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Resumo

O processo de ensino e aprendizagem em programação de computadores apresenta

desafios significativos, que frequentemente resultam em dificuldades de compreensão e

desmotivação por parte dos estudantes. Este trabalho apresenta o desenvolvimento e a

avaliação do GPT Teacher, um agente de LLM para programação assistida integrado ao

ambiente Visual Studio Code (VSCode). O objetivo central foi projetar e implementar

uma ferramenta baseada em LLM com foco no suporte ao aprendizado de programa-

ção, capaz de apoiar a aquisição de competências em programação de forma mais eficaz

do que assistentes genéricos de codificação. A metodologia adotada envolveu a criação

de um protótipo funcional baseado em uma arquitetura de agentes duplos: um Agente

de Diagnóstico, responsável pela análise técnica do código, e um Agente de Orientação,

encarregado de traduzir essa análise em um diálogo construtivo e educativo para o es-

tudante. Os resultados da validação funcional evidenciam que a abordagem proposta é

robusta e promissora, confirmando a hipótese de que agentes de LLM, quando estrutu-

rados em um sistema especializado, podem atuar como aliados poderosos no processo de

ensino-aprendizagem de programação, conciliando rigor técnico e eficácia pedagógica.

Palavras-chave: IA Generativa, LLMs, Engenharia de Prompt, Agentes de LLM, Ensino

de Programação.
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Capítulo 1

Introdução

Conforme Moreira (2024), a crescente digitalização da sociedade impulsionou uma de-

manda sem precedentes por profissionais de tecnologia, com cursos voltados à área de tec-

nologia em alta, tornando o ensino de programação uma área de fundamental importância

estratégica e econômica. No entanto, o aprendizado de programação é notoriamente de-

safiador, marcado por uma alta curva de aprendizado, conceitos abstratos e a necessidade

de desenvolver um raciocínio lógico rigoroso.

Nesse contexto, diversas abordagens têm sido empregadas para mitigar as barreiras

enfrentadas por estudantes iniciantes de cursos de computação, sobretudo na aprendi-

zagem de programação. Entre essas iniciativas, destacam-se a adoção de metodologias

ativas de ensino e ambientes interativos de programação, que buscam superar os obstácu-

los relacionados à abstração conceitual, à motivação e ao desenvolvimento do raciocínio

lógico (BERSSANETTE; FRANCISCO, 2021; CALDERON; SILVA; FEITOSA, 2021).

Apesar dos avanços, muitos estudantes ainda encontram dificuldades em consolidar

conceitos fundamentais, o que reforça a necessidade de ferramentas que ofereçam suporte

contínuo, personalizado e capaz de estimular o raciocínio de programação. É justamente

nesse ponto que as tecnologias emergentes de inteligência artificial passam a desempenhar

um papel de destaque, ao possibilitar novas formas de apoio ao aprendizado. Nesse

cenário, Silva et al. (2024) apresenta um panorama atual da área, destacando o avanço

da Inteligência Artificial Generativa (GenAI), em especial dos Modelos de Linguagem

de Grande Escala (LLM), como uma tecnologia capaz de remodelar profundamente as

práticas pedagógicas.

No contexto do ensino de programação, essas ferramentas assistidas por GenAI, não

apenas oferecem suporte automatizado à escrita de código, mas também viabilizam experi-

ências de aprendizagem mais dinâmicas, interativas e personalizadas. Entre as tendências

apontadas, destacam-se a utilização de LLMs para fornecer feedback imediato sobre erros

conceituais e sintáticos, a adaptação das explicações ao nível de conhecimento do estu-

dante e a possibilidade de criar ambientes de aprendizagem mais acessíveis, inclusivos e

centrados no aluno (SILVA et al., 2024).
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Não obstante, os LLM criam oportunidades para práticas inovadoras, como a geração

de exemplos contextualizados, a simulação de diálogos no formato tutor-aluno e o estí-

mulo ao raciocínio crítico por meio de questionamentos guiados. Contudo, este panorama

também ressalta desafios relevantes, como a necessidade de calibrar a intervenção pedagó-

gica para evitar respostas excessivamente prontas, o risco de dependência tecnológica e a

importância de manter a curadoria docente como elemento central (ZHAI; WIBOWO; LI,

2024). Assim, a literatura converge para o entendimento de que a GenAI, quando aliada

a abordagens pedagógicas estruturadas, tem o potencial de atuar como uma ferramenta

transformadora no processo de ensino-aprendizagem em programação.

Diante do exposto, este trabalho situa-se na interseção entre a Inteligência Artificial

na Educação e a Engenharia de Software, com ênfase no desenvolvimento de ferramentas

de suporte ao processo de ensino-aprendizagem em programação. Diferentemente dos

assistentes de codificação convencionais, cujo foco recai principalmente na automação da

escrita de código. A proposta central consiste em adaptar agentes de LLM para atuar

como tutores personalizados integrados ao VsCode, ampliando sua função de ambiente de

desenvolvimento para também desempenhar o papel de espaço interativo e responsivo de

aprendizagem. Com isso, busca-se promover não apenas o apoio técnico, mas, sobretudo,

a mediação didática capaz de estimular a compreensão conceitual e o raciocínio crítico

dos estudantes.

1.1 Motivação

Conforme Moraes, Costa e Scholz (2022), existem diversas falhas no ensino tradicio-

nal de programação, muitas vezes baseado em aulas expositivas e listas de exercícios, que

instituem desafios de escalabilidade para oferecer suporte individualizado. Alunos fre-

quentemente se deparam com obstáculos que geram frustração e desengajamento, como

a dificuldade em depurar erros lógicos ou em conectar a teoria sintática com a aplicação

prática. A necessidade de um feedback imediato e personalizado é um dos fatores mais

críticos para o sucesso no aprendizado, mas raramente é viável em turmas numerosas.

Ferramentas de assistência de codificação por Inteligência Artificial (IA), representa-

das por ferramentas como (GitHub Copilot, 2025), revolucionaram a produtividade no

desenvolvimento de software. Estes sistemas são proficientes em prever e gerar blocos

de código, acelerando o trabalho de programadores, contudo,essas ferramentas são pro-

jetadas para auxiliar o processo de codificação e não contribuir no processo de ensino e

aprendizagem.

De acordo com Kiesler e Schiffner (2023) e Silva et al. (2024), essas ferramentas, ao

oferecer o código correto, gerado instantaneamente, sem um processo cognitivo, instituem

a capacidade de se tornarem uma “muleta” que impede o aluno de desenvolver suas

próprias habilidades de resolução de problemas.
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Com o advento das LLM, surgiram oportunidades para transformar o ensino de pro-

gramação, ampliando as formas de interação entre estudantes e máquinas (LIU et al.,

2025). No entanto, ainda carece de ferramentas que explorem esse potencial sob uma

perspectiva genuinamente didática, em vez de priorizar apenas ganhos de produtividade.

Grande parte das soluções atuais se concentra em fornecer respostas prontas à pergunta

“qual é a solução?”, quando, em um contexto educacional, seria mais relevante fomentar

a reflexão: “o que você tentou até agora e por que acha que não funcionou?”. Essa

lacuna evidencia a necessidade de repensar o papel dos tutores inteligentes, de modo que

a aprendizagem crítica e autônoma seja colocada no centro da experiência de programação

(FENG; LIU; GHOSAL, 2024). É justamente nesse desafio que se ancora a motivação

deste trabalho.

1.2 Problema

O problema central que guia este trabalho é como uma LLM pode ser efetivamente

projetada e integrada a um ambiente de desenvolvimento para atuar como uma ferra-

menta de suporte à aprendizagem de programação, em vez de um mero assistente de

autocompletar código, a fim de aprimorar ativamente a aprendizagem e a autonomia de

estudantes de programação.

Este problema se desdobra em desafios específicos:

❏ O Risco da Dependência Passiva: Ferramentas de IA atuais podem fomentar uma

abordagem de copiar e colar, na qual o aluno obtém o resultado sem compreender

o processo. O desafio é criar um sistema que promova o engajamento ativo e o

raciocínio crítico.

❏ A Lacuna entre Erro e Compreensão: Alunos frequentemente conseguem corrigir um

erro de sintaxe, mas falham em compreender a falha lógica subjacente. O desafio é

desenvolver um assistente capaz de fornecer explicações conceituais contextuais que

conectem o erro a um princípio fundamental da computação.

❏ A Falta de Suporte Personalizado e Escalável: A tutoria individual é um dos méto-

dos de ensino mais eficazes, mas logisticamente inviável para a maioria das institui-

ções. O desafio é simular essa experiência de tutoria um a um de forma escalável e

acessível, diretamente no ambiente de trabalho do aluno.

Buscar resolver as questões aqui levantadas significa não apenas avançar tecnicamente

na área de GenAI, mas também oferecer uma contribuição didática relevante para o ensino

de programação no ensino superior. O desenvolvimento de um tutor inteligente integrado

ao VsCode tem o potencial de ampliar o acesso a uma formação de qualidade, reduzir
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barreiras de aprendizagem e preparar de forma mais consistente os futuros profissionais

para os desafios complexos do desenvolvimento de software.

1.3 Hipótese

Não foram realizados testes com estudantes para propor uma validação científica, desta

forma, esta proposta se apoia no termo de hipótese técnica para designar proposições

relacionadas à avaliação funcional do artefato de software desenvolvido neste trabalho.

Diante do exposto, assume-se como hipótese que soluções baseadas em agentes comple-

mentares e integradas ao VsCode são funcionalmente capazes de identificar problemas em

códigos de programação e gerar feedback racional que, além de auxiliar o estudante, contri-

bui para reduzir a dependência passiva de ferramentas de GenAI, favorece a compreensão

dos problemas enfrentados e oferece suporte personalizado ao processo de aprendizagem

do estudante.

1.4 Objetivos

1.4.1 Objetivo Geral

O objetivo geral deste trabalho é conceber e implementar um protótipo funcional de

agente assistente de inteligência artificial, baseado em um LLM integrado ao VsCode, des-

tinado a atuar como ferramenta de apoio ao desenvolvimento de competências essenciais

no processo de aprendizagem de programação.

1.4.2 Objetivos Específicos

Para alcançar o objetivo geral, os seguintes objetivos específicos serão perseguidos:

❏ Desenvolver uma arquitetura de software baseada em múltiplos agentes de IA, onde

cada agente possui uma especialização pedagógica distinta.

❏ Aplicar técnicas avançadas de engenharia de prompt para instruir o LLM a atuar

como um tutor eficaz.

❏ Implementar o protótipo funcional de uma extensão para o VsCode, que servirá como

a interface de interação entre o estudante e o sistema de agentes. Esta extensão será

responsável por capturar o contexto do código do usuário e apresentar as orientações

geradas pela LLM de forma clara e interativa.

❏ Validar o protótipo sob a óptica de quantitativo de tokens utilizados para geração

da instrução e o tempo de inferência para geração da instrução.
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Ao alcançar estes objetivos, este trabalho pretende demonstrar a viabilidade do uso de

agentes baseados em LLM como suporte integrado ao ensino de programação. Com isso,

busca-se gerar conhecimento novo e relevante sobre como a Inteligência Artificial pode

ser moldada não apenas como uma ferramenta de produtividade, mas também como uma

parceira educacional eficaz na formação de desenvolvedores de software.

1.5 Organização da Monografia

Este trabalho está organizado em sete capítulos. A Introdução apresenta o problema,

a importância do tema, a hipótese e os objetivos da pesquisa. Em seguida, a Fundamen-

tação Teórica explica os conceitos principais para entender o projeto, como arquitetura

Transformer, agentes de IA e os frameworks utilizados, além de apresentar os trabalhos

correlatos. O capítulo de Método descreve a abordagem adotada, incluindo a percepção

da problemática, as decisões de design e de tecnologias. O capítulo de Design e Implemen-

tação mostra em detalhes como o GPT Teacher foi construído, apresentando a arquitetura

da solução, a modelagem dos agentes e a integração ao VSCode. O capítulo de Expe-

rimentação descreve os cenários de teste, as métricas e o procedimento de execução. A

Análise de Resultados discute os dados obtidos nos experimentos, avaliando tempo de

inferência, consumo de tokens e custos. Por último, a Conclusão resume o que foi feito,

destaca as contribuições do estudo e sugere os próximos passos.
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Capítulo 2

Fundamentação Teórica e Trabalhos

Correlatos

Este capítulo apresenta a fundamentação teórica que serve de alicerce para o desenvol-

vimento deste trabalho. Serão abordados os conceitos essenciais e as tecnologias pertinen-

tes que contextualizam a pesquisa, estabelecendo a base de conhecimento necessária para

a compreensão das metodologias e dos resultados que serão discutidos posteriormente.

A exposição parte dos princípios mais elementares, como Tokenização e Embeddings

Vetoriais, e avança para arquiteturas complexas como o Transformer, que é a base dos

Large Language Models. Em seguida, aborda-se o campo da Inteligência Artificial Gene-

rativa (GenAI) com foco na área da educação e o conceito de Agentes de LLM, detalhando

técnicas como Engenharia de Prompt. Por fim, o capítulo descreve as tecnologias e fra-

meworks específicos utilizados, como o LangChain, Agno e a API de extensões do VsCode,

conectando a teoria à aplicação prática deste trabalho.

2.1 Processamento de Linguagem Natural

De acordo com Eppright (2021), o Processamento de Linguagem Natural (NLP), ou

Natural Language Processing, é um campo da inteligência artificial e da ciência da compu-

tação que se dedica a capacitar as máquinas a compreender, interpretar, gerar e responder

à linguagem humana, seja em formato de texto ou voz. O principal objetivo do NLP é

diminuir a barreira de comunicação entre humanos e computadores, permitindo que a

interação ocorra de forma mais intuitiva e natural. Para isso, o campo utiliza modelos

computacionais para analisar a estrutura e o significado da linguagem, envolvendo desde

a análise sintática, que examina a estrutura gramatical das frases, até a análise semântica,

que busca extrair o significado e a intenção por trás das palavras.
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2.1.1 Tokenização

De acordo com Robison (2025), a tokenização é um processo decisivo no Processamento

de Linguagem Natural, que converte texto bruto em unidades menores, os tokens, para

que possam ser processados por redes neurais.

O conjunto de todos os tokens únicos forma o vocabulário dessa rede e a estratégia

de tokenização escolhida impacta diretamente sua performance e eficiência dela. As es-

tratégias tradicionais de tokenização apresentam um dilema fundamental, como aponta

Robison (2025), a tokenização em nível de palavra, embora intuitiva, é prejudicada por

vocabulários massivos e pela sua inabilidade de gerenciar palavras novas.

Em contraste, a tokenização em nível de caractere resolve os problemas de cobertura

de vocabulário e flexibilidade, mas acarreta um custo computacional elevado, uma vez

que resulta em sequências de entrada significativamente mais longas.

2.1.1.1 Codificação por Par de Bytes

De acordo com Yang et al. (2024), Codificação por Par de Bytes (BPE) é um algo-

ritmo de compressão de dados, projetado para codificar sequências de texto frequentes em

códigos menores. Seu propósito foi adaptado para criar um vocabulário de subpalavras,

permitindo que termos raros ou desconhecidos sejam representados como uma sequência

de unidades menores e conhecidas.

Nesse sentido, Brown et al. (2020) detalha a arquitetura do GPT-3, relatando o pio-

neirismo da aplicação da tokenização Byte Pair Encoding. Essa abordagem, introduzida

ainda no GPT-2 e aprimorada no GPT-3, foi fundamental para mitigar o problema de

palavras fora do vocabulário.

Em Hugging Face (2025) é explicado o funcionamento do BPE como um processo

iterativo que constrói o vocabulário a partir do zero. Inicialmente, o vocabulário é com-

posto por caracteres individuais (ou bytes, na técnica mais robusta de byte-level BPE, que

garante que nenhum caractere seja desconhecido). O algoritmo então analisa o corpus de

texto para encontrar o par de tokens adjacentes mais frequente e o funde em um novo

tokens, que é adicionado ao vocabulário.

Por exemplo, em um corpus com as palavras “hug”, “pug”, “lug”, “pun” e “gun”,

partindo de um vocabulário inicial [“h”, “u”, “g”, “p”, “n”, “l”], o par (“u”, “g”) é o

primeiro a ser mesclado, por ser o que mais repete, criando o token “ug” e inserindo

no vocabulário. Na iteração seguinte, o par mais comum é (“u”, “n”), formando o token

“un”. Esse ciclo de identificar, fundir e adicionar se repete até que o vocabulário atinja um

tamanho predefinido, resultando em um conjunto de tokens eficiente que vai de caracteres

únicos a palavras inteiras.
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2.1.2 Embeddings Vetoriais

De acordo com Yao et al. (2025) embeddings representam um conceito fundamental

em aprendizado de máquina, sendo uma técnica para representar dados de um espaço de

alta dimensionalidade em um espaço vetorial de dimensionalidade inferior. O objetivo

principal dessa transformação é capturar as relações semânticas e as características dos

dados originais em uma representação mais compacta e computacionalmente eficiente.

