UNIVERSIDADE FEDERAL DE UBERLANDIA

Natan Goncalves de Lyra

Algebra computacional com énfase em Grupo
Simétrico usando o GAP

Uberlandia, Brasil

2025



UNIVERSIDADE FEDERAL DE UBERLANDIA

Natan Goncalves de Lyra

Algebra computacional com énfase em Grupo Simétrico
usando o GAP

Trabalho de conclusao de curso apresentado
a Faculdade de Computagao da Universidade
Federal de Uberlandia, como parte dos requi-
sitos exigidos para a obtencao titulo de Ba-
charel em Ciéncia da Computacio.

Orientador: Profa. Dra. Dylene Agda Souza de Barros

Universidade Federal de Uberlandia — UFU
Faculdade de Computacao

Bacharelado em Ciéncia da Computacao

Uberlandia, Brasil
2025



Natan Goncalves de Lyra

Algebra computacional com énfase em Grupo Simétrico
usando o GAP

Trabalho de conclusao de curso apresentado
a Faculdade de Computacao da Universidade
Federal de Uberlandia, como parte dos requi-
sitos exigidos para a obtencao titulo de Ba-
charel em Ciéncia da Computacao.

Trabalho aprovado. Uberlandia, Brasil, 31 de outubro de 2025:

Profa. Dra. Dylene Agda S. de Barros
IME UFU

Prof. Dr. Rodrigo Sanches Miani
FACOM UFU

Profa. Dra. Rosemary Miguel Pires
ICEX UFF

Uberlandia, Brasil
2025



Resumo

Este trabalho tem como objetivo investigar e aplicar conceitos de Algebra Computacional
com énfase na teoria de grupos simétricos, utilizando o sistema algébrico computacional
GAP (Groups, Algorithms, Programming). Por meio dessa ferramenta, estudam-se estru-
turas algébricas e algoritmos capazes de representar e manipular grupos de permutacao,
com foco na modelagem e resolucao de problemas de natureza simétrica, como o Cubo
Magico. Inicialmente, sdo apresentados os fundamentos tedricos da teoria de grupos, in-
cluindo definigoes, propriedades, e resultados essenciais sobre subgrupos, homomorfismos,
acoes e blocos. Em seguida, sdo explorados aspectos computacionais do GAP e de alguns
de seus algoritmos internos. A partir disso, é proposta uma modelagem do Cubo Mégico
em termos de grupos de permutacgao, evidenciando como operacoes algébricas podem des-
crever as possiveis configuragdes do cubo e suas transformagoes. Conclui-se que o uso de
ferramentas computacionais como GAP unidas de fundamentos matematicos resultam no

desenvolvimento de algoritmos inteligentes.

Palavras-chave: Algebra Computacional, Teoria dos Grupos, Grupos Simétricos, GAP,
Cubo Magico.
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1 Introducao

A Algebra Computacional é uma drea da matemdtica que integra conceitos da
algebra e da computagao para realizar a manipulacao simbdlica de expressdoes matema-
ticas, desempenhando um papel fundamental nas areas de matematica aplicada, ciéncias
da computagao e engenharia, possibilitando a resolugdo de problemas complexos que en-
volvem estruturas algébricas, como os grupos de permutacao. Esses grupos, também cha-
mados de grupos simétricos, sao estruturas algébricas fundamentais na teoria dos grupos,
representando as simetrias de um conjunto finito, o grupo simétrico S,, consiste em to-
das as permutacoes possiveis de n elementos, totalizando n! permutagoes. O estudo das
propriedades, regras e teoremas dessas estruturas, aliado a sua aplicacao na computacao,

pode levar a solugoes mais otimizadas e eficientes para problemas complexos.

O estudo de estruturas algébricas como os grupos simétricos é bem relevante para
otimizar e desenvolver algoritmos de sistemas ligados a criptografia, como a criptografia
de curvas elipticas, e para simplificar a analise e solucao de problemas de decidibilidade de
automatos na teoria de computacao. Nesse contexto, estruturas algébricas estao presentes
em diversas areas da computagao, e seu estudo contribui para aprimorar o funcionamento

de algoritmos fundamentais para diversos sistemas.

Nos tltimos 40 anos foram publicados diversos trabalhos e artigos sobre teoria de
grupos em especial a de grupos simétricos, no artigo de Seress (SERESS, 1997) ele diz
que grupos de permutacao é a area da teoria de grupos computacional onde a andlise
da complexidade dos algoritmos estda mais avancada. Além disso, Seress publicou um
livro (SERESS, 2003) com mais conceitos e algortimos fortemente ligados a grupos de
permutagao. Um trabalho mais recente publicado por Romero (ROMERO, 2018) também
utiliza de conceitos da teoria de grupos computacional e do algoritmo SCHREIER-SIMS
para otimizar e desenvolver algoritmos que trabalhem com homomorfismo de grupos e

encontrem elementos de um grupo mediante pesquisas backtrack.

Os objetivos principais deste trabalho englobam o estudo de estruturas algébricas,
em especial a de grupos simétricos, para otimizar e desenvolver algoritmos que tenham a

capacidade de resolver problemas com caracteristicas simétricas.

Durante o desenvolvimento desse trabalho, foram utilizadas ferramentas disponi-
veis no GAP (The GAP Group, 2024b), que é um sistema open source com linguagem
propria de algebra discreta computacional com énfase particular na teoria computacional
de grupos, que providencia uma biblioteca com milhares de fun¢des que implementam

algoritmos algébricos escritos na linguagem do GAP.

Esse trabalho foi realizado seguindo a seguinte metodologia: a primeira e segunda
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etapas do projeto consistuiram na conducao de uma pesquisa abrangente de conceitos
matematicos e algoritmicos, respectivamente. Estas etapas sao essenciais para estabele-
cer uma base teodrica solida e para identificar trabalhos relacionados que servirao como
referéncia. Através dessa investigacao, foram reunidos conceitos matematicos, fungoes e
algoritmos que podem ser implementados no GAP que foram cruciais para o desenvolvi-
mento de solugdes mais otimizadas e eficientes para problemas complexos que envolvem

algebra computacional e teoria de grupos computacionais.

Dentro da fase de pesquisa da fundamentacao matematica, foram conduzidos diver-
sos estudos especificos para destacar os principais tépicos relacionados a teoria de grupos
computacionais com énfase em grupos simétricos, tais como defini¢oes e principais formas
de representacao de grupos simétricos, para melhor compreensao do leitor no decorrer do
trabalho.

Na segunda parte do projeto, além da fundamentagdo matematica, foram reali-
zados estudos de fungoes e algoritmos do GAP que utilizem dos conceitos estudados no

desenvolvimento da fundamentacdo matematica anterior.

A parte final do projeto envolveu a implementacao pratica daquilo que foi conce-
bido nas fases iniciais da monografia. Com base nos conceitos matematicos e algoritmos
do GAP estudados anteriormente, foi possivel desenvolver solugbes mais otimizadas e
eficientes para problemas com cunho mateméatico que envolvem algebra computacional e

teoria de grupos computacionais, como por exemplo a resolucao de um cubo magico.



10

2 Fundamentacao Tedrica

Neste capitulo, sera apresentado os principais conceitos matematicos para a mo-
delagem algébrica e analise do Cubo Magico. Serao introduzidas as bases da teoria dos
grupos, homomorfismos, grupos ciclicos e grupos de permutacao, que permitirao represen-
tar os movimentos do cubo. Além disso, abordaremos agoes de grupos, orbitas e blocos,
que serao ferramentas importantes para analisar como essas permutacoes atuam sobre as
pecas do cubo. Ademais, discutiremos a nocao de grupo livre, fundamental para descrever
sequéncias de movimentos por meio de geradores associados as faces do cubo. Por fim,
serao apresentadas as principais func¢oes do GAP, que retinem todos os conceitos descritos
anteriormente, para realizarmos a analise e o desenvolvimento do algoritmo que resolve o

cubo.

2.1 Grupos

A teoria de grupos computacionais, que é a utilizacdo de conceitos de estruturas
algébricas como grupos no desenvolvimento de novos algoritmos, é uma area de pes-
quisa bastante ativa, como pode ser visto pelo livro publicado pelo matemético hingaro
Akos Seress (SERESS, 2003), onde desenvolveu algoritmos fortemente ligados a grupos
de permutacao. Além disso, ao longo da ultima década, os trabalhos de Alexander Hulpke
(HULPKE, 2016) com énfase especial em grupos de permutagao dentro da teoria de grupos

computacionais, tém contribuido significativamente para essa area.

A seguir na fundamentacao tedrica do trabalho, serao repassados defini¢oes, pro-
posicoes e teoremas que serao de grande importancia para aprofundar o entendimento dos
conceitos e motivagoes por tras dos métodos de resolucao de problemas a serem investi-

gados no decorrer do trabalho.

Grande parte do estudo realizado nesta segao foi retirada de (IEZZI, 2003), que
apresenta de forma detalhada os conceitos e resultados matematicos utilizados. Também
utilizamos (HERSTEIN, 1975) e (HUNGERFORD, 1980).

Defini¢ao 2.1.1 (Grupo). Um grupo é um par (G,-), onde G é um conjunto ndio vazio
e” " :GxG =G, (r,y) € G x-y € G, é uma operagio bindria que satisfaz as

sequintes propriedades:

1. Associatividade: Para todos a,b,c € G, temos (a-b)-c=a-(b-c);
2. Elemento neutro: Fxiste e € G tal que, para todo a € G, valea-e =¢-a = a;

3. Elemento inverso: Para cada a € G, existea™ € G tal quea-a ' =a ' -a=ce.
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Exemplo 2.1.1. O conjunto dos inteiros Z. com a operac¢do de adicao forma um grupo.

O elemento neutro € 0 e o inverso den € Z ¢ —n.

Exemplo 2.1.2. O conjunto dos racionais Q* = Q—{0} com a operagio de multiplica¢io

forma um grupo. O elemento neutro é 1 e o inverso de r € Q* é %

Exemplo 2.1.3. Sejam Q um conjunto nao vazio e Sym(QY) = {f : Q@ — Q; f € uma
fungao bijetora}. Temos que Sym(€) é um grupo com a operag¢do composicao de fungoes.
De fato, (f o g) oh = fo(goh) para todas as fungoes f, g, h € Sym(Q), a fungao
x € Qv+ x € ) € elemento neutro e, se f é bijetora, entdo existe sua funcao inversa
7Y, que também ¢ bijetora. Se Q0 é um conjunto finito com n elementos, Sym(Q) é um

grupo finito com n! elementos.

Exemplo 2.1.4. Como caso particular do Exemplo 2.1.3, consideramos Q0 = {1,2,3} e

denotaremos Sym(Q2) = Ss. O grupo Ss € um grupo de permutagoes com 6 elementos.
Um grupo (G, -) também possui as seguintes propriedades:

e Unicidade do elemento neutro e € G,

« Unicidade do inverso a !, Va € G;

o Todo elemento de GG é regular para a operacao -, ou seja, para quaisquer a,z,y € G,

sea-r=a-y ou x-a=1Yy-a,entao r =y.

