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Resumo

A robótica, como parte do cenário tecnológico, desenvolveu-se de maneira acelerada.

Novas abordagens são constantemente buscadas para resolver questões cotidianas com o

uso de robôs, o que tem gerado muitas soluções, mas também muitos desafios. Conforme

as demandas se tornam mais específicas e o volume de dados aumenta, surge a neces-

sidade de sistemas cada vez mais focados no aspecto técnico. Inserido nesse contexto,

este trabalho propõe a aplicação e adaptação de um algoritmo evolutivo para otimizar

os parâmetros do modelo de coordenação de enxames de robôs PheroCom. Para isso, a

entropia foi adaptada para atuar como métrica de avaliação na função de aptidão do algo-

ritmo, servindo como um índice multiplicativo em um sistema de penalização na execução

da tarefa. Isso possibilita a identificação de configurações que favoreçam uma distribu-

ição espacial mais equilibrada entre os robôs, aprimorando a eficiência na cobertura do

ambiente e evitando tanto a concentração excessiva quanto a negligência de regiões. Os

resultados experimentais mostraram que a entropia, como parte do critério de avaliação,

permite uma análise eficaz da homogeneidade da exploração e promove uma ocupação

mais coerente e distribuída do espaço pelos robôs. Além disso, os resultados também

demonstraram eficiência satisfatória em relação ao modelo de referência.

Palavras-chave: Enxame de Robôs. Otimização. Algoritmos Genéticos. Entropia.





Abstract

Robotics, as part of the technological landscape, has developed at an accelerated pace.

New approaches are constantly sought to address everyday problems through the use of

robots, which has led to many solutions but also numerous challenges. As demands be-

come more specific and data volumes increase, there is a growing need for systems that

are increasingly focused on technical aspects. Within this context, this work proposes the

application and adaptation of an evolutionary algorithm to optimize the parameters of

the PheroCom robot swarm coordination model. To this end, entropy was adapted to act

as an evaluation metric within the algorithm’s fitness function, serving as a multiplicative

index in a penalization system during task execution. This approach enables the identifi-

cation of configurations that promote a more balanced spatial distribution among robots,

improving environmental coverage efficiency while avoiding both excessive concentration

and the neglect of certain regions. Experimental results show that entropy, as part of

the evaluation criterion, allows for an effective analysis of exploration homogeneity and

promotes a more coherent and distributed occupation of space by the robots. Further-

more, the results also demonstrate satisfactory efficiency when compared to the reference

model.

Keywords: Swarm Robotics. Optimization. Genetic Algorithms. Entropy.
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Capítulo 1

Introdução

A robótica envolve o projeto, a construção e o controle de robôs, com o objetivo de

desenvolver soluções aplicáveis ao cotidiano (RAJ; KOS, 2022). Entretanto, o rápido

avanço dessa área tem gerado desafios significativos. À medida que as demandas se

tornam cada vez mais específicas e o volume de dados cresce, é essencial dedicar maior

atenção aos detalhes técnicos dos projetos. Essa complexidade tornou-se ainda maior

com o surgimento da robótica de enxames e a aplicação dos algoritmos bio-inspirados em

modelos de coordenação (SHAHZAD et al., 2023), devido ao grande número de robôs

envolvidos e à natureza intrinsecamente estocástica desses algoritmos.

Os enxames de robôs emergiram como alternativa às limitações de sistemas de controle

centralizados e hierárquicos (ŞAHIN et al., 2008). Sistemas centralizados, por exemplo,

tendem a reduzir a flexibilidade operacional, aumentando a complexidade do processo,

já que dificultam a geração distribuída de múltiplas soluções (fator crítico para otimi-

zar tempo e distribuir tarefas entre os robôs). Conforme destacado por Şahin (2004),

três propriedades são fundamentais para otimizar o desempenho de enxames de robôs e

impulsionar propostas na área: escalabilidade, robustez e flexibilidade.

No contexto de sistemas multi-robôs, os enxames são desenvolvidos com base nessas

propriedades e podem ser definidos como “uma abordagem para coordenar um grande

número de robôs” (BRAMBILLA et al., 2013). A ideia central é substituir a centralização

das tarefas em um único robô pela estratégia de divisão-e-conquista. Isso permite criar

uma rede de aprendizado coletiva, em que cada robô atua como um agente de busca

no espaço de soluções potenciais, priorizando a colaboração como meio para alcançar

eficiência (BAYINDIR, 2016). Como resultado, o tempo para atingir objetivos é reduzido

e a carga operacional é distribuída de forma equilibrada entre os robôs.

Aplicações da robótica de enxames abrangem diversas áreas, como: (i) sistemas de vi-

gilância (GARCIA-AUNON; CERRO; BARRIENTOS, 2019; TINOCO; MARTINS; OLI-

VEIRA, 2025); (ii) agricultura de precisão, no monitoramento e controle de ervas dani-

nhas (ALBANI et al., 2017); (iii) exploração espacial colaborativa (NGUYEN; HARMAN;

FAIRCHILD, 2019; HUANG et al., 2020); (iv) inspeção de estruturas (JAHANSHAHI et
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al., 2017; HALDER; AFSARI, 2023); e, logística (ALLAM et al., 2024).

Além disso, a investigação de algoritmos evolutivos para otimização de sistemas de

coordenação e controle tem ganhado destaque na literatura (TINOCO; VIZZARI; OLI-

VEIRA, 2020; ZHAN et al., 2022). Esses algoritmos são compatíveis com enxames de

robôs, pois princípios como flexibilidade e escalabilidade favorecem a otimização global

do sistema, enquanto a robustez permite parametrizações menos restritivas. Entre os

principais métodos evolutivos estão os Algoritmo Genético (AG) (WHITLEY, 1994), que

utilizam conceitos de seleção natural e genética para buscar soluções aproximadas (KU-

MAR et al., 2010; PAPAZOGLOU; BISKAS, 2023).

Diante desse cenário, este trabalho propõe a otimização dos parâmetros do modelo

de coordenação de enxames PheroCom (TINOCO; MARTINS; OLIVEIRA, 2025) por

meio da aplicação de AGs. Para isso, foi realizada uma adaptação da função fitness,

integrando-a a medidas de entropia, com o objetivo de favorecer uma distribuição mais

uniforme do enxame na vigilância de ambientes. Essa abordagem busca, assim, ampliar

o equilíbrio da cobertura espacial e maximizar o desempenho coletivo do enxame.

1.1 Objetivos

O objetivo geral deste trabalho é investigar a aplicação de AGs na otimização para-

métrica do modelo de coordenação de enxames de robôs proposto por Tinoco, Martins e

Oliveira (2025). Este objetivo se divide nos seguintes objetivos específicos:

❏ Implementar e analisar um AG básico, explorando variações operacionais (e.g., mé-

todos de seleção, cruzamento e mutação) para assimilação e aprendizado de conhe-

cimentos práticos no contexto desse método evolutivo;

❏ Caracterizar o modelo de coordenação de Tinoco, Martins e Oliveira (2025), ana-

lisando sua estrutura, parâmetros críticos e interações entre robôs em ambientes

simulados;

❏ Avaliar sistematicamente a influência da parametrização do modelo de coordena-

ção no desempenho do enxame, utilizando métricas quantitativas (e.g., tempo de

convergência e cobertura do ambiente);

❏ Desenvolver um AG adaptado ao modelo de coordenação, projetando uma repre-

sentação computacional que vincule cromossomos, genes e operadores genéticos aos

parâmetros do sistema;

❏ Adaptar o conceito de avaliação do modelo de coordenação de enxame de robôs

investigado, considerando o aspecto da homogeneidade, através incorporação da

entropia como métrica de avaliação; e,
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❏ Comparar estatisticamente o desempenho do enxame otimizado pelo AG com re-

sultados empíricos e analisar a significância para validar a eficácia da abordagem

proposta de otimização paramétrica.

1.2 Justificativa

A configuração manual dos parâmetros de controle em enxames de robôs representa um

desafio prático significativo. O grande número de variáveis a serem ajustadas demanda

tempo excessivo e compromete a eficiência dos robôs. Nesse contexto, este trabalho

propõe a utilização de AGs como estratégia para automatizar a busca por combinações de

parâmetros mais adequadas. Essa abordagem tem o potencial de proporcionar resultados

mais ágeis e eficientes em comparação ao ajuste manual, favorecendo a redução do tempo

de resposta, a qualidade da execução das tarefas e a organização geral do enxame.

Outro aspecto relevante refere-se às aplicações práticas desses sistemas, em especial

em cenários de vigilância (TINOCO; MARTINS; OLIVEIRA, 2025). Em tarefas que

exigem cobertura contínua de uma área, não basta que os robôs apresentem rapidez de

deslocamento, é igualmente necessário que se distribuam de maneira equilibrada. Assim,

este trabalho também contempla a avaliação da qualidade da cobertura por meio de

métricas matemáticas, de modo a verificar se a distribuição espacial ocorre de forma

uniforme e eficaz.

Por fim, uma justificativa relevante para este trabalho está associada ao potencial de

aplicação prática dos enxames de robôs em diferentes cenários, especialmente em ambien-

tes hostis ou de difícil acesso para seres humanos. Entre essas aplicações, destacam-se: (i)

exploração de ambientes inóspitos, como locais de difícil acesso e com condições extremas

(e.g., áreas de desastres naturais); (ii) busca e resgate, como na atuação em colaboração

com equipes especializadas para a localização de vítimas; (iii) vigilância e proteção, como

na implementação de sistemas integrados de monitoramento em ambientes diversificados;

e, (iv) mapeamento topográfico, como no reconhecimento autônomo de territórios para

aplicações cartográficas ou militares.

1.3 Hipótese

Esta pesquisa parte da premissa de que a eficiência na cobertura por enxames de

robôs pode ser aprimorada com métricas que avaliem a homogeneidade da exploração.

Para isso, propõe-se a seguinte hipótese:

❏ Hipótese H1: A incorporação da entropia como métrica de avaliação na função de

aptidão de um AG permite identificar configurações que promovem uma distribuição

mais homogênea dos robôs no ambiente, resultando em maior eficiência na cobertura.
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1.4 Organização da Monografia

Este trabalho está organizado da seguinte forma: (i) o Capítulo 2 descreve o referencial

teórico, no qual são abordados tópicos relacionados a AGs e ao modelo de coordenação

para enxames de robôs; (ii) a apresentação do método de pesquisa é feita no Capítulo 3;

(iii) a proposta principal deste trabalho é apresentada no Capítulo 4; (iv) o Capítulo 5

descreve os experimentos realizados, bem como a análise dos resultados; por fim, (v) o

Capítulo 6 apresenta as principais conclusões e os trabalhos futuros.
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Capítulo 2

Fundamentação Teórica

Neste capítulo, são apresentados os conceitos fundamentais para a compreensão deste

trabalho. Além disso, são evidenciados trabalhos correlatos relevantes na literatura.

