
Extração Automatizada de Chaves
Criptográficas em Ransomwares: Uma
Abordagem Forense Baseada em AOB

Gabriel Alves Gama

Universidade Federal de Uberlândia
Faculdade de Computação

Bacharelado em Sistemas de Informação

Monte Carmelo - MG
2025

Gabriel Alves Gama

Extração Automatizada de Chaves
Criptográficas em Ransomwares: Uma
Abordagem Forense Baseada em AOB

Trabalho de Conclusão de Curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, Minas Gerais, como
requisito exigido parcial à obtenção do grau de
Bacharel em Sistemas de Informação.

Área de concentração: Sistemas de Informação

Orientador: Dr. Diego Nunes Molinos

Monte Carmelo - MG
2025

Este trabalho é dedicado a minha mãe que sempre esteve comigo a cada momento da
minha vida me apoiando e fazendo com que fosse possível chegar até aqui, sem ela nada

aconteceria.
Para o meu pai e avô que não viu este dia, mas que esteve presente também em meu

coração.

Agradecimentos

Agradecer primeiramente a Deus, Jesus Cristo e Nossa Senhora, que me deram forças
para chegar onde cheguei, pois tudo só foi possível graças as inúmeras formas de que Deus
abençoou a minha vida para que fosse possível chegar até aqui e concluir este objetivo.
À minha querida mãe Juliana, que a amo de todo o coração, que me apoiou em cada etapa
da minha vida e me ajudou a chegar até aqui, com todo o seu amor, força e dedicação.
A minha avó e tios e a todos os meus familiares que me apoiaram e estiveram presentes
comigo nesta jornada.
Para aqueles que já partiram, meu pai e meu avô, fica aqui meu agradecimento e uma
homenagem especial, às suas memórias que permanecem vivas em mim.
E aos amigos e amigas, que também estiveram comigo, e aqueles novos que o curso me
proporcionou a conhecer, obrigado pelas risadas, momentos de tranquilidade e brincadei-
ras, vocês sempre estarão em meu coração. E também para aquelas pessoas especiais que
estiveram na minha vida e que também contribuíram para chegar até aqui.
Ao meu orientador, pela paciência, orientação, ensinamentos e apoio que me deu.
Aos professores e professoras pelas oportunidades, ensinamentos e dedicação para me tor-
nar e crescer como profissional.
Também meus agradecimentos a todos os colaboradores da UFU.
Para concluir, obrigado a cada pessoa que se fez presente em minha vida, e de alguma
forma contribuiu para chegar até aqui e concluir está etapa em minha vida, muito obrigado
a todos!!

“Entrega o teu caminho ao Senhor; confia nele, e ele o fará.”
(Salmos 37:5)

Resumo

Ameaças do tipo ransomware têm-se consolidado como um dos principais vetores de
ataques cibernéticos, apresentando crescimento contínuo tanto em incidência quanto na
complexidade de suas técnicas. Relatórios recentes apontam impactos financeiros ex-
pressivos, com prejuízos que atingem milhões de dólares por incidente. Esses ataques
empregam mecanismos criptográficos para cifrar arquivos em sistemas comprometidos,
condicionando a recuperação dos dados ao pagamento de resgate, geralmente associado à
disponibilização da chave ou do mecanismo de decifragem. Nesse contexto, este trabalho
propõe um mecanismo de extração automatizada de chaves criptográficas de ransomwares
por meio da análise de memória volátil durante a execução do malware. Para garantir
controle sobre o comportamento interno do malware e viabilizar experimentos reprodu-
tíveis, foi desenvolvida uma amostra própria de ransomware, inspirada conceitualmente
em amostras tais como WannaCry e LockBit. A abordagem fundamenta-se no uso de
assinaturas AOB (Array of Bytes) para identificar, em tempo de execução, rotinas as-
sociadas à geração e ao armazenamento temporário da chave criptográfica na memória
volátil. O processo experimental envolveu análise estática com a ferramenta IDA Free,
inspeção dinâmica de memória com Cheat Engine e a implementação de uma ferramenta
automatizada, denominada AOBTool. Os resultados indicam que a chave pode ser locali-
zada e extraída da memória antes de seu descarte, em tempo inferior ao necessário para
a conclusão do processo de criptografia dos arquivos, evidenciando o potencial da técnica
como suporte à computação forense e à mitigação de incidentes envolvendo ransomware.

Palavras-chave: Ransomware, Engenharia Reversa, Extração de Chaves, AOB, Análise
de Memória.

Abstract

Ransomware threats have emerged as a primary vector for cyberattacks, with incidence
and the complexity of their techniques continuing to grow. Recent reports highlight the
significant financial impacts of these attacks, with losses reaching millions of dollars per
incident. Ransomware typically employs cryptographic mechanisms to encrypt files on
compromised systems, making data recovery contingent on the payment of a ransom,
generally associated with the receipt of the cryptographic key or a decryption tool. In
this context, this work proposes an automated mechanism for extracting cryptographic
keys from ransomware by analyzing volatile memory during malware execution. To gain
greater control over the malware’s internal behavior and to enable reproducible experi-
ments, a custom ransomware sample was developed, inspired by notable strains such as
WannaCry and LockBit. The proposed approach leverages AOB (Array of Bytes) signa-
tures to identify, in real-time, routines related to the generation and temporary storage of
cryptographic keys in volatile memory. The experimental process involved static analysis
with IDA Free, dynamic memory inspection with Cheat Engine, and the development of
an automated tool, AOBTool. The results indicate that the cryptographic key can be
located and extracted from memory before it is disposed of, within a timeframe shorter
than that required to complete the file encryption process. This highlights the potential of
the proposed technique as a valuable support tool for digital forensics and for mitigating
ransomware-related incidents.

Keywords: Reverse Engineering; Key Extraction; Memory Forensics; AOB Signature;
Ransomware.

Lista de ilustrações

Figura 1 – Representação ilustrativa de um padrão AOB na memória 26
Figura 2 – Fluxo geral da ferramenta de varredura e extração (visão lógica) 36
Figura 3 – Iniciação da máquina virtual utilizada nos experimentos 47
Figura 4 – Iniciação da máquina virtual utilizada nos experimentos 48
Figura 8 – Scylla: controle “Dump” utilizado para iniciar a extração do processo

em memória . 48
Figura 5 – Diálogo “Select a process” do Cheat Engine para seleção do processo

alvo . 49
Figura 6 – Menu “Advanced Options” do Cheat Engine exibindo controles avançados 50
Figura 9 – Seleção do caminho e nome do arquivo para salvamento do dump gerado

pelo Scylla . 50
Figura 7 – Scylla: diálogo “Attach to an active process” com seleção do processo

alvo . 51
Figura 10 – Diálogo de seleção de arquivo no IDA Free: escolha do dump a ser

analisado . 52
Figura 11 – Janela “Load a new file” : seleção do formato PE antes da análise . . . 53
Figura 12 – Visão principal do IDA Free após o carregamento do arquivo 53
Figura 13 – Lista de strings obtida por meio do atalho Shift+F12 no IDA Free . . 54
Figura 14 – Trecho da seção .rdata exibindo a sequência alfanumérica identificada

na lista de strings . 54
Figura 15 – Visão de decompilação (F5) da função que referencia a string identificada 55
Figura 16 – Busca pelo prefixo da chave (aPUYTqb8b560S6) na visão de texto do

IDA Free . 57
Figura 17 – Janela do plugin IDA-Fusion: opção Generate signature (estilo CODE) 58
Figura 18 – Busca da assinatura AOB utilizando o Cheat Engine para fins de validação 59
Figura 19 – Visualização da memória em tempo de execução por meio do Cheat

Engine . 60
Figura 20 – Compilação do projeto e geração do executável no Visual Studio 61

Figura 21 – Execução da ferramenta AOBTool após a compilação 62

Lista de tabelas

Tabela 1 – Comparativo sintético dos trabalhos relacionados e da proposta deste
trabalho . 29

Tabela 2 – Resultados das 10 execuções (tempo em milissegundos). 62

Lista de abreviaturas e siglas

AOB Array of Bytes – Matriz de Bytes

API Application Programming Interface – Interface de Programação de Apli-
cações

ASLR Address Space Layout Randomization – Randomização do Layout do
Espaço de Endereçamento

CPU Central Processing Unit – Unidade Central de Processamento

DLL Dynamic-Link Library – Biblioteca de Vínculo Dinâmico

FAT32 File Allocation Table 32 – Tabela de Alocação de Arquivos 32

FS File System – Sistema de Arquivos

GUI Graphical User Interface – Interface Gráfica do Usuário

HEX Hexadecimal – Hexadecimal

IDA Interactive Disassembler – Desassemblador Interativo

JSON JavaScript Object Notation – Notação de Objetos JavaScript

MBR Master Boot Record – Registro Mestre de Inicialização

MSVC Microsoft Visual C++ – Compilador Microsoft Visual C++

NIST National Institute of Standards and Technology – Instituto Nacional
de Padrões e Tecnologia

OpenSSL Open Secure Sockets Layer – Biblioteca Criptográfica de Código Aberto

RAM Random Access Memory – Memória de Acesso Aleatório

REST Representational State Transfer – Transferência Representacional de
Estado

SHA Secure Hash Algorithm – Algoritmo de Hash Seguro

SO Operating System – Sistema Operacional

VM Virtual Machine – Máquina Virtual

VMM Virtual Machine Monitor – Monitor de Máquina Virtual

VS Visual Studio – Microsoft Visual Studio

PE Portable Executable – Formato de Arquivo Executável do Windows

Xref Cross Reference – Referência Cruzada

ASCII American Standard Code for Information Interchange – Código Padrão
Americano para Intercâmbio de Informação

PID Process Identifier – Identificador de Processo

RDP Remote Desktop Protocol – Protocolo de Área de Trabalho Remota

AES Advanced Encryption Standard – Padrão Avançado de Criptografia

RSA Rivest–Shamir–Adleman – Algoritmo Criptográfico de Chave Pública

CryptoAPI Cryptographic Application Programming Interface – API Criptográfica
do Windows

RaaS Ransomware as a Service – Ransomware como Serviço

Sumário

1 INTRODUÇÃO . 14
1.1 Motivação . 15
1.2 Percepção da Problemática . 16
1.3 Objetivos . 17
1.3.1 Objetivo Geral . 17
1.4 Contribuições . 18
1.5 Organização da Monografia . 18

2 FUNDAMENTAÇÃO TEÓRICA 20
2.1 Ransomwares . 20
2.1.1 Variações de Ransomwares . 22
2.2 Memória Volátil - RAM . 25
2.2.1 Extração de Informação da Memória . 25
2.2.2 Engenharia Reversa . 26
2.3 Trabalhos Relacionados . 27
2.4 Síntese dos Trabalhos Correlatos 28

3 MÉTODO . 30
3.1 Ambiente Experimental . 30
3.1.1 Instrumentação e Ferramentas . 31
3.2 Extração da Chave Criptográfica da Amostra Sintética 31
3.2.1 Amostra Sintética Desenvolvida . 31
3.2.2 Processo de Extração de Chaves . 32
3.3 Desenvolvimento da Ferramenta AOBTool 33
3.4 Avaliação da Abordagem Proposta 33

4 DESENVOLVIMENTO AOBTOOL 35
4.1 FindPatternInProcess . 36

4.1.1 Descrição linha a linha . 37
4.1.2 Considerações técnicas . 38
4.2 GetModuleBaseAddress . 38
4.2.1 Relação com ASLR . 39
4.3 GetProcessIdByName . 39
4.3.1 Limitações conhecidas . 40
4.4 Suspensão e Retomada do Processo 40
4.5 Função de Entrada do Programa 41
4.6 Visão Geral do Fluxo de Execução 44
4.6.1 Descrição Passo a Passo . 44
4.6.2 Controle Temporal e Métricas . 45
4.6.3 Síntese do Desenvolvimento . 45

5 EXPERIMENTOS E SÍNTESE DOS RESULTADOS 46
5.1 Execução e Captura . 46
5.1.1 Pausa do Processo e Preparação para Dump 46
5.1.2 Despejo (Dump) com Scylla . 47
5.2 Análise do Dump no IDA Free . 51
5.2.1 Inspeção de Strings e Identificação de Trechos Relevantes 54
5.2.2 Identificação da String Suspeita e Navegação por Xrefs 54
5.2.3 Análise da Função Suspeita e Decompilação 55
5.2.4 Análise Detalhada da Função sub_DD3B80 55
5.3 Geração de Assinaturas AOB a partir da Função Identificada . 57
5.4 Experimento para Análise de Tempo 60
5.4.1 Tempo de Execução X Tempo de Extração 62
5.5 Síntese dos Resultados . 63

6 CONCLUSÃO . 65
6.1 Resposta às Questões de Pesquisa 65
6.2 Principais Contribuições . 66
6.3 Trabalhos Futuros . 67

REFERÊNCIAS . 69

14

Capítulo 1
Introdução

O ransomware consolidou-se como uma das ameaças cibernéticas mais devastadoras
e financeiramente mais danosas do cenário global. Segundo dados divulgados em abril
de 2025 pela TechTarget, os ataques de ransomware continuam a crescer em frequência e
sofisticação, gerando prejuízos significativos para organizações públicas e privadas em todo
o mundo, e representou nos últimos anos mais de 20% de todas as violações de segurança
reportadas globalmente, com destaque para o aumento no uso de técnicas avançadas de
evasão e criptografia. (KERNER, 2025).

O crescimento dos ataques de ransomware tem sido acompanhado por impactos re-
levantes de ordem social e econômica. Em 2021, diversos ataques ganharam destaque
internacional devido à sua escala e às consequências geradas fora do ambiente corpora-
tivo. De acordo com Splashtop Team (2025), o grupo DarkSide comprometeu os sistemas
da Colonial Pipeline, o que resultou em interrupções no abastecimento de combustível na
costa leste dos Estados Unidos e gerou preocupação entre consumidores e autoridades.
De forma semelhante, a JBS USA, maior fornecedora de carne bovina do mundo, teve
suas operações temporariamente interrompidas após um ataque do grupo REvil, o que
afetou diretamente a cadeia de suprimentos alimentares. Esses casos evidenciam que ata-
ques de ransomware podem provocar impactos que ultrapassam as organizações afetadas,
atingindo setores essenciais da sociedade.

Diante do exposto, observa-se que ataques de ransomware não se limitam ao ambiente
digital, produzindo impactos sociais relevantes e colocando em risco infraestruturas críti-
cas. Além de causar paralisações operacionais e prejuízos financeiros significativos, esses
ataques afetam a confiança de usuários e instituições nos sistemas de informação. A gravi-
dade desse tipo de ameaça é agravada pela dificuldade de recuperar dados criptografados,
especialmente na ausência de políticas de backup adequadas ou quando o pagamento do
resgate não resulta na restauração completa das informações.