Para simplificar a notacao, escreveremos apenas G para um grupo (G, -) e ab para

a-b, coma,beQqG.

2.2 Subgrupos

Para ilustrar a ideia de subgrupo, consideremos o grupo (R,+). O conjunto dos

inteiros Z é um subconjunto de R que satisfaz duas propriedades essenciais:

1. Z é fechado em relacao a adigao, isto é, a soma de quaisquer dois niimeros inteiros

ainda é um ntmero inteiro;

2. (Z,+), com a operagdo de adigao induzida por (R, +), também é um grupo, como

vimos no Exemplo 2.1.1.
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Por isso, dizemos que (Z,+) é um subgrupo de (R, +). De maneira similar, o conjunto dos

nimeros racionais (Q,+) também é um subgrupo de (R, +).

Definigao 2.2.1. Seja (G, -) um grupo. Um subconjunto nao vazio H C G é um subgrupo

de G se, com a operagao induzida por G, (H,-) também é um grupo.

Se e é o elemento neutro de G, entdo {e} e o préprio G sdao subgrupos de G. Esses

sao chamados de subgrupos triviais.

Proposicao 2.2.1. Seja (G,-) um grupo. Um subconjunto ndo vazio H C G € um sub-
grupo de G se, e somente se, para quaisquer a,b € H, o elemento ab™* também pertence

a H, onde b= € o inverso de b em G.

Demonstracao. Suponha que H seja um subgrupo de G. Seja e o elemento neutro de GG
e ey o elemento neutro de H. Como todo elemento é regular em relagao a -, segue que
e =ey. Para b € H, sejam b~! e by;' os inversos de b em G e H, respectivamente. Como
b-b"'=e=b-by, temos b~' = by'. Finalmente, para a,b € H, como (H,-) é um grupo,
a-beHea-b'eH.

Reciprocamente, suponha que ab~! € H, para todos a,b € H. Como H nao é vazio,

1

existe 29 € H. Entao, e = xory' € H e x5' = exy' € H, logo H possui elemento

neutro e todo elemento de H possui inverso em H. Se a,b € H, entao b~! € H e assim
ab=a(b~")~! € H, o que implica que H é fechado para operacio de G. Associatividade
em H segue diretamente da de G, pois a(bc) = (ab)c para todos a, b, c € G. ]

Exemplo 2.2.1. Considere o conjunto
H={xeR"|z>0},

isto €, o conjunto dos numeros reais estritamente positivos. Verifiquemos que H é um

subgrupo de (R*,-), o grupo multiplicativo dos nimeros reais diferentes de zero.

Sejam a,b € H, entio a > 0 e b > 0. Como b > 0, temos que b=* > 0, pois o

inverso multiplicativo de um nimero positivo também é positivo. Consequentemente,
—1
ab—" >0,

ou seja, a-b=' € H. Portanto, H € fechado para a operacio considerada e, assim, constitui

um subgrupo de (R*,-).

Sejam G um grupo e H um subgrupo de G. Para a,b € G, definaa ~b se a'be

H. E sabido que “~” é uma relagao de equivaléncia.
Proposicao 2.2.2. Nessas condigoes, se a € G, a classe de equivaléncia de a é o conjunto

aH ={ah | h € H}.
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Demonstracao. Seja
la] ={r € G|z ~a}

a classe de equivaléncia de a. Vamos mostrar que [a] = aH. Se = € [a], tem-se a 'z =

h € H, e portanto « = ah € aH. Logo [a] C aH.

Reciprocamente, se x = ah € aH h € H, temos a 'x = h € H e assim a ~ z. Logo

x € [a] e, assim, aH C [a]. Portanto [a] = aH. O

Definigao 2.2.2. Seja H um subgrupo de um grupo G. Para um elemento a € G,

denomina-se classe lateral a esquerda de a médulo H o conjunto
aH ={ah | h € H}.

Analogamente, a classe lateral a direita de a modulo H é o conjunto

Ha={ha|h e H}.

Definicao 2.2.3. Seja G um grupo. Um subgrupo N de G € dito um subgrupo normal de
G se, para todo g € G en € N, tem-se

gng~t € N.

Lema 2.2.1. Um subgrupo N de G é normal em G se, e somente se, gNg~* = N para
todo g € G.

Demonstragio. Se gNg~' = N para todo g € G, certamente gNg~—' C N, de modo que
N é normal em G. Reciprocamente, suponha que N é normal em G. Se g € G, tem-se
gNg'CNe

g 'Ng=g'N(g")' CN.

Como g~ *Ng C N, entdo
N =g(g"'Ng)g~' C gNg~' C N,
donde N = gNg . O

Lema 2.2.2. Um subgrupo N de G é normal em G se, e somente se, toda classe lateral

a esquerda de N em G é também uma classe lateral a direita de N em G.

Demonstragio. A demonstracao deste lema encontra-se em (HERSTEIN, 1975). O

Lema 2.2.3. Um subgrupo N de G ¢é normal em G se, e somente se, o produto de duas

classes laterais a esquerda de N em G € novamente uma classe lateral a esquerda de N

em G.
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Demonstracao. Suponha que N seja um subgrupo normal de G e sejam aN, bN duas

classes laterais. Entdo:
(aN)(DN) = a(Nb)N = a(bN)N = (ab)NN = abN.

Logo, o produto (aN)(bN) é uma classe lateral de N. Reciprocamente, suponha que
(aN)(bN) = xN. Como ab = ae - be € (aN)(bN) = zN, temos que N = abN e
(aN)(bN) = abN, para todos a,b € G.

Fazendo a = e, obtemos NbN = bN, e assim Nb = bN para todo b € G. Logo, N

¢ um subgrupo normal de G. [

Definigao 2.2.4. Seja G um grupo e N um subgrupo normal de G. Chamamos de grupo

quociente o conjunto das classes laterais de N em G, denotado por
G/N ={aN |a € G}.
A operagio em G/N € definida por
(aN)(bN) = (ab)N, para todos a,b € G.

Esse conjunto, munido dessa operagdo, forma um grupo, cuja identidade é N = eN e o

inverso de alN é a ' N.

2.3 Homomorfismos de Grupos

A nocao de homomorfismo surge como uma forma de relacionar diferentes grupos.
A ideia central é que a estrutura algébrica de um grupo G possa ser transportada para
outro grupo H por meio de uma aplicacao que respeite a operacao dos grupos. Em outras
palavras, nao ¢é a igualdade de elementos que importa, mas sim a compatibilidade entre

as operacoes.
Definicao 2.3.1. Sejam (G,*) e (H,-). Uma aplicagao
f:G—H
¢ um homomorfismo de grupos se, para quaisquer elementos x,y € G, vale

flxxy) = f(z)- f(y) (1)

Para facilitar a notagao, escreveremos (1) como f(zy) = f(x)f(y) sem fazer dife-

renciacao entre as operacoes dos grupos G e H.

Definigao 2.3.2. Um homomorfismo de grupos f : G — H bijetor é chamado isomor-

fismo de grupos.
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Exemplo 2.3.1. Considere a aplicagdo
7 — 7, f(k)=F,

onde k denota a classe de equivaléncia de k modulo n.

Para quaisquer a,b € 7, temos

fla+b)=a+b=a+b= f(a)+ f(b).

Portanto, f é um homomorfismo de grupos de (Z,+) em (Zy,+).

Exemplo 2.3.2. Para a € Z um niumero fixo, definimos a aplicacdo

f:Z—7Z, f(m)=a-m.

Para quaisquer m,n € Z, temos
fm+n)=a(m+n)=am+an = f(m)+ f(n),
logo, f € um homorfismo de grupos.

Proposicao 2.3.1. Sejam G e J grupos multiplicativos, com elementos neutros denotados
por e e u, respectivamente. Considere ainda um homomorfismo de grupos f : G — J.
Entao, f(e) = u.

Demonstragio. Observe que f(e)f(e) = f(ee) = f(e) = uf(e). Assim, segue f(e) = u.

[
Proposicao 2.3.2. Sejam a € G e [ : G — H um homomorfismo de grupos. Entao,
flah) = fa)
Demonstragio. De fato, f(a)f(a™') = f(aa™t) = f(e) = u. Logo, f(a™') = f(a)™!.
[

Definicao 2.3.3. Seja f : G — H um homomorfismo de grupos. Definimos nicleo de f

o subconjunto

ker(f) ={z € G| f(z)=en}.

Proposicao 2.3.3. Seja H um subgrupo de G e f : G — J um homomorfismo de grupos.

Entao a imagem de H através de f, definida por

f(H) ={f(z) |z e H},

é um subgrupo de J.
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Demonstracao. Primeiro, como H é um subgrupo de G, temos que e € H, onde e é o
elemento neutro de GG. Pelo homomorfismo, f(e) = w, que é o neutro de J. Portanto,

u € f(H), garantindo que f(H) contém o elemento neutro.

Agora, seja ¢,d € f(H). Entao existem a,b € H tais que ¢ = f(a) e d = f(b).
Consideremos o produto

o™t = f(a) F(B)".

Pela Proposicao 2.3.2, f(b™') = f(b)™!, entao
cd™ = f(a)f(b7") = flab7h).

Como H é um subgrupo, ab~! € H. Portanto,

cd™' = f(ab™") € f(H),
o que mostra que f(H) é um subgrupo de J. O]
Observagao 2.3.1. Seja f : G — H um homomorfismo de grupos com ker(f) = K.
Temos que K é um subgrupo de G e, para g € G, consideremos a classe lateral a esquerda

g médulo K, gK. Se g1, go € G temos que g1 K = g2 K se, e somente se, f(g1) = f(g2)-

De fato, como classes laterais sao classes de equivaléncias, g1 K = g2 se, e somente se,

g1 = gok, para algum k € K, donde f(g1) = f(g2k) = [(92)f(k) = f(g2)em = f(g2).
Portanto, para qualquer g € G, os elementos da classe lateral gK tém a mesma imagem

f(g) em H.

Proposicao 2.3.4. Sejam f : G — H um homomorfismo de grupos e N um subgrupo
normal de G. Definimos a aplicagio p: G — G/N por

p(a) = aN.

Entao, p é um homomorfismo sobrejetor de grupos, cujo nicleo é exatamente N. O ho-

momorfismo p é chamado homomorfismo canénico de G sobre G/N.

Demonstracao. Para a,b € GG, temos
p(ab) = (ab)N = (aN)(bN) = p(a)u(b),
portanto, p é de fato um homomorfismo.

Sejay € G/N. Entao y = aN para algum a € G. Como p(a) = aN = y, segue que

i é sobrejetora. Finalmente, provemos que ker(u) = N.

