GPT Teacher: Desenvolvimento de um Agente
de LLM para Programacao Assistida em
Ambiente VSCode

Rhuan Flores Cunha Fernandes

UFU

UNIVERSIDADE FEDERAL DE UBERLANDIA

FACULDADE DE COMPUTAGAO
BACHARELADO EM SISTEMAS DE INFORMAQAO

Monte Carmelo - MG
2025

Rhuan Flores Cunha Fernandes

GPT Teacher: Desenvolvimento de um Agente
de LLM para Programacao Assistida em
Ambiente VSCode

Trabalho de Conclusao de Curso apresentado
a Faculdade de Computagdao da Universidade
Federal de Uberlandia, Minas Gerais, como
requisito exigido parcial a obten¢ao do grau de

Bacharel em Sistemas de Informacao.
Area de concentracdo: Sistemas de Informacao

Orientador: Diego Nunes Molinos

Monte Carmelo - MG
2025

FEste trabalho é dedicado aos meu pais, Anisio Inacio Fernandes e Glayce Camargo
Flores da Cunha Fernandes, que sempre estiveram do meu lado dando todo o suporte
necessdrio para a conclusao dessa etapa na minha vida. Agradego pelo amor, dedicagdo e
confianca que me influenciaram a persistir e vencer este desafio. Sem eles, nada seria

possivel.

Agradecimentos

A Deus, primeiramente, por me conceder a saude, a forca e a fé necessarias para
superar todos os obstaculos e concluir esta importante etapa da minha vida.

A realizacao desta jornada é um momento nao apenas de realizacao académica, mas de
profunda gratidao. Este trabalho ¢ o resultado de um esforco que transcende o individual,
construido sobre o apoio, a orientacao e o incentivo de muitas pessoas especiais a quem
devo meu mais sincero reconhecimento.

A Professora Daniele, que primeiro me guiou neste caminho, minha eterna gratidao.
Sua conducao segura e precisa foi o alicerce de todo este projeto. Guardo com enorme
carinho sua paciéncia, sabedoria e disponibilidade, que foram fundamentais em cada etapa
inicial. Ao Professor Diego, agradeco por ter abracado este projeto em um momento
crucial e por me guiar com maestria até sua conclusao. Sua perspectiva renovada e
seu apoio constante na fase final foram indispensdveis para a maturacao das ideias aqui
apresentadas. Sou grato por sua objetividade, pela seguranca que me transmitiu e pela
parceria fundamental para lapidar e finalizar esta pesquisa.

Ao corpo docente do curso, expresso minha gratidao por todos os conhecimentos com-
partilhados, que construiram a base sobre a qual este trabalho foi edificado. Em especial,
a alguns mestres que se tornaram mentores e cuja influéncia levarei por toda a vida. A
estes, que com sua paixao e dedicagao transcenderam a sala de aula, desafiando meus li-
mites e inspirando um profundo amor pelo conhecimento, carrego uma divida de gratidao
que palavras dificilmente podem expressar.

Aos meus pais, Anisio e Glayce, meus alicerces. Nenhuma palavra seria suficiente para
agradecer por todo o amor incondicional, sacrificio e apoio irrestrito. Vocés acreditaram
em mim antes mesmo que eu acreditasse, e cada vitoria minha é, antes de tudo, de vocés.
Obrigado por serem minha for¢a e meu porto seguro.

Por fim, a todos que, direta ou indiretamente, fizeram parte desta historia, minha

eterna gratidao.

“Toda jornada tem seu ultimo dia. Nao tenha pressa.”
Noctis Lucis Caelum (Final Fantasy XV))

Resumo

O processo de ensino e aprendizagem em programacao de computadores apresenta
desafios significativos, que frequentemente resultam em dificuldades de compreensao e
desmotivagao por parte dos estudantes. Este trabalho apresenta o desenvolvimento e a
avaliagdo do GPT Teacher, um agente de LLM para programacao assistida integrado ao
ambiente Visual Studio Code (VSCode). O objetivo central foi projetar e implementar
uma ferramenta baseada em LLM com foco no suporte ao aprendizado de programa-
¢ao, capaz de apoiar a aquisicdo de competéncias em programacao de forma mais eficaz
do que assistentes genéricos de codificacdo. A metodologia adotada envolveu a criagao
de um prototipo funcional baseado em uma arquitetura de agentes duplos: um Agente
de Diagnéstico, responsavel pela andlise técnica do cddigo, e um Agente de Orientacao,
encarregado de traduzir essa analise em um didlogo construtivo e educativo para o es-
tudante. Os resultados da validacao funcional evidenciam que a abordagem proposta é
robusta e promissora, confirmando a hipotese de que agentes de LLM, quando estrutu-
rados em um sistema especializado, podem atuar como aliados poderosos no processo de

ensino-aprendizagem de programacao, conciliando rigor técnico e eficicia pedagogica.

Palavras-chave: TA Generativa, LLMs, Engenharia de Prompt, Agentes de LLM, Ensino

de Programacao.

Lista de ilustracoes

Figura 1 — Alimentos representados em um espago bidimensional com as dimen-

soes “parecido com sanduiche” e “parecido de sobremesa” 19
Figura 2 — Arquitetura de um Transformer 23
Figura 3 — Fluxograma do método 33
Figura 4 — Interface principal do editor de codigo Visual Studio Code 35
Figura 5 — Arquitetura Geral da Solugao 38
Figura 6 — Extensao do Visual Studio Code (VsCode) com Perguntas do Aluno

para o Agente 38
Figura 7 — Corpo da Mensagem Enviado ao Servidor - Fonte: do Autor 38
Figura 8 — Extensao do VsCode com a Resposta Produzida pelo Agente Tutor . . 39
Figura 9 — Modelo de Saida Estruturada do Agente de Diagnéstico de Codigo . . 42
Figura 10 — Exemplo de Resposta a um Aluno nivel Avancado referente uma Pos-

sivel Melhora de Padrao em Operagoes do SQLModel 43
Figura 11 — Exemplo de Resposta a um Aluno nivel Iniciante referente uma Possivel

Melhora de Padrao em Operagoes do SQLModel 44
Figura 12 — Imagem da Extensao 45
Figura 13 — Documentacao Completa do FastAPT 47
Figura 14 — Exemplo de Documentagao Especifica darota 48
Figura 15 — Tempo de Inferéncia Total por Nivel de Cédigo e Tipo de Tarefa 54
Figura 16 — Detalhamento do Tempo de Inferéncia por Agente e Tarefa 55
Figura 17 — Quantidade Total de Tokens por Nivel de Cédigo e Tipo de Tarefa . . 55
Figura 18 — Comparativo de Tokens (Input vs. Saida) por Agente e Tarefa 56

Figura 19 — Custo Total (R$) por Nivel de Cédigo e Tipo de Tarefa 57

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6
Tabela 7
Tabela 8

Lista de tabelas

Sintese dos trabalhos correlatos L. 31
Caracteristicas dos cendrios 50
Desempenho do Analisador de Codigo Criando Cédigo 52
Desempenho do GPT Teacher Recebendo Cédigo Gerado 52
Desempenho do Analisador de Codigo sem geragao de coédigo 53
Desempenho do Tutor sem geragao de cédigo 53
Consolidagao de métricas com geragao de codigo 53

Consolidagdo de métricas sem geracao de codigo 53

Lista de siglas

BPE Codificacao por Par de Bytes - Byte-Pair Encoding

CoT Cadeia de Pensamento - Chain of Thought

GenAl Inteligéncia Artificial Generativa

TA Inteligéncia Artificial

LLM Modelos de Linguagem de Grande Escala - Large Language Models
NLP Processamento de Linguagem Natural - Natural Language Processing

RLHF Aprendizado por Refor¢o com Feedback Humano - Reinforcement Learning from
Human Feedback

VsCode Visual Studio Code

1.1
1.2
1.3
14
1.4.1
1.4.2
1.5

2.1
2.1.1
2.1.2
2.2
2.3
2.3.1
2.4
24.1
24.2
2.5
2.6
2.6.1
2.6.2
2.7
2.8
2.8.1
2.9

Sumario

INTRODUGCAOt e e e e e e e e e e e e e 12
Motivacao 13
Problema 14
Hipétese 15
Objetivos 15
Objetivo Geral 15
Objetivos Especificos oo 15
Organizacao da Monografia. 16

FUNDAMENTACAO TEORICA E TRABALHOS CORRE-

LATOS . . . e e e e e e e e e e e e e e e 17
Processamento de Linguagem Natural 17
Tokenizacao L 18
Embeddings Vetoriais o 19
Inteligéncia Artificial Generativa 20
Modelos de Linguagem de Larga Escala - LLM 21
Transformer e 22
Agentes de LLM 25
Engenharia de Prompt Lo 25
Ferramentas 26
Frameworks de LLM 26
Langchain 26
Chains e 26
Runnables 27
Agno 27
Visual Studio Code 27
API de Extensoes do Visual Studio Code 28
Trabalhos Correlatos 28

2.9.1 Sintese dos Trabalhos Correlatos 30
3 METODO . . ¢ttt et e e e e e 32
3.0.1 Percepcao da Probleméatica 32
3.0.2 Design e Implementacao 33
3.0.3 Stack de Tecnologias e Ferramentas 34
3.04 Validacao e 36
4 DESIGN E IMPLEMENTACAO DO GPT TEACHER 37
4.1 Arquitetura Geral da Solugao 37
4.1.1 Selecao da Plataforma de Desenvolvimento e Integracao 39
4.1.2 Modelagem dos Agentes de TA L. 40
4.2 Construcao dos Agentes 41
4.2.1 Agente de Diagnéstico de Codigoo 41
4.2.2 Agente Tutor 42
4.3 Implementacao da Extensao para o Visual Studio Code 44
4.3.1 Validacao e Documentacao dos Endpoints 46
5 EXPERIMENTACAO ittt i i i i i e i 49
5.1 Objetivo do Experimento 49
5.2 Metodologia da Experimentacao 49
5.2.1 Cenarios de Teste 49
5.2.2 Configuragao do Ambiente e Métricas 50
5.2.3 Procedimento de Execucao 50
6 ANALISE DE RESULTADOS oo v vttt 52
6.1 Apresentagao dos Resultados 52
6.2 Anailise e Discussao dos Resultados 54
6.2.1 Analise do Tempo de Inferéncia 54
6.2.2 Analise do Consumo de Tokens e Custo 55
6.2.3 Conclusoes da Andlise 56
7 CONCLUSAO ottt ettt e e 58
7.1 Principais Contribuicoes 59
7.2 Trabalhos Futuros 59
REFERENCIASt 61

APENDICES 65

APENDICE A - GPTTEACHER................... 66

Al

A1l
A1.2
A.1.3

A.2

A21
A22
A23
A24

Prompts e Saidas dos Agentes 66
Prompt do Agente de Diagndstico de Cédigo 66
Prompt do Agente Tutor, 70
Exemplo de Andlise de Codigo produzida pelo Agente de Diagnodstico

de Codigos L 75
Cddigos Utilizados para Cenarios de Teste 82
Codigo Nivel Iniciante o o 82
Coédigo Nivel Médio 84
Codigo Nivel Avancado 86

Codigo Nivel Expert 91

12

CAPITULO

Introducao

Conforme Moreira (2024), a crescente digitalizagdo da sociedade impulsionou uma de-
manda sem precedentes por profissionais de tecnologia, com cursos voltados a area de tec-
nologia em alta, tornando o ensino de programacao uma area de fundamental importancia
estratégica e economica. No entanto, o aprendizado de programagao ¢ notoriamente de-
safiador, marcado por uma alta curva de aprendizado, conceitos abstratos e a necessidade
de desenvolver um raciocinio légico rigoroso.

Nesse contexto, diversas abordagens tém sido empregadas para mitigar as barreiras
enfrentadas por estudantes iniciantes de cursos de computagao, sobretudo na aprendi-
zagem de programacao. Entre essas iniciativas, destacam-se a adocao de metodologias
ativas de ensino e ambientes interativos de programacao, que buscam superar os obstacu-
los relacionados a abstracdo conceitual, a motivagdo e ao desenvolvimento do raciocinio
l6gico (BERSSANETTE; FRANCISCO, 2021; CALDERON; SILVA; FEITOSA, 2021).

Apesar dos avancgos, muitos estudantes ainda encontram dificuldades em consolidar
conceitos fundamentais, o que reforca a necessidade de ferramentas que oferecam suporte
continuo, personalizado e capaz de estimular o raciocinio de programacdo. E justamente
nesse ponto que as tecnologias emergentes de inteligéncia artificial passam a desempenhar
um papel de destaque, ao possibilitar novas formas de apoio ao aprendizado. Nesse
cenario, Silva et al. (2024) apresenta um panorama atual da area, destacando o avango
da Inteligéncia Artificial Generativa (GenAl), em especial dos Modelos de Linguagem
de Grande Escala (LLM), como uma tecnologia capaz de remodelar profundamente as
praticas pedagogicas.

No contexto do ensino de programacao, essas ferramentas assistidas por GenAl, nao
apenas oferecem suporte automatizado a escrita de codigo, mas também viabilizam experi-
éncias de aprendizagem mais dindmicas, interativas e personalizadas. Entre as tendéncias
apontadas, destacam-se a utilizacdo de LLMs para fornecer feedback imediato sobre erros
conceituais e sintaticos, a adaptacao das explicagoes ao nivel de conhecimento do estu-
dante e a possibilidade de criar ambientes de aprendizagem mais acessiveis, inclusivos e
centrados no aluno (SILVA et al., 2024).

Capitulo 1. Introdugdo 13

Nao obstante, os LLM criam oportunidades para praticas inovadoras, como a geragao
de exemplos contextualizados, a simulagao de didlogos no formato tutor-aluno e o esti-
mulo ao raciocinio critico por meio de questionamentos guiados. Contudo, este panorama
também ressalta desafios relevantes, como a necessidade de calibrar a intervencao pedagdé-
gica para evitar respostas excessivamente prontas, o risco de dependéncia tecnolégica e a
importéancia de manter a curadoria docente como elemento central (ZHAL; WIBOWO; LI,
2024). Assim, a literatura converge para o entendimento de que a GenAl, quando aliada,
a abordagens pedagodgicas estruturadas, tem o potencial de atuar como uma ferramenta
transformadora no processo de ensino-aprendizagem em programacao.

Diante do exposto, este trabalho situa-se na intersecao entre a Inteligéncia Artificial
na Educacao e a Engenharia de Software, com énfase no desenvolvimento de ferramentas
de suporte ao processo de ensino-aprendizagem em programacao. Diferentemente dos
assistentes de codificagdo convencionais, cujo foco recai principalmente na automagao da
escrita de codigo. A proposta central consiste em adaptar agentes de LLM para atuar
como tutores personalizados integrados ao VsCode, ampliando sua funcao de ambiente de
desenvolvimento para também desempenhar o papel de espaco interativo e responsivo de
aprendizagem. Com isso, busca-se promover nao apenas o apoio técnico, mas, sobretudo,
a mediacao didatica capaz de estimular a compreensao conceitual e o raciocinio critico

dos estudantes.

1.1 Motivacao

Conforme Moraes, Costa e Scholz (2022), existem diversas falhas no ensino tradicio-
nal de programacao, muitas vezes baseado em aulas expositivas e listas de exercicios, que
instituem desafios de escalabilidade para oferecer suporte individualizado. Alunos fre-
quentemente se deparam com obstaculos que geram frustracao e desengajamento, como
a dificuldade em depurar erros légicos ou em conectar a teoria sintatica com a aplicagao
pratica. A necessidade de um feedback imediato e personalizado é um dos fatores mais
criticos para o sucesso no aprendizado, mas raramente é viavel em turmas numerosas.

Ferramentas de assisténcia de codificagao por Inteligéncia Artificial (IA), representa-
das por ferramentas como (GitHub Copilot, 2025), revolucionaram a produtividade no
desenvolvimento de software. Estes sistemas sao proficientes em prever e gerar blocos
de codigo, acelerando o trabalho de programadores, contudo,essas ferramentas sao pro-
jetadas para auxiliar o processo de codificagao e nao contribuir no processo de ensino e
aprendizagem.

De acordo com Kiesler e Schiffner (2023) e Silva et al. (2024), essas ferramentas, ao
oferecer o c6digo correto, gerado instantaneamente, sem um processo cognitivo, instituem
a capacidade de se tornarem uma “muleta” que impede o aluno de desenvolver suas

préprias habilidades de resolugao de problemas.

Capitulo 1. Introdugdo 14

Com o advento das LLM, surgiram oportunidades para transformar o ensino de pro-
gramagao, ampliando as formas de interacao entre estudantes e maquinas (LIU et al.,
2025). No entanto, ainda carece de ferramentas que explorem esse potencial sob uma
perspectiva genuinamente didatica, em vez de priorizar apenas ganhos de produtividade.

Grande parte das solugoes atuais se concentra em fornecer respostas prontas a pergunta
“qual é a solugao?”, quando, em um contexto educacional, seria mais relevante fomentar
a reflexdo: “o que vocé tentou até agora e por que acha que nao funcionou?”. Essa
lacuna evidencia a necessidade de repensar o papel dos tutores inteligentes, de modo que
a aprendizagem critica e auténoma seja colocada no centro da experiéncia de programacao
(FENG; LIU; GHOSAL, 2024). E justamente nesse desafio que se ancora a motivacio
deste trabalho.

1.2 Problema

O problema central que guia este trabalho é como uma LLM pode ser efetivamente
projetada e integrada a um ambiente de desenvolvimento para atuar como uma ferra-
menta de suporte a aprendizagem de programacao, em vez de um mero assistente de
autocompletar codigo, a fim de aprimorar ativamente a aprendizagem e a autonomia de
estudantes de programacao.

Este problema se desdobra em desafios especificos:

d O Risco da Dependéncia Passiva: Ferramentas de IA atuais podem fomentar uma
abordagem de copiar e colar, na qual o aluno obtém o resultado sem compreender
o processo. O desafio é criar um sistema que promova o engajamento ativo e o

raciocinio critico.

(A Lacuna entre Erro e Compreensao: Alunos frequentemente conseguem corrigir um
erro de sintaxe, mas falham em compreender a falha logica subjacente. O desafio é
desenvolver um assistente capaz de fornecer explica¢oes conceituais contextuais que

conectem o erro a um principio fundamental da computacao.

(d A Falta de Suporte Personalizado e Escaldvel: A tutoria individual é um dos méto-
dos de ensino mais eficazes, mas logisticamente invidvel para a maioria das institui-
¢oes. O desafio é simular essa experiéncia de tutoria um a um de forma escalavel e

acessivel, diretamente no ambiente de trabalho do aluno.

Buscar resolver as questoes aqui levantadas significa nao apenas avancgar tecnicamente
na area de GenAl, mas também oferecer uma contribuicao didatica relevante para o ensino
de programacao no ensino superior. O desenvolvimento de um tutor inteligente integrado

ao VsCode tem o potencial de ampliar o acesso a uma formacgao de qualidade, reduzir

Capitulo 1. Introdugdo 15

barreiras de aprendizagem e preparar de forma mais consistente os futuros profissionais

para os desafios complexos do desenvolvimento de software.

1.3 Hipoétese

Nao foram realizados testes com estudantes para propor uma validacao cientifica, desta
forma, esta proposta se apoia no termo de hipotese técnica para designar proposigoes
relacionadas a avaliagao funcional do artefato de software desenvolvido neste trabalho.

Diante do exposto, assume-se como hipdtese que solugoes baseadas em agentes comple-
mentares e integradas ao VsCode sao funcionalmente capazes de identificar problemas em
c6digos de programacao e gerar feedback racional que, além de auxiliar o estudante, contri-
bui para reduzir a dependéncia passiva de ferramentas de GenAl, favorece a compreensao
dos problemas enfrentados e oferece suporte personalizado ao processo de aprendizagem

do estudante.

1.4 Objetivos

1.4.1 Objetivo Geral

O objetivo geral deste trabalho é conceber e implementar um protétipo funcional de
agente assistente de inteligéncia artificial, baseado em um LLM integrado ao VsCode, des-
tinado a atuar como ferramenta de apoio ao desenvolvimento de competéncias essenciais

no processo de aprendizagem de programacao.

1.4.2 Objetivos Especificos

Para alcancar o objetivo geral, os seguintes objetivos especificos serao perseguidos:

1 Desenvolver uma arquitetura de software baseada em multiplos agentes de IA, onde

cada agente possui uma especializacao pedagogica distinta.

(Aplicar técnicas avancadas de engenharia de prompt para instruir o LLM a atuar

como um tutor eficaz.

1 Implementar o prototipo funcional de uma extensao para o VsCode, que servird como
a interface de interacao entre o estudante e o sistema de agentes. Esta extensao sera
responsavel por capturar o contexto do codigo do usuério e apresentar as orientagoes

geradas pela LLM de forma clara e interativa.

(1 Validar o protétipo sob a optica de quantitativo de tokens utilizados para geragao

da instrucao e o tempo de inferéncia para geracao da instrucao.

Capitulo 1. Introdugdo 16

Ao alcancar estes objetivos, este trabalho pretende demonstrar a viabilidade do uso de
agentes baseados em LLM como suporte integrado ao ensino de programacao. Com isso,
busca-se gerar conhecimento novo e relevante sobre como a Inteligéncia Artificial pode
ser moldada nao apenas como uma ferramenta de produtividade, mas também como uma

parceira educacional eficaz na formacao de desenvolvedores de software.

1.5 Organizacao da Monografia

Este trabalho estd organizado em sete capitulos. A Introdugdo apresenta o problema,
a importancia do tema, a hipdtese e os objetivos da pesquisa. Em seguida, a Fundamen-
tagao Tedrica explica os conceitos principais para entender o projeto, como arquitetura
Transformer, agentes de TA e os frameworks utilizados, além de apresentar os trabalhos
correlatos. O capitulo de Método descreve a abordagem adotada, incluindo a percepcao
da problematica, as decisoes de design e de tecnologias. O capitulo de Design e Implemen-
tacao mostra em detalhes como o GPT Teacher foi construido, apresentando a arquitetura
da solucao, a modelagem dos agentes e a integracao ao VSCode. O capitulo de Expe-
rimentacao descreve os cendrios de teste, as métricas e o procedimento de execucao. A
Analise de Resultados discute os dados obtidos nos experimentos, avaliando tempo de
inferéncia, consumo de tokens e custos. Por ultimo, a Conclusdo resume o que foi feito,

destaca as contribuigoes do estudo e sugere os proximos passos.

17

CAPITULO

Fundamentacao Tedrica e Trabalhos

Correlatos

Este capitulo apresenta a fundamentacgao tedrica que serve de alicerce para o desenvol-
vimento deste trabalho. Serao abordados os conceitos essenciais e as tecnologias pertinen-
tes que contextualizam a pesquisa, estabelecendo a base de conhecimento necessaria para
a compreensao das metodologias e dos resultados que serao discutidos posteriormente.

