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Resumo

Este trabalho tem como objetivo investigar e aplicar conceitos de Álgebra Computacional

com ênfase na teoria de grupos simétricos, utilizando o sistema algébrico computacional

GAP (Groups, Algorithms, Programming). Por meio dessa ferramenta, estudam-se estru-

turas algébricas e algoritmos capazes de representar e manipular grupos de permutação,

com foco na modelagem e resolução de problemas de natureza simétrica, como o Cubo

Mágico. Inicialmente, são apresentados os fundamentos teóricos da teoria de grupos, in-

cluindo definições, propriedades, e resultados essenciais sobre subgrupos, homomorfismos,

ações e blocos. Em seguida, são explorados aspectos computacionais do GAP e de alguns

de seus algoritmos internos. A partir disso, é proposta uma modelagem do Cubo Mágico

em termos de grupos de permutação, evidenciando como operações algébricas podem des-

crever as possíveis configurações do cubo e suas transformações. Conclui-se que o uso de

ferramentas computacionais como GAP unidas de fundamentos matemáticos resultam no

desenvolvimento de algoritmos inteligentes.

Palavras-chave: Álgebra Computacional, Teoria dos Grupos, Grupos Simétricos, GAP,

Cubo Mágico.
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1 Introdução

A Álgebra Computacional é uma área da matemática que integra conceitos da

álgebra e da computação para realizar a manipulação simbólica de expressões matemá-

ticas, desempenhando um papel fundamental nas áreas de matemática aplicada, ciências

da computação e engenharia, possibilitando a resolução de problemas complexos que en-

volvem estruturas algébricas, como os grupos de permutação. Esses grupos, também cha-

mados de grupos simétricos, são estruturas algébricas fundamentais na teoria dos grupos,

representando as simetrias de um conjunto finito, o grupo simétrico Sn consiste em to-

das as permutações possíveis de n elementos, totalizando n! permutações. O estudo das

propriedades, regras e teoremas dessas estruturas, aliado à sua aplicação na computação,

pode levar a soluções mais otimizadas e eficientes para problemas complexos.

O estudo de estruturas algébricas como os grupos simétricos é bem relevante para

otimizar e desenvolver algoritmos de sistemas ligados à criptografia, como a criptografia

de curvas elípticas, e para simplificar a análise e solução de problemas de decidibilidade de

autômatos na teoria de computação. Nesse contexto, estruturas algébricas estão presentes

em diversas áreas da computação, e seu estudo contribui para aprimorar o funcionamento

de algoritmos fundamentais para diversos sistemas.

Nos últimos 40 anos foram publicados diversos trabalhos e artigos sobre teoria de

grupos em especial a de grupos simétricos, no artigo de Seress (SERESS, 1997) ele diz

que grupos de permutação é a área da teoria de grupos computacional onde a análise

da complexidade dos algoritmos está mais avançada. Além disso, Seress publicou um

livro (SERESS, 2003) com mais conceitos e algortimos fortemente ligados a grupos de

permutação. Um trabalho mais recente publicado por Romero (ROMERO, 2018) também

utiliza de conceitos da teoria de grupos computacional e do algoritmo SCHREIER-SIMS

para otimizar e desenvolver algoritmos que trabalhem com homomorfismo de grupos e

encontrem elementos de um grupo mediante pesquisas backtrack.

Os objetivos principais deste trabalho englobam o estudo de estruturas algébricas,

em especial a de grupos simétricos, para otimizar e desenvolver algoritmos que tenham a

capacidade de resolver problemas com características simétricas.

Durante o desenvolvimento desse trabalho, foram utilizadas ferramentas disponí-

veis no GAP (The GAP Group, 2024b), que é um sistema open source com linguagem

própria de álgebra discreta computacional com ênfase particular na teoria computacional

de grupos, que providencia uma biblioteca com milhares de funções que implementam

algoritmos algébricos escritos na linguagem do GAP.

Esse trabalho foi realizado seguindo a seguinte metodologia: a primeira e segunda
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etapas do projeto consistuiram na condução de uma pesquisa abrangente de conceitos

matemáticos e algorítmicos, respectivamente. Estas etapas são essenciais para estabele-

cer uma base teórica sólida e para identificar trabalhos relacionados que servirão como

referência. Através dessa investigação, foram reunidos conceitos matemáticos, funções e

algoritmos que podem ser implementados no GAP que foram cruciais para o desenvolvi-

mento de soluções mais otimizadas e eficientes para problemas complexos que envolvem

álgebra computacional e teoria de grupos computacionais.

Dentro da fase de pesquisa da fundamentação matemática, foram conduzidos diver-

sos estudos específicos para destacar os principais tópicos relacionados à teoria de grupos

computacionais com ênfase em grupos simétricos, tais como definições e principais formas

de representação de grupos simétricos, para melhor compreensão do leitor no decorrer do

trabalho.

Na segunda parte do projeto, além da fundamentação matemática, foram reali-

zados estudos de funções e algoritmos do GAP que utilizem dos conceitos estudados no

desenvolvimento da fundamentação matemática anterior.

A parte final do projeto envolveu a implementação prática daquilo que foi conce-

bido nas fases iniciais da monografia. Com base nos conceitos matemáticos e algoritmos

do GAP estudados anteriormente, foi possível desenvolver soluções mais otimizadas e

eficientes para problemas com cunho matemático que envolvem álgebra computacional e

teoria de grupos computacionais, como por exemplo a resolução de um cubo mágico.
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2 Fundamentação Teórica

Neste capítulo, será apresentado os principais conceitos matemáticos para a mo-

delagem algébrica e análise do Cubo Mágico. Serão introduzidas as bases da teoria dos

grupos, homomorfismos, grupos cíclicos e grupos de permutação, que permitirão represen-

tar os movimentos do cubo. Além disso, abordaremos ações de grupos, órbitas e blocos,

que serão ferramentas importantes para analisar como essas permutações atuam sobre as

peças do cubo. Ademais, discutiremos a noção de grupo livre, fundamental para descrever

sequências de movimentos por meio de geradores associados às faces do cubo. Por fim,

serão apresentadas as principais funções do GAP, que reúnem todos os conceitos descritos

anteriormente, para realizarmos a análise e o desenvolvimento do algoritmo que resolve o

cubo.

2.1 Grupos

A teoria de grupos computacionais, que é a utilização de conceitos de estruturas

algébricas como grupos no desenvolvimento de novos algoritmos, é uma área de pes-

quisa bastante ativa, como pode ser visto pelo livro publicado pelo matemático húngaro

Ákos Seress (SERESS, 2003), onde desenvolveu algoritmos fortemente ligados a grupos

de permutação. Além disso, ao longo da última década, os trabalhos de Alexander Hulpke

(HULPKE, 2016) com ênfase especial em grupos de permutação dentro da teoria de grupos

computacionais, têm contribuído significativamente para essa área.

A seguir na fundamentação teórica do trabalho, serão repassados definições, pro-

posições e teoremas que serão de grande importância para aprofundar o entendimento dos

conceitos e motivações por trás dos métodos de resolução de problemas a serem investi-

gados no decorrer do trabalho.

Grande parte do estudo realizado nesta seção foi retirada de (IEZZI, 2003), que

apresenta de forma detalhada os conceitos e resultados matemáticos utilizados. Também

utilizamos (HERSTEIN, 1975) e (HUNGERFORD, 1980).

Definição 2.1.1 (Grupo). Um grupo é um par (G, ·), onde G é um conjunto não vazio

e ” · ” : G × G → G, (x, y) ∈ G ↦→ x · y ∈ G, é uma operação binária que satisfaz as

seguintes propriedades:

1. Associatividade: Para todos a, b, c ∈ G, temos (a · b) · c = a · (b · c);

2. Elemento neutro: Existe e ∈ G tal que, para todo a ∈ G, vale a · e = e · a = a;

3. Elemento inverso: Para cada a ∈ G, existe a−1 ∈ G tal que a · a−1 = a−1 · a = e.
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Exemplo 2.1.1. O conjunto dos inteiros Z com a operação de adição forma um grupo.

O elemento neutro é 0 e o inverso de n ∈ Z é −n.

Exemplo 2.1.2. O conjunto dos racionais Q* = Q−{0} com a operação de multiplicação

forma um grupo. O elemento neutro é 1 e o inverso de r ∈ Q* é 1
r
.

Exemplo 2.1.3. Sejam Ω um conjunto não vazio e Sym(Ω) = {f : Ω → Ω; f é uma

função bijetora}. Temos que Sym(Ω) é um grupo com a operação composição de funções.

De fato, (f ∘ g) ∘ h = f ∘ (g ∘ h) para todas as funções f, g, h ∈ Sym(Ω), a função

x ∈ Ω ↦−→ x ∈ Ω é elemento neutro e, se f é bijetora, então existe sua função inversa

f−1, que também é bijetora. Se Ω é um conjunto finito com n elementos, Sym(Ω) é um

grupo finito com n! elementos.

Exemplo 2.1.4. Como caso particular do Exemplo 2.1.3, consideramos Ω = {1, 2, 3} e

denotaremos Sym(Ω) = S3. O grupo S3 é um grupo de permutações com 6 elementos.

Um grupo (G, ·) também possui as seguintes propriedades:

• Unicidade do elemento neutro e ∈ G;

• Unicidade do inverso a−1, ∀a ∈ G;

• e−1 = e;

• (a−1)−1 = a, ∀a ∈ G;

• (a · b)−1 = b−1 · a−1;

• Todo elemento de G é regular para a operação ·, ou seja, para quaisquer a, x, y ∈ G,

se a · x = a · y ou x · a = y · a, então x = y.

Para simplificar a notação, escreveremos apenas G para um grupo (G, ·) e ab para

a · b, com a, b ∈ G.

2.2 Subgrupos

Para ilustrar a ideia de subgrupo, consideremos o grupo (R, +). O conjunto dos

inteiros Z é um subconjunto de R que satisfaz duas propriedades essenciais:

1. Z é fechado em relação à adição, isto é, a soma de quaisquer dois números inteiros

ainda é um número inteiro;

2. (Z, +), com a operação de adição induzida por (R, +), também é um grupo, como

vimos no Exemplo 2.1.1.
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Por isso, dizemos que (Z,+) é um subgrupo de (R, +). De maneira similar, o conjunto dos

números racionais (Q, +) também é um subgrupo de (R, +).