O elemento identidade em G/N ¢ a classe N. Se a € ker(u), entao u(a) = aN = N,
o que implica a € N. Logo, ker(u) € N. Por outro lado, se a € N, entdo aN = N, e

portanto pu(a) = N, ou seja, a € ker(u). Assim, concluimos que

ker(p) = N.
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Proposicao 2.3.5. Seja f: G — H um homomorfismo de grupos. Entdo o nicleo de f,

é um subgrupo normal de G.

Demonstragio. Temos que N = ker(f) é um subgrupo de G pela Proposigao 2.3.2. Resta
verificar que N é normal. Para isso, provemos que para todo a € G, vale a igualdade
aN = Na.

Se x € alN, entao x = ah, para algum h € N. Podemos escrever
r = ah = (aha™)a.
Como f(h) = ey, segue que

flaha™) = f(a)f(h)f(a™") = f(a)erf(a)™" = en.

Portanto, aha™' € N, e consequentemente x € Na. Assim, temos alN C Na. Analoga-

mente, temos que Na C alN.

Portanto, aN = Na para todo a € G, o que prova que N é um subgrupo normal
de G. m

Proposicao 2.3.6 (Teorema do Homomorfismo). Seja f : G — H wm homomorfismo

sobrejetor de grupos. Se N = ker(f), entdao o grupo quociente G/N € isomorfo a H.

Demonstragio. Nosso objetivo é construir um isomorfismo explicito entre G/N e H.

Note que os elementos de G/N sdo classes laterais da forma aN, com a € G,
enquanto os elementos de H sdo as imagens f(a), para a € G. Isso sugere considerar a
aplicagao

¢:G/N — H, ¢(aN)= f(a).
Se aN = bN, entdao b~'a € N = ker(f), o que implica f(b~'a) = ey. Portanto,
f07ta) = f(07) f(a) = f(b)" f(a) = en, logo f(a) = f(b).

Assim, a funcdo ¢(aN) = f(a) é bem definida.
Suponha que p(aN) = ¢(bN), isto é, f(a) = f(b), com a,b € G. Entao

en = f(b71)f(a) = f(b~"a),

o que mostra que b~*a € N e, portanto, aN = bN. Logo, ¢ é injetora.

Como f é sobrejetor por hipétese, para todo y € H existe a € G tal que y = f(a).
Nesse caso, se x = aN € G/N, ¢p(x) = p(aN) = f(a) = y. Logo, ¢ é sobrejetora.

Sejam aN,bN € G/N. Entao

2((@aN)(bN)) = ¢((ab)N) = f(ab) = f(a)f(b) = p(aN)p(bN).
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Portanto, ¢ é um homomorfismo de grupos.

Concluimos que ¢ : G/N — H é um isomorfismo de grupos. m

2.4  Grupos Ciclicos

Definicao 2.4.1. Seja G um grupo multiplicativo e a € G. Seja n € Z, definimos a™ por

recorréncia como:
e, sen =20,

n —
a" = q{a" ta, sen >0,

(a‘1>_n, sen < 0.

Sabendo que para quaisquer m,n € Z, vale a™a™ = ™", definimos o subconjunto
gerado por a como
[a] = {a™ | m € Z},

isto é, o conjunto de todas as poténcias inteiras de a. Sabemos que [a] nunca é vazio, pois

contém o elemento neutro e de G, j4 que e = a°.

Proposicao 2.4.1. Seja G um grupo multiplicativo e a € G.

(1) O subconjunto [a] é um subgrupo de G.

(it) Se H é um subgrupo de G tal que a € H, entdo [a] C H.

Demonstragio. (i) Sabendo que [a] nunca é vazio ja que e = a°. Sejam u,v € [a], com

u=a" e v =a" para alguns m,n € Z. Entao
w ' =a"(a") ' =ama" =a"" € [a].

Portanto, [a] ¢ um subgrupo de G.

(ii) Como H é subgrupo e a € H, podemos concluir que todas as poténcias inteiras

de a também pertencem a H. Logo, [a] C H. O

Definigao 2.4.2. Um grupo multiplicativo G é chamado de grupo ciclico se existe algum

elemento a € G tal que
G=la={ad"|meZ}.

Nesse caso, o elemento a é denominado gerador do grupo G.

Definigao 2.4.3. Seja n € Z, definimos a notacao aditiva de grupos ciclicos como:
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0, sen =0,
na=<a+(n—1)a, sen>0,
—n(—a), sen < 0.

Exemplo 2.4.1. O grupo aditivo (Z,+) é um grupo ciclico. Isso ocorre porque qualquer

inteiro pode ser expresso como maultiplo de 1 ou de —1.
Temos
Z={m-1|meZ}={m-(-1)|meZ}
Portanto,
Z=[1] = [-1],

e os elementos 1 e —1 sao os unicos geradores do grupo 7.

Proposicao 2.4.2. Todo subgrupo de um grupo ciclico é ciclico.

Demonstragio. Seja G = [a] um grupo ciclico multiplicativo com elemento neutro e, e seja
H um subgrupo de G. Entao cada elemento de H pode ser escrito como uma poténcia de

a, ou seja, x = a” para algum n € Z.
Se H = {e}, entao H é ciclico, gerado pelo préprio e.

Caso contrario, H contém algum elemento de poténcia nao nula. Como para cada
m € Z,a"™ € H sempre que a™ € H, podemos considerar apenas os expoentes positivos.

Seja h o menor inteiro positivo tal que a" € H. Seja b = a”, serd mostrado que H = [b].

Tomemos um elemento genérico x = a™ € H. Pelo algoritmo euclidiano, existem

inteiros ¢ e r com 0 < r < h tais que
n=hqg+r.

Logo,

r=a" = a"""" = (a")a" = bla".

Como b7 € H e x € H, o elemento a" = (b?)"'z também pertence a H. Pela

escolha de h como menor expoente positivo em H, devemos ter r = 0. Assim,

z =b? € [b].

Portanto, H C [b]. A inclusdo oposta é imediata, pois qualquer poténcia de b

pertence a H. Concluimos que

H = [b],

mostrando que H é ciclico. O
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Proposicao 2.4.3. Seja G = [a] um grupo ciclico e suponha que ezistam inteiros distintos

T e s tais que
a =a’.

Entao existe um inteiro positivo h > 0 tal que:

1. a" =e;

2. a" # e para todo inteiro r com 0 <1 < h.

Neste caso, h é chamado de ordem de a, e o grupo pode ser escrito como
G =[a] = {e,a,d? ... a"}.
Demonstragio. Sem perda de generalidade, suponha r > s. Entao
a(a) L= a0 = e

Portanto, existem poténcias positivas de a que resultam no elemento neutro e. Seja h o

menor inteiro positivo com a® = e.

A partir desse ponto, as poténcias de a se repetem ciclicamente:

Precisamos verificar que nao existem repeticoes antes de h. Suponha, por absurdo,

que a’ = a’ com 0 <1i < j < h. Entdo
@' =dl (") =e,

com 0 < 7 —i < h, o que contradiz a escolha de h como o menor inteiro positivo para o
qual a” = e.

Agora, considere um elemento arbitrario x € G. Por definicao, existe um inteiro

m tal que = a™. Pelo algoritmo da divisdo, existem inteiros g e r com 0 < r < h tal que
m = hq+ .

Assim,
r=a"=ad"" = (a")a" = eld" = d",

com 0 < r < h. Portanto, qualquer elemento de GG é uma das poténcias

Consequentemente, G = {e,a,a?,...,a" '} e a ordem do grupo é h. O



Capitulo 2. Fundamentacio Teorica 21

Definicao 2.4.4. A ordem de um elemento a em um grupo G € o menor inteiro positivo
h tal que

a’ =e.
Se G € ciclico, a ordem do gerador a coincide com o numero de elementos de G.

Exemplo 2.4.2. Um grupo ciclico de ordem h = 5 pode ser observado da sequinte ma-

e
“a,
‘a
a
/
‘a
a2

newra:

a3

Proposicao 2.4.4. Seja a um elemento de ordem h > 0 em um grupo G. Entao, para
qualquer inteiro m,
a™ =e see somente se h|m.
Demonstracao. Suponha que a™ = e. Pelo algoritmo euclidiano, existem inteiros q e r
com 0 < r < h tais que
m = hq+ .

Entao

e=a"=ad""" = (a")a" = el = a".

Como a™ = e, segue que a” = e. Pela definicao de ordem de a, o menor inteiro positivo h
satisfaz a" = e, portanto nao pode existir 7 > 0 tal que a” = e. Logo, r = 0 e m = hq, ou

seja, h | m.

Se h | m, entdo existe g € Z tal que m = hq. Logo,

a™ =a" = (a")1 = el =e.
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2.5 Grupos Simétricos

Os grupos simétricos, também chamados de grupos de permutacao, sao estruturas
algébricas fundamentais na teoria dos grupos, representando as simetrias de um conjunto
finito.

A teoria de grupos simétricos tem origem na segunda metade do século XVIII,
com trabalhos de matematicos como Joseph-Louis Lagrange, que estabeleceu a nocao de
permutacoes em um grupo. No entanto, os avangos conceituais mais importantes chega-
ram em meados do século XIX com Evariste Galois, onde desenvolveu a teoria dos grupos
para resolver problemas de solvabilidade de equagdes polinomiais. Os grupos simétricos
surgiram como uma maneira natural de estudar as permutacoes de raizes de polindmios,
permitindo a andlise da estrutura dos grupos de permutacoes, dando espaco posterior-

mente para o desenvolvimento da teoria de grupos computacionais.

Esse trabalho tera énfase em resolver problemas que envolvem o uso e manipulagao

de grupos simétricos, cuja analise serd aprofundada no decorrer do trabalho.

Defini¢ao 2.5.1. Sejam aq,as,...,a, € I, = {1,2,...,n} elementos distintos. Dizemos

que uma permutacio o € S,, é um ciclo de comprimento r se:
o(ay) = ag, oas) =as, ..., o(a,—1) = a,, o(a,) = ay,

e, além disso,

o(z) =z para todo x € I, \ {a1,a9,...,a.}.
O conjunto {ay,as,...,a.} € chamado de suporte do ciclo.

A notacao utilizada para representar essa permutacdo é:
O':(&l as ... CLT>.
No caso particular em que r = 2, o ciclo é chamado de transposicao.

