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Resumo

O estudo de fenômenos físicos em condições extremas (baixíssimas temperaturas, por

exemplo) tem historicamente mostrado potencial para revelar estados inesperados da

matéria condensada, ao mesmo tempo que representa um grande desafio às técnicas de

pesquisa, tanto experimentais quanto teóricas. Um exemplo seria a descoberta da su-

percondutividade quando se conseguiu liquefazer o hélio e fazer medidas de resistividade

a baixíssimas temperaturas. Portanto, seguindo esta linha de raciocínio, nesta Tese es-

tudamos o efeito Kondo em duas situações extremas: (i) sistemas onde a densidade de

estados do metal hospedeiro apresenta divergências fortes próximas à energia de Fermi;

(ii) sistemas de dois pontos quânticos (PQs) em geometria T, onde as escalas de energia

de interesse se estendem por um intervalo de aproximadamente 20 ordens de magnitude.

Tais sistemas foram estudados via a ferramenta computacional Grupo de Renormaliza-

ção Numérica (NRG, na sigla em inglês). Em (i), vimos que divergências relativamente

suaves, do tipo ω−1/2, geram uma série de estados de muitos-corpos com propriedades

inusitadas. Divergências mais fortes têm, portanto, potencial de revelar mais surpresas.

Já no sistema de dois PQs, apresentamos resultados que nos permitem orientar os experi-

mentais a como calibrar as propriedades dos PQs, de maneira a distinguir claramente dois

regimes com propriedades bastante distintas, sendo, regime de Kondo de dois estágios e

regime molecular. Para analisar o efeito Kondo em condições que podemos chamar de ex-

tremas (quais sejam, divergências fortes na densidade de estado do hospedeiro e variações

extremas na escala de energia) foi necessário levar o NRG a situações limítrofes, levando

os parâmetros do método a valores extremos.

Palavras-chave: Kondo. NRG. Ponto quântico.
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Abstract

The study of physical phenomena under extreme conditions (very low temperatures,

for example) has historically shown the potential to uncover unexpected states in Con-

densed matter Physics, at the same time, it poses a stiff challenge to both experimental

and theoretical research techniques. One celebrated example was the discovery of su-

perconductivity when it became possible to liquefy helium and thus perform resistivity

measurements at temperatures of a few Kelvin. Following this approach, in this Thesis

we study the Kondo effect under two extreme conditions: (i) systems where the metallic

host density of states presents a strong divergency near the Fermi energy; (ii) T-shape

double quantum dot (DQD) systems, where the energy scale of interest spans 20 orders

of magnitude. Both systems were studied using the Numerical Renormalization Group

(NRG) method. In (i), we obtained that relatively soft divergencies, of the ω−1/2-type,

generate a series of many-body bound-states with peculiar properties. We thus believe

that stronger divergencies (associated to flat bands, for example) have the potential to

uncover additional surprises. As to the DQD system, we obtained results that allow us

to guide the experimentalists on how to tune the DQD characteristics in order to clearly

distinguish two regimes with very different properties, viz., the two-stage Kondo regime

and the molecular regime. To analyze the Kondo effect in these so-called extreme condi-

tions (strong host DOS divergencies and extreme energy scale variation) it was necessary

to force the NRG into high-demand scenarios, pushing its parameters to extreme values.

Keywords: Kondo Effect. NRG. Quantum dots.
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regimes present in the DQD T-shape geometry system: right lower

corner depicts the two-stage Kondo (TSK) regime, while the left upper

corner contains the molecular regime (see text). The crossover region
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and JK0

, which control the

TSK regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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Chapter 1

Introduction

In condensed matter physics, we are interested in investigating the physics of diverse

systems (12). An area of great interest, due to its relevance in understanding real sys-

tems, is the study of Strongly Correlated Electron Systems (SCES). Usually, SCES are

characterized by electron motion being restricted by the positions and motions of all other

electrons, a consequence of Coulomb repulsion. By definition, all materials may exhibit

some degree of correlation, in ionic systems or in ideal metals, the essential properties can

be described by simplified models that neglect such correlations or treat them with ap-

proximations, as in the case of the free-electron Fermi gas or the Fermi Liquid (FL). But

in SCES these approximations are insufficient because it is hard to solve the many-body

problem involving a large number of particles.(13, 14, 15).

The complexity in SCES arises from the competition among multiple degrees of free-

dom which collectively determine the ground state (16). Remarkably, one of the most

significant manifestations of SCES are Heavy Fermion (HF) metals (17), in which elec-

tronic excitations exhibit effective masses up to a thousand times greater than those of

conventional metals. In these systems, the Kondo effect, associated with the screen-

ing of localized magnetic moments by conduction electrons, plays a key role. Heavy

Fermions (HFs) frequently display non-Fermi Liquid (NFL) behavior,evidenced by the

breakdown of Landau’s description. Such behavior typically emerges close to a Quantum

Critical Point (QCP) (18), corresponding to a continuous zero-temperature phase transi-

tion.

Since its discovery in the 1930s (19), the Kondo effect has become a key concept

since then, significantly advancing the comprehension of SCES. Its initial detection dates

back to 1934, with Haas et al. reporting an unusual reduction in the electrical resistance

of some metals at low temperatures. However, contrary to the expected steady decrease

predicted by Matthiessen’s rule (20), the resistivity exhibited a minimum, a characteristic

subsequently found in various dilute metallic alloys containing some amounts of magnetic

impurities. The physics behind this minimum remained elusive until 1964, when Jun

Kondo formulated a theory based on the exchange interaction between localized magnetic



moments and conduction electrons (21). By employing the s-d exchange Hamiltonian, now

recognized as the Kondo model, and utilizing perturbation theory, he demonstrated that

many-body scattering processes result in a logarithmic contribution to resistivity at low

temperatures. This analysis introduced the TK , an energy scale defining the resistivity

minimum and the transition from weak to strong coupling. Although its exponential

expression is reminiscent of BCS theory, the TK represents a crossover rather than a true

phase transition. However, Kondo’s perturbative approach predicted a divergent increase

in resistance as T → 0, a theoretical limitation. Kenneth Wilson solved this in 1974 by

developing the NRG (22), establishing a nonperturbative approach able to describe the

full temperature range of Kondo physics.

The physics of this effect can be analyzed using two standard models. The first,

the Anderson Impurity Model (AIM), elucidates the hybridization between localized or-

bitals and conduction band states. The second, the Kondo Hamiltonian, derived via the

Schrieffer–Wolff (SW) transformation, effectively projects the Anderson model into the

subspace of localized magnetic moments. This projection yields an antiferromagnetic ex-

change Hamiltonian that governs the interaction between the impurity spin and the local

spin density of conduction electrons.

Below TK , it is possible to observe the emergence of a strongly correlated state. This

occurs because, at this energy scale, the localized magnetic moment is effectively shielded

by the surrounding conduction electrons. The interaction between the localized moment

and the conduction electrons, characterized by repeated spin-inversion scattering events,

leads to the formation of a collective ground state. Consequently, the system no longer

exhibits the properties of a free magnetic ion but rather behaves as a nonmagnetic scatter-

ing center. For a complete understanding of this phenomenon, it was necessary to develop

non-perturbative methods, since perturbation theory fails to describe systems with strong

Coulomb interaction. These included Anderson’s scaling theory, Wilson’s NRG, and Noz-

ières’s framework (23), which defined the low-energy behavior as a renormalized FL.

Progress in nanotechnology has enabled the artificial realization of the Kondo effect

in Quantum Dots (QDs), marked by substantial progress in the 1990s (24). These QDs,

often regarded as artificial atoms, allow for precise control over parameters that govern

the Kondo phenomenon, such as the number of confined electrons, the local level energy,

and the coupling (hybridization) with conduction electrons in the leads. Unlike traditional

dilute metals, where the Kondo effect manifests as increased resistivity, in quantum dots

it appears as an enhancement of electrical conductance, which at very low temperatures

can reach the unitary quantum limit of G = 2e2/h. A distinctive signature of this effect

is the zero-bias anomaly, observed as a sharp resonance peak in electrical conductance in

the density of states at the Fermi level. The tunability of these parameters, including the

bias, allows researchers to directly adjust TK , making quantum dots an ideal platform for

exploring the fundamental properties of the Kondo effect under controlled conditions.



Extensions of this phenomenon beyond a single impurity involve multichannel and

SU versions (25, 26), notably the Kondo lattice model. In this model, a dense lattice of

magnetic moments interacts with conduction electrons, leading to heavy fermion metals.

These metals exhibit very high effective masses and a balance between the local Kondo

effect and long-range magnetic interactions (27).

Recently, growing attention has been directed to the SCES. However, from the rig-

orous point of view, many phenomena still require further elucidation. Despite extensive

study, the Kondo effect remains a valuable probe of correlated systems. The Kondo effect

can be observed through a variety of experimental techniques, including scanning tun-

neling microscopy and transport measurements (28, 29). Superconductivity in materials

is significantly influenced by the Kondo effect. For example, in Pb1−xT lxTe, supercon-

ductivity was found due to a charge Kondo effect (30). Furthermore, in Nb thin films,

residual superconductivity was observed even in the presence of the Kondo effect (31).

Another field that has seen extensive research is the study of the Kondo effect in topolog-

ical insulating systems. Notably, topological insulator quantum dots have been found to

exhibit a spin-orbital Kondo effect (32). In addition, emerging research investigates the

Kondo effect in kagome lattices, well-known for its flat energy bands. The presence of

these flat bands alters the dependencies of the Kondo temperature and coherence temper-

ature, substituting exponential relationships with linear and quadratic ones, respectively

(33). In flat-band systems, the Kondo effect can be simplified to a two-electron molecular

Kondo problem, resulting in distinct thermodynamic and dynamic characteristics (34).

This thesis is organized as follows:

Chapter 2 - Kondo Effect. This chapter presents an analysis of the Kondo phe-

nomenon, analyzing its physical effects and theoretical implications, as well as its practical

uses. Furthermore, the Kondo and Anderson models are introduced, providing the con-

ceptual basis for studying the Kondo problem.

Chapter 3 - The Numerical Renormalization Group Approach. In this chap-

ter, we describe the Numerical Renormalization Group (NRG) method and explain how

this approach can be used to solve the Kondo problem. The chapter details the funda-

mentals of the technique and its relevance in investigating systems with strong electron

correlations.

Chapter 4 - Resonant Level. In this chapter, we investigate the behavior of a

non-interacting Resonant Level (RL) when positioned near (or exactly on) the singularity

ω−1/2, which naturally arises in a one-dimensional quantum wire. We highlight its most

relevant characteristics and, using the Anderson model, analyze the effects caused by the

presence of an impurity interacting with a host system whose energy band presents a

divergence in the density of states.

Chapter 5 - 1D quantum wires with impurities: NRG approach . This chap-

ter investigates the Kondo state within a metallic system exhibiting a ω−1/2 singularity



in its density of states, characteristic of one-dimensional chains. By employing the Sin-

gle Impurity Anderson Model and utilizing Numerical Renormalization Group analysis,

we demonstrate the profound influence of Hubbard interaction on the bound state and

its corresponding spectral features. As the impurity level εd approaches this singularity,

Kondo characteristics re-emerge, and the local moment fixed point demonstrates resilience

against charge fluctuations. Furthermore, we propose an experimental setup employing

armchair graphene nanoribbons to realize these phenomena.

Chapter 6 - Modeling the Two-Stage Kondo Regime via NRG . In this

chapter, we investigate the behavior of a compound impurity in a metal, which can

explore different configurations where its net magnetic moment can be screened by the host

electrons. Here, we investigate a two-stage Kondo (TSK) system, in which the screening

process occurs successively at distinct and progressively lower energy scales. In contrast,

impurities may prefer a local singlet disconnected from the metal. This competition is

decided by the tuning of the couplings in the system. A T-shaped double quantum dot

geometry, where a ’dangling’ dot is connected to the current-carrying conductors only

through another dot, represents a flexible system in which these different regimes can be

explored experimentally.