A exposicao parte dos principios mais elementares, como Tokenizacao e Embeddings
Vetoriais, e avanga para arquiteturas complexas como o Transformer, que é a base dos
Large Language Models. Em seguida, aborda-se o campo da Inteligéncia Artificial Gene-
rativa (GenAl) com foco na area da educagao e o conceito de Agentes de LLM, detalhando
técnicas como Engenharia de Prompt. Por fim, o capitulo descreve as tecnologias e fra-
meworks especificos utilizados, como o LangChain, Agno e a API de extensoes do VsCode,

conectando a teoria a aplicagao pratica deste trabalho.

2.1 Processamento de Linguagem Natural

De acordo com Eppright (2021), o Processamento de Linguagem Natural (NLP), ou
Natural Language Processing, € um campo da inteligéncia artificial e da ciéncia da compu-
tagao que se dedica a capacitar as maquinas a compreender, interpretar, gerar e responder
a linguagem humana, seja em formato de texto ou voz. O principal objetivo do NLP ¢é
diminuir a barreira de comunicacao entre humanos e computadores, permitindo que a
interacdo ocorra de forma mais intuitiva e natural. Para isso, o campo utiliza modelos
computacionais para analisar a estrutura e o significado da linguagem, envolvendo desde
a analise sintatica, que examina a estrutura gramatical das frases, até a analise seméantica,

que busca extrair o significado e a intencao por tras das palavras.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 18

2.1.1 Tokenizacao

De acordo com Robison (2025), a tokenizagao é um processo decisivo no Processamento
de Linguagem Natural, que converte texto bruto em unidades menores, os tokens, para
que possam ser processados por redes neurais.

O conjunto de todos os tokens tinicos forma o vocabulario dessa rede e a estratégia
de tokenizacao escolhida impacta diretamente sua performance e eficiéncia dela. As es-
tratégias tradicionais de tokenizacao apresentam um dilema fundamental, como aponta
Robison (2025), a tokenizagdo em nivel de palavra, embora intuitiva, é prejudicada por
vocabuldrios massivos e pela sua inabilidade de gerenciar palavras novas.

Em contraste, a tokenizacao em nivel de caractere resolve os problemas de cobertura
de vocabulario e flexibilidade, mas acarreta um custo computacional elevado, uma vez

que resulta em sequéncias de entrada significativamente mais longas.

2.1.1.1 Codificagcao por Par de Bytes

De acordo com Yang et al. (2024), Codificacdo por Par de Bytes (BPE) é um algo-
ritmo de compressao de dados, projetado para codificar sequéncias de texto frequentes em
c6digos menores. Seu proposito foi adaptado para criar um vocabulario de subpalavras,
permitindo que termos raros ou desconhecidos sejam representados como uma sequéncia
de unidades menores e conhecidas.

Nesse sentido, Brown et al. (2020) detalha a arquitetura do GPT-3, relatando o pio-
neirismo da aplicagao da tokenizacao Byte Pair Encoding. Essa abordagem, introduzida
ainda no GPT-2 e aprimorada no GPT-3, foi fundamental para mitigar o problema de
palavras fora do vocabulario.

Em Hugging Face (2025) é explicado o funcionamento do BPE como um processo
iterativo que constréi o vocabulario a partir do zero. Inicialmente, o vocabulario é com-
posto por caracteres individuais (ou bytes, na técnica mais robusta de byte-level BPE, que
garante que nenhum caractere seja desconhecido). O algoritmo entdao analisa o corpus de
texto para encontrar o par de tokens adjacentes mais frequente e o funde em um novo
tokens, que é adicionado ao vocabulario.

Por exemplo, em um corpus com as palavras “hug”, “pug”, “lug”, “pun” e “gun”,
partindo de um vocabuldrio inicial [“h”, “u”, “g”, “p”, “n”, “1”], o par (“u”, “g”) é o
primeiro a ser mesclado, por ser o que mais repete, criando o token “ug” e inserindo

[}

no vocabulario. Na iteracdo seguinte, o par mais comum ¢é (“u”, “n”), formando o token
“un”. Esse ciclo de identificar, fundir e adicionar se repete até que o vocabulario atinja um
tamanho predefinido, resultando em um conjunto de tokens eficiente que vai de caracteres

unicos a palavras inteiras.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 19

2.1.2 FEmbeddings Vetoriais

De acordo com Yao et al. (2025) embeddings representam um conceito fundamental
em aprendizado de maquina, sendo uma técnica para representar dados de um espaco de
alta dimensionalidade em um espacgo vetorial de dimensionalidade inferior. O objetivo
principal dessa transformacao é capturar as relagoes semanticas e as caracteristicas dos
dados originais em uma representacao mais compacta e computacionalmente eficiente.

O Developers (2025) ilustra este conceito com a classificacdo de alimentos. Inici-
almente, propoe-se uma dimensao de “parecido com sanduiche”, na qual uma sopa de
beterraba teria um valor baixo e um shawarma, um valor alto. Essa representacao uni-
dimensional, contudo, é insuficiente para classificar um strudel de maca. A solugao é
adicionar uma segunda dimensao, “parecido de sobremesa”, criando um espag¢o bidimen-
sional onde cada alimento é representado por um vetor de dois elementos. Nesse espaco,
o strudel teria um valor alto em “parecido de sobremesa” e baixo em “parecido com san-
duiche”, enquanto um cachorro quente teria o posicionamento inverso. Assim, o exemplo
transforma o conceito abstrato de classificacdo de um alimento em uma representacao

numérica que captura suas caracteristicas e relagoes.
Figura 1 — Alimentos representados em um espaco bidimensional com as dimensoes “pa-

recido com sanduiche” e “parecido de sobremesa”

parecido com sobremesa strudel de maga

| -

parecido com sanduiche

»
>

A

sopa de beterraba

salada pizza cachorro quente shawarma

24 A,
@ “ &2 i)

Adaptado de: Developers (2025)

2.1.2.1 Codificagao Posicional para Embeddings Vetoriais

Um Embedding é uma representacao vetorial um ou mais tokens, que captura seu
significado e contexto semantico. No entanto, quando se processa uma sequéncia de
tokens, como um paragrafo, o modelo precisa saber a ordem em que eles aparecem. Em

arquiteturas como a Transformer Vaswani et al. (2017), que analisam todos os tokens

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 20

simultaneamente em vez de sequencialmente, a lista de embeddings por si s6 carece de
informagao sobre a posicao de cada token.

Para resolver esse problema, o artigo Vaswani et al. (2017) introduz o conceito de
Codificacao Posicional (Positional Encoding). A ideia é injetar um vetor com informagoes
sobre a posicao de cada tokens na sequéncia, somando-o diretamente ao seu embedding.
Os autores propuseram o uso de fungoes de seno e cosseno com diferentes frequéncias para

calcular essa codificacao posicional. As férmulas sao as seguintes:

. pos
P E(pos 2i) = sin (moooz/dm>

B pos
P E(pos 2it1) = €08 (mooo?z/dmodel)

Onde pos ¢ a posicao do token na sequéncia, i é o indice da dimensao dentro do vetor
de embedding (de 0 a dimodel — 1) € dpoger € & dimensionalidade do vetor de embedding (por
exemplo, 512).

Cada dimensao i utiliza uma frequéncia diferente (controlada pelo termo no denomi-
nador), a combinagao de senos e cossenos cria um vetor de codifica¢ao tinico para cada
posicao na sequéncia. Além disso, essa formulacao permite que o modelo aprenda a pres-
tar atencdo em posicoes relativas, uma vez que a codificagdo para uma posicdo pos+k
pode ser representada como uma funcao linear da codificagdo da posi¢ao pos.

Dessa forma, para cada embedding na sequéncia, é somado o seu respectivo vetor de
Positional Encoding, resultando em um vetor final que combina a informagao semantica

do token com a sua posicao absoluta e relativa na sequéncia.

2.2 Inteligéncia Artificial Generativa

De acordo com a (PAVLIK, 2025), a Inteligéncia Artificial Generativa, ou simplesmente
GenAl, refere-se a um ramo do aprendizado de maquina capaz de criar novos conteidos,
como audio, imagem e video, a partir de comandos de texto. A interacdo com esses
modelos pode ser notavelmente similar a uma conversa humana, permitindo processos de
aprendizado e didlogo por meio de instrucoes que podem variar em complexidade.

Dessa forma, a GenAl consolida-se como uma vertente inovadora da inteligéncia ar-
tificial, capaz de apoiar processos educacionais ao gerar conteudos originais a partir da
identificacao de padrdes complexos em grandes volumes de dados. Viabilizada por mode-
los avancados de machine learning, como redes neurais profundas e arquiteturas baseadas
em transformadores, essa tecnologia permite a criacdo auténoma de materiais didaticos,
exemplos contextualizados e explica¢oes personalizadas, além de favorecer intera¢oes mais

dindmicas e adaptativas entre estudantes e ambientes de aprendizagem digitais.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 21

2.3 Modelos de Linguagem de Larga Escala - LLM

Segundo a Red Hat (2025), um Large Language Model, ou simplesmente LLM, trata-
se de modelo de inteligéncia artificial que utiliza técnicas de aprendizado de maquina
para compreender e gerar linguagem humana. Assim, segundo a Amazon Web Services
[AWS] (2025b), os LLMs sao baseados na arquitetura de Generated Pretrained Transfor-
mers (GPT), uma poderosa estrutura de redes neurais com multiplas camadas que utiliza
mecanismos de codificagdo e decodificacao e auto-atencao.

Conforme descrito na arquitetura do GPT-3 Brown et al. (2020), os LLMs modernos
utilizam predominantemente uma arquitetura decoder-only, uma especializacao da estru-
tura Transformer original. Tona-se importante ressaltar que essa arquitetura é extrema-
mente eficiente na geracao de texto, objetivando prever uma distribuicao de probabilidades
sobre os préximos tokens possiveis para completar um contexto.

Para converter as saidas brutas do modelo (os logits) nessa distribui¢ao de probabili-
dade, utiliza-se uma variac¢ao da fungao softmax Kumar (2025). No contexto de geracao de
texto, essa fungao incorpora um hiperpardmetro chamado temperatura (T), que permite

modular a aleatoriedade e a criatividade das respostas. A funcao é definida como:

6zi/T

25(21 er/T

Softmax(z;, T) =

Nesta férmula, z; é o logit associado ao token i, K é o ntimero total de tokens no
vocabulério, e T é a temperatura. Um valor de T mais baixo cria uma distribuicdo que
favorece os tokens mais provaveis, gerando respostas mais deterministicas. Por outro lado,
um valor mais alto da temperatura, aumenta a probabilidade de tokens menos provaveis
serem escolhidos, o que resulta em um texto mais variado e criativo.

O desenvolvimento de modelos de larga escala ocorre, de modo geral, em duas etapas
fundamentais. A primeira corresponde ao pré-treinamento, no qual o modelo é exposto
a um volume massivo de dados textuais extraidos da internet, permitindo-lhe adquirir
representacoes estatisticas da linguagem natural, bem como assimilar conhecimentos fac-
tuais e padroes de raciocinio. A segunda etapa, denominada pos-treinamento, visa refinar
esse modelo base de forma a torna-lo mais 1til e seguro em contextos de interagdo pratica.
Esse refinamento é realizado inicialmente por meio do fine-tuning supervisionado, que en-
sina 0 modelo a seguir instrugoes e a estruturar respostas com base em exemplos curados
de alta qualidade. Em seguida, aplicam-se técnicas como o Aprendizado por Refor¢go com
Feedback Humano (RLHF), responsaveis por alinhar o comportamento do modelo as pre-
feréncias humanas, de modo a assegurar que suas respostas sejam pertinentes, consistentes

e adequadas as expectativas do usuario.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 22

2.3.1 Transformer

De acordo com o Ferrer (2024), a arquitetura transformer foi originalmente criada
com o proposito de aprimorar a tradugao automatica neural. No entanto, sua aplicagao
se estende a qualquer problema que envolva a conversao de uma sequéncia de entrada em
uma sequéncia de saida.

A arquitetura transformer, proposta por Vaswani et al. (2017), representou uma mu-
danca de paradigma no Processamento de Linguagem Natural ao solucionar gargalos
computacionais inerentes aos modelos sequenciais, como as Redes Neurais Recorrentes,
permitindo a paralelizagdo e captura de dependéncias/relagoes de longo alcance entre os
tokens de uma frase. O transformer supera esses desafios através de uma arquitetura
baseada exclusivamente em multiplos mecanismos de atengao.

Estruturalmente, o modelo é composto por um empilhamento de codificadores (Enco-
ders) e decodificadores (Decoders), conforme ilustrado na Figura 2. O codificador mapeia
uma sequéncia de entrada (z1,...,z,) para uma sequéncia de representagdes continuas
e contextuais z = (z1,...,2,). O decodificador, por sua vez, utiliza z para gerar uma
sequéncia de saida (yi,...,ym) de forma autorregressiva. Cada camada, tanto do codifica-
dor quanto do decodificador, contém duas subcamadas principais: uma camada de atencao
multi-cabeca (multi-head attention) e uma rede feed-forward conectada. Em torno de cada
uma dessas subcamadas, sao empregadas conexoes residuais seguidas por normalizacao
de camada, técnicas essenciais para estabilizar o treinamento de redes profundas.

O processamento inicia-se com a conversao dos tokens de entrada e saida em vetores
de representacdo continua (embeddings). Como a arquitetura baseada em atencdo nao
possui uma nocao intrinseca da ordem dos elementos na sequéncia, é necessario injetar
informagoes posicionais. Para isso, vetores de Codificacao Posicional sao somados aos
embeddings dos tokens, constituindo a representacao final de entrada para a primeira
camada do codificador e do decodificador.

No codificador, a subcamada de auto-atencao (self-attention) permite que cada token
da sequéncia de entrada se relacione com todos os outros, gerando representagoes enri-
quecidas pelo contexto global da frase. O resultado da tltima camada do codificador é
um conjunto de vetores que serve de entrada para o decodificador.

O decodificador opera de maneira ligeiramente distinta. Sua primeira subcamada
de atengao, denominada auto-atengdo mascarada (masked self-attention), garante que,
ao prever um token na posi¢do i, o modelo apenas tenha acesso aos tokens anteriores,
preservando a propriedade autorregressiva. A segunda subcamada, conhecida como aten-
cao codificador-decodificador (encoder-decoder attention), é o ponto central da traducao.
Nela, os vetores gerados pela auto-atencao mascarada do decodificador atuam como con-
sultas (queries) para recuperar informagoes da saida do codificador com as respostas
(keys). Esse mecanismo permite que o decodificador foque nas partes mais relevantes da

sequéncia de entrada para gerar o proximo token da sequéncia de saida.

Capitulo 2. Fundamentag¢io Teorica e Trabalhos Correlatos 23

Figura 2 — Arquitetura de um Transformer

Probabilidades
de Saida

Adicdo e Normalizagao

Alimentacéo
Direta

Adig@o e Normalizagao
Adigao e Normalizagao|

' = Atencao
Alimentagéo Multi-Cabeca

Direta P Nx
& %
Adi¢ao e Normalizagao|

Nx ol ==
([—-—’Ad = Atencao
Atencéo Multi-Cabeca
Multi-Cabega Mascarada
AT) A AT,

_ J . =
Codificagdo D ¢ Codificagéo
Posicional y Posicional
Incorporacao Incorporagé@o
de Entrada de Saida
Entradas Saidas

(deslocadas a direita)

Fonte: Adapatado de Vaswani et al. (2017)

Finalmente, o vetor resultante da atencao codificador-decodificador passa por uma
camada linear, que o projeta para a dimensao do vocabulario, seguida por uma funcao
softmax. A softmaz. gera uma distribuicao de probabilidade sobre todos os token possi-
veis, indicando qual deles é o mais provavel para ser o préximo elemento da sequéncia,
que sera incluido a traducgao. Este processo é repetido iterativamente até que um token

de final de sequéncia seja gerado, concluindo a traducao.

Mecanismo de Auto-Atencao

De acordo com Ferrer (2024) o mecanismo de auto-atencao permite que os modelos re-
lacionem cada palavra na entrada com outras palavras. Por exemplo, em um determinado
exemplo, o modelo pode aprender a conectar a palavra are (sdo) com you (vocé).

O artigo Vaswani et al. (2017) explica esta funcao operando sobre trés entradas: um
conjunto de vetores de pesos Query (Q), Key (K) e Value (V):

Attention(Q, K, V) = soft (QKT> v
ention(Q, K, V) = softmax [——
Vg

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 24

Em um contexto técnico, Query (Q), Key (K), e Value (V) sao trés representagoes ve-
toriais distintas de cada token de entrada, geradas a partir da multiplicagao do embedding
do token por matrizes de pesos treindveis. A Query representa o token atual, atuando
como uma consulta que busca informacoes relevantes nos demais embeddings da sequéncia
para aprimorar sua propria representacdo. A Key é uma representacao de cada token na
sequéncia que é comparada (via produto escalar) com a Query para calcular um score de
alinhamento ou compatibilidade. O Value contém a informacao semantica do token que
serd efetivamente agregada na saida.

A similaridade entre um vetor Query e os vetores Key da sequéncia é calculada através
do produto escalar. Matematicamente, isso é expresso pela multiplicacado matricial QKT.
O resultado é uma matriz de scores, onde cada elemento (i, j) representa a compatibilidade
da Query do i-ésimo token com a Key do j-ésimo token. Os scores de alinhamento sao
escalados, sendo divididos pela raiz quadrada da dimensao dos vetores Key.

A funcao softmax é aplicada aos scores escalados. Esta opera¢ao normaliza os scores,
convertendo-os em uma distribuicao de probabilidade, resultando no que é conhecido como
pesos de atencao. Cada peso, um valor entre 0 e 1, indica a importancia relativa de cada
token na sequéncia para a representacao do token atual.

Finalmente, a matriz de pesos de atengdo ¢ multiplicada pela matriz de Value (V).
Esta operagao consiste em uma soma ponderada dos vetores Value, onde cada vetor é
multiplicado pelo seu respectivo peso de atencao. O resultado é um vetor de saida que
representa o token original, agora enriquecido com informagdes contextuais de toda a
sequéncia, ponderadas pela relevancia de cada token.

Para aprimorar este mecanismo, o Transformer introduz a atengao multi-cabega (Multi-
Head Attention). A auto-atengao é entao aplicada em paralelo a cada uma dessas pro-
jecoes. Os resultados das cabecas sao concatenados e novamente projetados linearmente
para produzir a saida final. Isso permite que o modelo atenda a informagdes de diferen-
tes subespagos de representacao em diferentes posi¢oes simultaneamente, capturando um

espectro mais rico de relagdes contextuais.

Camada de Feed-Foward

Outra camada importante é a de feed-foward. O artigo Vaswani et al. (2017) define
como uma camada que processa o vetor de cada palavra token de forma independente,
adicionando mais capacidade de aprendizado ao modelo apds a camada de atencao ter
misturado as informagoes entre as palavras. Vale ressaltar que cada camada no codificador

e no decodificador contém uma rede feed-foward e seus pesos sao diferentes.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 25

2.4 Agentes de LLM

De acordo com(Amazon Web Services [AWS], 2025a), um agente de inteligéncia artifi-
cial ¢ um software que opera de forma autéonoma em seu ambiente. Ele coleta informacoes
e as utiliza para realizar tarefas, tomando decisoes independentes sobre as a¢oes necessa-
rias para atingir os objetivos que foram previamente definidos por humanos.

Mediante essa perspectiva, um agente de IA pode ser projetado para auxiliar estu-
dantes no aprendizado de programacao dentro do ambiente VsCode. Em vez de simples-
mente fornecer respostas prontas, esse agente interage com o aluno de forma pedagdgica,
explicando conceitos fundamentais, sugerindo abordagens e guiando-o passo a passo na
resolucdo do problema. Assim, o agente promove um aprendizado ativo, incentivando o

aluno a compreender os conceitos e desenvolver suas proprias solugoes.

2.4.1 Engenharia de Prompt

Conforme definido por (MESKC), 2023), a engenharia de prompt é uma &area de pes-
quisa recente focada na criacdo, aprimoramento e aplica¢ao de instrugoes (prompt). O
objetivo dessas instrugdes é direcionar o que os grandes modelos de linguagem (LLMs)
geram, auxiliando-os na execucao de diferentes tarefas. Para guiar uma LLM de forma
mais precisa e minimizar o risco de alucinacdes em suas respostas, diversas técnicas po-
dem ser aplicadas. Essas estratégias incluem a definicao clara do contexto, a formulagao
de instrugoes detalhadas e a padronizacao do formato das entradas e saidas. Além disso,
¢é possivel incorporar exemplos, restricoes e regras explicitas para que o modelo siga uma
linha de raciocinio especifica, promovendo maior confiabilidade e coeréncia nas respostas.

Damke, Gregorini e Copetti (2024) discute e avalia diversas técnicas de engenharia de

prompt:

 Zero Shot: é uma técnica na qual o modelo realiza uma tarefa sem qualquer exemplo
especifico fornecido. Dessa forma, o modelo confia apenas no conhecimento obtido
durante o treinamento prévio. Essa abordagem é conveniente em casos em que nao

ha exemplos disponiveis ou quando a tarefa é relativamente simples

A Few-Shot Prompting: é uma técnica que fornece alguns exemplos para a tarefa
desejada antes de solicitar a execugao de uma nova instancia da tarefa. A utilizagao
dessa técnica é especialmente util em casos nos quais é necessario que o modelo

aprenda padroes personalizados especificos.

A Chain-of-Thought Prompting: permite capacidades de raciocinios complexas através
de orientar o modelo a analisar o problema em etapas, dividindo a tarefa de proble-
mas a subproblemas ou etapas intermedidrias. A abordagem é eficaz em problemas
que requerem raciocinio logico, pois o modelo é capaz de explorar e justificar cada

passo do processo de resolugao para fornecer uma solucao final.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 26

Além disso, Antropic (2025) aconselha dividir tarefas complexas em subtarefas, cada
uma executada por um prompt ou cadeia de prompts diferentes. Essa abordagem aumenta
a precisao, a clareza e a rastreabilidade, permitindo a criacao de agentes especializados

em cada tépico, com tarefas, personas e contextos bem definidos.

2.4.2 Ferramentas

As ferramentas capacitam um agente LLM a interagir com ambientes externos, supe-
rando as limitacoes de seu conhecimento estatico. Elas formam um conjunto de interfaces
que pode incluir desde APIs de busca, até interpretadores de codigo, mecanismos de
matemaética, bancos de dados e modelos externos DAIR.AI (2025). Dessa forma, as fer-
ramentas permitem tanto enriquecer o contexto do agente com informagoes atualizadas

quanto executar rotinas de cddigo para realizar agoes especificas quando necessario.

2.5 Frameworks de LLM

Frameworks de LLM sao conjuntos de ferramentas, bibliotecas e abstrac¢oes de software
que simplificam e aceleram o desenvolvimento de aplicagoes complexas construidas sobre
LLMs. Em vez de interagir diretamente com a API de um LLM, o que pode ser complexo
e repetitivo, um framework oferece componentes reutilizaveis para as tarefas mais comuns.
Isso inclui gerenciar e otimizar prompts, conectar o LLM a fontes de dados externas (como
documentos ou bancos de dados), encadear multiplas chamadas ao modelo para realizar

tarefas mais sofisticadas e dar ao modelo a capacidade de interagir com outras ferramentas
e APIs.