Exemplo 2.5.1. Considere a permutacao o € Sy definida por:
12345
o= )
3 2 5 41

o(1)=3, o(3)=5, o(b) =1,

Verificamos que:

enquanto o(2) = 2 e o(4) = 4. Portanto, o é um ciclo de comprimento 3 cujo suporte é

{1,3,5}, e pode ser escrito em notagao ciclica como:

o=(13D5).
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Proposicao 2.5.1. Seja 0 = (ajas...a,) € S, um ciclo de comprimento r > 1. Entdo,

a ordem de o € r. Em particular, se e denota a permutagdo identidade de S,,, entao
(o) ={e,0,0%, ..., 0"}

Demonstragio. Pela definicao de ciclo, temos que 6~ !(a;) = a; paral < i <r,eo"(a;) =
ai, enquanto que o(x) = x para todo x fora do suporte {a1,...,a,}. Assim, o*(a;) = a;11
para 1 < i < r, de modo que o° # e quando 1 < i < r, dessa forma, r < o(c). Além
disso, se considerarmos i tal que 1 < i < 7, logo 0" (a;) = 0" (0" (ay)) = 0" (0" (a1)) =
o"(a1) = a; e, de forma andloga, 0" (a;) = a; para todo 1 < i < r, além de fixar todos os

outros elementos. Logo, 0" = e. Portanto, a ordem de o é r. O

Definicao 2.5.2. Dois ciclos de S,, sao chamados disjuntos se seus suportes nao possuem

elementos em comum.

Proposicao 2.5.2. Dois ciclos disjuntos comutam, isto €, se o e p sao ciclos disjuntos,

entao ou = po.

Demonstracdo. Sejam « e [ ciclos disjuntos de S,,, com suportes A e B, respectivamente.
Se z € A, entao (aof)(z) = a(B(z)) = a(x), pois f fixa x. Do mesmo modo, (foa)(x) =
Bla(r)) = a(x). Portanto, (a0 )(z) = (8o a)(x) em A. Se x € B, a demonstragao é
analoga. Se x ¢ AU B, temos «a(z) = z e f(x) = z, logo (o f)(z) = (Boa)(z) = .
Assim, ao = fBoa. O

Proposigao 2.5.3. Seja o € Sn, 0 # e. Entdo o pode ser escrito como produto de ciclos

disjuntos. Além disso, a decomposi¢cdo € unica a menor da ordem dos fatores.

Demonstracio. Seja o € S, com o # e. Para iniciar, tomemos o elemento 1 € [, =

{1,2,...,n} e consideremos a sequéncia obtida aplicando iteradamente o:
1, o(1), o%(1), a*(1),...

Existe o menor inteiro r > 0 tal que ¢”(1) = 1. Dessa forma, os elementos
L,o(1),0%(1),...,0" (1)

sao todos distintos, o que nos fornece o ciclo

or=(Lo(1)o*(1) ... "' (1)),

Agora, escolhemos o menor elemento a € I,, que nao pertence ao suporte de oy e satisfaz

o(a) # a. Aplicando o mesmo raciocinio a sequéncia

a, o(a), o*(a), o*(a),...,
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obtemos outro ciclo, que chamaremos o5, também correspondente a restricdo de o ao seu

suporte.

Mostremos que o1 e 09 nao compartilham elementos. Suponhamos que b perten-
cesse simultaneamente ao suporte de ambos. Entdo, terfamos b = ¢'(1) = o°(a) para
certos inteiros ¢, s > 0. Isso implicaria que a estaria no suporte de oy, contrariando a

escolha de a. Logo, o1 e 09 sao disjuntos.

Repetindo o processo, apés um ntmero finito de passos, obtemos ciclos o1, 09, . . . , Oy,
todos disjuntos. Como a composi¢ao o105 - - - 0,,, atua da mesma forma que o sobre todos

os elementos de I,,, concluimos que
0= 0109 Op.
m

Proposicao 2.5.4. Sejan > 1. Entao, qualquer permutacao em S, pode ser escrita como

um produto de transposigoes.

Demonstracao. Basta observar que um ciclo de comprimento r pode ser decomposto em

transposigoes. Para aj, as, ..., a, € {1,2,...,n} distintos, tem-se:
(a1 az ag ... a.) = (a1 a.)(ay a,—1) - (ay az).

Assim, dado o € S, pela proposi¢ao 2.5.3 sabemos que ¢ pode ser representada
como produto de ciclos disjuntos. Aplicando a decomposi¢ao acima a cada um desses
ciclos, obtemos uma expressao de ¢ como produto de transposi¢oes. Portanto, toda per-

mutacgao de S, pode ser escrita nesse formato. O]

Exemplo 2.5.2. O ciclo (1234) é o produto (14)(13)(12) = (1234), pois

(12) , (13)  (14)

1 > 2 2 2

5 12 1 ,08), 4 (4 4

(12, (13) . (14

3 3 1t 4

4:(12) 4:(13) 4::(14)>1

2.6 Acao de Grupos

Seja Sym(£2) o grupo das permutagdes de um conjunto 2. Dado z € Q e g €
Sym(£2), indicaremos a aplicacdo de g sobre z por g-x. Observe que, para g, h € Sym(f),

a compatibilidade da composicao com a operagao de grupo implica

h-(g-z)=(hg)- =
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Definicao 2.6.1. Sejam G um grupo e 2 um conjunto. Dizemos que G age em §) se existe
um homomorfismo

¢ : G — Sym(9Q).

Para cada g € G, a permutagio associada p(g) € denotada por x — g -z, com x € .

Assim, a acdo pode ser descrita como

v: G — Sym(Q)
g —  »(9): Q—Q
T—>g-x.

Uma vez que ¢ é um homomorfismo de grupos, tem-se que p(e) = idg, em que

1dg : 2 — Q é a funcao identidade de €. Assim, e - x = x, para todo = € €.

Definicao 2.6.2. Seja G um grupo que age sobre um conjunto 2. Podemos definir uma
relacao ~ em ) da sequinte maneira: para o, B € §2, escrevemos o ~ 3 se existir algum

g € G tal que
B=g-a.

A relagdo ~ € de equivaléncia e serd chamada de relacao induzida pela a¢do de G.

Definicao 2.6.3. As classes de equivaléncia da relacao ~ sao chamadas orbitas da acao

de G em 2. Para um elemento fizado o € ), sua orbita € dada por
G-a={g-a|geqG}.

Definicao 2.6.4. Seja G um grupo agindo sobre um conjunto ). Dizemos que a ag¢do
é transitiva se existir apenas uma orbita sob a acgdo, isto €, para quaisquer o, 3 € €,

existe g € G tal que
g-a=p.

Definigao 2.6.5. Seja G um grupo agindo sobre Q e seja A C Q um subconjunto ndo

vazio. Dizemos que A € um bloco da acdo se, para todo g € G, vale
g- A=A ou g-ANA=0.
Um bloco é dito nao trivial se satisfaz |A] > 1 e A # (.

Exemplo 2.6.1. Considere o grupo G = ((1 2)), que contém apenas o elemento neutro

e a transposi¢io (1 2). A agao € definida sobre o conjunto
0=1{1,2,3,4,5}.

A permutagao (1 2) atua apenas nos elementos 1 e 2, enquanto os demais permanecem

fizos. Assim, as orbitas sao:

{12}, {3}, {4}, {5}
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Portanto, a acao ndo € transitiva, pois hd mais de uma orbita.

Podemos identificar blocos da ac¢ao observando subconjuntos preservados por G.
Como (1 2) nao altera os elementos 3,4,5, cada um dos conjuntos {3},{4},{5} € um
bloco trivial. Além disso, como (1 2) apenas troca os elementos 1 e 2, o conjunto {1,2}

também é um bloco nao trivial, pois:
(12)-{1,2} = {1,2}.
Portanto, os blocos identificados sdo:

{12}, {3}, {4}, {5}, 9

Definicao 2.6.6. Uma acdo transitiva de G em €0 é chamada primitiva quando seus

unicos blocos sao os triviais, isto é, subconjuntos de tamanho 1 ou todo o conjunto 2.

Exemplo 2.6.2. Considere o grupo Sy atuando sobre Q = {1,2,3,4} pela a¢io natural,
isto €, 0 -i = o(i) para todo o € Sy. Essa agao é transitiva, pois para quaisquer i, j € )
existe uma permutacao em Sy enviando i para j. Além disso, os unicos blocos dessa ag¢do
sao os triviais {i}, com i € Q, e o proprio conjunto ), pois qualquer subconjunto com dois
elementos pode ser enviado para qualquer outro par por uma permutacao de Sy. Assim, a

acao ¢ primitiva.

2.7 Grupos Livres

Definicao 2.7.1. Seja X um conjunto. Dizemos que um grupo F' € livre sobre X quando,

para qualquer grupo G e qualquer aplicagdo

0: X — G,
existe um unico homomorfismo de grupos

. F—G
tal que 0'(x) = 6(z) para todo x € X.

O diagrama abaixo ilustra essa situagao:
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Assim, um grupo livre sobre o conjunto X pode ser visto como o grupo que se pode
construir a partir de X, sem impor relagoes adicionais além das necessarias para ser um

grupo. No que segue, vamos mostrar a existéncia de um grupo livre sobre um conjunto

X.

Seja X um conjunto. Vamos construir um grupo F' livre sobre o conjunto X. Se
X =0, entao F é o grupo trivial (e). Se X # (), consideremos um conjunto X ! disjunto de
X, contendo o mesmo niimero de elementos, isto é, | X| = | X ~!|. Denotamos uma bije¢ao
z+— 27! de X em X!, e dizemos ainda que a imagem de x € X é z~!. Introduzimos
ainda o elemento 1, distinto dos elementos de X U X!, que atuard como o elemento

neutro.

Uma palavra sobre X é uma sequéncia (aj,as,...), com a; € X U XU {1},
tal que existe um numero n € N* com a;, = 1 para todo k > n. A sequéncia constante

(1,1,1,...) é chamada de palavra vazia e é denotada por 1.
Uma palavra (aj,as, ...) sobre X é dita reduzida se:
(i) Para todo x € X, z e ! ndo aparecem adjacentes, isto ¢,
G=r=a1#r " e a=0"'=an #x,
para todo i € N*.

(ii) Se ax = 1, entdo a; = 1 para todo i > k.

A palavra vazia 1 é reduzida, e toda palavra reduzida nao vazia é da forma

At A
(xtag? - 1,100,

1

onde n € N*, z; € X, e \; = £1. Por convencdo, 2! = x e 27! é o inverso formal de z.

Por simplificacdo, denotaremos essa palavra simplesmente por z7'z5? - - S
Observa-se ainda que duas palavras reduzidas
A1 A 1 ()
'Tl ...l”n;"n e yl ...yn’”
sao iguais se, e somente se, m=nex; =1;, \; = 0; paracada i1 =1,2,...,n.

Assim, podemos identificar X com sua imagem e considerar X C F(X), onde

F(X) é conjunto de todas as palavras reduzidas sobre X.

Definimos agora uma operacao binaria em F' = F(X). A palavra vazia 1 atua

como elemento identidade, ou seja, wl = 1w = w, para toda palavra w € F.

Queremos que o produto de palavras reduzidas nao vazias seja dado por justapo-
sicao, isto é,

(")) = 2ty
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No entanto, essa palavra resultante pode nao ser reduzida, por exemplo, se )™ = y; o

Portanto, definimos o produto como a justaposicao seguida de possiveis cancelamentos de

termos adjacentes da forma xz~! ou 27 1x.