Chapter 2

Kondo Effect

Quantum impurity models are employed to describe scenarios where an atom or

molecule is integrated into a host material (35). These models were initially developed to

examine the behavior of transition metal ions, which, despite typically exhibiting magnetic

characteristics, are situated within non-magnetic metals. Such systems can be conceptu-

alized as the interaction between two subsystems: a localized system, akin to a magnetic

impurity with limited degrees of freedom, and an infinite-dimensional system character-

ized by a continuous spectrum (36, 11). The Kondo effect, a many-body phenomenon

associated with magnetic impurities, is intrinsically tied to the concept of electron local-

ization, a fundamental aspect in the study of strongly correlated materials, particularly

those containing atoms with partially filled d or f orbitals (16). Within these materi-

als, the competition between localized magnetic moments and a collective of delocalized

electrons leads to rich physics.

To understand the physics involved in the Kondo effect, it is important first to consider

how the concept of electronic localization appears within the periodic table. The Kmetko-

Smith diagram, Fig. 1(a), provides a clear representation of this organization, showing

that as one moves towards the top right of the diagram, electrons become progressively

more localized (37, 38). Metals located in the lower left region exhibit itinerant d orbitals,

which favor the occurrence of superconductivity at low temperatures. However, metals

located in the upper right region of the periodic table exhibit strongly localized f electrons,

which commonly lead to the formation of magnetic structures, such as antiferromagnetic

orderings.

Thus, it may suggest that the physics of the Kondo effect is closely related to the

presence of localized magnetic moments, which consist of spins confined to specific sites

within the crystal lattice. One of the classical manifestations of these moments is the

magnetic susceptibility that follows the Curie-Weiss law at high temperatures, expressed

by



(a) (b)

Figure 1 – (a) The Kmetko-Smith diagram shows growing electron localization in d and
f compounds. (b) Simplified temperature-field phase diagram of the Kondo
effect. For T,B � TK , the local moment remains unscreened with Curie-
like susceptibility. For T,B � TK , it becomes screened, acting as an elastic
scatterer in a Landau Fermi liquid with Pauli susceptibility χ ∼ 1/TK . From
Ref. (1).

χ ≈ n1M
2

3(T + θ)
, (1)

In Eq. 1, χ represents the magnetic susceptibility, n1 is the number of magnetic

moments per unit volume, M is the magnetic moment associated with each localized

center, T is the absolute temperature, and θ is the Weiss constant, which reflects the

interactions between the magnetic moments. This behavior may highlight the localized

nature of the moments and provides a way to analyze magnetic interactions in systems

with impurities.

Having established the concept of local moment, we can now explore the Kondo Ef-

fect conceptually. This effect describes the process by which a magnetic impurity, which

exhibits Curie-type magnetic susceptibility at high temperatures, becomes “screened” by

the spins of conduction electrons, forming, at low temperatures and magnetic fields, a

spinless scattering center, effectively destroying the MB singlet state. This screening pro-

cess occurs continuously and begins when the temperature or magnetic field drops below a

characteristic energy scale known as the TK , which will be explained in detail later. These

“quenched” magnetic moments act as strong elastic scattering potentials for the electrons,

leading to an increase in electrical resistivity due to the presence of magnetic impurities,

this resistivity minimum is the hallmark of the Kondo effect. Figure 1(b) illustrates the

phase diagram of the Kondo effect with respect to temperature. Within this diagram,

B denotes the magnetic field, and T represents the temperature. At temperatures and

magnetic fields significantly higher than TK , the local moment remains free, displaying a

Curie-type susceptibility. Conversely, at low temperatures and magnetic fields relative to

TK , the local moment is fully compensated. This state manifests as an elastic scattering



center within a Landau Fermi liquid, characterized by a Pauli susceptibility on the order

of 1/TK .

2.1 Historical and Fundamental Aspects

The Kondo Effect is a physical phenomenon whose roots date back to early studies

of dilute magnetic metal alloys, characterized by the presence of low concentrations of

impurity atoms embedded in a host metal. These alloys, called dilute, are obtained

through the controlled introduction of distinct elements into the base metal, a process

that induces specific changes in properties such as electrical resistivity and the magnetic

behavior of the system (39). It was first observed experimentally over nine decades ago.

In pioneering experiments, De Haas, De Boer, and Van den Berg (1934) measured the

resistance of impure gold wires and discovered an unexpected resistivity minimum at low

temperatures (19).

In metals such as gold, it was initially assumed that electrical resistance should de-

crease with lowering temperature, as the interaction with phonons becomes progressively

weaker. It was assumed that, at extremely low temperatures, the resistance would stabi-

lize at a constant value, determined primarily by impurities in the material. However, as

shown in Fig. 2(a), based on data from the study conducted on (2): unexpected behavior

was observed. The resistance of gold and later of other metals reached a minimum and,

instead of remaining constant, increased again as the temperature continued to drop.

The behavior described earlier lacked a complete theoretical explanation until the 1960s,

when that was achieved. Another fundamental aspect of the Kondo effect concerns its

universality, that is, when the impurity properties are rescaling as a function of the Kondo

temperature, all corresponding curves collapse into a single universal form. This is shown

in Fig. 2(b).

Below, we present the mathematical formulation used to describe a system undergoing

the Kondo effect.

2.1.1 Exchange s-d Model

The s-d exchange model, proposed by Zener in 1951 (40), describes the effects of a

magnetic moment on conduction electrons (this phenomenon is exemplified in metallic

systems containing magnetic impurities). When considering a single magnetic impurity

embedded into the metal, the interaction between the conduction electrons and the im-

purity’s magnetic moment can be described by a Hamiltonian given by

Hsd =
∑

k,k′

Jk,k′

(

S+c†
k,↓ck′,↑ + S−c†

k,↑ck′,↓ + Sz

(

c†
k,↑ck′,↑ − c†

k,↓ck′,↓
))

, (2)



Figure 2 – (a) Evidence for a resistivity minimum in the alloy system MoxNb1x, from
Ref. (2). (b) Variation of resistivity with temperature, due to scattering
by magnetic ions, exhibiting a universal behavior determined by the Kondo
temperature. From Ref (3).

Eq. 2 describes a Heisenberg-like interaction between the conduction electrons and a

localized moment, governed by an exchange coupling denoted by Jk,k′ . The spin operators

associated with the impurity, Sz and S± (defined as Sx ± iSy), characterize a single

impurity with spin S. This interaction can induce spin flips in the conduction electrons

as a result of scattering caused by the impurity. In addition to the term shown in Eq. 2,

a full description of the Kondo effect must also include a term for the host metal, which

represents the conduction electrons,

Hcond =
∑

k,σ

εkc
†
k,σck,σ. (3)

Here, Hcond denotes the Hamiltonian of the conduction electrons. The parameter εk

corresponds to the energy of an electron with momentum k, while the operators c†
k,σ

and ck,σ represent the creation and annihilation operators, respectively, for electrons with

momentum k and spin σ.

H = Hsd +Hcond. (4)

By setting the coupling constant Jk,k′ to zero, the system begins to behave like an isolated

ion, which leads to the manifestation of a free magnetic moment. Under these conditions,

the susceptibility follows Curie’s law.



2.1.2 Solution proposed by Jun Kondo

One explanation for the emergence of the resistance minimum in metals has been

proposed based on experimental evidence, which revealed a correlation between two key

factors: first, the observation of Curie-Weiss behavior in the magnetic susceptibility of

impurities, indicating the presence of localized magnetic moments, and second the ap-

pearance of a minimum in the electrical resistance curve. This correlation motivated Jun

Kondo, a Japanese physicist, to pursue a theoretical investigation of the phenomenon in

1964. Kondo showed that the minimum in electrical resistance arises from the interaction

between the spin states of localized and conduction electrons. To describe this, he em-

ployed the s-d model and applied perturbation theory up to third order in the exchange

coupling Jkk′ . According to linear response theory, determining the resistivity requires

calculating the T-matrix associated with the problem, which can be achieved through the

computation of the transport lifetime τ1(ε, k), defined by the following expression (41)

1

τ1(k)
= 2πcimp

ˆ

δ(εk − εk′) |Tkk′|2 (1 − cos θ′)
dk′

(2π)3
, (5)

where cimp is the impurity concentration and θ′ is related to the scattering angle. The

matrix elements of the scattering operator T (ε+), evaluated between Slater states in which

a conduction electron is scattered from |k, σ〉 to |k′, σ′〉, take the following forms at the

lowest order in Jkk′

〈k′, ↑ |T (ε+)|k, ↑〉(1) = Jkk′Sz,

〈k′, ↑ |T (ε+)|k, ↓〉(1) = Jkk′S−,

〈k′, ↓ |T (ε+)|k, ↑〉(1) = −Jkk′Sz,

〈k′, ↓ |T (ε+)|k, ↓〉(1) = Jkk′S+.

(6)

Assuming an exchange coupling independent of k, given by Jkk′ = J
Ns

, where Ns is the

number of sites, and considering parabolic dispersion for free electrons, ε(k) = ℏ
2k2

2m
, with

bandwidth D such that εk, εk′ < D, the expression for the transport lifetime at the Fermi

level, up to second order in J , is:

τ(kF ) =
2e2εF

3ncimpJ2S(S + 1)
. (7)

From the previous result, the impurity resistivity due to impurities can be written as



Rimp =
3πmJ2S(S + 1)

2e2ℏεF

, (8)

where m is the electron mass, J the exchange coupling constant, S the impurity spin, e

the elementary charge, ℏ the reduced Planck constant, and εF the Fermi energy. This

term is temperature-independent and therefore cannot explain the observed increase in

resistivity at low temperatures.

To capture the increase in resistivity at low temperatures, the calculations must be

extended to third order in J . This requires first determining the second-order terms in

the T -matrix, as they contribute to the third-order corrections. Kondo carried out these

calculations and obtained an expression in which the resistivity depends explicitly on

temperature, taking the following form:

Rimp
spin =

3πmJ2S(S + 1)

2e2ℏεF

(

1 − 4Jρ0(εF ) ln

(

kBT

D

))

. (9)

By taking all terms into account, the total resistivity of a metal can be expressed as

R(T ) = aT 5 + cimpR0 − cimpR1 ln

(

kBT

D

)

, (10)

where aT 5 term represents electron-phonon scattering, The cimpR0 is the temperature-

independent potential scattering from impurities and the last term is related to the pres-

ence of magnetic impurities in the material and is only relevant at low temperatures.

Kondo’s foundational research elucidated the experimental observation, establishing

that its core mechanism stems from the interplay between localized magnetic moments

and conduction electrons. He clarified that the unusual temperature-dependent electri-

cal resistivity, characterized by a minimum at low temperatures, is not attributable to

intrinsic properties of the impurity, such as its charge. This interaction results in a dis-

tinctive resistivity profile as a function of temperature, where the minimum arises from

the cumulative effect of individual magnetic moments, rather than from correlations be-

tween localized spins. Kondo’s theoretical predictions show excellent agreement with the

experimental data:

❏ The minimum temperature Tmin is approximately proportional to c1/5
imp and is given

by

Tmin =
(

R1

5a

)1/5

c
1/5
imp. (11)



❏ The depth of the minimum is approximately proportional to the concentration cimp.

❏ The dependence on log T has been confirmed experimentally, especially in gold-iron

alloys.

Kondo’s work marked a advance in the understanding of a phenomenon studied for

over three decades. His theory explained the abrupt increase in resistivity in metals

with impurities, introducing the concept of the TK , but it had limitations: it predicted

a divergence in resistivity below TK that was not confirmed experimentally. Despite

this limitation, his model significantly advanced research on the Kondo effect, and a full

explanation of the phenomenon was only achieved in the 1970s with the development of

the numerical renormalization method, a topic that will be discussed in greater detail in

the next chapter.

2.1.2.1 Kondo Temperature

The TK is usually taken as a central energy scale, though perhaps more a crossover

indicator than a strict boundary, marking when a magnetic impurity begins to couple

strongly with the conduction electrons. This characteristic temperature depends expo-

nentially on the exchange coupling J and the density of states ρ at the Fermi level, and

can be expressed by the following equation:

TK ∼ De−1/(Jρ), (12)

An important quantity is the impurity spectral function, Ad(ω), which characterizes

the density of electronic states localized at the impurity as a function of the energy ω.

Within the Kondo regime, this function is characterized by a sharp peak situated at

the Fermi level, commonly referred to as the Kondo resonance. The bandwidth of this

resonance is directly correlated with the Kondo temperature, TK . Consequently, exper-

imental techniques like scanning tunneling spectroscopy can be employed to probe the

spectral function, enabling the direct determination of TK from the measured width of

the Kondo resonance. In the absence of interactions U = 0, the spectral function is a

simple Lorentzian resonance centered at εd, with a width determined by the hybridiza-

tion Γ. The three-peak structure emerge when strong Coulomb interaction U is present.