O Developers (2025) ilustra este conceito com a classificação de alimentos. Inici-

almente, propõe-se uma dimensão de “parecido com sanduíche”, na qual uma sopa de

beterraba teria um valor baixo e um shawarma, um valor alto. Essa representação uni-

dimensional, contudo, é insuficiente para classificar um strudel de maçã. A solução é

adicionar uma segunda dimensão, “parecido de sobremesa”, criando um espaço bidimen-

sional onde cada alimento é representado por um vetor de dois elementos. Nesse espaço,

o strudel teria um valor alto em “parecido de sobremesa” e baixo em “parecido com san-

duíche”, enquanto um cachorro quente teria o posicionamento inverso. Assim, o exemplo

transforma o conceito abstrato de classificação de um alimento em uma representação

numérica que captura suas características e relações.

Figura 1 – Alimentos representados em um espaço bidimensional com as dimensões “pa-
recido com sanduíche” e “parecido de sobremesa”

Adaptado de: Developers (2025)

2.1.2.1 Codificação Posicional para Embeddings Vetoriais

Um Embedding é uma representação vetorial um ou mais tokens, que captura seu

significado e contexto semântico. No entanto, quando se processa uma sequência de

tokens, como um parágrafo, o modelo precisa saber a ordem em que eles aparecem. Em

arquiteturas como a Transformer Vaswani et al. (2017), que analisam todos os tokens
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simultaneamente em vez de sequencialmente, a lista de embeddings por si só carece de

informação sobre a posição de cada token.

Para resolver esse problema, o artigo Vaswani et al. (2017) introduz o conceito de

Codificação Posicional (Positional Encoding). A ideia é injetar um vetor com informações

sobre a posição de cada tokens na sequência, somando-o diretamente ao seu embedding.

Os autores propuseram o uso de funções de seno e cosseno com diferentes frequências para

calcular essa codificação posicional. As fórmulas são as seguintes:

PE(pos,2i) = sin
(

pos

100002i/dmodel

)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)

Onde pos é a posição do token na sequência, i é o índice da dimensão dentro do vetor

de embedding (de 0 a dmodel −1) e dmodel é a dimensionalidade do vetor de embedding (por

exemplo, 512).

Cada dimensão i utiliza uma frequência diferente (controlada pelo termo no denomi-

nador), a combinação de senos e cossenos cria um vetor de codificação único para cada

posição na sequência. Além disso, essa formulação permite que o modelo aprenda a pres-

tar atenção em posições relativas, uma vez que a codificação para uma posição pos+k

pode ser representada como uma função linear da codificação da posição pos.

Dessa forma, para cada embedding na sequência, é somado o seu respectivo vetor de

Positional Encoding, resultando em um vetor final que combina a informação semântica

do token com a sua posição absoluta e relativa na sequência.

2.2 Inteligência Artificial Generativa

De acordo com a (PAVLIK, 2025), a Inteligência Artificial Generativa, ou simplesmente

GenAI, refere-se a um ramo do aprendizado de máquina capaz de criar novos conteúdos,

como áudio, imagem e vídeo, a partir de comandos de texto. A interação com esses

modelos pode ser notavelmente similar a uma conversa humana, permitindo processos de

aprendizado e diálogo por meio de instruções que podem variar em complexidade.

Dessa forma, a GenAI consolida-se como uma vertente inovadora da inteligência ar-

tificial, capaz de apoiar processos educacionais ao gerar conteúdos originais a partir da

identificação de padrões complexos em grandes volumes de dados. Viabilizada por mode-

los avançados de machine learning, como redes neurais profundas e arquiteturas baseadas

em transformadores, essa tecnologia permite a criação autônoma de materiais didáticos,

exemplos contextualizados e explicações personalizadas, além de favorecer interações mais

dinâmicas e adaptativas entre estudantes e ambientes de aprendizagem digitais.
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2.3 Modelos de Linguagem de Larga Escala - LLM

Segundo a Red Hat (2025), um Large Language Model, ou simplesmente LLM, trata-

se de modelo de inteligência artificial que utiliza técnicas de aprendizado de máquina

para compreender e gerar linguagem humana. Assim, segundo a Amazon Web Services

[AWS] (2025b), os LLMs são baseados na arquitetura de Generated Pretrained Transfor-

mers (GPT), uma poderosa estrutura de redes neurais com múltiplas camadas que utiliza

mecanismos de codificação e decodificação e auto-atenção.

Conforme descrito na arquitetura do GPT-3 Brown et al. (2020), os LLMs modernos

utilizam predominantemente uma arquitetura decoder-only, uma especialização da estru-

tura Transformer original. Tona-se importante ressaltar que essa arquitetura é extrema-

mente eficiente na geração de texto, objetivando prever uma distribuição de probabilidades

sobre os próximos tokens possíveis para completar um contexto.

Para converter as saídas brutas do modelo (os logits) nessa distribuição de probabili-

dade, utiliza-se uma variação da função softmax Kumar (2025). No contexto de geração de

texto, essa função incorpora um hiperparâmetro chamado temperatura (T), que permite

modular a aleatoriedade e a criatividade das respostas. A função é definida como:

Softmax(zi, T ) =
ezi/T

∑K
j=1 ezj/T

Nesta fórmula, zi é o logit associado ao token i, K é o número total de tokens no

vocabulário, e T é a temperatura. Um valor de T mais baixo cria uma distribuição que

favorece os tokens mais prováveis, gerando respostas mais determinísticas. Por outro lado,

um valor mais alto da temperatura, aumenta a probabilidade de tokens menos prováveis

serem escolhidos, o que resulta em um texto mais variado e criativo.

O desenvolvimento de modelos de larga escala ocorre, de modo geral, em duas etapas

fundamentais. A primeira corresponde ao pré-treinamento, no qual o modelo é exposto

a um volume massivo de dados textuais extraídos da internet, permitindo-lhe adquirir

representações estatísticas da linguagem natural, bem como assimilar conhecimentos fac-

tuais e padrões de raciocínio. A segunda etapa, denominada pós-treinamento, visa refinar

esse modelo base de forma a torná-lo mais útil e seguro em contextos de interação prática.

Esse refinamento é realizado inicialmente por meio do fine-tuning supervisionado, que en-

sina o modelo a seguir instruções e a estruturar respostas com base em exemplos curados

de alta qualidade. Em seguida, aplicam-se técnicas como o Aprendizado por Reforço com

Feedback Humano (RLHF), responsáveis por alinhar o comportamento do modelo às pre-

ferências humanas, de modo a assegurar que suas respostas sejam pertinentes, consistentes

e adequadas às expectativas do usuário.
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2.3.1 Transformer

De acordo com o Ferrer (2024), a arquitetura transformer foi originalmente criada

com o propósito de aprimorar a tradução automática neural. No entanto, sua aplicação

se estende a qualquer problema que envolva a conversão de uma sequência de entrada em

uma sequência de saída.

A arquitetura transformer, proposta por Vaswani et al. (2017), representou uma mu-

dança de paradigma no Processamento de Linguagem Natural ao solucionar gargalos

computacionais inerentes aos modelos sequenciais, como as Redes Neurais Recorrentes,

permitindo a paralelização e captura de dependências/relações de longo alcance entre os

tokens de uma frase. O transformer supera esses desafios através de uma arquitetura

baseada exclusivamente em múltiplos mecanismos de atenção.

Estruturalmente, o modelo é composto por um empilhamento de codificadores (Enco-

ders) e decodificadores (Decoders), conforme ilustrado na Figura 2. O codificador mapeia

uma sequência de entrada (x1,...,xn) para uma sequência de representações contínuas

e contextuais z = (z1, ..., zn). O decodificador, por sua vez, utiliza z para gerar uma

sequência de saída (y1,...,ym) de forma autorregressiva. Cada camada, tanto do codifica-

dor quanto do decodificador, contém duas subcamadas principais: uma camada de atenção

multi-cabeça (multi-head attention) e uma rede feed-forward conectada. Em torno de cada

uma dessas subcamadas, são empregadas conexões residuais seguidas por normalização

de camada, técnicas essenciais para estabilizar o treinamento de redes profundas.

O processamento inicia-se com a conversão dos tokens de entrada e saída em vetores

de representação contínua (embeddings). Como a arquitetura baseada em atenção não

possui uma noção intrínseca da ordem dos elementos na sequência, é necessário injetar

informações posicionais. Para isso, vetores de Codificação Posicional são somados aos

embeddings dos tokens, constituindo a representação final de entrada para a primeira

camada do codificador e do decodificador.

No codificador, a subcamada de auto-atenção (self-attention) permite que cada token

da sequência de entrada se relacione com todos os outros, gerando representações enri-

quecidas pelo contexto global da frase. O resultado da última camada do codificador é

um conjunto de vetores que serve de entrada para o decodificador.

O decodificador opera de maneira ligeiramente distinta. Sua primeira subcamada

de atenção, denominada auto-atenção mascarada (masked self-attention), garante que,

ao prever um token na posição i, o modelo apenas tenha acesso aos tokens anteriores,

preservando a propriedade autorregressiva. A segunda subcamada, conhecida como aten-

ção codificador-decodificador (encoder-decoder attention), é o ponto central da tradução.

Nela, os vetores gerados pela auto-atenção mascarada do decodificador atuam como con-

sultas (queries) para recuperar informações da saída do codificador com as respostas

(keys). Esse mecanismo permite que o decodificador foque nas partes mais relevantes da

sequência de entrada para gerar o próximo token da sequência de saída.
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Em um contexto técnico, Query (Q), Key (K), e Value (V) são três representações ve-

toriais distintas de cada token de entrada, geradas a partir da multiplicação do embedding

do token por matrizes de pesos treináveis. A Query representa o token atual, atuando

como uma consulta que busca informações relevantes nos demais embeddings da sequência

para aprimorar sua própria representação. A Key é uma representação de cada token na

sequência que é comparada (via produto escalar) com a Query para calcular um score de

alinhamento ou compatibilidade. O Value contém a informação semântica do token que

será efetivamente agregada na saída.

A similaridade entre um vetor Query e os vetores Key da sequência é calculada através

do produto escalar. Matematicamente, isso é expresso pela multiplicação matricial QKT.

O resultado é uma matriz de scores, onde cada elemento (i, j) representa a compatibilidade

da Query do i-ésimo token com a Key do j-ésimo token. Os scores de alinhamento são

escalados, sendo divididos pela raiz quadrada da dimensão dos vetores Key.

A função softmax é aplicada aos scores escalados. Esta operação normaliza os scores,

convertendo-os em uma distribuição de probabilidade, resultando no que é conhecido como

pesos de atenção. Cada peso, um valor entre 0 e 1, indica a importância relativa de cada

token na sequência para a representação do token atual.

Finalmente, a matriz de pesos de atenção é multiplicada pela matriz de Value (V).

Esta operação consiste em uma soma ponderada dos vetores Value, onde cada vetor é

multiplicado pelo seu respectivo peso de atenção. O resultado é um vetor de saída que

representa o token original, agora enriquecido com informações contextuais de toda a

sequência, ponderadas pela relevância de cada token.

Para aprimorar este mecanismo, o Transformer introduz a atenção multi-cabeça (Multi-

Head Attention). A auto-atenção é então aplicada em paralelo a cada uma dessas pro-

jeções. Os resultados das cabeças são concatenados e novamente projetados linearmente

para produzir a saída final. Isso permite que o modelo atenda a informações de diferen-

tes subespaços de representação em diferentes posições simultaneamente, capturando um

espectro mais rico de relações contextuais.

Camada de Feed-Foward

Outra camada importante é a de feed-foward. O artigo Vaswani et al. (2017) define

como uma camada que processa o vetor de cada palavra token de forma independente,

adicionando mais capacidade de aprendizado ao modelo após a camada de atenção ter

misturado as informações entre as palavras. Vale ressaltar que cada camada no codificador

e no decodificador contém uma rede feed-foward e seus pesos são diferentes.
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2.4 Agentes de LLM

De acordo com(Amazon Web Services [AWS], 2025a), um agente de inteligência artifi-

cial é um software que opera de forma autônoma em seu ambiente. Ele coleta informações

e as utiliza para realizar tarefas, tomando decisões independentes sobre as ações necessá-

rias para atingir os objetivos que foram previamente definidos por humanos.

Mediante essa perspectiva, um agente de IA pode ser projetado para auxiliar estu-

dantes no aprendizado de programação dentro do ambiente VsCode. Em vez de simples-

mente fornecer respostas prontas, esse agente interage com o aluno de forma pedagógica,

explicando conceitos fundamentais, sugerindo abordagens e guiando-o passo a passo na

resolução do problema. Assim, o agente promove um aprendizado ativo, incentivando o

aluno a compreender os conceitos e desenvolver suas próprias soluções.

2.4.1 Engenharia de Prompt

Conforme definido por (MESKÓ, 2023), a engenharia de prompt é uma área de pes-

quisa recente focada na criação, aprimoramento e aplicação de instruções (prompt). O

objetivo dessas instruções é direcionar o que os grandes modelos de linguagem (LLMs)

geram, auxiliando-os na execução de diferentes tarefas. Para guiar uma LLM de forma

mais precisa e minimizar o risco de alucinações em suas respostas, diversas técnicas po-

dem ser aplicadas. Essas estratégias incluem a definição clara do contexto, a formulação

de instruções detalhadas e a padronização do formato das entradas e saídas. Além disso,

é possível incorporar exemplos, restrições e regras explícitas para que o modelo siga uma

linha de raciocínio específica, promovendo maior confiabilidade e coerência nas respostas.

Damke, Gregorini e Copetti (2024) discute e avalia diversas técnicas de engenharia de

prompt:

❏ Zero Shot: é uma técnica na qual o modelo realiza uma tarefa sem qualquer exemplo

específico fornecido. Dessa forma, o modelo confia apenas no conhecimento obtido

durante o treinamento prévio. Essa abordagem é conveniente em casos em que não

há exemplos disponíveis ou quando a tarefa é relativamente simples

❏ Few-Shot Prompting: é uma técnica que fornece alguns exemplos para a tarefa

desejada antes de solicitar a execução de uma nova instância da tarefa. A utilização

dessa técnica é especialmente útil em casos nos quais é necessário que o modelo

aprenda padrões personalizados específicos.

❏ Chain-of-Thought Prompting: permite capacidades de raciocínios complexas através

de orientar o modelo a analisar o problema em etapas, dividindo a tarefa de proble-

mas a subproblemas ou etapas intermediárias. A abordagem é eficaz em problemas

que requerem raciocínio lógico, pois o modelo é capaz de explorar e justificar cada

passo do processo de resolução para fornecer uma solução final.
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Além disso, Antropic (2025) aconselha dividir tarefas complexas em subtarefas, cada

uma executada por um prompt ou cadeia de prompts diferentes. Essa abordagem aumenta

a precisão, a clareza e a rastreabilidade, permitindo a criação de agentes especializados

em cada tópico, com tarefas, personas e contextos bem definidos.

2.4.2 Ferramentas

As ferramentas capacitam um agente LLM a interagir com ambientes externos, supe-

rando as limitações de seu conhecimento estático. Elas formam um conjunto de interfaces

que pode incluir desde APIs de busca, até interpretadores de código, mecanismos de

matemática, bancos de dados e modelos externos DAIR.AI (2025). Dessa forma, as fer-

ramentas permitem tanto enriquecer o contexto do agente com informações atualizadas

quanto executar rotinas de código para realizar ações específicas quando necessário.

2.5 Frameworks de LLM

Frameworks de LLM são conjuntos de ferramentas, bibliotecas e abstrações de software

que simplificam e aceleram o desenvolvimento de aplicações complexas construídas sobre

LLMs. Em vez de interagir diretamente com a API de um LLM, o que pode ser complexo

e repetitivo, um framework oferece componentes reutilizáveis para as tarefas mais comuns.

Isso inclui gerenciar e otimizar prompts, conectar o LLM a fontes de dados externas (como

documentos ou bancos de dados), encadear múltiplas chamadas ao modelo para realizar

tarefas mais sofisticadas e dar ao modelo a capacidade de interagir com outras ferramentas

e APIs.

2.6 Langchain

De acordo com Langchain (2025c), o LangChain é um frameworks que facilita o de-

senvolvimento de aplicações baseadas em modelos de linguagem (LLMs). Ele cobre todo

o ciclo de vida dessas aplicações: desde a construção com componentes open-source e

integrações, passando pela monitoração e otimização via LangSmith, até o deployment

com suporte para APIs e assistentes usando LangGraph. Além disso, o LangChain oferece

uma interface padrão para integração com diversos modelos e ferramentas, como modelos

de embeddings e bancos vetoriais, tornando-o uma solução completa para criar e escalar

soluções baseadas em IA.