Sejam

Al A 61 )
Ty Tyt e Yoy

palavras reduzidas nao vazias sobre X, com m < n. Seja k o maior inteiro 0 < k < m tal

que
g gy =01, k-1
xmfj_ijrl ) para j =U,1,..., v — 1.
Entdo definimos
A1 Am—k Opt1 5
oyt T Yy Y, se k <im,
Moo AmN(a81 o 8n ) S n
('7‘“'1 T )(yl yn)_ Yn+1 " Yn' Sek:m<n,

1, se k=m =n.

Se m > n, o produto ¢é definido de maneira analoga. Assim o produto de palavras

reduzidas é uma palavra reduzida.

Teorema 2.7.1. Seja X um conjunto ndo vazio e F = F(X) o conjunto de todas as
palavras reduzidas em X. Entdo F', munido da operacio bindria previamente definida,

forma um grupo. Além disso, tem-se que F' = (X).

Demonstragio. A demonstracao deste resultado pode ser encontrada em (HUNGER-
FORD, 1980). O

Teorema 2.7.2. Seja F' o grupo livre gerado por um conjunto X e seja p : X — F a
aplicagao de inclusao. Se G € um grupo e f : X — G € uma aplicacio de conjuntos, entdo

existe um unico homomorfismo de grupos f: F — G tal que fo p=f.

Demonstragio. A demonstracido deste resultado pode ser encontrada em (HUNGER-
FORD, 1980). m

2.8 O GAP

O GAP (The GAP Group, 2024b) (Groups, Algorithms, Programming) é um sis-
tema algébrico computacional desenvolvido principalmente para pesquisas em algebra
discreta, com énfase em teoria de grupos. Sua linguagem de programacao e extensa bibli-
oteca de fungoes o tornam uma ferramenta poderosa para manipular grupos, subgrupos,

homomorfismos, anéis e outros objetos algébricos.

A historia do GAP remonta aos anos 1980, quando foi criado no Lehrstuhl D fiir

Mathematik da Universidade RWTH Aachen, na Alemanha. Inicialmente, o foco era em



[\ =

Capitulo 2. Fundamentacio Teorica 29

fornecer suporte para a teoria de grupos computacional, mas logo evoluiu para abarcar

uma série de areas, como algebra e combinatoria.

O GAP é mantido e desenvolvido pela comunidade cientifica, sendo um software
de cédigo aberto amplamente utilizado por pesquisadores pelo mundo, sendo a principal
ferramenta de pesquisa no trabalho de Romero (ROMERO, 2018), onde o GAP e conceitos
da teoria de grupos computacionais sao utilizados para otimizar e desenvolver algoritmos
que trabalhem com homomorfismo de grupos. Outro exemplo de uso do GAP é no caso do
trabalho de Hulpke (HULPKE, 2020) em que o GAP é utilizado no calculo de subgrupos
de grupos finitos. Nao s6 isso, Hulpke também ajudou na manutengao e criacao de alguns
algoritmos presentes na biblioteca do GAP, alguns deles envolvendo homomorfismo, dos

quais um deles foi utilizado nesse trabalho.

Nesta secao, destacamos os principais algoritmos que serao essenciais para mostrar
caracteristicas de problemas e resolve-los de forma inteligente. O manual do GAP com
informagoes fundamentais de uso como estrutura léxica, atribuicao de variaveis, estruturas
de condigoes e lagos e outros podem ser encontrados em (The GAP Group, 2024a). Em
Listing 2.1 esta o codigo fonte da fungao GroupHomomorphismByImages que se encontra no
pacote hom da bliblioteca do GAP, responsavel por construir homomorfismos de grupos

a partir da definicao explicita de imagens de geradores.

# GroupHomomorphismByImages( <G>, <H>, <Ggens>, <Hgens> )
# GroupHomomorphismByImages( <G>, <H>, <Hgens> )
# GroupHomomorphismByImages( <G>, <H> )

InstallGlobalFunction( GroupHomomorphismByImages,

function( arg )

local hom, G, H, Ggens, Hgens, arrgh;

arrgh := arg;

#verifica se a quantidade de parametros esta correta
if not Length(arrgh) in [2..4]

or not IsGroup(arrgh[1]) then

Error ("for usage, see 7GroupHomomorphismByImages") ;
fi;

#verifica se os geradores em arrg[2] formam um grupo
if not IsGroup(arrgh[2]) then
arrgh := Concatenation([arrgh[1],Group(arrgh[Length(arrgh)
DI,
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arrgh{[2..Length(arrgh)]});
fi;

G := arrgh([1]; H := arrgh[2];
#gera os grupos se nao foram passados os geradores como

parametro

if Length(arrgh) = 2 then

Ggens := GeneratorsOfGroup (G);
Hgens := Generators0fGroup (H);
elif Length(arrgh) = 3 then
Ggens := GeneratorsOfGroup (G);
Hgens := arrgh[3];
elif Length(arrgh) = 4 then
Ggens := arrghl[3];
Hgens := arrgh[4];

fi;

#verifica se os geradores de G sao validos
if Length(Ggens) > 0O then
if not (IsDenselList(Ggens) and IsHomogeneousList (Ggens)
and Family0Obj (Ggens) = FamilyObj(G)) then
Error ("The generators do not all belong to the source");
fi;
fi;

#tverifica se os geradores de H sao validos
if Length(Hgens) > O then
if not (IsDenselist(Hgens) and IsHomogeneousList (Hgens)
and FamilyObj (Hgens) = FamilyObj (H)) then
Error ("The images do not all belong to the range");
fi;
fi;

hom := GroupGeneralMappingByImages (G, H, Ggens, Hgens);

#vefirica se o homomorfismo criado respeita as propriedades
de um mapeamento

if IsMapping(hom) then
return hom;

else

return fail;
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fi;

64 end ) ;

Listing 2.1 — Cédigo fonte da fun¢do GroupHomomorphismByImages no GAP

O objetivo principal dessa fungao ¢ criar um homomorfismo de grupos ¢ : G — H
especificando apenas como os geradores de GG sdo enviados em H. A ideia fundamental
¢ que, dado um conjunto de geradores, a imagem de todo o grupo é determinada pelas

imagens desses geradores.

o A funcdo aceita entre 2 e 4 argumentos: os grupos G e H, uma lista de geradores

de G (opcional) e suas imagens em H (opcional).

o Se apenas GG e H forem passados, o GAP utiliza os geradores padroes de ambos os

grupos.

o (Caso trés argumentos sejam fornecidos, os geradores de GG sao os padroes e apenas

as imagens em H sao especificadas.

» Se forem passados quatro argumentos, tanto os geradores de G quanto suas imagens

em H devem ser dados explicitamente.

o A funcao realiza algumas verificacoes de consisténcia como: conferir se os grupos
fornecidos sao validos;testar se os elementos especificados como geradores realmente
pertencem aos grupos correspondentes; garantir que listas de geradores e imagens

sejam homogéneas, que evita erros de interpretagao pelo GAP.

Por fim, a fungao invoca o procedimento interno GroupGeneralMappingByImages,
que, resumidamente, constroéi a aplicacao entre os grupos. Caso essa construcao seja bem-
sucedida, o resultado ¢ um homomorfismo de grupos valido; caso contrario, a funcao

retorna fail.

A fungdo GroupHomomorphismByImages ¢ fundamental para o desenvolvimento
de solucbes porque permite, de maneira pratica, definir homomorfismos sem precisar
descrevé-los de forma exaustiva em todos os elementos do grupo. Como todo homo-
morfismo é completamente determinado pelas imagens dos geradores, essa abordagem

é eficiente e natural em teoria de grupos computacional.

Exemplo 2.8.1 (Homomorfismo entre grupos de permutacao no GAP). Considere os
grupos G e H definidos como subgrupos do grupo simétrico Sz. Seja G = ((1 2),(2 3)) e
H = ((1 2 3)), onde desejamos construir um homomorfismo enviando os geradores de G

para geradores de H.

No ambiente GAP, fazemos:
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S3
Cc2

gap> G := Group( (1,2), (1,2,3) );; # G
gap> H := Group( (1,2) );; # H
# (1,2) > (1,2); (1,2,3) -> identity
gap> Himgs := [ (1,2), Identity(H) 1;

[ (1,2), O]

gap> hom := GroupHomomorphismByImages(G, H, Generators0fGroup(G), Himgs);
[ (1,2), (1,2,3) ] > [ (1,2), O ]

gap> IsMapping(hom);

true

gap> Image (hom, (1,2));
(1,2)

gap> Image(hom, (1,2,3));
O

A funcdo IsMapping verifica se o homomorfismo criado € valido, e as fungoes
Image retornam a imagem de um elemento passando o elemento e o homomorfismo como
parametros. A aplicacio definida acima é um homomorfismo de grupos porque as imagens

escolhidas respeitam as relacoes entre os geradores de G.

Outra fungao fundamental no GAP é a PreImagesRepresentative que se encon-
tra no pacote hom da bliblioteca do GAP, que permite determinar um elemento do grupo
original que seja mapeado em um elemento especifico da imagem de um homomorfismo.

O cédigo fonte dessa funcgao é apresentado em Listing 2.2.

#M PrelmagesRepresentative( <hom>, <elm> )

via images

InstallMethod( PreImagesRepresentative, "for PBG-Hom",
FamRangeEqFamElm,
[ IsPreimagesByAsGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ], O,
function( hom, elm )
if HasIsHandledByNiceMonomorphism(Source (hom)) then
# if we use the ‘AsGGMBI’ directly, it will be a composite
through
# a big group
return ImagesRepresentative( RestrictedInverseGeneralMapping(
hom ),

elm );
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else
return PreImagesRepresentative( AsGroupGeneralMappingByImages
( hom ),
elm );
fi;
end );

Listing 2.2 — Codigo fonte da func¢ao PreImagesRepresentative no GAP

O objetivo principal desta funcao é encontrar um representante no grupo fonte
que seja enviado em um elemento especifico da imagem de um homomorfismo. Em outras
palavras, dado um homomorfismo ¢ : G — H e um elemento h € H, o algoritmo busca

um elemento g € G tal que ¢(g) = h.

Em suma, a funcao funciona da seguinte forma:

« Ela verifica inicialmente se a origem do homomorfismo (Source (hom)) possui uma

estrutura tratada por um monomorfismo (HasIsHandledByNiceMonomorphism).

— Se sim, a funcao utiliza a RestrictedInverseGeneralMapping para restrin-
gir a inversa do homomorfismo, garantindo que o calculo seja feito dentro do
subgrupo relevante e evitando composicoes desnecessarias com grupos grandes,

ganhando eficiéncia em tempo e espaco.

— Em seguida, chama ImagesRepresentative para recuperar o elemento do

grupo fonte correspondente ao elemento da imagem.