Neste contexto, evidencia-se a necessidade de desenvolver soluções capazes de atuar
não apenas na detecção de ransomware, mas também na extração automatizada das
chaves criptográficas utilizadas no processo de cifragem. Essa abordagem é essencial para

Capítulo 1. Introdução 15

reduzir os impactos dos ataques, acelerar a recuperação dos sistemas comprometidos e
fortalecer os processos de resposta a incidentes em segurança cibernética. Ante o exposto,
este trabalho propõe um mecanismo de recuperação de chaves criptográficas baseado na
análise de memória volátil e na utilização de padrões (AOB) para a identificação e extração
de chaves utilizadas no processo de cifragem de ransomware.

1.1 Motivação

Os ataques de ransomware tornaram-se uma das ameaças cibernéticas mais preva-
lentes e lucrativas das últimas décadas, afetando desde usuários domésticos até grandes
corporações e instituições governamentais. Relatórios de segurança apontam um aumento
contínuo tanto na frequência quanto na sofisticação dessas campanhas, impulsionado pelo
uso de plataformas de Ransomware-as-a-Service (RaaS) e pela automação dos vetores de
ataque (Veeam Software, 2025; DeepStrike, 2025). Em 2025, foram observados cresci-
mentos expressivos no número de incidentes e uma tendência de ataques cada vez mais
rápidos e complexos, capazes de explorar vulnerabilidades em sistemas operacionais, redes
corporativas e serviços em nuvem.

Apesar dos esforços e avanços nas defesas cibernéticas, a recuperação de arquivos
cifrados por ransomware sem o pagamento do resgate permanece um dos maiores desafios
para profissionais de TI e peritos forenses, especialmente quando as chaves criptográficas
não podem ser obtidas por métodos tradicionais de análise ou quando backups não estão
disponíveis ou são insuficientes (Veeam Software, 2025; DeepStrike, 2025).

Além da frequência crescente, os ataques de ransomware têm se tornado cada vez
mais sofisticados. A IBM (IBM Security, 2023) destaca que os cibercriminosos passaram
a adotar táticas de dupla extorsão, em que os dados são não apenas cifrados, mas também
exfiltrados sob ameaça de vazamento, e tripla extorsão, que envolve ainda a extorsão
de clientes e parceiros comerciais das vítimas. Mesmo organizações que possuem backups
robustos ou pagam o resgate continuam vulneráveis a esses ataques mais agressivos.

Segundo o IBM Security (2024), o cenário de ameaças cibernéticas tem se caracte-
rizado pelo aumento da velocidade e da complexidade dos ataques, com destaque para
campanhas que exploram credenciais comprometidas e falhas em sistemas corporativos.
O relatório evidencia que ataques de ransomware continuam figurando entre as ameaças
mais relevantes observadas globalmente, exigindo respostas cada vez mais rápidas por
parte das equipes de segurança.

Diante deste contexto, fica evidente a necessidade de mecanismos eficazes de prevenção
e mitigação, uma vez que o curto intervalo entre a invasão inicial e a execução das ações
maliciosas reduz significativamente a capacidade de reação das organizações. Além disso,
estudos complementares da própria IBM indicam que incidentes envolvendo ransomware
estão associados a custos elevados de recuperação, o que ressalta o impacto financeiro

Capítulo 1. Introdução 16

expressivo desse tipo de ataque (IBM Security, 2024).
Diversos trabalhos na literatura propõem estratégias para mitigar os efeitos de ataques

de ransomware, incluindo mecanismos de detecção antecipada, prevenção da execução
maliciosa e análise comportamental em tempo real (KOLBITSCH et al., 2009; FRANCO;
SOARES; SANTOS, 2024; DAVIES; MACFARLANE; BUCHANAN, 2020). Entretanto,
poucos trabalhos dedicam-se à extração direta das chaves criptográficas utilizadas no
processo de cifragem.

Diante desse contexto, este trabalho propõe uma abordagem forense baseada na análise
da memória volátil de sistemas comprometidos, com o objetivo de recuperar tais chaves
antes que os dados cifrados se tornem irrecuperáveis. A investigação dessa estratégia busca
oferecer uma alternativa eficaz para responder a incidentes envolvendo ransomware.

1.2 Percepção da Problemática

A principal dificuldade imposta pelos ransomwares é a criptografia dos arquivos, que
inviabiliza o acesso às informações sem a posse da chave utilizada para a criptografia.
Mesmo com estratégias de mitigação, como backups regulares ou o bloqueio de execução,
uma parte significativa das vítimas permanece suscetível a perdas severas de dados e
financeiras.

Estudos recentes indicam que, durante a execução, ransomwares podem armazenar
temporariamente suas chaves criptográficas na memória volátil do sistema. Em Mazur,
Oliveira e Martimiano (2024), os autores identificaram e extraíram chaves AES-256 e
vetores de inicialização diretamente da memória de um sistema infectado pelo ransomware
DearCry, por meio de técnicas de engenharia reversa e de ferramentas como Volatility 3
e IDA. Os resultados obtidos reforçam o potencial da análise de memória volátil como
abordagem forense viável para mitigar ataques de ransomware, especialmente no contexto
da recuperação de dados criptografados.

Corroborando esses achados, Lee (2023) demonstra que grande parte dos ransomwa-
res modernos utiliza APIs criptográficas amplamente difundidas, como CryptoAPI e
OpenSSL, no processo de cifragem dos dados. O emprego recorrente dessas bibliote-
cas resulta em padrões previsíveis de alocação e manipulação de chaves criptográficas na
memória volátil, o que amplia a viabilidade de técnicas forenses voltadas à identificação
dessas bibliotecas. Esse comportamento reforça a necessidade de abordagens automatiza-
das capazes de explorar tais padrões de forma sistemática, complementando estratégias
baseadas em análise manual ou específicas de famílias de ransomwares.

Dessa forma, este trabalho é guiado pelas seguintes questões de pesquisa:
QP1: É viável a extração de chaves criptográficas utilizadas por ransomwares a partir

da análise da memória volátil, por meio da identificação de padrões recorrentes baseados
em AOB?

Capítulo 1. Introdução 17

QP2: Em que medida a utilização de padrões AOB permite automatizar o processo de
identificação e extração de chaves criptográficas na memória volátil, reduzindo a depen-
dência de análise manual e específica por família de ransomwares?

1.3 Objetivos

1.3.1 Objetivo Geral

Investigar a viabilidade da extração automatizada de chaves criptográficas de ran-
somwares por meio da análise de memória volátil e de técnicas de engenharia reversa,
utilizando padrões binários baseados em AOB para identificar com precisão as estruturas
responsáveis pela geração e armazenamento da chave.

Objetivos Específicos

Os objetivos específicos deste trabalho visam detalhar as etapas necessárias para a
investigação e validação da abordagem proposta para a extração automatizada de chaves
criptográficas em ransomwares. Para isso, busca-se fundamentar teoricamente os conceitos
envolvidos, analisar o comportamento do malware em ambiente controlado, identificar
padrões relevantes na memória volátil e desenvolver uma ferramenta capaz de automatizar
o processo de extração. Por fim, pretende-se avaliar a eficiência da solução proposta por
meio de experimentos controlados, comparando o tempo de extração da chave com o
tempo de cifragem do ransomware.

❏ Revisar os principais conceitos relacionados a ataques de ransomwares, criptografia
simétrica, ciclo de execução de malware e análise de memória, com base em estudos
de caso reais;

❏ Analisar, por meio de ferramentas de engenharia reversa (IDA Free, Scylla, Cheat
Engine), a dinâmica de geração e de manipulação de chaves criptográficas em am-
biente controlado;

❏ Identificar padrões recorrentes na memória que permitam localizar buffers ou ins-
truções associadas à chave criptográfica;

❏ Implementar uma ferramenta automatizada capaz de realizar a varredura da memó-
ria, localizar o AOB definido e extrair a chave criptográfica em tempo de execução;

❏ Avaliar a eficácia da solução proposta com uma amostra de ransomware desenvol-
vida especificamente para este trabalho, garantindo controle total sobre o fluxo de
execução, sem comprometer a validade dos resultados;

Capítulo 1. Introdução 18

❏ Comparar os tempos de extração da chave com os de cifragem do ransomware,
demonstrando se a técnica é suficientemente rápida e eficiente;

Com esses objetivos, busca-se contribuir para o avanço da computação forense e da
segurança cibernética, oferecendo um método capaz de auxiliar na recuperação de dados
e na análise de incidentes envolvendo ransomwares.

1.4 Contribuições

As principais contribuições deste trabalho podem ser resumidas da seguinte forma:

❏ Definição de um método sistemático de identificação de padrões binários (AOB)
relacionados à geração e ao armazenamento da chave criptográfica.

❏ Implementação da ferramenta AOBTool, capaz de realizar varredura de memória,
localizar instruções críticas e extrair a chave criptográfica antes que o ransomware
a apague.

❏ Demonstração experimental de que a abordagem é eficiente e extrai a chave sig-
nificativamente mais rápido do que o próprio ransomware executa sua rotina de
cifragem.

❏ Fornecimento de um guia replicável de análise forense de memória com potencial de
aplicação em pesquisas acadêmicas e no desenvolvimento de ferramentas de resposta
a incidentes.

1.5 Organização da Monografia

Este trabalho está estruturado da seguinte forma:

❏ Capítulo 1 – Introdução: apresenta o problema, a motivação, os objetivos e o
contexto no qual a pesquisa está inserida.

❏ Capítulo 2 – Fundamentação Teórica: descreve os conceitos essenciais para a
compreensão da pesquisa, incluindo o funcionamento de ransomwares, técnicas de
criptografia, análise de memória, engenharia reversa e estudo de casos representati-
vos.

❏ Capítulo 3 – Método: detalha o ambiente experimental, a construção da amostra
de ransomware utilizada, as ferramentas empregadas (IDA Free, Visual Studio, entre
outras) e o processo de extração e validação dos padrões AOB e

Capítulo 1. Introdução 19

❏ Capítulo 4 – Desenvolvimento AOBTool: apresenta a implementação com-
pleta da ferramenta AOBTool, explicando suas funções, arquitetura, fluxo lógico e
justificando cada etapa do processo de detecção e extração da chave em memória.

❏ Capítulo 5 – Experimentos e Análise dos Resultados: apresenta a imple-
mentação completa da ferramenta AOBTool, explicando suas funções, arquitetura,
fluxo lógico e justificando cada etapa do processo de detecção e extração da chave
em memória.

❏ Capítulo 6 – Conclusão: apresenta as conclusões finais do trabalho, sintetizando
os principais resultados alcançados, respondendo às questões de pesquisa, desta-
cando as contribuições científicas da proposta.

20

Capítulo 2
Fundamentação Teórica

Este capítulo apresenta a fundamentação teórica que sustenta o desenvolvimento deste
trabalho de conclusão de curso, reunindo os principais conceitos, definições e trabalhos da
literatura relacionados ao ransomware e à análise forense de memória volátil. Inicialmente,
são discutidos os aspectos fundamentais dos ransomwares, incluindo seu funcionamento,
variações, estágios de ataque e as principais famílias historicamente relevantes, de modo
a contextualizar a ameaça e seus impactos no cenário da segurança cibernética.

Em seguida, são abordados os conceitos relacionados à memória volátil e às técnicas
forenses aplicadas à sua análise, com ênfase na extração de artefatos temporários relevan-
tes, como chaves criptográficas. Também são apresentadas técnicas de engenharia reversa
e de varredura por padrões binários, em especial o uso de AOB, que fundamentam a
metodologia proposta neste trabalho.

Por fim, o capítulo discute os principais trabalhos similares a esta proposta na li-
teratura, destacando suas abordagens, limitações e contribuições, bem como as lacunas
existentes que motivam a proposta deste estudo. Essa organização visa fornecer o em-
basamento conceitual e técnico necessário à compreensão da metodologia adotada e da
contribuição científica apresentada nos capítulos subsequentes.

2.1 Ransomwares

Ransomware é um tipo de software malicioso (malware) que impede o acesso a sistemas
ou arquivos por meio de criptografia, exigindo o pagamento de um resgate para restaurar
o acesso. Conforme destacado por Microsoft (2024a), esse tipo de ataque geralmente é
realizado por meio de campanhas de phishing ou de exploração de vulnerabilidades, sendo
uma das formas mais comuns e lucrativas de crime cibernético na atualidade.

Ao infectar dispositivos, o ransomware pode bloquear completamente o sistema ou
criptografar arquivos essenciais, deixando a vítima dependente de uma chave de descrip-
tografia que só seria fornecida após o pagamento do resgate, geralmente em criptomoedas.

Capítulo 2. Fundamentação Teórica 21

No entanto, mesmo com o pagamento, não há garantia de que o acesso seja restabelecido,
o que torna o impacto potencialmente irreversível.

Além do impacto financeiro, esses ataques comprometem a integridade de dados sen-
síveis, afetando operações empresariais e até mesmo serviços públicos essenciais.

Como referência histórica, o primeiro caso documentado de ransomware ocorreu em
1989, com o Trojan AIDS, criado por Joseph Popp. Segundo Young e Yung (1996), o
malware foi distribuído por meio de disquetes enviados a participantes de uma conferência
da OMS, contendo:

❏ Um adesivo com a inscrição “Disquete introdutório de informações sobre AIDS”;

❏ Instruções detalhadas de instalação;

❏ Um contrato de licença exigindo US$378 pelo “software”;

Esse episódio marcou o surgimento inicial de uma prática que, ao longo das décadas,
consolidou-se como uma das maiores ameaças cibernéticas globais.

De acordo com o guia da IBM Security sobre ransomware (IBM Security, 2023), um
ataque típico passa por cinco estágios distintos:

1. Acesso inicial: O acesso inicialmente ocorre por meio de phishing, de exploração
de vulnerabilidades conhecidas ou de comprometimento de protocolos de acesso
remoto, como o Remote Desktop Protocol (RDP).

2. Pós-exploração: Após o acesso inicial, os invasores podem instalar ferramentas
como Remote Access Tools (RAT) ou outros tipos de malware para garantir persis-
tência e ampliar sua presença no sistema.

3. Entendimento e expansão: Nessa fase, os atacantes analisam o ambiente local,
identificando alvos e oportunidades de movimentação lateral, técnica utilizada para
acessar outros sistemas e domínios conectados à rede.

4. Coleta e exfiltração de dados: Os dados valiosos são identificados e exfiltrados,
incluindo credenciais, informações pessoais e propriedade intelectual. Isso pode ser
utilizado para aplicar a chamada “extorsão dupla”, combinando criptografia com
ameaça de vazamento.

5. Implementação e extorsão: Os arquivos são criptografados (ou o dispositivo é
bloqueado, no caso de ransomware de bloqueio) e uma nota de resgate é apresen-
tada à vítima. Essa notificação pode aparecer como um arquivo de texto ou uma
janela pop-up, instruindo sobre o pagamento — geralmente em criptomoedas , para
obtenção da chave de descriptografia ou restauração do sistema.

Capítulo 2. Fundamentação Teórica 22

2.1.1 Variações de Ransomwares

As variações de ransomware são categorizadas de acordo com os métodos utilizados
para a extorsão ou o impacto nas vítimas. A seguir, são descritas as principais formas
identificadas segundo a (IBM Security, 2023).