Definição 2.2.1. Seja (G, ·) um grupo. Um subconjunto não vazio H ⊆ G é um subgrupo

de G se, com a operação induzida por G, (H, ·) também é um grupo.

Se e é o elemento neutro de G, então {e} e o próprio G são subgrupos de G. Esses

são chamados de subgrupos triviais.

Proposição 2.2.1. Seja (G, ·) um grupo. Um subconjunto não vazio H ⊆ G é um sub-

grupo de G se, e somente se, para quaisquer a, b ∈ H, o elemento ab−1 também pertence

a H, onde b−1 é o inverso de b em G.

Demonstração. Suponha que H seja um subgrupo de G. Seja e o elemento neutro de G

e eH o elemento neutro de H. Como todo elemento é regular em relação a ·, segue que

e = eH . Para b ∈ H, sejam b−1 e b−1
H os inversos de b em G e H, respectivamente. Como

b · b−1 = e = b · b−1
H , temos b−1 = b−1

H . Finalmente, para a, b ∈ H, como (H, ·) é um grupo,

a · b ∈ H e a · b−1 ∈ H.

Reciprocamente, suponha que ab−1 ∈ H, para todos a, b ∈ H. Como H não é vazio,

existe x0 ∈ H. Então, e = x0x
−1
0 ∈ H e x−1

0 = ex−1
0 ∈ H, logo H possui elemento

neutro e todo elemento de H possui inverso em H. Se a, b ∈ H, então b−1 ∈ H e assim

ab = a(b−1)−1 ∈ H, o que implica que H é fechado para operação de G. Associatividade

em H segue diretamente da de G, pois a(bc) = (ab)c para todos a, b, c ∈ G.

Exemplo 2.2.1. Considere o conjunto

H = {x ∈ R* | x > 0},

isto é, o conjunto dos números reais estritamente positivos. Verifiquemos que H é um

subgrupo de (R*, ·), o grupo multiplicativo dos números reais diferentes de zero.

Sejam a, b ∈ H, então a > 0 e b > 0. Como b > 0, temos que b−1 > 0, pois o

inverso multiplicativo de um número positivo também é positivo. Consequentemente,

ab−1 > 0,

ou seja, a·b−1 ∈ H. Portanto, H é fechado para a operação considerada e, assim, constitui

um subgrupo de (R*, ·).

Sejam G um grupo e H um subgrupo de G. Para a, b ∈ G, defina a ∼ b se a−1b ∈

H. É sabido que “∼” é uma relação de equivalência.

Proposição 2.2.2. Nessas condições, se a ∈ G, a classe de equivalência de a é o conjunto

aH = {ah | h ∈ H}.
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Demonstração. Seja

[a] = {x ∈ G | x ∼ a}

a classe de equivalência de a. Vamos mostrar que [a] = aH. Se x ∈ [a], tem-se a−1x =

h ∈ H, e portanto x = ah ∈ aH. Logo [a] ⊂ aH.

Reciprocamente, se x = ah ∈ aH h ∈ H, temos a−1x = h ∈ H e assim a ∼ x. Logo

x ∈ [a] e, assim, aH ⊆ [a]. Portanto [a] = aH.

Definição 2.2.2. Seja H um subgrupo de um grupo G. Para um elemento a ∈ G,

denomina-se classe lateral à esquerda de a módulo H o conjunto

aH = {ah | h ∈ H}.

Analogamente, a classe lateral à direita de a módulo H é o conjunto

Ha = {ha | h ∈ H}.

Definição 2.2.3. Seja G um grupo. Um subgrupo N de G é dito um subgrupo normal de

G se, para todo g ∈ G e n ∈ N , tem-se

gng−1 ∈ N.

Lema 2.2.1. Um subgrupo N de G é normal em G se, e somente se, gNg−1 = N para

todo g ∈ G.

Demonstração. Se gNg−1 = N para todo g ∈ G, certamente gNg−1 ⊂ N , de modo que

N é normal em G. Reciprocamente, suponha que N é normal em G. Se g ∈ G, tem-se

gNg−1 ⊂ N e

g−1Ng = g−1N(g−1)−1 ⊂ N.

Como g−1Ng ⊂ N , então

N = g(g−1Ng)g−1 ⊂ gNg−1 ⊂ N,

donde N = gNg−1.

Lema 2.2.2. Um subgrupo N de G é normal em G se, e somente se, toda classe lateral

à esquerda de N em G é também uma classe lateral à direita de N em G.

Demonstração. A demonstração deste lema encontra-se em (HERSTEIN, 1975).

Lema 2.2.3. Um subgrupo N de G é normal em G se, e somente se, o produto de duas

classes laterais à esquerda de N em G é novamente uma classe lateral à esquerda de N

em G.
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Demonstração. Suponha que N seja um subgrupo normal de G e sejam aN , bN duas

classes laterais. Então:

(aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = abN.

Logo, o produto (aN)(bN) é uma classe lateral de N . Reciprocamente, suponha que

(aN)(bN) = xN . Como ab = ae · be ∈ (aN)(bN) = xN , temos que xN = abN e

(aN)(bN) = abN, para todos a, b ∈ G.

Fazendo a = e, obtemos NbN = bN , e assim Nb = bN para todo b ∈ G. Logo, N

é um subgrupo normal de G.

Definição 2.2.4. Seja G um grupo e N um subgrupo normal de G. Chamamos de grupo

quociente o conjunto das classes laterais de N em G, denotado por

G/N = { aN | a ∈ G }.

A operação em G/N é definida por

(aN)(bN) = (ab)N, para todos a, b ∈ G.

Esse conjunto, munido dessa operação, forma um grupo, cuja identidade é N = eN e o

inverso de aN é a−1N .

2.3 Homomorfismos de Grupos

A noção de homomorfismo surge como uma forma de relacionar diferentes grupos.

A ideia central é que a estrutura algébrica de um grupo G possa ser transportada para

outro grupo H por meio de uma aplicação que respeite a operação dos grupos. Em outras

palavras, não é a igualdade de elementos que importa, mas sim a compatibilidade entre

as operações.

Definição 2.3.1. Sejam (G, *) e (H, ·). Uma aplicação

f : G −→ H

é um homomorfismo de grupos se, para quaisquer elementos x, y ∈ G, vale

f(x * y) = f(x) · f(y). (1)

Para facilitar a notação, escreveremos (1) como f(xy) = f(x)f(y) sem fazer dife-

renciação entre as operações dos grupos G e H.

Definição 2.3.2. Um homomorfismo de grupos f : G −→ H bijetor é chamado isomor-

fismo de grupos.
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Exemplo 2.3.1. Considere a aplicação

f : Z −→ Zn, f(k) = k,

onde k denota a classe de equivalência de k módulo n.

Para quaisquer a, b ∈ Z, temos

f(a + b) = a + b = a + b = f(a) + f(b).

Portanto, f é um homomorfismo de grupos de (Z, +) em (Zn, +).

Exemplo 2.3.2. Para a ∈ Z um número fixo, definimos a aplicação

f : Z −→ Z, f(m) = a · m.

Para quaisquer m, n ∈ Z, temos

f(m + n) = a(m + n) = am + an = f(m) + f(n),

logo, f é um homorfismo de grupos.

Proposição 2.3.1. Sejam G e J grupos multiplicativos, com elementos neutros denotados

por e e u, respectivamente. Considere ainda um homomorfismo de grupos f : G → J .

Então, f(e) = u.

Demonstração. Observe que f(e)f(e) = f(ee) = f(e) = uf(e). Assim, segue f(e) = u.

Proposição 2.3.2. Sejam a ∈ G e f : G −→ H um homomorfismo de grupos. Então,

f(a−1) = f(a)−1.

Demonstração. De fato, f(a)f(a−1) = f(aa−1) = f(e) = u. Logo, f(a−1) = f(a)−1.

Definição 2.3.3. Seja f : G → H um homomorfismo de grupos. Definimos núcleo de f

o subconjunto

ker(f) = { x ∈ G | f(x) = eH }.

Proposição 2.3.3. Seja H um subgrupo de G e f : G → J um homomorfismo de grupos.

Então a imagem de H através de f , definida por

f(H) = {f(x) | x ∈ H},

é um subgrupo de J .
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Demonstração. Primeiro, como H é um subgrupo de G, temos que e ∈ H, onde e é o

elemento neutro de G. Pelo homomorfismo, f(e) = u, que é o neutro de J . Portanto,

u ∈ f(H), garantindo que f(H) contém o elemento neutro.

Agora, seja c, d ∈ f(H). Então existem a, b ∈ H tais que c = f(a) e d = f(b).

Consideremos o produto

cd−1 = f(a)f(b)−1.

Pela Proposição 2.3.2, f(b−1) = f(b)−1, então

cd−1 = f(a)f(b−1) = f(ab−1).

Como H é um subgrupo, ab−1 ∈ H. Portanto,

cd−1 = f(ab−1) ∈ f(H),

o que mostra que f(H) é um subgrupo de J .

Observação 2.3.1. Seja f : G → H um homomorfismo de grupos com ker(f) = K.

Temos que K é um subgrupo de G e, para g ∈ G, consideremos a classe lateral à esquerda

g módulo K, gK. Se g1, g2 ∈ G temos que g1K = g2K se, e somente se, f(g1) = f(g2).

De fato, como classes laterais são classes de equivalências, g1K = g2K se, e somente se,

g1 = g2k, para algum k ∈ K, donde f(g1) = f(g2k) = f(g2)f(k) = f(g2)eH = f(g2).

Portanto, para qualquer g ∈ G, os elementos da classe lateral gK têm a mesma imagem

f(g) em H.

Proposição 2.3.4. Sejam f : G → H um homomorfismo de grupos e N um subgrupo

normal de G. Definimos a aplicação µ : G → G/N por

µ(a) = aN.

Então, µ é um homomorfismo sobrejetor de grupos, cujo núcleo é exatamente N . O ho-

momorfismo µ é chamado homomorfismo canônico de G sobre G/N .