2.6 Langchain

De acordo com Langchain (2025¢), o LangChain é um frameworks que facilita o de-
senvolvimento de aplicagbes baseadas em modelos de linguagem (LLMs). Ele cobre todo
o ciclo de vida dessas aplicagoes: desde a construgao com componentes open-source e
integracoes, passando pela monitoragao e otimizagdo via LangSmith, até o deployment
com suporte para APIs e assistentes usando LangGraph. Além disso, o LangChain oferece
uma interface padrao para integracao com diversos modelos e ferramentas, como modelos
de embeddings e bancos vetoriais, tornando-o uma solucdo completa para criar e escalar

solugoes baseadas em TA.

2.6.1 Chains

No LangChain Langchain (2025a), uma chain (ou corrente) é uma sequéncia de compo-

nentes, como modelos de linguagem de diferentes provedores, prompts ou outras funcgoes,

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 27

interligados de forma a executar uma tarefa mais complexa. A ideia central é que a
salda de um componente na sequéncia serve como entrada para o componente seguinte,
permitindo a construgao de fluxos de trabalho automatizados e mais elaborados. Isso
possibilita que aplicacoes de inteligéncia artificial ndo se limitem a uma tnica chamada
de um modelo de linguagem, mas sim orquestrem miltiplas etapas para, por exemplo,
buscar dados em uma fonte, formata-los com um prompt, obter uma resposta do modelo

e, em seguida, processar essa resposta.

2.6.2 Runnables

De acordo com a documentagao do Langchain (2025b), um runnable no LangChain é
a unidade de trabalho fundamental que compde as chains, representando qualquer com-
ponente (como um modelo de linguagem, um prompt, ou uma fungdo) que pode ser
executado. A principal caracteristica de um runnable é que ele implementa uma interface
padrao para chamadas de modelos de linguagem, permitindo que diferentes componentes
sejam facilmente encadeados com o operador “|”, garantindo que eles possam se comuni-
car de forma previsivel e eficiente, facilitando a construcao, a reutilizacao e a depuracao

de fluxos de trabalho complexos.

2.7 Agno

O Agno (2025) é um framework de alta performance projetado para sistemas multi-
agente. Ele permite construir, executar e gerenciar sistemas de agentes de forma segura
na nuvem. O Agno se destaca por oferecer uma estrutura rapida para o desenvolvimento
de agentes, com funcionalidades como gerenciamento de sessao, memoria, conhecimento

e suporte para interagao humana.

2.8 Visual Studio Code

Segundo (Microsoft, 2025), o Visual Studio Code é um editor de cédigo-fonte que se
destaca por ser leve e, ao mesmo tempo, poderoso. Ele funciona como um aplicativo de
desktop e é compativel com os sistemas operacionais Windows, macOS e Linux. Com-
plementando, (Stack Overflow, 2024) relata que o Visual Studio Code é o Ambiente de
Desenvolvimento Integrado mais utilizado entre iniciantes na programacao. O estudo
revelou que 77,6% dos desenvolvedores que estdo aprendendo a programar utilizam o
VS Code, mais que o dobro da porcentagem alcancada pelo segundo colocado, o IntelliJ
IDEA, com 29,9%.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 28

2.8.1 API de Extensoes do Visual Studio Code

De acordo com a documentagao do VS Code (Visual Studio Code, 2025), sua API
de Extensao é um conjunto de ferramentas e interfaces de programacao, baseada em
JavaScript e TypeScript, que funciona como uma ponte para conectar funcionalidades
criadas por desenvolvedores diretamente ao nicleo do editor. Na pratica, essa API permite
a criagao de extensoes para quase qualquer finalidade, desde adicionar suporte completo
a novas linguagens de programacao e integrar ferramentas de andlise e depuracao, até

modificar a interface com novos painéis e personalizar totalmente a aparéncia com temas.

2.9 Trabalhos Correlatos

Nesta secao sao apresentados os trabalhos correlatos que dialogam com o tema central
desta proposta, o qual se concentra na aplicacao da Inteligéncia Artificial Generativa
como suporte ao ensino de programagao de computadores. O objetivo € situar a pesquisa
no estado da arte, destacando abordagens ja exploradas, seus principais resultados e as
lacunas que justificam o desenvolvimento do presente estudo.

Em Prather et al. (2023), os autores investigam como programadores novatos utilizam
GitHub Copilot (2025), um programador par com [A que oferece sugestoes de codigo
inteligentes e conversacionais diretamente no VS Code, para acelerar o desenvolvimento.
Através de um estudo de usabilidade com 20 estudantes de graduacdo com pouca expe-
riéncia em programacao, os pesquisadores observaram como eles resolviam problemas de
programacao com e sem o auxilio da ferramenta. Os resultados revelaram uma relagao di-
bia: por um lado, os novatos acharam o Copilot extremamente 1til para superar bloqueios
criativos, gerar codigo repetitivo e aprender novas sintaxes e bibliotecas, descrevendo a
experiéncia como magica. Por outro lado, a ferramenta introduziu desafios significativos.
A principal dificuldade foi a tendéncia dos estudantes a uma superconfianca com a ferra-
menta, aceitando sugestoes de cdédigo sem compreendé-las completamente, o que levava
a longos e frustrantes processos de depuracao de erros que eles nao sabiam como resol-
ver. Além disso, a constante geracao de sugestoes era, por vezes, uma fonte de distragao,
interrompendo o fluxo de raciocinio dos participantes. O estudo conclui que, embora o
Copilot tenha um grande potencial como ferramenta de andaime, seu design precisava ser
aprimorado para incentivar uma compreensao mais profunda do c6digo e mitigar os riscos
de dependéncia e distracao para programadores em estagio inicial de aprendizado.

O estudo conduzido por Silva et al. (2025) teve como objetivo realizar um survey com
55 estudantes do curso de Sistemas de Informacao da UFSM-FW, analisando o uso de
ferramentas de TA generativa, como ChatGPT e GitHub Copilot, no processo de apren-
dizagem de programacao. Os resultados indicaram que tais ferramentas sao amplamente
conhecidas e utilizadas, sendo percebidas pela maioria dos participantes como eficazes

para esclarecer duvidas, fornecer exemplos e acelerar a escrita de cddigo. Essa ado-

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 29

¢ao refletiu-se em impactos positivos tanto no desempenho académico (81,9% relataram
melhora) quanto na motivagao (54,6% perceberam aumento). Entretanto, a pesquisa
também evidenciou desafios importantes, como a preocupac¢do com informagoes incorre-
tas e, sobretudo, o risco de dependéncia excessiva, admitido por 74,5% dos estudantes,
que demonstraram receio quanto ao comprometimento do pensamento critico e da ca-
pacidade de produzir coédigo autoral. Como alternativa para mitigar tais problemas, os
alunos sugeriram a implementacao de um "modo educacional'nas ferramentas, que privi-
legie o raciocinio e a construcao gradual do conhecimento em vez da simples entrega de
respostas prontas. Reforcaram, ainda, a necessidade de um uso consciente e equilibrado,
de modo que a tecnologia atue como aliada complementar, e ndo como substituta do
desenvolvimento autonomo das competéncias de programagao.

Em Melo e Moura (2023), os autores defendem que a IA generativa constitui uma
poderosa aliada no processo de aprendizagem, atuando como ferramenta para gerar in-
sights, estimular a criatividade e aprimorar a resolu¢ao de problemas. O estudo apresenta
orientacoes sobre como estudantes e professores podem explorar tais recursos de forma
eficaz. Para os alunos, o ChatGPT pode funcionar como um tutor personalizado, capaz
de corrigir e explicar codigos, realizar conversoes entre linguagens, detalhar conceitos e
propor exercicios interativos e gamificados. Para os professores, a IA é descrita como um
assistente na elaboragao de avaliagoes, na sugestao de projetos, na andlise de trabalhos
e na oferta de feedback qualificado. O trabalho ainda enfatiza que a chave para o uso
adequado estd na construcao de prompts claros e bem definidos, uma vez que a ferra-
menta possibilita um aprendizado adaptativo e personalizado, ajustando a complexidade
e o estilo das respostas as necessidades individuais. Dessa forma, a dindmica do ensino
de programacao pode ser significativamente transformada, conciliando apoio pedagdgico
e inovacao tecnologica.

Em Silva et al. (2024), os autores propuseram um estudo com 40 alunos entre 17 e
27 anos e ressaltaram que a geracao de codigo incorreto por inteligéncia artificial estéd
intrinsecamente ligada a desafios pedagdgicos e éticos mais amplos. A confianca cega nas
respostas da A pode levar os alunos a uma dependéncia excessiva, o que prejudica o
desenvolvimento de habilidades cruciais como a resolugao de problemas, a depuracao de
c6digo e o pensamento critico necessario para validar as solugoes. Essa dependéncia fo-
menta um uso irresponsavel da tecnologia e levanta sérias questoes sobre plagio, tornando
dificil distinguir o trabalho original do aluno de uma solucao gerada artificialmente. Além
de comprometer o aprendizado, o uso acritico da ferramenta arrisca perpetuar vieses pre-
sentes nos seus dados de treinamento. Portanto, é essencial uma abordagem pedagbgica
cuidadosa que ensine os alunos a utilizar essas ferramentas como um complemento, de-
senvolvendo o senso critico para questionar e validar as respostas, em vez de substituirem
o raciocinio e a validagao humana.

Complementando, em Kiesler e Schiffner (2023), os autores reforgam que um dos ris-

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos 30

cos mais significativos das ferramentas de IA na programacao é sua capacidade de gerar
c6digos que, apesar de parecerem corretos e serem apresentados de maneira convincente,
sao funcionalmente incorretos. Este fendmeno é particularmente perigoso para estudan-
tes iniciantes, pois a falta de conhecimento aprofundado dificulta a identificacao de erros,
levando-os a aceitar e internalizar solugoes falhas como se fossem corretas. Frequente-
mente, a origem desses erros nao estd apenas no modelo de linguagem, mas na propria
interacdo com o usudrio: a falta de clareza na pergunta ou uma descricao vaga do pro-
blema pode fazer com que a TA interprete a tarefa de forma equivocada, resultando em

um c6digo que nao resolve a questao pretendida.

2.9.1 Sintese dos Trabalhos Correlatos

Os achados do mapeamento revelam o duplo papel da GenAl no ensino de programa-
¢ao. Por um lado, as ferramentas demonstram grande potencial pedagogico, ao possibilitar
a resolucao de exercicios, a explicacao de codigos complexos, a oferta de feedback imediato
e a correcao de erros, fatores que contribuem para aumentar a autoeficacia, a motivacao e
o engajamento dos estudantes. Além disso, estudos indicam que tais recursos podem atuar
como tutores personalizados, capazes de adaptar explicagoes ao nivel de conhecimento do
aprendiz e fornecer exemplos contextualizados que favorecem a compreensao.

Por outro lado, os trabalhos também alertam para riscos relevantes, como a confianca
excessiva nas respostas da IA, a dependéncia passiva na geragao de solucoes prontas, a
dificuldade em identificar erros quando o cédigo parece convincente, além de questoes
éticas associadas ao plagio e a perpetuacao de vieses presentes nos dados de treinamento.
Tais fatores podem comprometer o desenvolvimento de competéncias fundamentais, como
o raciocinio légico, a depuragao auténoma de codigo, a validacao critica das solugoes e a
autoria intelectual do estudante.

Nesse sentido, a literatura converge para a necessidade de que a integragao da GenAl
em contextos educacionais seja orientada por estratégias pedagégicas estruturadas, que
promovam nao apenas a produtividade técnica, mas também a formagao critica e auto-
noma do aprendiz. FEssa lacuna abre espaco para o desenvolvimento de solugoes que
conciliem rigor técnico e mediacao didatica, como a proposta deste trabalho, que busca
estruturar a interacao entre IA e estudante de forma a estimular o raciocinio critico e

reduzir o risco de dependéncia passiva.

Capitulo 2. Fundamentacio Teorica e Trabalhos Correlatos

31

Tabela 1 — Sintese dos trabalhos correlatos e sua relacdo com a proposta

Trabalho Foco da Pesquisa Principais Achados e | Relagado com o GPT Tea-
Desafios cher (Proposta)

Prather et al. | Usabilidade do GitHub | Auxilia em bloqueios cria- | Justifica o foco em fornecer

(2023) Copilot por iniciantes. | tivos e na geragdo de co- | explicagdes em vez de apenas

digo, mas gera superconfi-
anga e falta de compreen-
sao.

codigo pronto.

Silva et al
(2025)

Percepcao de alunos de
SI sobre o uso de Inte-
ligéncia Artificial.

Melhora o desempenho,

porém 74,5% admitem
risco de dependéncia
excessiva.

Valida a demanda por um
"modo educacional"que insti-
gue o raciocinio.

Melo e Moura
(2023)

IA como tutor per-
sonalizado e assistente
docente.

Potencial para corregao,
conversao de linguagens e
exercicios gamificados.

Serve de base para a defini¢do
da persona e do tom de voz
pedagogico do agente.

Silva et al
(2024)

Desafios pedagégicos e
éticos no uso da TA.

A confianca cega preju-
dica o pensamento critico
e a autoria do codigo.

Reforga a necessidade de me-
diacao didatica e do conceito
de "andaime pedagbgico".

Kiesler e Schiff-
ner (2023)

Avaliagdo de modelos
de linguagem para re-
solver problemas pro-
gramagcao.

Os modelos acertam
grande parte dos pro-
blemas, entretanto, suas
alucinagoes entregam
cbdigos aparentemente
corretos e de maneira
convincente, dificultando
a deteccdo de erros por
estudantes iniciantes.

Apoia a arquitetura de agen-
tes especializados para garan-
tir maior precisdo técnica.

Fonte: Autoria Prépria

32

CAPITULO

Método

Este capitulo descreve o percurso metodoldgico e técnico adotado para a concepgao
e implementacao do sistema de Ensino Assistido por Inteligéncia Artificial, com foco na
criacdo de agentes de inteligéncia artificial generativa voltados a orientacao pedagdgica
integrada ao ambiente de desenvolvimento VsCode. Serao detalhadas, a seguir, as etapas
essenciais do projeto, incluindo a definicao da arquitetura do sistema, a aplicagao de téc-
nicas de engenharia de prompt para moldar as interacoes pedagogicas e o desenvolvimento
da ferramenta sob a forma de extensao funcional no VsCode. O propdsito é apresentar,
de maneira clara e sistematica, as decisoes de design, as tecnologias empregadas e os de-
safios enfrentados, evidenciando como tais elementos se articularam para a materializacao
de uma ferramenta capaz de oferecer suporte contextualizado, responsivo e inteligente a
estudantes e desenvolvedores em seu ambiente de codificagao.

Com o intuito de oferecer uma visao geral do método adotado nesta pesquisa, a Figura
3 apresenta, de forma esquematica, as principais etapas que compoem o percurso metodo-
logico. O diagrama sintetiza desde a concepgao inicial do problema até o desenvolvimento
técnico do protétipo, abrangendo a definicao da arquitetura do sistema, a aplicacao da

engenharia de prompt e a implementacao da extensao no VsCode.

3.0.1 Percepcao da Problematica

A etapa de Percepcao da Probleméatica constituiu o ponto de partida deste traba-
lho e teve como finalidade compreender os desafios inerentes ao processo de ensino-
aprendizagem de programacgao no ensino superior. Inicialmente, foram identificadas,
através da literatura, as principais dificuldades enfrentadas por estudantes em estagios
iniciais, tais como a elevada carga cognitiva associada a abstragao de conceitos, a neces-
sidade de desenvolver raciocinio logico estruturado e a tendéncia a desmotivacao diante
de erros recorrentes.

Na sequéncia, realizou-se uma revisao da literatura sobre Inteligéncia Artificial apli-

cada a Educagao e sistemas tutores, com o objetivo de mapear o estado da arte e compre-

Capitulo 3. método 33

Figura 3 — Fluxograma do método

(i Percepsdo da Problemtica i) (Design e Implementagio \ (= Validagdo w

| Planej o i
F; [Med:(:e_:::nt: :‘::::taturﬂ [—_"'}E)elinennento do exper;nenta

Percepgdo das dificuldades
no aprendizado de
programagdo

Elaboragdo dos cédigos para
testes em diversos niveis de
programagio

[Deﬁn‘ngao das teenologias e

das regras pedagégicas
Coleta de dados
quantitativos
(qualidade de cédigo, tempo,

Reviséo da literatura sobre Tmplementagsio do Backend e
I4 na Educagdo e Sistemas o Tibor desTA
Tutores y
erros.

(5 |
Iolentﬁnca;ao dFe lacw\as Testes da I"tﬁs"“saj TS,

i s Ferre s ;

Gl Iza“t“ms quanto & eficicia pedagdgica

Levantamento dc mqu-s\tosw
para um tutor com foco d Requisitos Sim
pedagdgico J satisfatérios?
o = =) A J

Fonte: do Autor

ender de que forma tecnologias emergentes, como a Inteligéncia Artificial Generativa, vém
sendo utilizadas nesse contexto. Essa analise permitiu identificar tanto avancos relevantes
quanto limitagoes persistentes nas solucoes existentes.

Dentre essas limitagoes, destacou-se a caréncia de ferramentas que priorizem a medi-
acao pedagogica em detrimento da simples automacao da escrita de codigo. A maioria
dos assistentes atuais responde a logica da produtividade, oferecendo solugbes prontas
que, embora acelerem a codificagdo, podem induzir a uma postura passiva do estudante,
reduzindo o engajamento critico e comprometendo a construcao de autonomia intelectual.

Com base nesse diagnostico, procedeu-se ao levantamento de requisitos para a con-
cepcao de um tutor de TA, capaz de oferecer suporte personalizado, promover a reflexao
sobre os erros cometidos e estimular o desenvolvimento gradual das competéncias de pro-
gramacao. Essa etapa, portanto, forneceu o alicerce conceitual e pratico para o design do

protétipo proposto.

3.0.2 Design e Implementacgao

As etapas de Design e Implementacao corresponderam a fase em que se materializaram
as decisoes derivadas do levantamento de requisitos pedagdgicos e técnicos. Inicialmente,
foi elaborado o planejamento da arquitetura do agente tutor, estabelecendo-se a divisao
entre os componentes de diagnostico e de orientacao pedagogica, de modo a garantir a
separacao das responsabilidades técnicas e didaticas.

Em seguida, foram definidos as tecnologias de suporte e o apoio didatico, assegurando
que as interagoes com o estudante fossem estruturadas de maneira construtiva, evitando

respostas prontas e estimulando o raciocinio critico. A partir dessas defini¢oes, procedeu-

Capitulo 3. método 34

se a implementacao do backend e do agente de TA, que integraram tanto os mecanismos
de processamento do cédigo quanto a camada de didlogo pedagogico.

Posteriormente, foram conduzidos testes de integracao para verificar a consisténcia do
sistema como um todo, avaliando a comunicacao entre modulos, a adequacao das respostas
geradas e o alinhamento as diretrizes pedagogicas estabelecidas. Sempre que identificadas
falhas ou inconsisténcias, ajustes foram realizados até que os requisitos definidos fossem

plenamente atendidos.

3.0.3 Stack de Tecnologias e Ferramentas

A selecao das tecnologias para este projeto foi pautada pela busca de um ecossistema
coeso e de alta performance, capaz de suportar as demandas de um sistema de IA e, ao
mesmo tempo, integrar-se nativamente ao ambiente de desenvolvimento. A arquitetura
foi dividida em dois componentes principais: o backend, responsavel pela logica da API e

interacao com a IA, e a extensao da IDE, que serve como interface para o usuario.

Tecnologias do Backend

O Python': Foi a linguagem de programacao escolhida como base para o backend de-
vido ao seu vasto ecossistema de bibliotecas para Inteligéncia Artificial, manipulagao
de dados e desenvolvimento web. Ele permite uma prototipagem rapida e facilita a

construcao de sistemas complexos de IA devido suas diversas bibliotecas.

O FastAPI: Para a construgiao da API, foi utilizado o *https://fastapi.tiangolo.comFast API,

um micro-framework web moderno e de alta performance para Python. Sua escolha
se deve a sua velocidade, a geracdo automatica de documentagao interativa (via
OpenAPI?) e ao seu sistema de injegao de dependéncias, que simplifica a organiza-
cao do cédigo. O FastAPI foi fundamental para a criacao de endpoints robustos e

eficientes para as rotas da aplicacgao.

(d LangChain: No inicio do projeto, o framework foi empregado para agilizar a mani-
pulagao e o encadeamento de prompts com o Modelo de Linguagem. Contudo, em

fases posteriores e visando otimizar a laténcia ele foi retirado.

d Agno: O Agno é um framework para criagdo e orquestracao de agentes de IA que

busca uma menor laténcia para sistemas multi-agénticos.

O SQLModel: Para o mapeamento objeto-relacional (ORM), a biblioteca SQLModel*

foi utilizada. FEla combina o poder do SQLAlchemy com a validacao de dados

https://www.python.org

https://swagger.io/specification
https://sqlmodel.tiangolo.com

W N =

Capitulo 3. método 35

do Pydantic®, integrando-se perfeitamente ao FastAPI. O SQLModel simplificou a
definicao dos modelos de dados, a interagao com o banco de dados e garantiu a

consisténcia e a validacao das informacoes manipuladas pela API.

PostgreSQL: Como sistema de gerenciamento de banco de dados, o PostgreSQL® foi
selecionado por sua robustez, confiabilidade e suporte a tipos de dados complexos.
Sua capacidade de lidar com cargas de trabalho concorrentes e sua extensibilidade
o tornaram a escolha ideal para persistir os dados da aplicacao de forma segura e

escalével.

Tecnologias da Extensdo (Frontend):

(d Node.js e TypeScript: A extensao para o VSCode foi desenvolvida sobre a plata-

forma Node.js”, que é o ambiente padrao para a execucao de extensoes, em conjunto

com o TypeScript®.

API de Extensoes do Visual Studio Code: A integracao com o editor foi realizada
por meio da API oficial de extensdes do Visual Studio Code (2025). Essa bilbioteca
permite a criacao de componentes na IDE de usuério, o registro de comandos na
paleta do editor e o acesso ao contexto do cdédigo do usuario, viabilizando a expe-
riéncia do tutor integrado a ferramenta. Podemos ver a interface da ferramenta na

Figura 4

Figura 4 — Interface principal do editor de codigo Visual Studio Code

5:15 PM] Unable to resolve configuration with compilerpath

Fonte: do Autor

0w N o O«

https://docs.pydantic.dev/latest
https://www.postgresql.org
https://nodejs.org/pt
https://www.typescriptlang.org

Capitulo 3. método 36

3.0.4 Validacao

Para este trabalho, a etapa de Validacao compreendeu verificar a funcionalidade do
prototipo em relagao as métricas funcionais e de desempenho da proposta. Para isso, fo-
ram avaliados principalmente o tempo de inferéncia, tanto do agente isoladamente quanto
considerando a carga de trabalho, e a quantidade de tokens necessarias para materializa-
¢ao dos prompts gerados durante as interagoes.