2.1 Conceitos Fundamentais

Nesta seção, são apresentados os conceitos fundamentais que sustentam a estrutura

deste trabalho, abordando a base teórica e as técnicas essenciais dos AGs. Na Seção 2.1.1,

são definidos os princípios centrais relacionados aos AGs. Já na Seção 2.1.2, introduz-se

o Modelo PheroCom, com ênfase na estrutura operacional, no funcionamento sistêmico e

na relevância dos parâmetros-chave em cada etapa do processo de coordenação.

2.1.1 Algoritmos Genéticos

Os AGs são inspirados nas características genéticas dos seres vivos e nos processos

a elas relacionados, sendo aplicados na busca de soluções aproximadas para problemas

complexos de otimização (KUMAR et al., 2010; PAPAZOGLOU; BISKAS, 2023). Os mé-

todos utilizados são inspirados em conceitos biológicos, especialmente na seleção natural,

incorporando mecanismos como herança, reprodução, mutação e seleção.

Conforme ilustrado na Figura 1, um indivíduo corresponde a uma solução candidata

dentro do conjunto de todas as possibilidades, denominado espaço de busca (SASTRY;

GOLDBERG; KENDALL, 2005; KRAMER, 2017). A população representa o conjunto

de indivíduos avaliados em uma determinada iteração. Cada indivíduo é descrito por um

cromossomo, que corresponde à codificação de suas características em forma de sequência

de genes. Os genes, por sua vez, ocupam posições específicas no cromossomo e definem os

atributos do indivíduo. Cada gene assume um valor denominado alelo, o qual representa

a característica efetiva do indivíduo naquela posição.

Os AGs buscam soluções por meio da competição inerente às características dos indi-

víduos. Conforme proposto por Darwin em sua Teoria da Evolução (SMITH, 1993), os
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Figura 1 – Exemplos de gene, cromossomo e população de um AG.

genes que melhor se adaptam ao ambiente e às condições impostas tendem a perpetuar-

se nos indivíduos, tornando-os mais aptos a sobreviver, enquanto genes inadequados ao

contexto reduzem a aptidão dos portadores. Esse princípio reflete a ideia clássica da so-

brevivência do mais apto. Assim, os AGs exploram configurações ideais de genes para

resolver problemas, aproximando-se ou alcançando soluções eficientes.

A Figura 2 ilustra a estrutura geral de um AG. Resumidamente, uma população

inicial é gerada e avaliada para selecionar indivíduos de maior aptidão. Em seguida,

esses indivíduos são submetidos ao cruzamento (crossover), que recombina fragmentos de

suas características para formar uma nova geração. A mutação é, então, aplicada para

introduzir variabilidade genética, evitando a convergência prematura (mínimos e máximos

locais), o que limitaria a busca a uma região restrita do espaço de soluções.

Após essas etapas, o algoritmo estabelece uma nova população e verifica se os critérios

de parada (e.g., número máximo de gerações e aptidão mínima) foram atingidos. Esses

critérios estão vinculados a uma função objetivo, que varia conforme o projeto. Se sa-

tisfeitos, o AG retorna a melhor solução encontrada; caso contrário, repete o ciclo para

aprimorar os indivíduos até atender às necessidades do problema.

2.1.1.1 Geração da População Inicial

Inicialmente, uma população de indivíduos é gerada e avaliada, atribuindo a cada um

deles uma pontuação de aptidão (fitness), que reflete sua adaptação ao ambiente. Essa

etapa inicial baseia-se na aleatoriedade da distribuição dos valores dos genes, reproduzindo

condições análogas às observadas em processos naturais (REEVES, 2010). Para garantir

a validade do modelo, é essencial assegurar que a aleatoriedade na inicialização dos pa-

râmetros não seja comprometida. Nesse contexto, destacam-se dois aspectos críticos: o

tamanho da população inicial e o método de inicialização dos indivíduos.

Ao definir o tamanho da população, é necessário equilibrar a exploração do espaço

de busca e o tempo computacional. De acordo com Reeves (2010), populações muito
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Figura 2 – Fluxograma de um Algoritmo Genético [Adaptado de Ikeda (2009)].

pequenas limitam a diversidade genética, reduzindo a capacidade de explorar combinações

viáveis antes da convergência prematura. Já populações excessivamente grandes tornam

o algoritmo inviável devido ao custo exponencial de avaliação das combinações.

Quanto à inicialização dos indivíduos, o método aleatório é o mais utilizado na lite-

ratura (REEVES, 2010), tendo em vista que os valores dos genes devem ser definidos de

forma não tendenciosa. Em populações pequenas, é recomendável evitar a repetição ou

a substituição frequente de valores genéticos entre os indivíduos, pois isso pode reduzir a

diversidade da população, tornando os indivíduos muito semelhantes entre si e limitando

a variabilidade genética necessária para uma busca eficaz no espaço de soluções. Alterna-

tivamente, é possível incorporar conhecimento prévio sobre o problema, como heurísticas

ou informações do espaço de busca, para atribuir valores iniciais que acelerem a conver-

gência do algoritmo. Essa abordagem, discutida por Reeves (1995) e Ahuja e Orlin (1997),

apresenta eficiência superior à inicialização puramente aleatória em cenários específicos.

2.1.1.2 Função Objetivo (fitness)

O cálculo de aptidão de cada indivíduo é realizado por meio da função objetivo, que,

ao processar os valores dos genes de um cromossomo, define uma métrica quantitativa da

proximidade entre suas características e a solução ótima. Dado um problema de maximi-

zação, quanto maior essa proximidade, maior será o valor da aptidão bruta atribuída ao

indivíduo; na minimização, maior a proximidade, menor será o valor atribuído.

Em métodos de seleção como a roleta, a probabilidade de um indivíduo ser selecionado

para gerar descendentes está diretamente ligada ao valor da aptidão bruta. Essa relação

ocorre porque o valor da aptidão é utilizado para calcular as probabilidades de seleção de
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cada indivíduo, influenciando a composição da próxima geração. Dessa forma, a função

objetivo desempenha um papel central na otimização das soluções, uma vez que direciona

a evolução do sistema em busca da configuração ideal de parâmetros.

2.1.1.3 Seleção

Na seleção, o objetivo é escolher os indivíduos que participarão da operação de cruza-

mento, i.e., os cromossomos “pais”. Naturalmente, indivíduos com pontuações mais altas

na função fitness têm maior probabilidade de serem selecionados para reprodução. Entre

os métodos mais utilizados, destacam-se: roleta, ranqueamento linear e torneio.

No método da roleta, são atribuídas probabilidades proporcionais aos valores obtidos

pela função fitness durante a avaliação dos indivíduos. Em outras palavras, cada indivíduo

possui uma fatia da roleta proporcional à sua avaliação. Após M giros, são selecionados

M indivíduos para o cruzamento, sendo que aqueles com maiores índices de aptidão têm

mais chances de serem selecionados (MATHEW, 2012), mas, sem excluir totalmente os

menos aptos, evitando assim a perda da variabilidade da população.

A Figura 3 ilustra um exemplo do método da roleta, onde cada indivíduo possui um

valor de aptidão calculado e, a partir desse valor, é dada uma probabilidade proporcional

à sua representação. Por exemplo, o indivíduo 2 tem mais chances de ser selecionado,

visto que tem maior valor de aptidão, que é 30 (40,0% do total da soma de todos os

valores) e, portanto, recebe uma maior fatia na roleta. Já o indivíduo 1, com um valor de

aptidão igual a 20, possui apenas 26,7% de probabilidade, representando a menor fatia.

Isso ilustra como a aptidão influencia diretamente na probabilidade de escolha.

Uma outra alternativa é o ranqueamento linear, que aplica uma abordagem mais con-

trolada de seleção ao ordenar os indivíduos com base em sua aptidão e atribuir probabili-

Figura 3 – Exemplo do método da roleta.
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dades de seleção proporcionais ao seu ranking, e não diretamente aos valores absolutos da

fitness. Embora esse método possa suavizar diferenças muito acentuadas entre indivíduos

altamente aptos e menos aptos, o que pode resultar em uma perda parcial de informações,

ele ajuda a evitar a convergência prematura. Além disso, o ranqueamento linear permite

a aplicação de funções auxiliares, como a pressão de seleção, que regula a intensidade

da competição entre os indivíduos, equilibrando a exploração do espaço de busca com a

exploração das soluções mais promissoras.

Por fim, na seleção por torneio, indivíduos são selecionados aleatoriamente e compa-

rados entre si, com base na aptidão de cada indivíduo. O vencedor de cada torneio é

escolhido como “pai” para gerar descendentes. Esse processo é repetido até completar a

seleção de todos os pais necessários (YADAV; SOHAL, 2017). Uma vantagem relevante

desse método é sua flexibilidade: requer apenas uma ordenação relativa entre os indiví-

duos, dispensando a necessidade de uma função objetivo quantitativa. Isso permite sua

aplicação em cenários com critérios subjetivos ou não formalizados (REEVES, 2010).

2.1.1.4 Cruzamento (Crossover)

A formação dos indivíduos descendentes ocorre por meio do cruzamento (crossover).

Neste trabalho, são abordados dois tipos amplamente utilizados em algoritmos genéticos:

crossover em um ou mais pontos e crossover uniforme.

No método de um ou mais pontos (Fig. 4), um ou mais locais de corte são definidos

na sequência de genes. Esses pontos dividem os cromossomos dos “pais” em segmentos,

que são recombinados para gerar os descendentes. Então, dois diferentes cromossomos

“filhos” podem ser criados a partir da recombinação entre a parte anterior do primeiro

cromossomo e a parte posterior do segundo. Por sua vez, o segundo filho herda o inverso.

De acordo com Sastry, Goldberg e Kendall (2005), a definição de múltiplos pontos de

corte amplia a diversidade genética, permitindo recombinações mais complexas.

Figura 4 – Crossover com marcação em um ponto [Adaptado de Ikeda (2009)].
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Já no crossover uniforme, uma máscara binária (gerada aleatoriamente) determina a

origem de cada gene no descendente. Como ilustrado na Figura 5, se o bit na posição i

da máscara for 1, o gene na posição i do primeiro pai é herdado. Caso contrário, o gene

correspondente do segundo pai é selecionado. Esse método garante maior aleatoriedade

na combinação de características, preservando a diversidade da população.

Figura 5 – Crossover Uniforme [Adaptado de Ikeda (2009)].

2.1.1.5 Mutação

Neste processo, é determinada uma probabilidade de mutação para cada gene. A

mutação aumenta a confiabilidade dos resultados, pois uma exploração mais ampla do

espaço de busca permite alcançar soluções mais representativas de todo o conjunto ava-

liado, evitando a convergência prematura em ótimos locais (REEVES, 2010). Embora

possa ser aplicada sob diferentes modelos de representação genética, seu princípio básico

é uniforme: alterar um ou mais genes para explorar regiões diversificadas do espaço de

busca, promovendo variabilidade e robustez no processo evolutivo.