Leakware/Doxware

Combina criptografia com a ameaça de vazamento de dados sensíveis. Diferentemente
das versões iniciais, as atuais realizam ambas as ações simultaneamente.

Ransomware Móvel

Focado em dispositivos móveis, geralmente via:

❏ Aplicativos maliciosos;

❏ Downloads automáticos;

Segundo IBM Security (2023), como existe o backup via nuvem, muitos dos atacantes
preferem utilizar o bloqueio de tela para bloquear o acesso ao dispositivo móvel.

Wipers

Variante que:

❏ Pode apagar dados permanentemente;

❏ Frequentemente associada a ataques hacktivistas de estados-nação;

Em alguns casos, mesmo após a vítima pagar o resgate aos atacantes, esse ransomware
continua a destruir os dados.

Scareware

Utiliza engenharia social para:

❏ Simular alertas de entidades oficiais;

❏ Falsas acusações criminais;

❏ Alertas de vírus fictícios;

Esse tipo pode atuar como porta de entrada para outros malwares, pois esse tipo de
ransomware tem como objetivo assustar a vítima com falsas alegações, fazendo a mesma
até comprar um ransomware que se passa por software de antivírus.

Capítulo 2. Fundamentação Teórica 23

Ransomware como Serviço (RaaS)

O Ransomware as a Service (RaaS) é um modelo de operação no qual desenvolvedores
disponibilizam infraestruturas e códigos de ransomware para terceiros, denominados afili-
ados, que executam os ataques. Esse modelo contribui para a disseminação de campanhas
de ransomware, ao reduzir a barreira técnica necessária para a realização de ataques e
permitir a reutilização de códigos, técnicas e infraestruturas de extorsão (SECURITY,
2024).

Variantes de Ransomwares Notáveis

Diversas famílias de ransomware se destacaram ao longo dos anos por sua sofisticação,
impacto ou inovação nos métodos de ataque. Abaixo, destacam-se algumas das mais
relevantes de acordo com a (IBM Security, 2023).

CryptoLocker

Lançado em setembro de 2013, o CryptoLocker é considerado um marco no surgimento
do ransomware moderno. Utilizando uma botnet para sua disseminação, essa versão foi
uma das primeiras a adotar criptografia robusta para sequestrar arquivos de usuários.
Estima-se que tenha arrecadado cerca de 3 milhões de dólares antes de ser neutralizado em
2014 por esforços internacionais. Seu sucesso inspirou uma nova geração de ransomwares,
como o WannaCry e o Petya (IBM Security, 2023).

WannaCry

O WannaCry explorava a vulnerabilidade EternalBlue no Windows. Em 2017, ele
infectou mais de 200 mil sistemas em mais de 150 países, exigindo pagamento em cripto-
moeda sob ameaça de exclusão permanente dos dados. O prejuízo global é estimado em
até 4 bilhões de dólares (IBM Security, 2023).

Petya e NotPetya

Diferente de ransomwares convencionais, o Petya danificava diretamente a tabela mes-
tra de arquivos (MFT), impossibilitando a inicialização do sistema operacional. O Not-
Petya, uma variação ainda mais destrutiva lançada em 2017, foi utilizado em um ataque
cibernético de grande escala, sendo incapaz de restaurar os dados mesmo após pagamento,
caracterizando-se como um wiper (IBM Security, 2023).

Capítulo 2. Fundamentação Teórica 24

Ryuk

Detectado em 2018, o Ryuk é uma família de ransomware conhecida por ataques
altamente direcionados contra grandes organizações, geralmente associados a pedidos de
resgate elevados. Diferentemente de campanhas automatizadas, o Ryuk caracteriza-se por
exigir esforço manual significativo, incluindo reconhecimento prévio da infraestrutura da
vítima e movimentação lateral antes da execução da carga maliciosa.(Cloudflare, 2024).

DarkSide

O DarkSide é uma família de ransomware identificada a partir de 2020, conhecida
por ataques direcionados contra grandes corporações e infraestruturas críticas. O grupo
opera sob o modelo de RaaS, disponibilizando o malware e a infraestrutura de ataque
para afiliados em troca de uma participação nos lucros obtidos com os resgates.

Os ataques associados ao DarkSide exploram, em geral, acessos remotos inadequada-
mente protegidos, como serviços RDP expostos, credenciais fracas e configurações incor-
retas de segurança em sistemas Windows e Linux. O grupo ganhou ampla notoriedade
em 2021 após o comprometimento da empresa Colonial Pipeline, evidenciando o potencial
impacto desse tipo de ransomware em serviços essenciais e reforçando sua relevância no
cenário de ameaças cibernéticas contemporâneas (Akamai, 2024).

Locky

O Locky é uma família de ransomware identificada a partir de 2016, conhecida por
campanhas de disseminação em larga escala baseadas em engenharia social. Seu prin-
cipal vetor de infecção consistia no envio de e-mails contendo documentos do Microsoft
Word com macros maliciosas, que, quando ativadas pela vítima, realizavam o download
e a execução do ransomware. Uma vez em execução, o Locky criptografava uma ampla
variedade de arquivos do sistema, renomeando-os com extensões específicas e exibindo
uma nota de resgate com instruções para pagamento, caracterizando um dos primeiros
exemplos de campanhas massivas e automatizadas de ransomware (BELCIC, 2019).

LockBit

O LockBit é uma família de ransomware voltada principalmente a ataques direcionados
contra empresas e organizações governamentais, caracterizando-se pela alta automação,
rápida propagação em redes corporativas e uso de técnicas de dupla extorsão. Operando
sob o modelo de RaaS, o LockBit emprega criptografia forte para bloquear os dados das
vítimas e exige pagamento de resgate em troca da chave de decifragem, mantendo-se como
uma das ameaças mais relevantes e ativas no cenário de ransomware moderno, apesar de
ações de repressão contra seus operadores (Kaspersky, 2024).

Capítulo 2. Fundamentação Teórica 25

2.2 Memória Volátil - RAM

A memória volátil (RAM) armazena informações temporárias essenciais durante a
execução de programas, incluindo ransomwares, sendo perdidas após o desligamento do
sistema. De acordo com as diretrizes do NIST, a RAM pode conter dados forenses rele-
vantes, tais como processos em execução, conexões de rede ativas, comandos recentemente
executados, estruturas internas de programas e dados sensíveis manipulados em tempo
de execução National Institute of Standards and Technology (2006), Ligh et al. (2011).

A análise de memória volátil permite identificar, entre outros artefatos (National Ins-
titute of Standards and Technology, 2006; CASEY, 2011; LIGH et al., 2011):

❏ Processos maliciosos em execução e módulos carregados na memória;

❏ Chaves criptográficas temporárias utilizadas durante a cifragem;

❏ Estruturas de dados internas empregadas pelo malware;

❏ Sessões de rede ativas e comunicações suspeitas;

❏ Histórico recente de comandos e comportamento do usuário.

Esse tipo de análise é fundamental para compreender a atuação de ransomwares em
tempo de execução, muitas vezes revelando artefatos que não estão disponíveis no sistema
de arquivos persistente.

2.2.1 Extração de Informação da Memória

A escolha pelo uso de assinaturas do tipo Array of Bytes (AOB), fundamenta-se em
vantagens técnicas relevantes para o contexto forense. Diferentemente de abordagens
baseadas em símbolos, strings ou informações de depuração, as assinaturas AOB operam
diretamente sobre padrões binários, mantendo sua aplicabilidade mesmo em executáveis
desprovidos de símbolos ou submetidos a processos de ofuscação leve. Além disso, o uso
de máscaras com curingas permite abstrair variações introduzidas por mecanismos como
Address Space Layout Randomization (ASLR) e realocação de módulos, garantindo maior
robustez da técnica entre diferentes execuções do mesmo binário.

Neste trabalho, as assinaturas AOB não são tratadas como regras estáticas de detec-
ção, mas como descritores binários de comportamento criptográfico, capazes de capturar
invariantes estruturais observados durante a execução do ransomware.

2.2.1.1 Array of Bytes (AOB)

A técnica conhecida como Array of Bytes (AOB) consiste na identificação de padrões
específicos de bytes na memória que podem indicar a presença de estruturas relevantes,
como chaves criptográficas, bibliotecas de compressão ou trechos de código malicioso.

Capítulo 2. Fundamentação Teórica 26

Essa abordagem é amplamente utilizada em análises forenses de memória e engenharia
reversa, sendo aplicada com o auxílio de ferramentas como o YARA, que permite a defi-
nição de regras baseadas em assinaturas binárias, incluindo instruções, strings e padrões
hexadecimais, para a detecção de artefatos maliciosos em memória (LIGH et al., 2011;
ÁLVAREZ, 2013).

Por exemplo, ao buscar uma chave criptográfica AES-256 em um processo, é possí-
vel identificar padrões recorrentes de inicialização de algoritmos ou sequências de bytes
associadas a bibliotecas como OpenSSL. Mesmo em diferentes execuções ou sistemas, cer-
tas assinaturas permanecem consistentes devido à reutilização de rotinas criptográficas
padronizadas (FRANCO; SOARES; SANTOS, 2024).

Ferramentas de engenharia reversa, como o IDA Free, com o auxílio de plugins espe-
cializados, permitem extrair essas sequências diretamente do código compilado, gerando
assinaturas AOB que podem ser utilizadas em varreduras de memória. A Figura 1 ilustra
um exemplo de padrão AOB extraído de um binário analisado.

Figura 1 – Representação ilustrativa de um padrão AOB na memória

Fonte: elaborado pelo autor.

2.2.2 Engenharia Reversa

A engenharia reversa é essencial para entender o funcionamento interno de softwares
maliciosos, como ransomwares, especialmente quando não se dispõe do código-fonte origi-
nal. Essa técnica envolve a análise de binários compilados com o objetivo de reconstruir,
compreender ou documentar seu comportamento. No contexto de segurança cibernética,
ela é amplamente empregada para examinar vulnerabilidades, identificar padrões de fun-
cionamento e desenvolver estratégias de defesa (AREMO, 2021; FRANCO; SOARES;
SANTOS, 2024).

Entre as ferramentas mais utilizadas nesse processo de engenharia reversa está o IDA,
na sua versão Free ou PRO, um disassembler interativo que permite inspecionar o código
de baixo nível de executáveis. Com ele, é possível aplicar técnicas como a análise de fluxo
de controle, a inspeção de chamadas de função e a identificação de trechos responsáveis
por operações criptográficas ou maliciosas (Hex-Rays, 2025). A importância do IDA Free
é reforçada pelo seu uso por agências governamentais, como a CISA, o FBI e o DoD,
que o empregaram na análise do malware Taidoor, associado a campanhas cibernéticas
patrocinadas por atores estatais (CISA, 2020).

Capítulo 2. Fundamentação Teórica 27

2.3 Trabalhos Relacionados

Em (MAZUR; OLIVEIRA; MARTIMIANO, 2024), os autores realizaram um experi-
mento prático de análise de memória volátil com o objetivo de identificar e extrair chaves
criptográficas utilizadas por ransomwares, especificamente da família Dearcry. O estudo
explorou técnicas de análise estática e dinâmica aplicadas à memória de sistemas Win-
dows, utilizando ferramentas como o Volatility 3 e o disassembler IDA. A abordagem
adotada permitiu identificar buffers contendo chaves e vetores de inicialização alocados
na pilha, explorando o conhecimento da estrutura da memória virtual e o uso de algorit-
mos baseados em entropia para localizar regiões suspeitas. A chave AES de 256 bits e
o IV utilizados na criptografia foram localizados com sucesso, permitindo a recuperação
de um arquivo de 500 MB originalmente criptografado. Embora a metodologia se mostre
inviável em ambientes reais, por exigir a aquisição precisa da memória no momento da
execução do ransomware, o trabalho demonstra o potencial da análise de memória aliada
à engenharia reversa como ferramenta de mitigação de danos em ataques de ransomware.

Em (LEE, 2023), os autores propuseram um mecanismo para detectar e identificar
automaticamente módulos criptográficos utilizados em ransomwares, especialmente os
desenvolvidos com CryptoAPI e OpenSSL. Por meio de engenharia reversa de binários
executáveis em ambientes Windows, o estudo emprega técnicas como análise de padrões
de código, além de regras YARA (ÁLVAREZ, 2013) para automatizar o processo. A
abordagem demonstrou melhorias na precisão da detecção e na redução de falsos positivos,
destacando-se como uma contribuição relevante e complementar à proposta deste estudo,
que também busca identificar métodos criptográficos por meio de análise de padrões em
memória.

Já em (PLOSZEK; ŠVEC; DEBNÁR, 2021), os autores realizaram uma análise de-
talhada de esquemas de criptografia empregados por ransomwares modernos, avaliando
10 amostras distintas de famílias como Ryuk, GandCrab, LockBit e Nemty. O estudo
identificou quatro esquemas criptográficos principais, combinando criptografia simétrica
(geralmente AES) com assimétrica (RSA), além de diferentes estratégias de geração e
armazenamento de chaves. Os resultados reforçam a importância de compreender os me-
canismos criptográficos utilizados por ransomwares. E entender como a maioria destes
ransomwares agem é de suma importância para o prosseguimento deste estudo.

Em (JONES; SHASHIDHAR, 2017), os autores exploraram mais a fundo o ran-
somware WannaCry por meio de técnicas estáticas e dinâmicas, com foco na engenharia
reversa de seu comportamento em ambientes Win32. O estudo identificou o uso ex-
tenso da API criptográfica do Windows (CryptAPI), como as funções CryptGenKey e
CryptEncrypt, utilizadas para gerar e aplicar chaves de cifragem. Além disso, foi de-
senvolvida uma ferramenta protótipo de defesa baseada na verificação de hashes e no
bloqueio de processos suspeitos, destacando a importância de abordagens automatizadas
para mitigar esse tipo de ameaça. Embora com objetivos distintos, a proposta dos autores

Capítulo 2. Fundamentação Teórica 28

alinha-se a este estudo no uso de engenharia reversa para a compreensão e neutralização
de ransomwares.

Uma abordagem extensiva sobre a análise de códigos maliciosos no ambiente Windows
foi desenvolvida por (MARINHO et al., 2022), que propõe uma metodologia estruturada
que abrange desde técnicas automatizadas até engenharia reversa avançada. O estudo
apresenta uma investigação utilizando ferramentas como Process Monitor, Wireshark e
Noriben, e ressalta a importância de ambientes isolados para garantir a segurança da aná-
lise. Apesar de o foco principal estar no malware bancário, diversas práticas e ferramentas
discutidas têm aplicação direta na investigação de ransomwares, especialmente na identi-
ficação de indicadores de comprometimento (IOC) e de payloads carregados em memória.
Essa contribuição reforça o valor da análise de comportamento associada à extração em
memória na mitigação de ameaças.

2.4 Síntese dos Trabalhos Correlatos

A Tabela 1 apresenta um resumo comparativo dos trabalhos relacionados mais rele-
vantes considerados nesta pesquisa, destacando características técnicas e de avaliação que
são pertinentes à proposta deste trabalho.

