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Resumo

O estudo de fenomenos fisicos em condigbes extremas (baixissimas temperaturas, por
exemplo) tem historicamente mostrado potencial para revelar estados inesperados da
matéria condensada, ao mesmo tempo que representa um grande desafio as técnicas de
pesquisa, tanto experimentais quanto tedricas. Um exemplo seria a descoberta da su-
percondutividade quando se conseguiu liquefazer o hélio e fazer medidas de resistividade
a baixissimas temperaturas. Portanto, seguindo esta linha de raciocinio, nesta Tese es-
tudamos o efeito Kondo em duas situagoes extremas: (i) sistemas onde a densidade de
estados do metal hospedeiro apresenta divergéncias fortes proximas a energia de Fermi;
(ii) sistemas de dois pontos quéanticos (PQs) em geometria T, onde as escalas de energia
de interesse se estendem por um intervalo de aproximadamente 20 ordens de magnitude.
Tais sistemas foram estudados via a ferramenta computacional Grupo de Renormaliza-
¢ao Numérica (NRG, na sigla em inglés). Em (i), vimos que divergéncias relativamente

~1/2 geram uma série de estados de muitos-corpos com propriedades

suaves, do tipo w
inusitadas. Divergéncias mais fortes tém, portanto, potencial de revelar mais surpresas.
Ja no sistema de dois PQs, apresentamos resultados que nos permitem orientar os experi-
mentais a como calibrar as propriedades dos PQs, de maneira a distinguir claramente dois
regimes com propriedades bastante distintas, sendo, regime de Kondo de dois estégios e
regime molecular. Para analisar o efeito Kondo em condigoes que podemos chamar de ex-
tremas (quais sejam, divergéncias fortes na densidade de estado do hospedeiro e variagoes
extremas na escala de energia) foi necessario levar o NRG a situagoes limitrofes, levando

os parametros do método a valores extremos.

Palavras-chave: Kondo. NRG. Ponto quantico.
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Abstract

The study of physical phenomena under extreme conditions (very low temperatures,
for example) has historically shown the potential to uncover unexpected states in Con-
densed matter Physics, at the same time, it poses a stiff challenge to both experimental
and theoretical research techniques. One celebrated example was the discovery of su-
perconductivity when it became possible to liquefy helium and thus perform resistivity
measurements at temperatures of a few Kelvin. Following this approach, in this Thesis
we study the Kondo effect under two extreme conditions: (i) systems where the metallic
host density of states presents a strong divergency near the Fermi energy; (ii) T-shape
double quantum dot (DQD) systems, where the energy scale of interest spans 20 orders
of magnitude. Both systems were studied using the Numerical Renormalization Group
(NRG) method. In (i), we obtained that relatively soft divergencies, of the w™'/2-type,
generate a series of many-body bound-states with peculiar properties. We thus believe
that stronger divergencies (associated to flat bands, for example) have the potential to
uncover additional surprises. As to the DQD system, we obtained results that allow us
to guide the experimentalists on how to tune the DQD characteristics in order to clearly
distinguish two regimes with very different properties, viz., the two-stage Kondo regime
and the molecular regime. To analyze the Kondo effect in these so-called extreme condi-
tions (strong host DOS divergencies and extreme energy scale variation) it was necessary

to force the NRG into high-demand scenarios, pushing its parameters to extreme values.

Keywords: Kondo Effect. NRG. Quantum dots.
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Figure 40 — (a) Armchair graphene nanoribbon made by three carbon rows (3-
AGNR) density of states (DOS), showing the very symmetric valence
(purple curve) and conduction (cyan) bands. The vertical black dashed
lines indicate the approximate position of the Fermi energy for the cal-
culations in (c¢) and (d). (b) Comparison of the quantum wire singular-
ity (A4, dashed red curve) with the 3-AGNR valence (A}, 4, dashed
purple) and conduction (Af,, 4, dashed cyan) hybridization functions
lower singularities, showing they are identical. The inset shows a sketch
of the 3-AGNR system. (c¢) Impurity DOS (blue curve, pxra) when €4
is at the singularity at the bottom of the conduction band. The result
is very similar to Figure 33(b), for the quantum wire singularity. (d)
Same as in (c) but now ¢4 is at the valence band singularity. Also like

(c). Parameter values (except for p) are as in Figure 33(b). . . . . . ..

Figure 41 — (a) Schematic diagram of the DQD system in T-shape geometry. Only
Quantum Dot (QD)g is coupled to the source and drain leads through
hoppings Vp and V. QDg and QD; are coupled by a hopping parameter
to1 and their local energies are given by ¢y and €, respectively. The
on-site QD Coulomb interactions are Uy and Uy, where we take Uy =
Uy = U, and we work in the PHS point, ie., ¢¢ = ¢ = —=U/2. (b)
A schematic representation, in the tg; — 'y parameter space, of the two
regimes present in the DQD T-shape geometry system: right lower
corner depicts the two-stage Kondo (TSK) regime, while the left upper
corner contains the molecular regime (see text). The crossover region
between these two regimes presents interesting effects resulting from
competing interactions between the molecular regime, characterized by
Jo1 =~ 4t2,U, and the Kondo couplings Jx, and Jg,, which control the
TSK regime. . . . . . . . . L
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(a) T xPP(T) vs T for U = 0.5, 'y = 0.035 and 0.0012 < to; < 0.0022
in steps of 0.0001, and for 0.0024 < t5; < 0.0044 in steps of 0.0002.
The red arrow indicates increasing ty; values. (b) Variation of both
Kondo temperatures with g1, Tk, (black circles) and Tk, (blue squares
and red triangles), for the same I'y as in (a). As expected, Tk, is very
weakly dependent on ¢y;, while T, varies by ~ 20 orders of magnitude
and takes extremely low values for the smaller ¢y, values. The different
ways of obtaining 7%, are discussed in the text. The shading on the
right side of the panel is to indicate the region where the system is
increasingly in a molecular regime, and no longer in a TSK regime.
(c) T x9P(T) vs T for the same parameters as in panel (a). The
red arrow has the same meaning as in panel (a). The horizontal gray

dashed lines in panels (a) and (c) indicate the values of the Wilson

criterion parameter «; discussed in the text. . . . . . . ... ... ...

Tx@Pr vs. T results (colored solid curves) compared to the results
obtained through an effective STAM (black dashed curves) for different
values of ty;. Parameters are Uy = U; = 0.5, ¢g = 1 = —U2, and I'y =
0.035. (a) 0.0012 < t5; < 0.0022 in steps of 0.0001 and 0.0024 < tg; <
0.0038 in steps of 0.0002; (b) 0.0040 < to; < 0.0052 in steps of 0.0002;
(¢) 0.0054 < to; < 0.0070 in steps of 0.0002; (d) 0.0072 < t; < 0.0082
in steps of 0.0002. The inset in panel (b) is a zoom in of the data in
panel (a) of the local moment fixed point temperature range. Panel (a)

displays excellent agreement with the effective model in that ¢, range,

which dissipates for higher to; in (b)-(d). . . . ... ... ... .. ...

Lepp vs tor results (blue circles), as obtained through the fittings done

in Figure 43. Notice the initial near linear dependence of I'cs; on #¢;.

(a) Tx@Pr vs T, for 0.002 < I'y < 0.042. The system is in the PSH
point, U = 0.5, and tp; = 0.0018. The red arrow indicates the direction

of decreasing T'g. (b) Zoom in, around the LM temperature interval, of

the data in panel (a). The legend applies to both panels. . . . .. ..

(a) TxP9P vs T for several Ty values. Same parameters and same
colors as in Fig. 45. The red arrow points in the direction of decreasing
[’y curves. The blue arrow points to the peculiar crossing of all curves

in a single point. (b) Zoom in, around the LM temperature interval, of

the data in panel (a). The legend applies to both panels. . . . .. ..
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Figure 47 —

Figure 48 —

Figure 49 —

Figure 50 —

Figure 51 —

Figure 52 —

Figure 53 —

(a) QDg spectral function Ag(w) for I'y = 0.035, U = 0.5, and o, =
0.0022, in the PHS point. The inset shows the antiresonance ‘inside’ the
Kondo peak. (b) QD; spectral function A;(w) for the same parameters
as in (a). The inset shows a zoom of the very small Kondo peak in
QD;. The spectral functions in both panels integrate to unity.

Comparison between the spectral functions A; (w) (colored solid curves)
and A.sr(w) (dashed black curves) in the range 107 < wD < 1072 for
several values of tg; (as indicated in the legend). Parameters used are
0.0012 < tg; < 0.0024, U = 0.5, I'y = 0.035, and the system is in the
PHS point. The corresponding values of I'cy; are indicated. Note that

for tg; = 0.0024 there is no agreement between A;(w) (solid curve) and

Acpp(w) (dashed curve). . . ..o Lo

Ground state (7'~ 10727 interdot spin correlations. (S, -Sy) vs to; for

U =0.5, Ty =0.035, with the system in the PHS point. . . . ... ..

(a) (Sy - S)) vs T for 0.0012 < to; < 0.0022, in steps of 0.0001, and
for 0.0022 < tg; < 0.0036, in steps of 0.0002. Parameters used are
U = 0.5, I'g = 0.035, and system in the PHS point. The red curve is
for tp; = 0.0022. The yellow circles indicate T, the orange triangles

Jo1 = 4t3,U, and the green triangles Ty,. (b) and (c) are progressive

zoom ins on the data in panel (a) at higher temperatures. . . . . . ..

Ground state (§0 . 5_"1> vs. [y for g1 = 0.0018 (red circles), tg; = 0.0040
(green squares), and to; = 0.0082 (blue triangles) for 0.002 < I'y <
0.042, U = 0.5, and system in the PHS point. The horizontal light-

gray line indicates the full-singlet value (S, - S;) = —3/4. . . .. ...

(a) Ground state (S - S;) vs Ty for 0.0012 < to; < 0.0082 (from left
to right, see horizontal arrow). (b) Re-scaled 0.0012 < to; < 0.0023
results, showing their collapse onto the ty; = 0.0012 curve (black solid
line). (c) (Sy-S,) results for the interval 0.0024 < to; < 0.0082, showing

that these results do not share universality with the lower ¢y; results in

panel (b). . . . ..

<§0 . §1> color map in the ¢y, —I'g parameter space. The solid line is
defined as (S, - S1)(to1, To) = —0.027 and delimits the location of the

TSK regime, as defined in this work. . . . . ... ... ... ... ...
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Acronyms list

NRG Numerical Renormalization Group
PHS Particle-hole Symmetry

QD Quantum Dot

QDs Quantum Dots

FL Fermi Liquid

RG Renormalization Group

SIAM Single Impurity Anderson Model
SOI Spin-Orbit Coupling

Tx Kondo Temperature

TRS Time-Reversal Symmetry

RL Resonant Level

HF Heavy Fermion

HFs Heavy Fermions

QCP Quantum Critical Point

SCES Strongly Correlated Electron Systems
AIM Anderson Impurity Model

SW  Schrieffer—Wolft

LM local moment

Er Fermi energy



CBP Coulomb blockade peak

TSK two-stage Kondo
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CHAPTER ].

Introduction

In condensed matter physics, we are interested in investigating the physics of diverse
systems (12). An area of great interest, due to its relevance in understanding real sys-
tems, is the study of Strongly Correlated Electron Systems (SCES). Usually, SCES are
characterized by electron motion being restricted by the positions and motions of all other
electrons, a consequence of Coulomb repulsion. By definition, all materials may exhibit
some degree of correlation, in ionic systems or in ideal metals, the essential properties can
be described by simplified models that neglect such correlations or treat them with ap-
proximations, as in the case of the free-electron Fermi gas or the Fermi Liquid (FL). But
in SCES these approximations are insufficient because it is hard to solve the many-body

problem involving a large number of particles.(13, 14, 15).

The complexity in SCES arises from the competition among multiple degrees of free-
dom which collectively determine the ground state (16). Remarkably, one of the most
significant manifestations of SCES are Heavy Fermion (HF) metals (17), in which elec-
tronic excitations exhibit effective masses up to a thousand times greater than those of
conventional metals. In these systems, the Kondo effect, associated with the screen-
ing of localized magnetic moments by conduction electrons, plays a key role. Heavy
Fermions (HFs) frequently display non-Fermi Liquid (NFL) behavior,evidenced by the
breakdown of Landau’s description. Such behavior typically emerges close to a Quantum
Critical Point (QCP) (18), corresponding to a continuous zero-temperature phase transi-
tion.

Since its discovery in the 1930s (19), the Kondo effect has become a key concept
since then, significantly advancing the comprehension of SCES. Its initial detection dates
back to 1934, with Haas et al. reporting an unusual reduction in the electrical resistance
of some metals at low temperatures. However, contrary to the expected steady decrease
predicted by Matthiessen’s rule (20), the resistivity exhibited a minimum, a characteristic
subsequently found in various dilute metallic alloys containing some amounts of magnetic
impurities. The physics behind this minimum remained elusive until 1964, when Jun

Kondo formulated a theory based on the exchange interaction between localized magnetic



moments and conduction electrons (21). By employing the s-d exchange Hamiltonian, now
recognized as the Kondo model, and utilizing perturbation theory, he demonstrated that
many-body scattering processes result in a logarithmic contribution to resistivity at low
temperatures. This analysis introduced the Ty, an energy scale defining the resistivity
minimum and the transition from weak to strong coupling. Although its exponential
expression is reminiscent of BCS theory, the Tk represents a crossover rather than a true
phase transition. However, Kondo’s perturbative approach predicted a divergent increase
in resistance as T' — 0, a theoretical limitation. Kenneth Wilson solved this in 1974 by
developing the NRG (22), establishing a nonperturbative approach able to describe the

full temperature range of Kondo physics.

The physics of this effect can be analyzed using two standard models. The first,
the Anderson Impurity Model (AIM), elucidates the hybridization between localized or-
bitals and conduction band states. The second, the Kondo Hamiltonian, derived via the
Schrieffer—-Wolff (SW) transformation, effectively projects the Anderson model into the
subspace of localized magnetic moments. This projection yields an antiferromagnetic ex-
change Hamiltonian that governs the interaction between the impurity spin and the local

spin density of conduction electrons.

Below T}, it is possible to observe the emergence of a strongly correlated state. This
occurs because, at this energy scale, the localized magnetic moment is effectively shielded
by the surrounding conduction electrons. The interaction between the localized moment
and the conduction electrons, characterized by repeated spin-inversion scattering events,
leads to the formation of a collective ground state. Consequently, the system no longer
exhibits the properties of a free magnetic ion but rather behaves as a nonmagnetic scatter-
ing center. For a complete understanding of this phenomenon, it was necessary to develop
non-perturbative methods, since perturbation theory fails to describe systems with strong
Coulomb interaction. These included Anderson’s scaling theory, Wilson’s NRG, and Noz-

ieres’s framework (23), which defined the low-energy behavior as a renormalized FL.

Progress in nanotechnology has enabled the artificial realization of the Kondo effect
in Quantum Dots (QDs), marked by substantial progress in the 1990s (24). These QDs,
often regarded as artificial atoms, allow for precise control over parameters that govern
the Kondo phenomenon, such as the number of confined electrons, the local level energy,
and the coupling (hybridization) with conduction electrons in the leads. Unlike traditional
dilute metals, where the Kondo effect manifests as increased resistivity, in quantum dots
it appears as an enhancement of electrical conductance, which at very low temperatures
can reach the unitary quantum limit of G = 2¢%/h. A distinctive signature of this effect
is the zero-bias anomaly, observed as a sharp resonance peak in electrical conductance in
the density of states at the Fermi level. The tunability of these parameters, including the
bias, allows researchers to directly adjust T, making quantum dots an ideal platform for

exploring the fundamental properties of the Kondo effect under controlled conditions.



Extensions of this phenomenon beyond a single impurity involve multichannel and
SU versions (25, 26), notably the Kondo lattice model. In this model, a dense lattice of
magnetic moments interacts with conduction electrons, leading to heavy fermion metals.
These metals exhibit very high effective masses and a balance between the local Kondo

effect and long-range magnetic interactions (27).

Recently, growing attention has been directed to the SCES. However, from the rig-
orous point of view, many phenomena still require further elucidation. Despite extensive
study, the Kondo effect remains a valuable probe of correlated systems. The Kondo effect
can be observed through a variety of experimental techniques, including scanning tun-
neling microscopy and transport measurements (28, 29). Superconductivity in materials
is significantly influenced by the Kondo effect. For example, in Pb,_,Tl,Te, supercon-
ductivity was found due to a charge Kondo effect (30). Furthermore, in Nb thin films,
residual superconductivity was observed even in the presence of the Kondo effect (31).
Another field that has seen extensive research is the study of the Kondo effect in topolog-
ical insulating systems. Notably, topological insulator quantum dots have been found to
exhibit a spin-orbital Kondo effect (32). In addition, emerging research investigates the
Kondo effect in kagome lattices, well-known for its flat energy bands. The presence of
these flat bands alters the dependencies of the Kondo temperature and coherence temper-
ature, substituting exponential relationships with linear and quadratic ones, respectively
(33). In flat-band systems, the Kondo effect can be simplified to a two-electron molecular

Kondo problem, resulting in distinct thermodynamic and dynamic characteristics (34).
This thesis is organized as follows:

Chapter 2 - Kondo Effect. This chapter presents an analysis of the Kondo phe-
nomenon, analyzing its physical effects and theoretical implications, as well as its practical
uses. Furthermore, the Kondo and Anderson models are introduced, providing the con-

ceptual basis for studying the Kondo problem.
Chapter 3 - The Numerical Renormalization Group Approach. In this chap-

ter, we describe the Numerical Renormalization Group (NRG) method and explain how
this approach can be used to solve the Kondo problem. The chapter details the funda-
mentals of the technique and its relevance in investigating systems with strong electron

correlations.

Chapter 4 - Resonant Level. In this chapter, we investigate the behavior of a
non-interacting Resonant Level (RL) when positioned near (or exactly on) the singularity
w2 which naturally arises in a one-dimensional quantum wire. We highlight its most
relevant characteristics and, using the Anderson model, analyze the effects caused by the
presence of an impurity interacting with a host system whose energy band presents a

divergence in the density of states.

Chapter 5 - 1D quantum wires with impurities: NRG approach . This chap-

—-1/2

ter investigates the Kondo state within a metallic system exhibiting a w singularity



in its density of states, characteristic of one-dimensional chains. By employing the Sin-
gle Impurity Anderson Model and utilizing Numerical Renormalization Group analysis,
we demonstrate the profound influence of Hubbard interaction on the bound state and
its corresponding spectral features. As the impurity level ¢4 approaches this singularity,
Kondo characteristics re-emerge, and the local moment fixed point demonstrates resilience
against charge fluctuations. Furthermore, we propose an experimental setup employing
armchair graphene nanoribbons to realize these phenomena.

Chapter 6 - Modeling the Two-Stage Kondo Regime via NRG . In this
chapter, we investigate the behavior of a compound impurity in a metal, which can
explore different configurations where its net magnetic moment can be screened by the host
electrons. Here, we investigate a two-stage Kondo (TSK) system, in which the screening
process occurs successively at distinct and progressively lower energy scales. In contrast,
impurities may prefer a local singlet disconnected from the metal. This competition is
decided by the tuning of the couplings in the system. A T-shaped double quantum dot
geometry, where a ’dangling’ dot is connected to the current-carrying conductors only
through another dot, represents a flexible system in which these different regimes can be

explored experimentally.



CHAPTER

Kondo Effect

Quantum impurity models are employed to describe scenarios where an atom or
molecule is integrated into a host material (35). These models were initially developed to
examine the behavior of transition metal ions, which, despite typically exhibiting magnetic
characteristics, are situated within non-magnetic metals. Such systems can be conceptu-
alized as the interaction between two subsystems: a localized system, akin to a magnetic
impurity with limited degrees of freedom, and an infinite-dimensional system character-
ized by a continuous spectrum (36, 11). The Kondo effect, a many-body phenomenon
associated with magnetic impurities, is intrinsically tied to the concept of electron local-
ization, a fundamental aspect in the study of strongly correlated materials, particularly
those containing atoms with partially filled d or f orbitals (16). Within these materi-
als, the competition between localized magnetic moments and a collective of delocalized

electrons leads to rich physics.

To understand the physics involved in the Kondo effect, it is important first to consider
how the concept of electronic localization appears within the periodic table. The Kmetko-
Smith diagram, Fig. 1(a), provides a clear representation of this organization, showing
that as one moves towards the top right of the diagram, electrons become progressively
more localized (37, 38). Metals located in the lower left region exhibit itinerant d orbitals,
which favor the occurrence of superconductivity at low temperatures. However, metals
located in the upper right region of the periodic table exhibit strongly localized f electrons,
which commonly lead to the formation of magnetic structures, such as antiferromagnetic

orderings.

Thus, it may suggest that the physics of the Kondo effect is closely related to the
presence of localized magnetic moments, which consist of spins confined to specific sites
within the crystal lattice. One of the classical manifestations of these moments is the

magnetic susceptibility that follows the Curie-Weiss law at high temperatures, expressed
by
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Figure 1 — (a) The Kmetko-Smith diagram shows growing electron localization in d and
f compounds. (b) Simplified temperature-field phase diagram of the Kondo
effect. For T, B > Ty, the local moment remains unscreened with Curie-
like susceptibility. For T, B < Tk, it becomes screened, acting as an elastic
scatterer in a Landau Fermi liquid with Pauli susceptibility x ~ 1/Tk. From
Ref. (1).
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In Eq. 1, x represents the magnetic susceptibility, n; is the number of magnetic
moments per unit volume, M is the magnetic moment associated with each localized
center, T' is the absolute temperature, and 6 is the Weiss constant, which reflects the
interactions between the magnetic moments. This behavior may highlight the localized
nature of the moments and provides a way to analyze magnetic interactions in systems
with impurities.

Having established the concept of local moment, we can now explore the Kondo Ef-
fect conceptually. This effect describes the process by which a magnetic impurity, which
exhibits Curie-type magnetic susceptibility at high temperatures, becomes “screened” by
the spins of conduction electrons, forming, at low temperatures and magnetic fields, a
spinless scattering center, effectively destroying the MB singlet state. This screening pro-
cess occurs continuously and begins when the temperature or magnetic field drops below a
characteristic energy scale known as the 7%, which will be explained in detail later. These
“quenched” magnetic moments act as strong elastic scattering potentials for the electrons,
leading to an increase in electrical resistivity due to the presence of magnetic impurities,
this resistivity minimum is the hallmark of the Kondo effect. Figure 1(b) illustrates the
phase diagram of the Kondo effect with respect to temperature. Within this diagram,
B denotes the magnetic field, and 1" represents the temperature. At temperatures and
magnetic fields significantly higher than T}, the local moment remains free, displaying a
Curie-type susceptibility. Conversely, at low temperatures and magnetic fields relative to

Tk, the local moment is fully compensated. This state manifests as an elastic scattering



center within a Landau Fermi liquid, characterized by a Pauli susceptibility on the order

2.1 Historical and Fundamental Aspects

The Kondo Effect is a physical phenomenon whose roots date back to early studies
of dilute magnetic metal alloys, characterized by the presence of low concentrations of
impurity atoms embedded in a host metal. These alloys, called dilute, are obtained
through the controlled introduction of distinct elements into the base metal, a process
that induces specific changes in properties such as electrical resistivity and the magnetic
behavior of the system (39). It was first observed experimentally over nine decades ago.
In pioneering experiments, De Haas, De Boer, and Van den Berg (1934) measured the
resistance of impure gold wires and discovered an unexpected resistivity minimum at low
temperatures (19).

In metals such as gold, it was initially assumed that electrical resistance should de-
crease with lowering temperature, as the interaction with phonons becomes progressively
weaker. It was assumed that, at extremely low temperatures, the resistance would stabi-
lize at a constant value, determined primarily by impurities in the material. However, as
shown in Fig. 2(a), based on data from the study conducted on (2): unexpected behavior
was observed. The resistance of gold and later of other metals reached a minimum and,
instead of remaining constant, increased again as the temperature continued to drop.
The behavior described earlier lacked a complete theoretical explanation until the 1960s,
when that was achieved. Another fundamental aspect of the Kondo effect concerns its
universality, that is, when the impurity properties are rescaling as a function of the Kondo
temperature, all corresponding curves collapse into a single universal form. This is shown
in Fig. 2(b).

Below, we present the mathematical formulation used to describe a system undergoing
the Kondo effect.