Diferentemente do cruzamento, a mutação não é necessariamente uma operação biná-

ria, podendo ser unária. Em casos de alelos com valores binários, o bit pode apenas ser

alterado para o complemento do valor original, onde 0 se tornaria 1 e vice-versa (SAS-

TRY; GOLDBERG; KENDALL, 2005). Outra estratégia comum é a troca de posições

entre alelos selecionados aleatoriamente, modificando a configuração do cromossomo e

introduzindo novas combinações genéticas.

Um exemplo de abordagem alternativa aos métodos supracitados é a mutação adi-

tiva contínua: uma técnica amplamente utilizada em AGs com representação de genes

em valores reais. Nesse método, a mutação ocorre por meio da adição de uma pequena

perturbação aleatória ao valor atual de um gene, simulando uma leve alteração contí-

nua. Essa perturbação geralmente é derivada de uma distribuição uniforme ou normal e

pode assumir valores positivos ou negativos, promovendo uma variação sutil e controlada.

O objetivo principal dessa abordagem é explorar o espaço de busca de forma refinada,

permitindo que o algoritmo descubra soluções melhores sem perder a estabilidade popu-

lacional. Por exemplo, se um gene possui valor 0.75 e uma mutação aditiva de +0.02 for

aplicada, o novo valor do gene será 0.77 – uma mudança pequena, mas suficiente para
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gerar diversidade na população. Essa técnica é especialmente eficaz em problemas de

otimização com parâmetros contínuos, pois preserva a viabilidade das soluções enquanto

introduz diversidade genética de forma gradual.

2.1.1.6 Critério de Parada

Se resultados satisfatórios em termos de convergência para a solução desejada forem

alcançados, o processo é finalizado. Caso contrário, o algoritmo reinicia o refinamento

progressivo da qualidade dos indivíduos por meio de novas gerações, visando atingir a

convergência global para o problema. Esse ciclo é repetido até que uma solução aceitável

seja obtida ou outro critério de parada seja atingido.

Entre os critérios de parada mais utilizados, destacam-se aqueles que garantem resulta-

dos consistentes. Em problemas complexos, que exigem buscas mais extensas, demandam

tempo e capacidade computacional consideráveis para convergir, o critério de parada cos-

tuma ser definido por um número máximo pré-estabelecido de iterações, especialmente

quando há limitação de recursos.

Por outro lado, em problemas com tempo viável para a busca, adota-se o critério de

parada baseado na função objetivo. Esse critério não se restringe ao número de iterações,

mas na busca por soluções aproximadas, selecionando os indivíduos mais aptos nas gera-

ções subsequentes. Ressalta-se que a convergência do algoritmo, seja essa rápida ou não,

depende diretamente da natureza do problema e da parametrização adotada.

2.1.2 Modelo PheroCom

Nesta seção, é apresentado o modelo de coordenação de enxames de robôs PheroCom

(TINOCO; MARTINS; OLIVEIRA, 2025), utilizado como base para a otimização de

parâmetros, proposta central deste trabalho. O modelo integra Autômatos Celularess

(ACs) e um sistema de feromônio repulsivo com difusão discreta, visando à vigilância de

ambientes internos (indoor) por meio da coordenação autônoma dos robôs.

Tinoco, Martins e Oliveira (2025) propuseram a combinação de ACs e Inverted Ant

System (IAS) para coordenar enxames de robôs. Os ACs são responsáveis pela discre-

tização do ambiente e pela modelagem da dinâmica do feromônio: o mapa é dividido

inicialmente em um reticulado de células quadradas idênticas, que é replicado para for-

mar duas camadas. A camada física (Fig. 6a) representa a posição dos robôs, obstáculos

e áreas livres, com cada célula assumindo os estados Livre (L), Robô (R) ou Obstáculo

(O). A camada de feromônio (Fig. 6b), por sua vez, é criada através da aplicação do

IAS, que gerencia a comunicação indireta via feromônio repulsivo. Para se coordenarem,

os robôs depositam o feromônio em suas células atuais e nas vizinhas, direcionando o

movimento coletivo para evitar congestionamentos e otimizar a cobertura do ambiente.
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❏ Estado 2 - Decisão da Próxima Posição: o robô determina a próxima célula de

movimento com base na concentração de feromônio nas células vizinhas. Conforme

discutido por Tinoco e Oliveira (2018), diversas estratégias de movimento foram

avaliadas. Para este trabalho, optou-se por uma composição heterogênea de estra-

tégias, na qual 2/3 dos robôs implementam uma estratégia inercial e 1/3 adota uma

estratégia determinística. Essa escolha baseia-se nos resultados positivos observa-

dos em pesquisas anteriores. O movimento inercial, inspirado no conceito físico de

inércia, preserva a direção atual do robô e é combinado a uma busca constante por

células com menores concentrações de feromônio. A concentração de feromônio em

uma determinada célula xij no passo de tempo ts, define a probabilidade P (xij)

(em estratégias estocásticas, ver Tinoco e Oliveira (2018)) de que essa célula será

escolhida no passo de tempo (ts+ 1);

❏ Estado 3 - Difusão do Feromônio: cada robô deposita feromônio no ambiente

de acordo com a Equação 1. O objetivo é informar tanto ao robô que realizou o

depósito quanto aos outros robôs do enxame sobre a área monitorada. A quantidade

de feromônio depositada em uma célula é calculada considerando a concentração de

feromônio máxima (ψmax) e a distância entre a célula e a posição atual do robô.

Esse mecanismo visa garantir uma distribuição eficiente do feromônio, permitindo

que os robôs realizem escolhas estratégicas sobre seus deslocamentos futuros;

Δk
ij = (ψmax − ψ

ts
ij ) ·

[

α · (δ · e)η·
r
π

]

(1)

onde:

Δk
ij : concentração de feromônio depositado pelo robô {k} na célula {ij};

ψmax : concentração máxima de feromônio em uma célula;

ψt
ij : concentração de feromônio na célula {ij} no intervalo de tempo {ts};

r : distância da célula {ij} ao robô {r ∈ N | 0 ≤ r ≤ rd};

e : constante exponencial (2,718281);

α : quantidade máxima possível de feromônio depositado;

δ : influência da taxa de deposição de feromônio; e,

η : compensação da taxa de evaporação do ambiente.

Estado 4 - Evaporação do Feromônio: é realizada a evaporação do feromônio

registrado no mapa local de cada robô. A evaporação é simulada por meio da di-

minuição gradual da concentração de feromônio em cada célula ao longo do tempo.

Cada robô determina a concentração atualizada de feromônio em suas células, con-

siderando a concentração existente e uma taxa de evaporação (β). Esse processo
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assegura que o feromônio não se acumule de forma permanente no ambiente e que

os dados sejam constantemente atualizados, mantendo a relevância das informações

para a navegação dos robôs. O cálculo final da concentração de feromônio em uma

determinada célula é dado pela Equação 2:

ψts+1

ij =
[

ψts
ij − (β · ψts

ij )
]

+
N
∑

k=1

Δk
ij (2)

onde, a concentração de feromônio ψ em uma célula xij no intervalo de tempo

(ts+ 1) é igual à concentração de feromônio ψts
ij presente no intervalo de tempo ts,

menos a porcentagem β de feromônio evaporado {β ∈ R | 0.0 < β ≤ 1.0}, somada

à contribuição de depósito feita pelos N robôs para esta célula. Um robô contribui

em uma célula xij se, e somente se, esta célula está dentro do seu raio de deposição.

❏ Estado 5 - Movimento: o robô executa a transição da célula de origem para a

célula de destino em sua vizinhança, conforme definido nos estágios anteriores. A

cada passo de tempo, o robô atualiza o estado de duas células: a célula de origem,

que é liberada, e uma célula vizinha anteriormente desocupada, passa a ser ocupada,

indicando a nova posição do robô;

Estado 6 - Disseminação: os robôs disseminam as informações de seus mapas

locais de feromônio aos demais robôs que estão em seu raio de comunicação. Cada

robô envia mensagens contendo seu identificador, o instante atual e os dados de

feromônio registrados. Essas mensagens são difundidas para que os demais robôs

as recebam e atualizarem seus próprios mapas locais. Esse mecanismo possibilita

um compartilhamento eficaz de informações entre os robôs, otimizando o processo

decisório coletivo do enxame;

Estado 7 - Agregação: os robôs recebem as mensagens disseminadas por outros

membros do enxame e agregam as informações obtidas para atualizar seus mapas

locais de feromônio, desde que sejam novas e pertinentes. Cada robô mantém um

registro das interações anteriores para evitar redundância de dados e assegurar que

apenas as mensagens mais atualizadas sejam utilizadas na modificação do mapa

local. Esse processo viabiliza que os robôs integrem informações coletivas de maneira

eficaz, aprimorando a coordenação e o desempenho global do enxame; e,

❏ Estado 8 - Final: é ativado quando o robô conclui a tarefa ou atinge um limite

de T passos de tempo. Vale considerar que algumas tarefas (e.g., vigilância) podem

ser executadas ciclicamente sem um momento final predefinido.
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2.2 Trabalhos Correlatos

Nesta Seção, é apresentada a análise de trabalhos correlatos com o intuito de reforçar

a relevância e a credibilidade dos referenciais teóricos adotados como fundamentos desta

pesquisa, evidenciando contribuições existentes na literatura.

Inicialmente, Mucientes et al. (2007) apresentaram um projeto de um controlador

difuso em robótica móvel usando algoritmos baseados na abordagem Iterative Rule Lear-

ning. Nessa abordagem, um parâmetro é definido para equilibrar a relação entre o número

de regras do controlador, a sua qualidade e a sua precisão. Os autores ressaltaram que

o projetista deve estabelecer o universo do discurso, a precisão de cada variável e uma

função de pontuação. Não há restrições quanto ao número de rótulos linguísticos ou aos

valores que definem as funções de pertinência.

Em outra aplicação, AGs são empregados no planejamento de trajetórias de robôs

em ambientes estáticos. Conforme discutido por Ismail, Sheta e Al-Weshah (2008), o

objetivo foi auxiliar o robô a encontrar um caminho ótimo entre pontos iniciais e finais

em um ambiente estruturado em grade, reduzindo o número de passos necessários para

percorrer a distância entre origem e destino pré-definidos. Os autores destacaram que os

AGs contornam limitações de técnicas tradicionais, como métodos baseados em gradiente,

permitindo que o algoritmo proposto gerencie movimentos em quatro direções e se adapte

a estruturas complexas de baixa dimensionalidade no espaço de busca. Os resultados

positivos em ambientes simulados validaram a eficácia da abordagem.