A análise dos trabalhos relacionados evidencia que, embora existam pesquisas consoli-
dadas sobre engenharia reversa e análise de memória aplicada a ransomwares, há lacunas
relevantes que este estudo busca preencher. Como mostrado na Tabela 1, a maioria das
abordagens anteriores foca em análise estática ou em extração pontual de informações
criptográficas sem integrar técnicas de detecção em tempo real e utilização conjunta de
múltiplas ferramentas de análise neste contexto, a proposta deste trabalho se diferencia
por:

❏ Implementar a extração de informações criptográficas em tempo real diretamente
da memória do sistema infectado;

❏ Utilizar padrões de código (AOB) e análise de comportamento para identificar mé-
todos criptográficos de maneira automatizada;

❏ Integrar ferramentas como IDA e memória volátil em um fluxo contínuo de análise
e mitigação;

Capítulo 2. Fundamentação Teórica 29

Tabela 1 – Comparativo sintético dos trabalhos relacionados e da proposta deste trabalho

Trabalho Extração
repor-
tada

Extração
em

tempo
real

AOB /
Pa-

drões

Análise
está-
tica

Análise
dinâ-
mica

Ferramenta
criada

Mazur; Oliveira; Martimiano (2024) ✓ ✗ ✗ ✓ ✓ ✗

Lee (2023) ✗ ✗ ✓ ✓ ✗ ✓

Ploszek; Švec; Debnár (2021) ✗ ✗ ✗ ✓ ✓ ✗

Jones; Shashidhar (2017) ✗ ✗ ✗ ✓ ✓ ✓

Marinho et al. (2022) ✗ ✗ ✗ ✓ ✓ ✗

Esta Proposta ✓ ✓ ✓ ✓ ✓ ✓

30

Capítulo 3
Método

O método adotado neste trabalho combina técnicas de análise forense de memória
volátil e engenharia reversa com o uso de varredura por AOB, permitindo a identificação
e extração de chaves criptográficas utilizadas por ransomware durante sua execução. A
abordagem experimental proposta permite avaliar, de forma controlada e reprodutível, a
viabilidade dessa técnica como mecanismo de apoio à resposta a incidentes, contribuindo
para a mitigação de danos e para o fortalecimento das práticas de segurança cibernética.

Esta pesquisa está estruturada em etapas sucessivas: (a) revisão dos principais méto-
dos de análise de ransomwares e de extração de chaves; (b) construção de um ambiente
virtual isolado, em máquinas Windows 10 sob Oracle VirtualBox, desligadas da rede de
internet; (c) execução controlada de amostra de ransomware (amostra sintética), captura
da memória de processo e análise estática/dinâmica para identificação de rotinas e gera-
ção de assinaturas AOB; (d) desenvolvimento de uma ferramenta de varredura (AOBTool)
para localizar, em dumps ou processos em execução, os padrões associados às chaves; e
(e) avaliação da abordagem. A seguir, as etapas serão detalhadas.

3.1 Ambiente Experimental

O ambiente foi preparado com snapshots limpos e com mecanismos de contenção de
rede, de modo a evitar qualquer propagação indevida do código malicioso. Essa configu-
ração garante segurança, reprodutibilidade dos experimentos e controle total do estado
do sistema durante a execução das amostras.

Os experimentos foram executados em um laboratório virtual isolado, composto por
máquinas virtuais gerenciadas pelo Oracle VirtualBox. Cada máquina virtual foi confi-
gurada com Windows 10 22H2 (instalado a partir de ISO), 4 096 MB de RAM, 1 vCPU
e 50 GB de disco. As VMs foram restauradas a partir de snapshots limpos antes de cada
execução, para garantir a reprodutibilidade e a contenção de amostras maliciosas. Todo o
tráfego de rede foi bloqueado ou roteado para uma rede isolada e não havia conexão com
a internet pública durante as execuções.

Capítulo 3. Método 31

3.1.1 Instrumentação e Ferramentas

As ferramentas utilizadas no experimento e suas respectivas funções foram:

❏ VirtualBox 7.2.2 (Oracle Corporation, 2025) plataforma de virtualização para
criação e snapshot das máquinas de teste.

❏ Windows 10 22H2 (Microsoft, 2024b) sistema operacional alvo das execuções
experimentais.

❏ IDA Free 9.2 (Hex-Rays, 2025) disassembler/depurador usado para análise estática
e identificação de rotinas criptográficas no binário; será citado como IDA após a
primeira menção.

❏ Scylla v0.9.8 (NtQuery, 2015) ferramenta para dumping/reconstrução de PE em
memória.

❏ IDA-Fusion (plugin) (senator715, 2024) plugin auxiliar para geração de array of
byte (AOB).

❏ Cheat Engine 7.6 (Cheat Engine Team, 2024) utilizada para inspeção dinâmica
e varredura de padrões em memória durante testes de validação e comportamento
de memória do ransomware.

❏ Visual Studio Community 2022 (Microsoft, 2022) ambiente de desenvolvimento
para compilação de códigos auxiliares e da ferramenta própria.

❏ Ferramenta própria de varredura AOB (implementada em C++) desenvolvida
pelo autor para localizar padrões AOB e extrair chaves em processos alvo (descrita
na Seção 3.2.2) AOBTool.

3.2 Extração da Chave Criptográfica da Amostra Sin-
tética

3.2.1 Amostra Sintética Desenvolvida

Para a validação experimental da técnica proposta, optou-se pela utilização de uma
amostra de ransomware desenvolvida especificamente no contexto deste trabalho. A amos-
tra foi implementada em linguagem C++, direcionada à arquitetura x86, e concebida a
partir da análise conceitual e técnica de mecanismos amplamente documentados na lite-
ratura e observados em famílias reais de ransomware, com destaque para o WannaCry e
o LockBit, ambos discutidos no capítulo de fundamentação teórica.

Capítulo 3. Método 32

Embora os experimentos tenham sido conduzidos com uma amostra sintética, o foco
desta pesquisa não reside em características específicas de uma família de ransomware,
mas sim no comportamento intrínseco ao uso de bibliotecas criptográficas e à manipulação
temporária de chaves na memória volátil. Esse comportamento decorre de propriedades
fundamentais dos mecanismos criptográficos empregados e independe da origem exata do
binário analisado.

A amostra sintética desenvolvida preserva comportamentos essenciais observados em
ransomwares reais, tais como: geração dinâmica de chaves criptográficas em tempo de exe-
cução, utilização dessas chaves em rotinas de cifragem de arquivos e descarte do material
sensível após a conclusão da operação, e metódos de ofuscação. Dessa forma, foi possível
reproduzir de maneira fidedigna o comportamento da classe de malware analisada, man-
tendo o foco no fenômeno investigado a permanência temporária da chave criptográfica
na memória volátil sem incorrer em riscos éticos, legais ou operacionais associados ao uso
de binários maliciosos autênticos.

A implementação da amostra sintética proporcionou uma maior previsibilidade e con-
trole sobre os experimentos. Ela permitiu a análise de pontos críticos, como a geração e o
descarte da chave, que são altamente variáveis. Por exemplo, a implementação do descarte
da chave é algo que, em ransomwares reais, pode ocorrer de maneira não documentada e
sem um padrão claro. A partir de nossa amostra, foi possível observar e quantificar com
precisão os efeitos da intervenção forense antes do término da operação do ransomware.

Ressalta-se que a utilização de uma amostra controlada não compromete a validade
nem a generalidade dos resultados obtidos. A técnica de varredura baseada em assina-
turas AOB atua diretamente sobre padrões binários presentes na memória do processo,
independentemente da origem do código analisado. Assim, o método proposto é aplicável
tanto a amostras sintéticas quanto a ransomwares reais, desde que os padrões identifica-
dos estejam presentes durante a execução. O uso da amostra própria garante, portanto,
segurança experimental, reprodutibilidade dos testes e precisão na análise, atendendo
plenamente aos objetivos da pesquisa.

3.2.2 Processo de Extração de Chaves

O processo proposto para a extração de chaves criptográficas em ransomwares segue
as seguintes etapas:

1. Identificação do processo correspondente ao ransomware em execução;

2. Captura da memória volátil (RAM) do sistema infectado;

3. Análise da memória do processo utilizando a técnica de varredura por AOB.

4. Extração e validação da chave criptográfica identificada na memória.

Capítulo 3. Método 33

Essa abordagem é fundamentada em técnicas forenses, que demonstram a eficácia da
análise de memória em tempo de execução para a identificação de artefatos, como chaves
e estruturas criptográficas (LIGH et al., 2011).

3.3 Desenvolvimento da Ferramenta AOBTool

A partir das assinaturas AOB identificadas durante a análise estática e dinâmica da
amostra de ransomware, foi desenvolvida a ferramenta denominada AOBTool. O objetivo
da ferramenta é automatizar a etapa de varredura de memória volátil, reduzindo a depen-
dência de inspeções manuais e aumentando a precisão, a repetibilidade e a confiabilidade
do processo de extração da chave criptográfica.

A AOBTool foi projetada para operar diretamente sobre processos em execução, re-
alizando a identificação do módulo alvo, a varredura de regiões específicas da memória
do processo alvo e a leitura controlada de buffers associados às assinaturas previamente
validadas. A ferramenta adota uma abordagem não intrusiva, limitando-se à leitura da
memória, sem modificar o código ou o estado do processo analisado.

O desenvolvimento priorizou simplicidade arquitetural, eficiência temporal e clareza
operacional, características essenciais para aplicações em contextos forenses e experimen-
tais. A estratégia baseada em assinaturas permite explorar janelas temporais nas quais
informações sensíveis, como chaves criptográficas temporárias, ainda permanecem na me-
mória volátil durante o ciclo de cifragem do ransomware. Uma vez identificado o padrão
correspondente, a ferramenta realiza a extração dos dados associados, registrando-os para
análise posterior.

Cabe destacar que, embora a ferramenta seja apresentada neste capítulo em nível
conceitual, os detalhes de implementação, a arquitetura interna e as decisões de projeto
são discutidos de forma aprofundada no capítulo dedicado ao desenvolvimento da solução,
conforme descrito na Seção 4. Nesta seção, o foco concentra-se na contextualização da
ferramenta dentro do fluxo experimental e na sua integração com a metodologia proposta.

3.4 Avaliação da Abordagem Proposta

Por fim, a abordagem foi avaliada quanto à sua eficácia na identificação e extração
das chaves criptográficas em uma amostra sintética de ransomware, considerando critérios
como a taxa de sucesso, a precisão na localização dos padrões, o impacto no tempo de
resposta e a viabilidade de aplicação em cenários forenses. Os resultados obtidos foram
analisados de forma qualitativa e quantitativa, o que permitiu discutir as contribuições,
as limitações e as possibilidades de extensão da técnica proposta.

Embora os experimentos tenham sido repetidos múltiplas vezes para reduzir efeitos
pontuais, não foram aplicadas análises estatísticas avançadas, uma vez que o objetivo prin-

Capítulo 3. Método 34

cipal consistiu em verificar a viabilidade e a temporalidade relativa da extração da chave.
Estudos futuros podem ampliar o número de execuções e empregar métricas estatísticas
mais robustas para aprofundar a análise quantitativa.

35

Capítulo 4
Desenvolvimento AOBTool

Nesta seção, é apresentada a implementação da ferramenta AOBTool, desenvolvida e
utilizada nos experimentos deste trabalho para a varredura de memória e a extração de
chaves criptográficas. A Figura 2 ilustra o fluxo geral de funcionamento da ferramenta,
evidenciando as etapas de identificação do processo-alvo, varredura por padrões Array of
Bytes (AOB) e materialização da chave criptográfica extraída.

A AOBTool foi projetada com foco em simplicidade, eficiência temporal e controle
forense do processo analisado. Diferentemente de ferramentas genéricas de análise de
memória, sua arquitetura prioriza a extração rápida de artefatos críticos antes que o
ransomware finalize sua rotina de criptografia e elimine a chave da memória. Para isso,
optou-se por uma implementação de baixo nível, baseada diretamente nas APIs do sistema
operacional Windows, minimizando sobrecarga e dependências externas.

Embora existam algoritmos mais sofisticados para a busca de padrões, como o des-
crito em Boyer e Moore (1977) ou técnicas baseadas em paralelismo, optou-se por uma
abordagem linear devido à previsibilidade, facilidade de depuração e baixo impacto com-
putacional no contexto experimental adotado. Em ambientes forenses, a transparência e
a confiabilidade do método podem ser mais relevantes do que a otimização extrema de
desempenho.

Novamente, torna-se importante ressaltar que, neste trabalho, as assinaturas AOB não
são tratadas como regras estáticas de detecção, mas como descritores binários de com-
portamento criptográfico, capazes de capturar invariantes estruturais observados durante
a execução do ransomware.

Capítulo 4. Desenvolvimento AOBTool 36

Figura 2 – Fluxo geral da ferramenta de varredura e extração (visão lógica)

Fonte: elaborado pelo autor.

4.1 FindPatternInProcess

A função FindPatternInProcess é responsável por percorrer as regiões de memória
acessíveis de um processo em execução, realizando a comparação sequencial entre os bytes
lidos da memória e o padrão AOB previamente definido. O objetivo dessa varredura é
localizar a ocorrência exata do padrão associado a estruturas relevantes do ransomware,
como buffers ou instruções relacionadas à chave criptográfica. Quando o padrão é iden-
tificado, a função retorna o endereço de memória correspondente, permitindo a extração

Capítulo 4. Desenvolvimento AOBTool 37

controlada dos dados de interesse.

Listagem 4.1 – Função FindPatternInProcess
1 DWORD FindPatternInProcess (HANDLE hProcess , DWORD base , DWORD size ,

const char* pattern , const char* mask) {
2 SIZE_T patternLength = strlen (mask);
3 std :: vector <char > buffer (size);
4 SIZE_T bytesRead ;
5

6 if (! ReadProcessMemory (hProcess , (LPCVOID)base , buffer .data (), size ,
& bytesRead)) {

7 return 0xBEEE;
8 }
9

10 for (DWORD i = 0; i < size - patternLength ; i++) {
11 bool found = true;
12 for (DWORD j = 0; j < patternLength ; j++) {
13 if (mask[j] != ’?’ && pattern [j] != buffer [i + j]) {
14 found = false;
15 break;
16 }
17 }
18 if (found) return base + i;
19 }
20

21 return 0xBEEE;
22 }

A estratégia de varredura adotada apresenta complexidade linear em função do ta-
manho da região de memória analisada e do comprimento do padrão AOB. Embora essa
abordagem não seja otimizada para grandes volumes de dados, ela se mostra adequada
ao contexto forense considerado neste trabalho, no qual a análise é direcionada a regiões
específicas de memória associadas a módulos carregados pelo ransomware, reduzindo sig-
nificativamente o espaço de busca efetivo.

4.1.1 Descrição linha a linha

❏ Declara as variáveis de controle: o comprimento do padrão é obtido via strlen(mask);

❏ Cria um vetor buffer com o tamanho total do módulo a ser lido;

❏ Usa ReadProcessMemory para copiar o conteúdo de memória do processo remoto;

❏ Caso a leitura falhe, retorna o valor especial 0xBEEE, usado para indicar erro;

❏ Percorre byte a byte a memória lida, comparando com o padrão e respeitando os
coringas da máscara;

Capítulo 4. Desenvolvimento AOBTool 38

❏ Quando encontra coincidência total, retorna o endereço absoluto (base + i);

❏ Se nada for encontrado, retorna novamente 0xBEEE;

Essa função é essencial para identificar o ponto exato do código em memória onde a
chave criptográfica foi referenciada.