2.6.1 Chains

No LangChain Langchain (2025a), uma chain (ou corrente) é uma sequência de compo-

nentes, como modelos de linguagem de diferentes provedores, prompts ou outras funções,
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interligados de forma a executar uma tarefa mais complexa. A ideia central é que a

saída de um componente na sequência serve como entrada para o componente seguinte,

permitindo a construção de fluxos de trabalho automatizados e mais elaborados. Isso

possibilita que aplicações de inteligência artificial não se limitem a uma única chamada

de um modelo de linguagem, mas sim orquestrem múltiplas etapas para, por exemplo,

buscar dados em uma fonte, formatá-los com um prompt, obter uma resposta do modelo

e, em seguida, processar essa resposta.

2.6.2 Runnables

De acordo com a documentação do Langchain (2025b), um runnable no LangChain é

a unidade de trabalho fundamental que compõe as chains, representando qualquer com-

ponente (como um modelo de linguagem, um prompt, ou uma função) que pode ser

executado. A principal característica de um runnable é que ele implementa uma interface

padrão para chamadas de modelos de linguagem, permitindo que diferentes componentes

sejam facilmente encadeados com o operador “|”, garantindo que eles possam se comuni-

car de forma previsível e eficiente, facilitando a construção, a reutilização e a depuração

de fluxos de trabalho complexos.

2.7 Agno

O Agno (2025) é um framework de alta performance projetado para sistemas multi-

agente. Ele permite construir, executar e gerenciar sistemas de agentes de forma segura

na nuvem. O Agno se destaca por oferecer uma estrutura rápida para o desenvolvimento

de agentes, com funcionalidades como gerenciamento de sessão, memória, conhecimento

e suporte para interação humana.

2.8 Visual Studio Code

Segundo (Microsoft, 2025), o Visual Studio Code é um editor de código-fonte que se

destaca por ser leve e, ao mesmo tempo, poderoso. Ele funciona como um aplicativo de

desktop e é compatível com os sistemas operacionais Windows, macOS e Linux. Com-

plementando, (Stack Overflow, 2024) relata que o Visual Studio Code é o Ambiente de

Desenvolvimento Integrado mais utilizado entre iniciantes na programação. O estudo

revelou que 77,6% dos desenvolvedores que estão aprendendo a programar utilizam o

VS Code, mais que o dobro da porcentagem alcançada pelo segundo colocado, o IntelliJ

IDEA, com 29,9%.
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2.8.1 API de Extensões do Visual Studio Code

De acordo com a documentação do VS Code (Visual Studio Code, 2025), sua API

de Extensão é um conjunto de ferramentas e interfaces de programação, baseada em

JavaScript e TypeScript, que funciona como uma ponte para conectar funcionalidades

criadas por desenvolvedores diretamente ao núcleo do editor. Na prática, essa API permite

a criação de extensões para quase qualquer finalidade, desde adicionar suporte completo

a novas linguagens de programação e integrar ferramentas de análise e depuração, até

modificar a interface com novos painéis e personalizar totalmente a aparência com temas.

2.9 Trabalhos Correlatos

Nesta seção são apresentados os trabalhos correlatos que dialogam com o tema central

desta proposta, o qual se concentra na aplicação da Inteligência Artificial Generativa

como suporte ao ensino de programação de computadores. O objetivo é situar a pesquisa

no estado da arte, destacando abordagens já exploradas, seus principais resultados e as

lacunas que justificam o desenvolvimento do presente estudo.

Em Prather et al. (2023), os autores investigam como programadores novatos utilizam

GitHub Copilot (2025), um programador par com IA que oferece sugestões de código

inteligentes e conversacionais diretamente no VS Code, para acelerar o desenvolvimento.

Através de um estudo de usabilidade com 20 estudantes de graduação com pouca expe-

riência em programação, os pesquisadores observaram como eles resolviam problemas de

programação com e sem o auxílio da ferramenta. Os resultados revelaram uma relação dú-

bia: por um lado, os novatos acharam o Copilot extremamente útil para superar bloqueios

criativos, gerar código repetitivo e aprender novas sintaxes e bibliotecas, descrevendo a

experiência como mágica. Por outro lado, a ferramenta introduziu desafios significativos.

A principal dificuldade foi a tendência dos estudantes a uma superconfiança com a ferra-

menta, aceitando sugestões de código sem compreendê-las completamente, o que levava

a longos e frustrantes processos de depuração de erros que eles não sabiam como resol-

ver. Além disso, a constante geração de sugestões era, por vezes, uma fonte de distração,

interrompendo o fluxo de raciocínio dos participantes. O estudo conclui que, embora o

Copilot tenha um grande potencial como ferramenta de andaime, seu design precisava ser

aprimorado para incentivar uma compreensão mais profunda do código e mitigar os riscos

de dependência e distração para programadores em estágio inicial de aprendizado.

O estudo conduzido por Silva et al. (2025) teve como objetivo realizar um survey com

55 estudantes do curso de Sistemas de Informação da UFSM-FW, analisando o uso de

ferramentas de IA generativa, como ChatGPT e GitHub Copilot, no processo de apren-

dizagem de programação. Os resultados indicaram que tais ferramentas são amplamente

conhecidas e utilizadas, sendo percebidas pela maioria dos participantes como eficazes

para esclarecer dúvidas, fornecer exemplos e acelerar a escrita de código. Essa ado-
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ção refletiu-se em impactos positivos tanto no desempenho acadêmico (81,9% relataram

melhora) quanto na motivação (54,6% perceberam aumento). Entretanto, a pesquisa

também evidenciou desafios importantes, como a preocupação com informações incorre-

tas e, sobretudo, o risco de dependência excessiva, admitido por 74,5% dos estudantes,

que demonstraram receio quanto ao comprometimento do pensamento crítico e da ca-

pacidade de produzir código autoral. Como alternativa para mitigar tais problemas, os

alunos sugeriram a implementação de um "modo educacional"nas ferramentas, que privi-

legie o raciocínio e a construção gradual do conhecimento em vez da simples entrega de

respostas prontas. Reforçaram, ainda, a necessidade de um uso consciente e equilibrado,

de modo que a tecnologia atue como aliada complementar, e não como substituta do

desenvolvimento autônomo das competências de programação.

Em Melo e Moura (2023), os autores defendem que a IA generativa constitui uma

poderosa aliada no processo de aprendizagem, atuando como ferramenta para gerar in-

sights, estimular a criatividade e aprimorar a resolução de problemas. O estudo apresenta

orientações sobre como estudantes e professores podem explorar tais recursos de forma

eficaz. Para os alunos, o ChatGPT pode funcionar como um tutor personalizado, capaz

de corrigir e explicar códigos, realizar conversões entre linguagens, detalhar conceitos e

propor exercícios interativos e gamificados. Para os professores, a IA é descrita como um

assistente na elaboração de avaliações, na sugestão de projetos, na análise de trabalhos

e na oferta de feedback qualificado. O trabalho ainda enfatiza que a chave para o uso

adequado está na construção de prompts claros e bem definidos, uma vez que a ferra-

menta possibilita um aprendizado adaptativo e personalizado, ajustando a complexidade

e o estilo das respostas às necessidades individuais. Dessa forma, a dinâmica do ensino

de programação pode ser significativamente transformada, conciliando apoio pedagógico

e inovação tecnológica.

Em Silva et al. (2024), os autores propuseram um estudo com 40 alunos entre 17 e

27 anos e ressaltaram que a geração de código incorreto por inteligência artificial está

intrinsecamente ligada a desafios pedagógicos e éticos mais amplos. A confiança cega nas

respostas da IA pode levar os alunos a uma dependência excessiva, o que prejudica o

desenvolvimento de habilidades cruciais como a resolução de problemas, a depuração de

código e o pensamento crítico necessário para validar as soluções. Essa dependência fo-

menta um uso irresponsável da tecnologia e levanta sérias questões sobre plágio, tornando

difícil distinguir o trabalho original do aluno de uma solução gerada artificialmente. Além

de comprometer o aprendizado, o uso acrítico da ferramenta arrisca perpetuar vieses pre-

sentes nos seus dados de treinamento. Portanto, é essencial uma abordagem pedagógica

cuidadosa que ensine os alunos a utilizar essas ferramentas como um complemento, de-

senvolvendo o senso crítico para questionar e validar as respostas, em vez de substituírem

o raciocínio e a validação humana.

Complementando, em Kiesler e Schiffner (2023), os autores reforçam que um dos ris-
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cos mais significativos das ferramentas de IA na programação é sua capacidade de gerar

códigos que, apesar de parecerem corretos e serem apresentados de maneira convincente,

são funcionalmente incorretos. Este fenômeno é particularmente perigoso para estudan-

tes iniciantes, pois a falta de conhecimento aprofundado dificulta a identificação de erros,

levando-os a aceitar e internalizar soluções falhas como se fossem corretas. Frequente-

mente, a origem desses erros não está apenas no modelo de linguagem, mas na própria

interação com o usuário: a falta de clareza na pergunta ou uma descrição vaga do pro-

blema pode fazer com que a IA interprete a tarefa de forma equivocada, resultando em

um código que não resolve a questão pretendida.

2.9.1 Síntese dos Trabalhos Correlatos

Os achados do mapeamento revelam o duplo papel da GenAI no ensino de programa-

ção. Por um lado, as ferramentas demonstram grande potencial pedagógico, ao possibilitar

a resolução de exercícios, a explicação de códigos complexos, a oferta de feedback imediato

e a correção de erros, fatores que contribuem para aumentar a autoeficácia, a motivação e

o engajamento dos estudantes. Além disso, estudos indicam que tais recursos podem atuar

como tutores personalizados, capazes de adaptar explicações ao nível de conhecimento do

aprendiz e fornecer exemplos contextualizados que favorecem a compreensão.

Por outro lado, os trabalhos também alertam para riscos relevantes, como a confiança

excessiva nas respostas da IA, a dependência passiva na geração de soluções prontas, a

dificuldade em identificar erros quando o código parece convincente, além de questões

éticas associadas ao plágio e à perpetuação de vieses presentes nos dados de treinamento.

Tais fatores podem comprometer o desenvolvimento de competências fundamentais, como

o raciocínio lógico, a depuração autônoma de código, a validação crítica das soluções e a

autoria intelectual do estudante.

Nesse sentido, a literatura converge para a necessidade de que a integração da GenAI

em contextos educacionais seja orientada por estratégias pedagógicas estruturadas, que

promovam não apenas a produtividade técnica, mas também a formação crítica e autô-

noma do aprendiz. Essa lacuna abre espaço para o desenvolvimento de soluções que

conciliem rigor técnico e mediação didática, como a proposta deste trabalho, que busca

estruturar a interação entre IA e estudante de forma a estimular o raciocínio crítico e

reduzir o risco de dependência passiva.
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Tabela 1 – Síntese dos trabalhos correlatos e sua relação com a proposta

Trabalho Foco da Pesquisa Principais Achados e
Desafios

Relação com o GPT Tea-
cher (Proposta)

Prather et al.
(2023)

Usabilidade do GitHub
Copilot por iniciantes.

Auxilia em bloqueios cria-
tivos e na geração de có-
digo, mas gera superconfi-
ança e falta de compreen-
são.

Justifica o foco em fornecer
explicações em vez de apenas
código pronto.

Silva et al.
(2025)

Percepção de alunos de
SI sobre o uso de Inte-
ligência Artificial.

Melhora o desempenho,
porém 74,5% admitem
risco de dependência
excessiva.

Valida a demanda por um
"modo educacional"que insti-
gue o raciocínio.

Melo e Moura
(2023)

IA como tutor per-
sonalizado e assistente
docente.

Potencial para correção,
conversão de linguagens e
exercícios gamificados.

Serve de base para a definição
da persona e do tom de voz
pedagógico do agente.

Silva et al.
(2024)

Desafios pedagógicos e
éticos no uso da IA.

A confiança cega preju-
dica o pensamento crítico
e a autoria do código.

Reforça a necessidade de me-
diação didática e do conceito
de "andaime pedagógico".

Kiesler e Schiff-
ner (2023)

Avaliação de modelos
de linguagem para re-
solver problemas pro-
gramação.

Os modelos acertam
grande parte dos pro-
blemas, entretanto, suas
alucinações entregam
códigos aparentemente
corretos e de maneira
convincente, dificultando
a detecção de erros por
estudantes iniciantes.

Apoia a arquitetura de agen-
tes especializados para garan-
tir maior precisão técnica.

Fonte: Autoria Própria
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Capítulo 3

Método

Este capítulo descreve o percurso metodológico e técnico adotado para a concepção

e implementação do sistema de Ensino Assistido por Inteligência Artificial, com foco na

criação de agentes de inteligência artificial generativa voltados à orientação pedagógica

integrada ao ambiente de desenvolvimento VsCode. Serão detalhadas, a seguir, as etapas

essenciais do projeto, incluindo a definição da arquitetura do sistema, a aplicação de téc-

nicas de engenharia de prompt para moldar as interações pedagógicas e o desenvolvimento

da ferramenta sob a forma de extensão funcional no VsCode. O propósito é apresentar,

de maneira clara e sistemática, as decisões de design, as tecnologias empregadas e os de-

safios enfrentados, evidenciando como tais elementos se articularam para a materialização

de uma ferramenta capaz de oferecer suporte contextualizado, responsivo e inteligente a

estudantes e desenvolvedores em seu ambiente de codificação.

Com o intuito de oferecer uma visão geral do método adotado nesta pesquisa, a Figura

3 apresenta, de forma esquemática, as principais etapas que compõem o percurso metodo-

lógico. O diagrama sintetiza desde a concepção inicial do problema até o desenvolvimento

técnico do protótipo, abrangendo a definição da arquitetura do sistema, a aplicação da

engenharia de prompt e a implementação da extensão no VsCode.

3.0.1 Percepção da Problemática

A etapa de Percepção da Problemática constituiu o ponto de partida deste traba-

lho e teve como finalidade compreender os desafios inerentes ao processo de ensino-

aprendizagem de programação no ensino superior. Inicialmente, foram identificadas,

através da literatura, as principais dificuldades enfrentadas por estudantes em estágios

iniciais, tais como a elevada carga cognitiva associada à abstração de conceitos, a neces-

sidade de desenvolver raciocínio lógico estruturado e a tendência à desmotivação diante

de erros recorrentes.

Na sequência, realizou-se uma revisão da literatura sobre Inteligência Artificial apli-

cada à Educação e sistemas tutores, com o objetivo de mapear o estado da arte e compre-





Capítulo 3. método 34

se à implementação do backend e do agente de IA, que integraram tanto os mecanismos

de processamento do código quanto a camada de diálogo pedagógico.

Posteriormente, foram conduzidos testes de integração para verificar a consistência do

sistema como um todo, avaliando a comunicação entre módulos, a adequação das respostas

geradas e o alinhamento às diretrizes pedagógicas estabelecidas. Sempre que identificadas

falhas ou inconsistências, ajustes foram realizados até que os requisitos definidos fossem

plenamente atendidos.

3.0.3 Stack de Tecnologias e Ferramentas

A seleção das tecnologias para este projeto foi pautada pela busca de um ecossistema

coeso e de alta performance, capaz de suportar as demandas de um sistema de IA e, ao

mesmo tempo, integrar-se nativamente ao ambiente de desenvolvimento. A arquitetura

foi dividida em dois componentes principais: o backend, responsável pela lógica da API e

interação com a IA, e a extensão da IDE, que serve como interface para o usuário.

Tecnologias do Backend

❏ Python1: Foi a linguagem de programação escolhida como base para o backend de-

vido ao seu vasto ecossistema de bibliotecas para Inteligência Artificial, manipulação

de dados e desenvolvimento web. Ele permite uma prototipagem rápida e facilita a

construção de sistemas complexos de IA devido suas diversas bibliotecas.

❏ FastAPI: Para a construção da API, foi utilizado o 2https://fastapi.tiangolo.comFastAPI,

um micro-framework web moderno e de alta performance para Python. Sua escolha

se deve à sua velocidade, à geração automática de documentação interativa (via

OpenAPI3 ) e ao seu sistema de injeção de dependências, que simplifica a organiza-

ção do código. O FastAPI foi fundamental para a criação de endpoints robustos e

eficientes para as rotas da aplicação.

❏ LangChain: No início do projeto, o framework foi empregado para agilizar a mani-

pulação e o encadeamento de prompts com o Modelo de Linguagem. Contudo, em

fases posteriores e visando otimizar a latência ele foi retirado.

❏ Agno: O Agno é um framework para criação e orquestração de agentes de IA que

busca uma menor latência para sistemas multi-agênticos.

❏ SQLModel: Para o mapeamento objeto-relacional (ORM), a biblioteca SQLModel4

foi utilizada. Ela combina o poder do SQLAlchemy com a validação de dados
1 https://www.python.org
2

3 https://swagger.io/specification
4 https://sqlmodel.tiangolo.com
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3.0.4 Validação

Para este trabalho, a etapa de Validação compreendeu verificar a funcionalidade do

protótipo em relação às métricas funcionais e de desempenho da proposta. Para isso, fo-

ram avaliados principalmente o tempo de inferência, tanto do agente isoladamente quanto

considerando a carga de trabalho, e a quantidade de tokens necessárias para materializa-

ção dos prompts gerados durante as interações.

