo a base para a integração final com o Amazon Lex.

6.3 Fase III — Configuração e Integração do Amazon Lex

O Amazon Lex V2 é o serviço responsável pelo processamento de linguagem natural,

combinando tecnologias de ASR e NLU para interpretar intenções do usuário e orquestrar

diálogos complexos. O modelo de conversação é estruturado em componentes principais:

• Intents: representam ações que o usuário deseja executar.

• Slots: parâmetros necessários para completar uma intent.

• Utterances: exemplos de como os usuários podem expressar uma intenção.

• Fulfillment: lógica de negócio responsável por processar requisições.

6.3.1 IMPORTAÇÃO DO MODELO CONVERSACIONAL

A configuração inicia com a importação do modelo pré-treinado do Lex, dis-

ponibilizado em arquivo .zip. Para tanto, o usuário deve acessar o console do Lex

(<https://console.aws.amazon.com/lexv2/>), selecionar a região us-east-1 e utilizar a

função Import para enviar o arquivo src/bot/project_autism-LexJson.zip. O tempo

estimado para processamento pode variar entre um a cinco minutos. A Figura 41 ilustra a

interface do console durante a importação do modelo.

Capítulo 6. Implantação do Sistema 76

Figura 41 – Interface do Amazon Lex V2 durante a importação do modelo de conversação.
Fonte: Do Autor

6.3.2 COMPILAÇÃO E BUILD DO MODELO

Após a importação, realiza-se o build, etapa que compila intents, slots e utterances

em um modelo funcional de aprendizado de máquina, capaz de processar interações em

tempo real. Para isso, deve-se acessar a opção Intents no menu lateral do Amazon Lex e

clicar em Build no canto superior direito da tela. O monitoramento desta etapa permite

acompanhar o status de compilação, garantindo que o modelo esteja pronto para atender

às solicitações dos usuários. A Figura 42 apresenta o fluxo de execução do build e o

monitoramento do status do processo.

Capítulo 6. Implantação do Sistema 77

Figura 42 – Fluxo de compilação (build) do modelo Amazon Lex, incluindo monitoramento
do status do processo. Fonte: Do Autor

6.3.3 INTEGRAÇÃO COM AWS LAMBDA

A integração entre o Amazon Lex e as funções Lambda ocorre por meio de code

hooks, responsáveis por acionar a lógica de negócio vinculada a cada intent. Para que essa

comunicação seja possível, é necessário configurar as permissões no IAM, garantindo que

o serviço Amazon Lex esteja autorizado a invocar a função Lambda correspondente. Esse

processo de configuração é realizado em duas etapas, executadas diretamente no terminal

por meio da ferramenta CLI:

1. Concessão de permissões IAM: a função Lambda deve permitir explicitamente

que o serviço Amazon Lex a invoque. Essa autorização é concedida por meio da

ação lambda:InvokeFunction, que define a permissão de execução da função. A

permissão é concedida diretamente ao serviço Amazon Lex (identificado como

lex.amazonaws.com). Dessa forma, o Lex passa a ter autorização para executar a

função Lambda sempre que um code hook for acionado durante o diálogo.

Obter Account ID

ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)

Conceder permissão para Lex invocar Lambda

aws lambda add-permission \

--function-name botFunction-dev-botFunction \

--statement-id lex-invoke-permission-$(date +%s) \

--action lambda:InvokeFunction \

--principal lex.amazonaws.com \

--source-arn "arn:aws:lex:us-east-1:

$ACCOUNT_ID:bot-alias/$BOT_ID/TSTALIASID" \

--region us-east-1

Capítulo 6. Implantação do Sistema 78

2. Configuração do code hook no Bot Alias: cada intent do bot pode ser vinculada

a uma função Lambda para fulfillment. Isso é feito atualizando o alias do bot com a

especificação do code hook, informando o Amazon Resource Name (Nome de Recurso

da Amazon) (ARN) da função Lambda e a versão da interface.

Configurar Lambda como fulfillment handler

aws lexv2-models update-bot-alias \

--bot-id $BOT_ID \

--bot-alias-id TSTALIASID \

--bot-alias-name TestBotAlias \

--bot-version DRAFT \

--bot-alias-locale-settings ’{

"en_US": {

"enabled": true,

"codeHookSpecification": {

"lambdaCodeHook": {

"lambdaARN": "arn:aws:lambda:us-east-1:

’$ACCOUNT_ID’:function:botFunction-dev-botFunction",

"codeHookInterfaceVersion": "1.0"

}

}

}

}’ \

--region us-east-1

Essa integração garante que cada requisição do usuário seja processada de forma

consistente e segura, mantendo um fluxo de conversação confiável e escalável. Além disso,

o modelo pode ser atualizado incrementalmente, com a adição de novas intents, slots ou

regras de diálogo, sem comprometer a integridade do sistema existente.