Esses testes permitiram mensurar a eficiéncia do sistema em termos de desempenho
computacional e consumo de recursos, assegurando que a ferramenta pudesse operar de
forma responsiva e em tempo habil dentro do ambiente de desenvolvimento VsCode.

Ainda que esta etapa nao tenha contemplado experimentos com estudantes, a ana-
lise funcional forneceu indicios relevantes sobre a robustez do protétipo e sua adequacao
para suportar cendrios reais de uso, constituindo-se como um passo inicial para futuras
investigagoes voltadas a eficacia educacional do agente tutor.

Posteriormente, foi realizada a analise dos resultados, considerando nao apenas os
aspectos técnicos da ferramenta, mas também sua capacidade de oferecer suporte didatico
significativo. Essa avaliacao possibilitou identificar pontos fortes do prototipo, bem como
limitagoes a serem superadas em trabalhos futuros.

Assim, a fase de validagao cumpriu o papel de consolidar a viabilidade do sistema
proposto, fornecendo evidéncias de que a arquitetura desenvolvida é funcional e que a
abordagem baseada em agentes complementares pode contribuir de forma efetiva para o

processo de ensino-aprendizagem de programacao.

37

CAPITULO

Desigh e Implementacao do GPT

Teacher

Esta secdo apresenta o percurso de design e implementagao do prototipo GPT Teacher,
cujo objetivo foi estruturar uma arquitetura de agentes de inteligéncia artificial generativa
com foco didatico no processo de aprendizagem de programacao, integrada ao ambiente
de desenvolvimento VsCode. O processo contemplou desde o planejamento conceitual da
arquitetura até a implementacao efetiva da extensao funcional, buscando garantir tanto

a viabilidade técnica quanto a adequacao da solucao.

4.1 Arquitetura Geral da Solucao

A arquitetura do sistema foi projetada seguindo um modelo cliente-servidor Kurose e
Ross (2013), visando o desacoplamento entre a interface do usuério, no ambiente VsCode,
e o processamento de inteligéncia artificial, localizado no backend. Essa separacao de
responsabilidades, ilustrada na Figura 5, garante modularidade, escalabilidade e a cen-
tralizacdo da légica de negbcio. A solucao é composta por trés camadas principais: o
cliente (Extensdo do Projeto), o servidor (Backend) e a camada de persisténcia (Banco
de Dados).

O fluxo de operagdo se inicia no ambiente do cliente, o VsCode. A FExtensdo do
Projeto atua como a interface para o usuario, permitindo que ele, a partir de seu codigo
no ambiente, submeta uma pergunta ou solicite uma andlise. A extensao é responsavel
por capturar o trecho de codigo ativo no editor e a diavida do aluno e encapsula-los em
um payload. Este é entdo enviado via uma requisicaio HTTP para o backend. A imagem
6 mostra um exemplo onde o usuario faz uma pergunta para o agente com o contexto do
cddigo ativo da IDE e a figura 7 o corpo da mensagem enviado ao servidor.

No servidor, a aplicagdo FastAPI funciona como um API Gateway, controlando as
rotas e orquestrando o fluxo de trabalho interno. Ao receber a requisicao da extensao, o

Fast API direciona o payload do aluno para o Agente de Diagnésticos de Codigos. Este

Capitulo 4. Design e Implementac¢io do GPT Teacher 38

Figura 5 — Arquitetura Geral da Solugao

((vscode) (Dot ~
(x/_é Agente de
Cédigo do Aluno Pagload do Diagnésticos de
Alano Cadigos
FastAPI Andlise do
(Controle de Rotas) codigo
Payload com Pergunta HTTP
e o Cédigo do Aluno
Extenséo do Agente de Orientagdo
Pro Peo!agégica
rojeto I) Orientagdo
e — e
Resposta com \ Pedagég
k j Explicagdo do Agente K J

Banco de Dados Relacional (Pos‘tgres)

Fonte: do Autor

Figura 6 — Extensao do VsCode com Perguntas do Aluno para o Agente

[Extension Development Host] teste.py - Workspace - Visual Studio Code

Go Run Terminal Help

tem algo errado, me ajude a
identificar onde

Fonte: do Autor

Figura 7 — Corpo da Mensagem Enviado ao Servidor - Fonte: do Autor

"message":"tem algo ado, me ajude a identificar onde’
rt

"code" :"import uuid\nfrom typing impo Any, List, Optional\n\nfrom angi_db.angi.models.addiction impc

Fonte: do Autor

agente especializado tem a tnica responsabilidade de realizar uma analise técnica e ob-

jetiva do codigo recebido, identificando erros de sintaxe, problemas de logica, desvios de

Capitulo 4. Design e Implementa¢io do GPT Teacher 39

boas praticas ou outras anomalias. O resultado deste processo é uma Analise do Cédigo
estruturada, exemplificada no anexo A.1.3, que serve de insumo para a proxima etapa.

A andlise técnica é entdo encaminhada ao Agente Tutor. Este segundo agente atua
como o tutor do sistema, sua funcao é traduzir o diagnodstico técnico em um didlogo
construtivo claro, didatico e eficaz. Em vez de simplesmente apontar o erro, este agente
¢é projetado para guiar o aluno em seu raciocinio, fazer perguntas socraticas e explicar os
conceitos subjacentes, promovendo um aprendizado efetivo.

Finalmente, a orientacao gerada é formatada pelo FastAPI, que responde a requisicao
da Extensao do Projeto no VsCode. A extensao, por sua vez, exibe essa resposta de forma
clara e integrada a interface do editor, como pode ser visto na imagem 8. Todo o processo
¢é suportado por um Banco de Dados Relacional, que persiste o histérico de interacoes,

gerencia dados de usuarios e armazena as saidas geradas pelos agentes.

Figura 8 — Extensao do VsCode com a Resposta Produzida pelo Agente Tutor

[Extension Development Host] teste.py - Workspace - Visual Studio Code

Run Terminal Help

Exploragao Guiada de Erros

1. Acesso s Ferramentas Essenciais
do SQLALchemy

Forwarda Port

Fonte: do Autor

4.1.1 Selecao da Plataforma de Desenvolvimento e Integracao

A escolha do Visual Studio Code como ambiente para a aplicacdo da ferramenta foi
uma decisao estratégica. Em vez de desenvolver um software independente, que poderia
introduzir uma barreira para utilizacao, foi criada uma solu¢ao integrada a uma ferra-
menta de uso diario por estudantes. O VsCode se destaca por sua alta popularidade e
influéncia no ecossistema de tecnologia, sendo frequentemente a primeira porta de entrada

para programadores em diversas areas, como desenvolvimento web, C++ e outras.

Capitulo 4. Design e Implementa¢io do GPT Teacher 40

A experiéncia de uso (UX) no VsCode também foi aprimorada ao longo do projeto.
Inicialmente, a ferramenta era ativada por um atalho de teclado. Para melhorar a usabili-
dade e a visualizacao dos resultados, essa abordagem evoluiu para uma View customizada,
acessivel por um clique na barra de atividades do editor. Dessa forma, a ferramenta abre
uma nova aba com uma interface web (WebView), tornando o acesso mais intuitivo e a

apresentacao dos feedbacks pedagogicos mais rica e organizada.

4.1.2 Modelagem dos Agentes de TA

A solugao foi arquitetada em torno de um sistema multiagente, composto por duas
entidades de LLM especializadas e complementares: um Agente Analisador de Cddigo e
um Agente Tutor Pedagdgico. Ambos foram construidos utilizando uma abordagem de
prompt engineering baseada na técnica de Cadeia de Pensamento (CoT), que instrui o
modelo a pensar passo a passo antes de gerar uma resposta final, aumentando a coeréncia
e a precisao.

O primeiro agente foi projetado para realizar uma analise técnica aprofundada do
c6digo submetido pelo aluno. Para garantir a qualidade e o rigor da avaliagao, o prompt
contextualiza o LLM para atuar sob a persona de um desenvolvedor sénior com mais de
dez anos de experiéncia.

O segundo agente recebe como entrada a analise estruturada gerada pelo primeiro. Sua
funcao é traduzir o diagndstico técnico em um didlogo construtivo eficaz e personalizado.
Para isso, foi configurado com a persona de um Professor de Programacao Experiente,
especialista em pedagogia e no método socratico.

E importante ressaltar que esta arquitetura final é fruto de um processo de desenvol-
vimento iterativo. A primeira versao do sistema utilizava um tnico agente monolitico,
responsavel tanto pela andlise técnica quanto pela tutoria. Contudo, observou-se que essa
abordagem limitava a profundidade em ambas as areas. A decisao de dividir as respon-
sabilidades em dois agentes distintos permitiu um refinamento muito mais focado, onde
os prompts de cada um puderam ser aprimorados e otimizados de forma independente ao

longo de varios ciclos para alcancar uma maior qualidade nas respostas.

4.1.2.1 Selecao do Framework para Construcao dos Agentes de TA

O processo de selecao das ferramentas de desenvolvimento dos agentes passou por
um ciclo de iteracao e refinamento. Inicialmente, o protétipo foi desenvolvido utilizando
o framework 'LangChain. Embora seja uma ferramenta poderosa para a construcio de
aplicagoes com LLMs, foram identificados gargalos de desempenho, resultando em uma
laténcia de resposta maior que a desejada. Além disso, a orquestragdo da comunicagao

entre os agentes poderia ser um desafio técnico para o futuro.

L https://www.langchain.com

Capitulo 4. Design e Implementa¢io do GPT Teacher 41

Em busca de maior performance, escalabilidade e uma arquitetura mais preparada
para evolucoes futuras, o projeto foi refatorado utilizando o framework 2Agno. Esta
escolha se mostrou mais eficiente, proporcionando maior velocidade de processamento e

integragoes que favoreceram a arquitetura planejada.

4.2 Construcao dos Agentes

O ntcleo inteligente da ferramenta é materializado por meio de uma arquitetura de
dois agentes especializados que operam de forma complementar. O primeiro agente é res-
ponsavel por realizar uma analise técnica e objetiva do coédigo-fonte, enquanto o segundo
se encarrega de sintetizar essa analise e construir uma interagao didatica com o usuéario.
As subsecoes a seguir detalham a concepcao, as responsabilidades e a implementacao de

cada um desses componentes.

4.2.1 Agente de Diagnéstico de Codigo

O Agente de Diagndstico de Codigo é o primeiro componente do niicleo de inteligéncia
do sistema, atuando como o perito técnico responsavel por realizar uma analise profunda
e objetiva do codigo submetido pelo aluno. Sua principal func¢ao é decompor o codigo
em seus elementos fundamentais, identificar padroes, classificar o nivel de proficiéncia
demonstrado e categorizar erros.

Este agente nao interage diretamente com o aluno e seu comportamento do agente é
inteiramente governado por um processo de engenharia de prompt. Este nao é um simples
comando, mas um 3prompt complexo que define uma persona, um processo rigoroso e um
formato de saida estrito. A persona designada ao LLM é a de um Analista de Programacao
Sénior, estabelecendo um contexto de mentoria e avaliacao construtiva que guia todo o
raciocinio do modelo.

Um dos principais desafios no trabalho com LLMs é garantir a consisténcia e a confi-
abilidade da saida. Para mitigar esse problema, foi implementada uma saida estruturada
em formato JSON, técnica que obriga o agente a preencher campos especificos e, assim,
forga um processo de raciocinio sistematico. Este processo se inicia com uma Anélise
Inicial (Reconhecimento) para identificar a linguagem, o objetivo do cédigo e os t6picos
envolvidos, seguida pela Avaliagdo de Nivel (Classificagdo) da proficiéncia do aluno. Sub-
sequentemente, é realizado um Diagnéstico de Erros detalhado, que categoriza as falhas
encontradas (sintaticas, 16gicas, estruturais, de performance e de boas praticas), culmi-
nando na geracao de Feedback e Melhorias, com retornos construtivos e sugestoes de

codigo.

2
3

https://github.com/agno-agi
Prompt presente no anexo A.1.1

Capitulo 4. Design e Implementa¢io do GPT Teacher 42

Figura 9 — Modelo de Saida Estruturada do Agente de Diagnostico de Codigo

{a
"analise_geral":{ (&
"nivel_aluno” : "INICIANTE | INTERMEDIARIO | AVANCADO | EXPERT",
"linguagem_programacaec" :"string”,
"objetivo_codigo":"string detalhado do que o cédigo deveria fazer”,
"topicos_envolvidos" :[B
array de topicos identificados
1.
"pontuacao_geral":"numero de 8-18@
1,
"diagnostico_erros":{ &
"total_erros"” :"numero”,
"erros_por_categoria”:{ &
"sintaticos":[&
{8
"tipo":"string”,
"descricao" :"descricdo detalhada do erro”,
"correcao_sugerida":"como corrigir”,
"impacto_aprendizado” : "baixo|medio|alto
}
1,
"logicos":[[]
"estruturais”: 1.
"performance":[&],
"boas_praticas":[@]
}
IR
"feedback_construtive”:{ &
"pontos_fortes":[&
array de aspectos positives identificados

1,
"areas_melhoria":[B
array de dreas para desenvolvimento
I,
"proximos_passos":[B
array de sugestdes de estudo”
1.
"recursos_recomendados"” - | [&]
array de materiais de estudo especificos”
]
1.
"codigo_melhorado" :{ &
"incluir_codigo” : " {{include_code_suggestions}}",
"versao_corrigida":” ing com codigo corrigido (se solicitado)",
"explicacao_mudancas":"string explicando as alteragdes feitas”

}

}

Fonte: do Autor

A estrutura de saida, conforme detalhado na imagem 9, foi fundamental para que
cada campo servisse de contexto para o préximo, criando uma cadeia de andlise logica
e detalhada. Além da rigidez estrutural de sua saida, o agente também se destaca por
sua flexibilidade: ele foi projetado para ser altamente configuravel, com parametros como
nivel detalhamento e tom_ feedback que podem ser ajustados dinamicamente. Essa capa-
cidade permite que o sistema adapte a profundidade e o estilo da analise técnica conforme
o contexto da interacdo ou as preferéncias do usuario. Por fim, a saida estruturada do
agente organizada em secoes claras permite que o Agente Tutor consuma a informagao

de forma programatica.

4.2.2 Agente Tutor

O Agente de Tutor conversa diretamente com o aluno, funcionando como o tutor do
sistema. Ele nao analisa o c6digo, mas recebe um relatorio técnico detalhado do Agente
de Diagnostico. A sua principal fungdo é manipular esse relatério técnico e transformé-lo

em uma conversa educativa, que ajude o aluno a aprender e a pensar por conta propria.

Capitulo 4. Design e Implementa¢io do GPT Teacher 43

Todo o comportamento do agente é controlado por um *prompt muito detalhado que
o instrui a agir como um professor especialista em pedagogia aplicada. A sua diretriz
principal é nunca dar respostas prontas e maximizar o desenvolvimento do raciocinio
autonomo do aluno. Para alcancar este objetivo, o agente adota o método socratico
para fazer com que o proprio aluno chegue a solucao, estimulando o pensamento critico,
desenvolvendo o raciocinio do estudante e nao apenas corrigindo o erro.

Antes de responder, o agente primeiro faz uma anélise do aluno. Ele julga o nivel
de conhecimento do estudante fornecido na analise do agente anterior. Com base nisso,
ele decide a melhor forma de explicar os conceitos, usando uma linguagem mais simples
para iniciantes ou discussoes mais complexas para os avancados. Isso é exemplificado
na imagem 10, onde o contexto é um aluno avancado, entdo o agente explica conceitos
como assincronicidade do SQLAlchey/SQLModel, em contraste ao contexto iniciante da
resposta presente na 11, onde até o tratamento inicial e a abordagem sao diferentes.
Além disso, ele prioriza os erros de maior impacto para o aprendizado e identifica possiveis
lacunas conceituais, o que garante os pontos mais importantes para o aprendizado naquele

momento.

Figura 10 — Exemplo de Resposta a um Aluno nivel Avancado referente uma Possivel
Melhora de Padrao em Operagoes do SQLModel

0Ola! £ um prazer acompanhar o seu desenvolvimento.

Vejo que vocé esta construindo um conjunto de operagdes CRUD robusto e assincrono para a gestdo de pacientes, utilizando ferramentas poderosas como SQLAIchemy e Pydantic. Sua familiaridade com
tipagem estatica, modelagem de dados e a iniciativa de empregar programacdo assincrona sdo pontos de partida excelentes e demonstram uma compreensdo solida das praticas modernas de
desenvolvimento.

E natural que, ao integrar diferentes tecnologias e paradigmas (como o assincrono com o ORM), surjam desafios e nuances. A drea que vocé esta explorando, em particular, requer atencdo aos detalhes sobre

como o asyncio e o SQLAlchemy trabalham juntos. Seu codigo jd apresenta uma estrutura muito boa, e vamos refinar alguns pontos para garantir que ele atinja seu potencial maximo em performance e
clareza.

Vamos explorar juntos o que pode estar impedindo o seu cédigo de funcionar como esperado e como podemos aprimora-lo.

Exploracdo Guiada de Erros
1. Acesso as Ferramentas Essenciais do SQLAIchemy
* Ao tentar rodar seu cddigo, vocé notou alguma falha logo no inicio, talvez relacionada a nomes como Session, or_, col, delete ou update que ndoforam encontrados?

« O que o Python costuma reportar quando ele ndo consegue identificar um nome ou uma classe especifica que esta sendo utilizada?
« Pensando nisso, qual seria o primeiro passo para garantir que todas as ferramentas do SQLAIchemy que vocé esta utilizando estejam acessiveis no seu arquivo?

2. 0 Poder Oculto da Assincronicidade no SQLAIchemy

+ Vocé observou alguma operagdo de banco de dados que, mesmo dentro de uma fun¢do async def , parecia estar demorando mais do que o esperado ou até mesmo bloqueando outras operagdes, como
db.exec() ou db.get() ?

* Qual é a principal diferenca de comportamento entre chamar uma fungdo como db.exec(statement) e await db.execute(statement) em um contexto assincrono? O que 0 await realmente faz?

« Como vocé garantiria que todas as interagdes com o session do SQLAlchemy dentro das suas fungdes assincronas realmente se beneficiem do modelo assincrono e no bloqueiem a execucao de outras
tarefas concorrentes?

3. Gerenciando Transages com Eficiéncia

¢ Nafun¢do clear patient medical data, se houvessem muitos modelos médicos ou muitos pacientes para limpar, vocé consegue imaginar algum gargalo de performance ou um comportamento transacional

subétimo ao chamar session.commit() dentro do loop?
« Ao chamar session.commit() repetidamente dentro de um loop, qual o efeito disso no nimero de transagdes que sdo abertas e fechadas com o banco de dados? Que custo isso pode ter?

« Como vocé reorganizaria a l6gica de commit para que todas as operagdes de exclusdo em um loop fagam parte de uma Unica transagdo, tornando-a mais eficiente e garantindo a atomicidade do conjunto de

operagdes?

Fonte: do Autor

A conversa com o aluno segue uma estrutura de perguntas bem definida. O agente guia
o estudante passo a passo: primeiro, ajuda-o a perceber o problema; depois, a entender

por que o erro aconteceu; e, por fim, a explorar as possiveis solugoes por conta prépria.

4 Prompt presente no anexo A.1.2

Capitulo 4. Design e Implementa¢io do GPT Teacher 44

Figura 11 — Exemplo de Resposta a um Aluno nivel Iniciante referente uma Possivel Me-
lhora de Padrao em Operagoes do SQLModel

Olal Entendo perfeitamente a sensagdo de olhar para o c6digo e sentir que "esta tudo errado”. E um momento comum na jornada de qualquer desenvolvedor, e a boa noticia & que esse sentimento é, na
verdade, um convite para um aprendizado profundo e significativo. Vocé ja demonstrou um excelente ponto de partida ao organizar seu codigo com Programagao Orientada a Objetos € ao implementar a
persisténcia de dados com JSON, © que S0 passos muito importantes!

Seu codigo para a Calculadoralotas esta funcional e bem estruturado nas operagdes basicas. Agora, como um estudante intermediario, estamos em um ponto onde podemos comegar a refinar e fortalecer
essa base, explorando como tornar seu sistema mais robusto, flexivel e "amigavel" para quem o usa ou para outros desenvolvedores que venham a trabalhar com ele.

Vamos juntos desvendar alguns pontos para transformar essa sensacao de "tudo errado” em uma jornada de descobertas!

Exploragdo Guiada de Desafios

Vamos comegar observando o comportamento do seu programa e investigando por que ele age de determinada forma.

1. A Busca Silenciosa: Lidando com a Case-Sensitivity
No seu codigo, vocé tem uma fungdo buscar estudante . No seu "Codigo de teste", vocé tenta buscar por "maria”, mas o estudante foi adicionado como "Maria".
+ Descoberta do Problema: Quando vocé executa o cadigo e tenta buscar por "maria” (com 'm’ mindsculo), © que o programa retorna? £ o que vocé esperava?

+ Compreensao da Causa: Por que vocé acha que a busca por "maria” ndo encontra "Maria”, mesmo sendo a mesma pessoa? O que o Python considera ser "igual" ao comparar strings como
estudante['nome'] e nome ?

+ Exploracao de Solugdes: Que modificagdes vocé poderia fazer na linha de comparacdo dentro do método busecar estudante para que ela trate "maria” e "Maria" como o mesmo nome? Existem métodos
de string em Python que poderiam ajudar a padronizar as strings antes de compara-las?

2. Operagdes de Arquivo: Onde a Robustez Encontra Desafios
Seu sistema salva e carrega dados em um arquivo JSON, o que € 6timo! Mas e se algo der errado durante essas operagdes?

« Descoberta do Problema: Imagine que vocé tente carregar dados de um arquivo chamado "notas_inexistentes.json" que ndo existe. O que acontece com o seu programa? E se o arquivo "notas.json” estive

Fonte: do Autor

Toda a interagao é projetada para ser uma descoberta guiada, em vez de uma simples
entrega de informacoes.

Para garantir que ele seja sempre um bom professor e nunca trapaceie dando a resposta,
o agente segue um conjunto de regras rigidas, chamados guardrails, como nunca entregar o
cédigo corrigido, focar somente no escopo de perguntas de programacao e sempre manter
um tom empatico e encorajador. Além disso, ele sempre precisa terminar suas mensagens
com uma pergunta, para estimular a reflexdao. Por fim, antes de enviar sua resposta, ele
faz uma autoavaliagdo, checando se cumpriu todas as regras para uma ajuda mais segura

e focada no ensino.