Fig. 3 shows the spectral function A(ω) for an impurity in an interacting system. It high-

lights three main regions, specifically in the case where the system exhibits particle–hole

symmetry.

The lower Hubbard band, located at −U/2 corresponds to occupied states and rep-

resents the energy required to remove an electron from the impurity orbital, driving the

transition from single occupation to zero occupation. The Kondo resonance, or Kondo



peak, is directly related to the screening of the impurity spin caused by conduction elec-

trons, as a result of low-energy excitation processes. This peak does not persist at tem-

peratures above the Kondo temperature, highlighting its direct connection to the effect.

Furthermore, in the presence of a magnetic field, the peak splits into two (42). Similarly,

the upper Hubbard band, located at U/2 on the positive side of the spectrum, corresponds

to unoccupied states. It represents the energy required to add a second electron to the

impurity orbital, driving the transition from single to double occupancy, which involves

overcoming the Coulomb repulsion U .

Figure 3 – Spectral function characteristic of the Kondo regime, highlighting the Hubbard
peaks located at high energies and the Kondo resonance centered at the Fermi
level. From Ref. (4).

2.1.2.2 Kondo cloud

There is a spatial scale known as the Kondo length, denoted by ξK , which character-

izes the extent of the so-called Kondo cloud (6, 43). This cloud is a spatial manifestation

of the quantum correlations between a localized magnetic moment and the conduction

electrons in a metal and arises due to the Kondo effect. Within this region, the elec-

trons interact strongly with the impurity’s spin, forming a singlet (non-magnetic) state.

Outside the Kondo cloud, the electrons do not couple directly to the impurity’s magnetic

moment at low energies. They feel its influence only through an effective potential that

becomes a scattering center (responsible for the increased resistivity of the metal at low

temperatures). This type of interaction induces a characteristic phase shift of π/2 in the

Fermi energy.

Figure 4, right panel, illustrates the situation for T > TK , where the electrons interact

only weakly with the impurity, leaving the impurity spin essentially free. In contrast, the

left panel shows that for T < TK , the impurity strongly interacts with the collective state

of the metal’s conduction electrons, giving rise to the Kondo cloud that surrounds and

screens it. Mathematically, the extent of the Kondo cloud is expressed by



ξK =
ℏvF

TK

, (13)

Figure 4 – Left panel: when T < TK , the impurity strongly affects the conduction elec-
trons, which begin to gather around it, forming a singlet state. Right panel:
for T > TK , the impurity (red arrow pointing upward) interacts weakly with
the conduction electrons (blue arrows pointing downward), having minimal
influence. From Ref. (5).

where vF represents the Fermi velocity. In quantum dot experiments, the characteristic

temperature of the Kondo effect is typically below 1K and can be tuned by the gate

voltage Vg. Considering a Fermi velocity of the order of vF = 5 × 105,m/s, the spatial

extent associated with the phenomenon reaches approximately 3 µm (44, 45).

Due to this macroscopic spatial scale and the nonlocal nature of the correlations,

direct observation of the Kondo cloud remains challenging. In (6), researchers performed

Kondo cloud measurements in a setup consisting of a quantum dot containing an unpaired

spin, which simulates a magnetic impurity, coupled to a one-dimensional (1D) ballistic

channel of extended length. This channel had multiple conduction modes to allow electron

flow and included three quantum point contact (QPC) gates, positioned at distances of

L = 1.4 µm, L = 3.6 µm, and L = 6.1 µm, respectively, from the quantum dot

(QD). The device is operated by forming a Fabry-Pérot (FP) interferometer. The length

of each cavity corresponded to the distance between the QD and the respective QPC

used. By varying the voltage applied to the QPC gate, the cavity could be adjusted to or

from resonance, thus modifying the electron density within it. This variation disturbed

the electron density and generated oscillations in the Kondo temperature measured in the

QD. Analysis of the amplitude of these oscillations at different distances allowed us to

experimentally determine the spatial extent of the Kondo cloud.

Figure 5 presents an analysis of the relationship between the Fabry-Pérot cavity (FP)

length and the TK , aiming to highlight the spatial extent of the Kondo cloud. In the



Figure 5 – Amplitude of the Kondo temperature oscillations, TK , plotted as a function of
the Fabry-Pérot cavity length L and normalized by the characteristic Kondo
cloud length, ξK . Experimental data for cavities of 1.4 µm, 3.6 µm, and
6.1µm collapse onto a universal curve, demonstrating that ξK determines the
spatial extent of the Kondo cloud. The dashed line shows the theoretical
relation, ln(TK,max/TK0) = −n ln(L/ξK) with n = 0.47, obtained via numerical
renormalization group (NRG) calculations. From Ref. (6).

graph, the vertical axis corresponds to

ln
(

TK,max

TK0

)

, (14)

that is, the logarithm of the ratio of the maximum measured TK to the unperturbed

Kondo temperature. The horizontal axis displays the FP cavity length L, normalized by

the characteristic length of the Kondo cloud ξK . The experimental data obtained for three

cavities of different lengths (1.4 µm, 3.6 µm, and 6.1 µm) collapse into a single universal

curve when expressed as a function of ξK , demonstrating that this is the relevant length

parameter for the phenomenon.

The dashed theoretical curve, derived from NRG calculations, is described by the

expression

ln
(

TK,max

TK0

)

= −n ln

(

L

ξK

)

, (15)



with n = 0.47, indicating that the amplitude of the TK oscillations decays logarithmically

with increasing L. For L < ξK , a strong perturbation of the Kondo cloud is observed,

reflected in significant TK oscillations. In contrast, for L > ξK , the FP cavity is outside the

cloud’s influence region, resulting in less pronounced oscillations. These results constitute

direct evidence for the existence and spatial shape of the Kondo cloud, confirming its

sensitivity to perturbations within a characteristic length.

2.1.3 Single-impurity Anderson model: local moment formation

The Single Impurity Anderson Model (SIAM), proposed by P. W. Anderson in 1961

(46), was designed to describe the emergence of localized magnetic moments in metallic

alloys. These alloys exhibit localized moments, generally associated with d or f orbitals,

which, despite being strongly confined spatially, can still interact with the electrons of

the host metal through the process of hybridization. To accurately represent the physical

phenomena involved in these systems, Anderson formulated a specific Hamiltonian that

incorporates these fundamental interactions

H = Hbath +Himp +Hhyb (16)

where

Hbath =
∑

kσ

εkn̂kσ (17)

where n̂kσ is the number operator representing the occupation of the conduction state

with momentum k and spin σ, and εk is the energy of that conduction state. On the

other hand

Himp =
∑

σ

εdn̂dσ + Un̂d↑n̂d↓ (18)

the term Himp describes the impurity, where εd is the energy of the discrete and localized

impurity level, σ is the spin, and n̂dσ is the number operator for the impurity electron

with spin σ. The second term, Un̂d↑n̂d↓, represents the Coulomb repulsion U between two

electrons when the impurity level is doubly occupied, where n̂d↑ and n̂d↓ are the number

operators for spin-up and spin-down electrons, respectively. Finally

Hhyb =
∑

kσ

Vk

(

c†
kσdσ + d†

σckσ

)

(19)



here, c†
kσ(ckσ) is the creation (annihilation) operator for an electron in the conduction

band with momentum k and spin σ, and d†
σ(dσ) is the creation (annihilation) operator

for an electron in the impurity level with spin σ. The hybridization between the d level

and the conduction band constitutes a fundamental interaction that enables the exchange

of electrons between these two systems, allowing them to hop from one to the other.

The coupling strength associated with this interaction is described by Vk, which, for

convenience, will be considered independent of the wave vector k, and thus assumed to

be a constant equal to V . Another fundamental term is the so-called Γ, defined as

Γ = πV 2ρ(EF ) (20)

The parameter Γ quantifies the rate of electron transfer between the impurity level

and the conduction band of the host metal. In this context, ρ(EF ) represents the density

of states of the host metal at the Fermi energy.

The Anderson model has two important limits.

1. The first is the atomic limit, in which we consider only the Himp Hamiltonian.

This contains the elements responsible for the formation of localized moments and

presents four states, defined by

a) Not magnetic







|0〉 ; E0 = 0

| ↑↓〉 ; E↑↓ = 2εd + U
(21)

b) Magnetic

| ↑〉 ; E↑ = εd

| ↓〉 ; E↓ = εd

(22)

Figure 6 illustrates the electronic phases of the Anderson impurity model in

the atomic regime, highlighting the energy conditions (such as εd +U/2, U,−U)

that define these phases. The vertical axis corresponds to the impurity orbital

energy, Ed + U/2, while the horizontal axis represents the Coulomb repulsion

energy, U , which quantifies the energetic cost of placing two electrons in the

same orbital.

The diagram is divided into regions corresponding to distinct electronic states.

In the upper-left corner, the Kondo effect (d0) prevails, where the impurity

orbital, either vacant or doubly occupied, hybridizes strongly with the metal’s





crete, is broadened into a peak in the local density of states (LDOS) due to hy-

bridization with the metallic host. This broadening is commonly described by a

Lorentzian function:

ρd(ε) =
1

π

Δ

(ε− εd)2 + Δ2
, (23)

where εd denotes the effective energy of the impurity level, and Δ represents the

characteristic width of the resonance. This width, often referred to as the hybridiza-

tion width, is defined as

Δ = πρ0|V |2, (24)

with ρ0 being the density of states (DOS) of the conduction electrons at the Fermi

level and V the average hybridization matrix element.

The VBS can thus be viewed as an open quantum system, continuously exchanging

electrons with the Fermi sea. The imaginary term iΔ in the denominator of the

retarded Green’s function, from which the Lorentzian spectral shape arises, indicates

a finite lifetime, τ ∼ 1/Δ. This ongoing decay and replenishment, referred to as

charge fluctuation is quantitatively captured by Δ.

Finally, the SIAM can be transformed into a low-energy effective model using the

Schrieffer–Wolff transformation. In conditions of substantial Coulomb repulsion U , this

effective model accurately describes the spin dynamics of the Anderson impurity, forming

the foundation for analyzing the Kondo effect.

2.1.4 Introduction to Quantum Dots

QDs are nanoscale structures, typically with dimensions of about 100 nanometers,

embedded in semiconductor materials. In these confined regions, the number of free

electrons is strongly restricted, ranging from a single electron to a few hundred. It means

that electrons within a quantum dot can only occupy discrete energy levels, analogous

to the orbitals of an atom. Note that one feature of these nanostructures is the charging

energy, which corresponds to the energy required to add or remove an electron from the

QD, resembling the ionization process in atoms. Owing to these characteristics, quantum

dots are often referred to as “artificial atoms” (47, 48, 49).

Figure 7 presents a schematic representation of a quantum dot. At the center is the

system known as the QD, which is connected to the source and drain terminals, linked

to instruments for measuring current and voltage. A third terminal represents the gate



electrode (control). By allowing electron tunneling between the source and the drain, the

number of electrons N in the QD adjusts until the total energy of the system is minimized.

Since electrons are introduced in discrete quantities, the addition of a charge e alters the

electrostatic energy, which is conveniently expressed in terms of the capacitance C of the

island (or the QD).

A change in the number of charges in a system, such as a QD, causes a modification in

its electrostatic potential. This variation is described by the charge energy. This energy

derives from the quantization of electronic levels as much as from the Coulomb repulsion

between confined electrons, playing a important role in determining the behavior of the

system (50).

E =
e2

C
, (25)

where e is the electron charge and C is the total capacitance of the QD. The factor 1
2

in

the expression e2

2C
calculates the work required to charge the capacitor from its neutral

state to a charge Q = ne, giving n or the number of electrons. Thus, the charging energy

represents the energetic cost associated with the insertion of an electron into QD.

This expression accounts for the quantization of energy levels and Coulomb repulsion

between confined electrons. When the temperature is sufficiently low and the applied bias

voltage is small, the energy cost to add an extra electron to the island may exceed the

available thermal energy kBT , that is:

kBT � e2

C
(26)

where kB is Boltzmann’s constant and T is the temperature. When this situation occurs,

the thermal energy available is not enough for the electron to cross the potential barrier

and enter the quantum dot QD. Thus, the electric current passing through the quantum

dot is blocked by low bias voltages, creating the so-called Coulomb blocking effect. This

phenomenon is essential for the functioning of devices that work in the single electron

regime, such as single electron transistors.