6.4 Fase IV — Integração com o Kommunicate

Na etapa final, o sistema é integrado à plataforma Kommunicate.io, que atua como

camada de interface entre o Amazon Lex e o usuário, ampliando a acessibilidade da solução

ao permitir a incorporação do widget conversacional em websites e aplicativos. A plataforma

do Kommunicate fornece uma abstração eficiente entre o usuário final e o Amazon Lex,

Capítulo 6. Implantação do Sistema 79

oferecendo benefícios técnicos como uma interface unificada para incorporação em websites,

gerenciamento de sessões que mantém o contexto conversacional, analytics integrados para

monitoramento de uso e desempenho do bot, e suporte a múltiplos canais de interação,

garantindo maior flexibilidade e alcance da aplicação.

6.4.1 CONFIGURAÇÃO DE USUÁRIO IAM ESPECIALIZADO

Para garantir a segurança e aderência ao princípio de menor privilégio, é criado

um usuário IAM dedicado, com permissões restritas apenas às operações necessárias do

Amazon Lex.

1. Criação do usuário IAM: Para iniciar o processo, acesse o console do IAM (<https:

//console.aws.amazon.com/iam/>), selecione a opção Users e clique em Create user.

Defina o nome do usuário como kommunicate-bot, conforme exemplificado na

Figura 43.

Figura 43 – Criação de um novo usuário no IAM. Fonte: Do Autor.

2. Configuração de políticas granulares: Em seguida, é necessário atribuir per-

missões adequadas ao usuário por meio da associação de políticas IAM, garantindo

que apenas os privilégios estritamente necessários sejam concedidos. O fluxo desse

procedimento pode ser observado na Figura 44.

Capítulo 6. Implantação do Sistema 80

Figura 44 – Configuração de permissões no IAM. Fonte: Do Autor.

3. Geração e gerenciamento de credenciais: Para criar uma nova chave de acesso,

acesse o serviço IAM, selecione Users e, em seguida, o usuário kommunicate-bot. Na

aba Security Credentials, localize a seção Access keys e clique em Create access key,

conforme ilustrado na Figura 45.

Figura 45 – Processo de geração de chave de acesso no IAM. Fonte: Do Autor.

Capítulo 6. Implantação do Sistema 81

Criar a access key destinada ao uso pelo serviço de terceiros, copiando imediatamente

o Access Key ID e o Secret Access Key, conforme ilustrado na Figura 46. Recomenda-

se que essas credenciais sejam armazenadas em um gerenciador seguro de senhas e

que nunca sejam versionadas ou expostas em repositórios públicos.

Figura 46 – Geração de credenciais de acesso no IAM. Fonte: Do Autor.

6.4.2 CONFIGURAÇÃO NO DASHBOARD DO KOMMUNICATE

Com as credenciais do usuário IAM devidamente geradas, a etapa final consiste em

configurar a integração diretamente no painel administrativo da plataforma Kommunicate.

O processo envolve o preenchimento de parâmetros específicos, como chaves de acesso,

região da AWS e o nome do bot, que estabelecem a conexão entre a interface do usuário

e o motor conversacional do Amazon Lex. Um guia visual com o passo a passo

detalhado para esta configuração encontra-se no Apêndice A.3.

Após a configuração, a conectividade é validada por meio de um comando de teste

executado via CLI para confirmar que a comunicação está operacional:

aws lexv2-runtime recognize-text \

--bot-id $BOT_ID \

--bot-alias-id TSTALIASID \

--locale-id en_US \

--session-id test-session-123 \

--text "Olá" \

--region us-east-1

Essa integração final garante que o bot esteja acessível de forma segura e eficiente

em múltiplos canais, mantendo o controle de sessões, segurança e métricas de desempenho.