2.1.1 Exchange s-d Model

The s-d exchange model, proposed by Zener in 1951 (40), describes the effects of a
magnetic moment on conduction electrons (this phenomenon is exemplified in metallic
systems containing magnetic impurities). When considering a single magnetic impurity
embedded into the metal, the interaction between the conduction electrons and the im-

purity’s magnetic moment can be described by a Hamiltonian given by

Hsd = Z Jk,k' (S+C};7¢Ck/¢ + S_CL7TC]€'7¢ + SZ (CITC,TCk’,T - CJIE:,J,Ck’,i)) s (2)
k,k'
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Figure 2 — (a) Evidence for a resistivity minimum in the alloy system MoxzNby,, from
Ref. (2). (b) Variation of resistivity with temperature, due to scattering
by magnetic ions, exhibiting a universal behavior determined by the Kondo

temperature. From Ref (3).

Eq. 2 describes a Heisenberg-like interaction between the conduction electrons and a
localized moment, governed by an exchange coupling denoted by Jj, 5. The spin operators
associated with the impurity, S, and S* (defined as S, & iS,), characterize a single
impurity with spin S. This interaction can induce spin flips in the conduction electrons
as a result of scattering caused by the impurity. In addition to the term shown in Eq. 2,
a full description of the Kondo effect must also include a term for the host metal, which

represents the conduction electrons,

Hcond - Z ekclt;7o'ck70" (3)
k,o

Here, H,.,,q denotes the Hamiltonian of the conduction electrons. The parameter €
corresponds to the energy of an electron with momentum k, while the operators CLU
and ¢y, represent the creation and annihilation operators, respectively, for electrons with

momentum k and spin o.

H = Hsd + Hcond- (4)

By setting the coupling constant Jj s to zero, the system begins to behave like an isolated
ion, which leads to the manifestation of a free magnetic moment. Under these conditions,

the susceptibility follows Curie’s law.



2.1.2 Solution proposed by Jun Kondo

One explanation for the emergence of the resistance minimum in metals has been
proposed based on experimental evidence, which revealed a correlation between two key
factors: first, the observation of Curie-Weiss behavior in the magnetic susceptibility of
impurities, indicating the presence of localized magnetic moments, and second the ap-
pearance of a minimum in the electrical resistance curve. This correlation motivated Jun
Kondo, a Japanese physicist, to pursue a theoretical investigation of the phenomenon in
1964. Kondo showed that the minimum in electrical resistance arises from the interaction
between the spin states of localized and conduction electrons. To describe this, he em-
ployed the s-d model and applied perturbation theory up to third order in the exchange
coupling Jgi. According to linear response theory, determining the resistivity requires
calculating the T-matrix associated with the problem, which can be achieved through the

computation of the transport lifetime 71 (¢, k), defined by the following expression (41)

di’
(2m)*’

= 27TCimp/5(6k — 6k1> |Tkk/‘2 (1 — COS 9’) (5)

71 (k)

where ¢y is the impurity concentration and ¢ is related to the scattering angle. The
matrix elements of the scattering operator T'(e1), evaluated between Slater states in which
a conduction electron is scattered from |k, o) to |k, 0’), take the following forms at the

lowest order in Jy

(K' AT (eN)|k, N ay = JiwS:,

(K' AT () |k, ) ay = JawS™, ©)
(K' LTk, M ay = —JewS-,

(k:’,¢ ‘T(€+)‘ka¢>(1) = Jw ST

Assuming an exchange coupling independent of k, given by Jyi = N%? where Nj is the

number of sites, and considering parabolic dispersion for free electrons, €(k) = ﬁ; 7’;2, with

bandwidth D such that €, e < D, the expression for the transport lifetime at the Fermi

level, up to second order in J, is:

2e%ep
krp) = .
) = e PS5 1 1) ")

From the previous result, the impurity resistivity due to impurities can be written as



B - 3rmJ2S(S + 1)
e 2e2hep

(8)

where m is the electron mass, J the exchange coupling constant, S the impurity spin, e
the elementary charge, A the reduced Planck constant, and er the Fermi energy. This
term is temperature-independent and therefore cannot explain the observed increase in
resistivity at low temperatures.

To capture the increase in resistivity at low temperatures, the calculations must be
extended to third order in J. This requires first determining the second-order terms in
the T-matrix, as they contribute to the third-order corrections. Kondo carried out these
calculations and obtained an expression in which the resistivity depends explicitly on

temperature, taking the following form:

mp — —
Rspln 262h€F (1 4JPO(€F) In ( D : (9)

By taking all terms into account, the total resistivity of a metal can be expressed as

kpT
R(T) = aT® + ¢impRo — CimpRy In (g) , (10)

where aT® term represents electron-phonon scattering, The ¢, Ro is the temperature-
independent potential scattering from impurities and the last term is related to the pres-
ence of magnetic impurities in the material and is only relevant at low temperatures.

Kondo’s foundational research elucidated the experimental observation, establishing
that its core mechanism stems from the interplay between localized magnetic moments
and conduction electrons. He clarified that the unusual temperature-dependent electri-
cal resistivity, characterized by a minimum at low temperatures, is not attributable to
intrinsic properties of the impurity, such as its charge. This interaction results in a dis-
tinctive resistivity profile as a function of temperature, where the minimum arises from
the cumulative effect of individual magnetic moments, rather than from correlations be-
tween localized spins. Kondo’s theoretical predictions show excellent agreement with the
experimental data:

15

1 The minimum temperature Ty, is approximately proportional to ¢;;,,, and is given

by

RN\ 15
Tmin:<5a) CiI{Ip' (11)



(d The depth of the minimum is approximately proportional to the concentration c;.

(A The dependence on log T" has been confirmed experimentally, especially in gold-iron

alloys.

Kondo’s work marked a advance in the understanding of a phenomenon studied for
over three decades. His theory explained the abrupt increase in resistivity in metals
with impurities, introducing the concept of the T, but it had limitations: it predicted
a divergence in resistivity below T} that was not confirmed experimentally. Despite
this limitation, his model significantly advanced research on the Kondo effect, and a full
explanation of the phenomenon was only achieved in the 1970s with the development of
the numerical renormalization method, a topic that will be discussed in greater detail in

the next chapter.

2.1.2.1 Kondo Temperature

The Ty is usually taken as a central energy scale, though perhaps more a crossover
indicator than a strict boundary, marking when a magnetic impurity begins to couple
strongly with the conduction electrons. This characteristic temperature depends expo-
nentially on the exchange coupling J and the density of states p at the Fermi level, and

can be expressed by the following equation:

Tx ~ De V/UP), (12)

An important quantity is the impurity spectral function, A4(w), which characterizes
the density of electronic states localized at the impurity as a function of the energy w.
Within the Kondo regime, this function is characterized by a sharp peak situated at
the Fermi level, commonly referred to as the Kondo resonance. The bandwidth of this
resonance is directly correlated with the Kondo temperature, Tx. Consequently, exper-
imental techniques like scanning tunneling spectroscopy can be employed to probe the
spectral function, enabling the direct determination of T from the measured width of
the Kondo resonance. In the absence of interactions U = 0, the spectral function is a
simple Lorentzian resonance centered at ¢4, with a width determined by the hybridiza-
tion I'. The three-peak structure emerge when strong Coulomb interaction U is present.
Fig. 3 shows the spectral function A(w) for an impurity in an interacting system. It high-
lights three main regions, specifically in the case where the system exhibits particle-hole
symmetry.

The lower Hubbard band, located at —U/2 corresponds to occupied states and rep-
resents the energy required to remove an electron from the impurity orbital, driving the

transition from single occupation to zero occupation. The Kondo resonance, or Kondo



peak, is directly related to the screening of the impurity spin caused by conduction elec-
trons, as a result of low-energy excitation processes. This peak does not persist at tem-
peratures above the Kondo temperature, highlighting its direct connection to the effect.
Furthermore, in the presence of a magnetic field, the peak splits into two (42). Similarly,
the upper Hubbard band, located at U/2 on the positive side of the spectrum, corresponds
to unoccupied states. It represents the energy required to add a second electron to the
impurity orbital, driving the transition from single to double occupancy, which involves

overcoming the Coulomb repulsion U.

Kondo resonance

A(w)

lower Hubbard
band
]

=Un 0 urn
w

upper Hubbard
band
I

Figure 3 — Spectral function characteristic of the Kondo regime, highlighting the Hubbard
peaks located at high energies and the Kondo resonance centered at the Fermi

level. From Ref. (4).

2.1.2.2 Kondo cloud

There is a spatial scale known as the Kondo length, denoted by £, which character-
izes the extent of the so-called Kondo cloud (6, 43). This cloud is a spatial manifestation
of the quantum correlations between a localized magnetic moment and the conduction
electrons in a metal and arises due to the Kondo effect. Within this region, the elec-
trons interact strongly with the impurity’s spin, forming a singlet (non-magnetic) state.
Outside the Kondo cloud, the electrons do not couple directly to the impurity’s magnetic
moment at low energies. They feel its influence only through an effective potential that
becomes a scattering center (responsible for the increased resistivity of the metal at low
temperatures). This type of interaction induces a characteristic phase shift of 7/2 in the
Fermi energy.

Figure 4, right panel, illustrates the situation for 7' > Tk, where the electrons interact
only weakly with the impurity, leaving the impurity spin essentially free. In contrast, the
left panel shows that for T" < Tk, the impurity strongly interacts with the collective state
of the metal’s conduction electrons, giving rise to the Kondo cloud that surrounds and

screens it. Mathematically, the extent of the Kondo cloud is expressed by
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Figure 4 — Left panel: when T' < Tk, the impurity strongly affects the conduction elec-
trons, which begin to gather around it, forming a singlet state. Right panel:
for T' > T, the impurity (red arrow pointing upward) interacts weakly with
the conduction electrons (blue arrows pointing downward), having minimal
influence. From Ref. (5).

where vp represents the Fermi velocity. In quantum dot experiments, the characteristic
temperature of the Kondo effect is typically below 1K and can be tuned by the gate
voltage V;. Considering a Fermi velocity of the order of vp = 5 x 10°, m/s, the spatial
extent associated with the phenomenon reaches approximately 3 pum (44, 45).

Due to this macroscopic spatial scale and the nonlocal nature of the correlations,
direct observation of the Kondo cloud remains challenging. In (6), researchers performed
Kondo cloud measurements in a setup consisting of a quantum dot containing an unpaired
spin, which simulates a magnetic impurity, coupled to a one-dimensional (1D) ballistic
channel of extended length. This channel had multiple conduction modes to allow electron
flow and included three quantum point contact (QPC) gates, positioned at distances of
L =14 pum, L = 3.6 um, and L = 6.1 um, respectively, from the quantum dot
(QD). The device is operated by forming a Fabry-Pérot (FP) interferometer. The length
of each cavity corresponded to the distance between the QD and the respective QPC
used. By varying the voltage applied to the QPC gate, the cavity could be adjusted to or
from resonance, thus modifying the electron density within it. This variation disturbed
the electron density and generated oscillations in the Kondo temperature measured in the
QD. Analysis of the amplitude of these oscillations at different distances allowed us to
experimentally determine the spatial extent of the Kondo cloud.

Figure 5 presents an analysis of the relationship between the Fabry-Pérot cavity (FP)
length and the Tk, aiming to highlight the spatial extent of the Kondo cloud. In the
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Figure 5 — Amplitude of the Kondo temperature oscillations, Tk, plotted as a function of
the Fabry-Pérot cavity length L and normalized by the characteristic Kondo
cloud length, £x. Experimental data for cavities of 1.4 pum, 3.6 pum, and
6.1um collapse onto a universal curve, demonstrating that x determines the
spatial extent of the Kondo cloud. The dashed line shows the theoretical
relation, In(Tx max/Tko) = —nIn(L/Ek) with n = 0.47, obtained via numerical
renormalization group (NRG) calculations. From Ref. (6).

graph, the vertical axis corresponds to

TK max
i) u
Tro (14)

that is, the logarithm of the ratio of the maximum measured T} to the unperturbed
Kondo temperature. The horizontal axis displays the FP cavity length L, normalized by
the characteristic length of the Kondo cloud £x. The experimental data obtained for three
cavities of different lengths (1.4 pym, 3.6 um, and 6.1 pum) collapse into a single universal
curve when expressed as a function of i, demonstrating that this is the relevant length
parameter for the phenomenon.

The dashed theoretical curve, derived from NRG calculations, is described by the

expression

In (T;;X) = —nln (é{) : (15)



with n = 0.47, indicating that the amplitude of the Tk oscillations decays logarithmically
with increasing L. For L < &g, a strong perturbation of the Kondo cloud is observed,
reflected in significant Ty oscillations. In contrast, for L > £k, the FP cavity is outside the
cloud’s influence region, resulting in less pronounced oscillations. These results constitute
direct evidence for the existence and spatial shape of the Kondo cloud, confirming its

sensitivity to perturbations within a characteristic length.

2.1.3 Single-impurity Anderson model: local moment formation

The Single Impurity Anderson Model (SIAM), proposed by P. W. Anderson in 1961
(46), was designed to describe the emergence of localized magnetic moments in metallic
alloys. These alloys exhibit localized moments, generally associated with d or f orbitals,
which, despite being strongly confined spatially, can still interact with the electrons of
the host metal through the process of hybridization. To accurately represent the physical
phenomena involved in these systems, Anderson formulated a specific Hamiltonian that

incorporates these fundamental interactions

H = Hyaen + Himp + Hiyp (16)
where
Hyatn = Z €xNko (17)
ko

where 7y, is the number operator representing the occupation of the conduction state
with momentum £ and spin o, and ¢, is the energy of that conduction state. On the
other hand

Hirnp = Z Gdﬁdg + UﬁdTﬁcu (18)

the term Hiy,p describes the impurity, where €4 is the energy of the discrete and localized
impurity level, ¢ is the spin, and 74, is the number operator for the impurity electron
with spin 0. The second term, Ufig47q, represents the Coulomb repulsion U between two
electrons when the impurity level is doubly occupied, where f4 and 74, are the number

operators for spin-up and spin-down electrons, respectively. Finally

thb = Z Vk (C};Gd(, + dj;.cko') (19)

ko



here, ¢} (cry) is the creation (annihilation) operator for an electron in the conduction
band with momentum % and spin o, and d! (d,) is the creation (annihilation) operator
for an electron in the impurity level with spin ¢. The hybridization between the d level
and the conduction band constitutes a fundamental interaction that enables the exchange
of electrons between these two systems, allowing them to hop from one to the other.
The coupling strength associated with this interaction is described by Vi, which, for
convenience, will be considered independent of the wave vector k, and thus assumed to

be a constant equal to V. Another fundamental term is the so-called I', defined as

[ =aV2p(Er) (20)

The parameter I' quantifies the rate of electron transfer between the impurity level
and the conduction band of the host metal. In this context, p( EFr) represents the density
of states of the host metal at the Fermi energy.

The Anderson model has two important limits.

1. The first is the atomic limit, in which we consider only the H;,,, Hamiltonian.
This contains the elements responsible for the formation of localized moments and

presents four states, defined by

a) Not magnetic

0) ;3 Eo=0 (21)
|Ti,> ; ETJ,:25d+U

b) Magnetic

|1 5 Ey=eq (22)
4 B =cd

Figure 6 illustrates the electronic phases of the Anderson impurity model in

the atomic regime, highlighting the energy conditions (such as e;+U/2,U, —U)

that define these phases. The vertical axis corresponds to the impurity orbital

energy, Fq4+ U/2, while the horizontal axis represents the Coulomb repulsion

energy, U, which quantifies the energetic cost of placing two electrons in the

same orbital.

The diagram is divided into regions corresponding to distinct electronic states.
In the upper-left corner, the Kondo effect (d°) prevails, where the impurity

orbital, either vacant or doubly occupied, hybridizes strongly with the metal’s
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Figure 6 — Representation of electronic phases in the Anderson impurity model consider-
ing the atomic regime. From Ref. (7).

conduction electrons. This results in substantial charge fluctuations, produc-
ing a state without a net magnetic moment. In the lower-left corner, a mixed-
valence state (d?) dominates, in which the impurity orbital is typically doubly
occupied, but its relatively low energy still allows strong hybridization, sus-

taining charge fluctuations.

A large shaded area on the right represents the local-moment phase. Here,
the Coulomb repulsion U is sufficiently strong to prevent double occupancy
of the impurity orbital, which is therefore singly occupied (f!), forming a
stable local magnetic moment. The interaction of this moment with conduction
electrons can give rise to the Kondo magnetic effect. The transition between the
mixed-valence state and the local-moment phase is governed by the competition
between hybridization, which favors the mixed-valence regime, and Coulomb
repulsion U, which stabilizes the local moment. The boundaries of these phases
are approximately defined by the lines Ey + U/2 =U and E;+ U/2 = —U.

2. The second limit concerns the formation of a virtual bound state, where a mag-
netic impurity is placed in contact with a sea of electrons. This interaction occurs
through hybridization, described by the Hamiltonian composed of Hygp, + Hpyp.
The interaction between the localized momentum and the sea of electrons results
in the formation of a quasiparticle. In strict quantum mechanical terms, a bound
state is generally defined as a state requiring energy to separate its constituent par-
ticles, resulting in negative-energy states relative to the continuum and a discrete
energy spectrum. The virtual bound state (VBS), however, does not meet this strict
definition. Rather, it is considered a resonance phenomenon associated with local-
ized orbitals (such as d or f shells in transition metal impurities) coupled to the

continuum of itinerant conduction electrons.

The VBS corresponds to a localized state whose energy level, instead of being dis-



crete, is broadened into a peak in the local density of states (LDOS) due to hy-
bridization with the metallic host. This broadening is commonly described by a

Lorentzian function:

1 A

pale) = Tle—e)? + A2 (23)

where €; denotes the effective energy of the impurity level, and A represents the
characteristic width of the resonance. This width, often referred to as the hybridiza-

tion width, is defined as

A = 7Tp0|V|2, (24)

with pg being the density of states (DOS) of the conduction electrons at the Fermi

level and V' the average hybridization matrix element.

The VBS can thus be viewed as an open quantum system, continuously exchanging
electrons with the Fermi sea. The imaginary term A in the denominator of the
retarded Green’s function, from which the Lorentzian spectral shape arises, indicates
a finite lifetime, 7 ~ 1/A. This ongoing decay and replenishment, referred to as

charge fluctuation is quantitatively captured by A.

Finally, the STAM can be transformed into a low-energy effective model using the
Schrieffer—Wolff transformation. In conditions of substantial Coulomb repulsion U, this
effective model accurately describes the spin dynamics of the Anderson impurity, forming

the foundation for analyzing the Kondo effect.

2.1.4 Introduction to Quantum Dots

QDs are nanoscale structures, typically with dimensions of about 100 nanometers,
embedded in semiconductor materials. In these confined regions, the number of free
electrons is strongly restricted, ranging from a single electron to a few hundred. It means
that electrons within a quantum dot can only occupy discrete energy levels, analogous
to the orbitals of an atom. Note that one feature of these nanostructures is the charging
energy, which corresponds to the energy required to add or remove an electron from the
QD, resembling the ionization process in atoms. Owing to these characteristics, quantum
dots are often referred to as “artificial atoms” (47, 48, 49).

Figure 7 presents a schematic representation of a quantum dot. At the center is the
system known as the QD, which is connected to the source and drain terminals, linked

to instruments for measuring current and voltage. A third terminal represents the gate



electrode (control). By allowing electron tunneling between the source and the drain, the
number of electrons NV in the QD adjusts until the total energy of the system is minimized.
Since electrons are introduced in discrete quantities, the addition of a charge e alters the
electrostatic energy, which is conveniently expressed in terms of the capacitance C of the
island (or the QD).

A change in the number of charges in a system, such as a QD, causes a modification in
its electrostatic potential. This variation is described by the charge energy. This energy
derives from the quantization of electronic levels as much as from the Coulomb repulsion
between confined electrons, playing a important role in determining the behavior of the
system (50).

(25)

where e is the electron charge and C' is the total capacitance of the QD. The factor % in
the expression % calculates the work required to charge the capacitor from its neutral
state to a charge () = ne, giving n or the number of electrons. Thus, the charging energy
represents the energetic cost associated with the insertion of an electron into QD.

This expression accounts for the quantization of energy levels and Coulomb repulsion
between confined electrons. When the temperature is sufficiently low and the applied bias
voltage is small, the energy cost to add an extra electron to the island may exceed the

available thermal energy kg7, that is:

62
kpT < — (26)

C
where kg is Boltzmann’s constant and 7' is the temperature. When this situation occurs,
the thermal energy available is not enough for the electron to cross the potential barrier
and enter the quantum dot QD. Thus, the electric current passing through the quantum
dot is blocked by low bias voltages, creating the so-called Coulomb blocking effect. This
phenomenon is essential for the functioning of devices that work in the single electron

regime, such as single electron transistors.

2.1.5 Kondo effect in quantum dots

The significant advantage of employing quantum dots for the investigation of the
Kondo effect, in contrast to metallic counterparts, is rooted in their exceptional tun-
ability and precise parameter control. While in metals the Kondo effect is observed in
intrinsic magnetic impurities, quantum dots act as “artificial magnetic impurities,” al-

lowing for precise knowledge and control of the number of confined electrons N. This
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Figure 7 — A schematic representation of a quantum dot connected to the source and
drain contacts through tunneling junctions, and to the gate via a capacitor.

capability enables switching between Kondo and non-Kondo regimes by varying N from
odd to even, and also allows the adjustment of the T through gate voltage. In addi-
tion, at sufficiently low temperatures, these spin-flip co-tunneling events form a coherent
superposition, ultimately screening the local spin and producing a spin singlet state en-
compassing both the dot and the electrodes. Note that the characteristic energy scale
governing this screening behavior is the Kondo temperature 7'k .

The Kondo singlet produces a significant impact on electronic conduction through the
QP, manifesting itself as a well-defined resonance peak, G = dI/dV, where the voltage
polarization is zero (V' = 0). This anomaly at V' = 0 constitutes an experimental evidence
more consistent with the Kondo effect in QDs (24).

At the Kondo resonance, and for temperatures 7" << T, the conductance G can reach

its maximum value by quantizing the conductance, expressed by:

2 2

GV =0T=0)="7~2 (27)
where 7 represents the transmission factor, which ideally assumes the value 7 = 1, and
the factor 2 arises from spin degeneracy.

Figure 8, depicts a quantum dot containing a single spin-degenerate energy level, €,
occupied by one electron and illustrates the fundamental co-tunneling processes respon-
sible for the conventional spin-1/2 Kondo effect in a quantum dot with an odd number
of electrons (N odd), representing the canonical example of this phenomenon in artificial
systems. It means that the dot carries a net half-integer spin (S = 1/2). Although ¢
is situated well below the Fermi levels of the neighboring leads (p and pg), therefore
suppressing direct first-order tunneling due to Coulomb blockade, higher-order tunneling
mechanisms, known as co-tunneling, remain possible.

It appears that these co-tunneling processes involve virtual, high-energy intermediate

states (depicted in orange in Fig. 8), where an electron transiently tunnels on or off the dot
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Figure 8 — Spin inversion processes give rise to the ordinary and singlet Kondo effects in
a quantum dot with spin-1/2 and an odd number of electrons N. The highest-
energy electron occupies the spin-degenerate level ¢y, and the ground states
with S, = :l:% (green panels) are connected by co-tunneling events through
barriers with rates I'y, and I'g. From Ref. (8)

at an energy cost approximately equal to U, the on-site Coulomb energy. Actually, such
processes can induce spin flips of the confined electron, for example, a spin-up electron
may tunnel out of the dot and be promptly replaced by a spin-down electron from the
leads. At low temperatures, a coherent superposition of all possible spin-flip co-tunneling
events leads to screening of the localized spin on the dot by conduction electrons from
the leads. Hence, the resulting many-body entangled state, a spin singlet, characterizes
the Kondo effect.

2.1.5.1 Experimental observations

Figure 9 illustrates the conductance in the linear-response regime (G = I/V) of a
quantum dot as a function of gate voltage (V) at two electron temperatures: 45 mK
(solid line) and 150 mK (dashed line). By varying V, the electrostatic potential of
the dot is tuned, controlling the number of confined electrons (IN), with each Coulomb
blockade oscillation corresponding to the addition of a single electron. In the valleys be-
tween conductance peaks, where transport is suppressed, the parity of N can be inferred
from the spacing between peaks and supported by magnetic field measurements. A clear
temperature-dependent distinction is observed: valleys with odd N (e.g., 3, 5, 7) display
higher conductance at the lower temperature, which decreases as temperature increases,
reflecting Kondo screening of a localized spin. In contrast, even-N valleys (e.g., 2, 4, 6)
show conductance that rises with temperature, indicative of thermally activated trans-
port without Kondo correlations. This alternating pattern between odd and even valleys
demonstrates the tunable nature of the Kondo effect in quantum dot systems.