2.1.5 Kondo effect in quantum dots

The significant advantage of employing quantum dots for the investigation of the

Kondo effect, in contrast to metallic counterparts, is rooted in their exceptional tun-

ability and precise parameter control. While in metals the Kondo effect is observed in

intrinsic magnetic impurities, quantum dots act as “artificial magnetic impurities,” al-

lowing for precise knowledge and control of the number of confined electrons N . This





Figure 8 – Spin inversion processes give rise to the ordinary and singlet Kondo effects in
a quantum dot with spin-1/2 and an odd number of electrons N . The highest-
energy electron occupies the spin-degenerate level ε0, and the ground states
with Sz = ±1

2
(green panels) are connected by co-tunneling events through

barriers with rates ΓL and ΓR. From Ref. (8)

at an energy cost approximately equal to U , the on-site Coulomb energy. Actually, such

processes can induce spin flips of the confined electron, for example, a spin-up electron

may tunnel out of the dot and be promptly replaced by a spin-down electron from the

leads. At low temperatures, a coherent superposition of all possible spin-flip co-tunneling

events leads to screening of the localized spin on the dot by conduction electrons from

the leads. Hence, the resulting many-body entangled state, a spin singlet, characterizes

the Kondo effect.

2.1.5.1 Experimental observations

Figure 9 illustrates the conductance in the linear-response regime (G = I/V ) of a

quantum dot as a function of gate voltage (Vg) at two electron temperatures: 45 mK

(solid line) and 150 mK (dashed line). By varying Vg, the electrostatic potential of

the dot is tuned, controlling the number of confined electrons (N), with each Coulomb

blockade oscillation corresponding to the addition of a single electron. In the valleys be-

tween conductance peaks, where transport is suppressed, the parity of N can be inferred

from the spacing between peaks and supported by magnetic field measurements. A clear

temperature-dependent distinction is observed: valleys with odd N (e.g., 3, 5, 7) display

higher conductance at the lower temperature, which decreases as temperature increases,

reflecting Kondo screening of a localized spin. In contrast, even-N valleys (e.g., 2, 4, 6)

show conductance that rises with temperature, indicative of thermally activated trans-

port without Kondo correlations. This alternating pattern between odd and even valleys

demonstrates the tunable nature of the Kondo effect in quantum dot systems.

Another key experimental signature of the Kondo effect in quantum dots is the zero-

bias anomaly in the differential conductance (dI/dV ) when a bias voltage (V ) is applied



Figure 9 – The linear conductance, defined as G = I/V , was recorded as a function of the
voltage applied to the gate (V ), at point 1, under a null magnetic field (B = 0),
for a voltage of 7.9 mV . The measurements were performed at two different
temperatures: 45 mK, represented by the solid line, and 150 mK, indicated
by the dashed line. Planck’s constant (h) is used as a reference. From Ref.
(9).

Figure 10 – The differential conductance dI/dV was measured at different temperatures
(45 to 270 mK), with the gate voltage centered in the intermediate valley.
The observed peak grows logarithmically with temperature, while its width
increases linearly, with a slope of 4.8 kB. The asymmetry in the peak at zero
bias indicates a difference between ΓL and ΓR coupling. From Ref. (9)

between source and drain. This anomaly appears as a pronounced peak at zero bias.

Fig. 10 illustrates dI/dV versus source-drain voltage (Vsd) at various temperatures (45

mK to 270 mK), measured at the center of a “Kondo valley” (i.e., for an odd number of

electrons).

At the base temperature of 45 mK (bold curve), a sharp peak appears at Vsd = 0,

representing the Kondo resonance, which can be seen as a narrow feature in the dot’s

density of states pinned to the leads’ Fermi energies. This resonance enhances conductance

at zero bias. As temperature rises, the peak broadens and decreases in height, vanishing

at higher temperatures (e.g., 270 mK), reflecting the progressive disruption of coherent

Kondo screening by thermal fluctuations. The logarithmic temperature dependence of



the peak maximum is a hallmark of the Kondo effect for T ≲ TK , and the peak width

saturates near TK at very low temperatures. Observing this zero-bias anomaly and its

characteristic temperature behavior provides strong evidence for the formation of the

many-body Kondo singlet in the quantum dot.





Chapter 3

The Numerical Renormalization Group

Approach

In materials with strong correlations, single-particle approximations fail and are not

able to describe the correct physics. For quantum impurity systems, a complete descrip-

tion requires the use of non-perturbative theories. In this context, the method commonly

employed is the NRG. In quantum impurity systems, the NRG is applied with the aim

of determining the many-body eigenvalues and eigenstates across different energy scales

ω1 < ω2 < . . . , through a series of successive steps. Each of these steps is associated with

a specific scale, either in energy or in length.

The aim is to proceed through the elimination of high-energy states so as to construct

effective Hamiltonians HN (with N = 0, 1, . . .). In doing so, one hopes to capture the rele-

vant physics of the system at increasingly reduced energy scales ωN , though the accuracy

of such a description may depend on subtle assumptions and approximations (51, 41).

Mathematically, this is described by

HN+1 = R[HN ], (28)

In Eq. 28, the renormalization operation R can be seen as a way of connecting effective

Hamiltonians that account for physical behavior across distinct energy scales. During the

1970s, Kenneth Wilson introduced a non-perturbative formulation of the Renormalization

Group (RG) applied to the Kondo model. This method made it possible to follow, step

by step, the crossover from weak coupling at high temperatures to the strong coupling

regime that dominates at low temperatures. In this chapter, we describe a specific imple-

mentation of the NRG idea: Wilson’s nonperturbative method for the Anderson model.



3.1 Logarithmic discretization

In the context of the Kondo problem (and, to some extent, in other scenarios involving

quantum impurities) the system does not behave uniformly across energy scales. Instead,

its qualitative features shift in ways that can be quite dramatic. One might say that

this evolution reflects a passage between distinct fixed points of the RG. At elevated

temperatures, the system tends to display the familiar traits of a localized magnetic

moment, almost as if the impurity were standing alone. On the other hand when the

temperature drops below TK , the description changes: the system begins to resemble

a Fermi liquid, with the impurity effectively screened. Wilson’s approach offers a non-

perturbative framework for the RG that remains applicable across the full range of energy

scales.

Figure 11 – Schematic representation of the Logarithmic discretization of the conduction
band.

Wilson’s formulation relies on a logarithmic discretization of the energy axis, governed

by a parameter Λ > 1. Rather than treating the band in its original form, the conduction

states are restricted into the interval ([-1,1]), which is then split into two parts, positive

and negative, so that the impurity’s influence can be tracked more carefully. What stands

out, is that the accuracy of the transformation remains constant throughout all iterations,

unaffected by the strength of the couplings. The discretization intervals are given by

D+
n = [Λ−(n+1),Λ−n], D−

n = [−Λ−n,−Λ−(n+1)], (29)

taking into account the discrete values n = 0, 1, . . ., which lie near the Fermi level εF = 0

(see Fig. 11), one should note that orbital isotropy is assumed. In practice, this means

that only electrons with s-wave symmetry are allowed to interact with the impurity, as

suggested in Figure 12 (11). Under these conditions the Anderson Hamiltonian can be

written in its continuous form as



Figure 12 – Illustration of spherical regions in radial space r, which indicate the bound-
aries of the wave functions fn. Each of these functions oscillates within its
respective region, ensuring that they are orthogonal to each other. From Ref.
(10).

H = Himp +
∑

σ

ˆ 1

−1

dε g(ε) a†
εσaεσ +

∑

σ

ˆ 1

−1

dε h(ε)
(

f †
σaεσ + a†

εσfσ

)

. (30)

Equation 30 sets the cutoffs over the interval [−1, 1]. Where g(ε) denotes the disper-

sion, while h(ε) captures the hybridization. According to the analysis by Bulla, Pruschke,

and Hewson (1997) (52), the hybridization function Δ(ω) can be written explicitly in

terms of h(ε) and g(ε) as:

Δ(ω) =
1

π
· dε(ω)

dω
· [h (ε(ω))]2 , (31)

Figure 13 – A single state serves as an approximation of the continuous spectrum in each
interval. From Ref. (11).

in this way, establishing a connection between g(ε) and h(ε), where ε(ω) is the energy of

the conduction electron that satisfies g[ε(ω)] = ω, corresponding to the frequency ω of



the Hamiltonian, we introduce within each interval Dn, as schematically depicted in Fig.

13, a complete set of orthonormal functions given by

ψ±
np(ε) =











1√
dn
e±iωnpε, if Λ−(n+1) < ±ε < Λ−(n)

0, outside of the interval
(32)

where the parameter p ranges from −∞ to ∞, and within this domain the fundamental

frequencies are expressed as

ωn =
2π

dn

(33)

in which dn = Λ−n(1−Λ−1) is the width of the interval. By considering the basis functions

ψ±
np(ε), the conduction-electron operators can be expanded as

aεσ =
∑

np

[

anpσψ
†
np(ε) + bnpσψnp(ε)

]

. (34)

This can be understood as the performance of a Fourier expansion within each segment.

The inverse operation is given by

anpσ =

ˆ 1

−1

dε
[

ψ+
np(ε)

]*
aεσ (35)

and

bnpσ =

ˆ 1

−1

dε
[

ψ−
np(ε)

]*
aεσ. (36)

With the simplifications proposed above, the Hamiltonian in Eq. 30 can be written in

a discretized form. A key aspect of Wilson’s formulation is the observation that only

states with p = 0 couple directly to the impurity. Consequently, without loss of accuracy,

states with p = 1, 2, . . ., which are not located near the impurity, can be neglected. These

states are centered farther away, specifically at a distance r ≈ Λp from the impurity, and

therefore couple to it only indirectly. Another essential element is the treatment of the

function h(ε), which must be considered constant within each interval, even if Δ(ε) is not

constant in general. Following the formulation by Bulla (52), h(ε) is assumed to be a step

function, i.e., constant within each subinterval of the discretization.



h(ε) = h±
n , xn+1 < ±ε < xn, (37)

this leads to the following expression for the hybridization term

ˆ 1

−1

dε h(ε)f †
σaεσ =

1√
π
f †

σ

∑

n

(

γ+
n an0σ + γ̄nbn0σ

)

, (38)

with

γ±2
n =

ˆ ±,n

dεΔ(ε), (39)

where

ˆ +,n

dε ≡
ˆ xn

xn+1

dε,

ˆ −,n

dε ≡
ˆ −xn+1

−xn

dε. (40)

First, we examine the term associated with the conduction electrons, which can be

rewritten as

ˆ 1

−1

dε g(ε) a†
ε0
aε0

=
∑

n,p

(

ξna
†
npσanpσ + ξnb

†
npσbnpσ

)

+
∑

n, p̸=p′

[

a†
n(p, p′)a†

n(p′, σ) − an(p, p′)b†
npσbnp′σ

]

.
(41)

The initial term on the right-hand side of Eq. 41 is diagonal with respect to the index p.

Therefore, the discrete set of energy levels ξ±
n can be represented as described by Bulla,

Pruschke, and Hewson (52) as

ξ±
n =

´

±,n
dεΔ(ε)ε

´

±,n
dεΔ(ε)

= −1

2
Λ−n(1 + Λ−1). (42)

The expression in parentheses corresponds to the case in which Δ(ε) is assumed to be

constant. Nevertheless, the coupling between conduction electrons with indices p and p′,

which characterizes how the electronic states reconnect to the continuum, is exact at this

stage, since no approximation has yet been introduced. Second, by considering a linear

dispersion relation of the form εk = k, the matrix elements αpp′ for (p 6= p′) take identical

values for both positive and negative p, and are described by



Figure 14 – The discretized model is reformulated as a semi-infinite chain, in which the
impurity interacts with the first conduction electron site through the hy-
bridization term V . The tight-binding parameters of this representation are
denoted by εn and tn (the hopping between sites in the chain that represents
the bath, see Eq. 50).

