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Resumo

A segmentacao seméantica de incéndios florestais em imagens de satélite é um problema
relevante para o monitoramento ambiental, especialmente devido ao forte desbalancea-
mento entre classes e a natureza esparsa dos focos de fogo. Neste trabalho, o estudo é
conduzido sobre imagens multiespectrais do satélite Sentinel-2 (resolugao de 20 m), com
foco na identificacao da classe incéndio. O objetivo desta dissertagao é propor, imple-
mentar e avaliar um pipeline de segmentagao semantica para detectar incéndios florestais,
investigando o impacto de diferentes backbones, fungoes de perda e estratégias de mitiga-
¢do do desbalanceamento. A metodologia foi estruturada em dois ciclos experimentais:
no primeiro, de carater exploratério, avaliou-se a U-Net com encoders Visual Geome-
try Group 16 (VGG-16) e EfficientNetB3, utilizando perdas tradicionais; no segundo,
foi adotado um pipeline otimizado com undersampling, data augmentation, perdas sen-
siveis a classe minoritaria (Dice, Focal e Dice+Focal), treinamento em duas fases com
fine-tuning e calibracao do limiar por varredura na validagdo maximizando F1-Score. Os
resultados indicam melhora substancial no Ciclo 2, com maior estabilidade e desempe-
nho, destacando-se a U-Net com backbone VGG-16, que apresentou métricas elevadas de
medida F1 (média harménica entre Precisao e Precision/Recall) (F1-Score) e Intersegao
sobre Unido (IoU) no conjunto de teste. A andlise qualitativa confirmou maior coeréncia
espacial das méscaras preditas. Conclui-se que a combinagao de balanceamento, fungoes
de perda adequadas e calibracao do limiar de decisao é determinante para a segmentacao

eficaz de incéndios em imagens multiespectrais do Sentinel-2.

Palavras-chave: Sensoriamento Remoto, Segmentacdo Seméntica, Aprendizado Pro-

fundo, Queimadas, Sentinel-2, Incéndios Florestais. .



Abstract

Semantic segmentation of forest fires in satellite imagery is a relevant problem for
environmental monitoring, particularly due to severe class imbalance and the sparse spa-
tial distribution of fire events. In this work, the study is conducted using multispectral
Sentinel-2 images with 20 m spatial resolution, focusing on the accurate identification
of the fire class. The objective of this dissertation is to propose, implement, and eva-
luate a semantic segmentation pipeline for forest fire detection, investigating the impact
of different backbones, loss functions, and class imbalance mitigation strategies. The
methodology is structured into two experimental cycles. The first, exploratory in nature,
evaluates a U-Net architecture with VGG16 and EfficientNetB3 encoders using conventi-
onal loss functions. The second cycle adopts an optimized pipeline incorporating selective
undersampling, data augmentation, loss functions tailored to imbalanced data (Dice, Fo-
cal, and Dice+Focal), a two-stage training strategy with encoder fine-tuning, and decision
threshold calibration through validation-based sweeping to maximize the Fl-score. The
results show substantial improvements in the second cycle, with increased stability and
performance, particularly for the U-Net with the VGG16 backbone, which achieved high
F1 and IoU scores on the test set. Qualitative analysis further confirmed improved spatial
coherence of the predicted masks. These findings indicate that combining class balancing
strategies, appropriate loss functions, and threshold calibration is essential for effective

forest fire segmentation in multispectral Sentinel-2 imagery.

Keywords: Remote Sensing, Semantic Segmentation, Deep Learning, Forest Fires, Sentinel-
2, Wildfires..
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CAPITULO

Introducao

O monitoramento global de incéndios é viabilizado pelo emprego de dados de sensori-
amento remotoSensoriamento Remoto (SR) (BARMPOUTIS et al., 2020), campo que se
refere a uma técnica que envolve a coleta de informagoes sobre objeto, area ou evento na
superficie da Terra sem contato fisico. O uso de imagens de satélite ¢ fundamental para
a gestao de politicas de conservagdo ambiental (CHUVIECO et al., 2019). A detecgao
de focos de incéndio ativo constitui uma area de pesquisa que busca extrair informacoes
criticas dessas imagens para embasar decisoes.