Demonstração. Para a, b ∈ G, temos

µ(ab) = (ab)N = (aN)(bN) = µ(a)µ(b),

portanto, µ é de fato um homomorfismo.

Seja y ∈ G/N . Então y = aN para algum a ∈ G. Como µ(a) = aN = y, segue que

µ é sobrejetora. Finalmente, provemos que ker(µ) = N .

O elemento identidade em G/N é a classe N . Se a ∈ ker(µ), então µ(a) = aN = N ,

o que implica a ∈ N . Logo, ker(µ) ⊆ N . Por outro lado, se a ∈ N , então aN = N , e

portanto µ(a) = N , ou seja, a ∈ ker(µ). Assim, concluímos que

ker(µ) = N.
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Proposição 2.3.5. Seja f : G → H um homomorfismo de grupos. Então o núcleo de f ,

é um subgrupo normal de G.

Demonstração. Temos que N = ker(f) é um subgrupo de G pela Proposição 2.3.2. Resta

verificar que N é normal. Para isso, provemos que para todo a ∈ G, vale a igualdade

aN = Na.

Se x ∈ aN , então x = ah, para algum h ∈ N . Podemos escrever

x = ah = (aha−1)a.

Como f(h) = eH , segue que

f(aha−1) = f(a)f(h)f(a−1) = f(a)eHf(a)−1 = eH .

Portanto, aha−1 ∈ N , e consequentemente x ∈ Na. Assim, temos aN ⊂ Na. Analoga-

mente, temos que Na ⊂ aN .

Portanto, aN = Na para todo a ∈ G, o que prova que N é um subgrupo normal

de G.

Proposição 2.3.6 (Teorema do Homomorfismo). Seja f : G → H um homomorfismo

sobrejetor de grupos. Se N = ker(f), então o grupo quociente G/N é isomorfo a H.

Demonstração. Nosso objetivo é construir um isomorfismo explícito entre G/N e H.

Note que os elementos de G/N são classes laterais da forma aN , com a ∈ G,

enquanto os elementos de H são as imagens f(a), para a ∈ G. Isso sugere considerar a

aplicação

ϕ : G/N −→ H, ϕ(aN) = f(a).

Se aN = bN , então b−1a ∈ N = ker(f), o que implica f(b−1a) = eH . Portanto,

f(b−1a) = f(b−1)f(a) = f(b)−1f(a) = eH , logo f(a) = f(b).

Assim, a função ϕ(aN) = f(a) é bem definida.

Suponha que ϕ(aN) = ϕ(bN), isto é, f(a) = f(b), com a, b ∈ G. Então

eH = f(b−1)f(a) = f(b−1a),

o que mostra que b−1a ∈ N e, portanto, aN = bN . Logo, ϕ é injetora.

Como f é sobrejetor por hipótese, para todo y ∈ H existe a ∈ G tal que y = f(a).

Nesse caso, se x = aN ∈ G/N , ϕ(x) = ϕ(aN) = f(a) = y. Logo, ϕ é sobrejetora.

Sejam aN, bN ∈ G/N . Então

ϕ
(

(aN)(bN)
)

= ϕ
(

(ab)N
)

= f(ab) = f(a)f(b) = ϕ(aN)ϕ(bN).
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Portanto, ϕ é um homomorfismo de grupos.

Concluímos que ϕ : G/N → H é um isomorfismo de grupos.

2.4 Grupos Cíclicos

Definição 2.4.1. Seja G um grupo multiplicativo e a ∈ G. Seja n ∈ Z, definimos an por

recorrência como:

an =































e, se n = 0,

an−1 a, se n > 0,

(

a−1
)

−n
, se n < 0.

Sabendo que para quaisquer m, n ∈ Z, vale aman = am+n, definimos o subconjunto

gerado por a como

[a] = {am | m ∈ Z},

isto é, o conjunto de todas as potências inteiras de a. Sabemos que [a] nunca é vazio, pois

contém o elemento neutro e de G, já que e = a0.

Proposição 2.4.1. Seja G um grupo multiplicativo e a ∈ G.

(i) O subconjunto [a] é um subgrupo de G.

(ii) Se H é um subgrupo de G tal que a ∈ H, então [a] ⊆ H.

Demonstração. (i) Sabendo que [a] nunca é vazio já que e = a0. Sejam u, v ∈ [a], com

u = am e v = an para alguns m, n ∈ Z. Então

uv−1 = am(an)−1 = ama−n = am−n ∈ [a].

Portanto, [a] é um subgrupo de G.

(ii) Como H é subgrupo e a ∈ H, podemos concluir que todas as potências inteiras

de a também pertencem a H. Logo, [a] ⊆ H.

Definição 2.4.2. Um grupo multiplicativo G é chamado de grupo cíclico se existe algum

elemento a ∈ G tal que

G = [a] = {am | m ∈ Z}.

Nesse caso, o elemento a é denominado gerador do grupo G.

Definição 2.4.3. Seja n ∈ Z, definimos a notação aditiva de grupos cíclicos como:
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na =































0, se n = 0,

a + (n − 1)a, se n > 0,

−n(−a), se n < 0.

Exemplo 2.4.1. O grupo aditivo (Z, +) é um grupo cíclico. Isso ocorre porque qualquer

inteiro pode ser expresso como múltiplo de 1 ou de −1.

Temos

Z = {m · 1 | m ∈ Z} = {m · (−1) | m ∈ Z}.

Portanto,

Z = [1] = [−1],

e os elementos 1 e −1 são os únicos geradores do grupo Z.

Proposição 2.4.2. Todo subgrupo de um grupo cíclico é cíclico.

Demonstração. Seja G = [a] um grupo cíclico multiplicativo com elemento neutro e, e seja

H um subgrupo de G. Então cada elemento de H pode ser escrito como uma potência de

a, ou seja, x = an para algum n ∈ Z.

Se H = {e}, então H é cíclico, gerado pelo próprio e.

Caso contrário, H contém algum elemento de potência não nula. Como para cada

m ∈ Z, a−m ∈ H sempre que am ∈ H, podemos considerar apenas os expoentes positivos.

Seja h o menor inteiro positivo tal que ah ∈ H. Seja b = ah, será mostrado que H = [b].

Tomemos um elemento genérico x = an ∈ H. Pelo algoritmo euclidiano, existem

inteiros q e r com 0 ≤ r < h tais que

n = hq + r.

Logo,

x = an = ahq+r = (ah)qar = bqar.

Como bq ∈ H e x ∈ H, o elemento ar = (bq)−1x também pertence a H. Pela

escolha de h como menor expoente positivo em H, devemos ter r = 0. Assim,

x = bq ∈ [b].

Portanto, H ⊆ [b]. A inclusão oposta é imediata, pois qualquer potência de b

pertence a H. Concluímos que

H = [b],

mostrando que H é cíclico.
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Proposição 2.4.3. Seja G = [a] um grupo cíclico e suponha que existam inteiros distintos

r e s tais que

ar = as.

Então existe um inteiro positivo h > 0 tal que:

1. ah = e;

2. ar ̸= e para todo inteiro r com 0 < r < h.

Neste caso, h é chamado de ordem de a, e o grupo pode ser escrito como

G = [a] = {e, a, a2, . . . , ah−1}.

Demonstração. Sem perda de generalidade, suponha r > s. Então

ar(as)−1 = ar−s = e.

Portanto, existem potências positivas de a que resultam no elemento neutro e. Seja h o

menor inteiro positivo com ah = e.

A partir desse ponto, as potências de a se repetem ciclicamente:

ah+1 = ah · a = e · a = a, ah+2 = ah · a2 = a2, . . .

Precisamos verificar que não existem repetições antes de h. Suponha, por absurdo,

que ai = aj com 0 ≤ i < j < h. Então

aj−i = aj(ai)−1 = e,

com 0 < j − i < h, o que contradiz a escolha de h como o menor inteiro positivo para o

qual ah = e.

Agora, considere um elemento arbitrário x ∈ G. Por definição, existe um inteiro

m tal que x = am. Pelo algoritmo da divisão, existem inteiros q e r com 0 ≤ r < h tal que

m = hq + r.

Assim,

x = am = ahq+r = (ah)qar = eqar = ar,

com 0 ≤ r < h. Portanto, qualquer elemento de G é uma das potências

e = a0, a, a2, . . . , ah−1.

Consequentemente, G = {e, a, a2, . . . , ah−1} e a ordem do grupo é h.
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Definição 2.4.4. A ordem de um elemento a em um grupo G é o menor inteiro positivo

h tal que

ah = e.

Se G é cíclico, a ordem do gerador a coincide com o número de elementos de G.

Exemplo 2.4.2. Um grupo cíclico de ordem h = 5 pode ser observado da seguinte ma-

neira:

e

a

a2a3

ah−1

·a

·a

·a

·a

·a

Proposição 2.4.4. Seja a um elemento de ordem h > 0 em um grupo G. Então, para

qualquer inteiro m,

am = e se e somente se h | m.

Demonstração. Suponha que am = e. Pelo algoritmo euclidiano, existem inteiros q e r

com 0 ≤ r < h tais que

m = hq + r.

Então

e = am = ahq+r = (ah)qar = eqar = ar.

Como am = e, segue que ar = e. Pela definição de ordem de a, o menor inteiro positivo h

satisfaz ah = e, portanto não pode existir r > 0 tal que ar = e. Logo, r = 0 e m = hq, ou

seja, h | m.

Se h | m, então existe q ∈ Z tal que m = hq. Logo,

am = ahq = (ah)q = eq = e.
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2.5 Grupos Simétricos

Os grupos simétricos, também chamados de grupos de permutação, são estruturas

algébricas fundamentais na teoria dos grupos, representando as simetrias de um conjunto

finito.

A teoria de grupos simétricos tem origem na segunda metade do século XVIII,

com trabalhos de matemáticos como Joseph-Louis Lagrange, que estabeleceu a noção de

permutações em um grupo. No entanto, os avanços conceituais mais importantes chega-

ram em meados do século XIX com Évariste Galois, onde desenvolveu a teoria dos grupos

para resolver problemas de solvabilidade de equações polinomiais. Os grupos simétricos

surgiram como uma maneira natural de estudar as permutações de raízes de polinômios,

permitindo a análise da estrutura dos grupos de permutações, dando espaço posterior-

mente para o desenvolvimento da teoria de grupos computacionais.