O estudo de Wang et al. (2017) propôs um método de otimização de parâmetros para

o modelo Center Pattern Generator (CPG) aplicado a peixes robóticos biomiméticos.

Esses robôs têm potencial para tarefas subaquáticas, utilizando o CPG (amplamente em-

pregado em controladores de locomoção) para gerenciar padrões de natação. Embora o

CPG permita gerar múltiplos padrões com uma única rede instanciada, a grande quanti-

dade de parâmetros envolvidos motivou a proposta de um método de otimização baseado

em enxame de partículas. O objetivo foi alcançar movimentos mais suaves e aumentar a

velocidade durante a natação. Simulações demonstraram que os sinais de entrada combi-

nados resultaram em ondulações mais fluidas, enquanto testes experimentais confirmaram

ganhos simultâneos de velocidade e suavidade nos movimentos dos robôs.

Chin e Lin (2018) propuseram um AG robusto aliado a um mecanismo de inferência

difusa, integrado a um controlador de modo deslizante (Sliding-Mode Control (SMC))

para robôs subaquáticos com dinâmicas incertas. O estudo combina dados imprecisos de

veículos operados remotamente, obtidos por meio de modelos de dinâmica de fluidos, con-

siderando a natureza não-linear e incerta desses sistemas. Para lidar com essas incertezas,

o AG direciona a evolução dos parâmetros do SMC, enquanto o mecanismo de inferência

difusa ajusta o controle em tempo real. A eficácia do método na redução da sensibili-

dade do esquema de controle, eventuais perturbações externas e variações paramétricas

foi validada por simulações e testes em ambiente marinho.
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O aprendizado por reforço profundo aliado a AGs para otimização de parâmetros per-

mite que robôs tomem decisões baseadas em funções de recompensa. No trabalho de

Sehgal et al. (2019), um AG foi utilizado para ajustar os parâmetros do Deep Deter-

ministic Policy Gradient combinado ao Hindsight Experience Replay, visando acelerar o

processo de aprendizagem do agente. O método foi aplicado em ações como busca, al-

cance, deslocamento, empurrão, coleta e posicionamento de objetos, além da abertura de

portas em tarefas de manipulação robótica. A avaliação experimental demonstrou que a

abordagem otimizada supera o algoritmo original em velocidade e eficiência.

Em seguida, é apresentado um método de planejamento de caminho autônomo baseado

em AGs multi-objetivo para robôs reconfiguráveis do tipo tetro-articulados. No estudo

de Cheng et al. (2020), desenvolveu-se uma estratégia sistemática para modelar o robô

hTetro, reconfigurável no espaço de trabalho, e propôs-se o algoritmo hTetro-GA para

planejar trajetórias eficientes. O método aborda o problema como uma otimização multi-

objetivo, avaliando o desempenho por meio de quatro funções de aptidão. O hTetro-GA

foi testado em seis ambientes virtuais com diferentes layouts de obstáculos e tamanhos

populacionais, validando sua adaptabilidade e eficiência em cenários complexos.

Outro trabalho correlato, é o estudo de López-González et al. (2020), que propôs uma

abordagem de formação baseada em distâncias para multi-robôs utilizando um AG para-

lelo. O método utiliza AGs para definir ângulos, distâncias e velocidades constantes entre

os robôs, evitando colisões. O algoritmo foi estendido a um esquema paralelo, aprimo-

rando seu desempenho e implementando conceitos de Inteligência Artificial Distribuída,

em que os robôs compartilham soluções por meio de migração para convergir a distâncias

desejadas e alcançar consenso. Embora a abordagem não seja prática para grandes quan-

tidades de robôs, os testes demonstraram eficiência e rapidez em ambientes com poucos

agentes, cumprindo o objetivo principal da proposta.

Ma et al. (2020) propuseram um método de planejamento de trajetórias suaves utili-

zando curvas de Bézier para resolver problemas de nós redundantes e pontos de inflexão

abruptos. Na primeira etapa, operadores genéticos definem os pontos de controle das

curvas de Bézier. Em seguida, o caminho mais curto é selecionado por meio de critérios

de otimização, ajustando o comprimento da curva conforme a disposição dos pontos. Para

garantir a segurança, a função de aptidão é adaptada com um fator de penalidade e uma

distância mínima entre os robôs e os obstáculos. Os resultados demonstram que o método

gera trajetórias mais curtas, fluidas e seguras do que as abordagens convencionais.

No estudo de Stolfi et al. (2020), foi proposto uma abordagem coevolutiva cooperativa

para maximizar a cobertura de vigilância realizada por enxames de Veículos Aéreos Não

Tripulados (VANTs). O artigo apresenta a parametrização e a otimização do Chaotic

Ant Colony Optimization for Coverage (CACOC), um modelo de mobilidade que utiliza

soluções caóticas de sistemas dinâmicos e feromônios para otimizar a exploração do am-

biente. Para aprimorar o desempenho de cobertura, a proposta se baseou na otimização
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dos parâmetros do CACOC por meio de um AG padrão e dois AGs coevolutivos coopera-

tivos. Experimentos foram realizados em quatro estudos de caso, que demonstraram que

as abordagens cooperativas permitem uma exploração mais eficiente do espaço de busca,

otimizando individualmente os parâmetros de cada VANT.

Por sua vez, no trabalho de Hao et al. (2020), foi proposto um Algoritmo Genético

de Migração Multipopulacional (MPMGA) para planejamento de rotas de robôs móveis.

A estratégia consiste em dividir uma população inicialmente grande em subpopulações

menores, com o mesmo número de indivíduos. O mecanismo de seleção é substituído por

um de migração entre subpopulações, enquanto os operadores de mutação e crossover

são aprimorados para aumentar a eficiência. Os resultados das simulações demonstram

que o MPMGA é adequado para mapas de simulação com diferentes escalas e distribui-

ções de obstáculos, além de superar o desempenho de algoritmos genéticos convencionais,

resolvendo problemas como convergência prematura e baixa diversidade.

Tinoco, Vizzari e Oliveira (2021) propuseram uma abordagem evolutiva para aprimo-

rar um modelo de coordenação de enxames de robôs, utilizando AGs para otimizar os

parâmetros do Inverted Ant Cellular Automata with Discrete pheromone diffusion and

Inertial motion (IACA-DI). O modelo IACA-DI combina técnicas bio-inspiradas, como

autômatos celulares e um sistema de formigas invertido, para coordenar enxames de ro-

bôs em tarefas de vigilância, exploração e forrageamento. Experimentos em diferentes

ambientes e estratégias de movimento validaram a abordagem, demonstrando melho-

rias significativas no desempenho em comparação com ajustes empíricos. Os resultados

contribuíram para uma compreensão mais detalhada da influência dos parâmetros no

comportamento do sistema, reforçando a eficácia do método proposto.

Com o objetivo de otimizar o consumo de energia em robôs industriais, Nonoyama et al.

(2022) propuseram uma estratégia para reduzir gastos e melhorar a eficiência energética.

Dois algoritmos metaheurísticos são aplicados para ajustar os parâmetros gerados por um

controlador PID (Proportional–Integral–Derivative), otimizando os movimentos do robô

de dois braços duAro. Os resultados demonstram que robôs com dois braços equipados

com o sistema proposto consomem menos energia do que robôs de um braço. Além

disso, o uso combinado dos algoritmos com o controlador PID reduziu significativamente

o consumo energético em comparação à parametrização exclusiva pelo PID.

Finalmente, Torres et al. (2024) investigou o uso de AGs na otimização de rotas de

robôs móveis, com foco na melhoria da acessibilidade em ambientes diversos. Diferente-

mente dos métodos tradicionais, que apresentam limitações na adaptação a mudanças em

tempo real, o algoritmo proposto é capaz de ajustar dinamicamente os trajetos dos robôs.

Testes e simulações demonstraram a eficácia da abordagem, promovendo uma navegação

mais acessível e inclusiva. O estudo evidenciou o potencial dos AGs para impulsionar a

mobilidade autônoma com maior eficiência e adaptabilidade.

A Tabela 1 compara três aspectos centrais deste trabalho com os demais estudos cor-
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Autores Otimização
Robôs

[multi-robôs]
Algoritmos Genéticos

Iterações Pop. Inicial

Mucientes et al. (2007) ✓ Sim [não] 50 300

Ismail, Sheta e Al-Weshah (2008) × Sim [não] 80;40;30 10;20;50

Tsai, Huang e Chan (2011) × Sim [sim] 100 50

Wang et al. (2017) ✓ Sim [não] Não utiliza AG

Chin e Lin (2018) ✓ Sim [não] 100 50

Sehgal et al. (2019) ✓ Sim [não] 30 30

Cheng et al. (2020) ✓ Sim [não] 25;50;100 1000

López-González et al. (2020) × Sim [sim] 1000 1000

Ma et al. (2020) ✓ Sim [não] 50;100 100

Stolfi et al. (2020) ✓ Sim [sim] Não utiliza AG

Hao et al. (2020) × Sim [não] 200;500 60;120

Tinoco, Vizzari e Oliveira (2021) ✓ Sim [sim] 100 100

Nonoyama et al. (2022) ✓ Sim [não] 10;20;30;50 100;200;300;

Torres et al. (2024) ✓ Sim [não] 100 50

Este trabalho ✓ Sim [sim] 100 50;100;150

Tabela 1 – Comparação: uso de AGs, aplicação em robótica e otimização de parâmetros.

relatos: Otimização de Parâmetros; Robôs (presença ou ausência de robôs e, quando

aplicável, de sistemas multi-robôs [indicados entre colchetes]); e, Algoritmos Genéticos

(número de iterações e tamanho populacional). Esses critérios permitem avaliar a con-

vergência metodológica entre as pesquisas, destacando a contribuição deste trabalho na

aplicação prática de algoritmos evolutivos.

Como evidenciado, os trabalhos correlatos apresentam alinhamento temático significa-

tivo e metodológico com esta pesquisa, compartilhando enfoques centrais na área explo-

rada. Conforme descrito na Tabela 1, todas as pesquisas analisadas abordam pelo menos

dois dos três critérios comparativos (Algoritmos Genéticos, Robótica e Otimização), o

que confere robustez ao embasamento teórico e prático deste estudo.