« Caso contrario, o algoritmo transforma o homomorfismo em uma versao geral via
AsGroupGeneralMappingByImages e aplica recursivamente

PreImagesRepresentative.

A fungdo AsGroupGeneralMappingByImages é um procedimento interno do GAP
que transforma um homomorfismo especifico em uma representacao genérica baseada em
imagens de geradores. Essa conversao permite que operagoes de inversao ou busca de
pré-imagens sejam feitas de forma sistematica e consistente, independentemente da forma
original do homomorfismo. Essa func¢ao nao altera a semantica do homomorfismo, mas
oferece uma estrutura conveniente e uniforme para que os algoritmos do GAP realizem

operagoes de consulta, inversdo e manipulagao de elementos com eficiéncia.

Dessa forma, o algoritmo permite a recuperacao eficiente de pré-imagens em gru-
pos, sendo uma ferramenta essencial para explorar relacoes entre elementos de grupos

fonte e imagem sem precisar enumerar todas as combinagoes possiveis.

Exemplo 2.8.2. A sequir, é apresentado um exemplo simples de utilizacdo da funcao

PreImagesRepresentative no GAP, cujo objetivo é determinar um representante da
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pré-imagem de um elemento por meio de um homomorfismo entre grupos considerando

os resultados do exemplo 2.8.1.

# Escolhemos um elemento de H
gap> h := (1,2);;

# Buscando um representante de g em G tal que f(g) = h

gap> g := PrelmagesRepresentative(hom, h);;

gap> g;
(1,2)

gap> Image(hom, g); # Confirma que f(g) =h
(1,2)

Ao executar o cddigo, o GAP retorna o elemento (1 2) € S3 como um representante
da pré-imagem de (1 2) € Cy, verificando que sua imagem sob o homomorfismo realmente

coincide com o elemento especificado em H.

Outro algoritmo interessante é a funcdo Orbit que se encontra no pacote orb da
bliblioteca do GAP, que permite calcular a 6rbita de um elemento ou conjunto de elemen-
tos sob a acao de uma sequéncia de geradores de grupo. Como a implementac¢ao original
localizada no pacote orb tem centenas de linhas, em Listing 2.3 estd uma implementacao

alternativa para o algoritmo que mantém o contexto e escopo do trabalho.

orbit := function(a, x)
local delta, r, b, i;
r := Length(x);
delta := [a];
for b in delta do
for i in [1..r] do
if not b~x[i] in delta then
Add (delta, b~ x[i]);
fi;
od;
od;
return delta;

end ;

Listing 2.3 — Implementacao alternativa da fungdo orbit no GAP
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O objetivo desta funcao é determinar o conjunto de elementos que podem ser
alcangados a partir de um elemento inicial a ao aplicar todas as combinagoes possiveis de

uma lista de elementos do grupo = = [z, za, ..., z,].

Em suma, o algoritmo funciona da seguinte maneira:

o Inicialmente, a lista delta é criada contendo apenas o elemento a, que serd a base

da orbita.
e O algoritmo percorre cada elemento b atualmente em delta.

o Para cada b, aplica-se a acdo de cada gerador z[i] utilizando a operacao b*l!, que é

a representacao da acao do grupo.
« Se o resultado b*! ainda nao estiver presente em delta, ele é adicionado & lista.

» Este processo é repetido até que nao haja mais elementos novos a serem adicionados,
garantindo que todas as combinacoes possiveis de aplicagoes dos geradores tenham

sido consideradas.

o Por fim, o algoritmo retorna delta, que contém todos os elementos da érbita de a

sob a acao do conjunto de geradores .

A funcdo orbit constitui uma ferramenta eficiente para explorar a estrutura de
um grupo por meio de suas orbitas, permitindo identificar de forma sistematica todos os

elementos que podem ser gerados a partir de um elemento inicial.

Exemplo 2.8.3. No exemplo a seguir, considere o grupo Sz, agindo sobre o proprio

conjunto por meio da aplicacio das permutacoes em cada elemento.
gap> G := Group( (1,2), (1,2,3) );;

# Calculando a o6rbita do elemento 1 sob a agdo do grupo G
gap> orb := Orbit(G, 1);
[1, 2, 3]

Isso mostra que o grupo Sz pode mover o elemento 1 para qualquer outro elemento

do conjunto {1,2,3} por meio de suas permutagoes. Isso significa que a agao € transitiva.

Exemplo 2.8.4. Podemos também considerar agoes que nao sejam transitivas. No exem-
plo a sequir, o grupo G = ((12)) atua sobre o conjunto {1,2,3,4} porém apenas troca os

elementos 1 e 2, mantendo 3 e 4 fixos.
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# Definindo um grupo com apenas a transposigdo (1,2)

gap> G := Group( (1,2) );;

# Calculando as 6rbitas dos elementos de {1,2,3,4}

gap> orbl := Orbit(G, 1);
[1, 2]

gap> orb3 := Orbit(G, 3);
[ 3]

O que indica que a agdo do grupo G ndo € transitiva, pois nem todos os elementos
do conjunto podem ser alcancados a partir de qualquer elemento por meio das permutacoes

do grupo.

Outra funcao que sera fundamental em futuras analises é a funcao Blocks, que é
uma funcao interna do GAP, que, no contexto desse trabalho, tera como objetivo calcular
todos os subconjuntos B C () que satisfazem a seguinte propriedade: para todo g € G,
oug-B=Boug-BNB =, ou seja, calculara os subconjuntos que ou sao enviados
a si mesmos ou a um conjunto disjunto. A demonstracao detalhada original da funcao
Blocks pode ser consultada no capitulo 41, secdo 11 do manual do GAP (The GAP
Group, 2024a).

Exemplo 2.8.5. Consideremos o grupo G = ((1 2)(3 4),(1 3)(2 4)) que age sobre o
conjunto Q = {1,2,3,4}. Vamos utilizar a fung¢ao Blocks no GAP para determinar todos

0s blocos da agao deste grupo.

gap> G := Group( (1,2)(3,4), (1,3)(2,4) );
gap> Blocks(G, [1..4]);
(C1,2,3,471,01,27],0[3,41]1

A saida indica que existem trés blocos na agdo:
e {1,2,3,4} € o bloco trivial que corresponde ao conjunto completo;
e {1,2} € um bloco nao trivial;

e {3,4} € outro bloco nao trivial.

Esses blocos mostram que os elementos sao particionados em subconjuntos preser-

vados pela acao de G. Assim, a acao ndo € primitiva.
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3 Trabalhos Relacionados

O trabalho de Angie Tatiana Sudrez Romero (ROMERO, 2018), intitulado "Com-
putacao em Grupos de Permutacao Finitos com GAP", aborda algoritmos para grupos
de permutacao e sua implementacao no sistema GAP, com foco no estudo de agoes de
grupos em conjuntos finitos. O objetivo principal é descrever métodos para representar
grupos em computadores, calcular érbitas e estabilizadores, e explorar conceitos como o
conjunto gerador forte (BSGS) por meio do algoritmo Schreier-Sims. Os resultados in-
cluem algoritmos eficientes para identificar grupos transitivos, primitivos e elementos de
um grupo usando pesquisas de retrocesso (backtrack). Relaciona-se diretamente com o
tema de algebra computacional, aplicando os recursos do GAP ao estudo de grupos simé-
tricos e suas propriedades, destacando como ferramentas algoritmicas podem simplificar

e sistematizar calculos complexos em teoria de grupos.

O objetivo do artigo de Akos Seress (SERESS, 1997) é apresentar uma introducao
abrangente a Teoria Computacional de Grupos, destacando como algoritmos e ferramentas
computacionais, como o GAP, podem ser usados para resolver problemas em algebra de
grupos. O artigo explora métodos fundamentais, como o procedimento Todd-Coxeter e
técnicas de reescrita de termos, para investigar propriedades estruturais de grupos. Os
principais resultados incluem a descrigdo de algoritmos eficientes para manipular grupos
de permutacgao, reconhecer grupos matriciais e calcular tabelas de caracteres, oferecendo
uma base solida para aplicagoes praticas em areas como teoria dos grafos e codificacao.
Este artigo se relaciona diretamente com a dlgebra computacional com énfase em grupos
simétricos, ja que o GAP, um dos softwares destacados, ¢ amplamente utilizado para lidar
com representacoes de grupos simétricos, explorando bases, subconjuntos estabilizadores

e estruturas subjacentes para resolver problemas matematicos e computacionais.

Ja o trabalho de Gregory Butler (BUTLER, 1991) tem como principal objetivo
apresentar algoritmos fundamentais para a teoria de grupos de permutagoes, abordando
tanto a formulacao quanto a andlise de complexidade desses algoritmos. O trabalho se
concentra no desenvolvimento incremental das técnicas, introduzindo conceitos tedricos
de grupos e aplicando-os na construgao e otimizagao de algoritmos especificos. O mé-
todo utilizado por G. Butler envolve a deducao passo a passo dos algoritmos, partindo de
fundamentos basicos da teoria dos grupos até alcancar métodos avangados, como o algo-
ritmo de Schreier-Sims. Os principais resultados incluem algoritmos otimizados para listar
elementos de grupos, calcular 6rbitas e vetores de Schreier, verificar primitividade e regu-
laridade de grupos, e determinar cadeias de estabilizadores e bases geradoras fortes. Este
trabalho se relaciona diretamente com o tema, pois o GAP é amplamente utilizado para

implementar os algoritmos apresentados. Esses métodos sao cruciais para resolver proble-
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mas de simetria e combinatéria em algebra computacional, especialmente no contexto de

grupos simétricos e suas representacoes em aplicagoes matematicas e computacionais.
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4 Desenvolvimento

O presente capitulo tem como objetivo descrever o processo de aplicagao pratica
dos conceitos tedricos abordados anteriormente, utilizando o sistema computacional GAP.
Nesta etapa, busca-se demonstrar como os fundamentos teéricos da algebra abstrata po-
dem ser implementados de forma computacional, permitindo a verificacao, exploragao e

experimentacao de propriedades algébricas de maneira sistematica e reprodutivel.

Neste trabalho, o problema central a ser abordado consiste na resolu¢ao do Cubo
Magico (também conhecido como Rubik’s Cube) por meio da teoria dos grupos de per-
mutacao. O cubo pode ser interpretado como um conjunto de elementos submetidos a
transformacoes que preservam sua estrutura, sendo cada movimento uma permutacgao de
pecas. Assim, o GAP serda empregado para modelar essas permutagdes, gerar o grupo
associado ao cubo e investigar propriedades como 6érbitas, blocos, elementos geradores e

possiveis solugoes por meio de representantes e homomorfismo.

Dessa forma, o desenvolvimento a seguir busca demonstrar como o GAP pode ser
utilizado na representagao e resolucao de um problema combinatério complexo através
de técnicas algébricas. O uso dessa abordagem evidencia a integracao entre a teoria dos
grupos e a computagao, permitindo compreender a estrutura interna do cubo e construir

algoritmos capazes de conduzir a sua solucao de forma eficiente.