Capítulo 6. Implantação do Sistema 82

6.5 Fase V — Implantação do Frontend Web

A interface do sistema é disponibilizada por meio do Amazon S3, configurado no

modo de hospedagem estática, e o processo consiste em compilar os arquivos do frontend

e enviá-los para um bucket do S3, que, ao ser configurado como website, disponibiliza

automaticamente um endpoint público. A implantação é realizada de forma automatizada

através do comando sls client deploy, que provisiona o bucket, aplica as permissões

adequadas, realiza o upload dos arquivos e ativa o modo de hospedagem estática.

6.5.1 PREPARAÇÃO PARA IMPLANTAÇÃO DO FRONTEND

Antes da execução do deploy, é necessário garantir que os arquivos compilados do

frontend estejam presentes no diretório client/dist/, incluindo o index.html, arquivos

de estilização, scripts JavaScript e demais recursos. Além disso, deve-se retornar ao diretório

de infraestrutura (serverless) para que a ferramenta consiga localizar as configurações

adequadas.

6.5.2 EXECUÇÃO DA IMPLANTAÇÃO DO FRONTEND

A implantação do frontend é realizada de forma automatizada pelo comando sls

client deploy, que provisiona e configura o bucket do S3 com definições de website, realiza

o upload dos arquivos HTML, CSS, JavaScript e demais recursos, e aplica automaticamente

as permissões de leitura pública. Ao final, a aplicação web estará hospedada e acessível

por meio de uma URL pública, com todas as políticas IAM necessárias para garantir o

acesso seguro. Um exemplo de URL final de acesso é:

http://<NOME_DO_BUCKET>.s3-website-us-east-1.amazonaws.com

83

7 RESULTADOS

Este capítulo apresenta os resultados obtidos com a implantação e validação do

sistema de chatbot desenvolvido. O foco desta seção é demonstrar, por meio de evidências

funcionais, que os objetivos técnicos e de interação propostos foram alcançados. Os testes

a seguir foram realizados utilizando a interface do Kommunicate, integrada ao ecossistema

de serviços na nuvem AWS.

7.1 Interface Principal e Interação Inicial

A interface de entrada da aplicação, ilustrada na Figura 47, é composta pela página

inicial e pelo widget de chat do Kommunicate. Ao iniciar a aplicação, o chatbot apresenta

uma mensagem de boas-vindas juntamente com as duas funcionalidades principais. A

primeira, "Criar uma história", possibilita que o usuário gere uma narrativa a partir de um

Desenho - Foto ou utilizando Cartões interativos. A segunda opção, "Quero me expressar",

disponibiliza um conjunto de ícones visuais que facilitam a comunicação de emoções e

desejos, tornando a interação mais intuitiva e envolvente para a criança.

Figura 47 – Tela inicial do chatbot com as opções de interação. Fonte: Do Autor

Capítulo 7. Resultados 84

7.2 Validação da Funcionalidade de Expressão Emocional

O módulo de expressão emocional foi desenvolvido para permitir que a criança

comunique sentimentos e desejos de maneira visual e intuitiva. Para validar essa funci-

onalidade, simulou-se um fluxo completo de interação, desde a escolha da intenção de

expressão até a geração da resposta multimodal, incluindo texto e áudio.

As Figuras 48 a 51 apresentam todo o fluxo de interação do módulo. O processo

inicia-se com a seleção da opção de se expressar, onde o usuário escolhe o gênero da voz

por meio de botões visuais claramente identificados, como mostrado na Figura 48. Em

seguida, o sistema apresenta opções de expressão divididas em categorias, como Emoções

e Comidas, exibidas em cards interativos, permitindo que a criança selecione de forma

intuitiva a categoria desejada (Figura 49).

Ao escolher a categoria Emoções, o módulo exibe um conjunto de ícones repre-

sentando diferentes sentimentos. A criança, então, seleciona a emoção Feliz, ilustrando

a simplicidade e a clareza do design visual dos cards (Figura 50). Por fim, o sistema

gera uma resposta multimodal, apresentando o texto da emoção selecionada no chatbot e

reproduzindo o áudio correspondente, completando o fluxo de interação (Figura 51).

Dessa forma, o módulo de expressão emocional demonstra como escolhas visuais

intuitivas, combinadas com respostas multimodais, podem proporcionar uma experiência

interativa envolvente e personalizada, facilitando a comunicação de sentimentos e desejos

de maneira natural e acessível para a criança.