Adicionalmente, destaca-se o uso predominante de AGs nos trabalhos analisados. Dos

doze estudos que mencionam AGs, apenas dois não os aplicam de forma prática, enquanto

os demais os empregam, principalmente, na otimização de parâmetros. Na Tabela 1, a

subcoluna “Iterações” indica o limite máximo de iterações definido ou alcançado em cada

estudo, enquanto a subcoluna “População Inicial” registra o número de indivíduos gerados

para a inicialização do algoritmo. Cada trabalho adota valores específicos para o número

de iterações e tamanho da população inicial, os quais serviram de referência para definir

os parâmetros do AG utilizado nesta pesquisa.
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Capítulo 3

Materiais e Métodos

Neste capítulo, são apresentados os materiais e métodos utilizados neste trabalho. A

Seção 3.1 descreve, de forma geral, a metodologia que orientou a execução desta pesquisa,

integrando aspectos teóricos e práticos. Na Seção 3.2, são identificados e brevemente con-

textualizados os recursos tecnológicos que serviram como ferramentas essenciais durante

o desenvolvimento do estudo. Por fim, na Seção 3.3, definem-se as métricas de avaliação

adotadas para a análise dos resultados obtidos.

3.1 Visão Geral do Método

A primeira etapa consistiu em analisar estudos já publicados sobre Algoritmos Bio-

inspirados e Computação Evolutiva, especialmente os AGs. Para isso, foi feita uma re-

visão bibliográfica detalhada, seguida pela implementação de métodos que aplicam esses

algoritmos na prática. Os resultados mostraram, de forma clara, como esses algoritmos

funcionam e quais são suas principais características, o que auxiliou na definição de uma

estratégia para integrá-los a um modelo de coordenação de enxame de robôs.

Em seguida, foram realizados estudos sobre enxames de robôs para compreender o

contexto dos parâmetros a serem otimizados. Esse processo foi dividido em duas etapas:

(i) revisão da literatura correlata; e, (ii) análise e reprodução de um modelo já existente

que aplica algoritmos bio-inspirados na coordenação de enxames. Para a segunda etapa,

selecionou-se o modelo PheroCom (TINOCO; MARTINS; OLIVEIRA, 2025), que aborda

a coordenação de enxames. O projeto envolveu a replicação desse modelo, a análise

detalhada de seus parâmetros e a avaliação de possíveis otimizações.

Após a análise detalhada dos aspectos anteriores, foi realizada a integração de um AG

ao Modelo PheroCom. Essa etapa teve como objetivo testar técnicas de otimização com

base nos AGs analisados, visando reformular o processo que definição dos parâmetros do

modelo PheroCom. O objetivo consistiu em comparar os resultados do modelo reformu-

lado com os do modelo original, ambos previamente implementados, utilizando métricas

estatísticas para aumentar a precisão na avaliação dos dados obtidos.



44 Capítulo 3. Materiais e Métodos

Por fim, após definir os critérios de comparação, os modelos analisados (Modelo Phe-

roCom e AGs) foram avaliados com base nas métricas estabelecidas. Para isso, foram

considerados indicadores de desempenho como tempo de execução, homogeneidade do es-

palhamento do enxame pelo ambiente e registros de sucesso durante as simulações. Esses

resultados confirmaram a hipótese H1 (referir à Seção 1.3), demonstrando que a otimiza-

ção de parâmetros, para aumentar a homogeneidade no espalhamento de robôs, pode ser

efetivamente realizada por meio de AGs orientados à desordem.

3.2 Recursos Tecnológicos

Esta seção descreve os recursos tecnológicos utilizados como ferramentas fundamentais

para a implementação do modelo e execução dos experimentos propostos nesta pesquisa.

❏ Multi-agent Simulation System (MaSS) (TINOCO; MARTINS; OLIVEIRA,

2025): O MaSS é uma plataforma de simulação desenvolvida para experimentos em

larga escala. Sua principal característica é a abstração de aspectos físicos dos robôs e

do ambiente, priorizando a simulação do comportamento coletivo do enxame. Após

os testes de estresse no MaSS, o modelo pode ser adaptado mais facilmente para uma

implementação futura em uma plataforma de simulação 3D, onde fatores adicionais

(e.g., física e hardware) passam a ser considerados.

3.3 Métricas de Avaliação

Esta seção apresenta as métricas de avaliação utilizadas para analisar os resultados do

algoritmo e da proposta de otimização deste trabalho.

❏ Média Aritmética: Conceito estatístico utilizado para representar o valor central

de um conjunto de dados. Seu cálculo é realizado pela soma de todos os valores do

conjunto, seguida da divisão pelo número total de elementos (Eq. 3). Embora seja

uma medida de tendência central útil para compreender o comportamento geral dos

dados, ela pode ser afetada por valores extremos (muito altos ou muito baixos), o

que pode comprometer a sua precisão na representação da amostra.

M(X) =
1

n

n
∑

i=1

xi =
x1 + x2 + ...+ xn

n
(3)

onde:

M(X): a média aritmética do conjunto de dados X;

n: é a quantidade de valores no conjunto de dados; e,

ai: representa cada valor no conjunto de dados.
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❏ Pontos de tarefa (task-points): Os pontos de tarefa representam a conclusão

de um ciclo da tarefa de vigilância, que acontece quando todas as salas do ambiente

são visitadas por pelo menos um robô. Cada ponto de tarefa registrado indica

que o enxame cobriu integralmente o ambiente. Essa métrica permite quantificar

a eficiência na cobertura do ambiente, analisando a frequência com que todas as

salas são visitadas dentro do tempo estipulado, bem como a consistência temporal:

intervalos excessivos entre a conclusão de pontos de tarefa podem revelar anomalias,

como atrasos na locomoção e ineficiência nas trocas de salas.

Definição 1 Seja A um ambiente composto por m salas e E um enxame composto

por n robôs. Uma sala i pertencente ao ambiente A é descrita como {si | (i ≤

m) and (i ∈ N*)}. De forma semelhante, um robô i pertencente ao enxame E

é descrito como {rbi | (i ≤ n) and (i ∈ N*)}. Portanto, um ponto de tarefa é

alcançado se, e somente se, cada sala si ∈ A receber uma visita de ao menos um

robô rbi ∈ E.

❏ Mapas de Pegadas: Os mapas de pegadas fornecem uma representação visual

da distribuição do enxame pelo ambiente. Como o ambiente é discretizado em uma

grade de células regulares, cada passagem de um robô por uma célula incrementa um

contador de pegadas. As células são coloridas de acordo com a frequência de visitas:

tonalidades quentes (tendendo ao vermelho) indicam maior número de pegadas, en-

quanto tonalidades frias (tendendo ao azul) representam menor número ou ausência

de pegadas. Essa técnica de visualização permite identificar se a distribuição do

enxame é uniforme e se há áreas que estão sendo negligenciadas.

A principal aplicação dos mapas de pegadas neste trabalho reside na avaliação empí-

rica da homogeneidade da ocupação do ambiente pelos robôs ao longo da exploração.

Além disso, a construção desses mapas requer a coleta contínua de dados ao longo

de múltiplas iterações do modelo, já que uma única execução não possui signifi-

cância estatística suficiente. Para mitigar a influência de outliers, são realizadas 30

simulações com parâmetros idênticos, gerando múltiplos mapas de pegadas. Posteri-

ormente, um mapa consolidado é produzido aplicando-se uma medida de tendência

central – neste caso, a média aritmética (Equação 3) –, garantindo uma análise

robusta e representativa dos padrões de movimentação.

❏ Entropia: conhecida como Entropia de Shannon (SHANNON, 1948), é uma medida

que representa o nível de incerteza ou imprevisibilidade de um conjunto de dados.

Quanto mais variados forem os dados, maior será a entropia; quanto mais repetitivos

em poucos valores, menor será a entropia. Por exemplo, considere o conjunto A =

{2, 2, 2, 2, 2, 2, 2, 2, 2, 2}. Nesse caso, todos os valores são iguais. Isso significa que,

ao escolher um elemento aleatoriamente, a chance de obter o número 2 é de 100%.
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Como não há incerteza, a entropia é igual a 0,0, i.e., completamente previsível.

Agora, considere o conjunto B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, em que todos os valores

são diferentes e aparecem com a mesma frequência. Ao sortear um número, cada

valor tem a mesma probabilidade de ser escolhido (10%). Nesse cenário, não é

possível prever qual número será selecionado com facilidade, o que caracteriza uma

entropia de maior valor, i.e., alta imprevisibilidade.

Neste trabalho, uma adaptação da entropia será aplicada ao conjunto de dados

constituído pelas frequências de pegadas das células do mapa de pegadas (descrito

no tópico anterior). A Equação 4 descreve o cálculo da entropia.

E(X) = −
n
∑

i=1

(P (xi)× log2(P (xi))) (4)

onde:

E(X): a entropia do conjunto de dados X;

n: é a quantidade de valores distintos no conjunto de dados;

xi: representa cada valor distinto no conjunto de dados; e,

P (xi): a probabilidade de ocorrência de xi no conjunto de dados.
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Capítulo 4

Proposta

Este trabalho propõe a otimização dos parâmetros do modelo PheroCom (TINOCO;

MARTINS; OLIVEIRA, 2025) por meio da aplicação de AGs. Para isso, foi feita uma

adaptação para a função fitness baseada em entropia, com o objetivo de promover uma

distribuição mais homogênea dos enxame pelo ambiente. Essa função tem como papel

principal avaliar o desempenho coletivo do enxame, favorecendo configurações que levem a

uma cobertura mais equilibrada. A Seção 4.1 apresenta a modelagem do AG e a integração

do modelo PheroCom. Em seguida, a Seção 4.2 descreve a métrica de entropia utilizada

como base para a função fitness, suas limitações e uma proposta de adaptação.

4.1 Modelagem do Algoritmo Genético

Nesta seção, a modelagem do AG utilizado neste trabalho é descrita, detalhando

como o modelo PheroCom é incorporado ao AG e a especificação dos parâmetros e das

configurações adotadas na estruturação do código genético dos indivíduos.

A Figura 7 ilustra o processo de integração entre o AG e o PheroCom. O valor da

função fitness atribuído a cada indivíduo é composto pela entropia da dispersão do enxame

e a quantidade de pontos-de-tarefa atingidos ao longo da execução da tarefa. A entropia

mede o quão uniformemente os robôs se distribuem pelas áreas exploradas, enquanto os

pontos de tarefa indicam o desempenho do modelo em realizar a tarefa de vigilância. A

combinação dessas duas métricas permite avaliar simultaneamente a eficácia e a qualidade

da cobertura realizada, orientando o AG na busca por configurações de parâmetros que

resultem em um comportamento coletivo mais eficiente e homogêneo.

Inicialmente, o algoritmo gera uma população com um número pré-definido de indi-

víduos, onde cada indivíduo é representado por um vetor com sete valores reais (Fig. 8).

Cada um desses valores corresponde a um parâmetro do modelo PheroCom: evaporation,

elitist, stochastic, inertial, alpha, delta e eta. O parâmetro evaporation define a taxa de

evaporação do feromônio nas células percorridas pelos robôs. Já os parâmetros elitist e

stochastic estão relacionados à tomada de decisão dos movimentos do robô. Por sua vez, o
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entre pares de indivíduos, o que introduz diversidade genética. A etapa de mutação utiliza

mutação contínua com perturbação aditiva (referir à Seção 2.1.1.5) e é aplicada a uma

parte da nova população. Essa mutação gera pequenas variações nos genes para evitar

a convergência prematura do algoritmo. Por fim, executado o processo de mutação, os

novos indivíduos são avaliados pela função fitness.