4.1.2 Considerações técnicas

A estratégia adotada consiste em uma varredura linear sobre o espaço de memória
do módulo alvo. Apesar de sua simplicidade, essa abordagem apresenta complexidade
𝑂(𝑛·𝑚), onde 𝑛 representa o tamanho do módulo e 𝑚 o tamanho do padrão. Considerando
que os módulos analisados possuem tamanho limitado e que a execução ocorre uma única
vez por instância do ransomware, o impacto computacional mostrou-se desprezível nos
experimentos realizados.

Optou-se por esse método devido à facilidade de implementação, previsibilidade de
comportamento e compatibilidade com máscaras contendo coringas, característica essen-
cial para lidar com variações introduzidas por otimizações do compilador e técnicas de
ofuscação.

4.2 GetModuleBaseAddress

Essa função obtém o endereço base de um módulo carregado em um processo.

Listagem 4.2 – Função GetModuleBaseAddress
1 DWORD GetModuleBaseAddress (DWORD pid , const std :: wstring & moduleName) {
2 DWORD baseAddress = 0;
3 HANDLE hSnap = CreateToolhelp32Snapshot (TH32CS_SNAPMODULE |

TH32CS_SNAPMODULE32 , pid);
4 if (hSnap != INVALID_HANDLE_VALUE) {
5 MODULEENTRY32W me32 = { sizeof (me32) };
6 if (Module32FirstW (hSnap , &me32)) {
7 do {
8 if (moduleName == me32. szModule) {
9 baseAddress = (DWORD)me32. modBaseAddr ;

10 break;
11 }
12 } while (Module32NextW (hSnap , &me32));
13 }
14 CloseHandle (hSnap);
15 }
16 return baseAddress ;
17 }

Capítulo 4. Desenvolvimento AOBTool 39

❏ Usa a função CreateToolhelp32Snapshot com as flags TH32CS_SNAPMODULE
e TH32CS_SNAPMODULE32 para capturar os módulos do processo.

❏ Itera sobre os módulos com Module32FirstW e Module32NextW.

❏ Quando o nome do módulo (me32.szModule) coincide com o argumento informado,
o endereço base (modBaseAddr) é retornado.

4.2.1 Relação com ASLR

A obtenção dinâmica do endereço base do módulo é essencial devido à presença do
mecanismo de ASLR nos sistemas Windows modernos. Esse mecanismo faz com que o
endereço de carregamento do executável varie a cada execução, inviabilizando abordagens
baseadas em endereços fixos. Dessa forma, a combinação entre endereço base dinâmico e
varredura por AOB torna a técnica robusta frente à aleatorização de memória.

4.3 GetProcessIdByName

Essa função busca na lista de processos em execução o identificador (PID) associado
a um executável específico.

Listagem 4.3 – Função GetProcessIdByName
1 DWORD GetProcessIdByName (const std :: wstring & processName) {
2 DWORD pid = 0;
3 HANDLE hSnap = CreateToolhelp32Snapshot (TH32CS_SNAPPROCESS , 0);
4 if (hSnap != INVALID_HANDLE_VALUE) {
5 PROCESSENTRY32W pe32 = { sizeof (pe32) };
6 if (Process32FirstW (hSnap , &pe32)) {
7 do {
8 if (processName == pe32. szExeFile) {
9 pid = pe32. th32ProcessID ;

10 break;
11 }
12 } while (Process32NextW (hSnap , &pe32));
13 }
14 CloseHandle (hSnap);
15 }
16 return pid;
17 }

❏ Cria um snapshot de todos os processos ativos com CreateToolhelp32Snapshot;

❏ Itera os resultados com Process32FirstW e Process32NextW;

❏ Quando o nome do executável coincide com o desejado, retorna o ProcessID;

Capítulo 4. Desenvolvimento AOBTool 40

4.3.1 Limitações conhecidas

A identificação do processo pelo nome do executável é adequada ao ambiente expe-
rimental controlado deste trabalho. Em cenários reais, ransomwares podem empregar
técnicas como process hollowing, nomes aleatórios ou injeção em processos legítimos. No
entanto, como o objetivo do estudo é validar a viabilidade da extração de chaves em
memória, a simplificação adotada não compromete os resultados nem a generalidade da
técnica.

4.4 Suspensão e Retomada do Processo

Essas duas funções trabalham em conjunto para suspender e retomar todas as threads
de um processo durante a leitura de memória.

Listagem 4.4 – Função SuspendProcess
1 void SuspendProcess (DWORD pid) {
2 HANDLE hSnap = CreateToolhelp32Snapshot (TH32CS_SNAPTHREAD , 0);
3 if (hSnap != INVALID_HANDLE_VALUE) {
4 THREADENTRY32 te32 = { sizeof (te32) };
5 if (Thread32First (hSnap , &te32)) {
6 do {
7 if (te32. th32OwnerProcessID == pid) {
8 HANDLE hThread = OpenThread (

THREAD_SUSPEND_RESUME , FALSE , te32.
th32ThreadID);

9 if (hThread) {
10 SuspendThread (hThread);
11 CloseHandle (hThread);
12 }
13 }
14 } while (Thread32Next (hSnap , &te32));
15 }
16 CloseHandle (hSnap);
17 }
18 }

Listagem 4.5 – Função ResumeProcess
1 void ResumeProcess (DWORD pid) {
2 HANDLE hSnapshot = CreateToolhelp32Snapshot (TH32CS_SNAPTHREAD , 0);
3 if (hSnapshot == INVALID_HANDLE_VALUE) return ;
4

5 THREADENTRY32 te = { 0 };
6 te. dwSize = sizeof (te);
7

8 if (Thread32First (hSnapshot , &te)) {

Capítulo 4. Desenvolvimento AOBTool 41

9 do {
10 if (te. th32OwnerProcessID == pid) {
11 HANDLE hThread = OpenThread (THREAD_SUSPEND_RESUME , FALSE

, te. th32ThreadID);
12 if (hThread) {
13 ResumeThread (hThread);
14 CloseHandle (hThread);
15 }
16 }
17 } while (Thread32Next (hSnapshot , &te));
18 }
19

20 CloseHandle (hSnapshot);
21 }

❏ A função SuspendProcess itera por todas as threads do sistema e, quando identifica
uma thread pertencente ao processo de interesse, usa SuspendThread para pausá-la;

❏ A função ResumeProcess faz o processo inverso, chamando ResumeThread;

❏ Essa suspensão garante consistência da memória durante a leitura da chave;

A suspensão temporária do processo garante a consistência do estado da memória
durante a varredura e a leitura da chave criptográfica. Sem essa etapa, alterações con-
correntes realizadas pelas threads do ransomware poderiam sobrescrever ou invalidar os
dados no exato momento da leitura, resultando em inconsistências ou falhas na extração.

Do ponto de vista forense, essa abordagem simula uma intervenção controlada, per-
mitindo capturar artefatos voláteis críticos antes que sejam eliminados, prática alinhada
com técnicas de resposta a incidentes em tempo real.

4.5 Função de Entrada do Programa

Listagem 4.6 – Função de Entrada do Programa
1 int main () {
2 std :: wstring targetExe = L" Ransomware TCC.exe";
3 std :: cout << " Esperando processo : " << std :: string (targetExe .begin ()

, targetExe .end ()) << "...\n";
4

5

6 auto inicio_total = std :: chrono :: high_resolution_clock :: now ();
7 int tentativas = 0;
8

9 while (true) {
10 if (GetAsyncKeyState (VK_F8) & 0x8000) {

Capítulo 4. Desenvolvimento AOBTool 42

11 std :: cout << " Encerrando ...\n";
12 break;
13 }
14

15 DWORD pid = GetProcessIdByName (targetExe);
16 if (pid != 0) {
17 tentativas ++;
18

19

20 auto inicio_varredura = std :: chrono :: high_resolution_clock ::
now ();

21

22 SuspendProcess (pid);
23

24 HANDLE hProcess = OpenProcess (PROCESS_VM_READ |
PROCESS_QUERY_INFORMATION , FALSE , pid);

25 if (hProcess) {
26 DWORD base = GetModuleBaseAddress (pid , targetExe);
27 if (base) {
28 MODULEINFO modInfo = { 0 };
29 GetModuleInformation (hProcess , (HMODULE)base , &

modInfo , sizeof (modInfo));
30 DWORD size = (DWORD) modInfo . SizeOfImage ;
31

32 const char* pattern = "\xBA\x00\x00\x00\x00\x8B\xC8\
xE8\x00\x00\x00\x00\xBA";

33 const char* mask = "x???? xxx ????x";
34

35 auto inicio_pattern = std :: chrono ::
high_resolution_clock :: now ();

36 DWORD instr_addr = FindPatternInProcess (hProcess ,
base , size , pattern , mask);

37 auto fim_pattern = std :: chrono ::
high_resolution_clock :: now ();

38

39 if (instr_addr != 0xBEEE) {
40 DWORD key_addr ;
41 if (ReadProcessMemory (hProcess , (LPCVOID)(

instr_addr + 1), &key_addr , sizeof (DWORD),
nullptr)) {

42 char key [33] = { 0 };
43

44 auto inicio_leitura = std :: chrono ::
high_resolution_clock :: now ();

45

46

Capítulo 4. Desenvolvimento AOBTool 43

47 if (ReadProcessMemory (hProcess , (LPCVOID)
key_addr , key , 32, nullptr) &&

48 key [0] != 0 && key [1] != 0 && key [2] != 0) {
49

50 auto fim_leitura = std :: chrono ::
high_resolution_clock :: now ();

51 auto fim_varredura = std :: chrono ::
high_resolution_clock :: now ();

52 auto fim_total = std :: chrono ::
high_resolution_clock :: now ();

53

54 std :: chrono :: duration <double , std :: milli
> tempo_pattern = fim_pattern -
inicio_pattern ;

55 std :: chrono :: duration <double , std :: milli
> tempo_leitura = fim_leitura -
inicio_leitura ;

56 std :: chrono :: duration <double , std :: milli
> tempo_varredura = fim_varredura -
inicio_varredura ;

57 std :: chrono :: duration <double >
tempo_total = fim_total -
inicio_total ;

58

59 std :: cout << "\n
===============================\ n";

60 std :: cout << "CHAVE ENCONTRADA : " << key
<< std :: endl;

61

62 std :: ofstream ofs("C:\\ Users \\ Gama \\
Desktop \\ Dump \\ chave_lida .bin", std ::
ios :: binary);

63 ofs.write(key , 32);
64 ofs.close ();
65

66 std :: cout << "Chave salva em: C:\\ Users
\\ Gama \\ Desktop \\ Dump \\ chave_lida .bin
\n";

67 std :: cout << " METRICAS DE TEMPO :\n";
68 std :: cout << "Busca do pattern : " <<

tempo_pattern .count () << " ms\n";
69 std :: cout << " Leitura da chave: " <<

tempo_leitura .count () << " ms\n";
70 std :: cout << "

===============================\ n";
71

72 CloseHandle (hProcess);

Capítulo 4. Desenvolvimento AOBTool 44

73 ResumeProcess (pid);
74 break;
75 }
76 }
77 }
78 else {
79 auto fim_varredura = std :: chrono ::

high_resolution_clock :: now ();
80 std :: chrono :: duration <double , std :: milli >

tempo_varredura = fim_varredura -
inicio_varredura ;

81 std :: cout << " Varredura " << tentativas << ":
Pattern nao encontrado ("

82 << tempo_varredura .count () << " ms)\n";
83 }
84 }
85 CloseHandle (hProcess);
86 }
87 ResumeProcess (pid);
88 }
89 }
90

91 std :: cout << " Pressione qualquer tecla para sair ...";
92 std :: cin.get ();
93 return 0;
94 }

4.6 Visão Geral do Fluxo de Execução

A função principal centraliza a lógica de coordenação da ferramenta, integrando de-
tecção do processo alvo, sincronização temporal, varredura por padrões e extração do
artefato criptográfico. O fluxo foi estruturado de modo a minimizar o intervalo entre a
detecção do processo e a leitura da chave, aspecto crítico para o sucesso da abordagem.

4.6.1 Descrição Passo a Passo

1. Define o nome do executável alvo: "Ransomware TCC.exe";

2. Exibe uma mensagem informando que está aguardando o processo;

3. Entra em um laço infinito que é interrompido apenas com a tecla F8;

4. Quando o processo é detectado, o programa o suspende e abre com permissão de
leitura;

Capítulo 4. Desenvolvimento AOBTool 45

5. Obtém o endereço base e tamanho do módulo carregado;

6. As variáveis pattern e mask armazenam,respectivamente, o padrão de bytes e a
máscara gerados pelo plugin. O conteúdo dessas variáveis representa a assinatura
binária previamente identificada durante a análise, sendo utilizada pela ferramenta
para realizar a varredura da memória do processo e localizar a região correspondente
ao trecho de código ou estrutura de interesse;

7. Executa a função FindPatternInProcess para localizar o padrão na memória;

8. Caso o padrão seja encontrado, lê o ponteiro da chave e, em seguida, lê a chave real
de 32 bytes;

9. Exibe a chave encontrada e salva-a em arquivo binário para análise posterior;

10. Retoma o processo e volta ao estado de espera;

4.6.2 Controle Temporal e Métricas

A instrumentação do código com medições de tempo permite avaliar empiricamente
a eficiência da ferramenta, possibilitando a comparação direta entre o tempo de extração
da chave e o tempo de execução do ransomware. Essas métricas subsidiam a análise
apresentada no capítulo de resultados, demonstrando que a intervenção ocorre dentro da
janela temporal viável.

4.6.3 Síntese do Desenvolvimento

Este capítulo apresentou o desenvolvimento e a implementação da ferramenta AOB-
Tool, detalhando suas principais funções, e mecanismos de operação. A integração entre
varredura por assinaturas AOB, controle de execução do processo e leitura direta da
memória demonstrou-se eficaz para a extração de chaves criptográficas em tempo de exe-
cução. A ferramenta materializa, em nível prático, a abordagem proposta neste trabalho,
servindo como base experimental para a validação dos resultados discutidos nos capítulos
subsequentes.

46

Capítulo 5
Experimentos e Síntese dos Resultados

Nesta seção serão apresentados os experimentos realizados para validar a proposta. Na
etapa inicial, executou-se a captura de memória (dump) do ransomware em execução. Os
arquivos gerados foram posteriormente analisados com ferramentas de engenharia reversa
(Hex-Rays, 2025) e com a própria ferramenta de varredura AOB (AOBTool).

5.1 Execução e Captura

Para cada execução experimental procedeu-se da seguinte forma:

❏ Restaurou-se uma versão limpa da VM e iniciou-se o sistema alvo.

❏ Executou-se a amostra controlada do ransomware na VM.