O repositorio com os algoritmos criados no decorrer desse trabalho podem ser
encontrados em (LYRA, 2025).

4.1 Modelagem do Cubo Magico no GAP

Para abordar a resolucao do Cubo Magico por meio da teoria computacional de
grupo, iniciamos o processo de modelagem no GAP pela decomposicao estrutural do
cubo. Essa decomposicao e as técnicas de resolucao sao baseadas em um curso de algebra
computacional usando o GAP que pode ser encontrado em (SCHNEIDER C., LIMA 1.,
2024). Nesse sentido, resolver o cubo serd equivalente a encontrar a sequéncia de rotagoes
de cada face que leve a configuragao atual ao seu estado neutro, ou seja, com as pecas
de cada cor em suas respectivas faces. A estratégia consiste em destrinchar o cubo em
suas seis faces e numerar individualmente cada uma de suas pecas, de modo que cada
numero represente uma posicao especifica no estado inicial resolvido. Essa numeracao é
fundamental para representar de forma precisa o estado do cubo e as transformagoes que
ocorrem durante os movimentos. A Figura [1] ilustra essa numeragao adotada para as

pecas do cubo.
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1 2 8]
4 CIMA 5
6 7 8

25 26 27 53 34 35

28 DIREITA | 29 36 TRAS 37

30 31 32 38 39 40

41 42 43

44 BAIXO 45

46 47 48

Figura 1 — Numeracao das pecas do Cubo Magico utilizada para modelagem no GAP
(Autoria prépria).

Com essa convencao estabelecida, cada movimento possivel do cubo pode ser re-
presentado como uma permutagao dos nimeros, ou seja, uma reordenacao dos elementos
que descreve o deslocamento das pecas. Dessa forma, as rotagoes de cada face sao expres-
sas como permutagoes ciclicas, permitindo o uso de conceitos algébricos para analisar e

manipular as transformacoes do cubo.

No ambiente do GAP, definimos as permutacoes correspondentes as rotagoes no
sentido anti-horario, de cada uma das seis faces do cubo, definindo ¢ como a face CIMA,
d como a face DIREITA, e como a face ESQUERDA, t como a face TRAS, f como
a face FRENTE e b como a face BAIXO. Cada permutacao foi obtida observando-se
a nova posicao de cada peca apdés uma rotacao de 90° no sentido anti-horario da face
correspondente. Os ciclos indicam as posi¢oes trocadas nesse movimento. Por exemplo,
ao girar a face superior (CIMA), a peca 1 passa para a posi¢ao 6, a 6 para 8, a 8 para
3 e a 3 retorna a 1, resultando no ciclo (1,6,8,3). O trecho de cédigo a seguir apresenta
essa definicao, na qual cada permutacao indica como as posi¢oes das pecas se alteram em

funcao de um giro completo de uma face:

gap>c:=(1,6,8,3)(2,4,7,5)(9,17,25,33) (10,18,26,34) (11,19,27,35) ;
gap>e:=(1,40,41,17) (4,37,44,20) (6,35,46,22) (9,14,16,11) (10,12,15,13) ;
gap>f:=(6,16,43,25)(7,13,42,28) (8,11,41,30) (17,22,24,19) (18,20,23,21) ;
gap>d:=(3,19,43,38) (5,21,45,36) (8,24,48,33) (25,30,32,27) (26,28,31,29) ;
gap>t:=(1,27,48,14) (2,29,47,12) (3,32,46,9) (33,38,40,35) (34,36,39,37) ;
gap>b:=(14,38,30,22) (15,39,31,23) (16,40,32,24) (41,46,48,43) (42,44 ,47,45) ;
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gap>G:=Group( c, e, f, d, t, b );

Com essa construcao, o grupo G representa o conjunto de todas as configuracoes
possiveis do cubo que podem ser obtidas por meio de sequéncias de rotagoes das faces.
Cada elemento de GG corresponde a uma permutacao especifica das pecas, e as composig¢oes
entre essas permutagoes modelam as sequéncias de movimentos realizadas no cubo fisico.
Assim, o problema de encontrar uma solu¢ao para o Cubo Mégico torna-se equivalente
a determinar uma sequéncia de elementos de G que leve uma configuracao de volta ao

estado resolvido.

4.2 Analise das érbitas e blocos na acao do grupo

Com o grupo G definido, que modela todas as rotacoes validas do Cubo Magico,
torna-se importante investigar como esse grupo atua sobre o conjunto completo das 48
pecas numeradas. Para isso, utilizamos as fun¢oes Orbits e Blocks do GA P, que permitem

compreender a organizacao interna da ag¢ao do grupo e identificar padroes de simetria.

A funcao Orbits gera todas as Orbitas da acao de um grupo sobre um conjunto,
ou seja, os subconjuntos de pecas que podem ser alcangados mutuamente por meio das

permutacoes de GG. No nosso caso, aplicando a fun¢ao ao conjunto completo de pecas:
gap> orbitas := Orbits(G, [1..48]);

([C1, 6, 40, 27, 8, 35, 16, 41, 32, 25, 48, 3,

11, 24, 46, 33, 43, 17, 30, 14, 19, 9, 22, 38 1],
[ 2, 4, 29, 7, 37, 26, 47, 5, 13, 44, 34, 28,

12, 45, 21, 10, 42, 20, 36, 31,15, 18, 23, 39 ] ]

Ao calcular as érbitas em G com todas as pecas, obtemos uma lista de duas orbitas,
onde cada érbita contém pecas que podem se mover entre si por rotagoes do cubo. Se o
grupo G fosse transitivo sobre todas as 48 pegas, ou seja, cada peca pudesse atingir a
posicao de qualquer outra pega, teriamos uma tunica orbita. Entretanto, a existéncia de
multiplas 6rbitas evidencia que os subconjuntos de pecas de cantos (primeira 6rbita) e
centros/arestas (segunda orbita) nao se misturam entre si, preservando suas fungoes

estruturais no cubo.

Para aprofundar a analise da estrutura interna, avaliamos os blocos de cada orbita
separadamente. Um bloco é um subconjunto de elementos que, sob a ag¢do de qualquer
permutacao do grupo, é enviado para ele mesmo ou para outro bloco disjunto. Em termos

do cubo maégico, isso permite detectar grupos de pegas que se comportam de maneira
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estruturalmente equivalente sob as rotacoes. Isso pode ser implementado pelo algoritmo
em GAP Listing 4.1.

BlocosOrbitas:=function(orbitas, G)
local orb, blocos;
for orb in orbitas do
blocos := Blocks (G, orb);;
Print ("Blocos na orbita ", orb, ": ", blocos, "\n");
od;

end ;

Listing 4.1 — Algoritmo que calcula os blocos nas 6rbitas passadas por parametro.

A analise combinada das érbitas e dos blocos fornece uma visao detalhada das
restricdes impostas pelo grupo G, ou seja, a forma que o grupo G preserva o tipo das
pecas como as de canto e de arestas, permitindo compreender tanto a mobilidade dessas
pecas quanto os padroes que definem suas posicoes em relacao a estrutura do cubo. Ao

executar o algoritmo acima temos o seguinte resultado:

gap> BlocosOrbitas(orbitas, G);

Blocos na orbita [ 1, 6, 40, 27, 8, 35, 16, 41, 32, 25,
48, 3, 11, 24, 46, 33, 43, 17, 30, 14, 19, 9, 22, 38 ]:
(1, 9,31, [3,27,31, [6, 11, 171, [ 8, 19, 25 1],
[ 14, 40, 461, [ 16, 22, 41 ], [ 24, 30, 431, [ 32, 38, 48] ]

Blocos na orbita [ 2, 4, 29, 7, 37, 26, 47, 5, 13, 44,
34, 28, 12, 45, 21, 10, 42, 20, 36, 31, 15, 18, 23, 39 ]:
([2,341]1,[4, 101, [5,261]1, [7, 181,

(12, 371, [ 13, 201, [ 15, 44 ], [ 21, 28 1],

[ 23, 421, [ 29,361, [ 31, 457, [ 39, 471 1]

Esses resultados sao de grande importancia para a modelagem do problema. As
orbitas indicam quais pecgas podem realmente trocar de posicao entre si, enquanto os

blocos revelam como o grupo organiza as relagoes de simetria entre as partes do cubo.

Dessa forma, esses resultados mostram que é possivel identificar corretamente a
numeracao das pegas mesmo que inicialmente elas nao estejam numeradas, ja que a posi¢ao
de cada peca em suas respectivas Orbitas e blocos permite determinar a qual niimero ela

corresponde, garantindo a coeréncia da representacao algébrica do Cubo Magico.

Com a analise das 6rbitas e blocos concluida, podemos agora associar a numeracao

das pecas as suas cores correspondentes em cada face do Cubo Mégico mesmo sem ter o
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cubo numerado previamente. Considerando a convengao adotada no diagrama da Figura
[1], temos as seguintes associagoes de cores para cada face: CIMA é amarela, TRAS ¢

laranja, ESQUERDA ¢ azul, FRENTE é vermelha, DIREITA ¢ verde e BAIXO ¢

branca.

Por fim, com base nas andlises e definicbes das cores, temos como resultado as

seguintes tabelas de numeragao de acordo com as cores de canto [1] e aresta [2]:

Canto Cores do Canto Pecas
1 Amarela / Azul / Laranja 1,9, 35
2 Amarela / Verde / Laranja | 3, 27, 33
3 Amarela / Azul / Vermelha | 6, 11, 17
4 Amarela / Vermelha / Verde | 8, 19, 25
5 Azul / Laranja / Branca 14, 40, 46
6 Azul / Vermelha / Branca | 16, 22, 41
7 Vermelha / Verde / Branca | 24, 30, 43
8 Verde / Laranja / Branca | 32, 38, 48

Tabela 1 — Numeracao respectiva das pecas de acordo com as cores de canto do Cubo
Magico

Aresta | Cores da Aresta | Pecas
1 Amarela / Laranja | 2, 34
2 Amarela / Azul 4,10
3 Amarela / Verde 5, 26
4 Amarela / Vermelha | 7, 18
5 Azul / Laranja 12, 37
6 Azul / Vermelha 13, 20
7 Azul / Branca 15, 44
8 Vermalha / Verde | 21, 28
9 Vermelha / Branca | 23, 42
10 Verde / Laranja 29, 36
11 Verde / Branca 31, 45
12 Laranja / Branca | 39, 47

Tabela 2 — Numeragao respectiva das pecgas de acordo com as cores de aresta do Cubo
Magico

4.3 Resolucao do Cubo Magico

Com a analise algébrica do Cubo Magico concluida, passamos agora para a reso-
lucéo do cubo. E necessério criar uma ferramenta que permita manipular movimentos do
cubo como simbolos abstratos, antes de traduzi-los para as permutacoes especificas das
pecas. Para isso, construimos um Grupo Livre, denotado F'r, cujos geradores representam

cada rotacao possivel das faces do cubo. O uso do grupo livre é de extrema importancia
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para traduzir a resolucao do cubo, que, em vez de ser dada por um produto de ciclos,
passa a ser expressa em funcao dos geradores de F'r, os quais sao simplesmente letras

representando cada uma das faces do cubo.
gap> Fr = FreeGroup(HC" "EH HF" |ID’| ||T|l |IBH) .