Esse trabalho terá ênfase em resolver problemas que envolvem o uso e manipulação

de grupos simétricos, cuja análise será aprofundada no decorrer do trabalho.

Definição 2.5.1. Sejam a1, a2, . . . , ar ∈ In = {1, 2, . . . , n} elementos distintos. Dizemos

que uma permutação σ ∈ Sn é um ciclo de comprimento r se:

σ(a1) = a2, σ(a2) = a3, . . . , σ(ar−1) = ar, σ(ar) = a1,

e, além disso,

σ(x) = x para todo x ∈ In ∖ {a1, a2, . . . , ar}.

O conjunto {a1, a2, . . . , ar} é chamado de suporte do ciclo.

A notação utilizada para representar essa permutação é:

σ = (a1 a2 . . . ar).

No caso particular em que r = 2, o ciclo é chamado de transposição.

Exemplo 2.5.1. Considere a permutação σ ∈ S5 definida por:

σ =





1 2 3 4 5

3 2 5 4 1



 .

Verificamos que:

σ(1) = 3, σ(3) = 5, σ(5) = 1,

enquanto σ(2) = 2 e σ(4) = 4. Portanto, σ é um ciclo de comprimento 3 cujo suporte é

{1, 3, 5}, e pode ser escrito em notação cíclica como:

σ = (1 3 5).
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Proposição 2.5.1. Seja σ = (a1 a2 . . . ar) ∈ Sn um ciclo de comprimento r > 1. Então,

a ordem de σ é r. Em particular, se e denota a permutação identidade de Sn, então

⟨σ⟩ = {e, σ, σ2, . . . , σr−1}.

Demonstração. Pela definição de ciclo, temos que σi−1(a1) = ai para 1 ≤ i ≤ r, e σr(a1) =

a1, enquanto que σ(x) = x para todo x fora do suporte {a1, . . . , ar}. Assim, σi(a1) = ai+1

para 1 ≤ i < r, de modo que σi ̸= e quando 1 ≤ i < r, dessa forma, r ≤ o(σ). Além

disso, se considerarmos i tal que 1 ≤ i ≤ r, logo σr(ai) = σr(σi−1(a1)) = σi−1(σr(a1)) =

σr(a1) = ai e, de forma análoga, σr(ai) = ai para todo 1 ≤ i ≤ r, além de fixar todos os

outros elementos. Logo, σr = e. Portanto, a ordem de σ é r.

Definição 2.5.2. Dois ciclos de Sn são chamados disjuntos se seus suportes não possuem

elementos em comum.

Proposição 2.5.2. Dois ciclos disjuntos comutam, isto é, se σ e µ são ciclos disjuntos,

então σµ = µσ.

Demonstração. Sejam α e β ciclos disjuntos de Sn, com suportes A e B, respectivamente.

Se x ∈ A, então (α∘β)(x) = α(β(x)) = α(x), pois β fixa x. Do mesmo modo, (β ∘α)(x) =

β(α(x)) = α(x). Portanto, (α ∘ β)(x) = (β ∘ α)(x) em A. Se x ∈ B, a demonstração é

análoga. Se x /∈ A ∪ B, temos α(x) = x e β(x) = x, logo (α ∘ β)(x) = (β ∘ α)(x) = x.

Assim, α ∘ β = β ∘ α.

Proposição 2.5.3. Seja σ ∈ Sn, σ ̸= e. Então σ pode ser escrito como produto de ciclos

disjuntos. Além disso, a decomposição é única a menor da ordem dos fatores.

Demonstração. Seja σ ∈ Sn com σ ̸= e. Para iniciar, tomemos o elemento 1 ∈ In =

{1, 2, . . . , n} e consideremos a sequência obtida aplicando iteradamente σ:

1, σ(1), σ2(1), σ3(1), . . .

Existe o menor inteiro r > 0 tal que σr(1) = 1. Dessa forma, os elementos

1, σ(1), σ2(1), . . . , σr−1(1)

são todos distintos, o que nos fornece o ciclo

σ1 = (1 σ(1) σ2(1) . . . σr−1(1)),

Agora, escolhemos o menor elemento a ∈ In que não pertence ao suporte de σ1 e satisfaz

σ(a) ̸= a. Aplicando o mesmo raciocínio à sequência

a, σ(a), σ2(a), σ3(a), . . . ,
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obtemos outro ciclo, que chamaremos σ2, também correspondente à restrição de σ ao seu

suporte.

Mostremos que σ1 e σ2 não compartilham elementos. Suponhamos que b perten-

cesse simultaneamente ao suporte de ambos. Então, teríamos b = σt(1) = σs(a) para

certos inteiros t, s ≥ 0. Isso implicaria que a estaria no suporte de σ1, contrariando a

escolha de a. Logo, σ1 e σ2 são disjuntos.

Repetindo o processo, após um número finito de passos, obtemos ciclos σ1, σ2, . . . , σm,

todos disjuntos. Como a composição σ1σ2 · · · σm atua da mesma forma que σ sobre todos

os elementos de In, concluímos que

σ = σ1σ2 · · · σm.

Proposição 2.5.4. Seja n > 1. Então, qualquer permutação em Sn pode ser escrita como

um produto de transposições.

Demonstração. Basta observar que um ciclo de comprimento r pode ser decomposto em

transposições. Para a1, a2, . . . , ar ∈ {1, 2, . . . , n} distintos, tem-se:

(a1 a2 a3 . . . ar) = (a1 ar)(a1 ar−1) · · · (a1 a2).

Assim, dado σ ∈ Sn, pela proposição 2.5.3 sabemos que σ pode ser representada

como produto de ciclos disjuntos. Aplicando a decomposição acima a cada um desses

ciclos, obtemos uma expressão de σ como produto de transposições. Portanto, toda per-

mutação de Sn pode ser escrita nesse formato.

Exemplo 2.5.2. O ciclo (1 2 3 4) é o produto (1 4)(1 3)(1 2) = (1 2 3 4), pois

1
(1 2)
↦−−→ 2

(1 3)
↦−−→ 2

(1 4)
↦−−→ 2

2
(1 2)
↦−−→ 1

(1 3)
↦−−→ 3

(1 4)
↦−−→ 3

3
(1 2)
↦−−→ 3

(1 3)
↦−−→ 1

(1 4)
↦−−→ 4

4
(1 2)
↦−−→ 4

(1 3)
↦−−→ 4

(1 4)
↦−−→ 1

2.6 Ação de Grupos

Seja Sym(Ω) o grupo das permutações de um conjunto Ω. Dado x ∈ Ω e g ∈

Sym(Ω), indicaremos a aplicação de g sobre x por g · x. Observe que, para g, h ∈ Sym(Ω),

a compatibilidade da composição com a operação de grupo implica

h · (g · x) = (hg) · x.
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Definição 2.6.1. Sejam G um grupo e Ω um conjunto. Dizemos que G age em Ω se existe

um homomorfismo

ϕ : G −→ Sym(Ω).

Para cada g ∈ G, a permutação associada ϕ(g) é denotada por x ↦→ g · x, com x ∈ Ω.

Assim, a ação pode ser descrita como

ϕ : G −→ Sym(Ω)

g ↦−→ ϕ(g) : Ω −→ Ω

x ↦−→ g · x.

Uma vez que ϕ é um homomorfismo de grupos, tem-se que ϕ(e) = idΩ, em que

idΩ : Ω → Ω é a função identidade de Ω. Assim, e · x = x, para todo x ∈ Ω.

Definição 2.6.2. Seja G um grupo que age sobre um conjunto Ω. Podemos definir uma

relação ∼ em Ω da seguinte maneira: para α, β ∈ Ω, escrevemos α ∼ β se existir algum

g ∈ G tal que

β = g · α.

A relação ∼ é de equivalência e será chamada de relação induzida pela ação de G.

Definição 2.6.3. As classes de equivalência da relação ∼ são chamadas órbitas da ação

de G em Ω. Para um elemento fixado α ∈ Ω, sua órbita é dada por

G · α = {g · α | g ∈ G}.

Definição 2.6.4. Seja G um grupo agindo sobre um conjunto Ω. Dizemos que a ação

é transitiva se existir apenas uma órbita sob a ação, isto é, para quaisquer α, β ∈ Ω,

existe g ∈ G tal que

g · α = β.

Definição 2.6.5. Seja G um grupo agindo sobre Ω e seja Δ ⊆ Ω um subconjunto não

vazio. Dizemos que Δ é um bloco da ação se, para todo g ∈ G, vale

g · Δ = Δ ou g · Δ ∩ Δ = ∅.

Um bloco é dito não trivial se satisfaz |Δ| > 1 e Δ ̸= Ω.

Exemplo 2.6.1. Considere o grupo G = ⟨(1 2)⟩, que contém apenas o elemento neutro

e a transposição (1 2). A ação é definida sobre o conjunto

Ω = {1, 2, 3, 4, 5}.

A permutação (1 2) atua apenas nos elementos 1 e 2, enquanto os demais permanecem

fixos. Assim, as órbitas são:

{1, 2}, {3}, {4}, {5}.
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Portanto, a ação não é transitiva, pois há mais de uma órbita.

Podemos identificar blocos da ação observando subconjuntos preservados por G.

Como (1 2) não altera os elementos 3, 4, 5, cada um dos conjuntos {3}, {4}, {5} é um

bloco trivial. Além disso, como (1 2) apenas troca os elementos 1 e 2, o conjunto {1, 2}

também é um bloco não trivial, pois:

(1 2) · {1, 2} = {1, 2}.

Portanto, os blocos identificados são:

{1, 2}, {3}, {4}, {5}, Ω.

Definição 2.6.6. Uma ação transitiva de G em Ω é chamada primitiva quando seus

únicos blocos são os triviais, isto é, subconjuntos de tamanho 1 ou todo o conjunto Ω.