Anomalias térmicas identificadas através de dados de satélite sao frequentemente li-
gadas ao uso do solo, como incéndios para manutencao e conversao de terrenos, quei-
madas florestais, atividades industriais, e outros fendémenos naturais, incluindo erupg¢oes
vulcanicas. A utilizagdo do fogo é uma pratica comum para limpeza de terrenos pés-
desmatamento. Essa pratica, quando executada sem monitoramento adequado, pode le-
var a consequéncias ambientais severas, incluindo a degradagao do solo por meio da perda
de nutrientes vitais para o crescimento das plantas e impactos adversos na biodiversidade
e nos ecossistemas, bem como a deterioragdao da qualidade do ar (OZEL; ALAM; KHAN,
2024).

No Brasil, o problema das queimadas atingiu niveis alarmantes em 2024, de acordo
com MapBiomas (2024), iniciativa que faz parte do Sistema de Estimativas de Emissoes
de Gases de Efeito Estufa (SEEG) do Observatoério do Clima. Apenas no més de agosto, a
area total queimada alcangou 5,65 milhoes de hectares, representando quase metade (49%)
do total queimado desde o inicio do ano. Este valor corresponde a uma area equivalente
ao estado da Paraiba e representa um aumento de 149% em relagdo ao mesmo periodo
de 2023. Os incéndios impactaram severamente os biomas, com destaque para o Cerrado,
que sofreu uma devastacao de 2,4 milhdes de hectares em agosto de 2024, ou 43% da area
total queimada no Brasil no mesmo més. A situacao é agravada pelo fato de que quase
dois tergos (65%) das queimadas em agosto ocorreram em vegetagao nativa, indicando
uma relagao direta com o desmatamento e a degradacao ambiental. A Amazdnia, outro

bioma vital, também foi amplamente afetada, com 2 milhoes de hectares queimados. A
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combinacao de atividades humanas e condigoes climaticas desfavoraveis, como a seca,
intensifica a ocorréncia dessas queimadas e prejudica a biodiversidade.

De acordo com dados obitidos por meio do MapBiomas (2024), o aumento expressivo
das queimadas nao se limitou a um tunico bioma. No Pantanal, por exemplo, a area
queimada entre janeiro e agosto de 2024 aumentou 249% em comparacao com a média
dos cinco anos anteriores, totalizando 1,22 milhdo de hectares. Na Mata Atlantica, houve
um crescimento de 683% na 4rea queimada em agosto em relagdo a média histérica,
com 500 mil hectares consumidos pelo fogo, dos quais 72% eram areas agropecuéarias.
No estado de Sao Paulo, 86% da 4rea queimada em 2024 ocorreu apenas em agosto,
afetando predominantemente plantacoes de cana-de-ac¢ticar. Esses dados apontam para
uma tendéncia preocupante: a expansao das queimadas em areas de vegetacdo nativa e
em biomas frageis, exacerbada pela agdo humana e pelas condi¢oes climaticas adversas.
A necessidade de medidas efetivas de prevencao e controle é urgente para mitigar os
impactos ambientais, climaticos e sociais decorrentes das queimadas em grande escala
(MapBiomas, 2024).

Ao redor do mundo, a situacdo com queimadas nao é diferente, apesar de incéndios
florestais no Canada sejam relativamente comuns (BUMA et al., 2022) as mudangas cli-
maticas estao levando a incéndios maiores e mais frequentes do que nas décadas passadas
(HANES et al., 2019). Dados da indicam que o aquecimento global estd contribuindo
para um aumento de 30-50% na area global queimada até o final do século XXI(UNEP,
2022).

Neste trabalho, o foco recai sobre a deteccao ativa de incéndios em imagens multies-
pectrais, por meio de métodos baseados em Aprendizado Profundo (AP) no campo de SR.
Embora existam outras abordagens relevantes — como o uso de sensores térmicos, came-
ras de infravermelho ou dados meteoroldgicos —, a escolha por imagens multiespectrais
reflete a proposta metodoldgica adotada nesta pesquisa. Recentemente, métodos basea-
dos em AP no campo de SR ganharam destaque devido ao aumento nas possibilidades de
aplicagao e ao bom desempenho apresentado. Métodos baseados em AP conseguem apren-
der automaticamente a partir de dados complexos em imagens de SR, utilizando diversas
camadas em redes neurais. Em sua revisao, eles destacam um crescimento significativo,
desde 2015, no nimero de publicagoes cientificas que aplicam Aprendizado Profundo na
analise de imagens de SR, acompanhado por um aumento expressivo nas citagoes desses
trabalhos. Esse crescimento reforca o rapido interesse e evolugao dos estudos de AP em
imagens de SR Khelifi e Mignotte (2020a).