Capítulo 7. Resultados 85

Figura 48 – Seleção da opção de expressar-se e escolha do gênero da voz. Fonte: Do Autor

Capítulo 7. Resultados 86

Figura 49 – Escolha do tipo de expressão: emoções ou comidas. Fonte: Do Autor

Capítulo 7. Resultados 87

Figura 50 – Seleção da emoção Feliz dentre as opções disponíveis. Fonte: Do Autor

Capítulo 7. Resultados 88

Figura 51 – Geração da resposta em áudio personalizada. Fonte: Do Autor

Dessa forma, o sistema demonstra de maneira clara e intuitiva como a criança pode

se expressar, integrando escolhas visuais e respostas multimodais para proporcionar uma

experiência interativa envolvente e personalizada.

Capítulo 7. Resultados 89

7.3 Validação da Funcionalidade de Geração de Histórias

A geração de histórias é uma das funcionalidades centrais do sistema, dividida em

dois fluxos distintos: a partir de imagens e a partir de cards pré-definidos. Ambos os fluxos

foram validados para assegurar a correta integração entre a interface, os serviços da AWS

(Rekognition, Polly) e a API da OpenAI.

7.3.1 GERAÇÃO DE HISTÓRIAS A PARTIR DE IMAGENS

Neste teste, uma imagem foi enviada pelo usuário através do chat. O sistema

acionou o Amazon Rekognition para identificar os elementos visuais, construiu um prompt

para a OpenAI e retornou uma narrativa em texto e áudio. A Figura 52 ilustra o envio

da imagem pelo usuário, enquanto a Figura 53 apresenta a história gerada pelo chatbot a

partir dessa imagem, evidenciando o sucesso da orquestração assíncrona dos serviços.

Capítulo 7. Resultados 90

Figura 52 – Envio da imagem pelo usuário no sistema. Fonte: Do Autor

Capítulo 7. Resultados 91

Figura 53 – Exemplo de história gerada a partir de uma imagem enviada pelo usuário.
Fonte: Do Autor

7.3.2 GERAÇÃO DE HISTÓRIAS A PARTIR DE CARDS

O segundo fluxo do sistema foi validado por meio da criação de uma história a partir

da seleção sequencial de cards: protagonista (gato), clima (chuvoso), meio de locomoção

(avião) e local da história (espaço). As Figuras 54 a 58 ilustram cada etapa do processo,

Capítulo 7. Resultados 92

desde a escolha individual de cada card até a narrativa final gerada, evidenciando que o

sistema processa corretamente as seleções do usuário e as incorpora à história de forma

lúdica, intuitiva e personalizada.

Figura 54 – Seleção do protagonista (gato) por meio de cards visuais. Fonte: Do Autor

Capítulo 7. Resultados 93

Figura 55 – Seleção do clima (chuvoso) por meio de cards visuais. Fonte: Do Autor

Capítulo 7. Resultados 94

Figura 56 – Escolha do meio de locomoção (avião) por meio de cards visuais. Fonte: Do
Autor

Capítulo 7. Resultados 95

Figura 57 – Seleção do local da história (espaço) por meio de cards visuais. Fonte: Do
Autor

Capítulo 7. Resultados 96

Figura 58 – História final completa gerada pelo sistema, incorporando todas as escolhas
do usuário. Fonte: Do Autor

Esse módulo demonstra como a interação por meio de cards visuais, combinada

com a geração automática de narrativas, oferece uma experiência lúdica, intuitiva e

personalizada, permitindo que a criança construa histórias de maneira natural e envolvente.

Capítulo 7. Resultados 97

7.4 Análise dos Resultados

Os testes funcionais confirmaram que todos os módulos desenvolvidos operam

conforme o esperado, demonstrando a robustez da solução implementada. A arquitetura

serverless na AWS mostrou-se eficaz, permitindo a orquestração resiliente de múltiplos

serviços de forma integrada e escalável. A integração com APIs externas, como a da

OpenAI, ocorreu de maneira satisfatória, possibilitando a geração de conteúdo dinâmico

e personalizado em tempo real. Embora a resposta do sistema dependa da latência

de serviços externos, o desempenho permaneceu dentro de limites aceitáveis para uma

interação conversacional fluida. Esses resultados validam a prova de conceito proposta,

evidenciando a viabilidade de construir tecnologias assistivas inteligentes e escaláveis

utilizando a combinação de serviços em nuvem, APIs de IA e arquitetura serverless,

conforme detalhado nesta monografia.