α
1

2
n (p, p′) =

1 − Λ−1

2πi
· Λ−n

p′ − p
exp

(

2πi(p′ − p)

1 − Λ−1

)

. (43)

The discretized Hamiltonian is obtained by disregarding all terms with p 6= 0 in Eq. 41, a

crucial simplification that isolates the conduction states most directly coupled to the im-

purity. Following this step, and upon substituting an0σ ≡ anσ, the discretized Hamiltonian

is finally obtained

H = Himp +
∑

nσ

(

ξ†
na

†
nσanσ + ξnb

†
nσbnσ

)

+
1√
π

∑

σ

f †
σ

∑

n

(γnanσ + γnbnσ)

+
1√
π

(

∑

n

(

γna
†
nσ + γnb

†
nσ

)

)

fσ (44)

3.2 Linear chain

In order to proceed with the analysis, the discretized Hamiltonian in Eq. 44 is arranged

in a linear chain form through the Lanczos transformation, we then have a more systematic

and tractable way to investigate the dynamics of the system. Which implies that a

sequence of steps must be followed

1. The first site of the chain corresponds to the impurity (see Fig. 14), while the

subsequent sites represent the conduction band. The impurity couples only to the

first site in the chain, represented by the operators c†
0σ, where

c0σ =
1√
ξ0

∑

n

(

γ+
n anσ + γ̄nbnσ

)

, (45)

in addition, the normalization condition is expressed as



ξ0 =
∑

n

[

(γ+
n )2 + (γ̄−

n )2
]

=

ˆ 1

−1

dεΔ(ε). (46)

From Eq. 45, the hybridization can be written as

1√
π
f †

σ

∑

n

(

γ+
n anσ + γ̄nbnσ

)

=

√

ξ0

π
f †

σc0σ, (47)

and considering Vk = V (with V independent of k), we have

V =

√

ξ0

π
. (48)

2. The operators C†
0p are not inherently orthogonal to the operators a†

nσ and b†
nσ. Or-

thogonality is subsequently enforced via a tridiagonalization procedure, through

which a novel set of mutually orthogonal operators, c†
nσ, is systematically con-

structed from a†
nσ and b†

nσ. In addition, the chain Hamiltonian can be expressed

as

H = Himp +
√

ξ0

π

∑

σ

(

f †
σc0σ + c†

0σfσ

)

+
∞
∑

n=0

[

εnc
†
nσcnσ + tn

(

c†
nσcn+1,σ + c†

n+1,σcnσ

)]

,

(49)

In Eq. 49, we represent the single-impurity Anderson model (SIAM) expressed in its

one-dimensional chain representation. Therefore, the Hamiltonian has three distinct

contributions:

a) Himp, which describes the isolated impurity, including its on-site energy and

Coulomb interaction.

b) The hybridization term,
√

ξ0

π

∑

σ

(

f †
σc0σ + c†

0σfσ

)

, which couples the impurity

orbital fσ to the first site of the conduction chain, c0σ, enabling spin exchange

between the impurity and the conduction electrons.

c) The chain contribution,
∑∞

n=0

[

εnc
†
nσcnσ + tn

(

c†
nσcn+1,σ + c†

n+1,σcnσ

)]

, describ-

ing the conduction electrons mapped onto a linear chain. Here, εn denotes

the on-site energy of the n-th site, while tn is the hopping amplitude between

adjacent sites. For a logarithmic discretization with constant hybridization, tn



decays exponentially with n, reflecting the reduced energy scale of successive

sites along the chain

tn =
(1 + Λ−1)(1 − Λ−n−1)

2
√

1 − Λ−2n−1
√

1 − Λ−2n−3
Λ−n/2. (50)

This representation is especially amenable to NRG calculations, as the exponential

attenuation of the hopping amplitudes facilitates a controlled, iterative treatment

of the system across progressively lower energy scales.

3.3 Iterative diagonalization

A RG transformation, defined by the relationship between Hamiltonians at successive

energy scales Λn/2 and Λ−(n+1)/2, can be formulated as follows

1. The Hamiltonian in Eq. 49 is truncated to N orbitals, yielding HN , which is defined

as

H = lim
N→∞

Λ−(N−1)/2HN , (51)

where

HN = Λ(N−1)/2



Himp +

√

ξ0

π

∑

σ

(

f †
σc0σ + c†

0σfσ

)

+
N
∑

σ,n=0

εnc
†
nσcnσ +

N
∑

n=0

tn
(

c†
nσcn+1σ + c†

n+1σcnσ

)



. (52)

The prefactor Λ(N−1)/2 defines a rescaled Hamiltonian, removing the explicit N -

dependence of the hopping parameter tN−1 and thereby facilitating the analysis of

the Hamiltonian’s fixed points.

Figure 15 – Iterative procedure of diagonalization of the H operator, starting with H0

and gradually expanded with the orbitals f1, f2, and so on.



2. Two successive Hamiltonians are connected according to

HN+1 =
√

ΛHN + ΛN/2
∑

σ

εN+1c
†
N+1σcN+1σ + ΛN/2

∑

σ

tN
(

c†
NσcN+1σ + c†

N+1σcNσ

)

.

(53)

Within the RG framework, Hamiltonians are parametrized by a set of parameters
~K. The mapping R transforms the original Hamiltonian into a new Hamiltonian

defined by an updated set of parameters ~K ′, such that

HN+1 = RHN . (54)

This conceptual framework provides the basis for the iterative diagonalization of the

Anderson Hamiltonian, as schematically illustrated in Figure 15. The subsequent

procedure for obtaining the spectrum of the Hamiltonian, H0, is then described as

a) The first Hamiltonian is given by

H0 = Λ−1/2



Himp +
∑

σ

ε0c
†
0σc0σ +

√

ξ0

π

∑

σ

(

f †
σc0σ + c†

0σfσ

)



 , (55)

this Hamiltonian represents a system composed of two sites: the impurity site

and the first site of the conduction electron band.

b) Second, we assume that HN has already been diagonalized, with the many-

body energies given by

HN |r〉N = EN(r) |r〉N , r = 1, . . . , Ns, (56)

where |r〉N are the eigenstates of HN and Ns is the dimension of HN . The idea

now is that, from the spectrum of HN , it is possible to construct a basis for

HN+1.

|r; s〉N+1 = |r〉N ⊗ |s(N + 1)〉, (57)

The states | r′s′; s′〉 are product states, consisting of the basis of HN and a new

basis |s(N + 1)〉 that represents the newly added site. Based on Eq. 57 it is

then possible to construct HN+1



HN+1(rs, r
′s′) = 〈rs |HN+1 | r′s′〉N+1, (58)

by diagonalizing Eq. 58, we obtain the new eigenvalues EN+1(w) and the cor-

responding eigenstates |w〉N+1. By repeating this procedure successively, as

illustrated in Figure 15, we obtain the complete spectrum.

3.4 Renormalization group flow and fixed points

The iterative diagonalization procedure yields the energies of the many-body states

EN(r), with r = 1, . . . , Ns. In the initial steps, the number of states is smaller than

Ns, until the truncation mechanism is applied. The index N runs from 0 up to a max-

imum value Nmax, chosen such that the system lies sufficiently close to its fixed point

corresponding to the low-temperature regime.

The many-body energy spectra remain approximately within the same range for dif-

ferent values of N , owing to the scaling factor Λ(N−1)/2. The first excited state of HN

has an energy on the order of Λ(N−1)/2tN−1, while the highest excited state after trunca-

tion depends on Ns and is typically 5 to 10 times larger than the lowest energy. When

rescaled by Λ−(N−1)/2, the energies EN(r) approximate the many-body spectrum of the

chain Hamiltonian, within an energy window that decreases exponentially with N . As a

consequence of iterative truncation, only a subset of the lowest-energy states from each

iteration is retained to construct the subsequent Hamiltonian, leading to the progressive

elimination of high-energy excitations from the original system.

Figure 16 shows an example of multiparticle energy levels for the symmetric Anderson

model with a single impurity. The energies are plotted for odd values of N . The energies

are identified by the total charge Q and the total spin S. In this diagram, three fixed

points can be identified:

1. For N ≈ 3 − 9, the system is close to the free-orbital fixed point. This can be

verified by setting U = 0 and V = 0. This is an unstable fixed point.

2. For N ≈ 20−50, the system approaches the local-moment fixed point, which is also

an unstable fixed point.

3. For N > 50, the system reaches the strong-coupling fixed point, a regime in which

the impurity is screened by the conduction electrons. This fixed point is obtained

by considering V → ∞.



Figure 16 – Evolution of the lowest energy levels of the Anderson model with a single
impurity, for the parameters f = −0.5 × 10−3, U = 10−3, V = 0.004, and
Γ = 2.5. The states are identified by the quantum numbers of total charge Q
and total spin S.

3.5 Applications

The applications of the NRG method in quantum impurity systems encompass three

principal aspects: the analysis of the system’s fixed points, the evaluation of its thermo-

dynamic properties, and the investigation of its dynamical and transport characteristics.

3.5.1 Thermodynamic Quantities: Entropy, Specific Heat, and

Susceptibility

The simplest physical quantities associated with the impurity degrees of freedom are

the impurity contributions to the entropy Simp, the specific heat Cimp, and the magnetic

susceptibility χimp. Specifically, the entropy and the specific heat correspond to the first

derivatives of the free energy, F = −kBT lnZ, and the internal energy, U = 〈H〉, with

respect to temperature, respectively, that is,

S = −∂F

∂T
, C =

∂U

∂T
. (59)

From a numerical point of view, performing direct differentiations should be avoided when-

ever possible. Another difficulty arises in the NRG: to avoid exponential energy growth,



it is necessary to subtract the ground state energy at each NRG level, requiring control

of these subtractions. A more convenient way is to evaluate the derivative analytically,

obtaining

S

kB

= β〈H〉 + lnZ (60)

for entropy and

C

kB

= β2
(

〈H2〉 − 〈H〉2
)

(61)

for specific heat.

Other local properties typically require the calculation of correlation functions. In this

context, it is necessary to distinguish between real-time correlators and susceptibilities.

Calculating the impurity contribution to isothermal magnetic susceptibility requires more

careful consideration. The standard definition for the isothermal magnetic susceptibility

(assuming gµB = 1) is

χ(T ) =

ˆ β

0

〈Sz(τ)Sz〉 dτ − β〈Sz〉2, (62)

where τ is the imaginary time (0 < τ < β), Sz is the z component of the impurity spin

operator, and

〈Sz(τ)Sz〉 =
1

Z
Tr
(

e−βHeτHSze
−τHSz

)

. (63)

In general, experimental measurements yield the global susceptibility of the system.

By exploiting the fact that the total spin operator commutes with the Hamiltonian, one

can express

〈Stot,z[τ ]Stot,z〉 = 〈Stot,z Stot,z〉 . (64)

and therefore arrive at the following expression.

χtot(T ) = β
(

〈S2
tot,z〉 − 〈Stot,z〉2

)

, (65)



by subtracting the susceptibility of the system in the absence of the impurity, one arrives

at Wilson’s definition of the impurity contribution to the susceptibility.

χimp(T ) = χtot(T ) − χ
(0)
tot(T ). (66)

Since Stot,z and Stot,z defines the states, the values of Eq. 66 are directly accessible.

Analogously, one obtains the impurity contributions to the entropy and the specific heat.

Simp(T ) = Stot(T ) − S
(0)
tot(T ), (67)

and

Cimp(T ) = Ctot(T ) − C
(0)
tot(T ), (68)

where S(0)
tot(T ) and C

(0)
tot(T ) represent, respectively, the entropy and the specific heat of

the reference system without impurities. Figure 17 shows the dependence of Tχ(T ) as

a function of temperature T for the symmetric Anderson model, considering two ratios

U/πΓ, equal to 12 and 1, represented by solid and dashed curves, respectively. For

U � πΓ, the presence of a well-defined local moment regime around T ≈ 1/4 is observed,

delimited by the free orbital regime, characterized by Tχ = 1/8, and by the strong

coupling regime, in which the susceptibility remains constant.