Another key experimental signature of the Kondo effect in quantum dots is the zero-

bias anomaly in the differential conductance (df/dV’) when a bias voltage (V') is applied
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Figure 9 — The linear conductance, defined as G = I/V, was recorded as a function of the
voltage applied to the gate (V'), at point 1, under a null magnetic field (B = 0),
for a voltage of 7.9 mV. The measurements were performed at two different
temperatures: 45 mK, represented by the solid line, and 150 mK, indicated
by the dashed line. Planck’s constant (h) is used as a reference. From Ref.

(9).
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Figure 10 — The differential conductance dI/dV was measured at different temperatures
(45 to 270 mK), with the gate voltage centered in the intermediate valley.
The observed peak grows logarithmically with temperature, while its width
increases linearly, with a slope of 4.8 kB. The asymmetry in the peak at zero
bias indicates a difference between I';, and I'g coupling. From Ref. (9)

between source and drain. This anomaly appears as a pronounced peak at zero bias.
Fig. 10 illustrates dI/dV versus source-drain voltage (Vi) at various temperatures (45
mK to 270 mK), measured at the center of a “Kondo valley” (i.e., for an odd number of
electrons).

At the base temperature of 45 mK (bold curve), a sharp peak appears at Vy; = 0,
representing the Kondo resonance, which can be seen as a narrow feature in the dot’s
density of states pinned to the leads’ Fermi energies. This resonance enhances conductance
at zero bias. As temperature rises, the peak broadens and decreases in height, vanishing
at higher temperatures (e.g., 270 mK), reflecting the progressive disruption of coherent

Kondo screening by thermal fluctuations. The logarithmic temperature dependence of



the peak maximum is a hallmark of the Kondo effect for T < Tk, and the peak width
saturates near Tk at very low temperatures. Observing this zero-bias anomaly and its
characteristic temperature behavior provides strong evidence for the formation of the

many-body Kondo singlet in the quantum dot.






CHAPTER 3

The Numerical Renormalization Group

Approach

In materials with strong correlations, single-particle approximations fail and are not
able to describe the correct physics. For quantum impurity systems, a complete descrip-
tion requires the use of non-perturbative theories. In this context, the method commonly
employed is the NRG. In quantum impurity systems, the NRG is applied with the aim
of determining the many-body eigenvalues and eigenstates across different energy scales
w; < wy < ..., through a series of successive steps. Each of these steps is associated with

a specific scale, either in energy or in length.

The aim is to proceed through the elimination of high-energy states so as to construct
effective Hamiltonians Hy (with N = 0,1,...). In doing so, one hopes to capture the rele-
vant physics of the system at increasingly reduced energy scales wy, though the accuracy
of such a description may depend on subtle assumptions and approximations (51, 41).
Mathematically, this is described by

Hyy1 = R[Hn], (28)

In Eq. 28, the renormalization operation R can be seen as a way of connecting effective
Hamiltonians that account for physical behavior across distinct energy scales. During the
1970s, Kenneth Wilson introduced a non-perturbative formulation of the Renormalization
Group (RG) applied to the Kondo model. This method made it possible to follow, step
by step, the crossover from weak coupling at high temperatures to the strong coupling
regime that dominates at low temperatures. In this chapter, we describe a specific imple-

mentation of the NRG idea: Wilson’s nonperturbative method for the Anderson model.



3.1 Logarithmic discretization

In the context of the Kondo problem (and, to some extent, in other scenarios involving
quantum impurities) the system does not behave uniformly across energy scales. Instead,
its qualitative features shift in ways that can be quite dramatic. One might say that
this evolution reflects a passage between distinct fixed points of the RG. At elevated
temperatures, the system tends to display the familiar traits of a localized magnetic
moment, almost as if the impurity were standing alone. On the other hand when the
temperature drops below Ty, the description changes: the system begins to resemble
a Fermi liquid, with the impurity effectively screened. Wilson’s approach offers a non-
perturbative framework for the RG that remains applicable across the full range of energy

scales.
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Figure 11 — Schematic representation of the Logarithmic discretization of the conduction

band.

Wilson’s formulation relies on a logarithmic discretization of the energy axis, governed
by a parameter A > 1. Rather than treating the band in its original form, the conduction
states are restricted into the interval ([-1,1]), which is then split into two parts, positive
and negative, so that the impurity’s influence can be tracked more carefully. What stands
out, is that the accuracy of the transformation remains constant throughout all iterations,

unaffected by the strength of the couplings. The discretization intervals are given by

Df = [AD AT D = [AT, AT (), (29)

n

taking into account the discrete values n = 0,1, ..., which lie near the Fermi level ez = 0
(see Fig. 11), one should note that orbital isotropy is assumed. In practice, this means
that only electrons with s-wave symmetry are allowed to interact with the impurity, as
suggested in Figure 12 (11). Under these conditions the Anderson Hamiltonian can be

written in its continuous form as



Figure 12 — Illustration of spherical regions in radial space r, which indicate the bound-
aries of the wave functions f,. Each of these functions oscillates within its
respective region, ensuring that they are orthogonal to each other. From Ref.

(10).
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Equation 30 sets the cutoffs over the interval [—1,1]. Where g(€) denotes the disper-
sion, while h(e) captures the hybridization. According to the analysis by Bulla, Pruschke,
and Hewson (1997) (52), the hybridization function A(w) can be written explicitly in
terms of h(e) and g(e) as:

(R (e(w))]’, (31)

Figure 13 — A single state serves as an approximation of the continuous spectrum in each
interval. From Ref. (11).

in this way, establishing a connection between g(€) and h(e), where e(w) is the energy of

the conduction electron that satisfies g[e(w)] = w, corresponding to the frequency w of



the Hamiltonian, we introduce within each interval D,,, as schematically depicted in Fig.

13, a complete set of orthonormal functions given by

£ (e) = | Vin
0, outside of the interval

L etiwnne if Am0HD) <t < A7)

?

(32)

where the parameter p ranges from —oo to oo, and within this domain the fundamental

frequencies are expressed as

Wp = — (33)

in which d,, = A™"(1—A"") is the width of the interval. By considering the basis functions

+

mn(€), the conduction-electron operators can be expanded as

Ger = D [anpo bl (&) + bupo (€] (34)

np

This can be understood as the performance of a Fourier expansion within each segment.

The inverse operation is given by

Unpo = /_1 de [ Zp(é‘)raw (35)

and

b = [ de [1,06)]" o (36)

1

With the simplifications proposed above, the Hamiltonian in Eq. 30 can be written in
a discretized form. A key aspect of Wilson’s formulation is the observation that only
states with p = 0 couple directly to the impurity. Consequently, without loss of accuracy,
states with p = 1,2, ..., which are not located near the impurity, can be neglected. These
states are centered farther away, specifically at a distance r &~ AP from the impurity, and
therefore couple to it only indirectly. Another essential element is the treatment of the
function h(e), which must be considered constant within each interval, even if A(e) is not
constant in general. Following the formulation by Bulla (52), h(e) is assumed to be a step

function, i.e., constant within each subinterval of the discretization.



h(e) = hy

n?

Tn+1 < te < Tn, (37>

this leads to the following expression for the hybridization term

1
1
dehef;aw:if; 77?@"0%_’7”[)"‘7 ) 38
/1 () W LOMULE ) .
with
+.n

= [ deae), (39)

where

+,n Tn —,n —Tn41
/ de E/ de, / de E/ de. (40)
Tn+1 —Tn

First, we examine the term associated with the conduction electrons, which can be

rewritten as

1
/ de g(e) alo gy = Z (énaj@paanpa + gnblpabnw)
—1 n,p (41)

+ Z [ajz(pvp,)ajz(plv U) - an(p7p,)bjngbnp’a} .
n, p#p’

The initial term on the right-hand side of Eq. 41 is diagonal with respect to the index p.
Therefore, the discrete set of energy levels £ can be represented as described by Bulla,
Pruschke, and Hewson (52) as

de A
o {Z’; — A((i); = —SATH AT, (42)

The expression in parentheses corresponds to the case in which A(e) is assumed to be
constant. Nevertheless, the coupling between conduction electrons with indices p and p/,
which characterizes how the electronic states reconnect to the continuum, is exact at this
stage, since no approximation has yet been introduced. Second, by considering a linear
dispersion relation of the form ¢;, = k, the matrix elements o,y for (p # p') take identical

values for both positive and negative p, and are described by
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Figure 14 — The discretized model is reformulated as a semi-infinite chain, in which the
impurity interacts with the first conduction electron site through the hy-
bridization term V. The tight-binding parameters of this representation are
denoted by €, and ¢, (the hopping between sites in the chain that represents
the bath, see Eq. 50).

%(p p) = (43)

I1—A1 A . 2mi(p’ — p)
: X .
27 p—p Pl A=

The discretized Hamiltonian is obtained by disregarding all terms with p # 0 in Eq. 41, a
crucial simplification that isolates the conduction states most directly coupled to the im-
purity. Following this step, and upon substituting a,o, = @, the discretized Hamiltonian

is finally obtained

H = Himp + Z ( n nga'na + gnbjwbna)
Z £ Z Ynlno + Vnbno)
+ﬁ ( 8 ’Ynano+7n )> Jo (44)

3.2 Linear chain

In order to proceed with the analysis, the discretized Hamiltonian in Eq. 44 is arranged
in a linear chain form through the Lanczos transformation, we then have a more systematic
and tractable way to investigate the dynamics of the system. Which implies that a

sequence of steps must be followed

1. The first site of the chain corresponds to the impurity (see Fig. 14), while the
subsequent sites represent the conduction band. The impurity couples only to the

first site in the chain, represented by the operators C(T)U, where

Cos = \/5 Z (’Vn (no + ’anno) ) (45)

in addition, the normalization condition is expressed as



fo=S [+ ()] = / de A(e). (46)

From Eq. 45, the hybridization can be written as

1

ﬁf; Z (/yyjana + ﬁnbna) = \/éf;coa, (47)

and considering V;, = V' (with V' independent of k), we have

V= ff (48)

. The operators Cgp are not inherently orthogonal to the operators a!  and b} . Or-
thogonality is subsequently enforced via a tridiagonalization procedure, through

which a novel set of mutually orthogonal operators, c!

no?

is systematically con-
structed from af_ and b . In addition, the chain Hamiltonian can be expressed

as

H = Himp + \; 5?0 Z (f;c(]cr + C&yfa) + i [gnciwcna + tn (CIL()'CTL-Fl,U + C;[H-l,gcna)] )
[ n=0
(49)

In Eq. 49, we represent the single-impurity Anderson model (STAM) expressed in its
one-dimensional chain representation. Therefore, the Hamiltonian has three distinct

contributions:

a) Himp, which describes the isolated impurity, including its on-site energy and

Coulomb interaction.

b) The hybridization term, %0 > ( fleos + C(T)(, fo), which couples the impurity
orbital f, to the first site of the conduction chain, ¢, enabling spin exchange

between the impurity and the conduction electrons.

¢) The chain contribution, »>°, [encimcm +t, (ciwanrL(7 + CL +17acm>}, describ-
ing the conduction electrons mapped onto a linear chain. Here, ¢, denotes
the on-site energy of the n-th site, while ¢,, is the hopping amplitude between

adjacent sites. For a logarithmic discretization with constant hybridization, ¢,



decays exponentially with n, reflecting the reduced energy scale of successive

sites along the chain

o (1+AH(1—-AT A-n2
2\/1 _ A—2n—1\/1 — A—2n-3

(50)

This representation is especially amenable to NRG calculations, as the exponential
attenuation of the hopping amplitudes facilitates a controlled, iterative treatment

of the system across progressively lower energy scales.

3.3 Iterative diagonalization

A RG transformation, defined by the relationship between Hamiltonians at successive

energy scales A2 and A~"*1D/2_ can be formulated as follows

1. The Hamiltonian in Eq. 49 is truncated to N orbitals, yielding Hy, which is defined

as

H= lim A~N=D2m, (51)

N—oo

where
_ §
Hy = A2 (Himp P25 (e + )

N N
+ Z enciwcna + Z tn (Ciwcn-&-lo + CIL+1O'C'HU) ) : (52)
n=0

o,n=0

The prefactor AAN=D/2 defines a rescaled Hamiltonian, removing the explicit N-
dependence of the hopping parameter ¢5_; and thereby facilitating the analysis of

the Hamiltonian’s fixed points.

Figure 15 — Iterative procedure of diagonalization of the H operator, starting with H,
and gradually expanded with the orbitals f;, f2, and so on.



2. Two successive Hamiltonians are connected according to

Hyg = VAHy + A2 Y enpcl penine + A2 Yty (CEVUCNHJ + ij+1aCN0) '

(53)

Within the RG framework, Hamiltonians are parametrized by a set of parameters

K. The mapping R transforms the original Hamiltonian into a new Hamiltonian

defined by an updated set of parameters K’ , such that

Hy.1 = RHy. (54)

This conceptual framework provides the basis for the iterative diagonalization of the

Anderson Hamiltonian, as schematically illustrated in Figure 15. The subsequent

procedure for obtaining the spectrum of the Hamiltonian, Hy, is then described as

a)

The first Hamiltonian is given by
HO = A_1/2 (Himp + 250630000 + f: Z (fJ'COO' + C(gafa)) ) (55)

this Hamiltonian represents a system composed of two sites: the impurity site

and the first site of the conduction electron band.

Second, we assume that Hy has already been diagonalized, with the many-

body energies given by

HN‘T>NIEN(T)‘T>N, Tzl,...,NS, (56)

where |r) v are the eigenstates of Hy and Nj is the dimension of Hy. The idea
now is that, from the spectrum of Hy, it is possible to construct a basis for

Hyyq.

13 8) v = 1) @ [s(N + 1)), (57)

The states |1's’; ') are product states, consisting of the basis of Hy and a new
basis |s(IN 4+ 1)) that represents the newly added site. Based on Eq. 57 it is

then possible to construct Hy .



Hyi1(rs, sy = (rs| Hyi |78 Y nar, (58)

by diagonalizing Eq. 58, we obtain the new eigenvalues En.1(w) and the cor-
responding eigenstates |w)y,1. By repeating this procedure successively, as

illustrated in Figure 15, we obtain the complete spectrum.

3.4 Renormalization group flow and fixed points

The iterative diagonalization procedure yields the energies of the many-body states
En(r), with » = 1,..., Ns. In the initial steps, the number of states is smaller than
N, until the truncation mechanism is applied. The index N runs from 0 up to a max-
imum value Np.., chosen such that the system lies sufficiently close to its fixed point
corresponding to the low-temperature regime.

The many-body energy spectra remain approximately within the same range for dif-
ferent values of N, owing to the scaling factor AN=1/2. The first excited state of Hy
has an energy on the order of A=1/2¢y _, while the highest excited state after trunca-
tion depends on N, and is typically 5 to 10 times larger than the lowest energy. When
rescaled by A=(N=1/2 the energies Ey(r) approximate the many-body spectrum of the
chain Hamiltonian, within an energy window that decreases exponentially with N. As a
consequence of iterative truncation, only a subset of the lowest-energy states from each
iteration is retained to construct the subsequent Hamiltonian, leading to the progressive
elimination of high-energy excitations from the original system.

Figure 16 shows an example of multiparticle energy levels for the symmetric Anderson
model with a single impurity. The energies are plotted for odd values of N. The energies
are identified by the total charge () and the total spin S. In this diagram, three fixed

points can be identified:

1. For N ~ 3 — 9, the system is close to the free-orbital fixed point. This can be
verified by setting U = 0 and V = 0. This is an unstable fixed point.

2. For N = 20— 50, the system approaches the local-moment fixed point, which is also

an unstable fixed point.

3. For N > 50, the system reaches the strong-coupling fixed point, a regime in which
the impurity is screened by the conduction electrons. This fixed point is obtained

by considering V' — oo.
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Figure 16 — Evolution of the lowest energy levels of the Anderson model with a single
impurity, for the parameters f = —0.5 x 1073, U = 1073, V = 0.004, and
[' = 2.5. The states are identified by the quantum numbers of total charge @)
and total spin S.

3.5 Applications

The applications of the NRG method in quantum impurity systems encompass three
principal aspects: the analysis of the system’s fixed points, the evaluation of its thermo-

dynamic properties, and the investigation of its dynamical and transport characteristics.

3.5.1 Thermodynamic Quantities: Entropy, Specific Heat, and
Susceptibility

The simplest physical quantities associated with the impurity degrees of freedom are
the impurity contributions to the entropy Simp, the specific heat Ciy,p, and the magnetic
susceptibility ximp. Specifically, the entropy and the specific heat correspond to the first
derivatives of the free energy, F' = —kgT'In Z, and the internal energy, U = (H), with

respect to temperature, respectively, that is,

F
G__OF U

From a numerical point of view, performing direct differentiations should be avoided when-

ever possible. Another difficulty arises in the NRG: to avoid exponential energy growth,



it is necessary to subtract the ground state energy at each NRG level, requiring control
of these subtractions. A more convenient way is to evaluate the derivative analytically,

obtaining

£25<H>+1HZ (60)
for entropy and

= 6 () - (1) (61)

for specific heat.

Other local properties typically require the calculation of correlation functions. In this
context, it is necessary to distinguish between real-time correlators and susceptibilities.
Calculating the impurity contribution to isothermal magnetic susceptibility requires more
careful consideration. The standard definition for the isothermal magnetic susceptibility

(assuming gup = 1) is

B8
\(T) = / (S.()S.) dr — B(S.)2, (62)

where 7 is the imaginary time (0 < 7 < ), S, is the z component of the impurity spin

operator, and

1
(S.(1)S,) = 7 Tr(e_BHeTHSZe_THSZ) : (63)

In general, experimental measurements yield the global susceptibility of the system.
By exploiting the fact that the total spin operator commutes with the Hamiltonian, one

can express

<Stot,z[7'] Stot,z> = <Stot,z Stot,z> . (64)

and therefore arrive at the following expression.

Xiot(T) = B({S2.2) = (Stot=)?), (65)



by subtracting the susceptibility of the system in the absence of the impurity, one arrives

at Wilson’s definition of the impurity contribution to the susceptibility.

Ximp (T) = Xeot(T) = Xoo(T). (66)

Since Siot. and Sier . defines the states, the values of Eq. 66 are directly accessible.

Analogously, one obtains the impurity contributions to the entropy and the specific heat.

Siunp(T) = Sior (T) — ST, (67)

and

Cianp(T) = Cion(T) — CO(T), (68)

where 5533 (T') and C§§3(T) represent, respectively, the entropy and the specific heat of
the reference system without impurities. Figure 17 shows the dependence of T'x(T') as
a function of temperature 7' for the symmetric Anderson model, considering two ratios
U/nT, equal to 12 and 1, represented by solid and dashed curves, respectively. For
U > 7T, the presence of a well-defined local moment regime around 7" & 1/4 is observed,
delimited by the free orbital regime, characterized by Ty = 1/8, and by the strong

coupling regime, in which the susceptibility remains constant.

3.5.2 Dynamics quantities

The NRG can also be used to calculate the dynamical properties of quantum impurity

models. As an example, the impurity spectral function is given by

Ay, T) = —;ImGa(agT), (69)

where G, (w, T') denotes the impurity Green’s function. Suppose that all eigenvalues Ey(r)
and many-body eigenstates |r) of the Anderson Hamiltonian are known. In the Lehmann

representation, the impurity Green’s function is

—E,/kgT —E,, /kpT
9 € +e "
Go(w,T) = o > 1] o)

, (B —E) (70)
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Figure 17 — Plots of T'x(T) as a function of T" for the symmetric Anderson model with
U = 0.01, considering U/nI" = 12 (solid curve) and 1 (dashed curve). In
the case of U > nI" (12), a well-defined local moment regime (7" ~ 1/4) is
observed, situated between the free orbital regime (T'y = 1/8) and the strong
coupling regime (constant x). When U — #I', a direct transition from the
free orbital regime to the strong coupling regime occurs.

and the corresponding spectral function is

1 - —E,
Ag(w, T) = m Z |MT,T"|2 (e E./kpT +e E, /kBT) (5(&] — (Er’ — Er)) s (71)

where M, ,» = (r|f,|r"). At T'= 0, one obtains

1

A, (w,0) Z00)

1
Z |]\/[r,0|2 5(&) + Er - EO) + m Z ‘MO,T/|2 6(&) - Er’ + EO) ’ (72)

where Fjy denotes the ground-state energy. The impurity spectral function is obtained by
considering a sequence of Hamiltonians Hy (with N = 0,1,2,...). While the Lehmann
representation involves a sum over all many-body states, in the NRG this sum is restricted
to the truncated many-body eigenstates of Hy. At T = 0, the sum in Eq. 72 involves

transitions from the ground state Ej to all available excited states (11), yielding

Ay (w,0) ~ AN (w,0). (73)



To compute Ay, (w,0), a typical frequency w = 2wy is chosen, with wy = kT,
allowing analysis at progressively smaller frequencies. The interest lies not in the discrete
spectra of the Hamiltonians Hy, but in continuous spectra comparable to experimental
results. To this end, the delta functions §(w — EY) are replaced by smooth functions
Py(w — EN), with width ny typically of the order of the characteristic energy scale
Dy. The most commonly employed distributions are the Gaussian and the logarithmic
Gaussian.

Peaks with intrinsic width I" are well resolved when I > 7, as in the case of the Kondo
resonance. At high frequencies, however, logarithmic resolution may fail to accurately
capture the line shape of the peaks, which generally reflect single-particle processes and
require alternative approaches, such as in two-state ohmic systems or strongly correlated
networks. In Fig. 18, the spectral function of a magnetic impurity is represented by
two curves. The solid black curve corresponds to the symmetric particle-hole case, with

eq = —U/2, where ¢4 is the energy of the impurity orbital and U represents the Coulomb

repulsion. The dashed black curve represents the asymmetric case, with ¢, = —3A.
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Figure 18 — Spectral function of a magnetic impurity. The solid black curve corresponds
to the particle-hole symmetric case with ¢, = —U/2, where ¢, is the impurity
orbital energy and U is the Coulomb repulsion. The dashed black curve shows
the asymmetric case with ¢, = —3A.






CHAPTER 4

Resonant Level

In this chapter, we investigate the behavior of a non-interacting Resonant Level (RL),
generically referred to as an impurity, when placed near (or exactly at) the singularity
w~1/? that naturally arises in a one-dimensional quantum wire. We demonstrate that
the spectral function of the non-interacting RL, py—o, exhibits a bound state below the
bottom of the density-of-state band ppanq. This bound state possesses the properties of
a Dirac delta function and carries a spectral weight determined by the coupling between
the RL and the band, as well as by its distance from the singularity in ppa,q. Our analysis
reveals two remarkable features of this non-interacting problem. First, a bound state
emerges even when the RL is positioned near the band center, appearing at the band
edge, but with negligible spectral weight even for moderate couplings. Second, when the
RL is located exactly at the singularity, the bound state acquires a fixed spectral weight
of 2/3, regardless of the coupling strength.

4.1 Spin-orbit coupling

When an electron with linear momentum p moves through a magnetic field E, it
experiences a Lorentz force perpendicular to its trajectory, given by F = S P B.
Simultaneously, it acquires a Zeeman energy expressed as pugo - B , where pup denotes the
Bohr magneton and & is the vector of Pauli spin matrices. Analogously, when traveling
through an electric field E , the electron perceives, in its rest frame, an effective magnetic

field geﬁ ~ %;57 which leads to a momentum-dependent spin-orbit interaction energy
(53).

Within the regime of weak relativistic effects, the Schrodinger-Pauli formalism is mod-
ified by incorporating Spin-Orbit Coupling (SOI). This interaction creates a connection
between the electron’s intrinsic spin § and its orbital angular momentum [ in atomic

systems (54). The SOI Hamiltonian is typically described by



Hso = n 50 [VV(r) x p] (74)

4mic

where A is the reduced Planck constant, mg is the mass of a free electron, ¢ denotes
the speed of light, p is the momentum operator, V' refers to the Coulomb potential of
the atomic nucleus, and o = (0,, 0y, 0,) denotes the vector of Pauli matrices. In systems
under the influence of electric fields generated by potentials that exhibit asymmetry under
spatial inversion, spin degeneracy breaking can be observed. This phenomenon may occur
even in the absence of an external magnetic field (Zeeman effect), as a direct consequence
of SOL.