98

8 CONCLUSÃO

Este trabalho partiu da lacuna observada na literatura sobre o desenvolvimento

de tecnologias assistivas para crianças com TEA, evidenciada pela escassez de estudos

e iniciativas relacionadas ao tema. Diante desse cenário, o objetivo deste trabalho foi

registrar e documentar o desenvolvimento de um sistema de chatbot de apoio, elaborado

durante um estágio supervisionado, que, por meio da aplicação de tecnologias modernas

como computação em nuvem e IA, se configura como uma ferramenta inclusiva, acessível

e eficaz, destinada a apoiar crianças com TEA em seu desenvolvimento e bem-estar.

A principal contribuição técnica do estudo reside na implementação de uma arqui-

tetura serverless, que integra de forma robusta múltiplos serviços da AWS e APIs externas.

O resultado é um sistema multimodal, capaz de permitir interações por meio de texto,

voz e imagens, oferecendo uma experiência segura e alinhada às necessidades do usuário.

Do ponto de vista educacional, a ferramenta inclui um recurso que favorece a expressão

emocional, estimula a criatividade por meio da construção de narrativas e contribui para

o desenvolvimento de habilidades cognitivas de forma lúdica e interativa.

É importante reconhecer as limitações inerentes ao contexto de desenvolvimento

deste projeto. O cronograma de quatro semanas, embora intenso e produtivo, não permitiu a

realização de testes de usabilidade formais com crianças com TEA, uma etapa fundamental

para validar empiricamente o impacto pedagógico da solução. Da mesma forma, o feedback

da instituição de ensino parceira, embora valioso, limitou-se a uma versão parcial do

sistema. Tais limitações, contudo, não invalidam a prova de conceito e a robustez técnica

alcançada, mas sim demarcam um caminho claro para a validação futura.

A partir da base sólida estabelecida, vislumbram-se diversas possibilidades de

expansão. Entre elas, destacam-se a integração de análise de sentimentos em tempo real, a

implementação de mecânicas de gamificação para ampliar o engajamento e a criação de

um painel de monitoramento para pais e terapeutas.

Finalmente, este projeto representou uma oportunidade de aplicar na prática os

conhecimentos adquiridos ao longo da graduação em disciplinas como desenvolvimento

web, programação, inteligência artificial, computação em nuvem e engenharia de software,

consolidando habilidades técnicas e demonstrando como diferentes áreas do conhecimento

podem se articular para criar soluções de impacto social. Nesse sentido, o trabalho entrega

não apenas uma solução tecnológica funcional e bem arquitetada, mas também um

modelo replicável e uma prova de conceito do potencial da tecnologia voltada para a

inclusão, oferecendo subsídios para o desenvolvimento de novas ferramentas que ampliem

as oportunidades de aprendizado e desenvolvimento para todos.

99

REFERÊNCIAS

Amazon Web Services. O que é o Scrum? 2025. <https://aws.amazon.com/pt/what-is/
scrum/>. Acesso em: 22 set. 2025. Citado na página 36.

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders.
5th. ed. Arlington, VA: American Psychiatric Publishing, 2013. Citado 2 vezes nas
páginas 20 e 21.

ASPERGER, H. ’autistic psychopathy’ in childhood. In: FRITH, U. (Ed.). Autism and
Asperger syndrome. Cambridge University Press, 1991. p. 37–92. Original work published
1944. Disponível em: <https://cpb-us-e1.wpmucdn.com/blogs.uoregon.edu/dist/d/16656/
files/2018/11/Asperger-Autistic-Psychopathy-in-Childhood-2h51vw4.pdf>. Citado na
página 21.

Associação Brasileira de Autismo, Comportamento e Intervenção (ABRACI-DF).
Tratamento. 2024. <https://abracidf.com/index.php/autismo/tratamento/>. Acessado
em: 04 de julho de 2025. Citado na página 15.

BAILEY, A. et al. Autism as a strongly genetic disorder: evidence from a british
twin study. Psychological Medicine, v. 25, n. 1, p. 63–77, 1995. Disponível em:
<https://doi.org/10.1017/S0033291700028099>, Acesso em: 5 ago. 2025. Citado na
página 21.

BETTELHEIM, B. The Empty Fortress: Infantile Autism and the Birth of the Self. [S.l.]:
Free Press, 1967. Disponível em: <https://archive.org/details/emptyfortressinf0000bett>,
Acesso em: 5 ago. 2025. Citado na página 21.