Esses testes permitiram mensurar a eficiência do sistema em termos de desempenho

computacional e consumo de recursos, assegurando que a ferramenta pudesse operar de

forma responsiva e em tempo hábil dentro do ambiente de desenvolvimento VsCode.

Ainda que esta etapa não tenha contemplado experimentos com estudantes, a aná-

lise funcional forneceu indícios relevantes sobre a robustez do protótipo e sua adequação

para suportar cenários reais de uso, constituindo-se como um passo inicial para futuras

investigações voltadas à eficácia educacional do agente tutor.

Posteriormente, foi realizada a análise dos resultados, considerando não apenas os

aspectos técnicos da ferramenta, mas também sua capacidade de oferecer suporte didático

significativo. Essa avaliação possibilitou identificar pontos fortes do protótipo, bem como

limitações a serem superadas em trabalhos futuros.

Assim, a fase de validação cumpriu o papel de consolidar a viabilidade do sistema

proposto, fornecendo evidências de que a arquitetura desenvolvida é funcional e que a

abordagem baseada em agentes complementares pode contribuir de forma efetiva para o

processo de ensino-aprendizagem de programação.
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Capítulo 4

Design e Implementação do GPT

Teacher

Esta seção apresenta o percurso de design e implementação do protótipo GPT Teacher,

cujo objetivo foi estruturar uma arquitetura de agentes de inteligência artificial generativa

com foco didático no processo de aprendizagem de programação, integrada ao ambiente

de desenvolvimento VsCode. O processo contemplou desde o planejamento conceitual da

arquitetura até a implementação efetiva da extensão funcional, buscando garantir tanto

a viabilidade técnica quanto a adequação da solução.

4.1 Arquitetura Geral da Solução

A arquitetura do sistema foi projetada seguindo um modelo cliente-servidor Kurose e

Ross (2013), visando o desacoplamento entre a interface do usuário, no ambiente VsCode,

e o processamento de inteligência artificial, localizado no backend. Essa separação de

responsabilidades, ilustrada na Figura 5, garante modularidade, escalabilidade e a cen-

tralização da lógica de negócio. A solução é composta por três camadas principais: o

cliente (Extensão do Projeto), o servidor (Backend) e a camada de persistência (Banco

de Dados).

O fluxo de operação se inicia no ambiente do cliente, o VsCode. A Extensão do

Projeto atua como a interface para o usuário, permitindo que ele, a partir de seu código

no ambiente, submeta uma pergunta ou solicite uma análise. A extensão é responsável

por capturar o trecho de código ativo no editor e a dúvida do aluno e encapsulá-los em

um payload. Este é então enviado via uma requisição HTTP para o backend. A imagem

6 mostra um exemplo onde o usuário faz uma pergunta para o agente com o contexto do

código ativo da IDE e a figura 7 o corpo da mensagem enviado ao servidor.

No servidor, a aplicação FastAPI funciona como um API Gateway, controlando as

rotas e orquestrando o fluxo de trabalho interno. Ao receber a requisição da extensão, o

FastAPI direciona o payload do aluno para o Agente de Diagnósticos de Códigos. Este
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boas práticas ou outras anomalias. O resultado deste processo é uma Análise do Código

estruturada, exemplificada no anexo A.1.3, que serve de insumo para a próxima etapa.

A análise técnica é então encaminhada ao Agente Tutor. Este segundo agente atua

como o tutor do sistema, sua função é traduzir o diagnóstico técnico em um diálogo

construtivo claro, didático e eficaz. Em vez de simplesmente apontar o erro, este agente

é projetado para guiar o aluno em seu raciocínio, fazer perguntas socráticas e explicar os

conceitos subjacentes, promovendo um aprendizado efetivo.

Finalmente, a orientação gerada é formatada pelo FastAPI, que responde à requisição

da Extensão do Projeto no VsCode. A extensão, por sua vez, exibe essa resposta de forma

clara e integrada à interface do editor, como pode ser visto na imagem 8. Todo o processo

é suportado por um Banco de Dados Relacional, que persiste o histórico de interações,

gerencia dados de usuários e armazena as saídas geradas pelos agentes.

Figura 8 – Extensão do VsCode com a Resposta Produzida pelo Agente Tutor

Fonte: do Autor

4.1.1 Seleção da Plataforma de Desenvolvimento e Integração

A escolha do Visual Studio Code como ambiente para a aplicação da ferramenta foi

uma decisão estratégica. Em vez de desenvolver um software independente, que poderia

introduzir uma barreira para utilização, foi criada uma solução integrada a uma ferra-

menta de uso diário por estudantes. O VsCode se destaca por sua alta popularidade e

influência no ecossistema de tecnologia, sendo frequentemente a primeira porta de entrada

para programadores em diversas áreas, como desenvolvimento web, C++ e outras.
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A experiência de uso (UX) no VsCode também foi aprimorada ao longo do projeto.

Inicialmente, a ferramenta era ativada por um atalho de teclado. Para melhorar a usabili-

dade e a visualização dos resultados, essa abordagem evoluiu para uma View customizada,

acessível por um clique na barra de atividades do editor. Dessa forma, a ferramenta abre

uma nova aba com uma interface web (WebView), tornando o acesso mais intuitivo e a

apresentação dos feedbacks pedagógicos mais rica e organizada.

4.1.2 Modelagem dos Agentes de IA

A solução foi arquitetada em torno de um sistema multiagente, composto por duas

entidades de LLM especializadas e complementares: um Agente Analisador de Código e

um Agente Tutor Pedagógico. Ambos foram construídos utilizando uma abordagem de

prompt engineering baseada na técnica de Cadeia de Pensamento (CoT), que instrui o

modelo a pensar passo a passo antes de gerar uma resposta final, aumentando a coerência

e a precisão.

O primeiro agente foi projetado para realizar uma análise técnica aprofundada do

código submetido pelo aluno. Para garantir a qualidade e o rigor da avaliação, o prompt

contextualiza o LLM para atuar sob a persona de um desenvolvedor sênior com mais de

dez anos de experiência.

O segundo agente recebe como entrada a análise estruturada gerada pelo primeiro. Sua

função é traduzir o diagnóstico técnico em um diálogo construtivo eficaz e personalizado.

Para isso, foi configurado com a persona de um Professor de Programação Experiente,

especialista em pedagogia e no método socrático.

É importante ressaltar que esta arquitetura final é fruto de um processo de desenvol-

vimento iterativo. A primeira versão do sistema utilizava um único agente monolítico,

responsável tanto pela análise técnica quanto pela tutoria. Contudo, observou-se que essa

abordagem limitava a profundidade em ambas as áreas. A decisão de dividir as respon-

sabilidades em dois agentes distintos permitiu um refinamento muito mais focado, onde

os prompts de cada um puderam ser aprimorados e otimizados de forma independente ao

longo de vários ciclos para alcançar uma maior qualidade nas respostas.

4.1.2.1 Seleção do Framework para Construção dos Agentes de IA

O processo de seleção das ferramentas de desenvolvimento dos agentes passou por

um ciclo de iteração e refinamento. Inicialmente, o protótipo foi desenvolvido utilizando

o framework 1LangChain. Embora seja uma ferramenta poderosa para a construção de

aplicações com LLMs, foram identificados gargalos de desempenho, resultando em uma

latência de resposta maior que a desejada. Além disso, a orquestração da comunicação

entre os agentes poderia ser um desafio técnico para o futuro.
1 https://www.langchain.com
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Em busca de maior performance, escalabilidade e uma arquitetura mais preparada

para evoluções futuras, o projeto foi refatorado utilizando o framework 2Agno. Esta

escolha se mostrou mais eficiente, proporcionando maior velocidade de processamento e

integrações que favoreceram a arquitetura planejada.

4.2 Construção dos Agentes

O núcleo inteligente da ferramenta é materializado por meio de uma arquitetura de

dois agentes especializados que operam de forma complementar. O primeiro agente é res-

ponsável por realizar uma análise técnica e objetiva do código-fonte, enquanto o segundo

se encarrega de sintetizar essa análise e construir uma interação didática com o usuário.

As subseções a seguir detalham a concepção, as responsabilidades e a implementação de

cada um desses componentes.

4.2.1 Agente de Diagnóstico de Código

O Agente de Diagnóstico de Código é o primeiro componente do núcleo de inteligência

do sistema, atuando como o perito técnico responsável por realizar uma análise profunda

e objetiva do código submetido pelo aluno. Sua principal função é decompor o código

em seus elementos fundamentais, identificar padrões, classificar o nível de proficiência

demonstrado e categorizar erros.

Este agente não interage diretamente com o aluno e seu comportamento do agente é

inteiramente governado por um processo de engenharia de prompt. Este não é um simples

comando, mas um 3prompt complexo que define uma persona, um processo rigoroso e um

formato de saída estrito. A persona designada ao LLM é a de um Analista de Programação

Sênior, estabelecendo um contexto de mentoria e avaliação construtiva que guia todo o

raciocínio do modelo.

Um dos principais desafios no trabalho com LLMs é garantir a consistência e a confi-

abilidade da saída. Para mitigar esse problema, foi implementada uma saída estruturada

em formato JSON, técnica que obriga o agente a preencher campos específicos e, assim,

força um processo de raciocínio sistemático. Este processo se inicia com uma Análise

Inicial (Reconhecimento) para identificar a linguagem, o objetivo do código e os tópicos

envolvidos, seguida pela Avaliação de Nível (Classificação) da proficiência do aluno. Sub-

sequentemente, é realizado um Diagnóstico de Erros detalhado, que categoriza as falhas

encontradas (sintáticas, lógicas, estruturais, de performance e de boas práticas), culmi-

nando na geração de Feedback e Melhorias, com retornos construtivos e sugestões de

código.
2 https://github.com/agno-agi
3 Prompt presente no anexo A.1.1
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Figura 9 – Modelo de Saída Estruturada do Agente de Diagnóstico de Código

Fonte: do Autor

A estrutura de saída, conforme detalhado na imagem 9, foi fundamental para que

cada campo servisse de contexto para o próximo, criando uma cadeia de análise lógica

e detalhada. Além da rigidez estrutural de sua saída, o agente também se destaca por

sua flexibilidade: ele foi projetado para ser altamente configurável, com parâmetros como

nivel_detalhamento e tom_feedback que podem ser ajustados dinamicamente. Essa capa-

cidade permite que o sistema adapte a profundidade e o estilo da análise técnica conforme

o contexto da interação ou as preferências do usuário. Por fim, a saída estruturada do

agente organizada em seções claras permite que o Agente Tutor consuma a informação

de forma programática.

4.2.2 Agente Tutor

O Agente de Tutor conversa diretamente com o aluno, funcionando como o tutor do

sistema. Ele não analisa o código, mas recebe um relatório técnico detalhado do Agente

de Diagnóstico. A sua principal função é manipular esse relatório técnico e transformá-lo

em uma conversa educativa, que ajude o aluno a aprender e a pensar por conta própria.
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Todo o comportamento do agente é controlado por um 4prompt muito detalhado que

o instrui a agir como um professor especialista em pedagogia aplicada. A sua diretriz

principal é nunca dar respostas prontas e maximizar o desenvolvimento do raciocínio

autônomo do aluno. Para alcançar este objetivo, o agente adota o método socrático

para fazer com que o próprio aluno chegue à solução, estimulando o pensamento crítico,

desenvolvendo o raciocínio do estudante e não apenas corrigindo o erro.

Antes de responder, o agente primeiro faz uma análise do aluno. Ele julga o nível

de conhecimento do estudante fornecido na análise do agente anterior. Com base nisso,

ele decide a melhor forma de explicar os conceitos, usando uma linguagem mais simples

para iniciantes ou discussões mais complexas para os avançados. Isso é exemplificado

na imagem 10, onde o contexto é um aluno avançado, então o agente explica conceitos

como assincronicidade do SQLAlchey/SQLModel, em contraste ao contexto iniciante da

resposta presente na 11, onde até o tratamento inicial e a abordagem são diferentes.

Além disso, ele prioriza os erros de maior impacto para o aprendizado e identifica possíveis

lacunas conceituais, o que garante os pontos mais importantes para o aprendizado naquele

momento.

Figura 10 – Exemplo de Resposta à um Aluno nível Avançado referente uma Possível
Melhora de Padrão em Operações do SQLModel

Fonte: do Autor

A conversa com o aluno segue uma estrutura de perguntas bem definida. O agente guia

o estudante passo a passo: primeiro, ajuda-o a perceber o problema; depois, a entender

por que o erro aconteceu; e, por fim, a explorar as possíveis soluções por conta própria.
4 Prompt presente no anexo A.1.2
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Figura 11 – Exemplo de Resposta à um Aluno nível Iniciante referente uma Possível Me-
lhora de Padrão em Operações do SQLModel

Fonte: do Autor

Toda a interação é projetada para ser uma descoberta guiada, em vez de uma simples

entrega de informações.

Para garantir que ele seja sempre um bom professor e nunca trapaceie dando a resposta,

o agente segue um conjunto de regras rígidas, chamados guardrails, como nunca entregar o

código corrigido, focar somente no escopo de perguntas de programação e sempre manter

um tom empático e encorajador. Além disso, ele sempre precisa terminar suas mensagens

com uma pergunta, para estimular a reflexão. Por fim, antes de enviar sua resposta, ele

faz uma autoavaliação, checando se cumpriu todas as regras para uma ajuda mais segura

e focada no ensino.

4.3 Implementação da Extensão para o Visual Studio

Code

A implementação da extensão para o Visual Studio Code representa a ponte entre

o usuário e o sistema de inteligência artificial. O desenvolvimento neste ecossistema

é baseado em Node.js e TypeScript, que oferece um ambiente robusto e tipado para

a criação de funcionalidades. A estrutura de uma extensão é definida primariamente

por seu arquivo de manifesto, 5package.json, que declara seus metadados, dependências e

pontos de contribuição. Estes pontos são a forma como a extensão se integra à interface do

VsCode, permitindo registrar comandos, adicionar itens a menus de contexto, criar painéis

de visualização, entre outras funcionalidades. O ciclo de vida da extensão é gerenciado
5 Arquivo presente em: <https://github.com/RFHamster/gpt-teacher-extension/blob/main/package

.json>
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por eventos de ativação, que garantem que o código só seja carregado na memória quando

o usuário interagir com uma de suas funcionalidades, otimizando a performance do editor.

O ponto de entrada da interação do usuário com o sistema de tutoria foi implementado

através do registro de um comando na paleta de comandos do VsCode (Ctrl+Shift+P) e

de um item no menu de contexto, acessível com o clique direito sobre o código. Ao ser

acionado, este comando executa a função principal da extensão, que primeiramente cap-

tura o contexto ativo do editor: o trecho de código selecionado pelo usuário e o conteúdo

do arquivo aberto. Esta coleta de informações é essencial para montar o payload que será

enviado ao backend, garantindo que os agentes de IA tenham o material necessário para

realizar suas análises de forma precisa e contextualizada.

A comunicação com o backend é realizada de forma assíncrona, tratando a extensão

como um cliente HTTP. Utilizando uma biblioteca, a extensão formula uma requisição do

tipo POST para o endpoint apropriado da API construída com FastAPI. O corpo (body)

desta requisição contém o payload serializado em formato JSON, com o código do aluno

e a sua pergunta ou intenção. A extensão então aguarda a resposta do servidor, que,

após o processamento pelos agentes de diagnóstico e tutoria, retorna a resposta do agente

tutor. Este desacoplamento via API é fundamental, pois permite que o processamento

pesado da IA ocorra em um servidor dedicado, sem impactar a responsividade do editor

de código do usuário.

Para exibir a interação com o agente de forma amigável e conversacional, foi utilizada

a API de WebView do VsCode, ilustrada na Figura 12. Um WebView permite criar um

painel customizado dentro do editor que renderiza conteúdo web padrão (HTML, CSS

e JavaScript). Nesta WebView, foi construída uma interface de chatbot, com um campo

para entrada de texto e uma área para exibição do histórico da conversa. A lógica da

interface, como a renderização de novas mensagens e o gerenciamento do estado visual, é

controlada pelo JavaScript, que roda exclusivamente dentro do WebView, e pelo backend.

Figura 12 – Imagem da Extensão

Fonte: do Autor
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O fluxo de dados entre a lógica da extensão (TypeScript) e a interface do chatbot

(JavaScript no WebView) é gerenciado por um sistema de troca de mensagens. Quando

a extensão recebe a resposta da API do backend, ela utiliza o método postMessage para

enviar os dados da orientação para o WebView. O JavaScript do chatbot, por sua vez,

possui um ouvinte de eventos (event listener) que captura essa mensagem e, dinamica-

mente, cria e anexa os novos elementos HTML ao DOM para exibir a resposta do agente

ao usuário. Da mesma forma, quando o usuário digita uma nova mensagem no chatbot,

ela é enviada do WebView para a extensão, que então inicia um novo ciclo de comunicação

com o backend, criando uma experiência de conversação fluida e totalmente integrada ao

ambiente de desenvolvimento.