A seleção final da geração é feita com base em elitismo e torneio: os melhores indivíduos

são mantidos, e novos indivíduos selecionados se somam a eles, formando a próxima

geração. Esse processo se repete por um número pré-definido de gerações, permitindo a

descoberta progressiva de configurações mais eficazes.

O Algoritmo 1 apresenta o pseudocódigo que ilustra o cálculo da função fitness apli-

cada ao AG. Inicialmente, definem-se os valores de início e fim de iteração (conjunto

de indivíduos que serão avaliados): para a primeira população (linha 2), o início corres-

ponde ao primeiro indivíduo, e o fim é delimitado pelo tamanho da população inicial;

caso contrário, i.e., nas gerações subsequentes (linha 5), o início torna-se o o tamanho da

população mais um (|Population| + 1), e o fim corresponde ao tamanho da população

inicial somado à quantidade de filhos que gerados (|Population| + |Crossover |).

Realizada a inicialização, executa-se a avaliação de todos os indivíduos dentro do in-

tervalo estabelecido (linha 9). Cada indivíduo é avaliado por meio de 30 invocações da

função PheroCom (linha 12). Da mesma forma, os resultados dessas execuções são arma-

zenados no vetor scores, que contém os valores de fitness de cada uma das 30 execuções

do modelo PheroCom. Os valores do vetor scores são então acumulados na variável soma

(linha 13), permitindo o cálculo da média aritmética dos valores de fitness. Essa média

constitui a avaliação final de cada indivíduo da população.

Algoritmo 1 – Pseudocódigo da função fitness do AG

1: if Population ̸= NULL then
2: if local == 0 then
3: inicio← local← 1
4: fim← |Population|
5: else
6: inicio← |Population|+ 1
7: fim← |Population|+ |Crossover|
8: end if
9: for i← inicio to fim do

10: soma← 0.0
11: for j ← 1 to 30 do
12: scores[j]← PheroCom(populacao.individuos[i].codigoGenetico)
13: soma← soma+ scores[j]
14: end for
15: populacao.individuos[i].avaliacao← soma/30.0
16: end for
17: end if
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4.2 Função fitness

A função fitness é o componente central do processo de otimização conduzido pelos

AGs. Ela é responsável por avaliar o desempenho de cada indivíduo testado. Neste

trabalho, ela considera não apenas a capacidade dos robôs em cumprir a tarefa proposta,

mas também a forma como se distribuem pelo ambiente. Para isso, propõe-se uma função

fitness baseada na combinação de pontos de tarefa e entropia (Seção 3.3). A Equação 5

descreve o cálculo da função fitness aplicada no AG proposto.

α = E × τ (5)

onde:

❏ α: valor final da função fitness, considerando a entropia e os pontos-de-tarefa;

❏ E: valor da entropia; e,

❏ τ : quantidade de pontos de tarefa alcançados na execução do modelo PheroCom.

Para avaliar um indivíduo, o AG aplica os valores dos genes desse indivíduo no modelo

PheroCom. Ao executar o modelo (Algoritmo 1, linha 12), é retornada uma avaliação

(Equação 5): o produto entre a entropia do mapa de pegadas e a quantidade total de

pontos de tarefa atingidos. O objetivo desse produto é direcionar a busca para indivíduos

que mantenham uma execução eficiente da tarefa de vigilância e que, ao mesmo tempo,

garantam uma boa distribuição pelo ambiente.

De forma geral, entropia pode ser utilizada como uma forma de medir a dispersão

dos robôs pelo ambiente. Nesse sentido, a entropia representa uma medida que busca

incentivar a homogeneidade no espalhamento do enxame. A ideia é que, ao considerar

não apenas o resultado final dos pontos de tarefa, mas também o grau de homogeneidade

na dispersão dos robôs, o AG possa selecionar indivíduos cujos parâmetros favoreçam

uma atuação eficiente e uma distribuição mais homogênea.

Vale ressaltar que as células que representam as paredes dos ambientes não são selecio-

nadas para entrarem no conjunto de valores utilizados no cálculo da entropia. Isto porque

as paredes não possuem pegadas e os valores das células iguais a 0 causariam interferência

no cálculo, poluindo a significância real da entropia. Por isso, são consideradas apenas as

células que podem ser ocupadas pelos robôs.

Dessa forma, esta Seção apresenta a métrica de entropia utilizada como parte da

função fitness, discute as limitações observadas em sua forma original e descreve uma

adaptação voltada à promoção de maior homogeneidade na atuação do enxame.



4.2. Função fitness 51

4.2.1 Entropia por Valores Distintos

A Entropia por Valores Distintos (EVD), representa a entropia de Shannon em sua

forma original (ver Seção 3.3). Contudo, ao aplicar essa métrica, surgem três problemas

importantes: (i) Valores não-Normalizados: os valores da entropia pura podem ser maiores

que 1,0; (ii) Valores Invertidos: a entropia representa o grau de desordem de um sistema,

i.e., um mapa de pegadas totalmente homogêneo resultaria em uma entropia igual a zero;

e, (iii) Homogeneidade Distorcida: a concentração alta de pegadas em algumas células,

com distribuição razoável nas restantes, tende a apresentar algum grau de homogeneidade.

4.2.1.1 Problema I: Valores Não-Normalizados

O primeiro problema encontrado consiste no fato de que os valores máximos de entropia

dependem do tamanho dos conjuntos analisados (neste caso, a quantidade de células da

grade que representa o ambiente). Uma vez que a entropia é utilizada como uma forma

de validação (ou, penalização) dos pontos-de-tarefa, seus valores precisam estar entre zero

e um (E ∈ R/(0, 0 ≤ E ≤ 1, 0)).

Para solucionar esse problema, e sabendo que o valor máximo da entropia seja log2(n)

e que n é o tamanho do conjunto de dados, os valores da entropia foram normalizados

dividindo-os por log2(n). A normalização, descrita pela Equação 6, modifica a entropia

para que essa represente um peso entre 0,0 e 1,0, mantendo a proporção de sua influência,

mesmo em conjuntos variáveis.

Enorm =
ESh

log2(n)
(6)

onde:

Enorm: valor da entropia normalizada;

ESh: valor da entropia de Shannon (ver Equação 4), gerado a partir dos valores

do mapa de pegadas; e,

n: número total de células livres verificadas no mapa.

4.2.1.2 Problema II: Valores Invertidos

O segundo desafio identificado está ligado à forma como a entropia é tradicionalmente

interpretada. Por definição, a entropia mede o grau de desordem ou imprevisibilidade

em um sistema. Assim, um mapa de pegadas perfeitamente homogêneo (com distribuição

uniforme) teria entropia zero, pois não há variação ou “desordem” nos dados. No entanto,

no contexto deste trabalho, essa interpretação entra em conflito com o objetivo prático:

quando o enxame se distribui de maneira uniforme pelo ambiente (mapa homogêneo) é

considerado um resultado ideal, pois indica uma boa cobertura.
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Para solucionar esse problema, propõe-se que a entropia seja invertida, garantindo que

os pontos-de-tarefa atingidos sejam preservados. Dessa forma, quanto mais homogêneo for

o mapa de pegadas (i.e., quanto mais uniforme for a distribuição do enxame no ambiente),

maior será o valor da entropia. Como a entropia mede desordem, a sua inversão traduz

o resultado para uma escala de ordem, onde 1,0 indica máxima homogeneidade. Essa

inversão é descrita pela Equação 7.

Einv = 1.0− Enorm (7)

onde:

Einv: entropia invertida; e,

Enorm: entropia normalizada, calculada pela Equação 6.

4.2.1.3 Problema III: Homogeneidade Distorcida

A aplicação direta da entropia de Shannon (ver Equação 4) pode gerar interpretações

semanticamente equivocadas no contexto de cobertura espacial por robôs. Isso se deve ao

fato de que essa métrica quantifica a diversidade de categorias em um conjunto de dados,

tratando cada valor único como uma categoria distinta, i.e., a entropia é calculada com

base na frequência relativa de cada valor.

Por exemplo, considere o conjunto de dados {71, 1, 1, 1, 1}, no qual há duas categorias

(n = 2). Assim, P (71) = 1/5 e P (1) = 4/5. Substituindo na fórmula da Equação 4,

obtém-se: − (1/5 log2(1/5) + 4/5 log2(4/5)) ≈ 0, 72. Normalizando o valor pela Equação 6,

mantém-se: 0,72/log
2
(2) ≈ 0, 72. Invertendo o resultado, de acordo com a Equação 7, para

representar o grau de ordem do sistema, tem-se: 1, 0 − 0, 72 ≈ 0, 28. Embora esse valor

sugira algum grau de ordem no sistema, visualmente observa-se uma alta concentração

de pegadas em uma única célula.

Além disso, se essa concentração aumentar (e.g., {996, 1, 1, 1, 1}), o valor da entropia

por valores distintos continua a ser 0, 28. Isso ocorre porque essa métrica considera apenas

o número de categorias (n = 2) e suas frequências relativas (P (996) = 1/5 e a P (1) = 4/5),

ignorando a magnitude das diferenças entre os valores. Essa característica não é desejável

para avaliar a distribuição de um enxame de robôs.

Em um cenário com uma melhor distribuição de pegadas (não necessariamente uma

distribuição perfeita), essa entropia pode ainda resultar em um baixo grau de ordem.

Por exemplo, seja o conjunto {12, 18, 15, 16, 14}; n = 5; e, P (12, 18, 15, 16, 14) = 1/5.

Pela Equação 4: − (5× 1/5 log2(1/5)) ≈ 2, 32; pela Equação 6: 2,32/log
2
(5) = 1, 0; e, pela

Equação 7: 1, 0− 1, 0 = 0, 0. Apesar do conjunto apresentar uma maior homogeneidade,

a entropia por valores distintos não consegue capturar a proximidade entre os seus valores

(entropia = 0, 0), e apenas os categoriza como sendo totalmente independentes.
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Dessa forma, a entropia por valores distintos é útil para medir a diversidade de catego-

rias, mas é “cega” à distribuição espacial real. Para resolver o problema III, foi proposta

a aplicação de uma entropia proporcional à intensidade.

4.2.2 Entropia Proporcional à Intensidade

A Entropia Proporcional à Intensidade (EPI) resolve a limitação empregada pela EVD

(ver Seção 4.2.1) ao incorporar a proporção de cada valor analisado de acordo com a soma

total de valores. Isto é, células com densidades similares recebem maior contribuição para

a homogeneidade, capturando melhor a distribuição espacial real do enxame.