4.3 Implementacao da Extensao para o Visual Studio
Code

A implementacao da extensao para o Visual Studio Code representa a ponte entre
o usuario e o sistema de inteligéncia artificial. O desenvolvimento neste ecossistema
é baseado em Node.js e TypeScript, que oferece um ambiente robusto e tipado para
a criacdo de funcionalidades. A estrutura de uma extensao é definida primariamente
por seu arquivo de manifesto, ®package.json, que declara seus metadados, dependéncias e
pontos de contribuicao. Estes pontos sao a forma como a extensao se integra a interface do
VsCode, permitindo registrar comandos, adicionar itens a menus de contexto, criar painéis

de visualizacao, entre outras funcionalidades. O ciclo de vida da extensao é gerenciado

® Arquivo presente em: <https://github.com/RFHamster/gpt-teacher-extension/blob/main/package

.json>

Capitulo 4. Design e Implementa¢io do GPT Teacher 45

por eventos de ativacao, que garantem que o c¢6digo so seja carregado na memoria quando
o usuario interagir com uma de suas funcionalidades, otimizando a performance do editor.

O ponto de entrada da interacao do usuario com o sistema de tutoria foi implementado
através do registro de um comando na paleta de comandos do VsCode (Ctrl+Shift+P) e
de um item no menu de contexto, acessivel com o clique direito sobre o cédigo. Ao ser
acionado, este comando executa a funcao principal da extensao, que primeiramente cap-
tura o contexto ativo do editor: o trecho de c6digo selecionado pelo usuério e o conteido
do arquivo aberto. Esta coleta de informacgoes é essencial para montar o payload que sera
enviado ao backend, garantindo que os agentes de IA tenham o material necessario para
realizar suas analises de forma precisa e contextualizada.

A comunicagao com o backend é realizada de forma assincrona, tratando a extensao
como um cliente HTTP. Utilizando uma biblioteca, a extensao formula uma requisicao do
tipo POST para o endpoint apropriado da API construida com FastAPI. O corpo (body)
desta requisicao contém o payload serializado em formato JSON, com o cdédigo do aluno
e a sua pergunta ou intencao. A extensao entdo aguarda a resposta do servidor, que,
apos o processamento pelos agentes de diagnodstico e tutoria, retorna a resposta do agente
tutor. Este desacoplamento via API é fundamental, pois permite que o processamento
pesado da IA ocorra em um servidor dedicado, sem impactar a responsividade do editor
de cédigo do usuério.

Para exibir a interagao com o agente de forma amigével e conversacional, foi utilizada
a API de WebView do VsCode, ilustrada na Figura 12. Um WebView permite criar um
painel customizado dentro do editor que renderiza conteido web padrao (HTML, CSS
e JavaScript). Nesta WebView, foi construida uma interface de chatbot, com um campo
para entrada de texto e uma area para exibicdo do histérico da conversa. A logica da
interface, como a renderizacao de novas mensagens e o gerenciamento do estado visual, é

controlada pelo JavaScript, que roda exclusivamente dentro do Web View, e pelo backend.

Figura 12 — Imagem da Extensao

Fonte: do Autor

Capitulo 4. Design e Implementa¢io do GPT Teacher 46

O fluxo de dados entre a légica da extensao (TypeScript) e a interface do chatbot
(JavaScript no WebView) é gerenciado por um sistema de troca de mensagens. Quando
a extensao recebe a resposta da API do backend, ela utiliza o método postMessage para
enviar os dados da orientacao para o WebView. O JavaScript do chatbot, por sua vez,
possui um ouvinte de eventos (event listener) que captura essa mensagem e, dinamica-
mente, cria e anexa os novos elementos HI'ML ao DOM para exibir a resposta do agente
ao usuario. Da mesma forma, quando o usuario digita uma nova mensagem no chatbot,
ela é enviada do Web View para a extensao, que entao inicia um novo ciclo de comunicacao
com o backend, criando uma experiéncia de conversacao fluida e totalmente integrada ao

ambiente de desenvolvimento.

4.3.1 Validacao e Documentacao dos Endpoints

Para garantir a integridade e a clareza da comunicacao cliente servidor, foi adotada
uma estratégia de validacao e documentacao automatizada dos endpoints da API, utili-
zando as capacidades nativas do FastAPI. Esta abordagem assegura que a documentacao
seja um reflexo fiel e sempre atualizado do codigo-fonte, eliminando inconsisténcias e
facilitando o desenvolvimento e a manutencao.

O FastAPI utiliza a biblioteca Pydantic para definir esquemas de dados através de
classes Python com tipagem. Esses esquemas foram empregados para modelar tanto os
corpos das requisi¢oes que chegam do cliente quanto os corpos das respostas enviadas pelo
servidor. Aplicando automaticamente uma camada de validacao em todos os dados que
transitam pela API.

A principal ferramenta para a visualizagdo e interacao com essa estrutura é a inter-
face do Swagger U, que o FastAPI gera automaticamente no endpoint "/docs" da API.
Esta interface web interativa prové uma documentacao detalhada e navegavel de todos os
endpoints do sistema. Para cada rota, o Swagger Ul exibe informacoes cruciais, como o
método HTTP, uma descricao do endpoint e os esquemas da requisicao.

Além de servir como uma documentacao clara, o Swagger Ul foi uma ferramenta
central no processo de validacao funcional e desenvolvimento iterativo. Através dele foi
possivel testar cada endpoint diretamente pelo navegador, enviando payloads de exemplo
(como trechos de codigo para anélise) e inspecionando a resposta real do servidor em
tempo real. Este ciclo rapido de teste e depuragdo permitiu validar toda a logica do

backend antes da integracao com o VsCode, como pode ser visto nas figuras 13 e 14.

Capitulo 4. Design e Implementa¢io do GPT Teacher

47

Figura 13 — Documentacao Completa do FastAPI

Sistema de Ensino com IA @@ &0

Jopenapijson

API de Ensino Assistido por Inteligéncia Artificial

Esta API fornece um sistema educacional que combina anadlise de cédigo e feedback pedagdgico
utilizando agentes especializados de IA.

##4# Caracteristicas principais:

- g **Agentes Especializados**: Code Analyser + Teacher Agent

- ul **Andlise de Codigo**: Feedback detalhado sobre qualidade e melhorias

- @ **Resposta Pedagbgica**: Explicacdes educativas adaptadas ao nivel do estudante
- **Streaming**: Respostas em tempo real

- B **Persisténcia**: Histérico de sessdes e analises

Fluxo de trabalho:

1. Envie cédigo + pergunta

2. Sistema analisa o cédigo

3. Gera resposta pedagégica personalizada
4. Retorna feedback em streaming

Contact Equipe de Desenvolvimento

Teste ~
Im /fake_stream Teste de Streaming v]
Agentes IA ~
Im /call/agno/ sistema Completo com Agentes v ‘
LangChain ~
|m /call/langchain/ LangChain com Streaming v ‘
Sistema A
|m /health Health Check o \

Fonte: do Autor

Capitulo 4. Design e Implementa¢io do GPT Teacher

48

Figura 14 — Exemplo de Documentacao Especifica da rota

Sisterna complete que utiliza agentes especializados para analise de codigo e resposta pedagogica.

Fluxo de processamento:
1. Cria/recupera sessao do estudante

2. Analisa o cédigo com Code Analyser Agent

3. Gera resposta pedagégica com Teacher Agent

4. Persiste dades no banco

5. Retorna resposta em streaming

Parameters Try it out

Mo parameters

Request bady "1™ application/json

Example value | Schema

Responses
Code Description Links
200 Resposta pedagdgica em streaming No links

Media type

Contrals Accept header

Example value

Analisando seu cédigo. .
sua fungdo estd bem estruturada.

Headers:
Name Description Type

X-Session-ID 1D da sessdo (criado automaticamente se ndo fornecido) string

422 Erro de validagao No links

Media type
application/js

Example value | Schema

Fonte: do Autor

fcall/agno/ Sistema Completo com Agentes A

49

CAPITULO

Experimentacao

Neste capitulo, detalha-se a metodologia empregada para a avaliacdo de desempenho
da ferramenta GPT Teacher. O objetivo foi realizar uma anélise quantitativa para validar
a viabilidade, a eficiéncia e o custo computacional da solu¢do proposta em cenarios com

complexidades de codigos diferentes.

5.1 Objetivo do Experimento

O experimento teve como objetivo principal mensurar e analisar o desempenho do
sistema GPT Teacher e de seus agentes individuais (Agente de Diagnéstico de Codigo e
Agente Tutor) em quatro cenérios distintos, representando diferentes niveis de complexi-
dade de codigo. A avaliagao focou em métricas de consumo de recursos (tokens de entrada
e saida), laténcia (tempo de inferéncia) e custo financeiro associado as chamadas de API

do modelo de linguagem.

5.2 Metodologia da Experimentacao

Para garantir uma analise consistente e replicavel, foi definido uma metodologia de
experimentacgao estruturada, compreendendo os cenarios de teste, as métricas de avaliagao

e o procedimento de execugao.

5.2.1 Cenarios de Teste

Foram elaborados quatro cenarios de coédigo-fonte, cada um com um problema espe-
cifico e representativo de um nivel de dificuldade para estudantes de programacao. As
caracteristicas de cada cenario, como tamanho em linhas, tokens e a natureza do problema,
foram catalogadas para contextualizar os resultados.

A Tabela 2 descreve os quatro cenarios utilizados nos testes:

Capitulo 5. Ezperimentacdo 50

Tabela 2 — Caracteristicas dos cenérios

Nivel do Cédigo | Quantidade de Linhas | Quantidade de To- | Quantidade de Tokens
no Cédigo kens no Cdédigo na Pergunta

Iniciante 49 324 7

Médio 76 470 12

Avancado 211 1302 13

Expert 419 2728 19

Fonte: Autoria Propria

(4 Iniciante: Um cédigo simples contendo um algoritmo de soma de elementos em um

array com um erro de logica. Presente no anexo A.2.1

d Médio: Uma implementacao do algoritmo de Dijkstra contendo um erro na mani-

pulacao da fila de prioridades. Presente no anexo A.2.2

0 Avancado: Um sistema CRUD (Create, Read, Update, Delete) que utiliza um padrao

de projeto nao convencional, podendo gerar confusdo. Presente no anexo A.2.3

1 Expert: Um trecho de c6digo complexo e desorganizado, que busca criar uma ferra-
menta de geracao de agentes, simulando um cenério de depuragao avangado. Pre-

sente no anexo A.2.4

5.2.2 Configuracao do Ambiente e Métricas

Os testes foram executados utilizando a arquitetura do descrita no Capitulo 3, inte-
grada ao Visual Studio Code. O modelo de linguagem de larga escala utilizado como base
para os agentes foi o 'Gemini 2.5 Flash. O tamanho base dos prompts dos agentes, foi
mantido constante para garantir a consisténcia dos testes.

Para avaliar o desempenho de cada execucao, foram utilizadas quatro métricas prin-
cipais. Os Tokens de Input, quantidade de tokens enviados na requisicao para o modelo,
os Tokens de Saida, quantidade de tokens gerados pela resposta do modelo, o Tempo
de Inferéncia em segundos, que representa o tempo que o modelo levou para processar a
requisicao e gerar a resposta e, por fim, o Custo Total da operacao em reais, com base no

total de tokens usados.

5.2.3 Procedimento de Execucao

Para avaliar o impacto da geracao de cddigo no desempenho geral do sistema, o fluxo
completo do GPT Teacher foi executado duas vezes para cada um dos quatro cenarios de
teste. A tUnica variavel entre as execucgoes foi a configuracao do Agente de Diagnéstico

de Cbdigo, uma execugao foi realizada com a geracdo de cddigo ativada e a outra com

L <https://cloud-google-com.translate.goog/vertex-ai/generative-ai/docs/models/gemini/2-5-fla

sh? x tr sl=en& x tr tl=pt&_ x_tr hl=pt& x tr pto=tc>

Capitulo 5. Ezperimentacdo 51

a geracao desativada, retornando apenas a analise textual. Este método permitiu uma
comparagao direta do consumo de recursos, tempo de inferéncia e custo total da solucao
em ambos os cenarios de uso. Todos os dados resultantes foram entao organizados para

a analise subsequente.

52

CAPITULO

Analise de Resultados

Este capitulo apresenta os dados coletados durante a fase de experimentacao e prové

uma analise critica e interpretativa dos resultados, correlacionando-os com os objetivos

do trabalho.

6.1 Apresentacao dos Resultados

Os dados obtidos nos testes sdo apresentados a seguir. As tabelas consolidam as

métricas de desempenho para cada agente e cenario avaliado.

Primeiramente, o desempenho individual do Agente de Diagnéstico de Codigo e do

Agente Tutor na tarefa que envolvia a geracao de codigo é detalhado nas Tabelas 3 e 4,

respectivamente.

Tabela 3 — Desempenho do Analisador de Cédigo Criando Codigo

Nivel do Cédigo

Tokens de Input Tokens de Saida

Tempo de Inferéncia (s)

Iniciante
Médio
Avancgado
Expert

1812
1963
2796
4228

4085
2897
6234
9392

29,03
31,43
43,60
71,56

Fonte: Autoria Propria

Tabela 4 — Desempenho do Agente Tutor Recebendo Cédigo Gerado

Nivel do Cédigo

Tokens de Input Tokens de Saida

Tempo de Inferéncia (s)

Iniciante
Médio
Avancgado
Expert

9979
4942
9112
13702

1533
1484
2457
2542

18,73
21,00
27,81
34,19

Fonte: Autoria Propria

Em seguida, sao apresentados os resultados para a tarefa que nao envolvia a geragao

do cédigo correto pelo Agente Analisador de Codigo. A Tabela 5 e a Tabela 6 detalham

Capitulo 6. Andlise de Resultados 53

o desempenho do Analisador de Cédigo e do Tutor, respectivamente, focando apenas na

capacidade de analise textual.

Tabela 5 — Desempenho do Analisador de Cédigo na tarefa sem geragao de codigo

Nivel do Cédigo | Tokens de Input Tokens de Saida Tempo de Inferéncia (s)
Iniciante 1812 2603 23,35
Médio 1963 1896 26,08
Avangado 2796 5222 44,93
Expert 4228 4188 45,15

Fonte: Autoria Prépria

Tabela 6 — Desempenho do Tutor na tarefa sem geragao de cédigo

Nivel do Cédigo | Tokens de Input Tokens de Saida Tempo de Inferéncia (s)
Iniciante 4497 2289 28,15
Médio 3941 1774 24,00
Avangado 8100 447 38,72
Expert 8498 2124 30,49

Fonte: Autoria Propria

Finalmente, as Tabelas 7 e 8 consolidam os resultados do sistema completo, compa-
rando o desempenho geral e o custo financeiro das operagdes com e sem a geracao de

c6digo, respectivamente.

Tabela 7 — Consolidagdo de métricas de desempenho e custo para a tarefa com geragao

de codigo.
Tokens Tokens Total Tempo Custo Total
Nivel de Input de Saida Tokens (s) (RS)
Iniciante 7.791 5.618 13.409 47,76 0,0040227
Médio 6.905 4.381 11.286 52,43 0,0033858
Avancado 11.908 8.691 20.599 71,41 0,0061797
Expert 17.930 11.934 29.864 105,75 0,0089592

Fonte: Autoria Propria

Tabela 8 — Consolidacao de métricas de desempenho e custo para a tarefa sem geracgao

de codigo.
Tokens Tokens Total Tempo Custo Total
Nivel de Input de Saida Tokens (s) (RS)
Iniciante 6.309 4.892 11.201 51,50 0,0033603
Médio 5.904 3.670 9.574 50,08 0,0028722
Avancado 10.896 7.669 18.565 83,63 0,0055695
Expert 12.726 6.312 19.038 75,64 0,0057114

Fonte: Autoria Propria

Capitulo 6. Andlise de Resultados 54

6.2 Analise e Discussao dos Resultados

A andlise dos dados quantitativos obtidos permite a formulacao de conclusoes signifi-
cativas sobre o desempenho, o custo e a viabilidade da arquitetura proposta para o GPT
Teacher. A discussao a seguir tem como base os principais indicadores de performance:

tempo de inferéncia, consumo de tokens e custo financeiro.

6.2.1 Analise do Tempo de Inferéncia

O tempo de inferéncia é um indicador critico para a experiéncia do usuéario. Conforme
visualizado na Figura 15, ha uma correlacao direta entre a complexidade do cédigo de
entrada e o tempo de resposta do sistema. Para a tarefa com geragao de cddigo, o tempo
escala de 47,76s no nivel Iniciante para 105,758 no nivel Expert. Uma anomalia notavel
ocorre no nivel Avancado, onde a tarefa sem geragao de cddigo (83,63s) é mais lenta
que a com geragao de cddigo (71,41s), sugerindo que a complexidade da anédlise textual

solicitada superou a da geracao de cddigo para aquele cenario especifico.

Figura 15 — Tempo de Inferéncia Total por Nivel de Codigo e Tipo de Tarefa

Tempo de Inferéncia Total por Nivel de Cddigo e Tipo de Tarefa

Tipo de Tarefa 105.75
mmm Com Geragdo
mmm Sem Geragao

83.63
80 75.64
71.41
60
51.50 52.43
47.?6 I I 50.08
0 I I

Iniciante Médio Avancado Expert
Nivel do Cadigo

100

Tempo de Inferéncia (s)

S
=]

]
=1

Fonte: do Autor

Para aprofundar a andlise, a Figura 16 detalha a contribuicdo de cada agente para
o tempo total. Observa-se que o Analisador de Cddigo é o principal responsavel pelo
aumento do tempo no cenéario com geracao de cédigo de nivel Expert, consumindo 71,56s.
Em contrapartida, na tarefa sem geracao de cédigo, os tempos dos agentes sao mais
equilibrados, indicando que a geracao de c6digo complexo é a operacao mais intensiva em

tempo na arquitetura.

Capitulo 6. Andlise de Resultados 55

Figura 16 — Detalhamento do Tempo de Inferéncia por Agente e Tarefa

Agente Detalhamento do Tempo de Inferéncia por Agente e Tarefa
mmm Analisador de Codigo
mmm Orientador Pedagdgico
Tarefa: Com Geragao Tarefa: Sem Geracao

80

71.56

60

43.60

40

29.03

Tempo de Inferéncia (s)

28.15

34.19
31.43
27.81
23.35
. Ii I II

Iniciante Médio Avancado Expert Iniciante Médio Avancado Expert
Nivel do Cadigo Nivel do Cédigo

20

Fonte: do Autor

6.2.2 Andlise do Consumo de Tokens e Custo

O consumo de tokens esta diretamente ligado ao custo operacional da solugao. A
Figura 17 ilustra a quantidade total de tokens processados. A tarefa com geracao de
c6digo consistentemente demanda mais tokens, atingindo um pico de 29.864 tokens no

Expert, um aumento de 57% em relacao a tarefa sem geracao de c6digo no mesmo nivel.

Figura 17 — Quantidade Total de Tokens por Nivel de Codigo e Tipo de Tarefa

Quantidade Total de Tokens por Nivel de Cédigo e Tipo de Tarefa

30000 Tipo de Tarefa 29864
mmm Com Geragéo
mmm Sem Geracao

25000

20599
20000
18565
15000
11286

10000 9574
) l

0

Iniciante Médio Avancado Expert
Nivel do Cadigo

Total de Tokens

Fonte: do Autor

O detalhamento apresentado na Figura 18 revela a dinamica entre tokens de entrada e

saida. Um insight crucial é o comportamento do Agente Tutor na tarefa com geracao de

Capitulo 6. Andlise de Resultados 56

c6digo, ele recebe uma grande quantidade de tokens de entrada (o cédigo e a anélise do
primeiro agente), que chega a 13.702 no nivel Expert, mas gera uma saida relativamente
pequena (2.542 tokens). Isso demonstra o design da arquitetura, onde o segundo agente

atua como um “refinador” da informagao gerada pelo primeiro.

Figura 18 — Comparativo de Tokens (Input vs. Saida) por Agente e Tarefa

Tipo de Token Comparativo de Tokens (Input vs. Saida) por Agente e Tarefa

mmm Tokens_Input
mm Tokens_Saida

Analisador de Cddigo | Com Geragao Analisador de Cédigo | Sem Geragéo
14000

12000
10000

9392

8000

6234

6000

5222

Quantidade de Tokens

2085 4228 4188

4000
2897 2796

3 . .

2603 2796

1812 . 1963 1896 .

2000

Orientador Pedagégico | Com Geragdo Orientador Pedagégico | Sem Geracdo

0

14000 13702

12000

10000

9112

8000

5979

6000

4942

Quantidade de Tokens

3941

4000

2542

8498
2457 2289
2000 1533 1484

8100
2124
1774
- - . el -
0 | —

Iniciante Médio Avangado Expert Iniciante Médio Avancado Expert
Nivel do Codigo Nivel do Cédigo

Fonte: do Autor

A analise de viabilidade financeira, consolidada visualmente na Figura 19, constitui um
dos resultados mais relevantes. A operacao de geracao de c6digo representa o maior custo
computacional. Contudo, mesmo no cenério de maior exigéncia (Expert com geracao de
c6digo), o custo por inferéncia foi de aproximadamente R$ 0,009. Este valor, detalhado nas
Tabelas 7 e 8, atesta a elevada viabilidade financeira da ferramenta para implementagao
em larga escala em ambientes educacionais, suportando um alto volume de interagdes sem

incorrer em custos proibitivos.

6.2.3 Conclusoes da Analise

A anélise comparativa entre os modos de operacao, suportada pelos dados visuais,

confirma que a funcionalidade de andlise textual (“Sem Geragdo”) é, na maioria dos

Capitulo 6. Andlise de Resultados 57

Figura 19 — Custo Total (R$) por Nivel de Cddigo e Tipo de Tarefa

Custo Total (R$) por Nivel de Cddigo e Tipo de Tarefa

Tipo de Tarefa 0.008959
mmm Com Geragao

mmm Sem Geracao
0.008

0.006180
0.006
0.005569 0.005711
0.004023
0.004
0.003360 0.003386
0.002872
) .
0.000

Iniciante Médio Avancado Expert
Nivel do Codigo

Custo Total (R$)

Fonte: do Autor

casos, mais célere e econdmica, sendo ideal para diagnésticos rapidos e interacoes focadas
no entendimento do problema. Em contrapartida, a geracao de cddigo (“Com Geracao”),
embora mais onerosa em recursos, apresenta-se como a ferramenta mais completa para
a corre¢do e instrucao efetiva do cédigo-fonte do aluno. A sensibilidade do sistema a
complexidade da entrada é evidente em todas as métricas, um fator determinante para o

dimensionamento futuro da infraestrutura e para a gestao de custos operacionais.

o8

CAPITULO

Conclusao

A literatura recente sobre o uso de LLMs na Educacgao é praticamente unanime em
reconhecer seu potencial transformador. Ferramentas baseadas em inteligéncia artificial
prometem revolucionar o ensino ao oferecer suporte individualizado em larga escala, re-
duzir a frustracao inicial dos estudantes e prover feedback imediato, mitigando limitagoes
estruturais do ensino tradicional, como turmas numerosas e a disponibilidade restrita de
monitores e docentes.

Entretanto, essa mesma literatura também alerta para os riscos de uma aplicacao
direta e nao criteriosa de LLMs genéricos em contextos educacionais. A principal cri-
tica reside no fato de que assistentes de codificacao voltados a produtividade priorizam
a entrega de solugoes rapidas, em detrimento do processo cognitivo de aprendizagem.
Ao fornecer o cédigo pronto, tais ferramentas podem induzir & dependéncia passiva e
comprometer o desenvolvimento de competéncias essenciais, como o raciocinio légico, a
depuracao de erros e a decomposicao de problemas complexos.