4.3.1 Validação e Documentação dos Endpoints

Para garantir a integridade e a clareza da comunicação cliente servidor, foi adotada

uma estratégia de validação e documentação automatizada dos endpoints da API, utili-

zando as capacidades nativas do FastAPI. Esta abordagem assegura que a documentação

seja um reflexo fiel e sempre atualizado do código-fonte, eliminando inconsistências e

facilitando o desenvolvimento e a manutenção.

O FastAPI utiliza a biblioteca Pydantic para definir esquemas de dados através de

classes Python com tipagem. Esses esquemas foram empregados para modelar tanto os

corpos das requisições que chegam do cliente quanto os corpos das respostas enviadas pelo

servidor. Aplicando automaticamente uma camada de validação em todos os dados que

transitam pela API.

A principal ferramenta para a visualização e interação com essa estrutura é a inter-

face do Swagger UI, que o FastAPI gera automaticamente no endpoint "/docs" da API.

Esta interface web interativa provê uma documentação detalhada e navegável de todos os

endpoints do sistema. Para cada rota, o Swagger UI exibe informações cruciais, como o

método HTTP, uma descrição do endpoint e os esquemas da requisição.

Além de servir como uma documentação clara, o Swagger UI foi uma ferramenta

central no processo de validação funcional e desenvolvimento iterativo. Através dele foi

possível testar cada endpoint diretamente pelo navegador, enviando payloads de exemplo

(como trechos de código para análise) e inspecionando a resposta real do servidor em

tempo real. Este ciclo rápido de teste e depuração permitiu validar toda a lógica do

backend antes da integração com o VsCode, como pode ser visto nas figuras 13 e 14.
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Figura 13 – Documentação Completa do FastAPI

Fonte: do Autor
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Figura 14 – Exemplo de Documentação Específica da rota

Fonte: do Autor
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Capítulo 5

Experimentação

Neste capítulo, detalha-se a metodologia empregada para a avaliação de desempenho

da ferramenta GPT Teacher. O objetivo foi realizar uma análise quantitativa para validar

a viabilidade, a eficiência e o custo computacional da solução proposta em cenários com

complexidades de códigos diferentes.

5.1 Objetivo do Experimento

O experimento teve como objetivo principal mensurar e analisar o desempenho do

sistema GPT Teacher e de seus agentes individuais (Agente de Diagnóstico de Código e

Agente Tutor) em quatro cenários distintos, representando diferentes níveis de complexi-

dade de código. A avaliação focou em métricas de consumo de recursos (tokens de entrada

e saída), latência (tempo de inferência) e custo financeiro associado às chamadas de API

do modelo de linguagem.

5.2 Metodologia da Experimentação

Para garantir uma análise consistente e replicável, foi definido uma metodologia de

experimentação estruturada, compreendendo os cenários de teste, as métricas de avaliação

e o procedimento de execução.

5.2.1 Cenários de Teste

Foram elaborados quatro cenários de código-fonte, cada um com um problema espe-

cífico e representativo de um nível de dificuldade para estudantes de programação. As

características de cada cenário, como tamanho em linhas, tokens e a natureza do problema,

foram catalogadas para contextualizar os resultados.

A Tabela 2 descreve os quatro cenários utilizados nos testes:
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Tabela 2 – Características dos cenários
Nível do Código Quantidade de Linhas

no Código
Quantidade de To-

kens no Código
Quantidade de Tokens

na Pergunta
Iniciante 49 324 7
Médio 76 470 12
Avançado 211 1302 13
Expert 419 2728 19

Fonte: Autoria Própria

❏ Iniciante: Um código simples contendo um algoritmo de soma de elementos em um

array com um erro de lógica. Presente no anexo A.2.1

❏ Médio: Uma implementação do algoritmo de Dijkstra contendo um erro na mani-

pulação da fila de prioridades. Presente no anexo A.2.2

❏ Avançado: Um sistema CRUD (Create, Read, Update, Delete) que utiliza um padrão

de projeto não convencional, podendo gerar confusão. Presente no anexo A.2.3

❏ Expert: Um trecho de código complexo e desorganizado, que busca criar uma ferra-

menta de geração de agentes, simulando um cenário de depuração avançado. Pre-

sente no anexo A.2.4

5.2.2 Configuração do Ambiente e Métricas

Os testes foram executados utilizando a arquitetura do descrita no Capítulo 3, inte-

grada ao Visual Studio Code. O modelo de linguagem de larga escala utilizado como base

para os agentes foi o 1Gemini 2.5 Flash. O tamanho base dos prompts dos agentes, foi

mantido constante para garantir a consistência dos testes.

Para avaliar o desempenho de cada execução, foram utilizadas quatro métricas prin-

cipais. Os Tokens de Input, quantidade de tokens enviados na requisição para o modelo,

os Tokens de Saída, quantidade de tokens gerados pela resposta do modelo, o Tempo

de Inferência em segundos, que representa o tempo que o modelo levou para processar a

requisição e gerar a resposta e, por fim, o Custo Total da operação em reais, com base no

total de tokens usados.

5.2.3 Procedimento de Execução

Para avaliar o impacto da geração de código no desempenho geral do sistema, o fluxo

completo do GPT Teacher foi executado duas vezes para cada um dos quatro cenários de

teste. A única variável entre as execuções foi a configuração do Agente de Diagnóstico

de Código, uma execução foi realizada com a geração de código ativada e a outra com
1 <https://cloud-google-com.translate.goog/vertex-ai/generative-ai/docs/models/gemini/2-5-fla

sh?_x_tr_sl=en&_x_tr_tl=pt&_x_tr_hl=pt&_x_tr_pto=tc>
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a geração desativada, retornando apenas a análise textual. Este método permitiu uma

comparação direta do consumo de recursos, tempo de inferência e custo total da solução

em ambos os cenários de uso. Todos os dados resultantes foram então organizados para

a análise subsequente.
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Capítulo 6

Análise de Resultados

Este capítulo apresenta os dados coletados durante a fase de experimentação e provê

uma análise crítica e interpretativa dos resultados, correlacionando-os com os objetivos

do trabalho.

6.1 Apresentação dos Resultados

Os dados obtidos nos testes são apresentados a seguir. As tabelas consolidam as

métricas de desempenho para cada agente e cenário avaliado.

Primeiramente, o desempenho individual do Agente de Diagnóstico de Código e do

Agente Tutor na tarefa que envolvia a geração de código é detalhado nas Tabelas 3 e 4,

respectivamente.

Tabela 3 – Desempenho do Analisador de Código Criando Código

Nível do Código Tokens de Input Tokens de Saída Tempo de Inferência (s)
Iniciante 1812 4085 29,03
Médio 1963 2897 31,43
Avançado 2796 6234 43,60
Expert 4228 9392 71,56

Fonte: Autoria Própria

Tabela 4 – Desempenho do Agente Tutor Recebendo Código Gerado

Nível do Código Tokens de Input Tokens de Saída Tempo de Inferência (s)
Iniciante 5979 1533 18,73
Médio 4942 1484 21,00
Avançado 9112 2457 27,81
Expert 13702 2542 34,19

Fonte: Autoria Própria

Em seguida, são apresentados os resultados para a tarefa que não envolvia a geração

do código correto pelo Agente Analisador de Código. A Tabela 5 e a Tabela 6 detalham
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o desempenho do Analisador de Código e do Tutor, respectivamente, focando apenas na

capacidade de análise textual.

Tabela 5 – Desempenho do Analisador de Código na tarefa sem geração de código

Nível do Código Tokens de Input Tokens de Saída Tempo de Inferência (s)
Iniciante 1812 2603 23,35
Médio 1963 1896 26,08
Avançado 2796 5222 44,93
Expert 4228 4188 45,15

Fonte: Autoria Própria

Tabela 6 – Desempenho do Tutor na tarefa sem geração de código

Nível do Código Tokens de Input Tokens de Saída Tempo de Inferência (s)
Iniciante 4497 2289 28,15
Médio 3941 1774 24,00
Avançado 8100 447 38,72
Expert 8498 2124 30,49

Fonte: Autoria Própria

Finalmente, as Tabelas 7 e 8 consolidam os resultados do sistema completo, compa-

rando o desempenho geral e o custo financeiro das operações com e sem a geração de

código, respectivamente.

Tabela 7 – Consolidação de métricas de desempenho e custo para a tarefa com geração
de código.

Nível
Tokens

de Input
Tokens

de Saída
Total

Tokens
Tempo

(s)
Custo Total

(R$)
Iniciante 7.791 5.618 13.409 47,76 0,0040227
Médio 6.905 4.381 11.286 52,43 0,0033858
Avançado 11.908 8.691 20.599 71,41 0,0061797
Expert 17.930 11.934 29.864 105,75 0,0089592

Fonte: Autoria Própria

Tabela 8 – Consolidação de métricas de desempenho e custo para a tarefa sem geração
de código.

Nível
Tokens

de Input
Tokens

de Saída
Total

Tokens
Tempo

(s)
Custo Total

(R$)
Iniciante 6.309 4.892 11.201 51,50 0,0033603
Médio 5.904 3.670 9.574 50,08 0,0028722
Avançado 10.896 7.669 18.565 83,63 0,0055695
Expert 12.726 6.312 19.038 75,64 0,0057114

Fonte: Autoria Própria
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6.2 Análise e Discussão dos Resultados

A análise dos dados quantitativos obtidos permite a formulação de conclusões signifi-

cativas sobre o desempenho, o custo e a viabilidade da arquitetura proposta para o GPT

Teacher. A discussão a seguir tem como base os principais indicadores de performance:

tempo de inferência, consumo de tokens e custo financeiro.

6.2.1 Análise do Tempo de Inferência

O tempo de inferência é um indicador crítico para a experiência do usuário. Conforme

visualizado na Figura 15, há uma correlação direta entre a complexidade do código de

entrada e o tempo de resposta do sistema. Para a tarefa com geração de código, o tempo

escala de 47,76s no nível Iniciante para 105,75s no nível Expert. Uma anomalia notável

ocorre no nível Avançado, onde a tarefa sem geração de código (83,63s) é mais lenta

que a com geração de código (71,41s), sugerindo que a complexidade da análise textual

solicitada superou a da geração de código para aquele cenário específico.

Figura 15 – Tempo de Inferência Total por Nível de Código e Tipo de Tarefa

Fonte: do Autor

Para aprofundar a análise, a Figura 16 detalha a contribuição de cada agente para

o tempo total. Observa-se que o Analisador de Código é o principal responsável pelo

aumento do tempo no cenário com geração de código de nível Expert, consumindo 71,56s.

Em contrapartida, na tarefa sem geração de código, os tempos dos agentes são mais

equilibrados, indicando que a geração de código complexo é a operação mais intensiva em

tempo na arquitetura.
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Figura 16 – Detalhamento do Tempo de Inferência por Agente e Tarefa

Fonte: do Autor

6.2.2 Análise do Consumo de Tokens e Custo

O consumo de tokens está diretamente ligado ao custo operacional da solução. A

Figura 17 ilustra a quantidade total de tokens processados. A tarefa com geração de

código consistentemente demanda mais tokens, atingindo um pico de 29.864 tokens no

Expert, um aumento de 57% em relação à tarefa sem geração de código no mesmo nível.

Figura 17 – Quantidade Total de Tokens por Nível de Código e Tipo de Tarefa

Fonte: do Autor

O detalhamento apresentado na Figura 18 revela a dinâmica entre tokens de entrada e

saída. Um insight crucial é o comportamento do Agente Tutor na tarefa com geração de
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código, ele recebe uma grande quantidade de tokens de entrada (o código e a análise do

primeiro agente), que chega a 13.702 no nível Expert, mas gera uma saída relativamente

pequena (2.542 tokens). Isso demonstra o design da arquitetura, onde o segundo agente

atua como um “refinador” da informação gerada pelo primeiro.

Figura 18 – Comparativo de Tokens (Input vs. Saída) por Agente e Tarefa

Fonte: do Autor

A análise de viabilidade financeira, consolidada visualmente na Figura 19, constitui um

dos resultados mais relevantes. A operação de geração de código representa o maior custo

computacional. Contudo, mesmo no cenário de maior exigência (Expert com geração de

código), o custo por inferência foi de aproximadamente R$ 0,009. Este valor, detalhado nas

Tabelas 7 e 8, atesta a elevada viabilidade financeira da ferramenta para implementação

em larga escala em ambientes educacionais, suportando um alto volume de interações sem

incorrer em custos proibitivos.

6.2.3 Conclusões da Análise

A análise comparativa entre os modos de operação, suportada pelos dados visuais,

confirma que a funcionalidade de análise textual (“Sem Geração”) é, na maioria dos
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Figura 19 – Custo Total (R$) por Nível de Código e Tipo de Tarefa

Fonte: do Autor

casos, mais célere e econômica, sendo ideal para diagnósticos rápidos e interações focadas

no entendimento do problema. Em contrapartida, a geração de código (“Com Geração”),

embora mais onerosa em recursos, apresenta-se como a ferramenta mais completa para

a correção e instrução efetiva do código-fonte do aluno. A sensibilidade do sistema à

complexidade da entrada é evidente em todas as métricas, um fator determinante para o

dimensionamento futuro da infraestrutura e para a gestão de custos operacionais.
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Capítulo 7

Conclusão

A literatura recente sobre o uso de LLMs na Educação é praticamente unânime em

reconhecer seu potencial transformador. Ferramentas baseadas em inteligência artificial

prometem revolucionar o ensino ao oferecer suporte individualizado em larga escala, re-

duzir a frustração inicial dos estudantes e prover feedback imediato, mitigando limitações

estruturais do ensino tradicional, como turmas numerosas e a disponibilidade restrita de

monitores e docentes.

Entretanto, essa mesma literatura também alerta para os riscos de uma aplicação

direta e não criteriosa de LLMs genéricos em contextos educacionais. A principal crí-

tica reside no fato de que assistentes de codificação voltados à produtividade priorizam

a entrega de soluções rápidas, em detrimento do processo cognitivo de aprendizagem.

Ao fornecer o código pronto, tais ferramentas podem induzir à dependência passiva e

comprometer o desenvolvimento de competências essenciais, como o raciocínio lógico, a

depuração de erros e a decomposição de problemas complexos.

Diante desse cenário, a arquitetura e a filosofia de implementação do sistema proposto

foram concebidas como uma resposta deliberada a tais limitações. O desenvolvimento do

GPT Teacher se baseou em como a IA pode guiar o estudante para que ele próprio construa

a solução do problema. Para isso, optou-se pela implementação de uma arquitetura de

agentes duplos: o Agente de Diagnóstico, responsável por assegurar a precisão técnica da

análise, e o Agente de Orientação, que traduz os resultados em feedback instrucional e

dialógico.

Como resultado, foram produzidos uma extensão para o VsCode e uma API de backend

que concretizam a proposta teórica. Foi verificado que a ferramenta se integra de forma

simples ao ambiente e que seu funcionamento como um chat focado, sem recursos que

desviam a atenção do aluno e buscam desenvolver seu raciocínio, cumpre o propósito de

auxiliar no aprendizado genuíno.
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7.1 Principais Contribuições

A maior contribuição deste trabalho foi comprovar a hipótese: a integração de uma

arquitetura de agentes de LLM como uma ferramenta de suporte à aprendizagem de

programação, em vez de um mero assistente de autocompletar código. Os experimentos

e o desenvolvimento do protótipo permitiram consolidar as seguintes contribuições para

a área de Inteligência Artificial na Educação e Engenharia de Software:

❏ Um Modelo Arquitetural para Tutores de IA: A ideia de dividir a IA em um agente

analista e um agente tutor pode ser usada como um modelo para outros projetos de

educação com tecnologia.

❏ Implementação de Pedagogia via Engenharia de Prompt: Foi demonstrada a possi-

bilidade de programar um agente de GenAI para seguir um método de ensino espe-

cífico, com suas restrições e fluxo de questionamento. Representa uma contribuição

significativa sobre como instruir LLMs a agir não como oráculos de informação, mas

como verdadeiros facilitadores do aprendizado.

❏ Validação da Integração ao Fluxo de Trabalho do Desenvolvedor: Ao integrar o

tutor diretamente no VSCode, a pesquisa mostra que o suporte ao aprendizado

pode funcionar de forma contextualizada, reduzindo a carga cognitiva do aluno que

não precisa alternar entre diferentes ferramentas. A solução proposta mostra um

caminho para o desenvolvimento de ferramentas educacionais que habitam o mesmo

ambiente onde o trabalho prático é realizado.

❏ Um Protótipo de Código Aberto: O código gerado, incluindo a extensão para VS-

Code e a API, constitui uma contribuição prática, podendo servir como base para

futuras pesquisas e desenvolvimento por parte da comunidade acadêmica.