3.5.2 Dynamics quantities

The NRG can also be used to calculate the dynamical properties of quantum impurity

models. As an example, the impurity spectral function is given by

Aσ(ω, T ) = − 1

π
ImGσ(ω, T ), (69)

whereGσ(ω, T ) denotes the impurity Green’s function. Suppose that all eigenvalues EN(r)

and many-body eigenstates |r〉 of the Anderson Hamiltonian are known. In the Lehmann

representation, the impurity Green’s function is

Gσ(ω, T ) =
1

Z(T )

∑

r,r′

|〈r|fσ|r′〉|2 e
−Er/kBT + e−Er′ /kBT

ω − (Er′ − Er)
, (70)









Chapter 4

Resonant Level

In this chapter, we investigate the behavior of a non-interacting Resonant Level (RL),

generically referred to as an impurity, when placed near (or exactly at) the singularity

ω−1/2 that naturally arises in a one-dimensional quantum wire. We demonstrate that

the spectral function of the non-interacting RL, ρU=0, exhibits a bound state below the

bottom of the density-of-state band ρband. This bound state possesses the properties of

a Dirac delta function and carries a spectral weight determined by the coupling between

the RL and the band, as well as by its distance from the singularity in ρband. Our analysis

reveals two remarkable features of this non-interacting problem. First, a bound state

emerges even when the RL is positioned near the band center, appearing at the band

edge, but with negligible spectral weight even for moderate couplings. Second, when the

RL is located exactly at the singularity, the bound state acquires a fixed spectral weight

of 2/3, regardless of the coupling strength.

4.1 Spin-orbit coupling

When an electron with linear momentum ~p moves through a magnetic field ~B, it

experiences a Lorentz force perpendicular to its trajectory, given by ~F = − e
m
~p × ~B.

Simultaneously, it acquires a Zeeman energy expressed as µB~σ · ~B, where µB denotes the

Bohr magneton and ~σ is the vector of Pauli spin matrices. Analogously, when traveling

through an electric field ~E, the electron perceives, in its rest frame, an effective magnetic

field ~Beff ∼ ~E×~p
mc2 , which leads to a momentum-dependent spin-orbit interaction energy

(53).

Within the regime of weak relativistic effects, the Schrödinger-Pauli formalism is mod-

ified by incorporating Spin-Orbit Coupling (SOI). This interaction creates a connection

between the electron’s intrinsic spin ~s and its orbital angular momentum ~l in atomic

systems (54). The SOI Hamiltonian is typically described by



HSO =
ℏ

4m2
0c

2
σ · [∇V (r) × p] (74)

where ℏ is the reduced Planck constant, m0 is the mass of a free electron, c denotes

the speed of light, p is the momentum operator, V refers to the Coulomb potential of

the atomic nucleus, and σ = (σx, σy, σz) denotes the vector of Pauli matrices. In systems

under the influence of electric fields generated by potentials that exhibit asymmetry under

spatial inversion, spin degeneracy breaking can be observed. This phenomenon may occur

even in the absence of an external magnetic field (Zeeman effect), as a direct consequence

of SOI.

Within the framework of spin–orbit interaction, Time-Reversal Symmetry (TRS) is

preserved. However, the presence of an electric field arising from an inversion-asymmetric

potential breaks spatial inversion symmetry. In this scenario, we obtain

E(k, ↑) = E(−k, ↓),

E(k, ↓) = E(−k, ↑),
(75)

reflecting the conservation of time-reversal symmetry. The SOI Hamiltonian can be rep-

resented as a sum of two distinct components, such that HSOC = HR +HD. Where, for a

2D-system (54), the terms are defined as:











Rashba: HR = αR(kyσx − kxσy),

Dresselhaus: HD = β(kxσx − kyσy),
(76)

In these expressions, αR and β denote the Rashba and Dresselhaus spin–orbit coupling

constants, respectively. The variables kx and ky correspond to the components of the

conduction electrons’ wave vector along the x- and y-axes. The Rashba Hamiltonian

is invariant under time reversal, as indicated by
[

T̂ , Hso

]

= 0, where the time-reversal

operator is given by T̂ = iσyĈ, with Ĉ representing complex conjugation. Since lifting the

degeneracy of electronic states at k = 0 requires the breaking of time-reversal symmetry,

the Rashba term alone cannot induce spontaneous spin polarization. However it does lift

the spin degeneracy when k 6= 0 (55). In crystalline systems lacking spatial inversion

symmetry, the effective magnetic field arising from the Dresselhaus spin-orbit interaction

originates exclusively from microscopic mechanisms. Within such frameworks, both the

electric field vector ~E and the linear momentum vector ~p exhibit odd parity under the

action of the parity symmetry operation.



4.2 Introduction to Quantum Wires

Quantum wires can be understood as physical realizations of Luttinger liquids because

Fermi liquid theory fails in one dimension. Their design involves confining an electron

gas within a narrow channel, where electronic transport occurs predominantly along a

single direction. A representative example originates from a two-dimensional electron gas.

The transition to a quasi-one-dimensional system can be achieved through lithographic

techniques or by applying a repulsive potential from a gate, which effectively restricts the

electrons to a single conducting channel. In Figure 19, we depict the energy dispersion of

a system in which electrons are confined within a channel of width Ly.

Figure 19 – The confinement of an electron gas within a one-dimensional wire is described,
wherein only the positive branch of the dispersion relation E(k) is considered.
The vector k denotes the momentum component along the axis of the wire,
while transverse quantization gives rise to discrete minibands characterized by
the quantum number n. When the electronic confinement is sufficiently tight,
the energy separation between these minibands exceeds the thermal energy
scale, enabling occupation of a single miniband and consequently yielding
one-dimensional

The system’s wave function can be expressed as

ψ(x, y) = eikxφ(y), (77)

where φ(y) reflects the specific confinement potential profile (in the case of an infinite

well, φ resembles a superposition of plane waves).

Assuming φ behaves as a plane wave for simplicity, the energy takes the form

E =
k2

2m
+

k2
y

2m
. (78)



A key aspect here is that the narrow width l of the transverse channel causes significant

quantization of ky. Consequently, the energy spacing between transverse quantum states,

such as from ny = 0 to ny = 1, is at minimum

ΔE =
(2π)2

2ml2
. (79)

As a consequence of transverse confinement, miniband structures emerge, as illus-

trated in Figure 19. When the energy separation between these bands surpasses the

thermal energy scale, it becomes possible, through adjustment of the chemical potential

via an external gate, to restrict electronic occupation to the lowest miniband. Under this

condition, transverse states remain inactive, and only the longitudinal momentum k gov-

erns the system’s behavior, which effectively corresponds to a one-dimensional electron

gas. As an example, Figure 20 illustrates the formation of the electronic channel from a

two-dimensional electron gas (2DEG), which is established at the interface between the

GaAs semiconductor and the insulating AlGaAs layer (56).

Figure 20 – A schematic representation of the device, along with a scanning electron
micrograph, illustrates the electronic channel delineated at the GaAs–AlGaAs
interface.

4.3 Noninteracting resonant level model

Here, the system under analysis will be characterized using the non-interacting An-

derson model. This theoretical model describes a single fermionic energy level coupled

by tunneling to a continuum of electronic states (57). The Hamiltonian of the model is

expressed by:

H =
∑

k,σ

εkc
†
k,σck,σ + εd

∑

σ

d†
σdσ +

∑

k,σ

Vk(d†
σck,σ + h.c). (80)



In this formulation, the creation operator d†
σ corresponds to an impurity electron with spin

σ. The term εd represents the energy of the impurity level. The parameter Vk is known

as hybridization, and its function is to mediate the exchange of electrons between the

impurity and the continuum of states. For simplicity, it is assumed that Vk is independent

of the wave vector k and is therefore treated as a constant.

Additionally, Γ quantifies the coupling strength between the impurity and the elec-

tronic bath. Its definition is given by:

Γ = πV 2ρband(EF ) (81)

where ρband(EF ) is the density of states (DOS) of the host material at the Fermi energy

(EF ).

Next, we proceed to calculate the relevant quantities of the model. Neglecting spin

degeneracy, our analysis focuses on the impurity spectral function. The spectral function,

A(ω) as it extends the concept of the density of states by describing the distribution

of electronic states as a function of energy. Specifically, for an impurity level, the local

density of states (LDOS) is directly determined by the spectral function,

Ad(ω) =
1

π

Γ

(ω − εd)2 + Γ2
. (82)

Figure 21 (a) illustrates the spectral function at the RL for different values of Γ.

In this context, the impurity’s density of states exhibits a Lorentzian profile. From a

physical standpoint, it reflects the probability of detecting an excitation with energy ω.

For a vanishing hybridization term, the spectral function at the impurity reduces to a

Dirac delta function centered at ω = εd. Upon introducing hybridization, the delta peak

broadens, acquiring a width proportional to Γ. The occupation number are expressed by:

nd,σ =
1

2
− 1

π
arctan

(

εd

Γ

)

(83)

The impurity level occupation, nd, constitutes another fundamental observable that

can be directly derived from the spectral function. This quantity expresses the average

number of electrons localized at the impurity site. Under thermal equilibrium, the like-

lihood that a state of energy ω is occupied is governed by the Fermi–Dirac distribution,

f(ω). Acting as a thermal filter, this distribution determines which electronic states,

relative to the chemical potential µ and the temperature T , are effectively accessible.

Consequently, the average occupation number is obtained through an integration of the

























Chapter 5

Quantum wires with impurities: NRG

approach

In this chapter, we investigate the Kondo state in a metallic system whose density of

states exhibits a ω−1/2-type singularity, typical of the band bottom in one-dimensional

chains. We model the interacting system using the SIAM, solved using the NRG method.

The Hubbard interaction transforms the bound state, causing level splitting, spectral

weight redistribution, spectral discontinuity, binding energy variation, and the emergence

of a finite width. As εd approaches the singularity, the system partially recovers features of

the Kondo regime, such as higher impurity occupancy and a lower TK . Thermodynamic

properties indicate that the local moment (LM) fixed point is also affected: near the

singularity, it becomes resistant to charge fluctuations, unlike the behavior observed when

εd is distant. Finally, we discuss a proposed experimental implementation using armchair

graphene nanoribbons, which reproduce effects similar to those observed in quantum

wires.

5.1 Introduction

The main properties of the Kondo state—the quenching of the impurity magnetic

moment, universal temperature scaling, and existence of renormalization fixed points—are

readily obtained when considering a featureless (flat) density of states (DOS) of the host

around the Fermi energy (EF ), where most of the important physics occurs. This may

be called a traditional Kondo effect. Things become more interesting, possibly including

non-Fermi liquid physics (63), when the host DOS behaves like ρ(ω) = |ω|r at or near

the Fermi energy. For r > 0, the DOS vanishes at ω = 0, and the band is said to

have a pseudogap. Many theoretical works have analyzed the Kondo model (no charge

fluctuations) for bands presenting a pseudogap (64, 65, 66, 67, 52, 68, 69, 70, 71), while

much less work has been devoted to the r < 0 case, i.e., when there is a divergent density

of states (DOS) — a singularity — at the Fermi energy (63, 72, 73, 74), has been less



explored. Even fewer studies (75, 76, 77, 78, 79, 80) have investigated how a singularity

near the EF , which generates strong particle-hole (PH) asymmetry, affects the Kondo

state. Recent work (58) has examined a Kondo state in which the impurity orbital level

is resonant with a singularity at the bottom of the band — a scenario that arises in

one-dimensional (1D) lattices, nanotubes (81), and nanoribbons (82) — while the Fermi

energy lies slightly above the singularity, yielding intriguing results.

Here, we revisit a system similar to that studied in Ref. (58), employing NRG method.

The NRG calculations were done using the NRG Ljubljana code (83). When the Hubbard

interaction U is turned on, we find that the usual Kondo profile of the impurity spectral

function [ρNRG] is modified. Indeed, the singularity strongly distorts the lower Coulomb

blockade peak (CBP) of the impurity, which is now composed of a broadened bound

state and a series of peaks. In addition, the TK and the impurity occupancy are strongly

affected when εd is close to the band singularity. Both quantities tend to values closer to

those fully in the Kondo regime (higher occupancy and lower TK) even when the system

is in an intermediate valence regime. This reentrant Kondo regime can also be observed

at temperatures around the LM fixed point. Indeed, the magnetic susceptibility in the

intermediate valence regime takes values like those in the Kondo regime at temperatures

associated with the LM fixed point. This behavior, also visible in the NRG energy flow,

is clearly associated with the existence of the bound state. We present NRG results and

analysis to explore these interesting regimes in detail below.

5.1.1 Singularity effect on the impurity spectral function and

charge occupancy

As described in the literature (70, 71, 72, 73, 75), the Kondo state for Anderson-type

systems (46) and highly asymmetric DOS (such as when the EF is close to a Van Hove

singularity) strongly depends on model parameters. Indeed, our detailed analysis of the

Kondo state for EF close to the 1D band singularity indicates that the impurity spectral

function, impurity charge occupancy, and thermodynamic properties are very sensitive to

the interplay between εd, U , V , and EF . In other words, small changes in the parameters,

like the position of EF in relation to the singularity, strongly affect the Kondo state.