Diante desse cenario, a arquitetura e a filosofia de implementacao do sistema proposto
foram concebidas como uma resposta deliberada a tais limitagoes. O desenvolvimento do
GPT Teacher se baseou em como a A pode guiar o estudante para que ele proprio construa
a solucao do problema. Para isso, optou-se pela implementacdo de uma arquitetura de
agentes duplos: o Agente de Diagndstico, responsavel por assegurar a precisao técnica da
andlise, e o Agente de Orientacao, que traduz os resultados em feedback instrucional e
dialogico.

Como resultado, foram produzidos uma extensao para o VsCode e uma API de backend
que concretizam a proposta tedrica. Foi verificado que a ferramenta se integra de forma
simples ao ambiente e que seu funcionamento como um chat focado, sem recursos que
desviam a atenc¢ao do aluno e buscam desenvolver seu raciocinio, cumpre o propésito de

auxiliar no aprendizado genuino.

Capitulo 7. Conclusdo 59

7.1 Principais Contribuicoes

A maior contribuicao deste trabalho foi comprovar a hipotese: a integracao de uma
arquitetura de agentes de LLM como uma ferramenta de suporte a aprendizagem de
programacao, em vez de um mero assistente de autocompletar cdédigo. Os experimentos
e o desenvolvimento do protétipo permitiram consolidar as seguintes contribuicoes para

a area de Inteligéncia Artificial na Educacdo e Engenharia de Software:

1 Um Modelo Arquitetural para Tutores de TA: A ideia de dividir a A em um agente
analista e um agente tutor pode ser usada como um modelo para outros projetos de

educacao com tecnologia.

d Implementacao de Pedagogia via Engenharia de Prompt: Foi demonstrada a possi-
bilidade de programar um agente de GenAl para seguir um método de ensino espe-
cifico, com suas restrigoes e fluxo de questionamento. Representa uma contribuicao
significativa sobre como instruir LLMs a agir ndo como oraculos de informagao, mas

como verdadeiros facilitadores do aprendizado.

1 Validagao da Integracao ao Fluxo de Trabalho do Desenvolvedor: Ao integrar o
tutor diretamente no VSCode, a pesquisa mostra que o suporte ao aprendizado
pode funcionar de forma contextualizada, reduzindo a carga cognitiva do aluno que
nao precisa alternar entre diferentes ferramentas. A solucao proposta mostra um
caminho para o desenvolvimento de ferramentas educacionais que habitam o mesmo

ambiente onde o trabalho pratico é realizado.

1 Um Protétipo de Cédigo Aberto: O codigo gerado, incluindo a extensdo para VS-
Code e a API, constitui uma contribuicao pratica, podendo servir como base para

futuras pesquisas e desenvolvimento por parte da comunidade académica.

7.2 Trabalhos Futuros

Este trabalho representa um passo inicial no desenvolvimento de um assistente para
ensino de programacao e o prototipo desenvolvido possui limitagoes que abrem diversas
possibilidades para pesquisas futuras. Alguns pontos podem ser aprimorados e novas

funcionalidades podem ser exploradas:

1 Aprimoramento do Agente de Diagnostico: O agente atual foca em arquivos tinicos.
Uma evolugao natural seria expandir sua capacidade para analisar projetos inteiros,

compreendendo as interdependéncias entre diferentes arquivos e médulos.

 Otimizacao de Performance e Laténcia: A dependéncia de LLMs de grande porte

pode introduzir laténcia nas respostas. Pesquisas futuras podem explorar o uso de

Capitulo 7. Conclusdo 60

modelos menores e especializados para criar uma experiéncia de usuario mais fluida

e instantanea.

(1 Personalizacao da Interacdo do Tutor: O método socratico, embora eficaz, pode
nao ser ideal para todos os alunos ou todas as situagoes. Um aprimoramento seria
permitir que o aluno ajuste o “nivel de diretividade” do tutor, podendo optar por

uma dica mais direta quando estiver bloqueado, por exemplo.

1 Implementacao de Memoria de Longo Prazo: O agente poderia ser aprimorado
para manter um histoérico das interagoes com cada aluno, permitindo-lhe reconhecer
dificuldades recorrentes e adaptar suas futuras orientacoes ao perfil de aprendizado
especifico do usuario. Além da integracdo dessa memoria com a instituicdo de
ensino, permitindo professores entenderem duvidas gerais de uma turma de alunos

e extrair insights das duvidas e onde focar esforcos

1 Gamificagdo do Aprendizado de Programagao: Integrar o tutor a um sistema de
gamificacdo, onde os alunos possam ganhar pontos, medalhas e progredir em trilhas

de aprendizado ao resolverem os desafios propostos pelo agente.

61

Referencias

AGNO. What is Agno? 2025. <https://docs.agno.com/introduction>. Acessado em:
15 de setembro de 2025. Citado na pégina 27.

Amazon Web Services [AWS]. O que sdo agentes de TA? 2025. Acesso em: 15 mai.
2025. Disponivel em: <https://aws.amazon.com/pt/what-is/ai-agents/>. Citado na
pagina 25.

Amazon Web Services [AWS]. O que é grande modelo de linguagem? 2025. Acesso
em: 15 mai. 2025. Disponivel em: <https://aws.amazon.com/pt/what-is/ai-agents/>.
Citado na péagina 21.

Antropic. Chain complex prompts for stronger performance. 2025. Acesso em: 15
mai. 2025. Disponivel em: <https://docs.anthropic.com/en/docs/build-with-claude/pro
mpt-engineering/chain-prompts>. Citado na pagina 26.

BERSSANETTE, J. H.; FRANCISCO, A. C. de. Metodologias ativas de aprendizagem
no contexto de ensino-aprendizagem de programacao de computadores: uma revisao
sistematica da literatura. Educitec-Revista de Estudos e Pesquisas sobre Ensino
Tecnoloégico, v. 7, p. e159821-e159821, 2021. Citado na pagina 12.

BROWN, T. B. et al. Language Models are Few-Shot Learners. 2020. Disponivel
em: <https://arxiv.org/abs/2005.14165>. Citado 2 vezes nas paginas 18 e 21.

CALDERON, I.; SILVA, W.; FEITOSA, E. Um mapeamento sistematico da literatura
sobre o uso de metodologias ativas durante o ensino de programacao no brasil. Simpdsio
Brasileiro de Informatica na Educagao (SBIE), SBC, p. 1152-1161, 2021. Citado
na pagina 12.

DAIR.AIL. Agentes LLM. 2025. Acesso em: 15 mai. 2025. Disponivel em:
<https://www.promptingguide.ai/research /llm-agents>. Citado na pagina 26.

DAMKE, G.; GREGORINI, D.; COPETTI, L. Avaliacao da performance e corretude na
geracao de codigo através de técnicas de engenharia de prompt: Um estudo comparativo.
In: Anais do XXI Congresso Latino-Americano de Software Livre e Tecnologias
Abertas. Porto Alegre, RS, Brasil: SBC, 2024. p. 400-403. ISSN 0000-0000. Disponivel
em: <https://sol.sbc.org.br/index.php/latinoware/article/view/31562>. Citado na
pagina 25.

Referéncias 62

DEVELOPERS, G. for. Embeddings: Espago de incorporacao e embeddings
estaticos. 2025. Acesso em: 15 mai. 2025. Disponivel em: <https://developers-google-
com.translate.goog /machine-learning/crash-course/embeddings/embedding-space? x_t
r_sl=en& x_tr tl=pt&_ x_tr hl=pt&_ x_ tr pto=tc>. Citado na pagina 19.

EPPRIGHT, C. O que é Processamento de Linguagem Natural (PLIN)? 2021.
Disponivel em: <https://www.oracle.com/br/artificial-intelligence/what-is-natural-lan
guage-processing>. Citado na pagina 17.

FENG, T.; LIU, S.; GHOSAL, D. CourseAssist: Pedagogically Appropriate
AI Tutor for Computer Science Education. 2024. 1-2 p. Disponivel em:
<https://arxiv.org/abs/2407.10246>. Citado na pagina 14.

FERRER, J. Como os transformadores funcionam: Uma exploracao detalhada
da arquitetura do transformador. 2024. Acesso em: 15 mai. 2025. Disponivel em:
<https://www.datacamp.com/pt/tutorial /how-transformers-work>. Citado 2 vezes
nas paginas 22 e 23.

GitHub Copilot. GitHub Copilot. 2025. <https://github.com /features/copilot?locale=
pt-BR>. Acessado em: 15 de setembro de 2025. Citado 2 vezes nas paginas 13 e 28.

Hugging Face. Byte-Pair Encoding tokenization. 2025. Acesso em: 15 mai. 2025.
Disponivel em: <https://huggingface.co/learn/llm-course/en/chapter6/57utm_ source=
chatgpt.com>. Citado na pagina 18.

KIESLER, N.; SCHIFFNER, D. Large Language Models in Introductory
Programming Education: ChatGPT’s Performance and Implications for
Assessments. 2023. Disponivel em: <https://arxiv.org/abs/2308.08572>. Citado 3
vezes nas paginas 13, 29 e 31.

KUMAR, R. Funcao de ativagao Softmax em Python: Um guia completo. 2025.
Acesso em: 15 mai. 2025. Disponivel em: <https://www.datacamp.com/pt/tutorial/sof
tmax-activation-function-in-python>. Citado na pagina 21.

KUROSE, J. F.; ROSS, K. W. Redes de Computadores e a Internet: Uma
Abordagem Top-Down. 6. ed. Sao Paulo: Pearson Education do Brasil, 2013. ISBN
978-85-814-3085-0. Citado na pagina 37.

Langchain. Langchain - API Reference - Chain. 2025. Acesso em: 15 mai. 2025.
Disponivel em: <https://python.langchain.com/api_reference/langchain/chains.html>.
Citado na péagina 26.

Langchain. Langchain - API Reference - Runnable. 2025. Acesso em: 15 mai. 2025.
Disponivel em: <https://python.langchain.com/api_reference/core/runnables/langchai
n_ core.runnables.base.Runnable.html>. Citado na pagina 27.

Langchain. Langchain - Introduction. 2025. Acesso em: 15 mai. 2025. Disponivel em:
<https://python.langchain.com/docs/introduction/>. Citado na pagina 26.

LIU, C. et al. Investigating student interaction patterns with large language
model-powered course assistants in computer science courses. arXiv preprint
arXiv:2509.08862, 2025. Citado na pagina 14.

Referéncias 63

MELO, L. B.; MOURA, T. J. M. O uso do chatgpt no ensino de programacao.
Computacao Brasil, n. 51, p. 43-47, dez. 2023. Disponivel em: <https:
//journals-sol.sbc.org.br/index.php/comp-br/article/view /3994>. Citado 2 vezes nas
paginas 29 e 31.

MESKO, B. Prompt engineering as an important emerging skill for medical professionals:
Tutorial. Journal of Medical Internet Research, v. 25, p. €50638, 2023. Disponivel
em: <https://www.jmir.org/2023/1/e50638>. Citado na pagina 25.

Microsoft. Visual Studio Code. 2025. Acesso em: 15 mai. 2025. Disponivel em:
<https://visualstudio.microsoft.com/pt-br/>. Citado na pagina 27.

MORAES, R. P. d.; COSTA, V. F. d.; SCHOLZ, R. E. P. Mapeamento sistematico do
ensino introdutorio de programacao nos ensinos técnico e superior no brasil. Revista
Brasileira de Informatica na Educacao, v. 30, p. 628-647, nov. 2022. Disponivel
em: <https://journals-sol.sbc.org.br/index.php/rbie/article/view/2611>. Citado na
pagina 13.

MOREIRA, A. Demanda por talentos em T1T cresce e impulsiona o mercado. 2024.
Guia da Faculdade - Estadao. Disponivel em: <https://publicacoes.estadao.com.br/gui
a-da-faculdade/artigos/demanda-por-talentos-em-ti-cresce-e-impulsiona-o-mercado/>.

Acesso em: 16 de setembro de 2025. Citado na pagina 12.

PAVLIK, G. What Is Generative AI (GenAI)? How Does It Work? 2025. Acesso
em: 15 mai. 2025. Disponivel em: <https://www.oracle.com/artificial-intelligence/gen
erative-ai/what-is-generative-ai/>. Citado na pagina 20.

PRATHER, J. et al. “it’s weird that it knows what i want”: Usability and interactions
with copilot for novice programmers. ACM Transactions on Computer-Human
Interaction, Association for Computing Machinery (ACM), v. 31, n. 1, p. 1-31, nov.
2023. ISSN 1557-7325. Disponivel em: <http://dx.doi.org/10.1145/3617367>. Citado 2
vezes nas paginas 28 e 31.

Red Hat. What are large language models? 2025. Acesso em: 15 mai. 2025.
Disponivel em: <https://www.redhat.com/en/topics/ai/what-are-large-language-mode
Is>. Citado na pagina 21.

ROBISON, G. A Comparative Analysis of Byte-Level and Token-Level
Transformer Models in Natural Language Processing. 2025. Acesso em: 15
mai. 2025. Disponivel em: <https://gregrobison.medium.com/a-comparative-analysis-
of-byte-level-and-token-level-transformer-models-in-natural-language-9fb4331b6acc>.
Citado na pagina 18.

SILVA, C. A. G. da et al. ChatGPT: Challenges and benefits in software programming
for higher education. Sustainability, v. 16, n. 3, 2024. Citado 3 vezes nas paginas 13,
29 e 31.

SILVA, T. et al. Anélise do uso de ferramentas de ia generativa no ensino de
programacao: Perspectivas de estudantes do curso de sistemas de informacao.
In: Anais do XXXIII Workshop sobre Educagcao em Computagao. Porto
Alegre, RS, Brasil: SBC, 2025. p. 1277-1288. ISSN 2595-6175. Disponivel em:
<https://sol.sbc.org.br/index.php/wei/article/view/36259>. Citado 2 vezes nas
paginas 28 e 31.

Referéncias 64

SILVA, T. L. d. et al. Inteligéncia artificial generativa no ensino de programagcao: um
mapeamento sistematico da literatura. RENOTE: Novas Tecnologias na Educacao,
v. 22, n. 1, p. 262-272, jul 2024. Disponivel em: <http://hdl.handle.net/10183/289637>.
Citado na péagina 12.

Stack Overflow. Stack Overflow 2024 Develop Survey - Integrated Develop
Environment. 2024. Acesso em: 15 mai. 2025. Disponivel em: <https://survey.stackov
erflow.co/2024 /technology#1-integrated-development-environment>. Citado na pagina
27.

VASWANI, A. et al. Attention is all you need. In: Advances in Neural Information
Processing Systems. Long Beach: Curran Associates, Inc., 2017. (NeurIPS, v. 30),
p. 5998-6008. Disponivel em: <https://proceedings.neurips.cc/paper/2017/hash/3f5e
€243547dee91fbd053c1cdal84baa- Abstract.html>. Citado 5 vezes nas paginas 19, 20, 22,
23 e 24.

Visual Studio Code. Visual Studio Code - API Extension Docs. 2025. Acesso em:
15 mai. 2025. Disponivel em: <https://code.visualstudio.com/api>. Citado 2 vezes nas
paginas 28 e 35.

YANG, J. et al. Problematic Tokens: Tokenizer Bias in Large Language Models.
2024. 1-2 p. Disponivel em: <https://arxiv.org/abs/2406.11214>. Citado na pagina 18.

YAOQO, Z. et al. Multimodal embeddings for representation learning. SSRN Electronic
Journal, Rochester, NY, p. 7-9, 3 2025. Acesso em: 15 mai. 2025. Disponivel em:
<https://ssrn.com/abstract=5189627>. Citado na péagina 19.

ZHAI, C.; WIBOWO, S.; LI, L. D. The effects of over-reliance on ai dialogue systems on
students’ cognitive abilities: a systematic review. Smart Learning Environments,
Springer, v. 11, n. 1, p. 28, 2024. Citado na péagina 13.

Apéndices

65

66

APENDICE A

GPT TEACHER

A.1 Prompts e Saidas dos Agentes

A.1.1 Prompt do Agente de Diagnéstico de Cddigo

PERSONA E CONTEXTO

Vocé & um Professor de Programagdo S&nior com 15+ anos de experiéncia em ensino
e avaliagdo de cédigo.

Sua expertise abrange multiplas linguagens de programagdo e dominios técnicos,
desde fundamentos basicos até tbépicos avangados como IA, Machine Learning e
arquiteturas complexas.

Vocé atua como um mentor que oferece feedback construtivo, preciso e educativo

para acelerar o aprendizado dos alunos.

DIRETRIZ PRINCIPAL
*xMaximizar o aprendizado do aluno através de feedback técnico preciso,
construtivo e aciondvelx**, identificando ndo apenas erros, mas oportunidades

de crescimento e caminhos de evolugdo técnica.
PROCESSO DE ANALISE

1. ANALISE INICIAL (Reconhecimento)

Primeiro, examine o c6digo seguindo esta sequéncia:

- *xJdentificagdo da linguagem**: Analise sintaxe, palavras-chave e padrdes

- *xInferéncia do objetivo**: Determine o que o cdédigo deveria fazer baseado em:
- Nomes de variaveis e fungdes
- Estrutura do cdédigo
- Bibliotecas importadas

- Comentarios presentes

APENDICE A. GPT TEACHER 67

- *xClassificagdo do dominio**: Identifique os tdpicos técnicos envolvidos

2. AVALIAGAO DE NIVEL (Classificag&o)

Determine o nivel do aluno usando estes critérios:

*x INICIANTE*x*:

- Sintaxe béasica correta/incorreta
- Uso de varidveis e tipos bésicos
- Estruturas condicionais simples

- Loops basicos

**INTERMEDIARIO%*:

- Fung¢des bem estruturadas

- Manipulacgdo de estruturas de dados
- Tratamento basico de erros

- Conceitos de modularizacgao

*% AVANGADO** :
- Orientagdo a objetos aplicada
- Padrdes de design

- Otimizacdo de performance

Arquiteturas complexas

xEXPERT :

- Cbédigo limpo e eficiente

- Padrdes avancados de design

- Consideragdes de escalabilidade

- Implementagdes sofisticadas

3. DIAGNOSTICO DE ERROS (Categorizagdo)

Classifique erros encontrados em:

xSINTATICOS: Erros de sintaxe da linguagem
L0GICOS: Falhas na légica de programagio
ESTRUTURAIS: Problemas de organizagdo e arquitetura
PERFORMANCE#: Ineficiéncias de execugdo

xBOAS PRATICAS: Violagdes de convengdes e padrdes

4. IDENTIFICAGAQ DE TOPICOS

APENDICE A. GPT TEACHER 68

Reconhega automaticamente tdépicos baseado em padrdes:

- **Programagdo Basicax*: variaveis, loops, condicionais

- *xEstruturas de Dados**: arrays, listas, dicionarios, arvores

- *x0rientacdo a Objetos*x: classes, heranga, polimorfismo, encapsulamento
- *xAlgoritmos**: ordenagdo, busca, recursao

- *x*Banco de Dados**: SQL, ORMs, conexdes

- **Web Development**: APIs, frameworks, frontend/backend

- *xInteligéncia Artificial**: ML, deep learning, redes neurais

- **xProcessamento de Linguagem Natural**: NLP, andlise de texto

- **Ciéncia de Dados**: andlise estatistica, visualizagdo

- *xSegurancax*: criptografia, autenticacdo, validacgéo

PARAMETROS DE CONFIGURAGAO

nivel detalhamento: {{detalhamento _levell}} # minimo, medio, maximo
foco_educativo: {{educational focus}} # erros, melhorias, ambos
inclui_sugestoes_codigo: {{include_code_suggestions}} # true, false

tom_feedback: {{feedback_tonel}} # encorajador, neutro, direto

FORMATO DE SAIDA ESTRUTURADO

‘“‘json
{
"analise_geral": {
"nivel_aluno": "INICIANTE|INTERMEDIARIO|AVANCADO|EXPERT",
"linguagem programacao": "string",
"objetivo_codigo": "string detalhado do que o cbédigo deveria fazer",
"topicos_envolvidos": ["array de tdpicos identificados"],
"pontuacao_geral": "numero de 0-100"
3,

"diagnostico_erros": {
"total_erros": '"numero",
"erros_por_categoria": {

"sintaticos": [

"tipo": "string",
"descricao": "descrigdo detalhada do erro",
"correcao_sugerida": '"como corrigir",

"impacto_aprendizado": "baixo|medio|alto"

APENDICE A. GPT TEACHER 69

+
1,
"logicos": [],
"estruturais": [],
"performance": [],
"boas_praticas": []
b
3,
"feedback construtivo": {
"pontos_fortes": ["array de aspectos positivos identificados"],
"areas_melhoria": ["array de areas para desenvolvimento"],
"proximos_passos": ["array de sugestdes de estudo"],

"recursos_recomendados": ["array de materiais de estudo especificos"]

1,
"codigo_melhorado": {
"incluir_codigo": "{{include_code_suggestionsl}}",
"versao_corrigida": "string com cédigo corrigido (se solicitado)",
"explicacao_mudancas": "string explicando as alteragdes feitas"
+
b

DIRETRIZES DE EXECUGAQ

ANALISE TECNICA
- **3eja especificox*: Identifique linha exata dos erros quando possivel

- *xContextualizex*: Explique ndo apenas o erro, mas por que & um problema

- **Priorizex*: Ordene erros por impacto no aprendizado (alto - baixo)

FEEDBACK EDUCATIVO
- *x*xTom {{feedback_tonel}}**: Mantenha linguagem apropriada ao configurado
- *xConstrutivo**: Sempre ofereca solugdes, ndo apenas criticas

- *xProgressivo**: Sugira préximos passos baseados no nivel atual

PRECISAO NA CLASSIFICAGAO
- **Nivel do aluno**: Base a classificagdo no cdédigo mais complexo executado
- *xToépicos**: Identifique apenas toépicos realmente demonstrados no cdédigo

- x*xLinguagem**: Seja preciso (ex: "Python 3.x" vs apenas "Python")

APENDICE A. GPT TEACHER 70

VALIDAGOES OBRIGATORIAS

Antes de finalizar a andlise, verifique:

- [] Todos os erros foram categorizados corretamente

- [] 0 nivel do aluno reflete a complexidade demonstrada
- [] Os topicos identificados est&o presentes no cbédigo
- [] 0 feedback é acionavel e especifico

- [] A saida JSON esta valida e completa

Entradas

<MENSAGEM_DO_ALUNO>
{{student_messagel}?}
</MENSAGEM_DO_ALUNO>

<CODIGO_DO_ALUNO>
{{student _code}}
</CODIGO_DO_ALUNO>

A.1.2 Prompt do Agente Tutor

PERSONA E CONTEXTO

Vocé & um *xProfessor de Programagdo Experientex**, especializado em pedagogia
aplicada ao ensino de desenvolvimento de software. Sua miss8o & transformar
andlises técnicas em experiéncias de aprendizado profundas e construtivas,
utilizando técnicas educacionais avangadas para desenvolver o

pensamento critico e autonomia intelectual dos estudantes.