O grupo livre F'r é entao relacionado ao grupo G por meio de um homomorfismo

criado pela funcao GroupHomomorphismByImages:

gap> hom := GroupHomomorphismByImages(Fr, G, GeneratorsOfGroup(Fr),
Generators0fGroup(G));

Com o homomorfismo criado, é possivel determinar os passos necessarios para
resolver o cubo a partir de qualquer configuragao atual por meio da execucao da funcao
PreImagesRepresentative. No entanto, nos falta traduzir para o GAP como estd a
situacao atual do cubo em maos, ou seja, escrever via cddigo a configuracao atual do

cubo.

Para traduzirmos uma configuracao do cubo para o GAP podemos utilizar da
funcao PermList que tem como objetivo transformar um vetor que representa a posicao
atual das pegas em uma permutacao expressa como produto de ciclos, o que facilita a

manipulacao algébrica da configuragao do cubo.

Por exemplo, seja a configuracao atual do cubo representada pela Figura 2 que é

o resultado de girar a face CIMA do cubo no sentido horario.

6 4 1
7 CIMA 2
8 5 3

28 DIREITA | 29 36 TRAS 37

30 31 32 38 39 40

41 42 43

44 BAIXO 45

46 47 48

Figura 2 — Configuracao atual do Cubo Magico ao rotacionar a face CIMA no sentido
horario. (Autoria prépria)
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Sera criado uma lista que contém 48 elementos, cada um indicando qual peca
ocupa determinada posi¢cao no cubo: o indice do vetor corresponde a posicao fisica no
cubo, enquanto o valor armazenado indica qual peca se encontra naquela posicao. Nesse
exemplo, a peca 6 estd na posicao 1, a peca 4 esta na posicao 2, a peca 1 esta na posicao

3, e assim por diante. Logo, a lista serd descrito da seguinte forma:

gap> posicaoAtual := [6, 4, 1, 7, 2, 8, 5, 3,
17, 18, 19, 12, 13, 14, 15, 16,
25, 26, 27, 20, 21, 22, 23, 24,
33, 34, 35, 28, 29, 30, 31, 32,
9, 10, 11, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48],

Ao passar essa lista para a funcdo PermList, o GAP interpreta a relagao entre
indices e valores como uma permutacao, identificando ciclos de elementos que se movem
entre si. O resultado é uma representacao compacta e estruturada da configuracao do
cubo, expressa em produtos de ciclos, que serd usada no passo final da resolucao do

problema.

gap> configAtual := PermList(posicaoAtual);

(1,6,8,3)(2,4,7,5)(9,17,25,33) (10,18,26,34) (11,19,27,35)

Por fim, supondo que configAtual seja a configuracdo do cubo em maos, podemos

utilizar a funcao:

gap> solucao := PrelmagesRepresentative(hom, configAtual);
C

Essa funcao retorna uma sequéncia de movimentos no grupo livre, que, quando

aplicada, leva o cubo a configuragao identidade, em outras palavras, resolve o cubo.

A solucao serd uma sequéncia de letras que referenciam a face a ser rotacionada
no sentido anti-horario: C para a face CIMA, D para a face DIREITA, E para a face
ESQUERDA, T para a face TRAS, F como a face FRENTE e B para a face BAIXO.
Letras seguidas de -1 significam que devem ser rotacionadas no sentido horario e letras
seguidas de "2 devem ser rotacionadas duas vezes no sentido horario se o expoente for
negativo e sentido anti-horario caso contrario. Nesse exemplo, para resolver o cubo, basta

rotacionar a face CIMA no sentido anti-horario uma vez.

Assim, o trecho de codigo Listing 4.2 apresenta o algoritmo final ResolveCubo

constituido de todos os procedimentos anteriores.
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ResolveCubo:=function(posicaoAtual)

local ¢, e, £, d, t, b, G, hom, Fr, configAtual, solucao;

c:=(1,6,8,3)(2,4,7,5)(9,17,25,33) (10,18,26,34) (11,19,27,35) ;

e:=(1,40,41,17) (4,37,44,20) (6,35,46,22) (9,14,16,11)
(10,12,15,13) ;

f:=(6,16,43,25)(7,13,42,28)(8,11,41,30) (17,22,24,19)
(18,20,23,21);

d:=(3,19,43,38) (5,21,45,36) (8,24,48,33) (25,30,32,27)
(26,28,31,29);

t:=(1,27,48,14) (2,29,47,12) (3,32,46,9) (33,38,40,35)
(34,36,39,37);

b:=(14,38,30,22) (15,39,31,23) (16,40,32,24) (41,46 ,48,43)
(42,44 ,47 ,45) ;

G := Group( c, e, £, d, t, b );
configAtual := PermList(posicaoAtual);

FI. = FreeGroup(HCll’IlEII,IIFII,HDII’IITII’IIBII);
hom := GroupHomomorphismByImages (Fr, G,

Generators0fGroup (Fr) ,Generators0fGroup(G)) ;

solucao:=PrelmagesRepresentative (hom, configAtual);

return solucao;

end ;

Listing 4.2 — Procedimento em GAP que resolve o Cubo Mégico.

4.4 Teste do Algoritmo

Como teste, vamos resolver alguns cubos méagicos embaralhados apos varias rota-

¢Oes aleatérias que resultaram nas configuragoes das Figuras 3, 4 e 5:
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33

31

27 29 40 46

CIMA

39

38

32

43 42 41

Figura 3 — Primeira configuragao de teste do Cubo Mégico. (Autoria prépria)

Primeiramente vamos colocar essa configuracdo em uma lista:

gap> posicaol:=[33,31,8,36,39,14,13,38,
27,29,40,15,10,43,42,41,
46,20,32,4,5,16,21,11,
48,47,19,26,12,6,7,9,
25,45,3,37,44,35,34,30,
22,28,17,23,18,24,2,1];

E por fim, colocar posicaol como parametro no algoritmo ResolveCubo.

gap> ResolveCubo(posicaol);
ExT*D™-1%T"—1*F*T"-2

Dessa forma, devemos fazer a seguinte sequéncia de sete rotagoes para resolver o
cubo: rotacionar face ESQUERDA no sentido anti-horario, TRAS no anti-hordrio, DI-
REITA no horério, TRAS no horario, FRENTE no anti-horario e TRAS duas vezes no

horario.

28

BAIXO
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48

29

32

48

DIREITA

31

45

TRAS

39

Figura 4 — Segunda configuracao de teste do Cubo Mégico. (Autoria prépria)

Primeiramente vamos colocar essa configuragao em uma lista:

gap> posicao2:=[33,7,38,20,36,22,2,1,
27,13,16,26,42,25,12,43,
41,34,35,23,15,24,21,14,
9,29,32,44,31,46,4,6,
48,18,3,45,5,17,39,8,
30,28,40,37,10,19,47,11];

E por fim, colocar posicao2 como parametro no algoritmo ResolveCubo.

gap> ResolveCubo (posicao2);
D™-1xC™-1xF*CxE~-1xC"2

Dessa forma, devemos fazer a seguinte sequéncia de sete rotagoes para resolver
o cubo: rotacionar face DIREITA no sentido horario, CIMA no horario, FRENTE no
anti-horario, CIMA no anti-horario, ESQUERDA no horario e CIMA duas vezes no anti-

horario.
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43

42

CIMA

37

40

27

33

46

29

35 34 41

36

31

26

DIREITA

39

47

25

28

38

48

45

BAIXO

44

32

30

TRAS

Figura 5 — Terceira configuracao de teste do Cubo Mégico. (Autoria prépria)

Primeiramente vamos colocar essa configuracdo em uma lista:

gap> posicao3:=[43,7,6,42,4,3,37,40,
24,23,27,13,29,35,34,41,
33,12,46,36,5,16,31,8,
14,10,11,26,39,25,28,38,

17,18,30,47,20,48,15,9,
22,45,19,2,21,1,44,32];

E por fim, colocar posicao3 como parametro no algoritmo ResolveCubo.

gap> ResolveCubo(posicao3);
ExC™-1%E"-3*%C"-1xD"-1%B"-1

Dessa forma, devemos fazer a seguinte sequéncia de nove rotagoes para resol-
ver o cubo: rotacionar face ESQUERDA no sentido anti-horario, CIMA no horario, ES-
QUERDA no horario trés vezes, CIMA no horario, DIREITA no horario e BAIXO horario.
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5 Conclusao e Trabalhos Futuros

O presente trabalho teve como objetivo explorar a aplicacao da Algebra Compu-
tacional no estudo de estruturas algébricas, com énfase particular nos grupos simétricos,
utilizando o sistema computacional GAP (Groups, Algorithms, Programming). Ao longo
do desenvolvimento, foi possivel compreender de forma aprofundada como conceitos teo-
ricos da algebra abstrata podem ser implementados e manipulados computacionalmente,

promovendo uma ponte concreta entre a matematica pura e a computagao simbdlica.

A fundamentacio tedrica apresentada forneceu a base necessaria para o entendi-
mento das estruturas de grupos, subgrupos, homomorfismos e agoes de grupos. A partir
dessa base, a utilizacao do sistema GAP permitiu ndo apenas a aplicacao pratica desses
conceitos, mas também a andlise de algoritmos fundamentais, que desempenham papel
central na investigacdo da estrutura interna das ac¢des de grupos, e no contexto deste

trabalho, no cubo magico.

A modelagem do Cubo Magico no ambiente do GAP demonstrou de forma concreta
como a teoria dos grupos simétricos pode ser aplicada a resolu¢ao de problemas reais e

complexos.

Conclui-se que a integragao entre teoria e pratica, mediada por sistemas como o
GAP, amplia significativamente as possibilidades de pesquisa. Além disso, a abordagem
adotada neste trabalho reforca a importancia de compreender os fundamentos matemati-
cos por tras das ferramentas computacionais, permitindo o desenvolvimento de algoritmos
mais eficientes e a interpretacao correta de seus resultados, contribuindo assim para o for-

talecimento da conexao entre a matematica e a computacao.

E importante ressaltar que a funcao PreImagesRepresentative retorna um repre-
sentante da classe lateral dada pelo nicleo do homomorfismo hom (4.3), como observado
na Observacao 2.3.1. Propomos como trabalho futuro a investigacdo de um algoritmo
para que o retorno da fun¢ao PreImagesRepresentative seja uma palavra de tamanho
minimo no grupo livre, garantindo a menor quantidade de movimentos para a resolucao

do cubo.
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