❏ Quando o ransomware iniciou o procedimento de criptografia, procedeu-se à inter-
rupção controlada de sua execução para permitir a captura do estado em memória.
A seguir, descrevem-se os passos executados com o Cheat Engine para anexar e
pausar o processo-alvo; os dumps foram realizados posteriormente com o Scylla
(NtQuery, 2015).

5.1.1 Pausa do Processo e Preparação para Dump

❏ Abrir o Cheat Engine e selecionar o processo: Abrir o aplicativo Cheat Engine
na VM alvo e clicar em Select a process to open (ícone de computador). Na janela
exibida, localizar o processo correspondente ao ransomware pelo nome ou PID e
clicar em Open para anexar-se ao processo.

❏ Acessar opções avançadas (Advanced Options): Com o processo anexado,
abrir o menu de opções/advanced para pausar o processo de execução do ran-
somware.

Capítulo 5. Experimentos e Síntese dos Resultados 47

Figura 3 – Iniciação da máquina virtual utilizada nos experimentos

Fonte: elaborado pelo autor.

5.1.2 Despejo (Dump) com Scylla

Após pausar o processo-alvo com o Cheat Engine (Seção 5.1.1), procedeu-se ao despejo
de memória do processo utilizando a ferramenta Scylla (NtQuery, 2015). Os passos
realizados foram os seguintes:

❏ Abrir o Scylla e anexar ao processo ativo: Iniciar o aplicativo Scylla na VM
de análise. Selecionar a opção Attach to an active process e localizar o processo do
ransomware na lista por nome ou PID; clicar e selecioná-lo para anexar.

❏ Executar a operação de Dump: Com o processo anexado, navegar até a aba/-
controle Dump e clicar em Dump para iniciar a extração do espaço de memória/-
processo para um arquivo local.

Capítulo 5. Experimentos e Síntese dos Resultados 48

Figura 4 – Iniciação da máquina virtual utilizada nos experimentos

Fonte: elaborado pelo autor.

Figura 8 – Scylla: controle “Dump” utilizado para iniciar a extração do processo em
memória

Fonte: elaborado pelo autor.

Capítulo 5. Experimentos e Síntese dos Resultados 49

Figura 5 – Diálogo “Select a process” do Cheat Engine para seleção do processo alvo

Fonte: elaborado pelo autor.

❏ Escolher local de salvamento do dump: Após acionar Dump, selecionar a pasta
destino e nome do arquivo para salvar o arquivo de dump e confirmar a operação.

Capítulo 5. Experimentos e Síntese dos Resultados 50

Figura 6 – Menu “Advanced Options” do Cheat Engine exibindo controles avançados

Fonte: elaborado pelo autor.

Figura 9 – Seleção do caminho e nome do arquivo para salvamento do dump gerado pelo
Scylla

Fonte: elaborado pelo autor.

Capítulo 5. Experimentos e Síntese dos Resultados 51

Figura 7 – Scylla: diálogo “Attach to an active process” com seleção do processo alvo

Fonte: elaborado pelo autor.

5.2 Análise do Dump no IDA Free
Após a geração e transferência do arquivo de dump pelo Scylla (Seção 5.1.2), realizou-

se a análise estática inicial com o IDA Free (versão 9.2) (Hex-Rays, 2025) para identificar
rotinas de criptografia e gerar assinaturas AOB. Esta etapa constitui frequentemente a
porção mais trabalhosa e exigente de uma investigação de malware. Esta etapa é a que o
analista dedica tempo, atenção e paciência para dissecar o código, compreender os fluxos
de execução e inferir intenções a partir de instruções de baixo nível.

A análise no IDA começa pela observação geral e revisão das seções carregadas, im-
ports, strings e funções automaticamente identificadas e evolui para um exame aprofun-
dado das rotinas suspeitas. A leitura de assembly requer cautela e prática; instruções
isoladas raramente dizem tudo, sendo necessário analisar o contexto (cross-references),
os usos de registradores, as chamadas de função e os acessos a memória. Ferramentas e
visualizações do IDA, como o gráfico de fluxo de funções, a janela de Strings e a lista-
gem de Imports, ajudam a localizar pontos de interesse, como inicializações de bibliotecas
criptográficas, chamadas a APIs de sistema e rotinas de geração de chaves.

Capítulo 5. Experimentos e Síntese dos Resultados 52

O trabalho prático envolve várias atividades iterativas: renomear funções e variáveis
locais à medida que se compreende seu papel, inserir comentários e anotações para facilitar
retornos futuros, reconstruir protótipos de função (tipagem de parâmetros e retorno)
para obter desassemblagens mais legíveis; e seguir cadeias de referências de dados para
encontrar buffers e estruturas que contenham chaves. Plugins e utilitários adicionais (por
exemplo, detectores de rotinas criptográficas ou geradores de assinaturas) podem acelerar
a identificação de padrões, mas a confirmação humana é essencial, isto é, testar hipóteses,
executar trechos em ambiente controlado (quando possível) e validar interpretações.

Outras tarefas importantes na fase de análise incluem: tratar obfuscação (desempa-
cotar trechos quando aplicável), identificar rotinas de inicialização que configuram al-
goritmos, mapear pontos onde a chave é alocada ou copiada e gerar assinaturas AOB
a partir de sequências de instruções/dados estáveis. A geração de uma AOB confiável
demanda escolher padrões que sejam suficientemente específicos para evitar falsos positi-
vos, mas suficientemente genéricos para resistir a pequenas mudanças de compilação ou
empacotamento. Isto costuma requerer experimentação e ajuste fino.

Além das análises manuais, é fundamental documentar tudo: capturas de tela das
vistas relevantes (disassembly, graph, strings), logs de renomeações e comentários, ver-
sões dos binários/commits, e hashes dos dumps analisados. Essas evidências tornam o
trabalho reprodutível e verificável. Finalmente, os artefatos produzidos na IDA (como
AOBs, offsets e anotações) servem como insumo para a etapa seguinte, que é a validação
automática com a AOBTool que testa se os padrões identificados realmente permitem
localizar e extrair as chaves criptográficas de um ransomware em execução

❏ Iniciar o IDA Free e iniciar nova desmontagem: Clicar em New / Open para
selecionar um novo arquivo a ser analisado. Navegar até o diretório onde está o
dump gerado e selecionar o arquivo do ransomware.

Figura 10 – Diálogo de seleção de arquivo no IDA Free: escolha do dump a ser analisado

Fonte: elaborado pelo autor.

❏ Configurar o tipo de arquivo carregado: Na janela “Load a new file” (Load
new file), confirmar o tipo detectado pelo IDA. Selecionar (quando aplicável) a
opção Portable executable for 80386 (PE) [pe.dll] ou o tipo correspondente ao bi-
nário/dump em análise, e clicar em OK para prosseguir com a análise automática.

Capítulo 5. Experimentos e Síntese dos Resultados 53

Figura 11 – Janela “Load a new file” : seleção do formato PE antes da análise

Fonte: elaborado pelo autor.

❏ Aguardar análise automática e visualizar as janelas principais: Após con-
firmar, aguardar o IDA realizar o parsing inicial e análise automática de funções;
em seguida visualizar as janelas de Disassembly, Functions, Strings e Imports para
localizar rotinas relacionadas à criptografia.

Figura 12 – Visão principal do IDA Free após o carregamento do arquivo

Fonte: elaborado pelo autor.

Capítulo 5. Experimentos e Síntese dos Resultados 54

5.2.1 Inspeção de Strings e Identificação de Trechos Relevantes

Durante a fase inicial de exploração do binário no IDA Free, listaram-se as strings
presentes no arquivo (atalho Shift+F12) para obter rapidamente indicadores textuais
que pudessem apontar para rotinas criptográficas, nomes simbólicos ou mensagens inter-
nas. Paralelamente, realizou-se uma varredura dos imports e da lista de funções geradas
automaticamente pelo IDA, buscando chamadas a APIs relacionadas à criptografia (por
exemplo, chamadas a OpenSSL ou CryptoAPI) e ou outras funções geradas para cripto-
grafia e padrões de fluxo típicos de inicialização de chaves.

Figura 13 – Lista de strings obtida por meio do atalho Shift+F12 no IDA Free

Fonte: elaborado pelo autor.

5.2.2 Identificação da String Suspeita e Navegação por Xrefs

Ao analisar a lista de strings (Figura 14), chamou a atenção a entrada localizada em
.rdata:00DDC4F8:

.rdata:00DDC4F8 a0123456789abcd db ’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz’,0

Trata-se de uma sequência alfanumérica longa (valores ASCII consecutivos) que po-
deria estar associada a um identificador ou, potencialmente, a material criptográfico.
Para investigar o contexto de uso dessa string, selecionou-se a linha correspondente e
pressionou-se a tecla x (Xrefs). Na janela de cross-references foi clicado em OK para sal-
tar para a função que referencia essa string, o que permitiu localizar a rotina provável
responsável por sua manipulação.

Figura 14 – Trecho da seção .rdata exibindo a sequência alfanumérica identificada na
lista de strings

Fonte: elaborado pelo autor.

Capítulo 5. Experimentos e Síntese dos Resultados 55

5.2.3 Análise da Função Suspeita e Decompilação

Ao saltar para a função que contém o Xref, utilizou-se a decompilação (atalho F5) para
obter uma visão de nível mais alto do fluxo lógico. A decompilação evidenciou pontos onde
buffers eram alocados e onde ocorriam cópias/atribuições de valores constantes e locais
compatíveis com operações de preparação ou armazenamento de chaves. Na visualização
do decompiler notou-se, nas proximidades das instruções de leitura/escrita do buffer, uma
sequência de bytes/valores que exibiam alta entropia (letras e números aparentemente
aleatórios), reforçando a hipótese de que aquele bloco poderia conter material cripto
(chave/nonce).

Figura 15 – Visão de decompilação (F5) da função que referencia a string identificada

Fonte: elaborado pelo autor.

5.2.4 Análise Detalhada da Função sub_DD3B80

A função sub_DD3B80 (Figura 15) destacou-se por conter operações típicas de geração
pseudoaleatória de caracteres, com estrutura compatível à criação de chaves temporárias
ou vetores de inicialização. Seu corpo decompilado é apresentado abaixo para contextu-
alização da análise.

Listagem 5.1 – Função extraída do IDA
1 char sub_DD3B80 ()
2 {
3 unsigned int v0; // eax

Capítulo 5. Experimentos e Síntese dos Resultados 56

4 unsigned int v1; // ecx
5 unsigned int v2; // esi
6 __int64 v3; // rax
7 char result ; // al
8 int v5; // [esp +8h] [ebp -13 D0h] BYREF
9 int v6 [1250]; // [esp+Ch] [ebp -13 CCh]

10 char v7 [64]; // [esp +1394h] [ebp -44h] BYREF
11

12 strcpy (v7 , " 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ");

13 v0 = std :: _Random_device ();
14 v6 [1248] = -1;
15 v1 = 1;
16 v6 [0] = v0;
17 do {
18 v0 = v1 + 1812433253 * (v0 ^ (v0 >> 30));
19 v6[v1 ++] = v0;
20 } while (v1 < 0x270);
21 v2 = 0;
22 v5 = 624;
23 do {
24 v3 = 62 i64 * (unsigned int) sub_DD8D90 (&v5);
25 if ((unsigned int)v3 <= 3) {
26 do
27 v3 = 62 i64 * (unsigned int) sub_DD8D90 (&v5);
28 while ((unsigned int)v3 < 4);
29 }
30 result = v7[HIDWORD (v3)];
31 aPuytqb8b560s6y [v2 ++] = result ;
32 } while (v2 < 0x20);
33 aPuytqb8b560s6y [32] = 0;
34 return result ;
35 }

A análise detalhada permitiu compreender que a rotina define um vetor de caracteres
v7 com todos os símbolos alfanuméricos (maiúsculos e minúsculos), que é utilizado como
base para a composição da chave. A função invoca um gerador pseudoaleatório (std::

_Random_device) e utiliza uma sequência de cálculos multiplicativos (1812433253 * (v0 ^ (

v0 >> 30))) com várias interações.
Em cada iteração, é selecionado um índice dentro do vetor v7, concatenando 32 carac-

teres (0x20 em hexadecimal) para formar a string final armazenada em aPuytqb8b560s6y.
Essa string, portanto, representa possivelmente a chave gerada pelo ransomware em tempo
de execução.

Em suma, a combinação das técnicas de listagem de strings (Shift+F12), análise de
imports/funções e decompilação (F5) possibilitou localizar um trecho suspeito e identificar

Capítulo 5. Experimentos e Síntese dos Resultados 57

sequências hexadecimais compatíveis com uma chave.

5.3 Geração de Assinaturas AOB a partir da Função
Identificada

Com a função sub_DD3B80 identificada e decompilada, procedeu-se à busca direta nas
views do IDA para localizar ocorrências reais da chave gerada em tempo de execução. A
seguir descrevem-se os passos executados.

❏ Buscar prefixo da chave no Text view / Strings: No Text view / Strings
view do IDA Free procurou-se pelo prefixo identificado no buffer (por exemplo:
aPUYTqb8b560S6) para localizar referências. Essa busca permitiu observar que a se-
quência aparecia em múltiplos pontos do binário, indicando uso recorrente.

Figura 16 – Busca pelo prefixo da chave (aPUYTqb8b560S6) na visão de texto do IDA Free

Fonte: elaborado pelo autor.

❏ Inspecionar a instrução: A partir da string localizada, seguiu-se para os xrefs e
encontrou-se o trecho de código onde a string é carregada:

Listagem 5.2 – Trecho de assembly onde a string é referenciada
1 .text :00 DD5BFC call sub_DD72A0

2 .text :00 DD5C01 mov edx , offset aPuytqb8b560s6y ; "

PUYTqb8b560S6ypQDt8VYfmuYD0Luy7E "

3 .text :00 DD5C06 mov ecx , eax

4 .text :00 DD5C08 call sub_DD72A0

5 .text :00 DD5C0D mov edx , offset asc_DDC538 ; "\n"

6 .text :00 DD5C12 mov ecx , eax

❏ Invocar o plugin IDA-Fusion para gerar assinatura: Após selecionar a instru-
ção de interesse (por exemplo na linha com mov edx, offset aPuytqb8b560s6y),
acionou-se o plugin IDAFusion (senator715, 2024) (atalho Ctrl+Alt+S). Na janela
do plugin selecionou-se a opção Generate signature com o estilo CODE Style para
gerar uma assinatura AOB baseada no código em volta da instrução.

Capítulo 5. Experimentos e Síntese dos Resultados 58

Figura 17 – Janela do plugin IDA-Fusion: opção Generate signature (estilo CODE)

Fonte: elaborado pelo autor.