Exemplo 2.6.2. Considere o grupo S4 atuando sobre Ω = {1, 2, 3, 4} pela ação natural,

isto é, σ · i = σ(i) para todo σ ∈ S4. Essa ação é transitiva, pois para quaisquer i, j ∈ Ω

existe uma permutação em S4 enviando i para j. Além disso, os únicos blocos dessa ação

são os triviais {i}, com i ∈ Ω, e o próprio conjunto Ω, pois qualquer subconjunto com dois

elementos pode ser enviado para qualquer outro par por uma permutação de S4. Assim, a

ação é primitiva.

2.7 Grupos Livres

Definição 2.7.1. Seja X um conjunto. Dizemos que um grupo F é livre sobre X quando,

para qualquer grupo G e qualquer aplicação

θ : X −→ G,

existe um único homomorfismo de grupos

θ′ : F −→ G

tal que θ′(x) = θ(x) para todo x ∈ X.

O diagrama abaixo ilustra essa situação:

X F

G

i

θ ∃! θ′
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Assim, um grupo livre sobre o conjunto X pode ser visto como o grupo que se pode

construir a partir de X, sem impor relações adicionais além das necessárias para ser um

grupo. No que segue, vamos mostrar a existência de um grupo livre sobre um conjunto

X.

Seja X um conjunto. Vamos construir um grupo F livre sobre o conjunto X. Se

X = ∅, então F é o grupo trivial ⟨e⟩. Se X ̸= ∅, consideremos um conjunto X−1 disjunto de

X, contendo o mesmo número de elementos, isto é, |X| = |X−1|. Denotamos uma bijeção

x ↦→ x−1 de X em X−1, e dizemos ainda que a imagem de x ∈ X é x−1. Introduzimos

ainda o elemento 1, distinto dos elementos de X ∪ X−1, que atuará como o elemento

neutro.

Uma palavra sobre X é uma sequência (a1, a2, . . . ), com ai ∈ X ∪ X−1 ∪ {1},

tal que existe um número n ∈ N* com ak = 1 para todo k ≥ n. A sequência constante

(1, 1, 1, . . . ) é chamada de palavra vazia e é denotada por 1.

Uma palavra (a1, a2, . . . ) sobre X é dita reduzida se:

(i) Para todo x ∈ X, x e x−1 não aparecem adjacentes, isto é,

ai = x ⇒ ai+1 ̸= x−1 e ai = x−1 ⇒ ai+1 ̸= x,

para todo i ∈ N*.

(ii) Se ak = 1, então ai = 1 para todo i ≥ k.

A palavra vazia 1 é reduzida, e toda palavra reduzida não vazia é da forma

(xλ1

1 xλ2

2 · · · xλn

n , 1, 1, . . . ),

onde n ∈ N*, xi ∈ X, e λi = ±1. Por convenção, x1 = x e x−1 é o inverso formal de x.

Por simplificação, denotaremos essa palavra simplesmente por xλ1

1 xλ2

2 · · · xλn
n .

Observa-se ainda que duas palavras reduzidas

xλ1

1 · · · xλm

m e yδ1

1 · · · yδn

n

são iguais se, e somente se, m = n e xi = yi, λi = δi para cada i = 1, 2, . . . , n.

Assim, podemos identificar X com sua imagem e considerar X ⊆ F (X), onde

F (X) é conjunto de todas as palavras reduzidas sobre X.

Definimos agora uma operação binária em F = F (X). A palavra vazia 1 atua

como elemento identidade, ou seja, w1 = 1w = w, para toda palavra w ∈ F .

Queremos que o produto de palavras reduzidas não vazias seja dado por justapo-

sição, isto é,

(xλ1

1 · · · xλm

m )(yδ1

1 · · · yδn

n ) = xλ1

1 · · · xλm

m yδ1

1 · · · yδn

n .
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No entanto, essa palavra resultante pode não ser reduzida, por exemplo, se xλm
m = y−δ1

1 .

Portanto, definimos o produto como a justaposição seguida de possíveis cancelamentos de

termos adjacentes da forma xx−1 ou x−1x.

Sejam

xλ1

1 · · · xλm

m e yδ1

1 · · · yδn

n

palavras reduzidas não vazias sobre X, com m ≤ n. Seja k o maior inteiro 0 ≤ k ≤ m tal

que

x
λm−j

m−j = y
−δj+1

j+1 , para j = 0, 1, . . . , k − 1.

Então definimos

(xλ1

1 · · · xλm

m )(yδ1

1 · · · yδn

n ) =































xλ1

1 · · · x
λm−k

m−k y
δk+1

k+1 · · · yδn
n , se k < m,

y
δm+1

m+1 · · · yδn
n , se k = m < n,

1, se k = m = n.

Se m > n, o produto é definido de maneira análoga. Assim o produto de palavras

reduzidas é uma palavra reduzida.

Teorema 2.7.1. Seja X um conjunto não vazio e F = F (X) o conjunto de todas as

palavras reduzidas em X. Então F , munido da operação binária previamente definida,

forma um grupo. Além disso, tem-se que F = ⟨X⟩.

Demonstração. A demonstração deste resultado pode ser encontrada em (HUNGER-

FORD, 1980).

Teorema 2.7.2. Seja F o grupo livre gerado por um conjunto X e seja ϕ : X → F a

aplicação de inclusão. Se G é um grupo e f : X → G é uma aplicação de conjuntos, então

existe um único homomorfismo de grupos f̂ : F → G tal que f̂ ∘ ϕ = f .

Demonstração. A demonstração deste resultado pode ser encontrada em (HUNGER-

FORD, 1980).

2.8 O GAP

O GAP (The GAP Group, 2024b) (Groups, Algorithms, Programming) é um sis-

tema algébrico computacional desenvolvido principalmente para pesquisas em álgebra

discreta, com ênfase em teoria de grupos. Sua linguagem de programação e extensa bibli-

oteca de funções o tornam uma ferramenta poderosa para manipular grupos, subgrupos,

homomorfismos, anéis e outros objetos algébricos.

A história do GAP remonta aos anos 1980, quando foi criado no Lehrstuhl D für

Mathematik da Universidade RWTH Aachen, na Alemanha. Inicialmente, o foco era em
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fornecer suporte para a teoria de grupos computacional, mas logo evoluiu para abarcar

uma série de áreas, como álgebra e combinatória.

O GAP é mantido e desenvolvido pela comunidade científica, sendo um software

de código aberto amplamente utilizado por pesquisadores pelo mundo, sendo a principal

ferramenta de pesquisa no trabalho de Romero (ROMERO, 2018), onde o GAP e conceitos

da teoria de grupos computacionais são utilizados para otimizar e desenvolver algoritmos

que trabalhem com homomorfismo de grupos. Outro exemplo de uso do GAP é no caso do

trabalho de Hulpke (HULPKE, 2020) em que o GAP é utilizado no cálculo de subgrupos

de grupos finitos. Não só isso, Hulpke também ajudou na manutenção e criação de alguns

algoritmos presentes na biblioteca do GAP, alguns deles envolvendo homomorfismo, dos

quais um deles foi utilizado nesse trabalho.

Nesta seção, destacamos os principais algoritmos que serão essenciais para mostrar

características de problemas e resolve-los de forma inteligente. O manual do GAP com

informações fundamentais de uso como estrutura léxica, atribuição de variáveis, estruturas

de condições e laços e outros podem ser encontrados em (The GAP Group, 2024a). Em

Listing 2.1 está o código fonte da função GroupHomomorphismByImages que se encontra no

pacote hom da bliblioteca do GAP, responsável por construir homomorfismos de grupos

a partir da definição explícita de imagens de geradores.

1 # GroupHomomorphismByImages ( <G>, <H>, <Ggens >, <Hgens > )

2 # GroupHomomorphismByImages ( <G>, <H>, <Hgens > )

3 # GroupHomomorphismByImages ( <G>, <H> )

4

5 InstallGlobalFunction ( GroupHomomorphismByImages ,

6

7 function ( arg )

8

9 local hom , G, H, Ggens , Hgens , arrgh ;

10

11 arrgh := arg;

12

13 # verifica se a quantidade de parametros esta correta

14 if not Length ( arrgh ) in [2..4]

15 or not IsGroup ( arrgh [1]) then

16 Error (" for usage , see ? GroupHomomorphismByImages ");

17 fi;

18

19 # verifica se os geradores em arrg [2] formam um grupo

20 if not IsGroup ( arrgh [2]) then

21 arrgh := Concatenation ([ arrgh [1] , Group ( arrgh [ Length ( arrgh )

])],
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22 arrgh {[2.. Length ( arrgh )]});

23 fi;

24

25 G := arrgh [1]; H := arrgh [2];

26

27 #gera os grupos se nao foram passados os geradores como

parametro

28 if Length ( arrgh ) = 2 then

29 Ggens := GeneratorsOfGroup (G);

30 Hgens := GeneratorsOfGroup (H);

31 elif Length ( arrgh ) = 3 then

32 Ggens := GeneratorsOfGroup (G);

33 Hgens := arrgh [3];

34 elif Length ( arrgh ) = 4 then

35 Ggens := arrgh [3];

36 Hgens := arrgh [4];

37 fi;

38

39 # verifica se os geradores de G sao validos

40 if Length ( Ggens ) > 0 then

41 if not ( IsDenseList ( Ggens ) and IsHomogeneousList ( Ggens )

42 and FamilyObj ( Ggens ) = FamilyObj (G)) then

43 Error (" The generators do not all belong to the source ");

44 fi;

45 fi;

46

47 # verifica se os geradores de H sao validos

48 if Length ( Hgens ) > 0 then

49 if not ( IsDenseList ( Hgens ) and IsHomogeneousList ( Hgens )

50 and FamilyObj ( Hgens ) = FamilyObj (H)) then

51 Error (" The images do not all belong to the range ");

52 fi;

53 fi;

54

55 hom := GroupGeneralMappingByImages (G, H, Ggens , Hgens );

56

57 # vefirica se o homomorfismo criado respeita as propriedades

de um mapeamento

58 if IsMapping (hom) then

59 return hom;

60 else

61 return fail;
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62 fi;

63

64 end );

Listing 2.1 – Código fonte da função GroupHomomorphismByImages no GAP

O objetivo principal dessa função é criar um homomorfismo de grupos ϕ : G → H

especificando apenas como os geradores de G são enviados em H. A ideia fundamental

é que, dado um conjunto de geradores, a imagem de todo o grupo é determinada pelas

imagens desses geradores.