Este estudo tem como objetivo aprimorar técnicas de deteccao de incéndios baseadas
em inteligéncia artificiallnteligéncia Artificial (IA), com énfase no aumento da Precisao e
na reducgao de Falsos Positivos em dados obtidos a partir de imagens multiespectrais do
satélite Sentinel-2. Para isso, sdo empregadas redes neurais convolucionais profundas do

tipo U-Net, combinadas a encoders pré-treinados — VGG-16 e EfficientNet—, explorando
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o potencial do aprendizado transferido na extracao de padroes espectrais e espaciais re-
levantes. Os objetivos especificos incluem a aplicagdo de técnicas de aumento de dados
com a biblioteca Albumentations (como rotagoes, inversoes, ajustes de brilho e contraste),
o balanceamento do conjunto por undersampling seletivo e a otimizacao dos parametros
de treinamento dos modelos, utilizando uma fungao de perda composta (Dice Loss + Bi-
nary Focal Loss). Essas estratégias visam aumentar a sensibilidade dos modelos & classe
minoritaria (fogo), garantindo maior robustez e generalizagdo na detecgdo automatica de

incéndios.

1.1 Motivacao

O progresso continuo na associacdo de ITA para deteccao de incéndios reflete uma
combinacao de avancgos tecnoldgicos e uma necessidade premente de inovacao. As técni-
cas de AP, particularmente, tém mostrado grande potencial na interpretacao de dados
complexos de sensoriamento remoto, possibilitando a identificacdo de sinais precoces de
incéndios florestais. No entanto, apesar dos avangos significativos, existem ainda lacunas
e desafios a serem superados, especialmente no que se refere a precisao e a redugao de
falsos positivos, que sdo cruciais para a confiabilidade dos sistemas de detecc¢ao.

A otimizacao dos resultados obtidos em pesquisas anteriores nao é apenas uma questao
de progresso técnico, mas também um imperativo para a seguranca publica e a gestao
ambiental. A eficicia na deteccdo de incéndios tem um impacto direto na capacidade
de resposta das equipes de emergéncia, na minimizag¢ao de danos ao meio ambiente e na
protecao da vida humana e da fauna. Portanto, o aprimoramento continuo dos sistemas de
deteccao baseados em A, por meio da pesquisa e desenvolvimento, é vital para enfrentar
os desafios emergentes e dinamicos associados aos incéndios florestais.

A vegetagao possui importancia vital para a humanidade, atuando como um recurso
natural essencial que oferece beneficios diretos e indiretos, como a regulacao climatica,
a manutencao da biodiversidade e a protecao do solo. No entanto, desastres naturais,
especialmente os incéndios florestais, comprometem esses beneficios e contribuem signi-
ficativamente para o aquecimento global. Por isso, a identificacdo automatica e precoce
de incéndios florestais é fundamental, pois permite que os responsaveis pela gestao de
desastres planejem com antecedéncia estratégias de mitigacao e taticas de combate ao

fogo, minimizando os danos ambientais e socioeconémicos (SCHROEDER et al., 2016).

1.2 Objetivos e Desafios da Pesquisa

O objetivo principal desta pesquisa consiste em propor, implementar e avaliar um
pipeline de segmentacao semantica para a deteccdo de incéndios florestais em imagens

multiespectrais do satélite Sentinel-2, com énfase na mitigacao dos efeitos do forte des-
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balanceamento entre classes e na obtencao de modelos robustos para a classe de interesse
(incéndio). Para isso, foram investigadas variantes da arquitetura U-Net com encoders
pré-treinados e estratégias complementares de treinamento, balanceamento e calibracao
do limiar de decisao.