BLEULER, E. Dementia Praecox or the Group of Schizophrenias. International Universities
Press, 1950. Tradução de 1911 disponível como PDF no Internet Archive; acesso em:
5.ago.2025. Disponível em: <https://archive.org/details/dementiapraecoxo0000bleu>.
Citado na página 20.

CARNEIRO, M. A. B. Jean Piaget e os estudos sobre o desenvolvimento
humano. s.d. <https://www4.pucsp.br/educacao/brinquedoteca/downloads/
artigo-jean-piaget-e-os-estudos.pdf>. Artigo acadêmico. Acesso em: 10 jul. 2025. Citado
na página 18.

Centers for Disease Control and Prevention. Data & Statistics on Autism Spectrum
Disorder. 2023. <https://www.cdc.gov/mmwr/volumes/74/ss/ss7402a1.htm>. Acessado
em: 04 de julho de 2025. Citado na página 15.

DANTAS, A. C. Abordagem computacional para aprimoramento das habilidades com as
emoções em indivíduos com autismo. 2022. <https://repositorio.ufu.br/handle/123456789/
35070>. Acessado em: 04 de julho de 2025. Citado 2 vezes nas páginas 16 e 22.

DINIZ, C. W. M. Robótica socialmente assistiva no ensino de habilidades emocionais
para crianças com TEA. 2023. <https://repositorio.ufu.br/handle/123456789/39602>.
Acessado em: 04 de julho de 2025. Citado na página 16.

Referências 100

GU, P. et al. Technological affordances and applications of chatbots for conversational
skill interventions in autism: A scoping review. Education and Information
Technologies, v. 30, n. 7, p. 9311–9340, 2025. Acesso em: 26 set. 2025. Disponível em:
<https://doi.org/10.1007/s10639-024-13191-z>. Citado na página 26.

HAPPé, F.; RONALD, A.; PLOMIN, R. Time to give up on a single explanation
for autism. Nature Neuroscience, v. 9, n. 10, p. 1218–1220, 2006. Disponível em:
<https://doi.org/10.1038/nn1770>, Acesso em: 5 ago. 2025. Citado na página 21.

IBM Brasil. Chatbots e agentes conversacionais. 2025. <https://www.ibm.com/br-pt/
think/topics/chatbots>. Acesso em: 22 ago. 2025. Citado 2 vezes nas páginas 22 e 26.

IBM Brasil. O que é PLN (processamento de linguagem natural)? 2025. <https:
//www.ibm.com/br-pt/think/topics/natural-language-processing>. Acesso em: 22 ago.
2025. Citado na página 26.

IBM Brasil. O que é visão computacional? 2025. <https://www.ibm.com/br-pt/think/
topics/computer-vision>. Acesso em: 22 ago. 2025. Citado na página 27.

Instituto Brasileiro de Geografia e Estatística (IBGE). Censo 2022
identifica 2,4 milhões de pessoas diagnosticadas com autismo no
Brasil. 2024. Agência de Notícias IBGE. Disponível em: <https:
//agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/
43464-censo-2022-identifica-2-4-milhoes-de-pessoas-diagnosticadas-com-autismo-no-brasil>.
Acessado em: 04 de julho de 2025. Citado 2 vezes nas páginas 15 e 17.

KANNER, L. Autistic disturbances of affective contact. Nervous Child, v. 2, p. 217–250,
1943. Versão PDF disponível em Spectrum News / Embryo Project Encyclopedia; acesso
em: 5 ago. 2025. Disponível em: <https://www.spectrumnews.org/opinion/viewpoint/
leo-kanners-1943-paper-on-autism/?format=pdf>. Citado na página 21.

LIGHT, J.; MCNAUGHTON, D. Communicative competence for individuals who require
augmentative and alternative communication: A new definition for a new era of service
delivery. Augmentative and Alternative Communication, v. 30, n. 1, p. 1–18, 2014.
Disponível em: <https://doi.org/10.3109/07434618.2014.885080>. Citado na página 21.

MUELLER, R.-A. Neural integration of perceptual and motor processes in autism:
Evidence from fmri and erp. Progress in Neurobiology, v. 82, n. 1, p. 1–22, 2007. Disponível
em: <https://doi.org/10.1016/j.pneurobio.2007.02.005>, Acesso em: 5 ago. 2025. Citado
na página 21.