• A função aceita entre 2 e 4 argumentos: os grupos G e H, uma lista de geradores

de G (opcional) e suas imagens em H (opcional).

• Se apenas G e H forem passados, o GAP utiliza os geradores padrões de ambos os

grupos.

• Caso três argumentos sejam fornecidos, os geradores de G são os padrões e apenas

as imagens em H são especificadas.

• Se forem passados quatro argumentos, tanto os geradores de G quanto suas imagens

em H devem ser dados explicitamente.

• A função realiza algumas verificações de consistência como: conferir se os grupos

fornecidos são válidos;testar se os elementos especificados como geradores realmente

pertencem aos grupos correspondentes; garantir que listas de geradores e imagens

sejam homogêneas, que evita erros de interpretação pelo GAP.

Por fim, a função invoca o procedimento interno GroupGeneralMappingByImages,

que, resumidamente, constrói a aplicação entre os grupos. Caso essa construção seja bem-

sucedida, o resultado é um homomorfismo de grupos válido; caso contrário, a função

retorna fail.

A função GroupHomomorphismByImages é fundamental para o desenvolvimento

de soluções porque permite, de maneira prática, definir homomorfismos sem precisar

descrevê-los de forma exaustiva em todos os elementos do grupo. Como todo homo-

morfismo é completamente determinado pelas imagens dos geradores, essa abordagem

é eficiente e natural em teoria de grupos computacional.

Exemplo 2.8.1 (Homomorfismo entre grupos de permutação no GAP). Considere os

grupos G e H definidos como subgrupos do grupo simétrico S3. Seja G = ⟨(1 2), (2 3)⟩ e

H = ⟨(1 2 3)⟩, onde desejamos construir um homomorfismo enviando os geradores de G

para geradores de H.

No ambiente GAP, fazemos:
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gap> G := Group( (1,2), (1,2,3) );; # G = S3

gap> H := Group( (1,2) );; # H = C2

# (1,2) -> (1,2); (1,2,3) -> identity

gap> Himgs := [ (1,2), Identity(H) ];

[ (1,2), () ]

gap> hom := GroupHomomorphismByImages(G, H, GeneratorsOfGroup(G), Himgs);

[ (1,2), (1,2,3) ] -> [ (1,2), () ]

gap> IsMapping(hom);

true

gap> Image(hom, (1,2));

(1,2)

gap> Image(hom, (1,2,3));

()

A função IsMapping verifica se o homomorfismo criado é válido, e as funções

Image retornam a imagem de um elemento passando o elemento e o homomorfismo como

parâmetros. A aplicação definida acima é um homomorfismo de grupos porque as imagens

escolhidas respeitam as relações entre os geradores de G.

Outra função fundamental no GAP é a PreImagesRepresentative que se encon-

tra no pacote hom da bliblioteca do GAP, que permite determinar um elemento do grupo

original que seja mapeado em um elemento específico da imagem de um homomorfismo.

O código fonte dessa função é apresentado em Listing 2.2.

1 #M PreImagesRepresentative ( <hom >, <elm > ) . . . . . . . . .

via images

2

3 InstallMethod ( PreImagesRepresentative , "for PBG -Hom",

FamRangeEqFamElm ,

4 [ IsPreimagesByAsGroupGeneralMappingByImages ,

5 IsMultiplicativeElementWithInverse ], 0,

6 function ( hom , elm )

7 if HasIsHandledByNiceMonomorphism ( Source (hom)) then

8 # if we use the ‘AsGGMBI ’ directly , it will be a composite

through

9 # a big group

10 return ImagesRepresentative ( RestrictedInverseGeneralMapping (

hom ),

11 elm );
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12 else

13 return PreImagesRepresentative ( AsGroupGeneralMappingByImages

( hom ),

14 elm );

15 fi;

16 end );

Listing 2.2 – Código fonte da função PreImagesRepresentative no GAP

O objetivo principal desta função é encontrar um representante no grupo fonte

que seja enviado em um elemento específico da imagem de um homomorfismo. Em outras

palavras, dado um homomorfismo ϕ : G → H e um elemento h ∈ H, o algoritmo busca

um elemento g ∈ G tal que ϕ(g) = h.

Em suma, a função funciona da seguinte forma:

• Ela verifica inicialmente se a origem do homomorfismo (Source(hom)) possui uma

estrutura tratada por um monomorfismo (HasIsHandledByNiceMonomorphism).

– Se sim, a função utiliza a RestrictedInverseGeneralMapping para restrin-

gir a inversa do homomorfismo, garantindo que o cálculo seja feito dentro do

subgrupo relevante e evitando composições desnecessárias com grupos grandes,

ganhando eficiência em tempo e espaço.

– Em seguida, chama ImagesRepresentative para recuperar o elemento do

grupo fonte correspondente ao elemento da imagem.

• Caso contrário, o algoritmo transforma o homomorfismo em uma versão geral via

AsGroupGeneralMappingByImages e aplica recursivamente

PreImagesRepresentative.

A função AsGroupGeneralMappingByImages é um procedimento interno do GAP

que transforma um homomorfismo específico em uma representação genérica baseada em

imagens de geradores. Essa conversão permite que operações de inversão ou busca de

pré-imagens sejam feitas de forma sistemática e consistente, independentemente da forma

original do homomorfismo. Essa função não altera a semântica do homomorfismo, mas

oferece uma estrutura conveniente e uniforme para que os algoritmos do GAP realizem

operações de consulta, inversão e manipulação de elementos com eficiência.

Dessa forma, o algoritmo permite a recuperação eficiente de pré-imagens em gru-

pos, sendo uma ferramenta essencial para explorar relações entre elementos de grupos

fonte e imagem sem precisar enumerar todas as combinações possíveis.

Exemplo 2.8.2. A seguir, é apresentado um exemplo simples de utilização da função

PreImagesRepresentative no GAP, cujo objetivo é determinar um representante da
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pré-imagem de um elemento por meio de um homomorfismo entre grupos considerando

os resultados do exemplo 2.8.1.

# Escolhemos um elemento de H

gap> h := (1,2);;

# Buscando um representante de g em G tal que f(g) = h

gap> g := PreImagesRepresentative(hom, h);;

gap> g;

(1,2)

gap> Image(hom, g); # Confirma que f(g) = h

(1,2)

Ao executar o código, o GAP retorna o elemento (1 2) ∈ S3 como um representante

da pré-imagem de (1 2) ∈ C2, verificando que sua imagem sob o homomorfismo realmente

coincide com o elemento especificado em H.

Outro algoritmo interessante é a função Orbit que se encontra no pacote orb da

bliblioteca do GAP, que permite calcular a órbita de um elemento ou conjunto de elemen-

tos sob a ação de uma sequência de geradores de grupo. Como a implementação original

localizada no pacote orb tem centenas de linhas, em Listing 2.3 está uma implementação

alternativa para o algoritmo que mantêm o contexto e escopo do trabalho.

1 orbit := function (a, x)

2 local delta , r, b, i;

3 r := Length (x);

4 delta := [a];

5 for b in delta do

6 for i in [1..r] do

7 if not b^x[i] in delta then

8 Add(delta , b^x[i]);

9 fi;

10 od;

11 od;

12 return delta ;

13 end;

Listing 2.3 – Implementação alternativa da função orbit no GAP
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O objetivo desta função é determinar o conjunto de elementos que podem ser

alcançados a partir de um elemento inicial a ao aplicar todas as combinações possíveis de

uma lista de elementos do grupo x = [x1, x2, . . . , xr].

Em suma, o algoritmo funciona da seguinte maneira:

• Inicialmente, a lista delta é criada contendo apenas o elemento a, que será a base

da órbita.

• O algoritmo percorre cada elemento b atualmente em delta.

• Para cada b, aplica-se a ação de cada gerador x[i] utilizando a operação bx[i], que é

a representação da ação do grupo.

• Se o resultado bx[i] ainda não estiver presente em delta, ele é adicionado à lista.

• Este processo é repetido até que não haja mais elementos novos a serem adicionados,

garantindo que todas as combinações possíveis de aplicações dos geradores tenham

sido consideradas.

• Por fim, o algoritmo retorna delta, que contém todos os elementos da órbita de a

sob a ação do conjunto de geradores x.

A função orbit constitui uma ferramenta eficiente para explorar a estrutura de

um grupo por meio de suas órbitas, permitindo identificar de forma sistemática todos os

elementos que podem ser gerados a partir de um elemento inicial.

Exemplo 2.8.3. No exemplo a seguir, considere o grupo S3, agindo sobre o próprio

conjunto por meio da aplicação das permutações em cada elemento.

gap> G := Group( (1,2), (1,2,3) );;

# Calculando a órbita do elemento 1 sob a ação do grupo G

gap> orb := Orbit(G, 1);

[ 1, 2, 3 ]

Isso mostra que o grupo S3 pode mover o elemento 1 para qualquer outro elemento

do conjunto {1, 2, 3} por meio de suas permutações. Isso significa que a ação é transitiva.

Exemplo 2.8.4. Podemos também considerar ações que não sejam transitivas. No exem-

plo a seguir, o grupo G = ⟨(1 2)⟩ atua sobre o conjunto {1, 2, 3, 4} porém apenas troca os

elementos 1 e 2, mantendo 3 e 4 fixos.
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# Definindo um grupo com apenas a transposição (1,2)

gap> G := Group( (1,2) );;

# Calculando as órbitas dos elementos de {1,2,3,4}

gap> orb1 := Orbit(G, 1);

[ 1, 2 ]

gap> orb3 := Orbit(G, 3);

[ 3 ]

O que indica que a ação do grupo G não é transitiva, pois nem todos os elementos

do conjunto podem ser alcançados a partir de qualquer elemento por meio das permutações

do grupo.