Within the framework of spin—orbit interaction, Time-Reversal Symmetry (TRS) is
preserved. However, the presence of an electric field arising from an inversion-asymmetric

potential breaks spatial inversion symmetry. In this scenario, we obtain

!
75
N (75)

reflecting the conservation of time-reversal symmetry. The SOI Hamiltonian can be rep-
resented as a sum of two distinct components, such that Hsoc = Hr + Hp. Where, for a
2D-system (54), the terms are defined as:

Rashba:  Hp = agr(kyo, — ky0y),
Dresselhaus: Hp = B(ky0, — kyoy),

(76)

In these expressions, ag and S denote the Rashba and Dresselhaus spin—orbit coupling
constants, respectively. The variables k, and k, correspond to the components of the
conduction electrons’ wave vector along the x- and y-axes. The Rashba Hamiltonian
is invariant under time reversal, as indicated by {T , Hso] = 0, where the time-reversal
operator is given by 7' = i0,C', with C' representing complex conjugation. Since lifting the
degeneracy of electronic states at k = 0 requires the breaking of time-reversal symmetry,
the Rashba term alone cannot induce spontaneous spin polarization. However it does lift
the spin degeneracy when k # 0 (55). In crystalline systems lacking spatial inversion
symmetry, the effective magnetic field arising from the Dresselhaus spin-orbit interaction
originates exclusively from microscopic mechanisms. Within such frameworks, both the
electric field vector E and the linear momentum vector p exhibit odd parity under the

action of the parity symmetry operation.



4.2 Introduction to Quantum Wires

Quantum wires can be understood as physical realizations of Luttinger liquids because
Fermi liquid theory fails in one dimension. Their design involves confining an electron
gas within a narrow channel, where electronic transport occurs predominantly along a
single direction. A representative example originates from a two-dimensional electron gas.
The transition to a quasi-one-dimensional system can be achieved through lithographic
techniques or by applying a repulsive potential from a gate, which effectively restricts the
electrons to a single conducting channel. In Figure 19, we depict the energy dispersion of

a system in which electrons are confined within a channel of width L,,.

W B

Figure 19 — The confinement of an electron gas within a one-dimensional wire is described,
wherein only the positive branch of the dispersion relation E/(k) is considered.
The vector k£ denotes the momentum component along the axis of the wire,
while transverse quantization gives rise to discrete minibands characterized by
the quantum number n. When the electronic confinement is sufficiently tight,
the energy separation between these minibands exceeds the thermal energy
scale, enabling occupation of a single miniband and consequently yielding
one-dimensional

The system’s wave function can be expressed as

U(z,y) =" o(y), (77)

where ¢(y) reflects the specific confinement potential profile (in the case of an infinite
well, ¢ resembles a superposition of plane waves).

Assuming ¢ behaves as a plane wave for simplicity, the energy takes the form

B K

FE = )
2m  2m



A key aspect here is that the narrow width [ of the transverse channel causes significant
quantization of k,. Consequently, the energy spacing between transverse quantum states,

such as from n, = 0 to n, = 1, is at minimum

21)?2

apo 50 -
As a consequence of transverse confinement, miniband structures emerge, as illus-
trated in Figure 19. When the energy separation between these bands surpasses the
thermal energy scale, it becomes possible, through adjustment of the chemical potential
via an external gate, to restrict electronic occupation to the lowest miniband. Under this
condition, transverse states remain inactive, and only the longitudinal momentum k gov-
erns the system’s behavior, which effectively corresponds to a one-dimensional electron
gas. As an example, Figure 20 illustrates the formation of the electronic channel from a
two-dimensional electron gas (2DEG), which is established at the interface between the

GaAs semiconductor and the insulating AlGaAs layer (56).

AN\
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Figure 20 — A schematic representation of the device, along with a scanning electron
micrograph, illustrates the electronic channel delineated at the GaAs—AlGaAs
interface.

4.3 Noninteracting resonant level model

Here, the system under analysis will be characterized using the non-interacting An-
derson model. This theoretical model describes a single fermionic energy level coupled
by tunneling to a continuum of electronic states (57). The Hamiltonian of the model is

expressed by:

H = Z ekcgock,(, +€q Z did, + Z Vk(dlc;w + h.c). (80)

k,o o k,o



In this formulation, the creation operator d! corresponds to an impurity electron with spin
0. The term ¢4 represents the energy of the impurity level. The parameter Vj is known
as hybridization, and its function is to mediate the exchange of electrons between the
impurity and the continuum of states. For simplicity, it is assumed that V}, is independent
of the wave vector k and is therefore treated as a constant.

Additionally, I' quantifies the coupling strength between the impurity and the elec-
tronic bath. Its definition is given by:

I = 7V pyana (Er) (81)

where ppana(Er) is the density of states (DOS) of the host material at the Fermi energy
(EFr).

Next, we proceed to calculate the relevant quantities of the model. Neglecting spin
degeneracy, our analysis focuses on the impurity spectral function. The spectral function,
A(w) as it extends the concept of the density of states by describing the distribution
of electronic states as a function of energy. Specifically, for an impurity level, the local

density of states (LDOS) is directly determined by the spectral function,

1 T
Aglw) = = .
d(w) ﬂ(w—ed)2—|—F2

(82)

Figure 21 (a) illustrates the spectral function at the RL for different values of T.
In this context, the impurity’s density of states exhibits a Lorentzian profile. From a
physical standpoint, it reflects the probability of detecting an excitation with energy w.
For a vanishing hybridization term, the spectral function at the impurity reduces to a
Dirac delta function centered at w = €¢4. Upon introducing hybridization, the delta peak

broadens, acquiring a width proportional to I'. The occupation number are expressed by:

1 1
Ndo =5 = — arctan <€rfl> (83)

The impurity level occupation, ng, constitutes another fundamental observable that
can be directly derived from the spectral function. This quantity expresses the average
number of electrons localized at the impurity site. Under thermal equilibrium, the like-
lihood that a state of energy w is occupied is governed by the Fermi—Dirac distribution,
f(w). Acting as a thermal filter, this distribution determines which electronic states,
relative to the chemical potential p and the temperature 7', are effectively accessible.

Consequently, the average occupation number is obtained through an integration of the



spectral function weighted by the Fermi-Dirac distribution over the entire energy spec-
trum. Figure 21(b) shows the occupation profile of the resonant level as a function of the

impurity local energy.

Delta de Dirac,

— r=005
6 — r=020
— r=050

~
$s
2
1
(a)
0
4 = 0 2 73
(0]
0.8
06
)
~
=
0.4
0.2
(b)

-1.00 -075 -050 -0.25 000 025 050 075 1.00
€4

Figure 21 — (a) Shows the spectral function of the resonant model for different values of
[. (b) Displays the electronic occupation as a function of the impurity level
energy.

4.3.1 RL in a quantum wire

In this section, we discuss in detail what happens when a noninteracting RL is placed
close (or at) the w™'/2 singularity of the host. We wish to understand how the proximity
of the RL to the singularity affects the RL spectral function. We note that Ref. (58)
discusses a bound state out of the continuum in three dimensions (3D) in the presence
of spin-orbit interaction SOI. By comparison, we now analyze the one-dimensional (1D)
case, where the RL interacts with a quantum wire that also exhibits SOI.

The Hamiltonian governing the previously discussed system, consisting of a non-
interacting impurity coupled to a nanowire, resembles the one presented in Eq. 80, with

the only distinction that, in the present case, the host is described by

Hyire(k) = (=2t cosk — p)oo + (Bo, + aoy)2sink, (84)

where § and « are the Dresselhaus (59) and Rashba (60) spin-orbit interactions, respec-

tively. o, and o, are spin Pauli matrices, and oy is the 2 x 2 identity matrix. It can be



shown (61) that the energy dispersion associated with this Hamiltonian may be written

as

€ro = —24/t2 + |y|? cos(k — o) — L, (85)

where v =  +ia, p = tan"!(|y|/t), and ¢ = . The band structure and the density of

states for this Hamiltonian are studied in the next section.
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Figure 22 — Band structure for (a) |y| = 0.0 and (b) |y| = 6.0. Corresponding band
density of states (DOS) for the same values of |v|, in (c¢) and (d), respectively.
Notice how the singularity for |y| = 6.0 in (d) carries a considerably smaller
spectral weight than the corresponding singularity for |y| = 0.0 in (c¢). Note
that the range in the vertical axes in (¢) and (d) are the same, with the
integral of ppang equal to 1 in both cases.

4.3.1.1 Band structure and spectral function in 1D with SOI

In this section, we show that the inclusion of SOI in 1D (which already has a singularity
at the bottom of the band without SOI) decreases the spectral weight of the bound state.
Figure 22 shows the band structure in panels (a) (|y| = 0.0) and (b) (|| = 6.0), with
the corresponding DOS in panels (¢) (]y| = 0.0) and (d) (]| = 6.0). It is clear that
SOI decreases the spectral weight carried by the singularity at the bottom of the band.
This happens because a finite SOI increases the bandwidth [compare the range in the
horizontal axes in Figs. 22(c) and 22(d)].



We show next that this implies a loss of spectral weight of the bound state associated

with the singularity. We calculate the RL Green’s function Gipp(w) (62), given by

A N 1

Clianp(w) = [(w — €)oo — SO (w) +in| (B1)

where f)(o)(w) = Y Véwire(k,w)VT is the hybridization self-energy, with V = Vo,
Guire(k,w) = [woo — Hyire(k)] ™" is the quantum wire Green’s function. The RL spec-
tral function, i.e., its DOS, is calculated through

1

™

pu = —=Im TrGipp(w). (86)

A comparison of both the 1D lattice DOS (blue curves) and the RL DOS (blue curves)
is shown in Figure 23 for || = 0.0 and |y| = 1.0, panels (a) and (b), respectively, where
we have set € = Wsing + 0 (with § = 0.05, and wg,e being the energy at the bottom of
the band, with the band being symmetric around w = 0.0), and V' = 0.25. A comparison
of the RL DOS in both panels shows that a finite SOI decreases the spectral weight of
the bound state. Thus, the area of the DOS inside the continuum in panel (b) is clearly

larger than in panel (a). This is further detailed in what follows.
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Figure 23 — Band density of states (DOS) ppana (red dashed curves) and the resonant
level (RL) DOS py—o (green curves) for (a) |y| = 0.0 and (b) |y| = 1.0. The
RL orbital energy €; = wsing + 0 is placed at 6 = 0.05 above the bottom of
the band wging, in both cases. In (a), Z, = 0.554, while in (b), Z, = 0.415,
showing that the increase of spin-orbit interaction (SOI) makes the bound
state less bound and with a weaker spectral weight Z,.

In Figure 24, we show results for Z,, which is defined as



Zi= [ prafw) (87)

—00

for the interval 0.0 < |y| < 0.5, where wgpye is the position of the singularity. It clearly
shows that Z, decreases monotonically with |y|. This can be understood by analyzing the
Poand Tesults in Fig. 22, where we can easily see that, for |y| = 6.0, there is considerably
less spectral weight at the bottom of the band than for |y| = 0. Indeed, integrating ppana
from Wsing t0 Weing +0.05 yields approximately 0.09 for |y| = 0 and 0.04 for |y| = 6.0. Thus,
one expects that the RL will be less affected by the singularity for finite SOI. Again, this
occurs because a finite SOI increases the bandwidth.

We have established that the presence of SOI in 1D weakens both the band-edge
singularity and the resulting bound state. This is in contrast to the 3D system in Ref.
(58) that requires SOI to create a singular DOS. In what follows, we analyze the properties
of the 1D system without SOI.
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Figure 24 — Variation of the bound-state spectral weight Z, with || for V' = 0.1.

4.3.1.2 BOUND STATE PROPERTIES

Bound state and coupling to the band

First, we find that, no matter what the energy of the RL is in relation to the singularity,
there is always a bound state located either at the singularity or below it. The latter occurs
when the coupling of the RL to the band is strong or if the RL is close to the singularity.
In Fig. 25, we show the RL density of states (DOS) py—o for three different positions of
the RL relative to the bottom of the band. In panel (a), the RL is located at the center of
the band ¢; = 0, and the singularity is at w = —1.0. We notice a vanishingly narrow DOS
peak at the singularity. In panel (b), the RL is located at ¢, = —0.5, midway between the



center of the band and the singularity. The DOS peak at the singularity has increased
considerably. Finally, when the RL is just 0.2 above the singularity, ¢, = —0.8, the
bound-state spectral weight at the singularity has increased drastically. As €4 approaches
the bottom of the band, the spectral weight of the singularity increases significantly.
Coupling strength is fixed at V' = 0.15 in all panels. If the coupling increases and/or
the RL approaches the singularity even more, the bound state detaches from the band

continuum and moves to lower energies, as shown below.
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Figure 25 — Resonant level (RL) density of states (DOS) py—o (green curve) for three
different RL energies: (a) ¢4 = 0.0, (b) ¢4 = —0.5, and (¢) ¢ = —0.8. The
red curve represents the band singularity.

Figure 26(a) presents the density of states (DOS) associated with the RL as its coupling
to the conduction band, denoted by V, is varied over the range (0.005 < V < 0.2).
Throughout this analysis, the impurity energy is held constant at €5 = wsing + 0.05,
ensuring a fixed energetic offset from the band singularity. The plot reveals how the
RL spectral features evolve in response to increasing hybridization. For the smallest
value V' = 0.005 (green curve), a bound state at the singularity is not visible, indicating
vanishingly small spectral weight. For V' = 0.05 (blue curve), a very sharp peak at the
singularity is clearly observable, with spectral weight Z, = 0.044. When V = 0.1 (cyan
curve), the bound state detaches from the bottom of the band and shifts to lower energies,
with its spectral weight increasing to Z, = 0.1566. This trend persists as V' increases.
Figure 26(b) illustrates the growth of Z, with increasing V', eventually reaching more than
half of the total spectral weight at V = 0.25.
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Figure 26 — (a) Variation of the resonant level (RL) density of states (DOS) py—¢ with
the coupling to the band in the interval 0.005 < V' < 0.2, for |y| = 0.0 and
9 = 0.05. (b) The variation of Z, for 0.01 <V < 0.25.

Figure 27 shows the variation of the peaks associated with the impurity spectrum.

The red curve highlights wgine, Which represents the position of the band bottom—that

is, the energy associated with the singularity. The green curve, €4, indicates the orbital

energy position of the impurity. The blue curve, €}, shows the renormalized position of

the resonant orbital level, while the cyan curve, ¢,, represents the position at which the

bound state is formed. All these quantities are plotted as a function of V| and as V'

increases, the coupling between the impurity and the bath becomes stronger.
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Figure 27 — Analysis of the formation of the bound state in the resonant level (RL) spec-
tral function py—o as a function of the coupling strength V', obtained from
the results in Fig. 26(a). The red curve represents the bottom of the band
(i.e., the position of the singularity); the green curve shows the position of €4,
the RL orbital energy; the blue curve marks €,, the renormalized position of
the RL level; and the cyan curve indicates the position of the bound state €.



Bound state and distance to singularity

Now we analyze how the bound state varies as we move the RL €; closer to the
singularity. We set €5 = Wsing + 0, Where wg,e marks the bottom of the band. The
results are shown in Figs. 28(a) and 28(b). The variation of py—o as a function of 9,
which represents the offset of ¢; from the bottom of the band, was carefully examined
in two distinct intervals, revealing contrasting behaviors. In interval (a), covering values
from 0.005 < § < 0.04, the results show significant changes in both the renormalization
factor Z, and the positions of the peaks in the density of states. These changes become
particularly notable when considering curves ranging from § = 0.08 (dark blue curve) to
d = 0.016 (blue curve), indicating a strong sensitivity of the system to variations in §
within this regime. Conversely, in interval (b), which is narrower and spans 0.0005 < ¢ <
0.004, further approximating €, to the bottom of the band—especially for 6 < 0.01—does
not result in substantial changes in the observed properties. This suggests that the effects
of varying 0 become gradually less relevant in this ultra-low range. It is worth emphasizing
that all these results were obtained under specific conditions of hybrid coupling V' = 0.25
and zero mixing interaction |y| = 0.0, providing a clean framework to exclusively analyze

the impact of § displacement on py—g.
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Figure 28 — Variation of py—o with ¢ (¢4 offset from the bottom of the band) for two
different intervals: (a) 0.005 < § < 0.04 and (b) 0.0005 < 6 < 0.004. (a)
results show that, starting from § = 0.08 (dark blue curve), up to § = 0.016
(blue curve), changes in Z, and peak positions are considerable, while (b)
results show that further approaching €, from the bottom of the band (§ <
0.01) has limited effects. Results obtained for |y| = 0.0 and V' = 0.25.

In Fig 29, we illustrate the variation of the impurity spectral weight Z, as a function
of §, a parameter that quantifies the deviation of the impurity’s orbital energy from
the singularity at the bottom of the wire’s conduction band. It is evident that as o

increases—that is, as the impurity moves energetically away from the singularity—the



spectral weight progressively decreases. The most intriguing aspect of this behavior occurs
when 6 = 0, meaning the impurity is tuned precisely to the singular energy, and the
spectral weight approaches a universal value of Z, = %, suggesting the emergence of a
regime with invariant characteristics. This shows the very interesting phenomenon that
the Z, = % result does not depend on the details of the band, such as spatial dimensionality
(3D vs 1D) and presence vs absence of SOI. The inset, with a log scale in the § axis,

emphasizes the gradual approach to the Z, = % value.
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Figure 29 — Variation of the bound state spectral weight Z, as a function of ¢ in the
interval 0.001 < 9 < 0.08. Results obtained from both panels in Fig. 28. The
inset shows the same results but with a log scale in the ¢ axis, highlighting
the approach to the Z, = % value.

Figure 30 illustrates the variation of peak positions as a function of the shift §. The
horizontal axis represents o, while the vertical axis shows the corresponding peak positions.
The four quantities analyzed are: wgyg (red squares), €, (green circles), @ (blue triangles),
and ¢, (cyan inverted triangles), allowing clear visualization of each variable’s individual
trends. Calculations were performed using the parameters: |y| = 0.0, V = 0.1, t = 0.5,
n=5x 107 and €5 = wgpng + 0. The figure highlights how each component responds
to changes in 0. wging is held constant at —1 and 0.005 < 6 < 0.04, with data extracted
from Figure 28(a). Here, the green curve ¢, is positioned above the band bottom. This
shows that the position associated with each curve does not display uniform behavior.
As expected, €; grows almost linearly with § (green curve). The blue curve, showing the
evolution of the renormalized peak position, exhibits an increasingly smaller energy gap
relative to €4, becoming less prominent. As the energy of the impurity orbital increases
in relation to the singularity, €,, the position of the bound state, gets increasingly closer

to the continuum.
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Figure 30 — Analysis of the formation of the bound state in the resonant level (RL) spec-
tral function py—g as a function of the parameter ¢, obtained from the results
shown in Fig. 28(a). The red curve represents the bottom of the band (i.e.,
the position of the singularity); the green curve shows the position of €;, which
corresponds to the RL orbital energy; the blue curve marks e,., the renormal-
ized position of the RL level; and the cyan curve indicates the position of the
bound state €.

Figure 31 examines the effects of a localized impurity with energy €4 = Wsing — 9,
outside the continuum, on the electronic structure of a system, with 0.0 < ¢ < 0.05 and
coupling V' = 0.1. In panel (a), the variation of ¢ causes the peak in the density of
states py—o to split, indicating the emergence of bound states induced by the impurity. In
panel (b), it is observed that the spectral weight Z, of the bound state remains above 2/3
and increases with ¢, highlighting the robustness and strengthening of the bound state
with the impurity shift. Additionally, the density of states (DOS) within the continuum
tends to accumulate at the band bottom as ¢ increases. Finally, Fig. 32 shows details of

the results in Fig. 31(a).
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Figure 31 — Similar results as in Fig. 28 but now when the impurity is placed below the
bottom of the band (note that €5 = wging —0) and V = 0.1. (a) Results for
pu—o, for 0.0 < § < 0.1, showing again the peak splitting. (b) Spectral weight
Zy of the bound state, now > %
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bottom of the band. Larger peak separations are obtained this way.






CHAPTER 5

Quantum wires with impurities: NRG

approach

In this chapter, we investigate the Kondo state in a metallic system whose density of

1/2_type singularity, typical of the band bottom in one-dimensional

states exhibits a w™
chains. We model the interacting system using the STAM, solved using the NRG method.
The Hubbard interaction transforms the bound state, causing level splitting, spectral
weight redistribution, spectral discontinuity, binding energy variation, and the emergence
of a finite width. As g4 approaches the singularity, the system partially recovers features of
the Kondo regime, such as higher impurity occupancy and a lower 7. Thermodynamic
properties indicate that the local moment (LM) fixed point is also affected: near the
singularity, it becomes resistant to charge fluctuations, unlike the behavior observed when
g4 is distant. Finally, we discuss a proposed experimental implementation using armchair
graphene nanoribbons, which reproduce effects similar to those observed in quantum

wires.

5.1 Introduction

The main properties of the Kondo state—the quenching of the impurity magnetic
moment, universal temperature scaling, and existence of renormalization fixed points—are
readily obtained when considering a featureless (flat) density of states (DOS) of the host
around the Fermi energy (Fr), where most of the important physics occurs. This may
be called a traditional Kondo effect. Things become more interesting, possibly including
non-Fermi liquid physics (63), when the host DOS behaves like p(w) = |w|" at or near
the Fermi energy. For r > 0, the DOS vanishes at w = 0, and the band is said to
have a pseudogap. Many theoretical works have analyzed the Kondo model (no charge
fluctuations) for bands presenting a pseudogap (64, 65, 66, 67, 52, 68, 69, 70, 71), while
much less work has been devoted to the » < 0 case, i.e., when there is a divergent density
of states (DOS) — a singularity — at the Fermi energy (63, 72, 73, 74), has been less



explored. Even fewer studies (75, 76, 77, 78, 79, 80) have investigated how a singularity
near the Fr, which generates strong particle-hole (PH) asymmetry, affects the Kondo
state. Recent work (58) has examined a Kondo state in which the impurity orbital level
is resonant with a singularity at the bottom of the band — a scenario that arises in
one-dimensional (1D) lattices, nanotubes (81), and nanoribbons (82) — while the Fermi
energy lies slightly above the singularity, yielding intriguing results.

Here, we revisit a system similar to that studied in Ref. (58), employing NRG method.
The NRG calculations were done using the NRG Ljubljana code (83). When the Hubbard
interaction U is turned on, we find that the usual Kondo profile of the impurity spectral
function [pnrc] is modified. Indeed, the singularity strongly distorts the lower Coulomb
blockade peak (CBP) of the impurity, which is now composed of a broadened bound
state and a series of peaks. In addition, the Tk and the impurity occupancy are strongly
affected when g, is close to the band singularity. Both quantities tend to values closer to
those fully in the Kondo regime (higher occupancy and lower T ) even when the system
is in an intermediate valence regime. This reentrant Kondo regime can also be observed
at temperatures around the LM fixed point. Indeed, the magnetic susceptibility in the
intermediate valence regime takes values like those in the Kondo regime at temperatures
associated with the LM fixed point. This behavior, also visible in the NRG energy flow,
is clearly associated with the existence of the bound state. We present NRG results and

analysis to explore these interesting regimes in detail below.

5.1.1 Singularity effect on the impurity spectral function and

charge occupancy

As described in the literature (70, 71, 72, 73, 75), the Kondo state for Anderson-type
systems (46) and highly asymmetric DOS (such as when the Er is close to a Van Hove
singularity) strongly depends on model parameters. Indeed, our detailed analysis of the
Kondo state for Er close to the 1D band singularity indicates that the impurity spectral
function, impurity charge occupancy, and thermodynamic properties are very sensitive to
the interplay between €4, U, V', and Fr. In other words, small changes in the parameters,
like the position of Fr in relation to the singularity, strongly affect the Kondo state.

To reveal the most interesting aspects of the Kondo state when ¢, is at the singularity
and E'f is close to the bottom of the band, we will contrast it to the Kondo state obtained
when Ef is exactly in the middle of the band (4 = 0), keeping all the other parameters
equal. We take ¢, = —U/2; thus, for p = 0, the system is in the PH-symmetric (PHS)
point. These results are shown in Figure 33. Panels (a) and (b) show the impurity
spectral function (green curve for the noninteracting case pU = 0 and blue curve for the
interacting case pyrg) for 1 = 0 and —0.995, respectively. The (red) dashed curves are

the band DOS ppeng- Note that all DOS results are normalized so that their integrals over



w are 1. The parameters, kept fixed for both calculations, are ¢, = —0.005, U = 0.01,
and T' = 6.6667 x 10~* (thus U/T" = 15). We have used V values for both calculations
(V' = 0.026 and 0.0082, for panels (a) and (b), respectively) such that I" does not vary.
The only change from one calculation to the other is the PH asymmetry around Er: no
asymmetry in panel (a) and very strong asymmetry in panel (b). Comparison of the pyrg
results (blue curves) in panels (a) and (b) shows how strongly the singularity affects the
impurity spectral density. Indeed, from a traditional PHS Kondo peak at u = 0 [panel (a),
blue curvel], we move to a very rich impurity DOS when ¢, is at the singularity, showing
a series of peaks around the Fermi energy (Er = 0.0). The rightmost peak in pygrg (the
upper CBP), farthest from the singularity, is the least affected, while the Kondo peak
(around w = 0.0) acquires slight asymmetry. Notice that the RL results (green curve,
pu—o0) show that the singularity splits the noninteracting DOS into a Dirac d-like bound
state (below the bottom of the band) and a broad peak starting at the bottom of the band.
As it turns out, this last peak becomes a superposition of three peaks in the continuum,
while the bound state splits into two features below the band. One is very sharp, located
at the band edge, and has very small spectral weight. The other, containing most of the
spectral weight, is shifted to lower energy than the original bound state and acquires a
sizable finite width. Thus, the interplay between the singularity and correlations results

in very complex spectral behavior.