❏ Assinatura AOB gerada (padrão + máscara): O plugin retornou uma assina-
tura no formato padrão em bytes com a máscara correspondente:

Listagem 5.3 – Assinatura AOB gerada pelo IDA-Fusion (exemplo)
1 \xBA\x00\x00\x00\x00\x8B\xC8\xE8\x00\x00\x00\x00\xBA

2 x???? xxx ????x

Após gerar a assinatura, procedeu-se à validação em dumps anteriores (e em novas
execuções) para verificar se o AOB encontra a mesma sequência em memória e se o offset
relativo leva ao buffer contendo a chave. Caso a assinatura apresente falsos positivos, ela é
refinada (ajustando bytes constantes e máscaras) até atingir equilíbrio entre sensibilidade
e especificidade, como foi feito outras análises ficou comprovado que este padrão seria
estável e o que vai ser usado.

Além da validação feita em dumps estáticos, realizou-se também uma verificação di-
nâmica utilizando o Cheat Engine (Cheat Engine Team, 2024) com o ransomware em
execução. O objetivo foi confirmar, em tempo real, que a AOB gerada correspondia de
fato à região de memória onde a chave criptográfica era armazenada durante a rotina de
cifragem. Para isso, a assinatura obtida via IDAFusion (senator715, 2024) foi pesquisada
diretamente na memória do processo, permitindo observar se o endereço retornado pelo
scan coincidia com o buffer identificado previamente no disassembly.

Uma vez localizado o padrão, abriu-se o Memory View sobre o endereço encontrado,
confirmando visualmente que os 32 bytes exibidos correspondiam exatamente à chave
pseudoaleatória gerada pelo ransomware. Esse procedimento reforçou a consistência da
assinatura desenhada e comprovou empiricamente que o método proposto identifica a
chave em tempo real, ainda durante a execução do ransomware.

As Figuras ?? e ?? apresentam: (i) a busca da AOB no Cheat Engine e (ii) a visuali-
zação direta da chave na região de memória correspondente.

Capítulo 5. Experimentos e Síntese dos Resultados 59

Figura 18 – Busca da assinatura AOB utilizando o Cheat Engine para fins de validação

Fonte: elaborado pelo autor.

Capítulo 5. Experimentos e Síntese dos Resultados 60

Figura 19 – Visualização da memória em tempo de execução por meio do Cheat Engine

Fonte: elaborado pelo autor.

O presente trabalho propõe um método prático para identificação e extração de chaves
criptográficas de ransomwares em tempo de execução baseado em assinaturas AOB gera-
das por análise estática. A partir da assinatura gerada (padrão + máscara) para trechos
de código identificados no binário por exemplo, a sequência de instruções que referencia
o buffer contendo a chave, a ferramenta desenvolvida efetua fazendo a varredura direta-
mente no espaço do ransomware em execução, localiza o padrão e deriva o offset relativo
até o buffer candidato. Esse fluxo combina engenharia reversa (para criar assinaturas
AOB) com análise forense de memória e automação (AOBTool) para viabilizar detecção
rápida e reprodutível de chaves efêmeras geradas por malware.

5.4 Experimento para Análise de Tempo

A ferramenta desenvolvida (AOBTool) foi implementada e compilada no ambiente
Microsoft Visual Studio (Microsoft, 2022). Após a geração do executável, a ferramenta
foi executada em segundo plano na máquina virtual (ambiente experimental controlado
descrito na subseção (5.1).

Capítulo 5. Experimentos e Síntese dos Resultados 61

Em seguida, o ransomware foi iniciado dentro da máquina virtual alvo e, durante sua
execução, o processo foi inspecionado para comprovar que a chave gerada em tempo de
execução poderia ser localizada e extraída diretamente da memória.

Conforme mostra a figura 20, é o projeto sendo compilado e gerando o executável
proposto.

Figura 20 – Compilação do projeto e geração do executável no Visual Studio

Fonte: elaborado pelo autor.

Nesta figura 21 mostra a ferramenta AOBTool em execução juntamente com a amostra
sintética, onde mostra a ferramenta extraindo em tempo de execução a chave criptográfica
antes do ransomware crifar os arquivos.

Capítulo 5. Experimentos e Síntese dos Resultados 62

Figura 21 – Execução da ferramenta AOBTool após a compilação

Fonte: elaborado pelo autor.

5.4.1 Tempo de Execução X Tempo de Extração

Foram realizados 10 experimentos independentes (execuções completas do ransomware
de teste e validação com a AOBTool). Para cada execução foram registradas as métricas
relevantes: tempo de geração da chave pelo ransomware, tempo total de criptografia
(medida do tempo que o ransomware demorou para completar a rotina de cifração dos
arquivos), tempo de busca do pattern pela AOBTool e tempo de leitura da chave. A
Tabela 2 apresenta os valores (unidade: ms).

Tabela 2 – Resultados das 10 execuções (tempo em milissegundos).

Execução Chave gerada Tempo criptografia Busca do pattern Leitura da chave
1 0.0006170 0.0821518 0.0447 0.0012
2 0.0008672 0.0712812 0.0444 0.0012
3 0.0006281 0.0613382 0.0444 0.0012
4 0.0005972 0.0681346 0.0448 0.0012
5 0.0006065 0.0707624 0.0449 0.0012
6 0.0004499 0.0637167 0.0589 0.0013
7 0.0004331 0.0514660 0.0434 0.0013
8 0.0005269 0.0562920 0.0430 0.0012
9 0.0016015 0.0913421 0.0462 0.0012

10 0.0004250 0.0833063 0.0429 0.0012

Capítulo 5. Experimentos e Síntese dos Resultados 63

A avaliação experimental concentrou-se na comparação direta entre o tempo de extra-
ção da chave e o tempo necessário para a cifragem dos arquivos, por se tratar do critério
mais relevante para verificar a viabilidade da abordagem proposta. Não foram exploradas
variações adicionais, como diferentes volumes de dados, cargas do sistema ou múltiplos
ciclos de cifragem, uma vez que tais análises extrapolam o objetivo principal deste estudo,
que consiste em verificar a existência de uma janela temporal explorável para a extração
da chave criptográfica.

5.5 Síntese dos Resultados

A Tabela 2 apresenta os tempos observados em cada execução: (i) o intervalo até a
geração da chave pelo ransomware (Chave gerada), (ii) o tempo observado até a conclusão
da rotina de criptografia dos arquivos (Tempo criptografia), (iii) o tempo de busca do
padrão AOB pela ferramenta AOBTool e (iv) o tempo de leitura do buffer contendo a
chave (Leitura da chave).

A análise dos resultados evidencia diferenças claras entre o tempo necessário para a
execução das rotinas críticas do ransomware e o tempo gasto pela AOBTool para localizar
e extrair a chave criptográfica diretamente da memória volátil. Observa-se que o tempo de
geração da chave é extremamente reduzido em todas as execuções, ocorrendo em frações
de milissegundo, o que é esperado, uma vez que a geração consiste majoritariamente em
operações aritméticas e pseudoaleatórias em memória.

Em contrapartida, o tempo total de criptografia apresenta maior variação entre as
execuções. Essa variação pode ser explicada por fatores como operações de entrada e saída
em disco, chamadas ao sistema operacional para acesso a arquivos, alocação e liberação de
buffers e eventuais variações de escalonamento de CPU durante a execução. Tais fatores
são inerentes a processos de cifragem de arquivos e contribuem para que essa etapa seja
significativamente mais custosa em termos temporais do que a simples geração da chave.

No que se refere à AOBTool, os tempos de busca do padrão AOB mantiveram-se rela-
tivamente estáveis entre as execuções, situando-se majoritariamente na ordem de dezenas
de microssegundos. Esse comportamento é consistente com a abordagem adotada, uma
vez que a varredura ocorre sobre uma região delimitada da memória do módulo alvo,
utilizando uma assinatura previamente validada, o que reduz significativamente o espaço
de busca e o custo computacional. A leitura do buffer contendo a chave, por sua vez,
apresentou tempos praticamente constantes e desprezíveis quando comparados às demais
métricas, pois consiste em uma única operação de leitura direta de memória.

De forma geral, observa-se que, em todas as execuções, o tempo total gasto pela
AOBTool (busca do padrão somada à leitura da chave) foi inferior ao tempo necessário
ao ransomware para concluir sua rotina de criptografia e proceder à remoção da chave
da memória. Isso indica que a ferramenta foi capaz de atuar dentro da janela temporal

Capítulo 5. Experimentos e Síntese dos Resultados 64

crítica em que a chave ainda se encontra acessível na memória volátil do processo.
Em termos práticos, esses resultados indicam que:

❏ Sucesso experimental: a AOBTool foi capaz de localizar e extrair a chave em
todas as execuções reportadas.

❏ Viabilidade: em um número significativo de execuções o processo de extração
ocorre em tempo menor do que aquele necessário ao ransomware para finalizar a
criptografia/remover a chave, isso demonstra que a abordagem é tecnicamente viável
para mitigar o dano (recuperação da chave antes da perda irreversível dos dados).

65

Capítulo 6
Conclusão

Os resultados obtidos demonstram que a análise da memória volátil, aliada ao uso
de padrões binários baseados em Array of Bytes, pode ser uma estratégia eficaz para a
extração de chaves criptográficas de ransomwares em tempo de execução. A abordagem
proposta mostrou-se funcional, reproduzível e eficiente no escopo experimental avaliado,
indicando seu potencial como apoio a ações de mitigação e de resposta a incidentes de
segurança da informação.

Embora os experimentos tenham sido conduzidos a partir de uma amostra sintética de
ransomware, esta foi desenvolvida com base em comportamentos amplamente documen-
tados em famílias reais, preservando características essenciais, como a geração dinâmica
de chaves, o uso de rotinas criptográficas e o descarte do material sensível após a cifragem.
Dessa forma, o uso de uma amostra controlada não compromete a validade dos resultados,
ao mesmo tempo em que garante segurança, controle e reprodutibilidade experimental.

Conclui-se, portanto, que a extração automatizada de chaves criptográficas direta-
mente da memória volátil constitui uma contribuição relevante no contexto da computação
forense, ao demonstrar a viabilidade técnica de recuperar informações críticas durante a
execução de ransomwares. A abordagem apresentada reforça o papel da análise de memó-
ria como instrumento complementar às estratégias tradicionais de resposta a incidentes,
oferecendo subsídios técnicos para a investigação, a recuperação de dados e a mitigação
de danos em ambientes comprometidos.

6.1 Resposta às Questões de Pesquisa

A primeira questão de pesquisa (QP1) buscou verificar se é viável a extração de chaves
criptográficas utilizadas por ransomwares a partir da análise da memória volátil, por meio
da identificação de padrões recorrentes baseados em AOB.

Com base nos experimentos realizados, neste momento é importante reforçar que, em-
bora os experimentos tenham utilizado uma amostra sintética, o foco deste trabalho recai
sobre o comportamento intrínseco à utilização de bibliotecas criptográficas e à perma-

Capítulo 6. Conclusão 66

nência temporária de chaves na memória volátil, e não sobre características específicas
de uma família de ransomware, ou seja, trata-se de um comportamento decorrente de
propriedades fundamentais dos mecanismos criptográficos, independentemente da origem
do binário analisado.

Neste contexto, compreende-se que essa abordagem é tecnicamente viável. A análise
estática e dinâmica do binário da amostra sintética desenvolvida permitiu identificar com
precisão as rotinas responsáveis pela geração, uso e armazenamento temporário da chave
criptográfica em memória. A partir da análise dessas rotinas contidas no ransomware, foi
possível derivar uma AOB estável, capaz de localizar o ponto exato do código e o buffer
que continha a chave criptográfica durante a execução do processo malicioso.

Os resultados experimentais demonstraram que, em todas as execuções avaliadas, a
chave criptográfica permaneceu acessível na memória volátil por um intervalo suficiente
para permitir sua extração, validando empiricamente a hipótese central deste trabalho.

A segunda questão de pesquisa (QP2) investigou em que medida o uso de padrões
AOB permite automatizar o processo de identificação e extração de chaves criptográficas
na memória, reduzindo a dependência de análises manuais e de análises específicas para
cada família de ransomware. Os resultados obtidos indicam que o uso de assinaturas AOB
contribui significativamente para a automação do processo. A ferramenta desenvolvida,
denominada AOBTool, foi capaz de realizar a varredura da memória do processo-alvo,
identificar o padrão binário previamente definido e extrair automaticamente a chave crip-
tográfica, sem a necessidade de intervenção manual durante a execução.

6.2 Principais Contribuições

A partir dos resultados alcançados, as principais contribuições deste trabalho podem
ser destacadas da seguinte forma:

❏ Proposição de uma metodologia que integra engenharia reversa, análise de memória
volátil e varredura por assinaturas AOB para a extração de chaves criptográficas
utilizadas por ransomwares;

❏ Desenvolvimento e validação da ferramenta AOBTool, capaz de suspender processos,
varrer regiões específicas da memória e extrair automaticamente chaves criptográfi-
cas em tempo de execução;

❏ Evidência experimental de que o tempo de extração da chave é inferior ao tempo
necessário para a conclusão da rotina de cifragem do ransomware sintético desen-
volvido, demonstrando a viabilidade técnica da abordagem proposta;

Capítulo 6. Conclusão 67

❏ Contribuição prática para a área de computação forense, oferecendo encaminha-
mentos sobre um método replicável que pode auxiliar investigações acadêmicas e
estratégias de resposta a incidentes envolvendo ransomwares.

Os objetivos gerais e específicos definidos na Introdução foram alcançados. A análise
estática e dinâmica do binário, realizada com o auxílio do IDA Free (Hex-Rays, 2025), do
Scylla (NtQuery, 2015), possibilitou a identificação precisa das rotinas responsáveis pela
geração, utilização e descarte da chave criptográfica durante a execução do ransomware.
A partir dessas rotinas, foi possível derivar assinaturas Array of Bytes (AOB) robustas e
estáveis, capazes de localizar, em memória, tanto a instrução crítica quanto o buffer que
continha a chave criptográfica.

Embora a técnica baseada em assinaturas do tipo AOB apresente limitações frente a
mecanismos avançados de empacotamento e polimorfismo, ela oferece vantagens técnicas
relevantes no contexto de análises forenses conduzidas em ambientes controlados, como o
baixo custo computacional associado à varredura de memória e a previsibilidade de seu
comportamento durante a execução.

Além disso, a abordagem baseada em AOB apresenta elevada capacidade de integra-
ção com técnicas complementares, como heurísticas baseadas em entropia, identificação
de chamadas a APIs criptográficas e análise comportamental. Dessa forma, o uso de
assinaturas AOB deve ser compreendido não como uma solução isolada, mas como uma
camada eficaz e coerente em uma estratégia mais ampla de investigação e de resposta a
incidentes.

A ferramenta desenvolvida, denominada AOBTool, demonstrou precisão nas execuções
realizadas. Em todos os experimentos reportados, a chave criptográfica foi localizada e
extraída com sucesso, conforme apresentado na Tabela 2 e discutido na Seção 5.4.

Cabe destacar que a abordagem apresentada não se propõe a substituir mecanismos
de defesa corporativos nem foi avaliada em ambientes de produção com controles de
segurança ativos. O objetivo central consistiu em demonstrar a viabilidade técnica da
extração de chaves criptográficas durante a execução do ransomware, em um contexto
forense controlado. A avaliação em ambientes corporativos reais, sujeitos a mecanismos
adicionais de proteção, constitui etapa posterior e extrapola o escopo deste trabalho.