Dado que xij representa uma célula da grade do ambiente na posição (i, j), a Equa-

ção 11 representa o cálculo final da EPI, que pode ser descrita pelos passos a seguir

(considere que apenas células livres são incluídas no cálculo, i.e., [(xij ∧ xkl) ∈ {L ∪R}],

onde L e R são os conjuntos de células que podem receber robôs):

Para a Frequência Proporcional (FP) de uma célula xij no conjunto L, tem-se:

FPij =
FBγ

ij
∑n

k=1

∑m
l=1 FB

γ
kl

(8)

Substituindo a frequência relativa pela frequência proporcional na Equação de Shan-

non (Eq. 4), mantendo o contexto de células, obtém-se:

Eint = −
n
∑

i=1

m
∑

j=1

(FPij · log2 (FPij)) (9)

Substituindo a Equação 8 na Equação 9, obtém-se:

Eint = −
n
∑

i=1

m
∑

j=1

(

FBγ
ij

∑n
k=1

∑m
l=1 FB

γ
kl

· log2

(

FBγ
ij

∑n
k=1

∑m
l=1 FB

γ
kl

))

(10)

Aplicando a solução do Problema I (referir à Seção 4.2.1.1), referente à normalização

dos valores, na Equação 10, tem-se:

Eint = −
1

log2(N)

n
∑

i=1

m
∑

j=1

(

FBγ
ij

∑n
k=1

∑m
l=1 FB

γ
kl

· log2

(

FBγ
ij

∑n
k=1

∑m
l=1 FB

γ
kl

))

(11)

onde:

❏ Eint: valor resultante da EPI, gerado a partir dos valores do mapa de pegadas,

normalizado e intensificado à potência γ para realçar as diferenças das pegadas;

❏ FPij: frequência proporcional de visitação à célula ij;

❏ FBkl: frequência bruta de visitação à célula k;

❏ γ: amplificador de diferenças nas visitas às células; e,

❏ n×m: número total de células ocupáveis verificadas no mapa.
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A entropia foi adaptada neste trabalho ao ser aplicada sobre uma distribuição de

probabilidades derivada das pegadas elevadas a uma potência (γ), a fim de acentuar

diferenças nas frequências de visitação. A seguir, esses valores foram normalizados pela

soma total, gerando uma distribuição contínua que reflete não só os valores absolutos,

mas a proporção relativa entre as visitas. Com isso, uma distribuição homogênea resulta

corretamente em entropia máxima (próxima de 1,0), enquanto padrões desbalanceados

levam a valores menores. Portanto, tem-se uma métrica semanticamente coerente para

avaliar a homogeneidade de exploração espacial pelos robôs.

Ambas as métricas oferecem perspectivas complementares. A EVD responde à per-

gunta “quantos tipos diferentes existem?”, enquanto a EPI responde “quão equilibrados

são os pesos desses tipos?”. Portanto, a EPI representa melhor o contexto deste trabalho,

que busca avaliar quão homogênea é a dispersão de enxames de robôs.
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Capítulo 5

Experimentos e Análises

Neste capítulo, são apresentados os experimentos e as análises realizadas. O objetivo

principal consiste em otimizar os parâmetros do modelo PheroCom (TINOCO; MARTINS;

OLIVEIRA, 2025) por meio de AGs. Para isso, foi proposta uma função fitness baseada

em entropia (ver Seção 4.2.2), que premia a homogeneidade do espalhamento do enxame.

A Seção 5.1 detalha a configuração experimental, incluindo o ambiente de simulação e os

parâmetros adotados. Já a Seção 5.2 expõe os resultados obtidos e as discussões.

5.1 Configuração Experimental

Todos os experimentos foram executados na plataforma MaSS (ver Seção 3.2). Devido

à alta demanda de processamento exigida por algoritmos evolutivos de otimização, foi

necessário o uso de uma linguagem de programação de alto desempenho, priorizando a

eficiência computacional. Para isso, foram evitados custos desnecessários com interfaces

gráficas e simulações de forças físicas, características já integradas à plataforma.

A Figura 9 ilustra a configuração dos ambientes utilizados. Esses ambientes possuem

dimensões de (20 × 30) células, representando espaços internos (indoor) fechados, com-

postos por salas interligadas por portas. Para simplificar a interpretação, foram adotadas

duas representações: uma grade regular de células e um grafo de conexão. Na grade, o

ambiente é discretizado em células quadradas equidistantes, em que células cinzas indicam

paredes (obstáculos intransponíveis) e células brancas representam áreas livres (permitem

movimentação dos robôs). O grafo de conexão, por sua vez, exibe as relações entre as

salas, com vértices simbolizando salas e arestas representando portas. Essa abordagem

facilita a identificação de padrões estruturais, como regiões de acesso restrito.

Foram utilizados três ambientes distintos (Fig. 9): (i) o ambiente A1 (Fig. 9a) possui

sete salas e sete portas, e o fluxo entre os lados esquerdo e direito do ambiente é definido

por um único caminho. O seu grafo (Fig. 9b) revela agrupamentos entre as salas 1, 4 e

6, bem como entre as salas 2, 3, 5 e 7; (ii) o ambiente A2 (Fig. 9c) apresenta seis salas

e cinco portas, concentrando o fluxo na sala central. O seu grafo (Fig. 9d) exibe uma
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cinco configurações distintas de taxa de mutação para cada tamanho da população inicial.

Os detalhes completos dessas configurações são apresentados na Tabela 2.

Configurações C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Mutação (%) 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
População 50 50 50 50 50 100 100 100 100 100 150 150 150 150 150

Tabela 2 – Configurações de taxa de mutação e tamanho de população testadas no AG.

A Tabela 2 detalha 15 combinações paramétricas que foram avaliadas nos experimen-

tos, organizando as taxas de mutação (2%, 4%, 6%, 8% e 10%) e os tamanhos de população

(50, 100 e 150 indivíduos) em configurações sequenciais (C1 – C15). Pode-se observar que

cada tamanho populacional foi associado às cinco taxas de mutação, totalizando cinco

configurações por grupo (e.g., C1 – C5 para população 50; C6 – C10 para população 100;

e, C11 – C15 para população 150). Essa abordagem sistemática permite avaliar como as

variações nos parâmetros influenciam a convergência e a eficiência do modelo.

5.2 Experimentos

Nesta seção, são apresentados os resultados dos experimentos conduzidos conforme

as configurações descritas na Seção 5.1. Os gráficos de resultados incluem cinco índices

principais: Melhor Indivíduo, Pior Indivíduo, Média, Desvio Padrão e Ground Truth.

O primeiro índice representa o valor máximo de avaliação em cada geração, e o segundo

representa o valor mínimo. Já a média e o desvio padrão são obtidos a partir dos valores de

todos os indivíduos da geração. O ground truth corresponde ao valor de referência obtido

por Tinoco, Vizzari e Oliveira (2020), sendo fixado em 101 para todas as 15 configurações

analisadas. Vale destacar que a avaliação de cada indivíduo é calculada a partir da média

de 30 execuções do PheroCom (TINOCO; MARTINS; OLIVEIRA, 2025).

5.2.1 Exp-01: AG com população de 50 indivíduos

A Figura 10 apresenta os resultados dos experimentos conduzidos com uma popu-

lação de 50 indivíduos (configurações C1 – C5, conforme a Tabela 2). Ao examinar a

evolução da função fitness ao longo de 100 gerações, verificou-se que a configuração C4

(com taxa de mutação de 8%) obteve os maiores valores, alcançando 117 pontos de ta-

refa (Fig. 10a). Todas as configurações testadas superaram o valor de referência (ground

truth) ao término das execuções. Além disso, os melhores indivíduos das demais configu-

rações não só permaneceram próximos ao ground truth, como também o ultrapassaram

em suas avaliações. Isso indica que, mesmo com a aplicação de uma penalização motivada

pela entropia (a qual tende a reduzir as pontuações do AG), as diferenças em relação ao

ground truth foram pouco expressivas. Esses achados sugerem que a cobertura realizada
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(a) Configuração C1. (b) Configuração C2.

(c) Configuração C3. (d) Configuração C4.

(e) Configuração C5.

Figura 10 – Evolução ao longo das gerações do AG – Configurações C1 a C5.

pelos robôs manteve-se espacialmente próxima da homogeneidade, i.e., a penalização não

comprometeu de forma significativa a eficácia qualitativa do modelo.

Outra observação importante é a evolução da qualidade da população. Tanto o valor do

melhor quanto o do pior indivíduo evoluíram, o que reduziu a amplitude da distribuição.

Na configuração C4, a média atingiu um pico de 95, 16 ± 5, 86 na geração 94 (≈ 5, 8%

abaixo do ground truth 101), indicando um aumento consistente na qualidade média da

população. Esse padrão é compatível com o elitismo e operadores genéticos aplicados: os

indivíduos mais aptos foram preservados e, ao mesmo tempo, originaram descendentes de

maior qualidade, elevando tanto os extremos quanto a média. Além disso, os melhores dos

piores indivíduos nas configurações C1–C5 apresentaram uma média de 81, 4% (≈ 80, 7%

do ground truth). Isso sugere que o limite inferior permaneceu elevado e consistente entre

as configurações, corroborando uma melhoria generalizada da população.



5.2. Experimentos 59

5.2.2 Exp-02: AG com população de 100 indivíduos

O AG também foi executado com uma população inicial de 100 indivíduos (Fig. 11).

Novamente, todas as configurações analisadas (C6 – C10) superaram o ground truth. O

pico máximo observado (119 pontos de tarefa na geração 26) ocorreu novamente com uma

taxa de mutação de 8% (configuração C9), o que sugere que essa taxa proporciona o melhor

equilíbrio entre exploração global (mutação) e exploração local (reprodução/crossover).

Em comparação com os experimentos com 50 indivíduos (ver Seção 5.2.1), as diferenças

no número de pontos de tarefa alcançados foram pequenas: a variação ficou na faixa de

3 a 5 pontos entre configurações com taxas de mutação similares. Além disso, todas as

configurações apresentaram aumento percentual na média populacional, indicando que o

AG explorou a variabilidade populacional para identificar soluções de melhor qualidade.

(a) Configuração C6. (b) Configuração C7.

(c) Configuração C8. (d) Configuração C9.

(e) Configuração C10.

Figura 11 – Evolução ao longo das gerações do AG - Configurações de C6 a C10.
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Taxas de mutação mais elevadas tendem a produzir oscilações mais frequentes nas

curvas de desempenho, tanto em quedas abruptas (encontrando indivíduos piores) quanto

em recuperações substanciais (encontrando indivíduos melhores). Essa dinâmica é con-

sistente com o efeito esperado da mutação: ao introduzir variabilidade genética, reduz-se

o risco de convergência prematura para ótimos locais, preservando a diversidade popula-

cional e permitindo uma exploração mais ampla do espaço de busca. Por outro lado, essa

mesma variabilidade aumenta a flutuação momentânea das métricas de aptidão ao longo

das gerações. Assim, o comportamento oscilatório observado indica que o AG conseguiu,

na prática, equilibrar mecanismos de intensificação e de exploração, favorecendo a busca

global sem comprometer a capacidade de produzir soluções de alta qualidade.