A pesquisa foi conduzida a partir dos seguintes objetivos especificos:

[ avaliar o desempenho da U-Net com diferentes backbones (VGG-16 e EfficientNetB3)
na segmentagao da classe incéndio, considerando estabilidade do treinamento e de-

sempenho no conjunto de teste;

(Q analisar o impacto da escolha da fungao de perda em cenarios desbalanceados, com-
parando Binary Cross-Entropy e Dice Loss com abordagens mais sensiveis a classe

minoritaria, como Focal Loss e a perda composta Dice+Focal;

 investigar os efeitos do undersampling de amostras negativas e do data augmentation
(Albumentations) como mecanismos para aumentar a exposi¢ao do modelo a padroes

relevantes e reduzir vieses induzidos pelo desbalanceamento;

[ avaliar uma estratégia de treinamento em duas fases, com congelamento inicial do
encoder e posterior fine-tuning, visando maior estabilidade de convergéncia e melhor

generalizacao;

1 incorporar e avaliar uma etapa de calibragao do threshold por varredura na valida-
¢a0, maximizando o F1-Score, e analisar seu efeito nas métricas finais e nas matrizes

de confusao;

(A comparar sistematicamente as combinacoes de arquitetura e escolhas metodologi-
cas por meio de métricas orientadas a classe positiva (IoU, F1-Score, precision e
recall), reportadas para validagdo e teste, complementadas por andlise qualitativa

das mascaras preditas.

Do ponto de vista dos desafios, destaca-se que a classe incéndio tende a ocupar regides
pequenas e esparsas nas imagens, o que torna a segmentagao particularmente sensivel ao
desbalanceamento e & escolha do limiar de decisdo. Além disso, a presenca de pares ima-
gem/méscara com inconsisténcias ou regides ausentes pode introduzir ruido no processo
de treinamento e avaliacao. Assim, este estudo concentra-se na construcao de um arranjo
experimental capaz de isolar e quantificar o impacto das principais decisdoes metodoldgicas

sobre o desempenho final dos modelos.

1.3 Hipobtese

Considerando o forte desbalanceamento entre classes e a natureza esparsa da classe

incéndio nas imagens Sentinel-2, este trabalho parte da hipdtese central de que:
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0 a combinagdo de (i) funcoes de perda sensiveis a classe minoritaria (Dice, Focal e
a perda composta Dice+Focal), (ii) estratégias de mitigacao do desbalanceamento
no treinamento (e.g., undersampling de amostras negativas e data augmentation), e
(iii) calibragao do limiar de decisao por varredura na validacdo (maximizando o F1-
Score) resulta em modelos de segmentacao mais robustos e com melhor equilibrio
entre precisao e recall, refletido em valores superiores de IoU e F1-Score no conjunto
de teste, quando comparados a abordagens tradicionais baseadas apenas em Binary

Cross-FEntropy e limiar fixo.

Adicionalmente, assume-se como hipétese complementar que o desempenho e a esta-
bilidade do modelo dependem do backbone empregado, sendo esperado que arquiteturas
com encoders mais estaveis apresentem menor sensibilidade a escolha da fung¢ao de perda

e do limiar de decisao, especialmente em cendarios de desbalanceamento extremo.

1.4 Contribuicoes

Este trabalho apresenta uma abordagem reprodutivel para segmentacao semantica de
areas queimadas em imagens multiespectrais Sentinel-2, com foco no desafio de desba-
lanceamento extremo entre classes (fundo vs. incéndio). Considerando a metodologia

adotada e os resultados experimentais obtidos, as principais contribuicoes sao:

1 Definicao e implementacao de um pipeline de preparacao de dados para Sentinel-2,
contemplando organizacao do conjunto multiespectral, padronizag¢ao do particiona-
mento (train/validation/test) e geracao de amostras adequadas ao treinamento de

redes convolucionais para segmentacao;

(d Avaliacao comparativa de arquiteturas U-Net com encoders pré-treinados, incluindo
VGG-16 e EfficientNetB3, analisando o impacto do backbone na qualidade de seg-

mentacao sob o mesmo protocolo experimental e conjunto de métricas;

1 Proposicao e validagao de uma estratégia explicita para lidar com o desbalancea-
mento de classes por meio de undersampling orientado ao contetido (priorizando
amostras com presenga da classe minoritaria) e data augmentation para ampliar a
variabilidade das amostras, reduzindo viés do modelo e melhorando a capacidade

de generalizacao;

1 Investigagao sistematica de fungoes de perda voltadas a classe minoritaria, compa-
rando perdas classicas (p.ex., Binary Cross-Entropy e Dice Loss) com uma fungao
de perda composta (combinagao de termos para sobrepor desbalanceamento e re-
finar bordas), evidenciando ganhos de desempenho (especialmente em FI-score e