Outra função que será fundamental em futuras análises é a função Blocks, que é

uma função interna do GAP, que, no contexto desse trabalho, terá como objetivo calcular

todos os subconjuntos B ⊆ Ω que satisfazem a seguinte propriedade: para todo g ∈ G,

ou g · B = B ou g · B ∩ B = ∅, ou seja, calculará os subconjuntos que ou são enviados

a si mesmos ou a um conjunto disjunto. A demonstração detalhada original da função

Blocks pode ser consultada no capítulo 41, seção 11 do manual do GAP (The GAP

Group, 2024a).

Exemplo 2.8.5. Consideremos o grupo G = ⟨(1 2)(3 4), (1 3)(2 4)⟩ que age sobre o

conjunto Ω = {1, 2, 3, 4}. Vamos utilizar a função Blocks no GAP para determinar todos

os blocos da ação deste grupo.

gap> G := Group( (1,2)(3,4), (1,3)(2,4) );

gap> Blocks(G, [1..4]);

[ [ 1, 2, 3, 4 ], [ 1, 2 ], [ 3, 4 ] ]

A saída indica que existem três blocos na ação:

• {1, 2, 3, 4} é o bloco trivial que corresponde ao conjunto completo;

• {1, 2} é um bloco não trivial;

• {3, 4} é outro bloco não trivial.

Esses blocos mostram que os elementos são particionados em subconjuntos preser-

vados pela ação de G. Assim, a ação não é primitiva.
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3 Trabalhos Relacionados

O trabalho de Angie Tatiana Suárez Romero (ROMERO, 2018), intitulado "Com-

putação em Grupos de Permutação Finitos com GAP", aborda algoritmos para grupos

de permutação e sua implementação no sistema GAP, com foco no estudo de ações de

grupos em conjuntos finitos. O objetivo principal é descrever métodos para representar

grupos em computadores, calcular órbitas e estabilizadores, e explorar conceitos como o

conjunto gerador forte (BSGS) por meio do algoritmo Schreier-Sims. Os resultados in-

cluem algoritmos eficientes para identificar grupos transitivos, primitivos e elementos de

um grupo usando pesquisas de retrocesso (backtrack). Relaciona-se diretamente com o

tema de álgebra computacional, aplicando os recursos do GAP ao estudo de grupos simé-

tricos e suas propriedades, destacando como ferramentas algorítmicas podem simplificar

e sistematizar cálculos complexos em teoria de grupos.

O objetivo do artigo de Ákos Seress (SERESS, 1997) é apresentar uma introdução

abrangente à Teoria Computacional de Grupos, destacando como algoritmos e ferramentas

computacionais, como o GAP, podem ser usados para resolver problemas em álgebra de

grupos. O artigo explora métodos fundamentais, como o procedimento Todd-Coxeter e

técnicas de reescrita de termos, para investigar propriedades estruturais de grupos. Os

principais resultados incluem a descrição de algoritmos eficientes para manipular grupos

de permutação, reconhecer grupos matriciais e calcular tabelas de caracteres, oferecendo

uma base sólida para aplicações práticas em áreas como teoria dos grafos e codificação.

Este artigo se relaciona diretamente com a álgebra computacional com ênfase em grupos

simétricos, já que o GAP, um dos softwares destacados, é amplamente utilizado para lidar

com representações de grupos simétricos, explorando bases, subconjuntos estabilizadores

e estruturas subjacentes para resolver problemas matemáticos e computacionais.

Já o trabalho de Gregory Butler (BUTLER, 1991) tem como principal objetivo

apresentar algoritmos fundamentais para a teoria de grupos de permutações, abordando

tanto a formulação quanto a análise de complexidade desses algoritmos. O trabalho se

concentra no desenvolvimento incremental das técnicas, introduzindo conceitos teóricos

de grupos e aplicando-os na construção e otimização de algoritmos específicos. O mé-

todo utilizado por G. Butler envolve a dedução passo a passo dos algoritmos, partindo de

fundamentos básicos da teoria dos grupos até alcançar métodos avançados, como o algo-

ritmo de Schreier-Sims. Os principais resultados incluem algoritmos otimizados para listar

elementos de grupos, calcular órbitas e vetores de Schreier, verificar primitividade e regu-

laridade de grupos, e determinar cadeias de estabilizadores e bases geradoras fortes. Este

trabalho se relaciona diretamente com o tema, pois o GAP é amplamente utilizado para

implementar os algoritmos apresentados. Esses métodos são cruciais para resolver proble-
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mas de simetria e combinatória em álgebra computacional, especialmente no contexto de

grupos simétricos e suas representações em aplicações matemáticas e computacionais.
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4 Desenvolvimento

O presente capítulo tem como objetivo descrever o processo de aplicação prática

dos conceitos teóricos abordados anteriormente, utilizando o sistema computacional GAP.

Nesta etapa, busca-se demonstrar como os fundamentos teóricos da álgebra abstrata po-

dem ser implementados de forma computacional, permitindo a verificação, exploração e

experimentação de propriedades algébricas de maneira sistemática e reprodutível.

Neste trabalho, o problema central a ser abordado consiste na resolução do Cubo

Mágico (também conhecido como Rubik’s Cube) por meio da teoria dos grupos de per-

mutação. O cubo pode ser interpretado como um conjunto de elementos submetidos a

transformações que preservam sua estrutura, sendo cada movimento uma permutação de

peças. Assim, o GAP será empregado para modelar essas permutações, gerar o grupo

associado ao cubo e investigar propriedades como órbitas, blocos, elementos geradores e

possíveis soluções por meio de representantes e homomorfismo.

Dessa forma, o desenvolvimento a seguir busca demonstrar como o GAP pode ser

utilizado na representação e resolução de um problema combinatório complexo através

de técnicas algébricas. O uso dessa abordagem evidencia a integração entre a teoria dos

grupos e a computação, permitindo compreender a estrutura interna do cubo e construir

algoritmos capazes de conduzir à sua solução de forma eficiente.

O repositório com os algoritmos criados no decorrer desse trabalho podem ser

encontrados em (LYRA, 2025).

4.1 Modelagem do Cubo Mágico no GAP

Para abordar a resolução do Cubo Mágico por meio da teoria computacional de

grupo, iniciamos o processo de modelagem no GAP pela decomposição estrutural do

cubo. Essa decomposição e as técnicas de resolução são baseadas em um curso de álgebra

computacional usando o GAP que pode ser encontrado em (SCHNEIDER C., LIMA I.,

2024). Nesse sentido, resolver o cubo será equivalente a encontrar a sequência de rotações

de cada face que leve a configuração atual ao seu estado neutro, ou seja, com as peças

de cada cor em suas respectivas faces. A estratégia consiste em destrinchar o cubo em

suas seis faces e numerar individualmente cada uma de suas peças, de modo que cada

número represente uma posição específica no estado inicial resolvido. Essa numeração é

fundamental para representar de forma precisa o estado do cubo e as transformações que

ocorrem durante os movimentos. A Figura [1] ilustra essa numeração adotada para as

peças do cubo.
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gap>G:=Group( c, e, f, d, t, b );

Com essa construção, o grupo G representa o conjunto de todas as configurações

possíveis do cubo que podem ser obtidas por meio de sequências de rotações das faces.

Cada elemento de G corresponde a uma permutação específica das peças, e as composições

entre essas permutações modelam as sequências de movimentos realizadas no cubo físico.

Assim, o problema de encontrar uma solução para o Cubo Mágico torna-se equivalente

a determinar uma sequência de elementos de G que leve uma configuração de volta ao

estado resolvido.

4.2 Análise das órbitas e blocos na ação do grupo

Com o grupo G definido, que modela todas as rotações válidas do Cubo Mágico,

torna-se importante investigar como esse grupo atua sobre o conjunto completo das 48

peças numeradas. Para isso, utilizamos as funções Orbits e Blocks do GAP, que permitem

compreender a organização interna da ação do grupo e identificar padrões de simetria.

A função Orbits gera todas as órbitas da ação de um grupo sobre um conjunto,

ou seja, os subconjuntos de peças que podem ser alcançados mutuamente por meio das

permutações de G. No nosso caso, aplicando a função ao conjunto completo de peças:

gap> orbitas := Orbits(G, [1..48]);

[ [ 1, 6, 40, 27, 8, 35, 16, 41, 32, 25, 48, 3,

11, 24, 46, 33, 43, 17, 30, 14, 19, 9, 22, 38 ],

[ 2, 4, 29, 7, 37, 26, 47, 5, 13, 44, 34, 28,

12, 45, 21, 10, 42, 20, 36, 31,15, 18, 23, 39 ] ]

Ao calcular as órbitas em G com todas as peças, obtemos uma lista de duas órbitas,

onde cada órbita contém peças que podem se mover entre si por rotações do cubo. Se o

grupo G fosse transitivo sobre todas as 48 peças, ou seja, cada peça pudesse atingir a

posição de qualquer outra peça, teríamos uma única órbita. Entretanto, a existência de

múltiplas órbitas evidencia que os subconjuntos de peças de cantos (primeira órbita) e

centros/arestas (segunda órbita) não se misturam entre si, preservando suas funções

estruturais no cubo.

Para aprofundar a análise da estrutura interna, avaliamos os blocos de cada órbita

separadamente. Um bloco é um subconjunto de elementos que, sob a ação de qualquer

permutação do grupo, é enviado para ele mesmo ou para outro bloco disjunto. Em termos

do cubo mágico, isso permite detectar grupos de peças que se comportam de maneira
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estruturalmente equivalente sob as rotações. Isso pode ser implementado pelo algoritmo

em GAP Listing 4.1.

1 BlocosOrbitas := function (orbitas , G)

2 local orb , blocos ;

3 for orb in orbitas do

4 blocos := Blocks (G, orb);;

5 Print (" Blocos na orbita ", orb , ": ", blocos , "\n");

6 od;

7 end;

Listing 4.1 – Algoritmo que calcula os blocos nas órbitas passadas por parâmetro.