NSAIF, W. S. et al. Conversational agents: An exploration into chatbot evolution,
architecture, and important techniques. Eurasia Proceedings of Science, Technology,
Engineering & Mathematics (EPSTEM), v. 27, p. 246–262, 2024. Disponível em:
<https://www.researchgate.net/publication/383147827_Conversational_Agents_An_
Exploration_into_Chatbot_Evolution_Architecture_and_Important_Techniques>.
Citado 3 vezes nas páginas 6, 24 e 25.

NVIDIA. What Is Computer Vision? 2025. <https://www.nvidia.com/en-gb/
glossary/computer-vision/>. Acessado em: 22 de agosto de 2025. Disponível em:
<https://www.nvidia.com/en-gb/glossary/computer-vision/>. Citado 2 vezes nas
páginas 6 e 29.

Referências 101

OORD, A. van den et al. WaveNet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016. Acessado em 29 de julho de 2025. Disponível em:
<https://arxiv.org/abs/1609.03499>. Citado na página 30.

PAPALIA DIANE E.; FELDMAN, R. D. Desenvolvimento humano. 12. ed.. ed. Porto
Alegre: AMGH, 2013. Citado na página 18.

PINTO, R. N. M. Autismo infantil: impacto do diagnóstico e repercussões no
desenvolvimento. Revista Gaúcha de Enfermagem, v. 37, n. 3, p. e57725, 2016.
Acesso em: 26 set. 2025. Disponível em: <https://www.scielo.br/j/rgenf/a/
Qp39NxcyXWj6N6DfdWWDDrR?utm_source=chatgpt.com>. Citado na página 26.

RITVO, E. R. et al. Concordance for the syndrome of autism in 40 pairs of affected
twins. American Journal of Psychiatry, v. 142, n. 1, p. 74–77, 1985. Disponível em:
<https://doi.org/10.1176/ajp.142.1.74>, Acesso em: 5 ago. 2025. Citado na página 21.

RUFINO, K. A. D. Contribuições do jogo para a criança com Transtorno do Espectro
Autista: perspectiva de Reuven Feuerstein. 2020. <https://repositorio.ufu.br/handle/
123456789/29299>. Acessado em: 04 de julho de 2025. Citado na página 16.

SERVICES, A. W. AWS Documentation. 2025. <https://docs.aws.amazon.com/>. Acesso
em: 21 ago. 2025. Citado 3 vezes nas páginas 31, 32 e 33.

Serviço Federal de Processamento de Dados (Serpro). Visão computacional: o que é e
como funciona. 2020–04–03. Disponível em: <https://www.serpro.gov.br/menu/noticias/
noticias-2020/visao-computacional-oqueeh-comofunciona>. Citado 2 vezes nas páginas 6
e 28.

TAYLOR, P. Text-to-Speech Synthesis. [S.l.]: Cambridge University Press, 2009. Citado
na página 29.

VALENTIM, N. A. A inteligência artificial como recurso tecnológico na atenção
compartilhada de crianças com Transtorno do Espectro Autista. 2023. <https:
//repositorio.ufu.br/handle/123456789/41982>. Acessado em: 04 de julho de 2025.
Citado 2 vezes nas páginas 16 e 21.

World Health Organization. Autism. 2023. <https://www.who.int/news-room/fact-sheets/
detail/autism-spectrum-disorders>. Acessado em: 04 de julho de 2025. Citado 2 vezes
nas páginas 15 e 20.

ZALLIO, M.; OHASHI, T. The evolution of assistive technology: A literature review
of technology developments and applications. arXiv, 2022. Acesso em: 18 ago. 2025.
Disponível em: <https://arxiv.org/abs/2201.07152>. Citado na página 30.

102

A GUIA PARA OBTENÇÃO DE CREDENCI-

AIS DE ACESSO

Este apêndice detalha os procedimentos para obter as chaves de acesso (API Keys)

necessárias para o funcionamento dos serviços externos integrados ao sistema.

A.1 OpenAI API

A chave da OpenAI é utilizada para acessar os modelos de linguagem generativa

(GPT), que são responsáveis pela criação das histórias no sistema. O processo de obtenção

da chave segue passos simples e garante que o acesso à API seja seguro e controlado.