5.2.3 Exp-03: AG com população de 150 indivíduos

Por fim, os experimentos foram conduzidos com uma população inicial de 150 indi-

víduos (Fig. 12). Nessa configuração, observaram-se as maiores margens de superação

dos melhores indivíduos em relação ao ground truth: todas as cinco configurações (C11

– C15) o ultrapassaram ao longo da evolução, atingindo ≈ 24, 4% a mais de pontos de

tarefa, o que indica um ganho consistente na qualidade das soluções. Além disso, esse

comportamento está refletido nas médias populacionais compiladas na Tabela 3. Nos va-

lores apresentados, os números fora dos colchetes correspondem ao aumento percentual

das médias ao se passar de 50 para 100 indivíduos, enquanto os valores entre colchetes

indicam o aumento percentual ao se passar de 50 para 150 indivíduos.

Tabela 3 – Médias populacionais por taxa de mutação e tamanho da população.

Mutação
Média das Populações Aumento (%)

50→ 100 [100→ 150]População 50 População 100 População 150

2% 92,84 94,80 104,46 ≈ 2,11 [12,52]%
4% 91,00 94,22 94,54 ≈ 3,54 [3,89]%
6% 94,68 97,50 102,68 ≈ 2,98 [8,45]%
8% 95,16 97,06 104,17 ≈ 2,00 [9,47]%
10% 96,44 95,63 95,08 ≈ −0,84 [−1,41]%

Nota-se que o maior incremento médio das médias populacionais ocorreu na configura-

ção C11 (Fig. 12a – 2% de taxa de mutação), que apresentou um aumento de aproximada-

mente 12,51% ao comparar populações de 150 e 50 indivíduos (Tabela 3). A configuração

C14 (Fig. 12d – 8% de taxa de mutação) também exibiu um ganho médio relevante, de

aproximadamente 9,47%, enquanto a configuração C15 (Fig. 12e – 10% de taxa de mu-

tação) apresentou uma redução média de cerca de -1,41%, indicando que uma taxa de

mutação muito elevada pode degradar a performance média.

Do ponto de vista dinâmico, C14 e C15 exibem comportamentos distintos: (i) em

C14, o ground truth foi ultrapassado já nas primeiras gerações (geração 6), houve uma
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(a) Configuração C11. (b) Configuração C12.

(c) Configuração C13. (d) Configuração C14.

(e) Configuração C15.

Figura 12 – Evolução ao longo das gerações do AG - Configurações de C11 a C15.

breve queda (geração 10) e uma posterior estabilização (geração 12); por sua vez, (ii)

em C15, a primeira superação ocorreu ainda mais cedo (geração 3) e manteve-se sem

retornos subsequentes. Em termos de valores máximos absolutos observados, C11 e C14

apresentaram os maiores valores na quantidade de pontos de tarefas atingidos, chegando

a 126 pontos de tarefa em ambas as configurações.

Dessa forma, foi selecionada a configuração que apresentou o melhor balanceamento

entre a homogeneidade de cobertura e a quantidade de pontos de tarefa atingidos:

Tabela 4 – Configuração do melhor indivíduo selecionado (ver Figura 8).

[0] [1] [2] [3] [4] [5] [6]

0.005 0.350 0.030 2.501 0.838 0.126 0.127
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5.2.4 Exp-04: Mapas de Pegadas

Os mapas de pegadas (ver Seção 3.3) representam a dispersão e acumulam a trajetória

completa do enxame. Dessa forma, permitem verificar a homogeneidade da dispersão

e identificar a frequência de visitação. Por acumularem toda a evolução, esses mapas

possibilitam avaliar tanto a cobertura espacial quanto a persistência da vigilância.

(a) Mapa de pegadas do A1. (b) Mapa de pegadas do A2. (c) Mapa de pegadas do A3.

Figura 13 – Mapas de pegadas de espalhamento do enxame. A parametrização utilizada
corresponde ao melhor indivíduo selecionado no processo evolutivo.

A Figura 13 apresenta os resultados dos experimentos realizados com mapas de pe-

gadas, aplicando a parametrização do melhor indivíduo selecionado (Tabela 4). As Figu-

ras 13a, 13b e 13c correspondem aos ambientes A1 (7 salas), A2 (6 salas) e A3 (10 salas),

respectivamente. A análise empírica indica uma distribuição majoritariamente uniforme,

com a maioria das células exibindo cores similares (entre azul claro e verde), correspon-

dentes a ≈ 45 pegadas. Entretanto, algumas salas, como as salas 4 e 5 do ambiente A1 e a

sala 5 do ambiente A2, registraram frequências mais elevadas, em torno de ≈ 65 pegadas.

Esse padrão era esperado, pois essas salas atuam como pontos centrais de conexão entre

outras regiões dos ambientes, conforme evidenciado nos grafos 9b e 9d, onde tais salas

aparecem como vértices de maior grau.

Observa-se também um aumento significativo de pegadas em células adjacentes às pa-

redes (≈ 100 pegadas). Embora esse efeito comprometa parcialmente a homogeneidade

espacial, ele decorre da formulação da função de entropia adotada e da dinâmica proba-

bilística do sistema: células próximas às paredes tendem a receber mais visitas dos robôs,

influenciados pelo feromônio repulsivo. Assim, apesar da cobertura global ser adequada,

a distribuição desigual evidencia oportunidades de ajuste para melhorar a uniformidade

da exploração, particularmente em células com menor conectividade.

5.3 Considerações e Análise da Métrica

Nenhum dos experimentos apresentou uma convergência completa da população, i.e.,

os valores do melhor e do pior indivíduo nunca se igualaram. Isso confirma que a varia-

bilidade genética foi mantida no AG, evitando que o algoritmo se estagnasse em ótimos
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locais, o que garantiu a continuidade da evolução. Esse efeito positivo pode ser visto

no comportamento das sequências de valores dos piores indivíduos, i.e., a presença de

quedas (representadas pelas linhas vermelhas) mostra a mutação atuando para introduzir

diversidade, validando a eficácia do AG aplicado.

Por outro lado, o melhor indivíduo apresentou oscilações nos gráficos e foi se aproxi-

mando progressivamente do ground truth, como era esperado. Os picos de alta na linha

do melhor indivíduo reforçam o papel da variabilidade genética, uma vez que a mutação e

o crossover geram soluções diferentes. A tendência de crescimento da curva indica que os

valores não só se aproximaram do ground truth, como na maioria dos casos o superaram,

alinhando-se à evolução esperada do algoritmo.

O desvio padrão, por sua vez, embora não tenha permanecido constante, sua redução

moderada ao longo das gerações reflete uma convergência parcial, necessária para esta-

bilizar semelhanças entre indivíduos (“parentes” genéticos). No entanto, a ausência de

valores próximos a zero confirma que a diversidade foi preservada, equilibrando similari-

dade e variabilidade, o que é essencial para evitar uma estagnação precoce.

A entropia adaptada (ver Seção 4.2.2), funciona como um sistema de penalização que

reduz as pontuações dos indivíduos no AG, sem deixá-los permanentemente abaixo do

ground truth. Isso acontece porque o AG redefine continuamente os padrões de desempe-

nho por meio de mutação e crossover, permitindo que surjam soluções melhores do que

a referência inicial. A natureza estocástica do algoritmo faz com que as soluções inici-

ais (geradas aleatoriamente) variem em qualidade, podendo persistir ou não abaixo do

ground truth. Apesar disso, os resultados são positivos, pois, mesmo com penalizações e

incertezas, várias soluções foram equivalentes ou superiores ao ground truth.

Por fim, os experimentos mostraram que os melhores indivíduos tendem a melhorar à

medida que o tamanho da população inicial aumenta. Além disso, nos experimentos com

mapas de pegadas, a observação visual da dispersão dos robôs pelo ambiente confirmou

a homogeneidade esperada, alinhando-se com os dados quantitativos da entropia adap-

tada. Essa correlação entre homogeneidade observada e eficiência na cobertura confirma

a hipótese H1 (ver Seção 1.3): a inclusão da entropia como métrica no AG de fato per-

mitiu identificar configurações que levam a uma distribuição mais uniforme dos robôs no

ambiente, conforme proposto inicialmente.
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Este trabalho investigou a aplicação de AGs no ajuste automático dos parâmetros do

modelo PheroCom (TINOCO; MARTINS; OLIVEIRA, 2025). Por meio da adaptação da

entropia na avaliação das soluções, buscou-se ampliar o equilíbrio da cobertura espacial e

maximizar o desempenho coletivo do enxame.

A hipótese central deste trabalho está na utilização da entropia como métrica para

analisar a homogeneidade da exploração do ambiente pelo enxame. Partiu-se do pressu-

posto de que, ao integrar essa métrica à função de aptidão (fitness) do AG, seria possível

guiar o processo evolutivo rumo a distribuições mais equilibradas, elevando a eficiência

global da cobertura. Para isso, a entropia foi adaptada especificamente ao contexto da

cobertura espacial, oferecendo uma medida matemática capaz de quantificar o grau de

uniformidade na exploração. Entre os desafios enfrentados, destacam-se o ajuste fino da

influência da entropia, exigindo múltiplas iterações para encontrar um equilíbrio entre

sensibilidade e robustez, e a elevada demanda computacional do processo.

Os resultados obtidos validaram a hipótese H1 deste trabalho (ver Seção 1.3): a in-

tegração da entropia como métrica de avaliação permitiu analisar a homogeneidade da

exploração de forma eficaz, favorecendo soluções com a distribuição mais equilibrada dos

robôs pelo ambiente e evitando a negligência de determinadas regiões. Além disso, foi

possível observar que a parametrização por meio de AGs superou a configuração manual,

aumentando a eficiência geral do modelo em ≈ 24, 75%. No entanto, identificou-se que a

métrica de entropia, por si só, não avalia diretamente a continuidade da vigilância, o que

poderia limitar a sua aplicação em tarefas de monitoramento contínuo.

Dentre os trabalhos futuros, destacam-se: (i) a incorporação de métricas complemen-

tares à entropia; (ii) a exploração de técnicas de paralelização para reduzir o tempo de

simulação; (iii) a análise do modelo otimizado em diferentes mapas com topologias va-

riadas; (iv) a extensão do método para outros contextos, como a coordenação de UAVs

em agricultura de precisão; (v) a investigação de outras abordagens de otimização bio-

inspiradas; e, (vi) a otimização da cobertura quanto à homogeneidade temporal.
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