DIRETRIZ PRINCIPAL
**Maximizar o desenvolvimento do raciocinio autdnomo do aluno através
do questionamento orientado, evitando dar respostas prontas e promovendo

a descoberta guiada dos conceitos e solugdes.*x*

ENTRADA ESPERADA

Vocé receberd um objeto ‘AnaliseCodigoCompleta‘ contendo:

- Analise geral (nivel do aluno, linguagem, objetivos, pontuag&o)
- Diagnéstico detalhado de erros por categoria

- Feedback construtivo estruturado

Cédigo melhorado (quando disponivel)

PROCESSO DE PENSAMENTO PEDAGOGICO

=+

APENDICE A. GPT TEACHER 71

1. DIAGNOSTICO PEDAGOGICO

Antes de formular sua resposta, analise sistematicamente:

Perfil do Estudante
- **Nivel de Conhecimento**: Adapte a complexidade da linguagem ao ‘nivel_aluno®

- INICIANTE: Foque em conceitos fundamentais, use analogias simples

INTERMEDIARIO: Introduza conceitos mais abstratos, questione padrdes

AVANCADO: Desafie com questdes arquiteturais e otimizagdes

EXPERT: Explore trade-offs, design patterns e impactos sistémicos

Priorizacgdo Educacional

- *xErros de Alto Impactox*: Priorize erros marcados como
‘impacto_aprendizado: ’alto’‘

- *xConceitos Fundamentais**: Identifique gaps conceituais

nos ‘topicos_envolvidos*

- **xPadrdes Recorrentes**: Busque temas comuns entre diferentes

categorias de erro

2. ESTRATEGIA SOCRATICA ESTRUTURADA

Sequéncia de Questionamento Obrigatéria:

1. **Questionamento Diagndsticoxx*:

"0 que vocé esperava que acontecesse quando...?"

2. *xAndlise de Causaxx*:

"Por que vocé acha que esse comportamento estd ocorrendo?"
3. xxExploragdo de Alternativas*x:

"Que outras abordagens vocé consegue imaginar para..."

4. *xConex8o Conceitualx*x*:

"Como isso se relaciona com [conceito fundamental]?"

5. **xAplicacgdo Praticaxx*:

"Em que outras situagdes vocé aplicaria esse principio?"

3. ESTRUTURA DE RESPOSTA OBRIGATORIA

Secdo 1: RECONHECIMENTO E CONTEXTO

- Reconhecga os pontos fortes identificados

- Contextualizar o desafio no nivel apropriado

APENDICE A. GPT TEACHER

- Estabelega conexdo empatica com a dificuldade

xTemplate Adaptativo:

e

INICIANTE: "Vejo que vocé estad explorando [conceito].

E normal que [desafio especifico] seja confuso no inicio..."
INTERMEDIARIO: "Percebi que vocé& domina [conceitos basicos]

e agora estd enfrentando [conceito mais complexo]..."

AVANCADO: "Seu cddigo demonstra compreensdo sbélida de [conceitos],
mas vamos explorar algumas nuances..."

EXPERT: "Sua implementacdo & tecnicamente correta, mas vamos analisar

algumas consideragdes arquiteturais..."

(SN AN

Segdo 2: EXPLORAGAO GUIADA DE ERROS

Para cada erro de impacto médio/alto, siga a sequéncia:

1. **Descoberta do Problemaxx
- Use perguntas que levem o aluno a identificar o erro
- "O que vocé observa quando executa a linha X7"

- "Como vocé testaria se esta fungdo estd funcionando corretamente?"

2. x*Compreensdo da Causax*
- Questione o raciocinio por trés da implementacgéo
- "Por que vocé escolheu esta abordagem?"

- "O que vocé esperava que acontecesse aqui?"

3. xxExploragdo de Solugdes**
- Ndo fornega a corregdo direta
o £1 ~ N . 1 . o
Que modificagdes vocé tentaria para resolver issof

- "Como [conceito relacionado] poderia ajudar nesta situagdo?"

Secdo 3: DESENVOLVIMENTO CONCEITUAL
- Conecte os erros especificos a conceitos fundamentais
- Use analogias apropriadas ao nivel do aluno

- Introduza novos conceitos através de questionamento

**Banco de Analogias por Nivel:*x

- **xINICIANTE**: Analogias do mundo fisico

APENDICE A. GPT TEACHER 73

(receitas, instrugdes, objetos cotidianos)

- *xxINTERMEDIARIO**: Analogias organizacionais
(escritérios, protocolos, sistemas)

- *xAVANCADO**: Analogias arquiteturais e de engenharia

- *xEXPERT**: Analogias sistémicas e filosé6ficas

Secdo 4: PRATICAS DE MELHORIA ORIENTADAS

Em vez de listar praticas, conduza o aluno a descoberta:

- "Como vocé tornaria este cdédigo mais facil de entender
para alguém que nunca o viu?"
- "Que padrdes vocé observa no cbédigo de desenvolvedores experientes?"

- "Como vocé organizaria este cédigo se ele fosse crescer 10 vezes de tamanho?"

Segdo 5: DESAFIOS DE REFLEXAO PROGRESSIVA

Baseado no ‘nivel_aluno‘, proponha desafios graduais:

**INICIANTE : x*
- Exercicios de trace manual
- Modificagdes pequenas e incrementais

- Testes de hipdteses simples

**%INTERMEDIARIO: **
- Refatoracgbes guiadas
- Implementacdo de variacgdes

- Anilise de casos limite

*xAVANCADO : %
— Design de solugdes alternativas
- Andlise de trade-offs

- Otimizagdes orientadas

*xEXPERT : %
- Anilise de padrdes emergentes
- Consideragdes arquiteturais

- Impactos sistémicos

+*

DIRETRIZES DE COMUNICAGAO

APENDICE A. GPT TEACHER

74

Tom e Linguagem

"serd que...

xxEmpatico e Encorajador**: Sempre reconhega o esforgo e progress
*xCurioso e Investigativox*x: Use '"pergunto me..."

" "como vocé vé..."

xPaciente e Progressivox: Construa compreensdo camada por camada

xxEspecifico e Concretox*x: Evite generalidades, referencie partes

especificas do cdédigo

Restrigdes Rigidas

#

*xNUNCA** fornega cdéddigo corrigido diretamente

*xNUNCA** liste solugles prontas

SEMPRE termine segdes com perguntas reflexivas
*xSEMPRE** conecte erros especificos a principios gerais

SEMPRE adapte a complexidade ao nivel identificado

VALIDAGAO FINAL

Antes de entregar sua resposta, verifique:

[] Adaptei a linguagem ao nivel do aluno?

[] Evitei dar solugdes prontas?

[] Cada segdo termina com questionamento?

[] Conectei erros especificos a conceitos gerais?
[] Inclui desafios progressivos apropriados?

[] O tom é encorajador e construtivo?

Entradas

<MENSAGEM_DO_ALUNO>
{{student_messagel}}
</MENSAGEM_DO_ALUNO>

<CODIGO_DO_ALUNO>
{{student code}}
</CODIGO_DO_ALUNO>

<ANALISE DO_SENIOR>
{{code_analysis}}
</ANALISE DO_SENIOR>

APENDICE A. GPT TEACHER 75

A.1.3 Exemplo de Analise de Cédigo produzida pelo Agente de
Diagnéstico de Codigos

"analise_geral":{
"nivel aluno":"AVANCADO",
"linguagem_programacao":"Python 3.x",
"objetivo_codigo":"0 c\u00f3digo implementa opera\u00e7\u00f5es CRUD
(Criar, Ler, Atualizar, Deletar) para o modelo de paciente,
incluindo a gest\u0Oe3o de informa\u00e7\uO0fbes
m\uOOe9dicas associadas, como alergias e condi\u00Oe7\u00f5es
cr\uOOf4nicas. Utiliza SQLAlchemy para intera\u0Oe7\uOOe3o
com o banco de dados, Pydantic para valida\u0Oe7\uOOe3o de
dados e ‘asyncio‘ para opera\u0Oe7\u00fb5es ass\uOOedncronas.
H\uOOel tamb\u00e9m fun\uO0e7\uO0fb5es para gerenciar documentos
de pacientes em armazenamento na nuvem (GCP) e limpar
dados de pacientes.",
"topicos_envolvidos": [
"Programa\u00e7\u00e30 Ass\uOOedncrona",
"Bancos de Dados (SQLAlchemy ORM)",
"Modelagem de Dados (Pydantic)",
"Programa\u00e7\u00e30 Orientada a Objetos",
"Tratamento de Exce\u00e7\u00fbes",
"Tipagem Est\uOOeltica",
"Cloud Computing (GCP)",
"Estruturas de Dados",
"Modulariza\u00e7\u00e30"
1,
"pontuacao_geral":75
s
"diagnostico_erros":{
"total erros":12,
"erros_por_categoria":{
"sintaticos": [
{
"tipo":"Importa\u0Oe7\uOOe3o Ausente",
"descricao":"As classes e fun\u0Oe7\uOOfSes ’Session’,
’or_’, ’col’, ’delete’ e ’update’ n\uOOe3o foram
importadas do pacote ’sqlalchemy’, o que impede a
execu\u00e7\u00e30 do c\u00f3digo.",

APENDICE A. GPT TEACHER 76

"correcao_sugerida": "Adicione as importa\u00e7\uOOfbes
necess\uOOelrias no in\uOOedcio do arquivo:

‘from sqlalchemy import select, or_, col, delete,
update‘ e ‘from sqlalchemy.ext.asyncio import
AsyncSession as Session®

(assumindo AsyncSession para consist\uOOeancia).",

"impacto_aprendizado":"alto"

1,
"logicos": [
{

"tipo":"Uso Incorreto de Assincronicidade",
"descricao":"As fun\u0Oe7\u0Of5es ass\uOOedncronas
(‘async def‘) est\uOOe3o chamando m\uOOe9todos de
sess\u0Oe30 do SQLAlchemy de forma s\uOOedncrona (‘db.exec‘,
‘db.get‘, ‘db.delete‘, ‘db.commit‘, ‘db.refresh‘) em vez
de aguardar a conclus\uOOe3o com ‘await‘. Isso pode causar
bloqueios e comportamento inesperado em um ambiente
ass\uOOedncrono.",
"correcao_sugerida":"Use ‘await‘ antes de todas as
opera\u00e7\u00f5es de banco de dados que interagem com uma
sess\u0Oe3o ass\uOOedncrona, por exemplo: ‘await
db.execute(statement) ¢, ‘await db.get(Patient, patient_id) ‘,
‘await db.delete(db_patient)‘, ‘await db.commit() ‘,
‘await db.refresh(db_patient) ‘.",

"impacto_aprendizado":"alto"

"tipo":"Inconsist\uOOeancia de Tipo de ID",

"descricao":"0O ID do paciente (‘patient_id‘) \u0Oe9 tratado
como ‘uuid.UUID‘ em algumas fun\u0Oe7\uOOf5es (e nos modelos
Pydantic) e como ‘int‘ em outras (‘update_patient®,
‘update_patient_by_field‘, ‘delete_patient‘). Esta
inconsist\uOOeancia pode levar a erros de tipo e falhas

de busca no banco de dados.",

"correcao_sugerida'":"Padronize o tipo de ‘patient_id‘ para
‘uuid.UUID‘ em todas as fun\uOOe7\uOOf5es onde ele representa
o identificador \uOOfanico do paciente.",

"impacto_aprendizado":"medio"

APENDICE A. GPT TEACHER 7

],

"tipo":"Manipula\uOOe7\u0Oe30 de Resultado de Consulta",
"descricao":"Na fun\uOOe7\u0Oe3o0 ‘get_patients‘, ‘result.all()‘
pode n\uOOe3o retornar objetos ORM esperados ap\uO0f3s ‘await
db.execute() ‘. 0 m\uOOe9todo correto para recuperar objetos
ORM de uma consulta ass\uOOedncrona \uO0e9
‘result.scalars().all()‘.",

"correcao_sugerida":"Altere ‘result = await
db.execute(statement) ¢ e ‘patients = result.all()‘ para

‘result = await db.execute(statement)‘ e

‘patients = result.scalars().all()‘.",

"impacto_aprendizado":"medio"

"tipo":"Fun\u00e7\u0Oe3o S\uOOedncrona em Contexto
Ass\uOOedncrono",

"descricao":"A fun\u0Oe7\u0Oe3o ‘get patient by _username field‘
\u00e9 definida como s\uOOedncrona, mas suas chamadas de
ORM (‘session.exec‘) implicam uma intera\u0Oe7\u0OOe3o com
o banco de dados que, no contexto de outras
fun\u00e7\u00f5es ass\uOOedncronas do m\uOOf3dulo,

\u00e9 prov\uOOelvel que precise ser ass\uOOedncrona.

Isso gera inconsist\uOOeancia e poss\uOOedveis problemas
de concorr\uOOeancia ou bloqueio.",
"correcao_sugerida":"Transforme a fun\u0Oe7\u0Oe3o
‘get_patient_by_username field‘ em uma fun\u0Oe7\u0Oe3o
ss\uOOedncrona (‘async def‘) e utilize ‘await
session.execute(statement) ¢ e ‘result.scalar_one_or none()
para buscar os resultados.",

"impacto_aprendizado":"medio"

"estruturais": [

{

"tipo":"Inconsist\uOOeancia de Nomenclatura de Par\uOOe2metros",
"descricao":"H\uOOel inconsist\uOOeancia nos nomes dos
par\uOOe2metros da sess\u0OOe3o do banco de dados, usando

ora ‘db: Session‘ ora ‘session: Session‘. Embora funcional,

APENDICE A. GPT TEACHER 78

a padroniza\u00e7\u0Oe30 melhora a legibilidade e a
manuten\u00e7\u00e30 do c\u00f3digo.",
"correcao_sugerida":"Escolha um nome padr\u0OOe3o, como
‘session‘, e utilize-o consistentemente em todas as
fun\u00e7\u00f5es que recebem a sess\uOOe3o do banco de
dados como par\uOOe2metro.",

"impacto_aprendizado":"baixo"

"tipo":"Acoplamento Indireto de L\uOOf3gica
Ass\uOOedncrona/S\uOOedncrona",

"descricao":"Embora a maioria das opera\u0Oe7\u0Of5es de
CRUD sejam ass\uOOedncronas, fun\u0Oe7\u0Of5es auxiliares
como ‘get_patient_document_photo_from_bucket‘ s\uOOe3o
s\uOOedncronas. Embora n\u0OOe3o seja um erro direto,
misturar chamadas de banco de dados/I/0 ass\uOOedncronas
e s\uOOedncronas no mesmo m\uOOf3dulo pode dificultar

o racioc\uOOednio sobre o fluxo de execu\u00e7\u00Oe3o

e a gest\uOOe3o de recursos.",
"correcao_sugerida":"Avalie se as fun\u0Oe7\uOOfb5es
s\uOOedncronas que envolvem I/0 (como ‘download_file‘)
deveriam ser ass\uOOedncronas para manter a consist\uOOeancia
do paradigma ass\uOOedncrono ou se o escopo dessas
fun\u00e7\u00f5es deve ser explicitamente gerenciado

como s\uOOedncrono para evitar bloqueios.",

"impacto_aprendizado":"baixo"

1,
"performance": [
{

"tipo":"Commits de Transa\u0Oe7\uOOe3o em Loop",
"descricao":"Na fun\uOOe7\uOOe3o ‘clear_ patient medical _data‘,
a chamada ‘session.commit()‘ \uOOe9 realizada dentro do loop
que itera sobre os modelos m\uOOe9dicos. Isso resulta em
m\uOOfaltiplas transa\u0Oe7\uOOf5es separadas para cada
exclus\uOOe3o, o que \u00e9 altamente ineficiente em
termos de desempenho de banco de dados.",
"correcao_sugerida":"Realize o ‘await session.commit() ¢

apenas uma vez, ap\uOOf3s todas as opera\u00e7\u00fb5es

APENDICE A. GPT TEACHER 79

+,
{

],

de exclus\uOOe3o terem sido executadas no loop. Isso
consolida as opera\u00e7\u0Of5es em uma \uOOfanica
transa\u00e7\u00e30.",

"impacto_aprendizado":"alto"

"tipo":"Sub-otimiza\u00e7\u00e3o0 de Opera\u00e7\ulO0f5es

em Lote",

"descricao":"A abordagem de deletar modelos m\uOOe9dicos

um por um dentro de um loop, mesmo com um \uOOfanico commit
no final, pode ser otimizada. SQLAlchemy permite
opera\u00e7\u00f5es em lote mais eficientes.",
"correcao_sugerida":"Considere o uso de ‘session.bulk_delete()
ou construa uma \uOOfanica instru\u00e7\uOOe3o ‘delete‘ com
uma cl\uOOelusula ‘IN‘ ou ‘OR‘ para deletar m\uOOfaltiplos
registros de um mesmo modelo em uma \uOOfanica
opera\u00e7\u00e30 de banco de dados.",

"impacto_aprendizado":"medio"

"boas_praticas": [

{

},
{

"tipo":"Tratamento Gen\uOOe9rico de Erros",

"descricao":"A utiliza\uOOe7\u0Oe3o de ‘ValueError‘ para
indicar que um paciente n\uOOe3o foi encontrado \u0Oe9
funcional, mas em APIs ou sistemas maiores,
exce\u00e7\u00f5es mais espec\uOOedficas (ou exce\u00e7\uOOf5es
HTTP em frameworks como FastAPI) oferecem um tratamento de
erros mais claro e granular para o cliente ou para o
c\u00f3digo chamador.",

"correcao_sugerida":"Crie exce\u00Oe7\uOOf5es personalizadas
(e.g., ‘PatientNotFoundException‘) ou utilize as
exce\u00e7\u00f5es fornecidas pelo framework (e.g.,
‘HTTPException‘ do FastAPI) para casos de erro
espec\uOOedficos.",

"impacto_aprendizado":"medio"

"tipo":"Depend\uOOeancia Direta de Utilit\uOOelrios em

APENDICE A. GPT TEACHER 80

3,

Fun\uOOe7\u00Of5es de Limpeza",

"descricao":"As fun\uOOe7\uOOfb5es ‘clear patient medical data‘
e ‘clear_patient_basic_data‘ dependem diretamente de
‘get_patient_medical_info_models‘ e
‘get_patient_basic_data_fields_name‘. Embora seja uma
modulariza\u00e7\u0Oe3o0, a passagem direta de ‘session‘ e
‘patient_id‘/‘phone_number‘ e a re-busca do paciente dentro
de ‘clear_patient medical_data‘ quando ‘phone_number‘ \u0OOe9
fornecido, poderiam ser encapsulados em uma camada de
servi\u0Oe7o mais robusta.",

"correcao_sugerida":"Considere refatorar a 1\u00f3gica de
busca e limpeza em uma classe de ’servil\u0Oe70’ ou
’reposit\u00f3rio’ que encapsule as depend\uOOeancias

e o fluxo de trabalho, tornando as fun\u0Oe7\uOOfb5es

mais coesas e menos acopladas.",

"impacto_aprendizado":"baixo"

"tipo":"Retorno de Fun\u0Oe7\u0Oe3o de Limpeza",
"descricao":"As fun\uOOe7\uOOfb5es ‘clear_ patient_medical_data‘
e ‘clear_patient_basic_data‘ retornam ‘None‘ e
‘result.rowcount‘ (um ‘int‘), respectivamente. A falta

de um tipo de retorno consistente pode dificultar a

interface com outras partes do c\u00f3digo que dependem

de um status claro da opera\u00e7\u00e3o0.",
"correcao_sugerida":"Padronize o retorno das fun\u0Oe7\u0Ofbes
de limpeza para algo mais informativo, como um ‘bool‘
indicando sucesso/falha, ou um dicion\uOOelrio com um

resumo da opera\u0Oe7\u0Oe3o (linhas afetadas, etc.).",

"impacto_aprendizado":"baixo"

"feedback construtivo":{

"pontos_fortes": [

"0 aluno demonstra um excelente dom\uOOednio da tipagem

est\uOOeltica (Type Hinting), o que torna o c\u0Of3digo mais

robusto e f\uOOelcil de manter.",

APENDICE A. GPT TEACHER 81

"A utiliza\u00e7\uOOe3o de Pydantic para valida\u00e7\uOOe3o
e serializa\u00e7\u0Oe30 de dados (‘PatientCreate‘,
‘PatientUpdate‘, ‘model_validate‘, ‘model dump‘) \u00Oe9
uma pr\uOOeltica moderna e eficiente, crucial para o
desenvolvimento de APIs.",
"A implementa\u00e7\u0Oe3o de opera\u00e7\u00fb5es ass\uOOedncronas
(‘async def‘) para o CRUD indica um bom entendimento de
programa\u00e7\u00e3o concorrente e otimiza\u00Oe7\uOOe3o para
I/0 em aplica\u00Oe7\u00f5es modernas.",
"0 uso do SQLAlchemy ORM com ‘sqlalchemy.future’
(assumindo AsyncSession) mostra familiaridade com ferramentas de
ORM avan\uOOe7adas e a preocupa\u00e7\u0Oe3o com a
abstra\u00e7\u00e30 do banco de dados.",
"A estrutura modular do c\u00Of3digo, com importal\u00Oe7\u00fbes bem
definidas para modelos, configura\u0Oe7\uOOf5es e utilit\uOOelrios,
\u00e9 um ponto muito positivo.",
"As docstrings presentes em muitas fun\u0Oe7\uOOfbes s\uOOe3o
claras e descrevem bem o prop\u0Of3sito de cada uma."

1,

"areas melhoria": [
"Aprimorar o gerenciamento de transa\u0Oe7\u0Of5es do SQLAlchemy,
garantindo que ‘await session.commit()‘ seja usado de forma
estrat\uOOe9gica e eficiente.",
"Corrigir as inconsist\uOOeancias no uso de ‘await‘ para todas as
opera\u00e7\u00f5es de banco de dados dentro de fun\u0Oe7\u0Ofbes
ass\uOOedncronas.",
"Padronizar o tipo de identificadores de paciente (‘patient_id‘)
para evitar confus\uOOe3o entre ‘uuid.UUID‘ e ‘int‘.",
"Melhorar a gest\uOOe3o de importal\u00e7\u00f5es, assegurando que
todas as classes e fun\u00e7\uOOfb5es utilizadas do SQLAlchemy
estejam devidamente importadas.",
"Refinar o tratamento de exce\u0Oe7\uOOf5es, usando tipos mais
espec\uOOedficos ou exce\u00e7\u00f5es HTTP, conforme a arquitetura
da aplica\u00Oe7\u00e3o0."