Figure 33(c) shows how the impurity occupancy ng = (ng + ngy) (for U = 0.01 and
U/T' = 15) varies when the Fermi energy moves from the center of the band (¢ = 0) to
close to the bottom of the band (u = —1.0 — ¢4), for different values of ¢; (—0.005 <
€a < —0.0001). Figure 33(d) shows a zoom of the results in panel (c) close to the lowest
values of p. Notice that the red-squares curve at the top for ¢, = —0.005 is at the PHS
point for p = 0, and the occupancy is pinned at ny; = 1 even as p moves away from PHS.
As expected, the average value of n, decreases (from ngy ~ 1.0 to 0.45) as ¢, increases,
from e, = —U/2 = —0.005 (red squares) to very close to the Fermi energy e¢; = —0.0001
(light green left triangles), moving the system from deep into the Kondo regime to an
intermediate valence regime, even for © = 0. However, as the Fermi energy approaches
the bottom of the band (1 ~ —1.0 — ¢;), ng increases abruptly, with a faster rate the

closer ¢4 is to zero.

The variation of the bound state spectral weight Z, [purple hexagons curve in Figure
33(c)] with p, for the noninteracting case, indicates that once the system moves to the
intermediate valence regime (larger values of €;), the presence of the bound state below
the bottom of the band, with stronger spectral weight, strongly increases the charging
of the impurity. This effect is negligible if the system is well into the Kondo regime
(eq4 = —0.005, red squares) or close to it (g4 < —0.003).
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Density of states (DOS) comparison and spectral weights for U = 0 and 0.01.
(a) Impurity DOS for U = 0 (py—o, green curve) and for U/’ = 15 (pnre, blue
curve) for p = 0 (when EF is at the center of the band, w = 0.0), U = 0.01
and ¢4 = —U/2 = —0.005 (notice dashed red curve close to the horizontal
axis, showing the band DOS, ppana). (b) Same as in (a) but now with Ep very
close to the singularity at the bottom of the band (depicted by the dashed red
curve, Ppand), p = —0.995, ¢, = —0.005 (right at the singularity). In (a) and
(b), the T" value is the same for finite and vanishing U. (c¢) Finite U = 0.01
results for the evolution of ng = (ng;+nq;) as Er moves from the center of the
band (p = 0, right side) to very near the singularity (u = —1.0 — ¢4, left side),
for different values of ¢, (the leftmost value of p places the resonant level (RL)
exactly at the singularity). The lowest (purple hexagons) curve with hexagons
shows the bound state spectral weight Z, (see the Appendixes), for U = 0
and ¢; = —0.0001. (d) Zoom of the left side of (c¢) highlighting the abrupt
increase in ng. The lowest value of the chemical potential is p = —1.0 — €g4;
thus, the curves above do not cover the same p interval.

As ng tends to approach its Kondo value of ny &~ 1.0, despite ¢; approaching the

intermediate valence regime, close to the bottom of the band, it is reasonable to expect

that the T

will be strongly affected. We expect Tk will tend to return to its Kondo value

when we approach the bottom of the band in the intermediate valence regime. Indeed,

this can be

seen in Figure 34(a), showing a color map of the T for all the points in

Figure 33(c). Focusing on the right side of the figure (u = 0, Er at the center of the

band), we see the usual increase in Ty as we move from top to bottom (from the Kondo to

the intermediate valence regime). However, looking at the bottom of the figure, moving

from right to left (from center to bottom of the band), we see that T decreases abruptly
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Figure 34 — (a) Color map of the T for all the points in Figure 33(c). The sudden drop
of Tk at the bottom left corner indicates that the bound state near Er moves
the system back to the Kondo regime, which has a lower Tj than in the
intermediate valence regime (bottom right corner). (b) Comparison of Tk vs
p results for ¢; = —1x 107* (magenta triangles, intermediate valence regime),
€g = —1 x 107 (orange squares, border between Kondo and intermediate
valence regimes), and ¢; = —5 x 1073 (blue circles, deep into Kondo regime).
(¢) Zoom of the results in (b) close to the bottom of the band.

as we approach the bottom of the band, tending back to its low Kondo-regime value.
Figure 34(b) shows a comparison of results for Tk vs p for different ¢4 = —1 x 107*
(magenta triangles, intermediate valence regime), e = —1 x 10~ (orange squares, border
between Kondo and intermediate valence regimes), and ¢4 = —5 x 107 (blue circles,
Kondo regime), highlighting the sharp drop in Ty as p approaches the singularity, when
the system is in the intermediate valence regime (magenta triangles) or in a region in
between Kondo and intermediate valence (84) (orange squares). This contrasts the stable
behavior of Tx when the system is deep into the Kondo regime (blue circles). Figure
34(c) shows a zoom of the results close to the singularity. Indeed, the formation of the

bound state close to the Fermi energy seems to bring the system back to a Kondo regime.

5.1.2 Evolution of the bound state with correlations

With the objective of understanding the origin of the split peaks around the singularity
visible in Figure 33(b), we present in Figure 35 the evolution of the interacting impurity
spectral function as U decreases, keeping I' = 8.334 x 107%, ¢, = —U/2, and varying
so that, for all panels, €4 is at the singularity (u = —1 — €4). Panels (a)-(f) show results
for U/T" = 12.0, 9.0, 6.0, 3.0, 0.5, and 0.001, respectively (as indicated in each panel).
With decreasing U, the upper CBP moves to lower energy, eventually merging with a
considerably broader Kondo peak [panel (c)], resulting from the system having entered
an intermediate valence regime. We now focus our attention on the two peaks below the
bottom of the band, whose position and spectral weight can be followed more accurately

[peaks Py and P;]. For decreasing U/T", the leftmost peak P, transfers its spectral weight



to peak Pj, located at the bottom of the band. Indeed, for U/T" < 0.5 [panel (e)], P
has transferred almost all of its spectral weight to Py, while in the interval 3 < U/T" < 6,
peak Py splits into two peaks. For U/T ~ 9.0, P; detaches from the bottom of the band,
moving away from it for smaller U, while its spectral weight increases at the expense of F.
Panel (f), for U/I" = 0.001, has a comparison of the NRG (blue curve) and U = 0 results
(dashed green curve), showing that they are virtually the same. This demonstrates that
the NRG spectral function results reproduce faithfully the evolution of the many-body
processes that give origin to the split peaks around the singularity, deep into the Kondo
regime [panel (a), U/T" = 12].

We now analyze pygrg in more detail in panels (a) and (b), where we still have strong
correlations. In both panels, a well-formed Kondo peak and an upper CBP are clearly
visible. For U/T" = 9, at energies below the Kondo peak (but still inside the continuum),
a structure with two features is clearly visible. For U/I' = 12, the Kondo peak and
the upper CBP are clearly consolidated, and further structure (a third smooth feature)

emerges between the Kondo peak and the bottom of the band.
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Figure 35 — Evolution of the interacting impurity spectral density pnrg (blue curves),
for I' = 834 x 107%, ¢4 = —U/2, and p = —1.0 — ¢4, as U varies from (a)
U/T" =12 to (f) 0.001. The value of i places €4 at the singularity in all panels.
The dashed green curve in (f) is the noninteracting py—o spectral function,
showing excellent agreement with the U ~ (0 numerical renormalization group
(NRG) result. The peaks Py and P; are associated with the bound state seen

in py—o-

Figure 36 presents the spectral weight [panel (a)] and position [panel (b)], in relation



to the bottom of the band, of peaks Fy and P, for different values in the interval 0.001 <
% < 12.0. In panel (b), we also plot the position of the noninteracting bound state (blue
circles), for U = 0 and the same €; and V' values used in the NRG calculations (note that
the noninteracting results depend on —¢,/I", which labels the upper horizontal axes in
panel (b) and its inset). Following the spectral weight curves for peaks Py (green squares)
and P; (red right triangles), in Figure 36(a), we see that, when % decreases from 12 to
0.5, the spectral weight of Py is almost all transferred to P; (although part of the spectral
weight of Fy is also transferred to the continuum and then, with further decrease of %,
to peak Pp). In the interval 0.5 > % > 0.001, P, quickly acquires spectral weight from
inside the continuum, reaching ~ % for very small values of %, as expected. The inset in
Figure 36(a) shows the spectral weight of P, in a log scale to emphasize the formation of

a % plateau as U — 0.
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Figure 36 — (a) Spectral weight, as a function of U/I", for peak P, (red right triangles) and
peak P; (green squares), as defined in the discussion of Figure 35. The inset
shows P; spectral weight in a log scale, highlighting the % plateau for vanishing
U. (b) Energy position, in relation to the bottom of the band, of Py (red
right triangles), Py (green squares), and the noninteracting bound state (blue
circles). The inset shows the exact agreement between P; and the bound-
state positions for the smallest values of U. Note that the noninteracting
(U = 0) bound-state results (blue circles) are dependent on —ey/I" (upper
horizontal axes in the main panel and its inset), with ¢, = —U/2, where the
U and V values are defined by the NRG results.

Figure 36(b) shows the evolution of the position of Py (red right triangle) and P
(green squares), measured in relation to the bottom of the band. Their variation in

position is contrasted to that of the noninteracting bound state (blue circles). Starting



from % = 12, P, (green squares) moves away from the bottom of the band as % decreases,
until, at % ~ 1, it reverses course and starts to approach the bottom of the band again.
The position of P;, the dominant peak for small values of U, progressively approaches
the position of the bound state, until they coincide for the two smallest values of U,
as emphasized in the inset. Peak F,, on the other hand, monotonically approaches the
bottom of the band as % decreases, initially linearly, but then, around the same region
where P; reverses course, starts to show a faster rate of approach to the bottom of the
band as a function of % Note that, to simplify the presentation, even after P, split into
two peaks, we are considering it a single peak and taking a point halfway between the

split peaks as the position of F.

Finally, the results for the position of P, [red right triangles in panel (b)] can be
interpreted in the following way. As U decreases at fixed I', the Fermi energy approaches
the bottom of the band since ¢, = —U/2 is at the singularity. Since the Kondo peak
becomes broader (as U/I" decreases), P; is initially slowly forced away from the bottom
of the band. However, for very small U values U/I" < 1, the Fermi energy gets very close
to the singularity, and since I' = mpoV? is fixed, V decreases (since p, increases), and
Py, which has become the bound state (check comparison with blue circles curve in the

inset), approaches the bottom of the band again (check also ¢, in Fig. 15).
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Figure 37 — Impurity magnetic susceptibility x (as a function of temperature, in units
of D, half bandwidth), for some of the €; values in Figure 33(d). (a) The
Fermi energy is fixed at the center of the band and, as ¢; gradually increases,
the system moves into the intermediate valence regime. Note that, for ¢; =
—0.005, the system is in the particle-hole-symmetric PHS point. (b) Same
as in (a) but now the chemical potential is such that e; remains fixed at the
singularity, and it is the Fermi energy that moves closer to the bottom of the
band; thus, 4 = —1.0 — €4. The values of [' and U are the same as in Figure
33 for all calculations.



5.1.3 Thermodynamic properties: Fractional LM

Figure 37 shows the impurity magnetic susceptibility for four values of €; (—0.005,
—0.002, —0.0005, and —0.0001). In panel (a), the Fermi energy is fixed at the center of
the band (= 0), and the system stays in a more standard Kondo regime. In contrast, in
panel (b), p = —1.0 — ¢4, EF is located close to the bottom of the band, such that ¢, is at
the singularity for all cases. Starting at the PHS point €, = —0.005 [red curve, panel (a)],
the system progressively moves into the intermediate valence regime as €; increases (€4
approaches the Fermi level). As expected, the broad peak around T' =~ 0.001 < U = 0.01,
seen in the red curve, is indicative of the LM fixed point. As ¢; moves closer to the Fermi
energy, charge fluctuations become more prominent, suppressing the formation of a LM
at the impurity (cyan curve). On panel (b), however, where ¢, is at the singularity, and
the Fermi energy progressively approaches it, the picture that emerges is substantially
different. Although there is little difference between both panels for ¢, = —0.005 (red
curves), once the Fermi energy approaches €4, the suppression of the LM peak seems to
be arrested in panel (b). The LM peak in x stays pinned close to the % X i value, indicative
of the presence of the bound state with spectral weight Z, = %, even as €4 changes by an

order of magnitude.

0 0 10

N(odd)

Figure 38 — Numerical renormalization group energy flow for odd N for the same param-
eters as in Figure 37. The ¢4 values, from left to right, are —0.005, —0.002,
—0.0005, and —0.0001. The top panels correspond to the Fermi energy at
the center of the band, while the lower panels correspond to a Fermi energy
close to the bottom of the band (e, at the singularity). @ is the charge in the
system, measured in relation to half-filling, while S indicates the total spin
(see Ref. (11) for details). The parameter values for U and I' are the same
as in Figure 37. For these NRG calculations specifically, A = 2.5.

The behavior of y shown in Figure 37(b) suggests that the existence of the bound
state makes the LM impervious to charge fluctuations. This is corroborated by the NRG

energy flows, as shown in Figure 38, for the same parameters as in Figure 37. It is



well known that the three SIAM fixed points are associated with energy plateaus in the
spectra as the number of NRG iterations varies. The free-orbital, LM, and strong-coupling
fixed points are successively approached as N increases (which corresponds to a decrease
in temperature or energy scale behavior). This can be easily spotted in Figure 38(a),
corresponding to the PHS point, see Refs. (10, 11) for comparison. In the upper-row
panels (Fermi energy at the center of the band, u = 0), we see that the plateaus starting at
approximately N = 10 [Figure 38(b)] are gradually erased as charge fluctuations increase
[panels (c), (e), and (g)]. For example, in Figure 38(g), the lowest energy state with
@ =1 and S = 0 (dashed blue curve) transitions directly (around N = 10) from a high-
to a low-temperature value without going through an intermediate stage. This does not
happen for the lower-row panels (Er close to the bottom of the band). The plateau
present in Figure 38(b) (between N = 10 and 30) is still present in panel (h) (although it
now finishes at around N = 20). This is consistent with the results for a robust Kondo

state seen in the impurity magnetic susceptibility in Figure 37.

For completeness, Figure 39 shows the impurity entropy as a function of %, for the
same parameters as in Fig. 37. We note in panel (a) (EFr at the center of the band),
for e, = —0.005 (red curve), the usual evolution. As temperature decreases, the impurity
entropy goes from the free-orbital (In 4) plateau to the LM (In 2) plateau, until it reaches
the strong-coupling (In 1) Kondo limit. Panel (b) shows the corresponding results when
the Fermi energy is close to the bottom of the band, with €4 at the singularity, as in Fig.
37. We notice again a pinning tendency around the LM plateau as 4 increases, especially
for e, = —0.002 (green curve), whose oscillation, also observed in the corresponding result
in Figure 6, may be ascribed to the many-body states that appear between the Kondo
peak and the singularity [see Figure 33(b)]. It is important to note the nonuniversal low-
temperature behavior of the cyan curve in panel (b), which shows the impurity entropy
being negative in the range 107 < 7'/D < 107%. This behavior (which accompanies the
nonmonotonic behavior of the cyan curve in 7T}, Figure 37) is reminiscent of the behavior
seen in other Kondo problems in the presence of a sharp singularity or discontinuity in
the DOS (75, 76, 85) and is clearly most prominent here when the RL is closest to the
band singularity.
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Figure 39 — Impurity entropy (as a function of temperature) for the same parameters as
in Figure 37.

5.1.4 Results for an AGNR

We now discuss a possible physical implementation of the model NRG results pre-
sented in the previous sections. We study the Kondo states associated with band-edge
singularities present in the DOS of an AGNR made by three carbon rows (3-AGNR),
which is known to be a semiconductor (86, 87). Such nanoribbons can be fabricated from
molecular precursors (88), for example, and have been used to study Kondo resonances
in experiments (89). One interesting recent study is that of subgap states in the Kondo
regime (90). Figure 40(a) shows the DOS of an undoped 3-AGNR with symmetric valence
and conduction bands. The Fermi energy can, in principle, be gated down until it is close
to the bottom singularity of the valence band (leftmost vertical dashed line), or we may
gate-dope it with slightly more electrons and bring the Fermi energy just above the bottom
singularity of the conduction band (rightmost vertical dashed line). Both cases reproduce
the situation studied in the previous sections for the quantum wire. Figure 40(b) com-
pares the w dependence of these two singularities with that of the quantum wire, showing
that they are virtually the same. Notice that panel (b) shows the hybridization function
A(w) = 7V2%p(w) is the same for all three cases. These results in Figure 40(b) imply that
the NRG results for the 3-AGNR and the quantum wire should be very similar. Indeed,
the finite-U impurity spectral function [same parameters as in Figure 33(b)], shown in
Figure 40(c), for the conduction band singularity, is quantitatively similar to the quantum
wire results in Figure 33(b). The same occurs for the valence band singularity [Figure

40(d)).
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Figure 40 — (a) Armchair graphene nanoribbon made by three carbon rows (3-AGNR)
density of states (DOS), showing the very symmetric valence (purple curve)
and conduction (cyan) bands. The vertical black dashed lines indicate the ap-
proximate position of the Fermi energy for the calculations in (¢) and (d). (b)
Comparison of the quantum wire singularity (A}, dashed red curve) with
the 3-AGNR valence (A}, 4, dashed purple) and conduction (Af,, 4, dashed
cyan) hybridization functions lower singularities, showing they are identical.
The inset shows a sketch of the 3-AGNR system. (c¢) Impurity DOS (blue
curve, pyrg) when €4 is at the singularity at the bottom of the conduction
band. The result is very similar to Figure 33(b), for the quantum wire singu-
larity. (d) Same as in (c) but now €4 is at the valence band singularity. Also
like (c). Parameter values (except for u) are as in Figure 33(b).

5.1.5 Summary

We have analyzed the effect of Van Hove singularities near the Fermi energy and a
magnetic impurity on the Kondo effect. Such singularities are present at the band edges
of a quantum wire and of different AGNRs. The singularities present at the bottom of the
valence and conduction bands of a 3-AGNR result in effective hybridization functions (at
fixed I') with an w™'/2? dependence. Thus, the spectral functions of the magnetic impurity
are quantitatively similar to those obtained for a quantum wire and provide a convenient
physical implementation of our model calculations (88, 89, 91). The main results we
obtained are as follows. For a noninteracting impurity, we have characterized a Dirac ¢
bound state below the band minimum, with properties that depend on the near resonance
of ¢4 with the singularity, and on the coupling of the impurity to the band. As expected,

the larger the coupling and the closer ¢, is to the singularity, the larger the spectral weight



Zy of the bound state and the farther it is below the band minimum. The spectral weight
Zy is vanishingly small if €; is not close to the singularity, while it quickly increases as
it approaches, reaching the value Z, = % at resonance, in agreement with previous work
(58), where the singularity is due to SOI. In addition, the impurity level ¢, is slightly
renormalized upward due to its interaction with the singularity. Once the Hubbard U is
present, we see several interesting effects. First, starting with the Fermi energy at the
PHS point in the middle of the band [Figure 33(a)] and then moving to the bottom of
the band [Figure 33(b)], at fixed U and I', we see that the noninteracting bound state
acquires a finite width and moves further away from the bottom of the band; in addition,
a discontinuity appears in the impurity DOS at the band edge. Additional structure in
the spectral function appears between this discontinuity and the Kondo peak which, aside
from acquiring some asymmetry, is barely affected. An analysis of the evolution of the
impurity DOS as U decreases, at fixed I', from U/I" = 12 to occupancy of the impurity and
its T’k value, show that the system partially recovers its strong coupling regime properties,
i.e., higher occupancy and lower Ty, once the presence of the singularity is felt at the
intermediate valence regime. This occurs because of the formation of the bound state.
In addition, the magnetic susceptibility shows that, for Fermi energy near the bottom
of the band and in the intermediate valence regime, the LM fixed point is more resilient,
as the impurity suppresses charge fluctuations. Figure 37(b) shows that the LM plateau
is somewhat restored around the % X i value, indicating the influence of the bound state.
This evolution is corroborated by an analysis of the NRG energy flow, shown in Figure

38, as well as the impurity entropy (Figure 39).






CHAPTER 6

Modeling the Two-Stage Kondo
Regime via NRG

In this chapter, we investigate the behavior of a composite impurity in a metal, which
can explore different configurations where its net magnetic moment may be screened by
the electrons of the host. A particularly interesting case is the two-stage Kondo (TSK)
system, in which the screening process occurs successively at distinct, progressively smaller
energy scales. In contrast, the impurities may prefer a local singlet disconnected from
the metal. This competition is decided by fine-tuning of the couplings in the system, as
has been studied before. A double quantum dot T-shape geometry, where a ‘hanging’ dot
is connected to current leads only via another dot, represents a flexible system in which
these different regimes can be explored experimentally. It has been difficult, however, to
clearly differentiate the two regimes. Here, we provide a prescription to better identify
the regime where the TSK occurs in such double dot geometry. The TSK regime requires
a balance of the ratio tro—; between the inter-dot coupling (¢¢;) and the coupling of the QD
connected to the Fermi sea (I'y). Above a certain value of this ratio, the system crosses
over to a molecular regime, where the quantum dots form a local singlet, and no Kondo
screening occurs. Here, we establish that there is a region in the #y; — 'y parameter space
where a pure TSK regime occurs, i.e., where the properties of the second Kondo stage can
be accurately described by a single impurity Anderson model with effective /renormalized
parameters. By examining the magnetic susceptibility of the hanging QD, we show that
a single parameter, I'c;f, can accurately simulate this susceptibility. This effective model
also provides the hanging QD spectral function with great accuracy in a limited range of
the to; —I'g parameter space, thus defining the region where a true TSK regime occurs.
We also show that in this parameter range, the spin correlations between both quantum
dots show a universal behavior. Our results may guide experimental groups to choose
parameter values that will place the system either in the TSK regime or in the crossover

to the molecular regime.



6.1 Introduction

Point defects in semiconductors—in the form of vacancies, for example—may greatly
affect the electrical conductivity of a host crystal (92). Similarly, magnetic impurities
can qualitatively alter the electrical conductivity of their metallic hosts at low tempera-
tures (19). A vacancy in a semiconductor, being a single-electron problem, does not lead
to qualitatively different properties when a few more vacancies are added. In contrast,
two magnetic impurities in a metallic host may interact with each other, even indirectly,
leading to a completely different ground-state, depending on the ratio of the relevant pa-
rameters (93, 94). The phenomenology of the so-called two-impurity Anderson model (95)
lies at the heart of the current understanding of important classes of compounds, such as
heavy-fermions (96) and Kondo insulators (97).

Research on single-impurity systems received a large boost at the closing of last cen-
tury with the observation of the Kondo effect in QDs (98) and magnetic impurities on
metal surfaces (99). The ability to continuously tune the relevant Kondo-parameters
in lithographically defined QDs opened the doors to detailed studies of the Kondo ef-
fect (100). Subsequently, systems with two QDs were built (101) and, a few years later,
indirect coupling between two QDs was being analyzed (102, 103). In addition, in sys-
tems where there is competition between Kondo screening and other many-body interac-
tions, a quantum phase transition (QPT) may occur, including the existence of non-Fermi
liquid phases (104, 105). This behavior may be experimentally studied in multi-QD
systems (106, 107), in a single QD where there is orbital degeneracy (108), in single-
molecule junctions (109, 110), and, more recently, in coupled hybrid metal-semiconductor
islands (111).

Here, we are interested in revisiting, using the numerical NRG method (112, 113, 114),
one specific double-QD (DQD) arrangement [see Figure 41(a)], where only one of the QDs
(QDy) is connected to the leads, while the other (QD;) is side-connected to QDy, forming a
T-shape or hanging dot geometry. This system has been shown to exhibit the well-known
TSK effect (115, 116, 117, 118, 119, 120, 106, 107, 121, 122, 123, 124, 125, 126, 127, 110),
which may happen in a variety of systems where there is more than one localized magnetic
moment involved, thus creating an interplay between local and itinerant couplings (115,
116).