A análise combinada das órbitas e dos blocos fornece uma visão detalhada das

restrições impostas pelo grupo G, ou seja, a forma que o grupo G preserva o tipo das

peças como as de canto e de arestas, permitindo compreender tanto a mobilidade dessas

peças quanto os padrões que definem suas posições em relação a estrutura do cubo. Ao

executar o algoritmo acima temos o seguinte resultado:

gap> BlocosOrbitas(orbitas, G);

Blocos na orbita [ 1, 6, 40, 27, 8, 35, 16, 41, 32, 25,

48, 3, 11, 24, 46, 33, 43, 17, 30, 14, 19, 9, 22, 38 ]:

[ [ 1, 9, 35 ], [ 3, 27, 33 ], [ 6, 11, 17 ], [ 8, 19, 25 ],

[ 14, 40, 46 ], [ 16, 22, 41 ], [ 24, 30, 43 ], [ 32, 38, 48 ] ]

Blocos na orbita [ 2, 4, 29, 7, 37, 26, 47, 5, 13, 44,

34, 28, 12, 45, 21, 10, 42, 20, 36, 31, 15, 18, 23, 39 ]:

[ [ 2, 34 ], [ 4, 10 ], [ 5, 26 ], [ 7, 18 ],

[ 12, 37 ], [ 13, 20 ], [ 15, 44 ], [ 21, 28 ],

[ 23, 42 ], [ 29, 36 ], [ 31, 45 ], [ 39, 47 ] ]

Esses resultados são de grande importância para a modelagem do problema. As

órbitas indicam quais peças podem realmente trocar de posição entre si, enquanto os

blocos revelam como o grupo organiza as relações de simetria entre as partes do cubo.

Dessa forma, esses resultados mostram que é possível identificar corretamente a

numeração das peças mesmo que inicialmente elas não estejam numeradas, já que a posição

de cada peça em suas respectivas órbitas e blocos permite determinar a qual número ela

corresponde, garantindo a coerência da representação algébrica do Cubo Mágico.

Com a análise das órbitas e blocos concluída, podemos agora associar a numeração

das peças às suas cores correspondentes em cada face do Cubo Mágico mesmo sem ter o
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cubo numerado previamente. Considerando a convenção adotada no diagrama da Figura

[1], temos as seguintes associações de cores para cada face: CIMA é amarela, TRÁS é

laranja, ESQUERDA é azul, FRENTE é vermelha, DIREITA é verde e BAIXO é

branca.

Por fim, com base nas análises e definições das cores, temos como resultado as

seguintes tabelas de numeração de acordo com as cores de canto [1] e aresta [2]:

Canto Cores do Canto Peças
1 Amarela / Azul / Laranja 1, 9, 35
2 Amarela / Verde / Laranja 3, 27, 33
3 Amarela / Azul / Vermelha 6, 11, 17
4 Amarela / Vermelha / Verde 8, 19, 25
5 Azul / Laranja / Branca 14, 40, 46
6 Azul / Vermelha / Branca 16, 22, 41
7 Vermelha / Verde / Branca 24, 30, 43
8 Verde / Laranja / Branca 32, 38, 48

Tabela 1 – Numeração respectiva das peças de acordo com as cores de canto do Cubo
Mágico

Aresta Cores da Aresta Peças
1 Amarela / Laranja 2, 34
2 Amarela / Azul 4, 10
3 Amarela / Verde 5, 26
4 Amarela / Vermelha 7, 18
5 Azul / Laranja 12, 37
6 Azul / Vermelha 13, 20
7 Azul / Branca 15, 44
8 Vermalha / Verde 21, 28
9 Vermelha / Branca 23, 42
10 Verde / Laranja 29, 36
11 Verde / Branca 31, 45
12 Laranja / Branca 39, 47

Tabela 2 – Numeração respectiva das peças de acordo com as cores de aresta do Cubo
Mágico

4.3 Resolução do Cubo Mágico

Com a análise algébrica do Cubo Mágico concluída, passamos agora para a reso-

lução do cubo. É necessário criar uma ferramenta que permita manipular movimentos do

cubo como símbolos abstratos, antes de traduzi-los para as permutações específicas das

peças. Para isso, construímos um Grupo Livre, denotado Fr, cujos geradores representam

cada rotação possível das faces do cubo. O uso do grupo livre é de extrema importância
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Será criado uma lista que contém 48 elementos, cada um indicando qual peça

ocupa determinada posição no cubo: o índice do vetor corresponde à posição física no

cubo, enquanto o valor armazenado indica qual peça se encontra naquela posição. Nesse

exemplo, a peça 6 está na posição 1, a peça 4 está na posição 2, a peça 1 está na posição

3, e assim por diante. Logo, a lista será descrito da seguinte forma:

gap> posicaoAtual := [6, 4, 1, 7, 2, 8, 5, 3,

17, 18, 19, 12, 13, 14, 15, 16,

25, 26, 27, 20, 21, 22, 23, 24,

33, 34, 35, 28, 29, 30, 31, 32,

9, 10, 11, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48];

Ao passar essa lista para a função PermList, o GAP interpreta a relação entre

índices e valores como uma permutação, identificando ciclos de elementos que se movem

entre si. O resultado é uma representação compacta e estruturada da configuração do

cubo, expressa em produtos de ciclos, que será usada no passo final da resolução do

problema.

gap> configAtual := PermList(posicaoAtual);

(1,6,8,3)(2,4,7,5)(9,17,25,33)(10,18,26,34)(11,19,27,35)

Por fim, supondo que configAtual seja a configuração do cubo em mãos, podemos

utilizar a função:

gap> solucao := PreImagesRepresentative(hom, configAtual);

C

Essa função retorna uma sequência de movimentos no grupo livre, que, quando

aplicada, leva o cubo à configuração identidade, em outras palavras, resolve o cubo.

A solução será uma sequência de letras que referenciam a face a ser rotacionada

no sentido anti-horário: C para a face CIMA, D para a face DIREITA, E para a face

ESQUERDA, T para a face TRÁS, F como a face FRENTE e B para a face BAIXO.

Letras seguidas de ˆ-1 significam que devem ser rotacionadas no sentido horário e letras

seguidas de ˆ2 devem ser rotacionadas duas vezes no sentido horário se o expoente for

negativo e sentido anti-horário caso contrário. Nesse exemplo, para resolver o cubo, basta

rotacionar a face CIMA no sentido anti-horário uma vez.

Assim, o trecho de código Listing 4.2 apresenta o algoritmo final ResolveCubo

constituído de todos os procedimentos anteriores.
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1 ResolveCubo := function ( posicaoAtual )

2 local c, e, f, d, t, b, G, hom , Fr , configAtual , solucao ;

3

4 c:=(1 ,6 ,8 ,3) (2 ,4 ,7 ,5) (9 ,17 ,25 ,33) (10 ,18 ,26 ,34) (11 ,19 ,27 ,35);

5 e:=(1 ,40 ,41 ,17) (4 ,37 ,44 ,20) (6 ,35 ,46 ,22) (9 ,14 ,16 ,11)

(10 ,12 ,15 ,13);

6 f:=(6 ,16 ,43 ,25) (7 ,13 ,42 ,28) (8 ,11 ,41 ,30) (17 ,22 ,24 ,19)

(18 ,20 ,23 ,21);

7 d:=(3 ,19 ,43 ,38) (5 ,21 ,45 ,36) (8 ,24 ,48 ,33) (25 ,30 ,32 ,27)

(26 ,28 ,31 ,29);

8 t:=(1 ,27 ,48 ,14) (2 ,29 ,47 ,12) (3 ,32 ,46 ,9) (33 ,38 ,40 ,35)

(34 ,36 ,39 ,37);

9 b:=(14 ,38 ,30 ,22) (15 ,39 ,31 ,23) (16 ,40 ,32 ,24) (41 ,46 ,48 ,43)

(42 ,44 ,47 ,45);

10

11 G := Group ( c, e, f, d, t, b );

12

13 configAtual := PermList ( posicaoAtual );

14 Fr := FreeGroup ("C","E","F","D","T","B");

15 hom := GroupHomomorphismByImages (Fr , G,

16 GeneratorsOfGroup (Fr),GeneratorsOfGroup (G));

17

18 solucao := PreImagesRepresentative (hom , configAtual );

19

20 return solucao ;

21 end;

Listing 4.2 – Procedimento em GAP que resolve o Cubo Mágico.

4.4 Teste do Algoritmo

Como teste, vamos resolver alguns cubos mágicos embaralhados após várias rota-

ções aleatórias que resultaram nas configurações das Figuras 3, 4 e 5:
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5 Conclusão e Trabalhos Futuros

O presente trabalho teve como objetivo explorar a aplicação da Álgebra Compu-

tacional no estudo de estruturas algébricas, com ênfase particular nos grupos simétricos,

utilizando o sistema computacional GAP (Groups, Algorithms, Programming). Ao longo

do desenvolvimento, foi possível compreender de forma aprofundada como conceitos teó-

ricos da álgebra abstrata podem ser implementados e manipulados computacionalmente,

promovendo uma ponte concreta entre a matemática pura e a computação simbólica.

A fundamentação teórica apresentada forneceu a base necessária para o entendi-

mento das estruturas de grupos, subgrupos, homomorfismos e ações de grupos. A partir

dessa base, a utilização do sistema GAP permitiu não apenas a aplicação prática desses

conceitos, mas também a análise de algoritmos fundamentais, que desempenham papel

central na investigação da estrutura interna das ações de grupos, e no contexto deste

trabalho, no cubo mágico.

A modelagem do Cubo Mágico no ambiente do GAP demonstrou de forma concreta

como a teoria dos grupos simétricos pode ser aplicada à resolução de problemas reais e

complexos.

Conclui-se que a integração entre teoria e prática, mediada por sistemas como o

GAP, amplia significativamente as possibilidades de pesquisa. Além disso, a abordagem

adotada neste trabalho reforça a importância de compreender os fundamentos matemáti-

cos por trás das ferramentas computacionais, permitindo o desenvolvimento de algoritmos

mais eficientes e a interpretação correta de seus resultados, contribuindo assim para o for-

talecimento da conexão entre a matemática e a computação.

É importante ressaltar que a função PreImagesRepresentative retorna um repre-

sentante da classe lateral dada pelo núcleo do homomorfismo hom (4.3), como observado

na Observação 2.3.1. Propomos como trabalho futuro a investigação de um algoritmo

para que o retorno da função PreImagesRepresentative seja uma palavra de tamanho

mínimo no grupo livre, garantindo a menor quantidade de movimentos para a resolução

do cubo.
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