To reveal the most interesting aspects of the Kondo state when εd is at the singularity

and EF is close to the bottom of the band, we will contrast it to the Kondo state obtained

when EF is exactly in the middle of the band (µ = 0), keeping all the other parameters

equal. We take εd = −U/2; thus, for µ = 0, the system is in the PH-symmetric (PHS)

point. These results are shown in Figure 33. Panels (a) and (b) show the impurity

spectral function (green curve for the noninteracting case ρU = 0 and blue curve for the

interacting case ρNRG) for µ = 0 and −0.995, respectively. The (red) dashed curves are

the band DOS ρband. Note that all DOS results are normalized so that their integrals over



ω are 1. The parameters, kept fixed for both calculations, are εd = −0.005, U = 0.01,

and Γ = 6.6667 × 10−4 (thus U/Γ = 15). We have used V values for both calculations

(V = 0.026 and 0.0082, for panels (a) and (b), respectively) such that Γ does not vary.

The only change from one calculation to the other is the PH asymmetry around EF : no

asymmetry in panel (a) and very strong asymmetry in panel (b). Comparison of the ρNRG

results (blue curves) in panels (a) and (b) shows how strongly the singularity affects the

impurity spectral density. Indeed, from a traditional PHS Kondo peak at µ = 0 [panel (a),

blue curve], we move to a very rich impurity DOS when εd is at the singularity, showing

a series of peaks around the Fermi energy (EF = 0.0). The rightmost peak in ρNRG (the

upper CBP), farthest from the singularity, is the least affected, while the Kondo peak

(around ω = 0.0) acquires slight asymmetry. Notice that the RL results (green curve,

ρU=0) show that the singularity splits the noninteracting DOS into a Dirac δ-like bound

state (below the bottom of the band) and a broad peak starting at the bottom of the band.

As it turns out, this last peak becomes a superposition of three peaks in the continuum,

while the bound state splits into two features below the band. One is very sharp, located

at the band edge, and has very small spectral weight. The other, containing most of the

spectral weight, is shifted to lower energy than the original bound state and acquires a

sizable finite width. Thus, the interplay between the singularity and correlations results

in very complex spectral behavior.

Figure 33(c) shows how the impurity occupancy nd = 〈nd↑ + nd↓〉 (for U = 0.01 and

U/Γ = 15) varies when the Fermi energy moves from the center of the band (µ = 0) to

close to the bottom of the band (µ = −1.0 − εd), for different values of εd (−0.005 ≤
εd ≤ −0.0001). Figure 33(d) shows a zoom of the results in panel (c) close to the lowest

values of µ. Notice that the red-squares curve at the top for εd = −0.005 is at the PHS

point for µ = 0, and the occupancy is pinned at nd = 1 even as µ moves away from PHS.

As expected, the average value of nd decreases (from nd ≈ 1.0 to 0.45) as εd increases,

from εd = −U/2 = −0.005 (red squares) to very close to the Fermi energy εd = −0.0001

(light green left triangles), moving the system from deep into the Kondo regime to an

intermediate valence regime, even for µ = 0. However, as the Fermi energy approaches

the bottom of the band (µ ≈ −1.0 − εd), nd increases abruptly, with a faster rate the

closer εd is to zero.

The variation of the bound state spectral weight Zb [purple hexagons curve in Figure

33(c)] with µ, for the noninteracting case, indicates that once the system moves to the

intermediate valence regime (larger values of εd), the presence of the bound state below

the bottom of the band, with stronger spectral weight, strongly increases the charging

of the impurity. This effect is negligible if the system is well into the Kondo regime

(εd = −0.005, red squares) or close to it (εd ≲ −0.003).















well known that the three SIAM fixed points are associated with energy plateaus in the

spectra as the number of NRG iterations varies. The free-orbital, LM, and strong-coupling

fixed points are successively approached as N increases (which corresponds to a decrease

in temperature or energy scale behavior). This can be easily spotted in Figure 38(a),

corresponding to the PHS point, see Refs. (10, 11) for comparison. In the upper-row

panels (Fermi energy at the center of the band, µ = 0), we see that the plateaus starting at

approximately N = 10 [Figure 38(b)] are gradually erased as charge fluctuations increase

[panels (c), (e), and (g)]. For example, in Figure 38(g), the lowest energy state with

Q = 1 and S = 0 (dashed blue curve) transitions directly (around N = 10) from a high-

to a low-temperature value without going through an intermediate stage. This does not

happen for the lower-row panels (EF close to the bottom of the band). The plateau

present in Figure 38(b) (between N = 10 and 30) is still present in panel (h) (although it

now finishes at around N = 20). This is consistent with the results for a robust Kondo

state seen in the impurity magnetic susceptibility in Figure 37.

For completeness, Figure 39 shows the impurity entropy as a function of T
D

, for the

same parameters as in Fig. 37. We note in panel (a) (EF at the center of the band),

for εd = −0.005 (red curve), the usual evolution. As temperature decreases, the impurity

entropy goes from the free-orbital (ln 4) plateau to the LM (ln 2) plateau, until it reaches

the strong-coupling (ln 1) Kondo limit. Panel (b) shows the corresponding results when

the Fermi energy is close to the bottom of the band, with εd at the singularity, as in Fig.

37. We notice again a pinning tendency around the LM plateau as εd increases, especially

for εd = −0.002 (green curve), whose oscillation, also observed in the corresponding result

in Figure 6, may be ascribed to the many-body states that appear between the Kondo

peak and the singularity [see Figure 33(b)]. It is important to note the nonuniversal low-

temperature behavior of the cyan curve in panel (b), which shows the impurity entropy

being negative in the range 10−5 ≲ T/D ≲ 10−4. This behavior (which accompanies the

nonmonotonic behavior of the cyan curve in Tχ, Figure 37) is reminiscent of the behavior

seen in other Kondo problems in the presence of a sharp singularity or discontinuity in

the DOS (75, 76, 85) and is clearly most prominent here when the RL is closest to the

band singularity.







Zb of the bound state and the farther it is below the band minimum. The spectral weight

Zb is vanishingly small if εd is not close to the singularity, while it quickly increases as

it approaches, reaching the value Zb = 2
3

at resonance, in agreement with previous work

(58), where the singularity is due to SOI. In addition, the impurity level εd is slightly

renormalized upward due to its interaction with the singularity. Once the Hubbard U is

present, we see several interesting effects. First, starting with the Fermi energy at the

PHS point in the middle of the band [Figure 33(a)] and then moving to the bottom of

the band [Figure 33(b)], at fixed U and Γ, we see that the noninteracting bound state

acquires a finite width and moves further away from the bottom of the band; in addition,

a discontinuity appears in the impurity DOS at the band edge. Additional structure in

the spectral function appears between this discontinuity and the Kondo peak which, aside

from acquiring some asymmetry, is barely affected. An analysis of the evolution of the

impurity DOS as U decreases, at fixed Γ, from U/Γ = 12 to occupancy of the impurity and

its TK value, show that the system partially recovers its strong coupling regime properties,

i.e., higher occupancy and lower TK , once the presence of the singularity is felt at the

intermediate valence regime. This occurs because of the formation of the bound state.

In addition, the magnetic susceptibility shows that, for Fermi energy near the bottom

of the band and in the intermediate valence regime, the LM fixed point is more resilient,

as the impurity suppresses charge fluctuations. Figure 37(b) shows that the LM plateau

is somewhat restored around the 2
3

× 1
4

value, indicating the influence of the bound state.

This evolution is corroborated by an analysis of the NRG energy flow, shown in Figure

38, as well as the impurity entropy (Figure 39).





Chapter 6

Modeling the Two-Stage Kondo

Regime via NRG

In this chapter, we investigate the behavior of a composite impurity in a metal, which

can explore different configurations where its net magnetic moment may be screened by

the electrons of the host. A particularly interesting case is the two-stage Kondo (TSK)

system, in which the screening process occurs successively at distinct, progressively smaller

energy scales. In contrast, the impurities may prefer a local singlet disconnected from

the metal. This competition is decided by fine-tuning of the couplings in the system, as

has been studied before. A double quantum dot T-shape geometry, where a ‘hanging’ dot

is connected to current leads only via another dot, represents a flexible system in which

these different regimes can be explored experimentally. It has been difficult, however, to

clearly differentiate the two regimes. Here, we provide a prescription to better identify

the regime where the TSK occurs in such double dot geometry. The TSK regime requires

a balance of the ratio t01

Γ0
between the inter-dot coupling (t01) and the coupling of the QD

connected to the Fermi sea (Γ0). Above a certain value of this ratio, the system crosses

over to a molecular regime, where the quantum dots form a local singlet, and no Kondo

screening occurs. Here, we establish that there is a region in the t01 – Γ0 parameter space

where a pure TSK regime occurs, i.e., where the properties of the second Kondo stage can

be accurately described by a single impurity Anderson model with effective/renormalized

parameters. By examining the magnetic susceptibility of the hanging QD, we show that

a single parameter, Γeff , can accurately simulate this susceptibility. This effective model

also provides the hanging QD spectral function with great accuracy in a limited range of

the t01 – Γ0 parameter space, thus defining the region where a true TSK regime occurs.

We also show that in this parameter range, the spin correlations between both quantum

dots show a universal behavior. Our results may guide experimental groups to choose

parameter values that will place the system either in the TSK regime or in the crossover

to the molecular regime.



6.1 Introduction

Point defects in semiconductors—in the form of vacancies, for example—may greatly

affect the electrical conductivity of a host crystal (92). Similarly, magnetic impurities

can qualitatively alter the electrical conductivity of their metallic hosts at low tempera-

tures (19). A vacancy in a semiconductor, being a single-electron problem, does not lead

to qualitatively different properties when a few more vacancies are added. In contrast,

two magnetic impurities in a metallic host may interact with each other, even indirectly,

leading to a completely different ground-state, depending on the ratio of the relevant pa-

rameters (93, 94). The phenomenology of the so-called two-impurity Anderson model (95)

lies at the heart of the current understanding of important classes of compounds, such as

heavy-fermions (96) and Kondo insulators (97).

Research on single-impurity systems received a large boost at the closing of last cen-

tury with the observation of the Kondo effect in QDs (98) and magnetic impurities on

metal surfaces (99). The ability to continuously tune the relevant Kondo-parameters

in lithographically defined QDs opened the doors to detailed studies of the Kondo ef-

fect (100). Subsequently, systems with two QDs were built (101) and, a few years later,

indirect coupling between two QDs was being analyzed (102, 103). In addition, in sys-

tems where there is competition between Kondo screening and other many-body interac-

tions, a quantum phase transition (QPT) may occur, including the existence of non-Fermi

liquid phases (104, 105). This behavior may be experimentally studied in multi-QD

systems (106, 107), in a single QD where there is orbital degeneracy (108), in single-

molecule junctions (109, 110), and, more recently, in coupled hybrid metal–semiconductor

islands (111).

Here, we are interested in revisiting, using the numerical NRG method (112, 113, 114),

one specific double-QD (DQD) arrangement [see Figure 41(a)], where only one of the QDs

(QD0) is connected to the leads, while the other (QD1) is side-connected to QD0, forming a

T-shape or hanging dot geometry. This system has been shown to exhibit the well-known

TSK effect (115, 116, 117, 118, 119, 120, 106, 107, 121, 122, 123, 124, 125, 126, 127, 110),

which may happen in a variety of systems where there is more than one localized magnetic

moment involved, thus creating an interplay between local and itinerant couplings (115,

116).

For the DQD system with T-shape geometry [see Figure 41(a)] in the TSK regime,

QD0 forms a Kondo state with the leads below a characteristic temperature TK0
, while

for T < TK1
� TK0

, QD1 forms a Kondo state with the Fermi liquid resulting from the

first-stage Kondo effect (117). Our goal is to find an effective single-QD system that

will reproduce QD1’s Kondo physics (more specifically, its magnetic susceptibility and

impurity spectral function) when QD1 is in the second stage of the TSK effect. Based

on the well-known universality of the Kondo effect, one expects that the Kondo physics

of QD1 should be identical to that of an effective single impurity Anderson model over





6.2 Model and Hamiltonian

In Figure 41(a), we show the system being analyzed in this work. Quantum dot QD0 is

connected to source and drain leads through hoppings VS and VD, respectively, while QD1

is coupled only to QD0 through a hopping t01. We model this system through a double-

impurity Anderson model, whose Hamiltonian is given by H = HDQD + Hleads + Hhyb,

where the first term (HDQD), describing the DQD, is

HDQD =
∑

iσ

εiniσ +
∑

i

Uini↑ni↓ − t01

∑

σ

(

d†
0σd1σ + H.c.