7.2 Trabalhos Futuros

Este trabalho representa um passo inicial no desenvolvimento de um assistente para

ensino de programação e o protótipo desenvolvido possui limitações que abrem diversas

possibilidades para pesquisas futuras. Alguns pontos podem ser aprimorados e novas

funcionalidades podem ser exploradas:

❏ Aprimoramento do Agente de Diagnóstico: O agente atual foca em arquivos únicos.

Uma evolução natural seria expandir sua capacidade para analisar projetos inteiros,

compreendendo as interdependências entre diferentes arquivos e módulos.

❏ Otimização de Performance e Latência: A dependência de LLMs de grande porte

pode introduzir latência nas respostas. Pesquisas futuras podem explorar o uso de
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modelos menores e especializados para criar uma experiência de usuário mais fluida

e instantânea.

❏ Personalização da Interação do Tutor: O método socrático, embora eficaz, pode

não ser ideal para todos os alunos ou todas as situações. Um aprimoramento seria

permitir que o aluno ajuste o “nível de diretividade” do tutor, podendo optar por

uma dica mais direta quando estiver bloqueado, por exemplo.

❏ Implementação de Memória de Longo Prazo: O agente poderia ser aprimorado

para manter um histórico das interações com cada aluno, permitindo-lhe reconhecer

dificuldades recorrentes e adaptar suas futuras orientações ao perfil de aprendizado

específico do usuário. Além da integração dessa memória com a instituição de

ensino, permitindo professores entenderem dúvidas gerais de uma turma de alunos

e extrair insights das dúvidas e onde focar esforços

❏ Gamificação do Aprendizado de Programação: Integrar o tutor a um sistema de

gamificação, onde os alunos possam ganhar pontos, medalhas e progredir em trilhas

de aprendizado ao resolverem os desafios propostos pelo agente.
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APÊNDICE A

GPT TEACHER

A.1 Prompts e Saídas dos Agentes

A.1.1 Prompt do Agente de Diagnóstico de Código

## PERSONA E CONTEXTO

Você é um Professor de Programação Sênior com 15+ anos de experiência em ensino

e avaliação de código.

Sua expertise abrange múltiplas linguagens de programação e domínios técnicos,

desde fundamentos básicos até tópicos avançados como IA, Machine Learning e

arquiteturas complexas.

Você atua como um mentor que oferece feedback construtivo, preciso e educativo

para acelerar o aprendizado dos alunos.

## DIRETRIZ PRINCIPAL

**Maximizar o aprendizado do aluno através de feedback técnico preciso,

construtivo e acionável**, identificando não apenas erros, mas oportunidades

de crescimento e caminhos de evolução técnica.

## PROCESSO DE ANÁLISE

### 1. ANÁLISE INICIAL (Reconhecimento)

Primeiro, examine o código seguindo esta sequência:

- **Identificação da linguagem**: Analise sintaxe, palavras-chave e padrões

- **Inferência do objetivo**: Determine o que o código deveria fazer baseado em:

- Nomes de variáveis e funções

- Estrutura do código

- Bibliotecas importadas

- Comentários presentes
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- **Classificação do domínio**: Identifique os tópicos técnicos envolvidos

### 2. AVALIAÇÃO DE NÍVEL (Classificação)

Determine o nível do aluno usando estes critérios:

**INICIANTE**:

- Sintaxe básica correta/incorreta

- Uso de variáveis e tipos básicos

- Estruturas condicionais simples

- Loops básicos

**INTERMEDIÁRIO**:

- Funções bem estruturadas

- Manipulação de estruturas de dados

- Tratamento básico de erros

- Conceitos de modularização

**AVANÇADO**:

- Orientação a objetos aplicada

- Padrões de design

- Otimização de performance

- Arquiteturas complexas

**EXPERT**:

- Código limpo e eficiente

- Padrões avançados de design

- Considerações de escalabilidade

- Implementações sofisticadas

### 3. DIAGNÓSTICO DE ERROS (Categorização)

Classifique erros encontrados em:

**SINTÁTICOS**: Erros de sintaxe da linguagem

**LÓGICOS**: Falhas na lógica de programação

**ESTRUTURAIS**: Problemas de organização e arquitetura

**PERFORMANCE**: Ineficiências de execução

**BOAS PRÁTICAS**: Violações de convenções e padrões

### 4. IDENTIFICAÇÃO DE TÓPICOS
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Reconheça automaticamente tópicos baseado em padrões:

- **Programação Básica**: variáveis, loops, condicionais

- **Estruturas de Dados**: arrays, listas, dicionários, árvores

- **Orientação a Objetos**: classes, herança, polimorfismo, encapsulamento

- **Algoritmos**: ordenação, busca, recursão

- **Banco de Dados**: SQL, ORMs, conexões

- **Web Development**: APIs, frameworks, frontend/backend

- **Inteligência Artificial**: ML, deep learning, redes neurais

- **Processamento de Linguagem Natural**: NLP, análise de texto

- **Ciência de Dados**: análise estatística, visualização

- **Segurança**: criptografia, autenticação, validação

## PARÂMETROS DE CONFIGURAÇÃO

nivel_detalhamento: {{detalhamento_level}} # minimo, medio, maximo

foco_educativo: {{educational_focus}} # erros, melhorias, ambos

inclui_sugestoes_codigo: {{include_code_suggestions}} # true, false

tom_feedback: {{feedback_tone}} # encorajador, neutro, direto

## FORMATO DE SAÍDA ESTRUTURADO

‘‘‘json

{

"analise_geral": {

"nivel_aluno": "INICIANTE|INTERMEDIARIO|AVANCADO|EXPERT",

"linguagem_programacao": "string",

"objetivo_codigo": "string detalhado do que o código deveria fazer",

"topicos_envolvidos": ["array de tópicos identificados"],

"pontuacao_geral": "numero de 0-100"

},

"diagnostico_erros": {

"total_erros": "numero",

"erros_por_categoria": {

"sintaticos": [

{

"tipo": "string",

"descricao": "descrição detalhada do erro",

"correcao_sugerida": "como corrigir",

"impacto_aprendizado": "baixo|medio|alto"
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}

],

"logicos": [],

"estruturais": [],

"performance": [],

"boas_praticas": []

}

},

"feedback_construtivo": {

"pontos_fortes": ["array de aspectos positivos identificados"],

"areas_melhoria": ["array de áreas para desenvolvimento"],

"proximos_passos": ["array de sugestões de estudo"],

"recursos_recomendados": ["array de materiais de estudo específicos"]

},

"codigo_melhorado": {

"incluir_codigo": "{{include_code_suggestions}}",

"versao_corrigida": "string com código corrigido (se solicitado)",

"explicacao_mudancas": "string explicando as alterações feitas"

}

}

‘‘‘

## DIRETRIZES DE EXECUÇÃO

### ANÁLISE TÉCNICA

- **Seja específico**: Identifique linha exata dos erros quando possível

- **Contextualize**: Explique não apenas o erro, mas por que é um problema

- **Priorize**: Ordene erros por impacto no aprendizado (alto → baixo)

### FEEDBACK EDUCATIVO

- **Tom {{feedback_tone}}**: Mantenha linguagem apropriada ao configurado

- **Construtivo**: Sempre ofereça soluções, não apenas críticas

- **Progressivo**: Sugira próximos passos baseados no nível atual

### PRECISÃO NA CLASSIFICAÇÃO

- **Nível do aluno**: Base a classificação no código mais complexo executado

- **Tópicos**: Identifique apenas tópicos realmente demonstrados no código

- **Linguagem**: Seja preciso (ex: "Python 3.x" vs apenas "Python")
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## VALIDAÇÕES OBRIGATÓRIAS

Antes de finalizar a análise, verifique:

- [ ] Todos os erros foram categorizados corretamente

- [ ] O nível do aluno reflete a complexidade demonstrada

- [ ] Os tópicos identificados estão presentes no código

- [ ] O feedback é acionável e específico

- [ ] A saída JSON está válida e completa

## Entradas

<MENSAGEM_DO_ALUNO>

{{student_message}}

</MENSAGEM_DO_ALUNO>

<CODIGO_DO_ALUNO>

{{student_code}}

</CODIGO_DO_ALUNO>

A.1.2 Prompt do Agente Tutor

# PERSONA E CONTEXTO

Você é um **Professor de Programação Experiente**, especializado em pedagogia

aplicada ao ensino de desenvolvimento de software. Sua missão é transformar

análises técnicas em experiências de aprendizado profundas e construtivas,

utilizando técnicas educacionais avançadas para desenvolver o

pensamento crítico e autonomia intelectual dos estudantes.

## DIRETRIZ PRINCIPAL

**Maximizar o desenvolvimento do raciocínio autônomo do aluno através

do questionamento orientado, evitando dar respostas prontas e promovendo

a descoberta guiada dos conceitos e soluções.**

# ENTRADA ESPERADA

Você receberá um objeto ‘AnaliseCodigoCompleta‘ contendo:

- Análise geral (nível do aluno, linguagem, objetivos, pontuação)

- Diagnóstico detalhado de erros por categoria

- Feedback construtivo estruturado

- Código melhorado (quando disponível)

# PROCESSO DE PENSAMENTO PEDAGÓGICO
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## 1. DIAGNÓSTICO PEDAGÓGICO

Antes de formular sua resposta, analise sistematicamente:

### Perfil do Estudante

- **Nível de Conhecimento**: Adapte a complexidade da linguagem ao ‘nivel_aluno‘

- INICIANTE: Foque em conceitos fundamentais, use analogias simples

- INTERMEDIARIO: Introduza conceitos mais abstratos, questione padrões

- AVANCADO: Desafie com questões arquiteturais e otimizações

- EXPERT: Explore trade-offs, design patterns e impactos sistêmicos

### Priorização Educacional

- **Erros de Alto Impacto**: Priorize erros marcados como

‘impacto_aprendizado: ’alto’‘

- **Conceitos Fundamentais**: Identifique gaps conceituais

nos ‘topicos_envolvidos‘

- **Padrões Recorrentes**: Busque temas comuns entre diferentes

categorias de erro

## 2. ESTRATÉGIA SOCRÁTICA ESTRUTURADA

### Sequência de Questionamento Obrigatória:

1. **Questionamento Diagnóstico**:

"O que você esperava que acontecesse quando...?"

2. **Análise de Causa**:

"Por que você acha que esse comportamento está ocorrendo?"

3. **Exploração de Alternativas**:

"Que outras abordagens você consegue imaginar para..."

4. **Conexão Conceitual**:

"Como isso se relaciona com [conceito fundamental]?"

5. **Aplicação Prática**:

"Em que outras situações você aplicaria esse princípio?"

## 3. ESTRUTURA DE RESPOSTA OBRIGATÓRIA

### Seção 1: RECONHECIMENTO E CONTEXTO

- Reconheça os pontos fortes identificados

- Contextualizar o desafio no nível apropriado
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- Estabeleça conexão empática com a dificuldade

**Template Adaptativo:**

‘‘‘

INICIANTE: "Vejo que você está explorando [conceito].

É normal que [desafio específico] seja confuso no início..."

INTERMEDIARIO: "Percebi que você domina [conceitos básicos]

e agora está enfrentando [conceito mais complexo]..."

AVANCADO: "Seu código demonstra compreensão sólida de [conceitos],

mas vamos explorar algumas nuances..."

EXPERT: "Sua implementação é tecnicamente correta, mas vamos analisar

algumas considerações arquiteturais..."

‘‘‘

### Seção 2: EXPLORAÇÃO GUIADA DE ERROS

Para cada erro de impacto médio/alto, siga a sequência:

1. **Descoberta do Problema**

- Use perguntas que levem o aluno a identificar o erro

- "O que você observa quando executa a linha X?"

- "Como você testaria se esta função está funcionando corretamente?"

2. **Compreensão da Causa**

- Questione o raciocínio por trás da implementação

- "Por que você escolheu esta abordagem?"

- "O que você esperava que acontecesse aqui?"

3. **Exploração de Soluções**

- Não forneça a correção direta

- "Que modificações você tentaria para resolver isso?"

- "Como [conceito relacionado] poderia ajudar nesta situação?"

### Seção 3: DESENVOLVIMENTO CONCEITUAL

- Conecte os erros específicos a conceitos fundamentais

- Use analogias apropriadas ao nível do aluno

- Introduza novos conceitos através de questionamento

**Banco de Analogias por Nível:**

- **INICIANTE**: Analogias do mundo físico
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(receitas, instruções, objetos cotidianos)

- **INTERMEDIARIO**: Analogias organizacionais

(escritórios, protocolos, sistemas)

- **AVANCADO**: Analogias arquiteturais e de engenharia

- **EXPERT**: Analogias sistêmicas e filosóficas

### Seção 4: PRÁTICAS DE MELHORIA ORIENTADAS

Em vez de listar práticas, conduza o aluno à descoberta:

- "Como você tornaria este código mais fácil de entender

para alguém que nunca o viu?"

- "Que padrões você observa no código de desenvolvedores experientes?"

- "Como você organizaria este código se ele fosse crescer 10 vezes de tamanho?"

### Seção 5: DESAFIOS DE REFLEXÃO PROGRESSIVA

Baseado no ‘nivel_aluno‘, proponha desafios graduais:

**INICIANTE:**

- Exercícios de trace manual

- Modificações pequenas e incrementais

- Testes de hipóteses simples

**INTERMEDIARIO:**

- Refatorações guiadas

- Implementação de variações

- Análise de casos limite

**AVANCADO:**

- Design de soluções alternativas

- Análise de trade-offs

- Otimizações orientadas

**EXPERT:**

- Análise de padrões emergentes

- Considerações arquiteturais

- Impactos sistêmicos

# DIRETRIZES DE COMUNICAÇÃO
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## Tom e Linguagem

- **Empático e Encorajador**: Sempre reconheça o esforço e progress

- **Curioso e Investigativo**: Use "pergunto me..."

"será que..." "como você vê..."

- **Paciente e Progressivo**: Construa compreensão camada por camada

- **Específico e Concreto**: Evite generalidades, referencie partes

específicas do código

## Restrições Rígidas

- **NUNCA** forneça código corrigido diretamente

- **NUNCA** liste soluções prontas

- **SEMPRE** termine seções com perguntas reflexivas

- **SEMPRE** conecte erros específicos a princípios gerais

- **SEMPRE** adapte a complexidade ao nível identificado

# VALIDAÇÃO FINAL

Antes de entregar sua resposta, verifique:

- [ ] Adaptei a linguagem ao nível do aluno?

- [ ] Evitei dar soluções prontas?

- [ ] Cada seção termina com questionamento?

- [ ] Conectei erros específicos a conceitos gerais?

- [ ] Inclui desafios progressivos apropriados?

- [ ] O tom é encorajador e construtivo?

## Entradas

<MENSAGEM_DO_ALUNO>

{{student_message}}

</MENSAGEM_DO_ALUNO>

<CODIGO_DO_ALUNO>

{{student_code}}

</CODIGO_DO_ALUNO>

<ANALISE_DO_SENIOR>

{{code_analysis}}

</ANALISE_DO_SENIOR>
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A.1.3 Exemplo de Análise de Código produzida pelo Agente de

Diagnóstico de Códigos

{

"analise_geral":{

"nivel_aluno":"AVANCADO",

"linguagem_programacao":"Python 3.x",

"objetivo_codigo":"O c\u00f3digo implementa opera\u00e7\u00f5es CRUD

(Criar, Ler, Atualizar, Deletar) para o modelo de paciente,

incluindo a gest\u00e3o de informa\u00e7\u00f5es

m\u00e9dicas associadas, como alergias e condi\u00e7\u00f5es

cr\u00f4nicas. Utiliza SQLAlchemy para intera\u00e7\u00e3o

com o banco de dados, Pydantic para valida\u00e7\u00e3o de

dados e ‘asyncio‘ para opera\u00e7\u00f5es ass\u00edncronas.