For the DQD system with T-shape geometry [see Figure 41(a)] in the TSK regime,
QDy forms a Kondo state with the leads below a characteristic temperature T,, while
for T' < Tk, < Tk,, QD; forms a Kondo state with the Fermi liquid resulting from the
first-stage Kondo effect (117). Our goal is to find an effective single-QD system that
will reproduce QD;’s Kondo physics (more specifically, its magnetic susceptibility and
impurity spectral function) when QD; is in the second stage of the TSK effect. Based
on the well-known universality of the Kondo effect, one expects that the Kondo physics

of QD should be identical to that of an effective single impurity Anderson model over
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Figure 41 — (a) Schematic diagram of the DQD system in T-shape geometry. Only QDg
is coupled to the source and drain leads through hoppings Vp and Vg. QD
and QD; are coupled by a hopping parameter ty; and their local energies are
given by €, and €, respectively. The on-site QD Coulomb interactions are
Uy and Uy, where we take Uy = U; = U, and we work in the PHS point, i.e.,
€0 = €1 = —U/2. (b) A schematic representation, in the to; —I'y parameter
space, of the two regimes present in the DQD T-shape geometry system: right
lower corner depicts the TSK regime, while the left upper corner contains the
molecular regime (see text). The crossover region between these two regimes
presents interesting effects resulting from competing interactions between the
molecular regime, characterized by Jy; =~ 4¢3,U, and the Kondo couplings
Jk, and Jkg,, which control the TSK regime.

a well-defined region of the to; —I'y parameter space with U.sy = Uy, €55 = €1, and with
effective hybridization I'.y; that is a function of #5; and I'y. How well this effective model
reproduces the Kondo properties of QD4 can then be used to establish the range of values
of tg1 and I'y where the DQD system is indeed in a TSK regime. We will see that this
approach is very useful in defining that range, and that, in reality, it is found to be quite

restricted.

As depicted in Figure 41(b), the main result obtained in this work is the determination
of a region in the tg; — 'y parameter space where a true TSK regime occurs. This regime,
located in the lower right-corner of Figure 41(b), lies below a critical ratio %, where the
dominance of the coupling to the leads over the interdot coupling allows the sequential
Kondo effects to occur. In this regime, the dominant interactions are the Kondo interac-
tions Jk, and Jg, (128), with Jg, > Jk,. On the opposite corner, in Fig. 41(b), lies the
molecular regime, where the ratio %Ooi is such that Jy; ~ 4—;';* dominates, locking the QDs
into a singlet, effectively disconnecting the DQD spins from the Fermi sea. The TSK and
molecular regimes are separated by a crossover region, where these interactions compete.
Finding the effective model that defines the TSK region may help design T-shape experi-
mental setups to precisely tune the system into this region, and from there move into the

crossover region and explore its properties.



6.2 Model and Hamiltonian

In Figure 41(a), we show the system being analyzed in this work. Quantum dot QD is
connected to source and drain leads through hoppings Vg and Vp, respectively, while QD;
is coupled only to QDg through a hopping to;. We model this system through a double-
impurity Anderson model, whose Hamiltonian is given by H = Hpqp + Hieads + Hiyb,
where the first term (Hpqp), describing the DQD, is

HDQD = Z €iMNis + Z Uinmnu — to1 Z (dggdw + H.c. ) , (88)

s 7

where ¢ = 0,1 labels the QDs, n;,, = dggdw is the number operator for QD;, thus d;,
annihilates an electron with spin ¢ =1, in QD;, while U; is the Coulomb repulsion in
QD; and ¢; is its orbital energy. Finally, tg; is the amplitude for interdot hopping. The

second term (Hieaqs), describing the source (r = S) and drain (r = D) leads, is given by

Hleads = Z 67"120”7‘1207 (89)

kor

R : L
where n ;= Cr Crfp 18 the number operator for a state with energy € r in lead r. The

third term, containing the coupling between QDy and the leads, is given by

thb = Z (V;Eadggcrlga + H.c. ) ) (90)

kor

where V ;- is the (spin conserving) hopping from QD to lead r = S, D. Taking V; =
Voi, = Vo, QDo couples only to the symmetric combination of both leads, through
hopping V = +/2Vj; then the hybridization between QDy and the band is given by
[y = 7V2py, where py is the lead density of states (DOS) at the Fermi energy. For simplic-
ity, we chose to take Vs = Vp, since, as is well known in Kondo physics, this simplifies the
problem, without introducing any spurious effects (128). We also consider the metallic
host as having a uniform (flat) DOS in the interval —D < w < D, where D = 1, half of
the bandwidth, is the energy unit. In addition, for simplicity, we consider Uy = U; = U
and € = €] = %, i.e., that the system is in the particle-hole symmetric (PHS) point.
For most of the calculations, we have used the discretization parameter A = 2.0 and kept
at least 5000 states at each iteration. We also employ the z-trick (129) (with z = 0.25,
0.5, 0.75, and 1.0, i.e., N, = 4) to remove oscillations (artifacts) in the physical quantities
(for examples of its use, see Ref. (130)). The thermodynamic quantities were calculated

using the traditional single-shell approximation, while the dynamical quantities (spectral

function) were calculated using the density matrix NRG approximation (131).
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Figure 42 — (a) T xP9P(T) vs T for U = 0.5, I'y = 0.035 and 0.0012 < tg; < 0.0022 in
steps of 0.0001, and for 0.0024 < t5; < 0.0044 in steps of 0.0002. The red ar-
row indicates increasing to; values. (b) Variation of both Kondo temperatures
with to1, Tk, (black circles) and Tk, (blue squares and red triangles), for the
same [’y as in (a). As expected, Tk, is very weakly dependent on ty;, while
Tk, varies by ~ 20 orders of magnitude and takes extremely low values for
the smaller ¢y; values. The different ways of obtaining T, are discussed in
the text. The shading on the right side of the panel is to indicate the region
where the system is increasingly in a molecular regime, and no longer in a
TSK regime. (c) T x@P(T) vs T for the same parameters as in panel (a).
The red arrow has the same meaning as in panel (a). The horizontal gray
dashed lines in panels (a) and (c¢) indicate the values of the Wilson criterion
parameter «; discussed in the text.

6.3 NRG Results

6.3.1 Obtaining Tk, in two different ways: defining the magnetic
susceptibility for QD;

We use the Wilson criterion (128) for obtaining Ty, and Tk, , viz., Tk, xP9P (Tk,) = o,
where ap = 0.25 + 0.07 = 0.32 and oy = 0.07. Here, xP?P is the DQD contribution to
the total susceptibility, and it is obtained by calculating the total system susceptibility
(including the leads) and subtracting the susceptibility of a reference system, i.e., the
system without the DQD (i.e., the Fermi sea or ‘bath’). Figure 42(a) shows TxP?P(T)
as a function of temperature, for I'y = 0.035, in the interdot coupling range 0.0012 <
tor < 0.0044. The two horizontal dashed lines indicate the «; values mentioned above,
used to obtain Tk,. Figure 42(b) shows T, (black circles) and Tk, (red triangles), as a
function of 1, obtained as in Figure 42(a), but now for t5; up to 0.0082, i.e., very much
inside the molecular regime. The results in panel (b) show that, as ty; decreases, Tk,
remains almost constant (as expected, since it should depend much more strongly on T’y
than on t¢1 ), while Tk, decreases by several orders of magnitude. As it will become clearer
below, for a fixed value of I'y there is a ty3; value above which the system crosses into the
molecular regime, and there is no more Kondo screening and the quantities Tk, and Tk,

cease to be meaningful. The shading in Figure 42(b) is meant to depict the molecular



regime (see Ref. (117)).

By choosing a different reference system, we may calculate the contribution of just
QD1 to the susceptibility. Indeed, by subtracting, from the total system susceptibility, the
susceptibility of the Fermi sea plus QDy (coupled to the Fermi sea by I'y), we obtain y9P,
the QD; susceptibility. For the same parameters as in Figure 42(a), Tx9P(T) is shown
in Figure 42(c). Applying the Wilson criterion, with oy = 0.07 [horizontal dashed line in
panel (c)], to Tx®Pt, we obtain the blue squares in panel (b). The excellent agreement
between the two methods [compare blue squares and red triangles in Figure 42(b)] confirms
that the definition of the susceptibility of QD; is sound. It is the susceptibility of QDy,
x@P1, that will be used to asses the validity of a single impurity Anderson model, here

dubbed an effective model, as described in the next section.

6.3.2 The effective model: fixed I'y and varying ¢y,

Based on the universality of the Kondo effect, we expect that the Kondo physics of
QD7 should be, at least in some region of the ty; — 'y parameter space, identical to that of
an effective SIAM with U.ss = Uy, €5y = €1 = —U2, and with an effective hybridization
I'css that should depend on ty5; and I'y. Indeed, Figure 43(a) shows the fitting (black
dashed curves) of Tx?P! (solid color curves) for the interval 0.0012 < to; < 0.0038.
By appropriately adjusting the value of I'.s; (which functions as a fitting parameter),
for each different value of ¢y, (for I'y = 0.035), we are able to accurately reproduce the
Tx%P1 results (color curves) in Figure 43(a) over a range of ty; values. This is shown
by the dashed black curves in Figure 43(a), which faithfully reproduce the Tx%P* up to
temperatures several orders of magnitude higher than Tk,. As ty; increases [panels (b)
to (d)], the fitting is accurate only up to lower and lower temperatures, since the system
is crossing over to the molecular regime, where the QDs form a local singlet among
themselves, and not even the first Kondo stage occurs. It is interesting to contrast what
happens in panel (a) (TSK regime), around the local moment (LM) fixed point, for QD,
and the effective model [see the inset in panel (b)]: since QD7 is not connected directly to
the Fermi sea, it undergoes very small charge fluctuations, thus its susceptibility is very
close to 1/4 for all ¢y values (colored solid curves), while it decreases considerably as I'.y
increases for the effective SIAM (black dashed curves).

Figure 44 presents the I'c;; values as a function of ¢y;. It is interesting to see that the
region for smaller values of tg; where one expects the TSK to occur (117), presents an

almost linear dependence of I'c;; with 2¢;.

6.3.3 QD; susceptibility for fixed ¢3; and varying I,

We now analyze y?P! for varying coupling to the leads I'y and a fixed ty; value. To

help interpret these results, one should note that Ty (if we take a unit value for the
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Figure 43 — Tx@P1 vs. T results (colored solid curves) compared to the results obtained
through an effective SIAM (black dashed curves) for different values of to;.
Parameters are Uy = U; = 0.5, ¢¢ = ¢ = —U2, and [ = 0.035. (a)
0.0012 < tp; < 0.0022 in steps of 0.0001 and 0.0024 < t5; < 0.0038 in steps of
0.0002; (b) 0.0040 < to; < 0.0052 in steps of 0.0002; (c¢) 0.0054 < t5; < 0.0070
in steps of 0.0002; (d) 0.0072 < typ; < 0.0082 in steps of 0.0002. The inset in
panel (b) is a zoom in of the data in panel (a) of the local moment fixed point
temperature range. Panel (a) displays excellent agreement with the effective
model in that to; range, which dissipates for higher to; in (b)-(d).

giromagnetic factor g, Bohr magneton pp, and Boltzmann constant k) measures S,
i.e., the square of the z-component of the magnetic impurity spin. Thus, x”%? measures
Shop.. and x9P' measures S}, where Spop = Sy + Si. The left panel in Figure 45
shows Tx?P! as a function of temperature, in the PHS point, for 0.002 < I'y < 0.042,
tor = 0.0018, and U = 0.5. The red curve is for I'y = 0.042 (largest I’y and lowest T, ),
where Tk, increases as I'y decreases (the red arrow points in the direction of decreasing
[y curves). The black curve is for Iy = 0.035, resulting in Tk, = 1.05 x 107*°. Figure
45(b) shows a zoom of the LM fixed point temperature region. It is interesting to note
that, for temperatures just below the LM temperature region (marked by the Siz =14
plateau), the QD; susceptibility for Iy = 0.023 (gray curve) becomes slightly negative,
before vanishing. For progressively smaller I'y values, the susceptibility will dip into more

and more negative values, before going through an upturn and then vanishing as T — 0.
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Figure 44 — I'cyy vs to; results (blue circles), as obtained through the fittings done in
Figure 43. Notice the initial near linear dependence of I'csr on 2¢;.

For even smaller I'y values, the dip approaches —14, forming a plateau at this value,
eventually upturning and vanishing. This behavior reflects the procedure used to obtain
x@P1 as follows. For 0.001 < I'y < 0.023 (the smaller Ty values) and to; = 0.0018, the
system is in the molecular regime (as will be shown in Figure 51). There, for temperatures
just below the LM fixed point, the DQD system has SIQJQD,Z ~ 0, because of the inter-
QD singlet formation (see Figure 46). However, since we subtract the susceptibility of
QDy (our reference in the Y¥P! calculation), which, for this temperature and I'y interval,
is of the order of S&Z < 14, the result for Tx?P' must become negative and then (as
[y decreases) form a plateau at ~ —14. For temperatures below T, when Sg,z (the
reference) vanishes (due to Kondo), then S}, — 5§, also vanishes (since both are = 0).
Thus, this calculation of the susceptibility for QD; for the smaller Iy values is revealing.
It is able to clearly spot the molecular regime (the onset of negative values for T Y9P1),
an effect that is not as apparent when we analyze T xP?P (Fig. 46). Note that the results
in Figure 45 indicate that, for I'y ~ 0.023 (and tp; = 0.0018) the system is in the final
stage of the crossover into the molecular regime.

DQD 45 a function of temperature, for the same

Figure 46 presents results for 7"y
parameters as in Figure 45. It is interesting to note that there is one specific temperature

at which the susceptibility is the same (TxP9P a 14) for all I'y, indicated by a blue
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Figure 45 — (a) Tx%Pt vs T, for 0.002 < I'y < 0.042. The system is in the PSH point,
U = 0.5, and ty; = 0.0018. The red arrow indicates the direction of decreasing
[y. (b) Zoom in, around the LM temperature interval, of the data in panel
(a). The legend applies to both panels.
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Figure 46 — (a) T xP%P vs T for several I'y values. Same parameters and same colors as
in Fig. 45. The red arrow points in the direction of decreasing I'y curves. The
blue arrow points to the peculiar crossing of all curves in a single point. (b)
Zoom in, around the LM temperature interval, of the data in panel (a). The
legend applies to both panels.

arrow. This energy scale is of the same order of magnitude as that signaling the crossover
into the molecular regime, ~ 10~°. We redid the calculations in Figure 46 for different
to1 values, and obtained that the crossing still occurs at TxP?P a 14, albeit at slightly

different temperatures, while the crossing has no dependence on €.
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Figure 47 — (a) QDy spectral function Ay(w) for I'y = 0.035, U = 0.5, and to; = 0.0022, in
the PHS point. The inset shows the antiresonance ‘inside’ the Kondo peak.
(b) QD; spectral function A (w) for the same parameters as in (a). The inset
shows a zoom of the very small Kondo peak in QD;. The spectral functions
in both panels integrate to unity.

6.3.4 QD spectral function and the effective STAM

As shown in the previous two subsections, the effective model provides an excellent
description of the magnetic susceptibility of QDq, yields a good understanding of the
physics around the LM fixed point [see inset in Figure 43(b)], and affords a quantitative
way of determining when the system enters the molecular regime. Then, one may ask
whether the effective model can describe the dynamic properties of QD;. Figure 47
shows the spectral functions Ag(w) and A;(w), for QDy and QDy, in panels (a) and
(b), respectively. The spectral functions were calculated using the density matrix NRG
approximation (131). It is well known (117) that an antiresonance appears at the Fermi
energy in Ap(w), with a characteristic width Tk,. This has been well studied in the
literature and it is shown in the inset to Figure 47(a). However, A;(w) has received much
less attention (125). Its peculiar shape [blue curve in Figure 47(b)], with a Kondo peak
much shorter than the Coulomb blockade peaks, has its origin in the fact that the Friedel
Sum Rule for the DQD system has a much different expression from the well-known
one for the SIAM (128), as illustrated in the case of a two-level QD system (132), for
example. Because of that, it is clear that A.;s(w) will not simulate A;(w) for an w-range
that includes the Coulomb blockade peaks.

Thus, as shown in Figure 48, we limit the comparison of the spectral functions to an
w-range around the Fermi energy that excludes the Hubbard peak. We normalize to 1
the height of both Kondo peaks, the one obtained from the effective model (black dashed
curves) (133) and the one from the DQD (colored solid curves), to facilitate comparison.
It is important to stress that no further adjustments are needed to the effective model.
In other words, the values of I'c;; used to obtain A.;;(w) are the ones obtained from the
susceptibility fittings in Fig. 43, and shown explicitly in Figure 44 (134). The spectral

function comparisons are shown in Figure 48, for I'y = 0.035 and %3; in the interval
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Figure 48 — Comparison between the spectral functions A;(w) (colored solid curves) and
Aecpp(w) (dashed black curves) in the range 1073 < wD < 1072 for several
values of tg; (as indicated in the legend). Parameters used are 0.0012 <
tor < 0.0024, U = 0.5, I'y = 0.035, and the system is in the PHS point. The
corresponding values of I'cyy are indicated. Note that for 3, = 0.0024 there
is no agreement between A;(w) (solid curve) and A.rs(w) (dashed curve).

0.0012 < tg; < 0.0024, as indicated in the legend. The agreement between A;(w) (colored
solid curves) and A.ss(w) (black dashed curves), up to to; = 0.0022 is remarkable. For
tor > 0.0024, the Kondo peaks for QD; and the effective model deviate from each other
(as shown for to; = 0.0024). These results suggest a different criterion to determine the
range of ty; values where the second Kondo effect can be truly simulated by the STAM.
The spectral function comparisons indicate that the upper limit for ty; is considerably
smaller than what transpires from the T y?P! fittings in Figure 43(a), and what has been
often determined in the literature as the TSK-regime range (117).

In the next subsections, we will study some aspects of the inter-QD spin correlation
(§0 . gl) and show that its variation with the system parameters (I'g and #¢;) may be used

to further characterize the TSK regime.

6.3.5 Inter-QD spin correlations: Dependence on %

Figure 49 presents (Sp - S1) for 0.0012 < to; < 0.0082, Iy = 0.035, U = 0.5, T ~
10727 (ground state), for the system in the PHS point. Three different regions may be
discerned. For very small tg; values, when the system is in the TSK regime and thus
each QD is ‘locked’ into its own Kondo state, there is very little correlation between
the QDs. On the other hand, for the largest to; values (molecular regime), the first

Kondo stage does not occur (thus, neither the second), since the two QDs are strongly
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Figure 49 — Ground state (7' ~ 10727) interdot spin correlations. (S - Sy) vs to; for
U =0.5,T,=0.035, with the system in the PHS point.

antiferromagnetically linked by its correlation, which tends to the full singlet value of -34.
Then, in an intermediate region of ty; values, there is a crossover between the TSK and

the molecular regimes.

It is interesting to study (50 . §1> as a function of temperature in the interval 0.0012 <
tor < 0.0036, for I'y = 0.035, U = 0.5, in the PHS point. This is shown in Fig. 50(a),
also with values of Tk, (yellow circles), Tk, (green up-triangles), and Jo; = 4¢3, /U (or-
ange right-triangles, representing the effective antiferromagnetic (AF) coupling between
the two QDs). The symbols for each of these three energy scales, which depend on gy,
are placed on top of the corresponding (§0 . §1> vs T curve. The red curve indicates
to1 = 0.0022, which marks the end of the TSK regime, according to the spectral function
analysis of the effective model. At high temperatures, the correlations vanish for all #y;
values, as expected. As the temperature decreases, AF correlations between the QDs start
to develop, and they are enhanced (becoming more negative) even for temperatures below
Tk, [marked by the green up-triangles, see zoom ins in panels (b) and (c)], indicating that
QDy develops singlet correlations simultaneously with the conduction electrons (forming
the Kondo singlet) and with QD;, mainly when in the crossover regime (to; > 0.0022).
Indeed, inside the crossover regime, 0.0022 < t5; < 0.0036, the singlet correlations be-
tween the two QDs are strongly enhanced, for temperatures below T, , finally settling

into a plateau. This can be seen as a precursor to the full molecular regime.

Now, let us analyze the onset of the second Kondo stage for the larger values of ty;.
It is clear that down to tp; =~ 0.003 [fourth curve from bottom to top in panel (a)], Tk,
marks the temperature where the plateau in (5’0 : 5’1) starts. In contrast, for the smallest
values of tg1, as shown in panel (b), it is the energy scale Jy; (orange right-triangles)
that marks the onset of the <§0 . §1> plateau. For intermediate values of ty;, the plateau

onset occurs for an energy scale that is intermediate between Jy; and Tk, . Note that this
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Figure 50 — (a) (Sy - S1) vs T for 0.0012 < t5; < 0.0022, in steps of 0.0001, and for
0.0022 < tp; < 0.0036, in steps of 0.0002. Parameters used are U = 0.5,
I'y = 0.035, and system in the PHS point. The red curve is for t5; = 0.0022.
The yellow circles indicate Tk,, the orange triangles Jo; = 4¢2,U, and the
green triangles Ty, . (b) and (c¢) are progressive zoom ins on the data in panel
(a) at higher temperatures.

analysis, for to; > 0.0036 (for I'y = 0.035), becomes questionable, since the very use of
the T, and Tk, energy scales loses its meaning.

One interesting aspect of the results in Figure 50(a) is that for temperatures below T,
(yellow circles), there is virtually no change in (50 . §1> as the QD; spin is screened by the
conduction electrons via the formation of the second Kondo state. This is especially true
inside the TSK regime, where the plateau starts at temperatures well above T, . In other
words, the formation of a correlated state between QD; and the conduction electrons (the

second Kondo state) does not alter the spin correlation of QD; with QDy.

6.3.6 Inter-QD spin correlations: Dependence on I,

Figure 51 shows how <§0 . §1> varies with ['y for three different ty; values, viz., 0.0018,
0.0040, and 0.0082, for T' ~ 10727 (ground state). For very small values of 'y (up to
~ 0.015) the QDs form a strong singlet (<§0 . §1> ~ —0.75, indicated by the solid gray
horizontal line), independent of the value of t5;. Thus, all three to; values place the system
in the molecular regime for such small 'y values. Larger I'y values (I'yg > 0.025), show a
clear separation between the three curves: for the lowest to; = 0.0018 (red circles), (Sy-S;)
rapidly vanishes with increasing I'y, while for to; = 0.0040 (green squares), (S - S;) is
still strongly AF, but approaches zero as 'y increases, as it will eventually crossover into
the TSK regime. The <5‘0 . 5_"1) results for tp; = 0.0082 (blue triangles), however, display
sizeable AF values for nearly the whole Iy interval in Figure 51, have a markedly different
dependence on I'y, and become negligible only for I'y values large enough to place QD

close to (or into) an intermediate valence regime (128).
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Figure 51 — Ground state (Sy-S;) vs. T for to; = 0.0018 (red circles), to; = 0.0040 (green
squares), and tg; = 0.0082 (blue triangles) for 0.002 < T’y < 0.042, U = 0.5,
and system in the PHS point. The horizontal light-gray line indicates the
full-singlet value (Sp - S) = —3/4.

Coming back to the t5; = 0.0018 results (red circles), the spectral function in Fig 48(d)
shows that for Iy = 0.035 the system is well into the TSK regime, since the QD; dynam-
ical properties agree with the SIAM effective model. Obviously, larger values of I'y will
maintain the system in the TSK regime. The functional form of the red circles curve
in Figure 51 seems related to that of the other two curves, which motivates one to ex-
plore re-scaling properties. This probing for universal behavior is carried out in the next

subsection.

6.3.7 Collapse of the inter-QD spin correlations

Figure 52(a) shows the <§0 . §1> vs I'y curves in the interval 0.0012 < t5; < 0.0082. In
accordance to the discussion above, we use the lowest to; = 0.0012 curve in Figure 52(a)
as the ‘target’ curve, and try to collapse higher ty;-value curves onto it. We apply the
following procedure. First, we choose a ‘reference’ value, denoted F(T)ef , inside the TSK
region of the target curve. Next, we find what is the T’y value (denoted I'§'?) for which
(S-51) (tor = 0.0012, 190012y — (5. 5 (t0y, Ti), providing the re-scaling factor by which
we divide the I'y axis for the to; curve in question, & = [4% /10912 Panel (b) shows the
re-scaled results in the interval 0.0013 < to5; < 0.0023, using Fgef = 0.027, where all curves
collapse onto the curve for to; = 0.0012 (black solid curve). Panel (c) shows that applying
the same re-scaling procedure for t5; > 0.0023 curves does not produce as good a collapse

onto the target curve.

It should be noted that the (S, - S,) curves for larger values of to; [see panel (c)] may



re-scale for larger values of Iy | at least until a certain value of #o;. This reflects the fact
that it is the ratio tp;I' that determines if the system is in the TSK regime or not (as
long as I'y does not result in a mixed valence regime).