)

, (88)

where i = 0, 1 labels the QDs, niσ = d†
iσdiσ is the number operator for QDi, thus diσ

annihilates an electron with spin σ =↑, ↓ in QDi, while Ui is the Coulomb repulsion in

QDi and εi is its orbital energy. Finally, t01 is the amplitude for interdot hopping. The

second term (Hleads), describing the source (r = S) and drain (r = D) leads, is given by

Hleads =
∑

~kσr

εr~kσnr~kσ, (89)

where nr~kσ = c†
r~kσ
cr~kσ is the number operator for a state with energy εr~kσ in lead r. The

third term, containing the coupling between QD0 and the leads, is given by

Hhyb =
∑

~kσr

(

Vr~kσd
†
0σcr~kσ + H.c.

)

, (90)

where Vr~kσ is the (spin conserving) hopping from QD0 to lead r = S,D. Taking VS~kσ =

VD~kσ = V0, QD0 couples only to the symmetric combination of both leads, through

hopping V =
√

2V0; then the hybridization between QD0 and the band is given by

Γ0 = πV 2ρ0, where ρ0 is the lead density of states (DOS) at the Fermi energy. For simplic-

ity, we chose to take VS = VD, since, as is well known in Kondo physics, this simplifies the

problem, without introducing any spurious effects (128). We also consider the metallic

host as having a uniform (flat) DOS in the interval −D ≤ ω ≤ D, where D = 1, half of

the bandwidth, is the energy unit. In addition, for simplicity, we consider U0 = U1 = U

and ε0 = ε1 = −U
2

, i.e., that the system is in the particle-hole symmetric (PHS) point.

For most of the calculations, we have used the discretization parameter Λ = 2.0 and kept

at least 5000 states at each iteration. We also employ the z-trick (129) (with z = 0.25,

0.5, 0.75, and 1.0, i.e., Nz = 4) to remove oscillations (artifacts) in the physical quantities

(for examples of its use, see Ref. (130)). The thermodynamic quantities were calculated

using the traditional single-shell approximation, while the dynamical quantities (spectral

function) were calculated using the density matrix NRG approximation (131).





regime (see Ref. (117)).

By choosing a different reference system, we may calculate the contribution of just

QD1 to the susceptibility. Indeed, by subtracting, from the total system susceptibility, the

susceptibility of the Fermi sea plus QD0 (coupled to the Fermi sea by Γ0), we obtain χQD1 ,

the QD1 susceptibility. For the same parameters as in Figure 42(a), TχQD1(T ) is shown

in Figure 42(c). Applying the Wilson criterion, with α1 = 0.07 [horizontal dashed line in

panel (c)], to TχQD1 , we obtain the blue squares in panel (b). The excellent agreement

between the two methods [compare blue squares and red triangles in Figure 42(b)] confirms

that the definition of the susceptibility of QD1 is sound. It is the susceptibility of QD1,

χQD1 , that will be used to asses the validity of a single impurity Anderson model, here

dubbed an effective model, as described in the next section.

6.3.2 The effective model: fixed Γ0 and varying t01

Based on the universality of the Kondo effect, we expect that the Kondo physics of

QD1 should be, at least in some region of the t01 – Γ0 parameter space, identical to that of

an effective SIAM with Ueff = U1, εeff = ε1 = −U2, and with an effective hybridization

Γeff that should depend on t01 and Γ0. Indeed, Figure 43(a) shows the fitting (black

dashed curves) of TχQD1 (solid color curves) for the interval 0.0012 ≤ t01 ≤ 0.0038.

By appropriately adjusting the value of Γeff (which functions as a fitting parameter),

for each different value of t01 (for Γ0 = 0.035), we are able to accurately reproduce the

TχQD1 results (color curves) in Figure 43(a) over a range of t01 values. This is shown

by the dashed black curves in Figure 43(a), which faithfully reproduce the TχQD1 up to

temperatures several orders of magnitude higher than TK1
. As t01 increases [panels (b)

to (d)], the fitting is accurate only up to lower and lower temperatures, since the system

is crossing over to the molecular regime, where the QDs form a local singlet among

themselves, and not even the first Kondo stage occurs. It is interesting to contrast what

happens in panel (a) (TSK regime), around the local moment (LM) fixed point, for QD1

and the effective model [see the inset in panel (b)]: since QD1 is not connected directly to

the Fermi sea, it undergoes very small charge fluctuations, thus its susceptibility is very

close to 1/4 for all t01 values (colored solid curves), while it decreases considerably as Γeff

increases for the effective SIAM (black dashed curves).

Figure 44 presents the Γeff values as a function of t01. It is interesting to see that the

region for smaller values of t01 where one expects the TSK to occur (117), presents an

almost linear dependence of Γeff with t01.

6.3.3 QD1 susceptibility for fixed t01 and varying Γ0

We now analyze χQD1 for varying coupling to the leads Γ0 and a fixed t01 value. To

help interpret these results, one should note that Tχ (if we take a unit value for the























study the singlet/triplet QPT starting from different singlet regimes.





Chapter 7

Conclusion

In this work, we have presented a analysis into the physics of magnetic quantum

impurity systems, focusing on the Kondo effect and how it manifests within host environ-

ments characterized by non-trivial geometries and densities of states, resulting in what we

dubbed as “extreme conditions”, characterized by either extreme particle-hole asymmetry

or energy scales spanning 20 orders of magnitude. For this purpose, we employ the NRG

method, originally developed by Wilson in the 1970s, as a fundamental tool. Our work

explored the competition between strongly correlated physics in one-dimensional (1D)

systems exhibiting spectral singularities and a double quantum dot system arranged in a

T-shape geometry. Here, the competition between local and itinerant interactions deter-

mines two distinct quantum regimes, characterized by either a “local” singlet (molecular

regime) or a sequence of two many-body Kondo singlets (Two Stage Kondo regime). The

former system, when non-interacting (Resonant Level model), presents a bound-state be-

low the bottom of the band, whose spectral weight, when the resonant level is positioned

right at the singularity, is exactly 2/3 , regardless of its coupling to the conduction elec-

trons. On the other hand, a Hubbard interaction causes the bound state to suffer a series

of transformations, including level splitting, transfer of spectral weight, appearance of a

spectral discontinuity, changes in binding energy, and development of a finite width.

Study of Kondo regime dependence of bound-state below the continuum

First, we concentrated on analyzing the properties of a magnetic impurity embedded

in a host environment that exhibits a density of states singularity of the ω−1/2 type at

his bottom, characteristic of 1D quantum wires and graphene nanoribbons. Here, we

present a comparison between the non-interacting Resonant Level model with the inter-

acting Single Impurity Anderson Model, revealing discoveries that expand the traditional

understanding of the Kondo effect to regimes of extreme particle-hole asymmetry. Non-

interacting regimes demonstrated the rise of Dirac δ bound state outside of the continuum.

The position and the spectral weight of this bound state were mapped as a function of the



impurity’s energy proximity to the singularity and the coupling strength. A key finding

is that tuning the impurity resonant level exactly to the energy of the singularity, the

bound-state spectral weight approaches a universal value of Zb = 2/3. This universality

is notable, as it was verified to be independent of the presence of spin-orbit interaction.

When the impurity’s resonant level was placed below the band end, the spectral weight

of the bound state was consistently larger than 2/3 and increased with δ (distance to the

band edge).

The inclusion of the Hubbard U interaction significantly modified the impurity spec-

trum. NRG revealed that the singularity distorts the lower Coulomb blockade peak,

resulting in a complex spectral profile. The non-interacting bound state acquires a finite

width, being shifted to lower energies, and the Hubbard correlation generates a disconti-

nuity in the impurity density of states at the band extremity. By analyzing the impurity

occupancy as a function of both chemical potential and impurity level energy, we were

able to identify the emergence of the re-entrant Kondo regime. Indeed, it was shown

that, as the Fermi energy approaches the singularity at the band bottom, the occupancy

nd increases abruptly, and the system partially recovers the characteristics of the strong-

coupled Kondo regime. This behavior is accompanied by an abrupt drop in TK , which

returns to values characteristic of the single-valence Kondo regime TK , even when the

parameters would suggest an intermediate-valence regime, where TK is typically higher.

The competition between the singularity and correlations seems to suggest that the bound

state forming near the Fermi energy EF could make the local moment somewhat more

stable against charge fluctuations.

Thermodynamic properties confirmed this “resilience” of the local moment fixed point.

The impurity magnetic susceptibility indicates that the plateau associated with the local

moment fixed point remains around 2/3 × 1/4. This pinning of the susceptibility in the

local moment fixed point region is attributed to the influence of the bound state with

spectral weight Zb = 2/3, suggesting that it renders the local moment more resistant to

charge fluctuations. A non-universal finding was the behavior of the impurity entropy,

which exhibited temporarily negative values at low temperatures when the resonant level

was closer to the singularity. This phenomenon is rare but has been observed in Kondo

problems with singularities or discontinuities in the density of states, and here it is more

prominent when the impurity orbital level is closer to the band singularity. The evolution

of the NRG energy flux near the singularity also showed that the local moment plateau is

persistent, compared to the case of EF at the band center, which validates the conclusion

that the system sustains a Kondo state in the vicinity of the singularity.

The findings described above contribute to the understanding of the mechanisms of

local moment formation and screening in strongly correlated systems. The observation of

a fractional local moment and the stabilization of the local moment near the singularity

may contribute to the study of heavy fermions. In practical applications, the results are



important for nanoelectronics and the development of quantum devices based on quantum

dots. We also suggest a viable physical implementation for experimental testing of our

results: the equivalence between the quantum wire singularity and the density of states

of armchair graphene nanoribbons was established, indicating that these semiconductor

materials can serve as controllable hosts for the study of Kondo in one-dimensional hosts.

T-shape Double Quantum Dot: Molecular vs. Two-stage-Kondo regimes

We then turned our attention to the Two-Stage Kondo effect (TSK) in a double quan-

tum dot system in a T-shaped geometry. The TSK is required to understand the compe-

tition between a Kondo singlet and a “molecular” singlet. This establishes a criterion for

delimiting a “pure” TSK regime. We demonstrated that this regime occurs in a restricted

sector of the parameter space t01 − Γ0 (inter-dot coupling and hybridization of the QD

connected to the leads), in which the physics of the second Kondo stage can be described

with high accuracy by an effective Single Impurity Anderson model. Fitting the magnetic

susceptibility of QD1 revealed that the effective hybridization is the only necessary fit-

ting parameter, which exhibits a nearly linear dependence on t01 for small values of the

effective coupling.

The analysis of QD1 spectral weight revealed the need for an even more strict criterion

to determine the real TSK regime. The comparison between the QD1 spectral function

and the effective model spectral function showed that the excellent agreement diminished

for higher values of t01, especially for the Kondo peak. This suggests that the upper limit

for the region of interest is more restricted than inferred from the χQD1 results alone.

The investigation of inter-QD spin correlations in the ground state complemented this

delimitation, revealing three regions: TSK, enhanced crossing below TK0
, and molecular

(trending toward the full singlet value −3/4). The TSK regime limit was quantitatively

defined by the contour line 〈~S0·~S1〉 = −0.027 in the parameter space t01−Γ0. Additionally,

it was shown that in this specific phase, the 〈~S0 · ~S1〉 versus Γ0 curves exhibit universal

curve collapse when rescaled.

The TSK effect is a prototypical system for the study of multiple competing quantum

moments. The parameter map and the 〈~S0 · ~S1〉 criterion provide experimenters with

an exact prescription for tuning T-shape DQD devices in the TSK or crossover regimes.

In DQD systems, understanding of the TSK could be seen as significant for directing

experiments toward tuning T-shaped geometries, specifically with the goal of reaching

the pure TSK regime.

In summary, we believe this work achieves its goals by mapping and characterizing

strong correlation regimes in quantum impurity systems under different host environments

through the use of the NRG method.
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