H\u00e1 tamb\u00e9m fun\u00e7\u00f5es para gerenciar documentos

de pacientes em armazenamento na nuvem (GCP) e limpar

dados de pacientes.",

"topicos_envolvidos":[

"Programa\u00e7\u00e3o Ass\u00edncrona",

"Bancos de Dados (SQLAlchemy ORM)",

"Modelagem de Dados (Pydantic)",

"Programa\u00e7\u00e3o Orientada a Objetos",

"Tratamento de Exce\u00e7\u00f5es",

"Tipagem Est\u00e1tica",

"Cloud Computing (GCP)",

"Estruturas de Dados",

"Modulariza\u00e7\u00e3o"

],

"pontuacao_geral":75

},

"diagnostico_erros":{

"total_erros":12,

"erros_por_categoria":{

"sintaticos":[

{

"tipo":"Importa\u00e7\u00e3o Ausente",

"descricao":"As classes e fun\u00e7\u00f5es ’Session’,

’or_’, ’col’, ’delete’ e ’update’ n\u00e3o foram

importadas do pacote ’sqlalchemy’, o que impede a

execu\u00e7\u00e3o do c\u00f3digo.",
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"correcao_sugerida": "Adicione as importa\u00e7\u00f5es

necess\u00e1rias no in\u00edcio do arquivo:

‘from sqlalchemy import select, or_, col, delete,

update‘ e ‘from sqlalchemy.ext.asyncio import

AsyncSession as Session‘

(assumindo AsyncSession para consist\u00eancia).",

"impacto_aprendizado":"alto"

}

],

"logicos":[

{

"tipo":"Uso Incorreto de Assincronicidade",

"descricao":"As fun\u00e7\u00f5es ass\u00edncronas

(‘async def‘) est\u00e3o chamando m\u00e9todos de

sess\u00e3o do SQLAlchemy de forma s\u00edncrona (‘db.exec‘,

‘db.get‘, ‘db.delete‘, ‘db.commit‘, ‘db.refresh‘) em vez

de aguardar a conclus\u00e3o com ‘await‘. Isso pode causar

bloqueios e comportamento inesperado em um ambiente

ass\u00edncrono.",

"correcao_sugerida":"Use ‘await‘ antes de todas as

opera\u00e7\u00f5es de banco de dados que interagem com uma

sess\u00e3o ass\u00edncrona, por exemplo: ‘await

db.execute(statement)‘, ‘await db.get(Patient, patient_id)‘,

‘await db.delete(db_patient)‘, ‘await db.commit()‘,

‘await db.refresh(db_patient)‘.",

"impacto_aprendizado":"alto"

},

{

"tipo":"Inconsist\u00eancia de Tipo de ID",

"descricao":"O ID do paciente (‘patient_id‘) \u00e9 tratado

como ‘uuid.UUID‘ em algumas fun\u00e7\u00f5es (e nos modelos

Pydantic) e como ‘int‘ em outras (‘update_patient‘,

‘update_patient_by_field‘, ‘delete_patient‘). Esta

inconsist\u00eancia pode levar a erros de tipo e falhas

de busca no banco de dados.",

"correcao_sugerida":"Padronize o tipo de ‘patient_id‘ para

‘uuid.UUID‘ em todas as fun\u00e7\u00f5es onde ele representa

o identificador \u00fanico do paciente.",

"impacto_aprendizado":"medio"
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},

{

"tipo":"Manipula\u00e7\u00e3o de Resultado de Consulta",

"descricao":"Na fun\u00e7\u00e3o ‘get_patients‘, ‘result.all()‘

pode n\u00e3o retornar objetos ORM esperados ap\u00f3s ‘await

db.execute()‘. O m\u00e9todo correto para recuperar objetos

ORM de uma consulta ass\u00edncrona \u00e9

‘result.scalars().all()‘.",

"correcao_sugerida":"Altere ‘result = await

db.execute(statement)‘ e ‘patients = result.all()‘ para

‘result = await db.execute(statement)‘ e

‘patients = result.scalars().all()‘.",

"impacto_aprendizado":"medio"

},

{

"tipo":"Fun\u00e7\u00e3o S\u00edncrona em Contexto

Ass\u00edncrono",

"descricao":"A fun\u00e7\u00e3o ‘get_patient_by_username_field‘

\u00e9 definida como s\u00edncrona, mas suas chamadas de

ORM (‘session.exec‘) implicam uma intera\u00e7\u00e3o com

o banco de dados que, no contexto de outras

fun\u00e7\u00f5es ass\u00edncronas do m\u00f3dulo,

\u00e9 prov\u00e1vel que precise ser ass\u00edncrona.

Isso gera inconsist\u00eancia e poss\u00edveis problemas

de concorr\u00eancia ou bloqueio.",

"correcao_sugerida":"Transforme a fun\u00e7\u00e3o

‘get_patient_by_username_field‘ em uma fun\u00e7\u00e3o

ss\u00edncrona (‘async def‘) e utilize ‘await

session.execute(statement)‘ e ‘result.scalar_one_or_none()‘

para buscar os resultados.",

"impacto_aprendizado":"medio"

}

],

"estruturais":[

{

"tipo":"Inconsist\u00eancia de Nomenclatura de Par\u00e2metros",

"descricao":"H\u00e1 inconsist\u00eancia nos nomes dos

par\u00e2metros da sess\u00e3o do banco de dados, usando

ora ‘db: Session‘ ora ‘session: Session‘. Embora funcional,
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a padroniza\u00e7\u00e3o melhora a legibilidade e a

manuten\u00e7\u00e3o do c\u00f3digo.",

"correcao_sugerida":"Escolha um nome padr\u00e3o, como

‘session‘, e utilize-o consistentemente em todas as

fun\u00e7\u00f5es que recebem a sess\u00e3o do banco de

dados como par\u00e2metro.",

"impacto_aprendizado":"baixo"

},

{

"tipo":"Acoplamento Indireto de L\u00f3gica

Ass\u00edncrona/S\u00edncrona",

"descricao":"Embora a maioria das opera\u00e7\u00f5es de

CRUD sejam ass\u00edncronas, fun\u00e7\u00f5es auxiliares

como ‘get_patient_document_photo_from_bucket‘ s\u00e3o

s\u00edncronas. Embora n\u00e3o seja um erro direto,

misturar chamadas de banco de dados/I/O ass\u00edncronas

e s\u00edncronas no mesmo m\u00f3dulo pode dificultar

o racioc\u00ednio sobre o fluxo de execu\u00e7\u00e3o

e a gest\u00e3o de recursos.",

"correcao_sugerida":"Avalie se as fun\u00e7\u00f5es

s\u00edncronas que envolvem I/O (como ‘download_file‘)

deveriam ser ass\u00edncronas para manter a consist\u00eancia

do paradigma ass\u00edncrono ou se o escopo dessas

fun\u00e7\u00f5es deve ser explicitamente gerenciado

como s\u00edncrono para evitar bloqueios.",

"impacto_aprendizado":"baixo"

}

],

"performance":[

{

"tipo":"Commits de Transa\u00e7\u00e3o em Loop",

"descricao":"Na fun\u00e7\u00e3o ‘clear_patient_medical_data‘,

a chamada ‘session.commit()‘ \u00e9 realizada dentro do loop

que itera sobre os modelos m\u00e9dicos. Isso resulta em

m\u00faltiplas transa\u00e7\u00f5es separadas para cada

exclus\u00e3o, o que \u00e9 altamente ineficiente em

termos de desempenho de banco de dados.",

"correcao_sugerida":"Realize o ‘await session.commit()‘

apenas uma vez, ap\u00f3s todas as opera\u00e7\u00f5es
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de exclus\u00e3o terem sido executadas no loop. Isso

consolida as opera\u00e7\u00f5es em uma \u00fanica

transa\u00e7\u00e3o.",

"impacto_aprendizado":"alto"

},

{

"tipo":"Sub-otimiza\u00e7\u00e3o de Opera\u00e7\u00f5es

em Lote",

"descricao":"A abordagem de deletar modelos m\u00e9dicos

um por um dentro de um loop, mesmo com um \u00fanico commit

no final, pode ser otimizada. SQLAlchemy permite

opera\u00e7\u00f5es em lote mais eficientes.",

"correcao_sugerida":"Considere o uso de ‘session.bulk_delete()‘

ou construa uma \u00fanica instru\u00e7\u00e3o ‘delete‘ com

uma cl\u00e1usula ‘IN‘ ou ‘OR‘ para deletar m\u00faltiplos

registros de um mesmo modelo em uma \u00fanica

opera\u00e7\u00e3o de banco de dados.",

"impacto_aprendizado":"medio"

}

],

"boas_praticas":[

{

"tipo":"Tratamento Gen\u00e9rico de Erros",

"descricao":"A utiliza\u00e7\u00e3o de ‘ValueError‘ para

indicar que um paciente n\u00e3o foi encontrado \u00e9

funcional, mas em APIs ou sistemas maiores,

exce\u00e7\u00f5es mais espec\u00edficas (ou exce\u00e7\u00f5es

HTTP em frameworks como FastAPI) oferecem um tratamento de

erros mais claro e granular para o cliente ou para o

c\u00f3digo chamador.",

"correcao_sugerida":"Crie exce\u00e7\u00f5es personalizadas

(e.g., ‘PatientNotFoundException‘) ou utilize as

exce\u00e7\u00f5es fornecidas pelo framework (e.g.,

‘HTTPException‘ do FastAPI) para casos de erro

espec\u00edficos.",

"impacto_aprendizado":"medio"

},

{

"tipo":"Depend\u00eancia Direta de Utilit\u00e1rios em
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Fun\u00e7\u00f5es de Limpeza",

"descricao":"As fun\u00e7\u00f5es ‘clear_patient_medical_data‘

e ‘clear_patient_basic_data‘ dependem diretamente de

‘get_patient_medical_info_models‘ e

‘get_patient_basic_data_fields_name‘. Embora seja uma

modulariza\u00e7\u00e3o, a passagem direta de ‘session‘ e

‘patient_id‘/‘phone_number‘ e a re-busca do paciente dentro

de ‘clear_patient_medical_data‘ quando ‘phone_number‘ \u00e9

fornecido, poderiam ser encapsulados em uma camada de

servi\u00e7o mais robusta.",

"correcao_sugerida":"Considere refatorar a l\u00f3gica de

busca e limpeza em uma classe de ’servi\u00e7o’ ou

’reposit\u00f3rio’ que encapsule as depend\u00eancias

e o fluxo de trabalho, tornando as fun\u00e7\u00f5es

mais coesas e menos acopladas.",

"impacto_aprendizado":"baixo"

},

{

"tipo":"Retorno de Fun\u00e7\u00e3o de Limpeza",

"descricao":"As fun\u00e7\u00f5es ‘clear_patient_medical_data‘

e ‘clear_patient_basic_data‘ retornam ‘None‘ e

‘result.rowcount‘ (um ‘int‘), respectivamente. A falta

de um tipo de retorno consistente pode dificultar a

interface com outras partes do c\u00f3digo que dependem

de um status claro da opera\u00e7\u00e3o.",

"correcao_sugerida":"Padronize o retorno das fun\u00e7\u00f5es

de limpeza para algo mais informativo, como um ‘bool‘

indicando sucesso/falha, ou um dicion\u00e1rio com um

resumo da opera\u00e7\u00e3o (linhas afetadas, etc.).",

"impacto_aprendizado":"baixo"

}

]

}

},

"feedback_construtivo":{

"pontos_fortes":[

"O aluno demonstra um excelente dom\u00ednio da tipagem

est\u00e1tica (Type Hinting), o que torna o c\u00f3digo mais

robusto e f\u00e1cil de manter.",



APÊNDICE A. GPT TEACHER 81

"A utiliza\u00e7\u00e3o de Pydantic para valida\u00e7\u00e3o

e serializa\u00e7\u00e3o de dados (‘PatientCreate‘,

‘PatientUpdate‘, ‘model_validate‘, ‘model_dump‘) \u00e9

uma pr\u00e1tica moderna e eficiente, crucial para o

desenvolvimento de APIs.",

"A implementa\u00e7\u00e3o de opera\u00e7\u00f5es ass\u00edncronas

(‘async def‘) para o CRUD indica um bom entendimento de

programa\u00e7\u00e3o concorrente e otimiza\u00e7\u00e3o para

I/O em aplica\u00e7\u00f5es modernas.",

"O uso do SQLAlchemy ORM com ‘sqlalchemy.future‘

(assumindo AsyncSession) mostra familiaridade com ferramentas de

ORM avan\u00e7adas e a preocupa\u00e7\u00e3o com a

abstra\u00e7\u00e3o do banco de dados.",

"A estrutura modular do c\u00f3digo, com importa\u00e7\u00f5es bem

definidas para modelos, configura\u00e7\u00f5es e utilit\u00e1rios,

\u00e9 um ponto muito positivo.",

"As docstrings presentes em muitas fun\u00e7\u00f5es s\u00e3o

claras e descrevem bem o prop\u00f3sito de cada uma."

],

"areas_melhoria":[

"Aprimorar o gerenciamento de transa\u00e7\u00f5es do SQLAlchemy,

garantindo que ‘await session.commit()‘ seja usado de forma

estrat\u00e9gica e eficiente.",

"Corrigir as inconsist\u00eancias no uso de ‘await‘ para todas as

opera\u00e7\u00f5es de banco de dados dentro de fun\u00e7\u00f5es

ass\u00edncronas.",

"Padronizar o tipo de identificadores de paciente (‘patient_id‘)

para evitar confus\u00e3o entre ‘uuid.UUID‘ e ‘int‘.",

"Melhorar a gest\u00e3o de importa\u00e7\u00f5es, assegurando que

todas as classes e fun\u00e7\u00f5es utilizadas do SQLAlchemy

estejam devidamente importadas.",

"Refinar o tratamento de exce\u00e7\u00f5es, usando tipos mais

espec\u00edficos ou exce\u00e7\u00f5es HTTP, conforme a arquitetura

da aplica\u00e7\u00e3o."

],

"proximos_passos":[

"Aprofundar os conhecimentos em SQLAlchemy AsyncSession: explore o uso

de ‘await session.begin()‘ e ‘await session.rollback()‘ para controle

expl\u00edcito de transa\u00e7\u00f5es.",
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"Estudar a fundo ‘sqlalchemy.orm.query.Query.coro_all()‘ e

‘sqlalchemy.ext.asyncio.AsyncResult‘ para entender melhor como

manipular resultados de queries ass\u00edncronas.",

"Pesquisar sobre Dependency Injection (Inje\u00e7\u00e3o de

Depend\u00eancia) em frameworks ass\u00edncronos (como FastAPI)

para gerenciar a sess\u00e3o do banco de dados de forma mais elegante

e test\u00e1vel.",

"Implementar exce\u00e7\u00f5es personalizadas para cen\u00e1rios

espec\u00edficos, como ’Recurso N\u00e3o Encontrado’, para tornar

a API mais robusta e amig\u00e1vel ao desenvolvedor.",

"Explorar ‘session.bulk_insert_mappings()‘,

‘session.bulk_update_mappings()‘ e ‘session.bulk_delete()‘

para otimizar opera\u00e7\u00f5es em lote no banco de dados."

],

"recursos_recomendados":[

"Documenta\u00e7\u00e3o oficial do SQLAlchemy: Se\u00e7\u00e3o

’Asynchronous I/O’ e ’Working with ORM Sessions’.",

"FastAPI e SQLAlchemy Async: Tutoriais e exemplos sobre como

integrar esses dois em projetos.",

"Pydantic docs: ’Model methods’ para entender ‘model_validate‘

e ‘model_dump‘ em profundidade.",

"PEP 8 - Style Guide for Python Code: Para aprimorar as boas

pr\u00e1ticas de c\u00f3digo.",

"Artigos sobre Transaction Management Patterns em Python ORMs."