Figure 53 shows <§0 . 51) as a color map in the tg — [y parameter space. We can
use it to delineate a region where the TSK regime resides. For that, we use the spectral
function results obtained previously, where we found the maximum ¢y = 0.0022 (for
[y = 0.035) for which the QD; Kondo peak could be accurately simulated through the
effective model. For these values we obtain (Sp-S1)(0.0022,0.035) = —0.027. Taking that
as the lower limit for <§0 . 51), that defines the border of the TSK regime, we obtain the
slanted black line close to the lower right corner in Fig. 53. In other words, this is the
line where (5‘0 . 5_"1)(1501, [g) = —0.027 in the tyo; — [y plane. The yellow region, for which
(50 . §1>(t01, [g) > —0.027, defines the TSK regime.

0.002 0.010 0.020 0.030 0.040 0.002 0.010 0.020 0.030 0.040 0.002 0.010 0.020 0.030  0.040

I'y/D I'e/D I'o/D

Figure 52 - (a) Ground state (S, - ;) vs I' for 0.0012 < t5; < 0.0082 (from left to right,
see horizontal arrow). (b) Re-scaled 0.0012 < to; < 0.0023 results, showing
their collapse onto the to; = 0.0012 curve (black solid line). (c) (Sp - S)
results for the interval 0.0024 < t5; < 0.0082, showing that these results do
not share universality with the lower to; results in panel (b).

6.4 Summary and Conclusions

In summary, we have analyzed a T-shape geometry for a DQD system, using NRG.
Our simulation through a two-impurity Anderson model is focused on determining the
to1 — I'p parameter region in which the second Kondo stage can be well defined. We were
able to show, using an effective SIAM, that the TSK regime occupies a rather restricted
sector of parameter space (see Figure 53). The process of obtaining this result required
the calculation of the QD; susceptibility, its comparison with the susceptibility of an
effective STAM, as well as the comparison of the dynamic properties of QD;. We found
that in the region where the “better-defined” TSK occurs (for fixed I'g and small values
of to1), I'ess depends linearly on ¢y, (see Figure 44).

To supplement the information and perspective that Yt and A;(w) can provide,

we also carried out a thorough analysis of the inter-QD spin correlations (5‘0 . §1> This
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as (50 - S1)(to1, I'p) = —0.027 and delimits the location of the TSK regime, as
defined in this work.

allowed us to uncover interesting features of the DQD system, wviz., the TSK manifests
itself through the appearance of a plateau in the interdot spin correlation for 7" < Jy; (see
Figure 50) and through the universality of the (Sp - S) vs Iy curves for small enough to;

values.

We anticipate that our results could guide the study of related DQD systems. For
example, when the QDs are in a parallel geometry (135), with both QDs connected to
the leads (in that case, QD; connects through I'y to the Fermi sea, while in T-geometry
[’y = 0). In that system, there is the possibility of a singlet /triplet QPT (136, 137, 125)
through variation of the coupling parameters. For instance, when increasing I'; (for
fixed 'y and t¢1), the system eventually goes through a singlet/triplet QPT (as shown
in Figure 7(a) in Ref. (125)) (138). It would be important to distinguish what is the
character of the singlet-side of the QPT, viz., the TSK, the molecular, or the crossover
between them. Our results may provide guidance to experimentalists to better place the
system in the desired regime.

Thus, we trust that our analysis allows experimental groups to tune the parameters

of a DQD system with T-shape geometry into the true TSK regime. Varying parameters

accordingly, they could study the crossover to the molecular regime, and turn on I'; to



study the singlet/triplet QPT starting from different singlet regimes.






CHAPTER 7

Conclusion

In this work, we have presented a analysis into the physics of magnetic quantum
impurity systems, focusing on the Kondo effect and how it manifests within host environ-
ments characterized by non-trivial geometries and densities of states, resulting in what we
dubbed as “extreme conditions”, characterized by either extreme particle-hole asymmetry
or energy scales spanning 20 orders of magnitude. For this purpose, we employ the NRG
method, originally developed by Wilson in the 1970s, as a fundamental tool. Our work
explored the competition between strongly correlated physics in one-dimensional (1D)
systems exhibiting spectral singularities and a double quantum dot system arranged in a
T-shape geometry. Here, the competition between local and itinerant interactions deter-
mines two distinct quantum regimes, characterized by either a “local” singlet (molecular
regime) or a sequence of two many-body Kondo singlets (Two Stage Kondo regime). The
former system, when non-interacting (Resonant Level model), presents a bound-state be-
low the bottom of the band, whose spectral weight, when the resonant level is positioned
right at the singularity, is exactly 2/3 |, regardless of its coupling to the conduction elec-
trons. On the other hand, a Hubbard interaction causes the bound state to suffer a series
of transformations, including level splitting, transfer of spectral weight, appearance of a

spectral discontinuity, changes in binding energy, and development of a finite width.
Study of Kondo regime dependence of bound-state below the continuum

First, we concentrated on analyzing the properties of a magnetic impurity embedded

in a host environment that exhibits a density of states singularity of the w=1/2

type at
his bottom, characteristic of 1D quantum wires and graphene nanoribbons. Here, we
present a comparison between the non-interacting Resonant Level model with the inter-
acting Single Impurity Anderson Model, revealing discoveries that expand the traditional
understanding of the Kondo effect to regimes of extreme particle-hole asymmetry. Non-
interacting regimes demonstrated the rise of Dirac § bound state outside of the continuum.

The position and the spectral weight of this bound state were mapped as a function of the



impurity’s energy proximity to the singularity and the coupling strength. A key finding
is that tuning the impurity resonant level exactly to the energy of the singularity, the
bound-state spectral weight approaches a universal value of Z, = 2/3. This universality
is notable, as it was verified to be independent of the presence of spin-orbit interaction.
When the impurity’s resonant level was placed below the band end, the spectral weight
of the bound state was consistently larger than 2/3 and increased with ¢ (distance to the
band edge).

The inclusion of the Hubbard U interaction significantly modified the impurity spec-
trum. NRG revealed that the singularity distorts the lower Coulomb blockade peak,
resulting in a complex spectral profile. The non-interacting bound state acquires a finite
width, being shifted to lower energies, and the Hubbard correlation generates a disconti-
nuity in the impurity density of states at the band extremity. By analyzing the impurity
occupancy as a function of both chemical potential and impurity level energy, we were
able to identify the emergence of the re-entrant Kondo regime. Indeed, it was shown
that, as the Fermi energy approaches the singularity at the band bottom, the occupancy
ng increases abruptly, and the system partially recovers the characteristics of the strong-
coupled Kondo regime. This behavior is accompanied by an abrupt drop in Tk, which
returns to values characteristic of the single-valence Kondo regime Tk, even when the
parameters would suggest an intermediate-valence regime, where T} is typically higher.
The competition between the singularity and correlations seems to suggest that the bound
state forming near the Fermi energy Er could make the local moment somewhat more

stable against charge fluctuations.

Thermodynamic properties confirmed this “resilience” of the local moment fixed point.
The impurity magnetic susceptibility indicates that the plateau associated with the local
moment fixed point remains around 2/3 x 1/4. This pinning of the susceptibility in the
local moment fixed point region is attributed to the influence of the bound state with
spectral weight Z, = 2/3, suggesting that it renders the local moment more resistant to
charge fluctuations. A non-universal finding was the behavior of the impurity entropy,
which exhibited temporarily negative values at low temperatures when the resonant level
was closer to the singularity. This phenomenon is rare but has been observed in Kondo
problems with singularities or discontinuities in the density of states, and here it is more
prominent when the impurity orbital level is closer to the band singularity. The evolution
of the NRG energy flux near the singularity also showed that the local moment plateau is
persistent, compared to the case of Fr at the band center, which validates the conclusion

that the system sustains a Kondo state in the vicinity of the singularity.

The findings described above contribute to the understanding of the mechanisms of
local moment formation and screening in strongly correlated systems. The observation of
a fractional local moment and the stabilization of the local moment near the singularity

may contribute to the study of heavy fermions. In practical applications, the results are



important for nanoelectronics and the development of quantum devices based on quantum
dots. We also suggest a viable physical implementation for experimental testing of our
results: the equivalence between the quantum wire singularity and the density of states
of armchair graphene nanoribbons was established, indicating that these semiconductor

materials can serve as controllable hosts for the study of Kondo in one-dimensional hosts.
T-shape Double Quantum Dot: Molecular vs. Two-stage-Kondo regimes

We then turned our attention to the Two-Stage Kondo effect (T'SK) in a double quan-
tum dot system in a T-shaped geometry. The TSK is required to understand the compe-
tition between a Kondo singlet and a “molecular” singlet. This establishes a criterion for
delimiting a “pure” TSK regime. We demonstrated that this regime occurs in a restricted
sector of the parameter space ty; — I'g (inter-dot coupling and hybridization of the QD
connected to the leads), in which the physics of the second Kondo stage can be described
with high accuracy by an effective Single Impurity Anderson model. Fitting the magnetic
susceptibility of QD; revealed that the effective hybridization is the only necessary fit-
ting parameter, which exhibits a nearly linear dependence on ty; for small values of the
effective coupling.

The analysis of ) D, spectral weight revealed the need for an even more strict criterion
to determine the real TSK regime. The comparison between the QD spectral function
and the effective model spectral function showed that the excellent agreement diminished
for higher values of ¢y, especially for the Kondo peak. This suggests that the upper limit
for the region of interest is more restricted than inferred from the ygp; results alone.
The investigation of inter-QD spin correlations in the ground state complemented this
delimitation, revealing three regions: TSK, enhanced crossing below T%,, and molecular
(trending toward the full singlet value —3/4). The TSK regime limit was quantitatively
defined by the contour line (§O-§ 1) = —0.027 in the parameter space to; —['g. Additionally,
it was shown that in this specific phase, the (50 . §1> versus [y curves exhibit universal
curve collapse when rescaled.

The TSK effect is a prototypical system for the study of multiple competing quantum
moments. The parameter map and the <§0 . §1> criterion provide experimenters with
an exact prescription for tuning T-shape DQD devices in the TSK or crossover regimes.
In DQD systems, understanding of the TSK could be seen as significant for directing
experiments toward tuning T-shaped geometries, specifically with the goal of reaching
the pure TSK regime.

In summary, we believe this work achieves its goals by mapping and characterizing
strong correlation regimes in quantum impurity systems under different host environments
through the use of the NRG method.






Bibliography

1 COLEMAN, P. Heavy fermions and the kondo lattice: a 21st century perspective
(2015). arXiv preprint arXiv:1509.05769. Disponivel em: <https://arxiv.org/abs/
1509.05769>.

2 SARACHIK, M.; CORENZWIT, E.; LONGINOTTI, L. Resistivity of mo-nb and
mo-re alloys containing 1% fe. Physical Review, APS, v. 135, n. 4A, p. A1041, 1964.
Disponivel em: <https://doi.org/10.1103/PhysRev.135.A104>.

3 PAVARINI, E.; COLEMAN, P.; KOCH, E. Many-body physics: from Kondo to
Hubbard. [S.l.], 2015. Disponivel em: <https://juser.fz-juelich.de/record/205123>.

4 FABRIZIO, M. Kondo effect and the physics of the anderson impurity model.
In: A Course in Quantum Many-Body Theory: From Conventional Fermi
Liquids to Strongly Correlated Systems. Springer, 2022. p. 313-343. Disponivel
em: <https://link.springer.com/chapter/10.1007/978-3-031-16305-0_ 7>.

5 MOCA, C. P. et al. Kondo cloud in a superconductor. Physical Review Letters,
APS, v. 127, n. 18, p. 186804, 2021. Disponivel em: <https://doi.org/10.1103/
PhysRevLett.127.186804>.

6 BORZENETS, I. V. et al. Observation of the kondo screening cloud. Nature,
Nature Publishing Group UK London, v. 579, n. 7798, p. 210-213, 2020. Disponivel em:
<https://doi.org/10.1038 /s41586-020-2058-6>.

7 COLEMAN, P. Local moment physics in heavy electron systems. arXiv preprint
cond-mat /0206003, 2002. Disponivel em: <https://doi.org/10.48550/arXiv.cond-mat/
0206003>.

8 SASAKI, S. et al. Kondo effect in an integer-spin quantum dot. Nature, Nature
Publishing Group UK London, v. 405, n. 6788, p. 764-767, 2000. Disponivel em:
<https://doi.org/10.1038/35015509>.

9 CRONENWETT, S. M.; OOSTERKAMP, T. H.; KOUWENHOVEN, L. P.
A tunable kondo effect in quantum dots. Science, American Association for
the Advancement of Science, v. 281, n. 5376, p. 540-544, 1998. Disponivel em:
<https://www.science.org/doi/10.1126 /science.281.5376.540>.



10 KRISHNA-MURTHY, H.; WILKINS, J.; WILSON, K. Renormalization-group
approach to the anderson model of dilute magnetic alloys. i. static properties for the
symmetric case. Physical Review B, APS, v. 21, n. 3, p. 1003, 1980. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.21.1003>.

11 BULLA, R.; COSTI, T. A.; PRUSCHKE, T. Numerical renormalization group
method for quantum impurity systems. Reviews of Modern Physics, APS, v. 80,
n. 2, p. 395-450, 2008. Disponivel em: <https://doi.org/10.1103/RevModPhys.80.395>.

12 SI, Q. et al. Locally critical quantum phase transitions in strongly correlated metals.
Nature, Nature Publishing Group UK London, v. 413, n. 6858, p. 804-808, 2001.
Disponivel em: <https://doi.org/10.1038/35101507>.

13 SHIBA, H. Properties of strongly correlated fermi liquid in valence fluctuation
system—a variational monte-carlo study. Journal of the Physical Society of
Japan, The Physical Society of Japan, v. 55, n. 8, p. 2765-2776, 1986. Disponivel em:
<https://doi.org/10.1143/JPSJ.55.2765>.

14 SHAGINYAN, V. et al. Scaling behavior of heavy fermion metals. Physics
reports, Elsevier, v. 492, n. 2-3, p. 31-109, 2010. Disponivel em: <https:
//doi.org/10.1016/j.physrep.2010.03.001>.

15 MIRANDA, E.;: DOBROSAVLJEVIC, V. Disorder-driven non-fermi liquid behaviour
of correlated electrons. Reports on Progress in Physics, [OP Publishing, v. 68, n. 10,
p. 2337, 2005. Disponivel em: <https://iopscience.iop.org/article/10.1088/0034-4885/
68/10/R02>.

16 COLEMAN;, P. Introduction to many-body physics. Cambridge University
Press, 2015. Disponivel em: <https://doi.org/10.1017/CB0O9781139020916>.

17 GEGENWART, P.; SI, Q.; STEGLICH, F. Quantum criticality in heavy-fermion
metals. nature physics, Nature Publishing Group UK London, v. 4, n. 3, p. 186-197,
2008. Disponivel em: <https://www.nature.com/articles/nphys892>.

18 CUSTERS, J. et al. The break-up of heavy electrons at a quantum critical point.
Nature, Nature Publishing Group UK London, v. 424, n. 6948, p. 524-527, 2003.
Disponivel em: <https://www.nature.com/articles/nature01774>.

19 de Haas, W.; de Boer, J.; van den Berg, G. The electrical resistance of gold,
copper and lead at low temperatures. Physica, v. 1, p. 1115, 1934. Disponivel em:
<https://doi.org/10.1016 /S0031-8914(34)80310-2>.

20 ALLDREDGE, O. R.; DEFORD, J.; SOSIN, A. Deviation from matthiessen’s rule
in electron-irradiated copper. Physical Review B, APS, v. 11, n. 8, p. 2860, 1975.
Disponivel em: <https://doi.org/10.1103/PhysRevB.11.2860>.

21 KONDO, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Exp.
Phys., v. 32, p. 37, 1964. Disponivel em: <https://doi.org/10.1143/PTP.32.37>.

22 WILSON, K. G. The renormalization group: Critical phenomena and the kondo
problem. Reviews of modern physics, APS, v. 47, n. 4, p. 773, 1975. Disponivel em:
<https://doi.org/10.1103/RevModPhys.47.773>.



23 NOZIERES, P.; BLANDIN, A. Kondo effect in real metals. Journal de
Physique, Société Francaise de Physique, v. 41, n. 3, p. 193-211, 1980. Disponivel em:
<https://doi.org/10.1051/jphys:01980004103019300>.

24 GOLDHABER-GORDON;, D. et al. Kondo effect in a single-electron transistor.
Nature, Nature Publishing Group UK London, v. 391, n. 6663, p. 156-159, 1998.
Disponivel em: <https://doi.org/10.1038/34373>.

25 GAN, J.; WONG, E. Non-fermi-liquid behavior in quantum critical systems.
Physical review letters, APS, v. 71, n. 25, p. 4226, 1993. Disponivel em:
<https://doi.org/10.1103/PhysRevLett.71.4226>.

26  PARCOLLET, O. et al. Overscreened multichannel su (n) kondo model: Large-n
solution and conformal field theory. Physical Review B, APS, v. 58, n. 7, p. 3794, 1998.
Disponivel em: <https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.3794>.

27 TSUNETSUGU, H.; SIGRIST, M.; UEDA, K. The ground-state phase diagram of
the one-dimensional kondo lattice model. Reviews of Modern Physics, APS, v. 69,
n. 3, p. 809, 1997. Disponivel em: <https://doi.org/10.1103/RevModPhys.69.809>.

28 KOUWENHOVEN, L.; GLAZMAN, L. Revival of the kondo effect. Physics
world, IOP Publishing, v. 14, n. 1, p. 33, 2001. Disponivel em: <https:
//iopscience.iop.org/article/10.1088/2058-7058/14/1/28>.

29 HANSON, R. et al. Spins in few-electron quantum dots. Reviews of modern
physics, APS, v. 79, n. 4, p. 1217-1265, 2007. Disponivel em: <https://doi.org/10.
1103/RevModPhys.79.1217>.

30 MATSUSHITA, Y. et al. Evidence for charge kondo effect in superconducting
tl-doped pbte. Physical review letters, APS, v. 94, n. 15, p. 157002, 2005. Disponivel
em: <https://doi.org/10.1103/PhysRevLett.94.157002>.

31 ZENG, H. et al. Kondo effect and superconductivity in niobium with iron impurities.
Scientific Reports, Nature Publishing Group UK London, v. 11, n. 1, p. 14256, 2021.

Disponivel em: <https://www.nature.com/articles/s41598-021-93731-6>.

32 XIN, X.; ZHOU, D. Kondo effect in a topological insulator quantum dot.
Physical Review B, APS, v. 91, n. 16, p. 165120, 2015. Disponivel em:
<https://doi.org/10.1103/PhysRevB.91.165120>.

33 KOURRIS, C.; VOJTA, M. Kondo screening and coherence in kagome local-
moment metals: Energy scales of heavy fermions in the presence of flat bands.
Physical Review B, APS, v. 108, n. 23, p. 235106, 2023. Disponivel em:
<https://doi.org/10.1103/PhysRevB.108.235106>.

34 TRAN, M.-T.; NGUYEN, T. T. Molecular kondo effect in flat-band lattices.
Physical Review B, APS, v. 97, n. 15, p. 155125, 2018. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.97.155125>.

35 AFFLECK, I. Quantum impurity problems in condensed matter physics. Exact
Methods in Low-dimensional Statistical Physics and Quantum Computing,
v. 89, p. 3-65, 2008. Disponivel em: <https://books.google.com.br/books?hl=pt-BR&
Ir=&id=cLEVDAAAQBAJ&oi=fnd&pg=PA3&dq=Quantum+impurity+problems-+



in+condensed+matter+physics&ots=Na2lcGYUd1&sig=LIut4120QZIT6NSiP
MN{tINN-sU&redir__esc=y#v=onepage&q&f=false>.

36 GULL, E. et al. Continuous-time monte carlo methods for quantum impurity models.
Reviews of Modern Physics, APS, v. 83, n. 2, p. 349404, 2011. Disponivel em:
<https://doi.org/10.1103/RevModPhys.83.349>.

37 SMITH, J.; KMETKO, E. Magnetism or bonding: A nearly periodic table of
transition elements. Journal of the Less Common Metals, Elsevier, v. 90, n. 1, p.
83-88, 1983. Disponivel em: <https://doi.org/10.1016/0022-5088(83)90119-4>.

38 FISK, Z. et al. The physics and chemistry of heavy fermions. Proceedings of the
National Academy of Sciences, v. 92, n. 15, p. 6663-6667, 1995. Disponivel em:
<https://doi.org/10.1073 /pnas.92.15.6663>.

39 MOSALI, V. S. S.; BOND, A. M.; ZHANG, J. Alloying strategies for tuning product
selectivity during electrochemical co 2 reduction over cu. Nanoscale, Royal Society

of Chemistry, v. 14, n. 42, p. 15560-15585, 2022. Disponivel em: <https://pubs.rsc.
org/en/content /articlehtml/2022/nr/d2nr03539a?casa_ token=zWxflwzde ATAAAAA:
1InAzfNm-SQOKcd5NQW3WIMevo3g9gb KSWDsNKCyliSh9Xw1wOz7NotluT
5EIeHwEUV7Ubyoun59wAqW>.

40 KASUYA, T. A theory of metallic ferro-and antiferromagnetism on zener’s model.
Progress of theoretical physics, Oxford University Press, v. 16, n. 1, p. 45-57, 1956.
Disponivel em: <https://doi.org/10.1143/PTP.16.45>.

41 HEWSON, A. C. The Kondo problem to heavy fermions. Cambridge university
press, 1997. Disponivel em: <https://doi.org/10.1017/CB0O9780511470752>.

42 MADHAVAN, V. et al. Tunneling into a single magnetic atom: spectroscopic
evidence of the kondo resonance. Science, American Association for the Advancement
of Science, v. 280, n. 5363, p. 567-569, 1998. Disponivel em: <https://www.science.org/
doi/10.1126/science.280.5363.567>.

43 AFFLECK, I.; BORDA, L.; SALEUR, H. Friedel oscillations and the kondo
screening cloud. Physical Review B—Condensed Matter and Materials Physics,
APS, v. 77, n. 18, p. 180404, 2008. Disponivel em: <https://journals.aps.org/prb/
abstract/10.1103/PhysRevB.77.180404>.

44 SIMON, P.; AFFLECK, I. Kondo screening cloud effects in mesoscopic
devices. Physical Review B, APS, v. 68, n. 11, p. 115304, 2003. Disponivel em:
<https://doi.org/10.1103/PhysRevB.68.115304>.

45 AFFLECK, I.; SIMON, P. Detecting the kondo screening cloud around a quantum
dot. Physical Review Letters, APS, v. 86, n. 13, p. 2854, 2001. Disponivel em:
<https://doi.org/10.1103 /PhysRevLett.86.2854>.

46 ANDERSON, P. W. Localized magnetic states in metals. Physical Review, APS,
v. 124, n. 1, p. 41, 1961. Disponivel em: <https://doi.org/10.1103/PhysRev.124.41>.

47 KOUWENHOVEN, L. P. et al. Electron transport in quantum dots. In:
Mesoscopic electron transport. Springer, 1997. p. 105-214. Disponivel em:
<https://doi.org/10.1007/978-94-015-8839-3__4>.



48 KASTNER, M. A. The single-electron transistor. Reviews of modern physics,
APS, v. 64, n. 3, p. 849, 1992. Disponivel em: <https://doi.org/10.1103/RevModPhys.
64.849>.

49 KLOEFFEL, C.; LOSS, D. Prospects for spin-based quantum computing in quantum
dots. Annu. Rev. Condens. Matter Phys., Annual Reviews, v. 4, n. 1, p. 51-81,
2013. Disponivel em: <https://doi.org/10.1146/annurev-conmatphys-030212-184248>.

50 KOUWENHOVEN, L.; MARCUS, C. Quantum dots. Physics World, 10P
Publishing, v. 11, n. 6, p. 35, 1998. Disponivel em: <https://iopscience.iop.org/article/
10.1088/2058-7058/11/6/26>.

51 COSTI, T. Wilson’s numerical renormalization group. In: SPRINGER. Density-
Matrix Renormalization: A New Numerical Method in Physics Lectures of a
Seminar and Workshop Held at the Max-Planck-Institut fiir Physik komplexer
Systeme Dresden, Germany, August 24th to September 18th, 1998. 2007. p.
3-25. Disponivel em: <https://link.springer.com/chapter/10.1007/BFb0106063>.

52 BULLA, R.; PRUSCHKE, T.; HEWSON, A. Anderson impurity in pseudo-gap
fermi systems. Journal of Physics: Condensed Matter, IOP Publishing, v. 9, n. 47,
p. 10463, 1997. Disponivel em: <https://iopscience.iop.org/article/10.1088/0953-8984 /
9/47/014>.

53 MANCHON, A. et al. New perspectives for rashba spin—orbit coupling. Nature
materials, Nature Publishing Group UK London, v. 14, n. 9, p. 871-882, 2015.
Disponivel em: <https://doi.org/10.1038 /nmat4360>.