6.3 Trabalhos Futuros

Como trabalhos futuros, destaca-se a realização de experimentos com amostras reais
de ransomware, coletadas de repositórios controlados e amplamente utilizados na lite-
ratura, como VirusShare, MalwareBazaar, bem como de conjuntos disponibilizados por
laboratórios acadêmicos e instituições de pesquisa. A aplicação da metodologia proposta
em amostras reais permitirá avaliar a robustez das assinaturas Array of Bytes diante de

Capítulo 6. Conclusão 68

técnicas mais avançadas de ofuscação, empacotamento (packing) e diversidade de imple-
mentações criptográficas presentes em famílias de ransomware em circulação.

A análise desses aspectos contribuirá para refinar a metodologia, seja por meio do
aprimoramento das assinaturas AOB, seja pela incorporação de estratégias adaptativas
de sincronização e de monitoramento da execução do processo malicioso.

69

Referências

Akamai. What is DarkSide Ransomware? 2024. <https://www.akamai.com/pt/
glossary/what-is-darkside-ransomware>. Citado na página 24.

AREMO, A. A. Reverse Engineering. 2021. ResearchGate. Acesso em: 14 dez.
2025. Disponível em: <https://www.researchgate.net/publication/356784389_Reverse_
Engineering_Research>. Citado na página 26.

BELCIC, I. What is Locky Ransomware? 2019. <https://www.avast.com/pt-br/
c-locky>. Citado na página 24.

BOYER, R. S.; MOORE, J. S. A fast string searching algorithm. Communications of
the ACM, ACM New York, NY, USA, v. 20, n. 10, p. 762–772, 1977. Disponível em:
<https://dl.acm.org/doi/abs/10.1145/359842.359859>. Citado na página 35.

CASEY, E. Digital Evidence and Computer Crime. 2011. Elsevier Inc. Citado na
página 25.

Cheat Engine Team. Cheat Engine. 2024. <https://www.cheatengine.org/downloads.
php>. Versão 7.6. Citado 2 vezes nas páginas 31 e 58.

CISA. MAR-AR20-216A: Chinese Malware Taidoor. 2020. <https://hex-rays.
com/case-studies/digital-forensics>. Relatório de Análise de Malware publicado pela
Agência de Segurança Cibernética e Infraestrutura (CISA). Citado na página 26.

Cloudflare. Ryuk Ransomware. 2024. <https://www.cloudflare.com/pt-br/learning/
security/ransomware/ryuk-ransomware/>. Citado na página 24.

DAVIES, S. R.; MACFARLANE, R.; BUCHANAN, W. J. Evaluation of live forensic
techniques in ransomware attack mitigation. Forensic Science International: Digital
Investigation, Elsevier, v. 33, p. 300979, 2020. Citado na página 16.

DeepStrike. Ransomware Statistics 2025. 2025. Disponível em: <https:
//deepstrike.io/blog/ransomware-statistics-2025>. Citado na página 15.

FRANCO, D. P.; SOARES, C.; SANTOS, J. Análise de ransomwares para identificação
e extração binária de chaves criptográficas. Revista Brasileira de Criminalística,
v. 13, n. 1, p. 143–155, 2024. Citado 2 vezes nas páginas 16 e 26.

Hex-Rays. IDA Free - Disassembler and Debugger. 2025. <https://hex-rays.com/
ida-pro>. Versão 9.2. Citado 5 vezes nas páginas 26, 31, 46, 51 e 67.

https://www.akamai.com/pt/glossary/what-is-darkside-ransomware
https://www.akamai.com/pt/glossary/what-is-darkside-ransomware
https://www.researchgate.net/publication/356784389_Reverse_Engineering_Research
https://www.researchgate.net/publication/356784389_Reverse_Engineering_Research
https://www.avast.com/pt-br/c-locky
https://www.avast.com/pt-br/c-locky
https://dl.acm.org/doi/abs/10.1145/359842.359859
https://www.cheatengine.org/downloads.php
https://www.cheatengine.org/downloads.php
https://hex-rays.com/case-studies/digital-forensics
https://hex-rays.com/case-studies/digital-forensics
https://www.cloudflare.com/pt-br/learning/security/ransomware/ryuk-ransomware/
https://www.cloudflare.com/pt-br/learning/security/ransomware/ryuk-ransomware/
https://deepstrike.io/blog/ransomware-statistics-2025
https://deepstrike.io/blog/ransomware-statistics-2025
https://hex-rays.com/ida-pro
https://hex-rays.com/ida-pro

Referências 70

IBM Security. O que é ransomware. 2023. Disponível em: <https://www.ibm.com/
br-pt/topics/ransomware>. Citado 4 vezes nas páginas 15, 21, 22 e 23.

. X-Force Threat Intelligence Index. 2024. Disponível em: <https:
//www.ibm.com/reports/threat-intelligence>. Citado 2 vezes nas páginas 15 e 16.

JONES, J.; SHASHIDHAR, N. Ransomware analysis and defense - wannacry and
the win32 environment. International Journal of Information Security Science
(IJISS), v. 6, n. 4, p. 57–69, 2017. Disponível em: <https://dergipark.org.tr/en/
download/article-file/2160203>. Citado na página 27.

Kaspersky. LockBit Ransomware. 2024. <https://www.kaspersky.com.br/
resource-center/threats/lockbit-ransomware>. Citado na página 24.

KERNER, S. M. Ransomware trends, statistics and facts for 2025.
2025. Disponível em: <https://www.techtarget.com/searchsecurity/feature/
Ransomware-trends-statistics-and-facts>. Citado na página 14.

KOLBITSCH, C. et al. Effective and efficient malware detection at the end host.
In: USENIX security symposium. N.A: USENIX Association, 2009. p. 351–366.
Disponível em: <https://www.researchgate.net/publication/221260426_Effective_
and_Efficient_Malware_Detection_at_the_End_Host>. Citado na página 16.

LEE, H.-W. Cryptography module detection and identification mechanism on
malicious ransomware software. Journal of Convergence on Internet of
Things, Korea Internet of Things Society, v. 9, n. 1, p. 1–7, 2023. Disponível em:
<https://koreascience.or.kr/article/JAKO202317956807358.page>. Citado 2 vezes nas
páginas 16 e 27.

LIGH, M. H. et al. Malware Analyst’s Cookbook and DVD: Tools and
Techniques for Fighting Malicious Code. Hoboken, Nova Jersey, EUA: Wiley
Publishing, Inc., 2011. Citado 3 vezes nas páginas 25, 26 e 33.

MARINHO, R. et al. Introdução à análise de códigos maliciosos para ambiente windows.
In: Anais do XXII Simpósio Brasileiro de Segurança da Informação e de
Sistemas Computacionais (SBSeg 2022). Porto Alegre: Sociedade Brasileira de
Computação, 2022. Disponível em: ResearchGate. Acesso em: 14 dez. 2025. Disponível
em: <https://www.researchgate.net/publication/364582051_Introducao_a_Analise_
de_Codigos_Maliciosos_para_ambiente_Windows>. Citado na página 28.

MAZUR, A. H. B.; OLIVEIRA, P. R. de; MARTIMIANO, L. A. F. Descriptografando:
Experimento em análise de memória volátil aplicada à defesa contra ransomware.
In: XXIV Simpósio Brasileiro em Segurança da Informação e de Sistemas
Computacionais (SBSeg 2024). Sociedade Brasileira de Computação, 2024.
Disponível em: <https://sol.sbc.org.br/index.php/sbseg/article/view/30025>. Citado
2 vezes nas páginas 16 e 27.

Microsoft. Visual Studio Community 2022. 2022. <https://visualstudio.microsoft.
com/pt-br/vs/community/>. Citado 2 vezes nas páginas 31 e 60.

. What is ransomware? 2024. Disponível em: <https://www.microsoft.com/
security/business/security-101/what-is-ransomware>. Citado na página 20.

https://www.ibm.com/br-pt/topics/ransomware
https://www.ibm.com/br-pt/topics/ransomware
https://www.ibm.com/reports/threat-intelligence
https://www.ibm.com/reports/threat-intelligence
https://dergipark.org.tr/en/download/article-file/2160203
https://dergipark.org.tr/en/download/article-file/2160203
https://www.kaspersky.com.br/resource-center/threats/lockbit-ransomware
https://www.kaspersky.com.br/resource-center/threats/lockbit-ransomware
https://www.techtarget.com/searchsecurity/feature/Ransomware-trends-statistics-and-facts
https://www.techtarget.com/searchsecurity/feature/Ransomware-trends-statistics-and-facts
https://www.researchgate.net/publication/221260426_Effective_and_Efficient_Malware_Detection_at_the_End_Host
https://www.researchgate.net/publication/221260426_Effective_and_Efficient_Malware_Detection_at_the_End_Host
https://koreascience.or.kr/article/JAKO202317956807358.page
https://www.researchgate.net/publication/364582051_Introducao_a_Analise_de_Codigos_Maliciosos_para_ambiente_Windows
https://www.researchgate.net/publication/364582051_Introducao_a_Analise_de_Codigos_Maliciosos_para_ambiente_Windows
https://sol.sbc.org.br/index.php/sbseg/article/view/30025
https://visualstudio.microsoft.com/pt-br/vs/community/
https://visualstudio.microsoft.com/pt-br/vs/community/
https://www.microsoft.com/security/business/security-101/what-is-ransomware
https://www.microsoft.com/security/business/security-101/what-is-ransomware

Referências 71

. Windows 10, versão 22H2 (ISO). 2024. <https://www.microsoft.com/pt-br/
software-download/windows10>. Citado na página 31.

National Institute of Standards and Technology. Guide to Integrating Forensic
Techniques into Incident Response. 2006. <https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-86.pdf>. Citado na página 25.

NtQuery. Scylla - Process Dumping Tool. 2015. <https://github.com/NtQuery/
Scylla>. Versão 0.9.8. Citado 4 vezes nas páginas 31, 46, 47 e 67.

Oracle Corporation. Oracle VM VirtualBox. 2025. <https://www.virtualbox.org/>.
Versão 7.2.2. Citado na página 31.

PLOSZEK, R.; ŠVEC, P.; DEBNÁR, P. Analysis of encryption schemes in modern
ransomware. Journal of Information Security and Applications, v. 25, 2021.
Disponível em: <https://hrcak.srce.hr/clanak/380443>. Citado na página 27.

SECURITY, I. O que é o ransomware como serviço (RaaS). 2024. <https:
//www.ibm.com/br-pt/topics/ransomware-as-a-service>. Citado na página 23.

senator715. IDA-Fusion (plugin). 2024. <https://github.com/senator715/
IDA-Fusion>. Citado 3 vezes nas páginas 31, 57 e 58.

Splashtop Team. Os 5 ataques de resgate mais devastadores de
2021... Até agora. 2025. Disponível em: <https://www.splashtop.com/
pt/blog/the-5-most-devastating-ransomware-attacks-of-2021so-far?srsltid=
AfmBOooSDvaRqSYx02oB0MKH4zSTWFAoY8-TaaVBcQ3Mk5WK8yvAU6UU>.
Citado na página 14.

Veeam Software. Tendências de Ransomware 2025. 2025. Disponível em:
<https://go.veeam.com/ransomware-trends-pt>. Citado na página 15.

YOUNG, A.; YUNG, M. Cryptovirology: Extortion-based security threats and
countermeasures. In: IEEE. Proceedings 1996 IEEE Symposium on Security and
Privacy. [S.l.], 1996. p. 129–140. Citado na página 21.

ÁLVAREZ, V. M. YARA: The Pattern Matching Swiss Army Knife for Malware
Researchers. 2013. <https://virustotal.github.io/yara/>. Citado 2 vezes nas páginas
26 e 27.

https://www.microsoft.com/pt-br/software-download/windows10
https://www.microsoft.com/pt-br/software-download/windows10
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://www.virtualbox.org/
https://hrcak.srce.hr/clanak/380443
https://www.ibm.com/br-pt/topics/ransomware-as-a-service
https://www.ibm.com/br-pt/topics/ransomware-as-a-service
https://github.com/senator715/IDA-Fusion
https://github.com/senator715/IDA-Fusion
https://www.splashtop.com/pt/blog/the-5-most-devastating-ransomware-attacks-of-2021so-far?srsltid=AfmBOooSDvaRqSYx02oB0MKH4zSTWFAoY8-TaaVBcQ3Mk5WK8yvAU6UU
https://www.splashtop.com/pt/blog/the-5-most-devastating-ransomware-attacks-of-2021so-far?srsltid=AfmBOooSDvaRqSYx02oB0MKH4zSTWFAoY8-TaaVBcQ3Mk5WK8yvAU6UU
https://www.splashtop.com/pt/blog/the-5-most-devastating-ransomware-attacks-of-2021so-far?srsltid=AfmBOooSDvaRqSYx02oB0MKH4zSTWFAoY8-TaaVBcQ3Mk5WK8yvAU6UU
https://go.veeam.com/ransomware-trends-pt
https://virustotal.github.io/yara/

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação
	Percepção da Problemática
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Contribuições
	Organização da Monografia

	Fundamentação Teórica
	Ransomwares
	Variações de Ransomwares
	Leakware/Doxware
	Ransomware Móvel
	Wipers
	Scareware
	Ransomware como Serviço (RaaS)
	Variantes de Ransomwares Notáveis
	CryptoLocker
	WannaCry
	Petya e NotPetya
	Ryuk
	DarkSide
	Locky
	LockBit

	Memória Volátil - RAM
	Extração de Informação da Memória
	Array of Bytes (AOB)

	Engenharia Reversa

	Trabalhos Relacionados
	Síntese dos Trabalhos Correlatos

	Método
	Ambiente Experimental
	Instrumentação e Ferramentas

	Extração da Chave Criptográfica da Amostra Sintética
	Amostra Sintética Desenvolvida
	Processo de Extração de Chaves

	Desenvolvimento da Ferramenta AOBTool
	Avaliação da Abordagem Proposta

	Desenvolvimento AOBTool
	FindPatternInProcess
	Descrição linha a linha
	Considerações técnicas

	GetModuleBaseAddress
	Relação com ASLR

	GetProcessIdByName
	Limitações conhecidas

	Suspensão e Retomada do Processo
	Função de Entrada do Programa
	Visão Geral do Fluxo de Execução
	Descrição Passo a Passo
	Controle Temporal e Métricas
	Síntese do Desenvolvimento

	Experimentos e Síntese dos Resultados
	Execução e Captura
	Pausa do Processo e Preparação para Dump
	Despejo (Dump) com Scylla

	Análise do Dump no IDA Free
	Inspeção de Strings e Identificação de Trechos Relevantes
	Identificação da String Suspeita e Navegação por Xrefs
	Análise da Função Suspeita e Decompilação
	Análise Detalhada da Função sub_DD3B80

	Geração de Assinaturas AOB a partir da Função Identificada
	Experimento para Análise de Tempo
	Tempo de Execução X Tempo de Extração

	Síntese dos Resultados

	Conclusão
	Resposta às Questões de Pesquisa
	Principais Contribuições
	Trabalhos Futuros

	Referências