]

},

"codigo_melhorado":{

"incluir":false,

}

}

A.2 Códigos Utilizados para Cenários de Teste

A.2.1 Código Nível Iniciante

#include <iostream>

#include <vector>

using namespace std;
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// Problema: Calcular a soma dos elementos de um array

// e contar quantos são maiores que a média

// Input: n (tamanho do array), seguido de n números

int main() {

int n;

cout << "Digite o tamanho do array: ";

cin >> n;

vector<int> arr(n);

int soma = 0;

cout << "Digite os " << n << " números:" << endl;

for (int i = 0; i <= n; i++) {

cin >> arr[i];

soma += arr[i];

}

int media = soma / n;

cout << "Soma total: " << soma << endl;

cout << "Média: " << media << endl;

int contador = 0;

for (int i = 0; i < n; i++) {

if (arr[i] > media) {

contador++;

}

}

cout << "Números maiores que a média: " << contador << endl;

cout << "Percentual acima da média: " << (contador * 100) / n

<< "%" << endl;

cout << "Os números maiores que a média são: ";

for (int i = 0; i < n; i++) {

if (arr[i] > media) {
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cout << arr[i] << " ";

}

}

cout << endl;

return 0;

}

A.2.2 Código Nível Médio

#include <iostream>

#include <vector>

#include <queue>

#include <climits>

using namespace std;

const int INF = INT_MAX;

// Problema: Encontrar o menor caminho entre dois vértices

// Input: n vértices, m arestas, origem s, destino t

// Cada aresta tem peso w

struct Edge {

int to, weight;

};

vector<int> dijkstra(vector<vector<Edge>>& graph, int start, int end) {

int n = graph.size();

vector<int> dist(n, INF);

vector<int> parent(n, -1);

priority_queue<pair<int, int>> pq; // {distancia, vertice}

dist[start] = 0;

pq.push({0, start});

while (!pq.empty()) {

int u = pq.top().second;

int d = pq.top().first;

pq.pop();

for (Edge& edge : graph[u]) {
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int v = edge.to;

int w = edge.weight;

if (dist[u] + w < dist[v]) {

dist[v] = dist[u] + w;

parent[v] = u;

pq.push({dist[v], v});

}

}

}

vector<int> path;

int current = end;

while (current != -1) {

path.push_back(current);

current = parent[current];

}

reverse(path.begin(), path.end());

return path;

}

int main() {

int n, m, s, t;

cin >> n >> m >> s >> t;

vector<vector<Edge>> graph(n);

for (int i = 0; i < m; i++) {

int u, v, w;

cin >> u >> v >> w;

graph[u].push_back({v, w});

}

vector<int> path = dijkstra(graph, s, t);

cout << "Caminho: ";

for (int i = 0; i < path.size(); i++) {

cout << path[i];
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if (i < path.size() - 1) cout << " -> ";

}

cout << endl;

return 0;

}

A.2.3 Código Nível Avançado

import uuid

from typing import Any, List, Optional

from app.models.user import (

User,

UserBase,

UserCreate,

UserUpdate,

)

from sqlalchemy.future import select

from app.core.config import settings

from app.utils import current_datetime, download_file

def get_user_by_username_field(

credential_username: str, database_session: Session

) -> User | None:

query_statement = select(User).where(

or_(

col(User.cpf) == credential_username,

col(User.email) == credential_username,

col(User.phone_number) == credential_username,

)

)

query_result = database_session.exec(query_statement).first()

return query_result

# --- CRUD Usuario ---
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async def create_user(

user_data: UserCreate, database_connection: Session

) -> User:

"""Cria um novo usuario no banco de dados."""

new_user = User.model_validate(

user_data

) # Valida os dados com o modelo

database_connection.add(new_user)

database_connection.commit()

database_connection.refresh(new_user)

return new_user

async def get_user_by_id(

user_identifier: uuid.UUID, database_connection: Session

) -> User:

"""Busca um usuario pelo ID."""

query_statement = select(User).where(col(User.id) == user_identifier)

query_result = database_connection.exec(query_statement)

user_record = query_result.scalar_one_or_none()

# if not user_record:

# raise ValueError(’User Not Found’)

return user_record

async def get_user_by_phone_number(

contact_phone_number: str, database_connection: Session

) -> User:

"""Busca um usuario pelo número de telefone."""

query_statement = select(User).where(

col(User.phone_number) == contact_phone_number

)

query_result = database_connection.exec(query_statement)

user_record = query_result.scalar_one_or_none()

return user_record

async def get_users(
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database_connection: Session,

records_skip: int = 0,

records_limit: int = 100,

) -> List[User]:

"""Busca uma lista de usuarios."""

query_statement = select(User).offset(records_skip).limit(records_limit)

query_result = database_connection.exec(query_statement)

users_list = query_result.all()

return list(users_list)

async def update_user(

user_identifier: int,

user_update_data: UserUpdate,

database_connection: Session,

) -> Optional[User]:

"""Atualiza os dados de um usuario."""

existing_user = await database_connection.get(User, user_identifier)

if not existing_user:

raise ValueError(’User Not Found’)

# Pega os dados do Pydantic model que não são None

update_fields_data = user_update_data.model_dump(exclude_unset=True)

for field_key, field_value in update_fields_data.items():

setattr(existing_user, field_key, field_value)

# Atualiza o timestamp de atualização (se existir no modelo)

if hasattr(existing_user, ’updated_at’):

existing_user.updated_at = current_datetime()

database_connection.add(existing_user)

database_connection.commit()

database_connection.refresh(existing_user)

return existing_user

async def update_user_by_field(

user_identifier: int,

target_field: str,
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field_value: Any,

database_connection: Session,

) -> Optional[’User’]:

"""Atualiza os dados de um usuario por um Campo."""

permitted_fields = list(UserBase.model_fields.keys())

if target_field not in permitted_fields:

raise ValueError(

f’Invalid field ({target_field}).’

)

user_record = await database_connection.get(User, user_identifier)

if not user_record:

raise ValueError(’User Not Found’)

setattr(user_record, target_field, field_value)

database_connection.add(user_record)

database_connection.commit()

database_connection.refresh(user_record)

return user_record

async def delete_user(

user_identifier: int, database_connection: Session

) -> bool:

"""Remove um usuario do banco de dados."""

existing_user = await database_connection.get(User, user_identifier)

if not existing_user:

return False

database_connection.delete(existing_user)

database_connection.commit()

return True

def get_user_document_photo_from_bucket(

document_storage_object_identifier: str,

):

if not document_storage_object_identifier:

raise ValueError(
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’User Does not have a Document With Photo Persisted’

)

downloaded_file_path = download_file(

bucket_name=settings.USER_DOCUMENT_BUCKET_NAME,

object_name=document_storage_object_identifier,

)

return downloaded_file_path

def get_user_basic_data_fields_name(include_authentication_storage_column=True):

user_basic_data_field_names = [

field_name for field_name, model_field in UserBase.model_fields.items()

if field_name != ’phone_number’

]

if include_authentication_storage_column:

user_basic_data_field_names.append(

’face_document_storage_object_name’

)

return user_basic_data_field_names

def clear_user_basic_data(

*,

database_session: Session,

user_identifier: uuid.UUID | None = None,

contact_phone_number: str = None,

remove_all_users: bool = False,

):

data_field_names = get_user_basic_data_fields_name()

clearing_update_data = {data_field: None for data_field in data_field_names}

if user_identifier:

update_statement = (

update(User)

.where(col(User.id) == user_identifier)

.values(**clearing_update_data)

)

elif contact_phone_number:

update_statement = (
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update(User)

.where(col(User.phone_number) == contact_phone_number)

.values(**clearing_update_data)

)

elif remove_all_users:

update_statement = update(User).values(**clearing_update_data)

else:

raise ValueError(

’Deve especificar user_id, phone_number ou remove_all_users=True’

)

execution_result = database_session.exec(update_statement)

database_session.commit()

return execution_result.rowcount

A.2.4 Código Nível Expert

import asyncio

import functools

import oci

import re

import uuid

import psycopg

import src.constants as const

import src.utils

import time

import typing as types

from app.core.settings import app_settings

from app.api.deps import DatabaseSession

from app.models.rag_metadata import DocumentMetadata

from contextlib import contextmanager

from dotenv import load_dotenv

from langchain_community.chat_message_histories import (

FileChatMessageHistory,

)

from langchain_community.chat_models import ChatOCIGenAI

from langchain_community.embeddings import OCIGenAIEmbeddings
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from langchain_core.callbacks import BaseCallbackHandler

from langchain_core.documents import Document

from langchain_core.messages import BaseMessage

from langchain_core.prompts import (

ChatPromptTemplate,

MessagesPlaceholder,

)

from langchain_core.runnables import (

RunnableSerializable,

RunnableConfig,

)

from langchain_postgres import PostgresChatMessageHistory

from langchain_qdrant import Qdrant

from qdrant_client import qdrant_client

from pathlib import Path

from pydantic import BaseModel

from sqlmodel import select, Field

from src.logger import log

from typing import Any, Callable, TypedDict, Union, Optional, List, Dict

from uuid import UUID

load_dotenv()

#

# def timeit(func):

# @wraps(func)

# def wrapper(*args, **kwargs):

# import time

#

# start = time.time()

# result = func(*args, **kwargs)

# end = time.time()

#

# execution_time = end - start

# truncated_time = round(execution_time, 2)

# log.info(f’{func.__name__} took {truncated_time} seconds to execute’)

#
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# # detailed logging

# log.debug(f’args: {args}’)

# log.debug(f’kwargs: {kwargs}’)

# log.debug(f’result: {result}’)

#

# return result

#

# return wrapper

def timeit(function_to_time):

@contextmanager

def timing_context():

initial_timestamp = time.time()

yield

elapsed_duration = time.time() - initial_timestamp

rounded_duration = round(elapsed_duration, 2)

@functools.wraps(function_to_time)

def timing_wrapper(*function_args, **function_kwargs):

# detailed logging

log.debug(f’args: {function_args}’)

log.debug(f’kwargs: {function_kwargs}’)

if not asyncio.iscoroutinefunction(function_to_time):

with timing_context():

function_result = function_to_time(

*function_args, **function_kwargs

)

log.debug(f’result: {function_result}’)

return function_result

else:

async def async_wrapper():

with timing_context():

function_result = await function_to_time(

*function_args, **function_kwargs

)

log.debug(f’result: {function_result}’)
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return function_result

return async_wrapper()

return timing_wrapper

def _is_valid_identifier(identifier_value: str) -> bool:

"""Check if the value is a valid identifier."""

# Use a regular expression to match the allowed characters

pattern_validator = re.compile(r’^[a-zA-Z0-9-_]+$’)

return bool(pattern_validator.match(identifier_value))

def validate_field_spec(user_session_id: str) -> None:

"""Validate the session id."""

if not _is_valid_identifier(user_session_id):

raise ValueError(

f’Session ID {user_session_id} is not in a valid format. ’

’Session ID must only contain alphanumeric characters, ’

’hyphens, and underscores. Please provide a valid session id ’

’via config.’

)

def create_session_factory(

storage_base_dir: Union[str, Path] = ’chat_histories’,

database_enabled: bool = False,

synchronous_connection: psycopg.Connection = None,

asynchronous_connection: psycopg.AsyncConnection = None,

) -> Callable[[str], PostgresChatMessageHistory] | Callable[

[Any], FileChatMessageHistory

]:

"""Create a session factory for chat histories."""

if not database_enabled:

storage_directory = Path(storage_base_dir)

if not storage_directory.exists():

storage_directory.mkdir(parents=True)
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def get_chat_history_from_file(chat_session_id) -> FileChatMessageHistory:

"""Get a chat history from a user id and conversation id."""

validate_field_spec(session_id=chat_session_id)

history_file_path = storage_directory / f’{chat_session_id}.json’

return FileChatMessageHistory(str(history_file_path))

def get_chat_history_from_postgres(

chat_session_id: str = str(uuid.uuid4()),

) -> PostgresChatMessageHistory:

"""Get a chat history from a user id and conversation id."""

validate_field_spec(session_id=chat_session_id)

if synchronous_connection:

postgres_chat_instance = PostgresChatMessageHistory(

const.POSTGRES_MESSAGE_HISTORY_TABLE_NAME,

chat_session_id,

sync_connection=synchronous_connection,

)

return postgres_chat_instance

if asynchronous_connection:

postgres_chat_instance = PostgresChatMessageHistory(

const.POSTGRES_MESSAGE_HISTORY_TABLE_NAME,

chat_session_id,

async_connection=asynchronous_connection,

)

return postgres_chat_instance

raise ValueError(

’Please give a async/sync connection or change use_db to False’

)

return (

get_chat_history_from_postgres

if database_enabled

else get_chat_history_from_file

)
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def get_chat_history(chat_session_id: str, history_factory: Callable) -> Any:

"""Get chat history from a session id."""

return history_factory(chat_session_id)

class LLMStartingGenerationCallback(BaseCallbackHandler):

"""A callback to log the start of the LLM generation."""

def __init__(self):

self.start_time = time.time()

self.end_time = None

def calc_model_generation_delay(self):

self.end_time = time.time()

return self.end_time - self.start_time

def on_chat_model_start(

self,

serialized: Dict[str, Any],

messages: List[List[BaseMessage]],

*,

run_id: UUID,

parent_run_id: Optional[UUID] = None,

tags: Optional[List[str]] = None,

metadata: Optional[Dict[str, Any]] = None,

**kwargs: Any,

) -> Any:

log.info(f’1Starting generation...’)

log.info(

f’1Model generation delay: {self.calc_model_generation_delay()}s’

)

def on_llm_start(

self,

serialized: types.Dict[str, Any],

prompts: List[str],

*,

run_id: uuid.UUID,
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parent_run_id: Optional[uuid.UUID] = None,

tags: Optional[List[str]] = None,

metadata: Optional[types.Dict[str, Any]] = None,

**kwargs: Any,

) -> Any:

log.info(f’2Starting generation...’)

log.info(

f’2Model generation delay: {self.calc_model_generation_delay()}s’

)

return None

def on_chain_start(

self,

serialized: Dict[str, Any],

inputs: Dict[str, Any],

*,

run_id: UUID,

parent_run_id: Optional[UUID] = None,

tags: Optional[List[str]] = None,

metadata: Optional[Dict[str, Any]] = None,

**kwargs: Any,

) -> Any:

self.start_time = time.time()

log.info(f’Starting chain...’)

return None

def get_llm_model(

**model_kwargs,

):

"""A function to load a LLM ChatModel."""

if not const.IS_OCI_CREDENTIALS_VALID:

return

oci_client = oci.generative_ai_inference.GenerativeAiInferenceClient(

config=const.OCI_CREDENTIALS,

service_endpoint=const.DEFAULT_GENAI_SERVICE_ENDPOINT,

)
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language_model = ChatOCIGenAI(

model_id=’meta.llama-3.1-70b-instruct’,

service_endpoint=const.DEFAULT_GENAI_SERVICE_ENDPOINT,

compartment_id=const.DEFAULT_COMPARTMENT_ID,

model_kwargs={

’max_tokens’: const.MAX_OUTPUT_TOKENS,

’temperature’: 0.4,

},

client=oci_client,

callbacks=[LLMStartingGenerationCallback()],

)

return language_model

def get_embedding_model(

embedding_model_identifier: str = const.DEFAULT_OCI_EMBEDDING_MODEL,

):

if not const.IS_OCI_CREDENTIALS_VALID:

return

oci_client = oci.generative_ai_inference.GenerativeAiInferenceClient(

const.OCI_CREDENTIALS

)

embedding_instance = OCIGenAIEmbeddings(

model_id=embedding_model_identifier,

service_endpoint=const.DEFAULT_GENAI_SERVICE_ENDPOINT,

compartment_id=const.DEFAULT_COMPARTMENT_ID,

client=oci_client,

)

return embedding_instance

def get_vector_index(

*,

client: qdrant_client.QdrantClient,

collection_name: str = const.COLLECTION_NAME,
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embedded_model: OCIGenAIEmbeddings,

) -> Qdrant:

qdrant_storage = Qdrant(

client,

collection_name=collection_name,

embeddings=embedded_model,

)

return qdrant_storage

def get_retriever(

*, collection_name, engine=None, q_client=None, embed_model=None

):

if engine is None:

vector_index = get_vector_index(

client=q_client,

collection_name=collection_name,

embedded_model=embed_model,

)

engine = vector_index

return engine.as_retriever(

search_kwargs={’k’: 10},

)

def get_vector_db_client(

*,

host: types.Optional[str] = ’localhost’,

port: types.Optional[int] = 6333,

api_key: types.Optional[str] = None,

):

qdrant_client_instance = qdrant_client.QdrantClient(

host=host,

port=port,

api_key=api_key,

)

return qdrant_client_instance



APÊNDICE A. GPT TEACHER 100

class InputChat(TypedDict):

"""Input for the chat endpoint."""

input: str

"""Human input"""

# User input

class ChatHistory(BaseModel):

"""Chat history with the bot."""

question: str

embedding_model_instance = get_embedding_model()

vector_database_client = src.rag.get_vector_db_client(**const.VECTOR_DB_KWARGS)

class RRetriever(RunnableSerializable):

collection_name: str

def get_relevant_documents(self, user_input: str) -> List[Document]:

"""Get relevant documents."""

vector_store = Qdrant(

vector_database_client,

collection_name=self.collection_name,

embeddings=embedding_model_instance,

)

document_retriever = vector_store.as_retriever(search_kwargs={’k’: 10})

return document_retriever.invoke(user_input)

def invoke(

self, user_input: str, config: Optional[RunnableConfig] = None

) -> List[Document]:

"""Invoke the retriever."""

vector_store = Qdrant(

client,

collection_name=self.collection_name,
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embeddings=embedding_model_instance,

)

document_retriever = vector_store.as_retriever(search_kwargs={’k’: 4})

return document_retriever.invoke(user_input, config=config)

class Request(BaseModel):

"""Request model for the chat endpoint."""

input: str = Field()

def get_custom_retriever(

collection_identifier

) -> RunnableSerializable[Any, Any]:

"""Get the custom retriever."""

return RRetriever(collection_name=collection_identifier)

def get_collection_name_by_prompt_id(

database_session: DatabaseSession, prompt_id: int

):

query_statement = select(

DocumentMetadata.collection_name

).where(DocumentMetadata.id == prompt_id)

query_results = database_session.exec(query_statement).one_or_none()

return query_results

# <Get Prompt By Prompt ID>

def get_prompt_by_prompt_id(document_metadata: DocumentMetadata):

template_generator = document_metadata.prompt_generator_template

chat_prompt = ChatPromptTemplate.from_messages(

[

(’system’, template_generator),

MessagesPlaceholder(’chat_history’),

(’human’, ’{input}’),

]

)
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return chat_prompt

TITLE_GENERATOR_PROMPT = """

Você sabe gerar títulos para prompts.

Gere um título curto e descritivo para o prompt: "{prompt}".

O título deve conter no máximo 10 palavras.

Retorne somente o título gerado. Não responda à pergunta.

"""
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