54 WINKLER, R. et al. Spin-orbit coupling in two-dimensional electron and hole
systems. In: Advances in Solid State Physics. Springer, 2001. p. 211-223. Disponivel
em: <https://link.springer.com/chapter/10.1007/3-540-44946-9 18>

55 MIRELES, F.; KIRCZENOW, G. Ballistic spin-polarized transport and rashba
spin precession in semiconductor nanowires. Physical Review B, APS, v. 64, n. 2, p.
024426, 2001. Disponivel em: <https://doi.org/10.1103/PhysRevB.64.024426>.

56 MEIRAV, U.; KASTNER, M.; WIND, S. Single-electron charging and periodic
conductance resonances in gaas nanostructures. Physical review letters, APS, v. 65,
n. 6, p. 771, 1990. Disponivel em: <https://doi.org/10.1103/PhysRevLett.65.771>.

57 BRUCH, A. et al. Quantum thermodynamics of the driven resonant level
model. Physical Review B, APS, v. 93, n. 11, p. 115318, 2016. Disponivel em:
<https://doi.org/10.1103/PhysRevB.93.115318>.

58 AGARWALA, A.; SHENOY, V. B. Quantum impurities develop fractional local
moments in spin-orbit coupled systems. Physical Review B, APS, v. 93, n. 24, p.
241111, 2016. Disponivel em: <https://doi.org/10.1103/PhysRevB.93.241111>.

59 DRESSELHAUS, G. Spin-orbit coupling effects in zinc blende structures.
Physical Review, APS, v. 100, n. 2, p. 580, 1955. Disponivel em: <https:
//doi.org/10.1103/PhysRev.100.580>.



60 BYCHKOV, Y. A.; RASHBA, E. I. Oscillatory effects and the magnetic
susceptibility of carriers in inversion layers. Journal of physics C: Solid
state physics, IOP Publishing, v. 17, n. 33, p. 6039, 1984. Disponivel em:
<https://doi.org/10.1088/0022-3719/17/33/015>.

61 LOPES, V. et al. Kondo effect under the influence of spin—orbit coupling in a quantum
wire. Journal of Physics: Condensed Matter, IOP Publishing, v. 32, n. 43, p. 435604,
2020. Disponivel em: <https://iopscience.iop.org/article/10.1088/1361-648X /abad5c¢>.

62 BRUUS, H.; FLENSBERG, K. Many-body quantum theory in condensed
matter physics: an introduction. Oxford university press, 2004. Disponivel em:
<https://books.google.com.br/books?hl=pt-BR&Ilr=&id=CktuBAAAQBAJ&oi=fnd&
pg=PP1&dq=Many-Body+Quantum+Theory+in+Condensed+Matter+Physics&ots=
KfemyYyCZt&sig=bdxOHiJ4ULrNctsBOhDM-gsul.9c&redir esc=y#v=onepage&q&f=
false>.

63 VOJTA, M.; BULLA, R. A fractional-spin phase in the power-law kondo model.
The European Physical Journal B-Condensed Matter and Complex Systems,
Springer, v. 28, p. 283-287, 2002. Disponivel em: <https://doi.org/10.1140/epjb/
€2002-00231-9>.

64 WITHOFF, D.; FRADKIN, E. Phase transitions in gapless fermi systems with
magnetic impurities. Physical review letters, APS, v. 64, n. 15, p. 1835, 1990.
Disponivel em: <https://doi.org/10.1103/PhysRevLett.64.1835>.

65 BORKOWSKI, L. S.; HIRSCHFELD, P. Kondo effect in gapless superconductors.
Physical Review B, APS, v. 46, n. 14, p. 9274, 1992. Disponivel em: <https:
//doi.org/10.1103 /PhysRevB.46.9274>.

66 CHEN, K.; JAYAPRAKASH, C. The kondo effect in pseudo-gap fermi
systems: a renormalization group study. Journal of Physics: Condensed
Matter, IOP Publishing, v. 7, n. 37, p. L491, 1995. Disponivel em: <https:
/ /iopscience.iop.org/article/10.1088 /0953-8984 /7 /37 /003 >.

67 INGERSENT, K. Behavior of magnetic impurities in gapless fermi systems.
Physical Review B, APS, v. 54, n. 17, p. 11936, 1996. Disponivel em: <https:
//doi.org/10.1103/PhysRevB.54.11936>.

68 GONZALEZ-BUXTON, C.; INGERSENT, K. Renormalization-group study of
anderson and kondo impurities in gapless fermi systems. Physical Review B, APS, v. 57,
n. 22, p. 14254, 1998. Disponivel em: <https://doi.org/10.1103/PhysRevB.57.14254>.

69 BULLA, R. et al. The soft-gap anderson model: comparison of renormalization
group and local moment approaches. Journal of Physics: Condensed Matter, IOP
Publishing, v. 12, n. 23, p. 4899, 2000. Disponivel em: <https://iopscience.iop.org/
article/10.1088/0953-8984/12/23/302>.

70 INGERSENT, K.; SI, Q. Critical local-moment fluctuations, anomalous
exponents, and w/t scaling in the kondo problem with a pseudogap. Physical
Review Letters, APS, v. 89, n. 7, p. 076403, 2002. Disponivel em: <https:
//doi.org/10.1103 /PhysRevLett.89.076403>.



71 SILVA, L. G. Dias da et al. Tunable pseudogap kondo effect and quantum
phase transitions<? format?> in aharonov-bohm interferometers. Physical
review letters, APS, v. 102, n. 16, p. 166806, 2009. Disponivel em: <https:
//doi.org/10.1103 /PhysRevLett.102.166806>.

72 ZITKO, R.; BONCA, J.; PRUSCHKE, T. Van hove singularities in the paramagnetic
phase of the hubbard model: Dmft study. Physical Review B—Condensed
Matter and Materials Physics, APS, v. 80, n. 24, p. 245112, 2009. Disponivel em:
<https://doi.org/10.1103/PhysRevB.80.245112>.

73 MITCHELL, A. K.; FRITZ, L. Kondo effect with diverging hybridization:
Possible realization in graphene with vacancies. Physical Review B—Condensed
Matter and Materials Physics, APS, v. 88, n. 7, p. 075104, 2013. Disponivel em:
<https://doi.org/10.1103/PhysRevB.88.075104>.

74 MITCHELL, A. K. et al. Quantum phase transitions and thermodynamics
of the power-law kondo model. Physical Review B—Condensed Matter

and Materials Physics, APS, v. 88, n. 19, p. 195119, 2013. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.88.195119>.

75 ZHURAVLEV, A. Negative impurity magnetic susceptibility and heat capacity in a
kondo model with narrow peaks in the local density of electron states. The Physics of
Metals and Metallography, Springer, v. 108, n. 2, p. 107-115, 2009. Disponivel em:

<https://doi.org/10.1134/50031918X09080018>.

76 ZHURAVLEV, A.; IRKHIN, V. Y. Kondo effect in the presence of van

hove singularities: A numerical renormalization group study. Physical Review
B—Condensed Matter and Materials Physics, APS, v. 84, n. 24, p. 245111, 2011.
Disponivel em: <https://doi.org/10.1103/PhysRevB.84.245111>.

77 ZITKO, R.; BONCA, J. Kondo effect in the presence of rashba spin-orbit interaction.
Physical Review B—Condensed Matter and Materials Physics, APS, v. 84,
n. 19, p. 193411, 2011. Disponivel em: <https://doi.org/10.1103/PhysRevB.84.193411>.

78 SHCHADILOVA, Y. E.; VOJTA, M.; HAQUE, M. Single-impurity kondo physics at
extreme particle-hole asymmetry. Physical Review B, APS, v. 89, n. 10, p. 104102,
2014. Disponivel em: <https://doi.org/10.1103/PhysRevB.89.104102>.

79 ZITKO, R.; HORVAT, A. Kondo effect at low electron density and high particle-hole
asymmetry in 1d, 2d, and 3d. Physical Review B, APS, v. 94, n. 12, p. 125138, 2016.
Disponivel em: <https://doi.org/10.1103/PhysRevB.94.125138>.

80 WONG, A. et al. Influence of rashba spin-orbit coupling on the kondo
effect. Physical Review B, APS, v. 93, n. 7, p. 075148, 2016. Disponivel em:
<https://doi.org/10.1103/PhysRevB.93.075148>.

81 CHARLIER, J.-C.; BLASE, X.; ROCHE, S. Electronic and transport properties
of nanotubes. Reviews of modern physics, APS, v. 79, n. 2, p. 677-732, 2007.
Disponivel em: <https://doi.org/10.1103/RevModPhys.79.677>.

82 WAKABAYASHI, K. et al. Electronic states of graphene nanoribbons and analytical
solutions. Science and technology of advanced materials, IOP Publishing, v. 11,



n. 5, p. 054504, 2010. Disponivel em: <https://iopscience.iop.org/article/10.1088/
1468-6996/11 /5 /054504 /meta>.

83 ZITKO, R. NRG Ljubljana. Zenodo, 2021. Disponivel em: <https://doi.org/10.
5281/zenodo.4841076>.

84 COSTI, T.; ZLATIC, V. Thermoelectric transport through strongly correlated
quantum dots. Physical Review B—Condensed Matter and Materials Physics,
APS, v. 81, n. 23, p. 235127, 2010. Disponivel em: <https://doi.org/10.1103/PhysRevB.
81.235127>.

85 MASTROGIUSEPPE, D. et al. Kondo effect in graphene with rashba spin-orbit
coupling. Physical Review B, APS, v. 90, n. 3, p. 035426, 2014. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.90.035426> .

86 LIN, H.-H. et al. Ferromagnetism in armchair graphene nanoribbons. Physical
Review B—Condensed Matter and Materials Physics, APS, v. 79, n. 3, p.
035405, 2009. Disponivel em: <https://doi.org/10.1103/PhysRevB.79.035405>.

87 ALMEIDA, P. et al. Ferromagnetism in armchair graphene nanoribbon
heterostructures. Physical Review B, APS, v. 105, n. 5, p. 054416, 2022. Disponivel
em: <https://doi.org/10.1103/PhysRevB.105.054416>.

88 CAI, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons.
Nature, Nature Publishing Group UK London, v. 466, n. 7305, p. 470-473, 2010.
Disponivel em: <https://doi.org/10.1038/nature09211>.

89 LI, Y. et al. Anomalous kondo resonance mediated by semiconducting
graphene nanoribbons in a molecular heterostructure. Nature Communications,
Nature Publishing Group UK London, v. 8, n. 1, p. 946, 2017. Disponivel em:
<https://doi.org/10.1038 /s41467-017-00881-1>.

90 ZALOM, P.; ZONDA, M. Subgap states spectroscopy in a quantum dot
coupled to gapped hosts: Unified picture for superconductor and semiconductor
bands. Physical Review B, APS v. 105, n. 20, p. 205412, 2022. Disponivel em:
<https://doi.org/10.1103/PhysRevB.105.205412>.

91 KITAO, T. et al. Scalable and precise synthesis of armchair-edge graphene
nanoribbon in metal-organic framework. Journal of the American Chemical
Society, ACS Publications, v. 142, n. 12, p. 5509-5514, 2020. Disponivel em:
<https://pubs.acs.org/doi/10.1021/jacs.0c00467>.

92 ASHCROFT, N. W.; MERMIN, N. D. Solid State Physics. [S.1.]: Holt-Saunders,
1976.

93 JONES, B. A.; VARMA, C. M.; WILKINS, J. W. Low-temperature properties of
the two-impurity kondo hamiltonian. Phys. Rev. Lett., v. 61, p. 125, 1988. Disponivel
em: <https://doi.org/10.1103/PhysRevLett.61.125>.

94 JONES, B. A.; VARMA, C. M. Critical point in the solution of the two
magnetic impurity problem. Phys. Rev. B, v. 40, p. 324, 1989. Disponivel em:
<https://doi.org/10.1103/PhysRevB.40.324>.



95 SAKAI, O.; SHIMIZU, Y.; KASUYA, T. Excitation-spectra of 2 impurity
anderson model. Solid State Commun., v. 75, p. 81, 1990. Disponivel em:
<https://doi.org/10.1016/0038-1098(90)90346-D>.

96 STEWART, G. R. Heavy-fermion systems. Rev. Mod. Phys., v. 56, p. 755, 1984.
Disponivel em: <https://doi.org/10.1103/RevModPhys.56.755>.

97 TSUNETSUGU, H.; SIGRIST, M.; UEDA, K. The ground-state phase diagram
of the one-dimensional kondo lattice model. Rev. Mod. Phys., v. 69, p. 809, 1997.
Disponivel em: <https://doi.org/10.1103/RevModPhys.69.809>.

98 GOLDHABER-GORDON, D. et al. Kondo effect in a single-electron transistor.
Nature, v. 391, p. 156, 1998. Disponivel em: <https://doi.org/10.1038/34373>.

99 KOUWENHOVEN, L.; GLAZMAN, L. Revival of the Kondo effect. Phys.
World, v. 14, p. 33, 2001. Disponivel em: <https://iopscience.iop.org/article/10.1088/
2058-7058,/14/1/28>.

100 PUSTILNIK, M.; GLAZMAN, L. Kondo effect in quantum dots. J. Phys.
Condens. Matter, v. 16, p. R513, 2004. Disponivel em: <10.1126/science.281.5376.
526>

101 OOSTERKAMP, T. et al. Microwave spectroscopy of a quantum-dot molecule.
Nature, v. 395, p. 873, 1998. Disponivel em: <https://doi.org/10.1038/27617>.

102 CRAIG, N. et al. Tunable nonlocal spin control in a coupled-quantum dot system.
Science, v. 304, p. 565, 2004. Disponivel em: <https://www.science.org/doi/10.1126/
science.1095452>.

103 MARTINS, G. B. et al. Transport properties of strongly correlated electrons in
quantum dots studied with a simple circuit model. Phys. Rev. Lett., v. 96, p. 066802,
2006. Disponivel em: <https://doi.org/10.1103/PhysRevLett.96.066802>.

104 BULLA, R.; VOJTA, M. Quantum phase transitions in models of magnetic
impurities. In:. HEWSON, A. C.; ZLATIC, V. (Ed.). Concepts in Electron
Correlation. Springer Dordrecht, 2003. cap. 9, p. 209. Disponivel em: <https:
//doi.org/10.48550 /arXiv.cond-mat/0210015>.

105 VOJTA, M. Impurity quantum phase transitions. Philos. Mag., v. 86, n. 13-14,
p. 1807, 2006. Disponivel em: <https://doi.org/10.1080/14786430500070396>.

106 SASAKI, S. et al. Fano-Kondo interplay in a side-coupled double quantum
dot. Phys. Rev. Lett., v. 103, p. 266806, 2009. Disponivel em: <https:
//doi.org/10.1103 /PhysRevLett.103.266806>.

107 ZITKO, R. Fano-Kondo effect in side-coupled double quantum dots at finite
temperatures and the importance of two-stage Kondo screening. Phys. Rev. B, v. 81,
p. 115316, 2010. Disponivel em: <https://doi.org/10.1103/PhysRevB.81.115316>.

108 ZARAND, G. Orbital fluctuations and strong correlations in quantum dots.
Philos. Mag., v. 86, p. 2043, 2006. Disponivel em: <https://doi.org/10.1080/
14786430500469069>.



109 EVERS, F. et al. Advances and challenges in single-molecule electron
transport. Rev. Mod. Phys., v. 92, p. 035001, 2020. Disponivel em: <https:
//doi.org/10.1103/RevModPhys.92.035001>.

110 GUO, X. et al. Evolution and universality of two-stage kondo effect in single
manganese phthalocyanine molecule transistors. Nat. Commun., v. 12, p. 1566, 2021.
Disponivel em: <https://doi.org/10.1038/s41467-021-21492-x>.

111 POUSE, W. et al. Quantum simulation of an exotic quantum critical point in
a two-site charge kondo circuit. Nat. Phys., v. 19, p. 492, 2023. Disponivel em:
<https://doi.org/10.1038 /s41567-022-01905-4>.

112 WILSON, K. G. The renormalization group: Critical phenomena and
the kondo problem. Rev. Mod. Phys., v. 47, p. 773, 1975. Disponivel em:
<https://doi.org/10.1103/RevModPhys.47.773>.

113 KRISHNA-MURTHY, H. R.; WILKINS, J. W.; WILSON, K. G. Renormalization-
group approach to the anderson model of dilute magnetic alloys. i. static properties
for the symmetric case. Phys. Rev. B, v. 21, p. 1003, 1980. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.21.1003>.

114 BULLA, R.; COSTI, T. A.; PRUSCHKE, T. Numerical renormalization group
method for quantum impurity systems. Rev. Mod. Phys., v. 80, p. 395, 2008.
Disponivel em: <https://doi.org/10.1103/RevModPhys.80.395>.

115 HOFSTETTER, W.; SCHOELLER, H. Quantum phase transition in a
multilevel dot. Phys. Rev. Lett., v. 88, p. 016803, 2001. Disponivel em:
<https://doi.org/10.1103 /PhysRevLett.88.016803>.

116 VOJTA, M.; BULLA, R.; HOFSTETTER, W. Quantum phase transitions in
models of coupled magnetic impurities. Phys. Rev. B, v. 65, p. 140405(R), 2002.
Disponivel em: <https://doi.org/10.1103/PhysRevB.65.140405>.

117 CORNAGLIA, P. S.; GREMPEL, D. R. Strongly correlated regimes in a
double quantum dot device. Phys. Rev. B, v. 71, p. 075305, 2005. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.71.075305>.

118 ZITKO, R.; BONcA, J. Enhanced conductance through side-coupled double
quantum dots. Phys. Rev. B, v. 73, p. 035332, 2006. Disponivel em: <https:
//doi.org/10.1103 /PhysRevB.73.035332>.

119 . Correlation effects in side-coupled quantum dots. J. Phys. Condens.
Matter, v. 19, p. 255205, 2007. Disponivel em: <10.1088/0953-8984/19/25/255205>.

120 CHUNG, C.-H.; ZARAND, G.; WOLFLE, P. Two-stage Kondo effect in
side-coupled quantum dots: Renormalized perturbative scaling theory and numerical
renormalization group analysis. Phys. Rev. B, v. 77, p. 035120, 2008. Disponivel em:
<https://doi.org/10.1103 /PhysRevB.77.035120>.

121 TAMURA, H.; SASAKI, S. Fano-Kondo effect in side-coupled double quantum dot.
Physica E, v. 42, p. 864, 2010. Disponivel em: <https://doi.org/10.1103/PhysRevB.81.
115316>.



122 FERREIRA, I. L. et al. Capacitively coupled double quantum dot system
in the kondo regime. Phys. Rev. B, v. 84, p. 205320, 2011. Disponivel em:
<https://doi.org/10.1103/PhysRevB.84.205320>.

123 TANAKA, Y.; KAWAKAMI, N.; OGURI, A. Crossover between two different
Kondo couplings in side-coupled double quantum dots. Phys. Rev. B, v. 85, p. 155314,
2012. Disponivel em: <https://doi.org/10.1103/PhysRevB.85.155314>.

124 BAINES, D. Y. et al. Transport through side-coupled double quantum dots: From
weak to strong interdot coupling. Phys. Rev. B, v. 85, p. 195117, 2012. Disponivel em:
<https://doi.org/10.1103/PhysRevB.85.195117>.

125 LIAO, Y.-H.; HUANG, J.; WANG, W.-Z. Real two-stage Kondo effect in parallel
double quantum dot. J. Magn. Magn. Mater., v. 377, p. 354, 2015. Disponivel em:
<https://doi.org/10.1016/j.jmmm.2014.10.138>.

126 CRISAN, M.; GROSU, I.; TIFREA, I. An equation of motion analysis of the two
stage Kondo effect in T-shaped double-quantum-dot systems. Physica E, v. 66, p. 245,
2015. Disponivel em: <https://doi.org/10.1016/j.physe.2014.10.017>.

127 CHEN, X.-W. et al. Kondo physics in the T-shaped structure with two
detuned quantum dots. Physica E, v. 134, p. 114928, 2021. Disponivel em:
<https://doi.org/10.1016/j.physe.2021.114928>.

128 HEWSON, A. C. The Kondo Problem to Heavy Fermions. [S.l.]: Cambridge
University Press, 1993. (Cambridge Studies in Magnetism).

129 CAMPO, V. L.; OLIVEIRA, L. N. Alternative discretization in the numerical
renormalization-group method. Phys. Rev. B, v. 72, p. 104432, 2005. Disponivel em:
<https://doi.org/10.1103/PhysRevB.72.104432> .

130 ALMEIDA, P. A. et al. Quantum impurity with 2/3 local moment in one-dimensional
quantum wires: A numerical renormalization group study. Phys. Rev. B, v. 109, p.
045112, 2024. Disponivel em: <https://doi.org/10.1103/PhysRevB.109.045112>.

131 HOFSTETTER, W. Generalized numerical renormalization group for dynamical
quantities. Phys. Rev. Lett., v. 85, p. 1508, 2000. Disponivel em: <https:
//doi.org/10.1103/PhysRevLett.85.1508>.

132 LOGAN, D. E.; WRIGHT, C. J.; GALPIN, M. R. Correlated electron physics in
two-level quantum dots: Phase transitions, transport, and experiment. Phys. Rev. B,
v. 80, p. 125117, 2009. Disponivel em: <https://doi.org/10.1103/PhysRevB.80.125117>.

133 Note that, as expected, A.sf(w) obbeys the Friedel Sum Rule, i.e., 7l'crrAcsf(0) = 1.

134 As in the case of the possible use of the Bethe-Ansatz for the calculation of the
effective model universal-susceptibility (139), here, we could alternatively use a universal

expression for A.sr(w), provided, for example, in H. O. Frota, Phys. Rev. B 45, 1096
(1992).

135 ZITKO, R. ; cA, J. Bon. Multiple-impurity anderson model for quantum
dots coupled in parallel. Phys. Rev. B, v. 74, p. 045312, 2006. Disponivel em:
<https://doi.org/10.1103/PhysRevB.74.045312> .



136 ZARAND, G. et al. Quantum criticality in a double-quantum-dot system.
Phys. Rev. Lett., v. 97, p. 166802, 2006. Disponivel em: <https://doi.org/10.1103/
PhysRevLett.97.166802>.

137 ZITKO, R. ; MRAVLJE, J.; HAULE, K. Ground state of the parallel double
quantum dot system. Phys. Rev. Lett., v. 108, p. 066602, 2012. Disponivel em:
<https://doi.org/10.1103/PhysRevLett.108.066602>.

138 1In Ref. (125), our Ty, I'y, and ¢¢; notation becomes I'y, I'y, and ¢, respectively.

139 N. Andrei, K. Furuya, and J. H. Lowestein, Rev. Mod. Phys. 55, 331 (1983). More
specifically, the universal susceptibility curve is listed in Table 3 in A. M. Tsvelick and
P. B. Wiegmann, Adv. Phys. 32, 453 (1983).



	Title page
	Dedication
	Epigraph
	Resumo
	Abstract
	List of Figures
	Acronyms list
	Contents
	Introduction
	Kondo Effect
	Historical and Fundamental Aspects
	Exchange s-d Model
	Solution proposed by Jun Kondo
	Kondo Temperature
	Kondo cloud

	Single-impurity Anderson model: local moment formation
	Introduction to Quantum Dots
	 Kondo effect in quantum dots
	Experimental observations



	The Numerical Renormalization Group Approach 
	Logarithmic discretization
	Linear chain
	Iterative diagonalization
	Renormalization group flow and fixed points
	Applications
	Thermodynamic Quantities: Entropy, Specific Heat, and Susceptibility
	Dynamics quantities


	Resonant Level
	Spin-orbit coupling
	Introduction to Quantum Wires
	Noninteracting resonant level model
	RL in a quantum wire
	Band structure and spectral function in 1D with SOI
	BOUND STATE PROPERTIES
	Bound state and coupling to the band
	Bound state and distance to singularity 




	Quantum wires with impurities: NRG approach 
	Introduction
	Singularity effect on the impurity spectral function and charge occupancy
	 Evolution of the bound state with correlations
	Thermodynamic properties: Fractional LM
	Results for an AGNR
	Summary


	Modeling the Two-Stage Kondo Regime via NRG
	Introduction
	Model and Hamiltonian
	NRG Results
	Obtaining TK1 in two different ways: defining the magnetic susceptibility for QD1
	The effective model: fixed 0 and varying t01
	QD1 susceptibility for fixed t01 and varying 0
	QD1 spectral function and the effective SIAM
	Inter-QD spin correlations: Dependence on t01
	Inter-QD spin correlations: Dependence on 0
	Collapse of the inter-QD spin correlations

	Summary and Conclusions

	Conclusion
	Bibliography