O procedimento é descrito a seguir:

1. Acesse a plataforma da OpenAI em https://platform.openai.com/.

2. Realize o login ou crie uma nova conta.

3. No menu lateral esquerdo, navegue até a seção API keys.

4. Clique no botão “Create new secret key”.

5. Dê um nome descritivo à sua chave e clique em “Create secret key”.

6. Copie a chave gerada imediatamente e armazene-a em um local seguro. Atenção:

esta chave não será exibida novamente por motivos de segurança.

O fluxo ilustrativo desse procedimento está apresentado na Figura 59, evidenciando

cada etapa desde o acesso à plataforma até a criação da chave de API.

Apêndice A. Guia para Obtenção de Credenciais de Acesso 103

Figura 59 – Fluxo de criação de uma chave de API secreta na plataforma da OpenAI,
destacando os passos de login, navegação até a seção de API keys e geração
da chave. Fonte: Do Autor.

A.2 Microsoft Translator API (via RapidAPI)

O serviço de tradução do Microsoft Translator é consumido através da plataforma

RapidAPI, que gerencia o acesso a diversas APIs.

1. Crie uma conta ou faça login na RapidAPI em https://rapidapi.com/.

2. Na barra de busca, procure por “Microsoft Translator”. O fluxo de busca está

ilustrado na Figura 60.

Apêndice A. Guia para Obtenção de Credenciais de Acesso 104

Figura 60 – Fluxo de busca da API Microsoft Translator na plataforma RapidAPI. Fonte:
Do Autor.

3. Na página da API, selecione um plano de assinatura. Geralmente, há um plano básico

(Basic) gratuito que inclui um número limitado de requisições mensais, suficiente

para testes e desenvolvimento.

4. Após subscrever a um plano, navegue para a aba Endpoints.

5. No painel à direita, na seção Code Snippets, você encontrará sua chave de API no

cabeçalho X-RapidAPI-Key. Copie e salve este valor em um local seguro. A Figura 61

ilustra onde a chave é exibida.

Figura 61 – Localização da chave de API no painel Code Snippets da RapidAPI. Fonte:
Do Autor.

A.3 Kommunicate.io

A plataforma Kommunicate.io fornece a interface web do chatbot e gerencia a

integração com o usuário final. As seções a seguir detalham o processo completo de

Apêndice A. Guia para Obtenção de Credenciais de Acesso 105

configuração.

A.3.1 INTEGRAÇÃO COM AMAZON LEX

Esta etapa detalha como conectar a plataforma ao bot Amazon Lex utilizando as

credenciais do usuário IAM, criadas conforme descrito na Seção 7.5.1.

1. Acesse o dashboard do Kommunicate em <https://dashboard.kommunicate.io/> e

realize o login.

2. No menu lateral, navegue até a seção Bot Integration e selecione a opção Amazon

Lex para iniciar a configuração, conforme ilustrado na Figura 62.

Figura 62 – Configuração de um agente para integração da plataforma Kommunicate com
o Amazon Lex. Fonte: Do Autor.

3. Na tela de configuração (Figura 63), preencha os seguintes parâmetros de integração:

• Access key ID: Insira o ID da chave de acesso do usuário IAM dedicado.

• Secret access key: Insira a chave de acesso secreta correspondente.

• Region: Selecione a região US East (N. Virginia).

Apêndice A. Guia para Obtenção de Credenciais de Acesso 106

• IA agent name in Lex platform: Insira o nome do seu bot no Amazon Lex.

• IA agent alias: Selecione o alias do bot a ser utilizado.

• Default IA agent language: Selecione o idioma configurado.

Figura 63 – Tela de configuração dos parâmetros de integração no Kommunicate. Fonte:
Do Autor.

4. Após preencher todos os campos, clique em “Save and proceed” para finalizar a

integração.

A.3.2 INSTALAÇÃO DO WIDGET NO WEBSITE

Após a integração com o Lex, o passo final é instalar o widget de chat na aplicação

web para que os usuários possam interagir com o bot, conforme ilustrado na Figura 64.

1. No dashboard do Kommunicate, clique no ícone de engrenagem (Settings) no canto

inferior do menu lateral.

2. Navegue até a seção INSTALL e clique em Install.

3. Na tela de instalação, localize o campo com o script JavaScript e copie todo o bloco

de código.

4. Abra o arquivo index.html do frontend da sua aplicação.

5. Cole o script copiado antes do fechamento da tag </body>.

Apêndice A. Guia para Obtenção de Credenciais de Acesso 107

Figura 64 – Processo de instalação do widget de chat do Kommunicate. Fonte: Do Autor