1,

"proximos_passos": [
"Aprofundar os conhecimentos em SQLAlchemy AsyncSession: explore o uso
de ‘await session.begin()‘ e ‘await session.rollback()‘ para controle

expl\uOOedcito de transa\u00e7\u0O0fbes.",

APENDICE A. GPT TEACHER 82

"Estudar a fundo ‘sqlalchemy.orm.query.Query.coro_all()‘ e
‘sqlalchemy.ext.asyncio.AsyncResult‘ para entender melhor como
manipular resultados de queries ass\uOOedncronas.",
"Pesquisar sobre Dependency Injection (Inje\u00e7\u0Oe3o de
Depend\uOOeancia) em frameworks ass\uOOedncronos (como FastAPI)
para gerenciar a sess\u0OOe3o do banco de dados de forma mais elegante
e test\uOOelvel.",
"Implementar exce\u00e7\uOOf5es personalizadas para cen\uOOelrios
espec\uOOedficos, como ’Recurso N\uOOe3o Encontrado’, para tornar
a API mais robusta e amig\uOOelvel ao desenvolvedor.",
"Explorar ‘session.bulk_insert_mappings() ‘,
‘session.bulk_update mappings()‘ e ‘session.bulk_delete()
para otimizar opera\u00e7\u0Of5es em lote no banco de dados."

1,

"recursos_recomendados": [
"Documenta\u00e7\u00e3o oficial do SQLAlchemy: Se\u0Oe7\u0Oe3o
’Asynchronous I/0’ e ’Working with ORM Sessions’.",
"FastAPI e SQLAlchemy Async: Tutoriais e exemplos sobre como
integrar esses dois em projetos.",
"Pydantic docs: ’Model methods’ para entender ‘model_validate®
e ‘model dump‘ em profundidade.",
"PEP 8 - Style Guide for Python Code: Para aprimorar as boas
pr\uOOelticas de c\u00f3digo.",

"Artigos sobre Transaction Management Patterns em Python ORMs."

T,
"codigo_melhorado":{

"incluir":false,

A.2 Cobdigos Utilizados para Cenarios de Teste

A.2.1 C(Cébdigo Nivel Iniciante

#include <iostream>
#include <vector>

using namespace std;

APENDICE A. GPT TEACHER

83

// Problema: Calcular a soma dos elementos de um array
// e contar quantos s3o maiores que a média

// Input: n (tamanho do array), seguido de n nimeros

int main() {
int n;
cout << "Digite o tamanho do array: ";

cin >> n;

vector<int> arr(n);

int soma = 0;
cout << "Digite os " << n << " numeros:" << endl;
for (int i = 0; i <= n; i++) {

cin >> arr[il;

soma += arr[i];

int media = soma / n;

cout << "Soma total: " << soma << endl;

cout << "Média: " << media << endl;

int contador = O;
for (int i = 0; i < n; i++) {

if (arr([i] > media) {

contador++;
}
}
cout << "Nimeros maiores que a média: " << contador << endl;
cout << "Percentual acima da média: " << (contador * 100) / n

<< "M << endl;

cout << "(Os numeros maiores que a média sdo: ";
for (dnt i = 0; i < n; i++) {

if (arr[i] > media) {

APENDICE A. GPT TEACHER

cout << arr[i] << " ";

}
cout << endl;

return O;

A.2.2 C(Cobdigo Nivel Médio

#include <iostream>
#include <vector>
#include <queue>
#include <climits>

using namespace std;
const int INF = INT MAX;

// Problema: Encontrar o menor caminho entre dois vértices
// Input: n vértices, m arestas, origem s, destino t

// Cada aresta tem peso w

struct Edge {
int to, weight;
+;

vector<int> dijkstra(vector<vector<Edge>>& graph, int start, int end) {
int n = graph.size();
vector<int> dist(n, INF);
vector<int> parent(n, -1);

priority_queue<pair<int, int>> pq; // {distancia, vertice}

dist[start] = 0;
pq.push({0, start});

while (!pg.empty()) {
int u = pq.top() .second;
int d = pq.top() .first;
Pq-pop();

for (Edge& edge : graph([u]) {

APENDICE A. GPT TEACHER

85

int

int v = edge.to;

int w = edge.weight;

if (dist[u] + w < dist[v]) {
dist[v] = dist[u] + w;
parent [v] = u;

pq.push({dist [v], v1});

vector<int> path;

int current = end;

while (current != -1) {
path.push_back(current);

current = parent[current];

reverse(path.begin(), path.end());

return path;

main() {
int n, m, s, t;

cin >> n >> m >> s >> t;

vector<vector<Edge>> graph(n);

for (int i = 0; i < m; i++) {
int u, v, w;
cin >> u >> v >> w;

graph [u] .push_back({v, w});

vector<int> path = dijkstra(graph, s, t);

cout << "Caminho: ";

for (int i = 0; i < path.size(); i++) {
cout << pathl[il;

APENDICE A. GPT TEACHER

86

if (i < path.size() - 1) cout << " -=> ";
}

cout << endl;

return O;

A.2.3 C(Cdbdigo Nivel Avancado

import uuid

from typing import Any, List, Optional

from app.models.user import (
User,
UserBase,
UserCreate,
UserUpdate,
)

from sqlalchemy.future import select

from app.core.config import settings

from app.utils import current_datetime, download_file

def get_user_by_username_field(
credential username: str, database_session: Session
) —> User | None:

query_statement = select(User) .where(

or_(
col(User.cpf) == credential username,
col(User.email) == credential username,
col(User.phone_number) == credential_username,
)

)

query_result = database_session.exec(query_statement) .first()

return query_result

—-—- CRUD Usuario ---

APENDICE A. GPT TEACHER

87

async def create_user(
user_data: UserCreate, database_connection: Session
) —> User:
"""Cria um novo usuario no banco de dados."""
new_user = User.model validate(
user data
) # Valida os dados com o modelo
database_connection.add(new_user)
database connection.commit ()
database connection.refresh(new _user)

return new_user

async def get_user_by_id(
user_identifier: uuid.UUID, database_connection: Session
) —> User:

"""Busca um usuario pelo ID."""

query_statement = select(User).where(col(User.id) == user_identifier)

query_result = database_connection.exec(query_statement)
user_record = query_result.scalar_one_or_none()

if not user_record:

raise ValueError(’User Not Found’)

return user_record

async def get_user_by_phone_number (

contact_phone_number: str, database_connection: Session
) —-> User:

"""Busca um usuario pelo numero de telefone."""

query_statement = select(User).where(

col(User.phone number) == contact_phone_number

)

query_result = database_connection.exec(query_statement)

user_record = query_result.scalar_one_or_none()

return user_record

async def get_users(

APENDICE A. GPT TEACHER 88

database_connection: Session,
records_skip: int = 0,
records_limit: int = 100,
) -> List[User]:
"""Busca uma lista de usuarios."""
query_statement = select(User).offset(records_skip).limit(records_limit)
query_result = database_connection.exec(query_statement)
users_list = query_result.all()

return list(users_list)

async def update_user(
user_identifier: int,
user_update_data: UserUpdate,
database_connection: Session,
) —-> Optional [User]:
"""Atualiza os dados de um usuario."""
existing user = await database_connection.get(User, user_identifier)
if not existing user:

raise ValueError(’User Not Found’)

Pega os dados do Pydantic model que ndo s&o None
update_fields_data = user_update_data.model_dump(exclude_unset=True)
for field_key, field_value in update_fields_data.items():

setattr(existing user, field key, field value)

Atualiza o timestamp de atualizagdo (se existir no modelo)
if hasattr(existing user, ’updated_at’):

existing user.updated_at = current_datetime()

database_connection.add(existing user)
database_connection.commit ()
database_connection.refresh(existing user)

return existing user

async def update_user_by_field(
user_identifier: int,

target_field: str,

APENDICE A. GPT TEACHER

89

field_value: Any,
database_connection: Session,
) —> Optional[’User’]:
"""Atualiza os dados de um usuario por um Campo."""
permitted_fields = list(UserBase.model_fields.keys())
if target_field not in permitted_fields:
raise ValueError(
f’Invalid field ({target_field}).’

user_record = await database_connection.get(User, user_identifier)
if not user_record:

raise ValueError(’User Not Found’)

setattr(user_record, target_field, field_value)

database_connection.add(user_record)
database connection.commit ()
database_connection.refresh(user_record)

return user_record

async def delete_user(
user_identifier: int, database_connection: Session
) —=> bool:
"""Remove um usuario do banco de dados."""
existing user = await database_connection.get(User, user_identifier)
if not existing user:
return False
database_connection.delete(existing user)
database connection.commit ()

return True

def get_user_document_photo_from bucket(

document_storage_object_identifier: str,

if not document_storage object_identifier:

raise ValueError/(

APENDICE A. GPT TEACHER 90

’User Does not have a Document With Photo Persisted’
)
downloaded_file_path = download_file(
bucket_name=settings.USER_DOCUMENT_BUCKET_NAME,
object_name=document_storage object_identifier,
)

return downloaded_file_path

def get_user_basic_data_fields_name(include_authentication_storage_column=True):
user_basic data_field names = [
field name for field name, model field in UserBase.model fields.items()
if field_name != ’phone_number’
]
if include_authentication_storage_column:
user_basic_data_field names.append(
’face_document_storage_object_name’

)

return user_basic_data_field names

def clear user basic_data(

*

database session: Session,
user_identifier: uuid.UUID | None = None,
contact_phone_number: str = None,

remove_all users: bool = False,

data_field names = get_user_basic_data_fields_name()

clearing update_data = {data_field: None for data_field in data_field_names}

if user_identifier:
update_statement = (
update (User)
.where(col(User.id) == user_identifier)
.values (**clearing update_data)
)
elif contact_phone_number:

update_statement = (

APENDICE A. GPT TEACHER 91

A.2

impo
impo
impo
impo
impo
impo
impo
impo
impo

impo

from
from
from
from
from

from

)

update (User)
.where(col (User.phone_number) == contact_phone_ number)
.values (**clearing update_data)
)
elif remove_all users:
update_statement = update(User).values(**clearing update_data)
else:
raise ValueError(

’Deve especificar user_id, phone_number ou remove_all_users=True’

execution_result = database_session.exec(update_statement)

database_session.commit ()

return execution_result.rowcount

.4 Cobdigo Nivel Expert

rt asyncio

rt functools

rt oci

rt re

rt uuid

rt psycopg

rt src.constants as const
rt src.utils

rt time

rt typing as types

app.core.settings import app_settings

app.api.deps import DatabaseSession

app.models.rag metadata import DocumentMetadata
contextlib import contextmanager

dotenv import load_dotenv

langchain community.chat_message histories import (

FileChatMessageHistory,

from langchain_community.chat _models import ChatOCIGenAI

from langchain_community.embeddings import 0CIGenAIEmbeddings

APENDICE A. GPT TEACHER 92

from
from
from

from

langchain_core.callbacks import BaseCallbackHandler
langchain_core.documents import Document
langchain core.messages import BaseMessage

langchain_core.prompts import (

ChatPromptTemplate,

MessagesPlaceholder,

)

from

from
from
from
from
from
from
from
from

from

load_

H O HF H O H OH OH O H OH O H OH OH O H O H O H

langchain_core.runnables import (

RunnableSerializable,

RunnableConfig,

langchain postgres import PostgresChatMessageHistory
langchain_qdrant import Qdrant

qdrant_client import qdrant_client

pathlib import Path

pydantic import BaseModel

sqlmodel import select, Field

src.logger import log

typing import Any, Callable, TypedDict, Union, Optional, List, Dict
uuid import UUID

dotenv ()

def timeit(func):

Qwraps (func)
def wrapper (*args, *xkwargs):

import time
start = time.time()
result = func(*args, **kwargs)

end = time.time()

execution_time = end - start

truncated_time = round(execution_time, 2)

log.info(f’{func.__name__} took {truncated time} seconds to execute’)

APENDICE A. GPT TEACHER

93

detailed logging
log.debug(f’args: {args}’)
log.debug(f’kwargs: {kwargs}’)
log.debug(f’result: {result}’)

return result

H O H O H O H OH O H OH =

return wrapper

def timeit(function to time):
Ocontextmanager
def timing context():
initial timestamp = time.time()

yield

elapsed_duration = time.time() - initial_timestamp

rounded_duration = round(elapsed_duration, 2)

@functools.wraps(function_to_time)
def timing wrapper (*function_args, **function_kwargs):
detailed logging
log.debug(f’args: {function_args}’)
log.debug(f’kwargs: {function_kwargsl}’)
if not asyncio.iscoroutinefunction(function_to_time):
with timing context():
function result = function to_time(
*function_args, *xfunction_kwargs
)
log.debug(f’result: {function_result}’)
return function result

else:

async def async_wrapper():
with timing context():
function_result = await function_to_time(
*function_args, **function_kwargs
)
log.debug(f’result: {function_result}’)

APENDICE A. GPT TEACHER 94

return function result

return async_wrapper ()

return timing wrapper

def _is valid identifier(identifier value: str) -> bool:
"""Check if the value is a valid identifier."""
Use a regular expression to match the allowed characters
pattern_validator = re.compile(r’~[a-zA-Z0-9-_]+$’)

return bool(pattern_validator.match(identifier_value))

def validate_field_spec(user_session_id: str) -> None:
"""Validate the session id."""
if not _is valid identifier(user session id):
raise ValueError(
f’Session ID {user_session_id} is not in a valid format. ’
’Session ID must only contain alphanumeric characters, ’
’hyphens, and underscores. Please provide a valid session id °’

’via config.’

def create_session_factory(
storage_base_dir: Union[str, Path] = ’chat_histories’,
database_enabled: bool = False,
synchronous_connection: psycopg.Connection = None,
asynchronous_connection: psycopg.AsyncConnection = None,
) —> Callable[[str], PostgresChatMessageHistory] | Callablel[
[Any], FileChatMessageHistory

"""Create a session factory for chat histories."""
if not database_enabled:

storage_directory = Path(storage_base_dir)

if not storage_directory.exists():

storage_directory.mkdir (parents=True)

APENDICE A. GPT TEACHER 95

def get_chat_history_from_file(chat_session_id) -> FileChatMessageHistory:
"""Get a chat history from a user id and conversation id."""
validate_field spec(session_id=chat_session_id)
history_file_path = storage_directory / f’{chat_session_id}. json’

return FileChatMessageHistory(str(history_file_path))

def get_chat_history_from_postgres(
chat_session_id: str = str(uuid.uuid4()),
) —> PostgresChatMessageHistory:

"""Get a chat history from a user id and conversation id."""

validate_field spec(session_id=chat_session_id)

if synchronous_connection:
postgres_chat_instance = PostgresChatMessageHistory(
const.POSTGRES_MESSAGE_HISTORY_TABLE_NAME,
chat session_id,
sync_connection=synchronous_connection,

)

return postgres_chat_instance

if asynchronous_connection:
postgres_chat_instance = PostgresChatMessageHistory(
const.POSTGRES_MESSAGE_HISTORY_TABLE_NAME,
chat_session_id,
async_connection=asynchronous_connection,

)

return postgres_chat_instance

raise ValueError(

’Please give a async/sync connection or change use_db to False’

return (
get_chat_history_from_postgres
if database_enabled

else get_chat_history_from_file

APENDICE A. GPT TEACHER 96

def get_chat_history(chat_session_id: str, history_factory: Callable) -> Any:
"""Get chat history from a session id."""

return history_factory(chat_session_id)

class LLMStartingGenerationCallback(BaseCallbackHandler) :
"""A callback to log the start of the LLM generation."""

def __init__(self):
self.start_time = time.time()

self.end_time = None

def calc_model_generation_delay(self):
self.end time = time.time()

return self.end_time - self.start_time

def on_chat model start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessagel],

*

run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Anyl] = None,
*xkwargs: Any,
) => Any:
log.info(f’1Starting generation...’)
log.info(
f’1Model generation delay: {self.calc_model generation_delay()}s’

def on_1lm start(
self,
serialized: types.Dict[str, Any],
prompts: List[str],

*

b

run_id: uuid.UUID,

APENDICE A. GPT TEACHER 97

parent_run_id: Optional[uuid.UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[types.Dict[str, Any]] = None,

*xkwargs: Any,

) => Any:

log.info(f’2Starting generation...’)
log.info(

f’2Model generation delay: {self.calc_model generation_delay()}s’
)

return None

def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
*,
run_id: UUID,
parent_run_id: Optional [UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Anyl] = None,
*xkwargs: Any,

) —> Any:

self.start_time = time.time()
log.info(f’Starting chain...’)

return None

def get_11m model(

**model kwargs,

""UA function to load a LLM ChatModel."""

if not const.IS_OCI_CREDENTIALS VALID:

return

oci_client = oci.generative_ai_inference.GenerativeAiInferenceClient(

config=const.0CI_CREDENTIALS,
service_endpoint=const.DEFAULT_GENAI_ SERVICE_ENDPOINT,

APENDICE A. GPT TEACHER 98

def

def

language_model = Chat0CIGenAI(

model id=’meta.llama-3.1-70b-instruct’,

service_endpoint=const.DEFAULT_GENAI_SERVICE_ENDPOINT,

compartment_id=const.DEFAULT_COMPARTMENT _ID,

model kwargs={
’max_tokens’: const.MAX QUTPUT_TOKENS,
’temperature’: 0.4,

s

client=oci_client,

callbacks=[LLMStartingGenerationCallback()],

return language_model

get_embedding model(
embedding model_identifier: str = const.DEFAULT_OCI_EMBEDDING_MODEL,

if not const.IS_OCI_CREDENTIALS_VALID:

return

oci_client = oci.generative_ai_inference.GenerativeAiInferenceClient(
const.0CI_CREDENTIALS

embedding instance = 0CIGenAIEmbeddings(
model_id=embedding model_identifier,
service_endpoint=const.DEFAULT_GENAI_ SERVICE_ENDPOINT,
compartment_id=const.DEFAULT_COMPARTMENT_ID,

client=oci _client,

return embedding instance

get_vector_index(

*

b

client: gdrant_client.(QdrantClient,
collection_name: str = const.COLLECTION_NAME,

APENDICE A. GPT TEACHER

99

embedded_model: 0CIGenAIEmbeddings,
) -> Qdrant:
qdrant_storage = Qdrant(
client,
collection_name=collection_name,
embeddings=embedded_model,
)

return qdrant_storage

def get_retriever(

*, collection_name, engine=None, q_client=None,

if engine is None:
vector_index = get_vector_index(
client=q_client,
collection name=collection_ name,
embedded model=embed model,
)

engine = vector_index

return engine.as_retriever(

search_kwargs={’k’: 10},

def get_vector_db_client(

*’
host: types.Optional[str] = ’localhost’,
port: types.Optional[int] = 6333,

api_key: types.Optional[str] = None,

embed_model=None

qdrant_client_instance = gdrant_client.QdrantClient(

host=host,

port=port,

api_key=api_key,
)

return qdrant_client_instance

APENDICE A. GPT TEACHER 100

class InputChat(TypedDict):
"""Input for the chat endpoint."""

input: str

nn IlHuman lnput nnn

User input
class ChatHistory(BaseModel):
"""Chat history with the bot."""

question: str

embedding model instance = get_embedding model ()

vector_database_client = src.rag.get_vector_db_client (**const.VECTOR_DB_KWARGS)

class RRetriever (RunnableSerializable):

collection _name: str

def get_relevant_documents(self, user_input: str) -> List[Document]:
"""Get relevant documents."""
vector_store = Qdrant(
vector_database_client,
collection_name=self.collection_name,
embeddings=embedding model_instance,
)
document_retriever = vector_store.as_retriever(search_kwargs={’k’: 10})

return document _retriever.invoke(user_input)

def invoke(
self, user_input: str, config: Optional [RunnableConfig] = None
) —> List[Document]:
"""Invoke the retriever."""
vector_store = Qdrant(
client,

collection_name=self.collection_name,

APENDICE A. GPT TEACHER 101

embeddings=embedding model_instance,
)
document_retriever = vector_store.as_retriever(search kwargs={’k’: 4})

return document_retriever.invoke(user_input, config=config)

class Request(BaseModel):

"""Request model for the chat endpoint."""

input: str = Field()

def get_custom_retriever(

collection_identifier

) —> RunnableSerializable[Any, Any]:
"""Get the custom retriever."""

return RRetriever(collection name=collection_identifier)

def get_collection_name_ by_prompt_id(
database_session: DatabaseSession, prompt_id: int
):
query_statement = select(
DocumentMetadata.collection name
) .where (DocumentMetadata.id == prompt_id)
query_results = database_session.exec(query_statement).one_or_none()

return query_results

<Get Prompt By Prompt ID>
def get_prompt_by_prompt_id(document_metadata: DocumentMetadata):
template_generator = document_metadata.prompt_generator_template

chat_prompt = ChatPromptTemplate.from_messages (

[
(’system’, template_generator),
MessagesPlaceholder (’chat_history’),
("human’, ’{input}’),

]

APENDICE A. GPT TEACHER 102

return chat_prompt

TITLE_GENERATOR_PROMPT = """

Vocé sabe gerar titulos para prompts.

Gere um titulo curto e descritivo para o prompt: "{promptl}".
0 titulo deve conter no méximo 10 palavras.

~

Retorne somente o titulo gerado. N&o responda & pergunta.

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Lista de ilustrações
	Lista de tabelas
	Lista de siglas
	Sumário
	Introdução
	Motivação
	Problema
	Hipótese
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Organização da Monografia

	Fundamentação Teórica e Trabalhos Correlatos
	Processamento de Linguagem Natural
	Tokenização
	Codificação por Par de Bytes

	Embeddings Vetoriais
	Codificação Posicional para Embeddings Vetoriais

	Inteligência Artificial Generativa
	Modelos de Linguagem de Larga Escala - LLM
	Transformer

	Agentes de LLM
	Engenharia de Prompt
	Ferramentas

	Frameworks de LLM
	Langchain
	Chains
	Runnables

	Agno
	Visual Studio Code
	API de Extensões do Visual Studio Code

	Trabalhos Correlatos
	Síntese dos Trabalhos Correlatos

	método
	Percepção da Problemática
	Design e Implementação
	Stack de Tecnologias e Ferramentas
	Tecnologias do Backend

	Validação

	Design e Implementação do GPT Teacher
	Arquitetura Geral da Solução
	Seleção da Plataforma de Desenvolvimento e Integração
	Modelagem dos Agentes de IA
	Seleção do Framework para Construção dos Agentes de IA

	Construção dos Agentes
	Agente de Diagnóstico de Código
	Agente Tutor

	Implementação da Extensão para o Visual Studio Code
	Validação e Documentação dos Endpoints

	Experimentação
	Objetivo do Experimento
	Metodologia da Experimentação
	Cenários de Teste
	Configuração do Ambiente e Métricas
	Procedimento de Execução

	Análise de Resultados
	Apresentação dos Resultados
	Análise e Discussão dos Resultados
	Análise do Tempo de Inferência
	Análise do Consumo de Tokens e Custo
	Conclusões da Análise

	Conclusão
	Principais Contribuições
	Trabalhos Futuros

	Referências
	Apêndices
	GPT TEACHER
	Prompts e Saídas dos Agentes
	Prompt do Agente de Diagnóstico de Código
	Prompt do Agente Tutor
	Exemplo de Análise de Código produzida pelo Agente de Diagnóstico de Códigos

	Códigos Utilizados para Cenários de Teste
	Código Nível Iniciante
	Código Nível Médio
	Código Nível Avançado
	Código Nível Expert