IoU) na segmentagao da classe de incéndio;



30 Capitulo 1. Introdugao

1 Demonstragao da eficdcia do treinamento em duas fases (warm-up do decoder com
congelamento do encoder, seguido de fine-tuning do encoder), contribuindo para
estabilizacao do aprendizado, melhor convergéncia e incremento de desempenho nos

conjuntos de validacao e teste;

(A Disponibilizagdo do codigo-fonte, configuragdes experimentais e artefatos de avalia-
¢ao (métricas, visualizagdes qualitativas e resultados por experimento) em reposité-
rio publico, promovendo reprodutibilidade e facilitando o reuso por pesquisadores e

profissionais de monitoramento ambiental.

1.5 Organizacao da Dissertacao

Esta dissertacao estd organizada em quatro capitulos, além desta introducao.

O Capitulo 2 apresenta a fundamentacao tedrica que sustenta o trabalho, contem-
plando conceitos de segmentagdo semantica e redes neurais convolucionais, a arquitetura
U-Net e encoders pré-treinados, bem como aspectos do sensoriamento remoto relevantes
ao estudo, incluindo caracteristicas do satélite Sentinel-2 e discussdes sobre composicoes
espectrais empregadas na deteccao de queimadas. Também sao revisados trabalhos cor-
relatos e abordagens recentes aplicadas a segmentagao em imagens orbitais.

O Capitulo 3 descreve o desenho experimental adotado, incluindo o dataset utilizado,
o pré-processamento das imagens e a construgao do pipeline de treinamento e avaliacao.
Sao detalhadas as variacoes de arquitetura (U-Net com VGG-16 e EfficientNetB3), as
estratégias de mitigacdo do desbalanceamento (como undersampling e data augmenta-
tion), as fungdes de perda avaliadas (incluindo perdas compostas) e o procedimento de
calibracao do limiar de decisao por varredura na validacgao.

O Capitulo 4 apresenta e analisa os resultados obtidos nos dois ciclos experimen-
tais, comparando as combinagoes de backbones e func¢oes de perda com base em métricas
orientadas a classe incéndio, como IoU, F1-Score, precisao e recall. Além da avaliacao
quantitativa, sao discutidos o comportamento das curvas de aprendizado, as matrizes de
confusao e a analise qualitativa das mascaras preditas, destacando os efeitos das melhorias
introduzidas no Ciclo 2.

Por fim, o Capitulo 5 sintetiza os principais achados do estudo, revisita a hipétese
de pesquisa a luz dos resultados e apresenta limitacoes e diregoes para trabalhos futuros,
incluindo a exploracao de arquiteturas baseadas em atencao, estratégias alternativas de
balanceamento, avaliagdo em multiplos sensores e generalizacao para diferentes biomas e

configuracoes espectrais.
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CAPITULO

Fundamentacao Tedrica

Nesta secao serao abordados os conceitos fundamentais que embasam o desenvolvi-

mento desta pesquisa e os principais trabalhos correlatos.

2.1 Meétodos de Aprendizado Profundo em Imagens

de Sensoriamento Remoto

AP ou Deep Learning (DL) é uma subdisciplina do Machine Learning (ML) focada
no desenvolvimento de modelos capazes de aprender a partir de dados fornecidos, com o
objetivo de produzir os resultados esperados. O diferencial dessas técnicas esta na utiliza-
¢ao de diversas camadas de processamento sobrepostas, o que possibilita a construcao de
representacoes hierarquicas dos dados. Cada camada subsequente refina as informacoes
processadas pela anterior, permitindo a extragdo de caracteristicas progressivamente mais
complexas e abstratas.

No contexto do reconhecimento de imagens, por exemplo, o modelo inicia a anélise
a partir de informagoes basicas, como os pixeis. Em camadas mais profundas, essas
informagoes sao combinadas para identificar padroes simples, como linhas e contornos,
até chegar a uma interpretacao mais detalhada e complexa da imagem como um todo.

Nos tltimos anos, o uso de técnicas de DL no campo do SR tem atraido atencao
devido ao seu desempenho robusto e a ampliagao das possibilidades de aplicagao (KHE-
LIFT; MIGNOTTE, 2020b). Essas técnicas sao capazes de aprender automaticamente
representacoes complexas de dados em imagens de SR por meio de redes neurais compos-
tas por diversas camadas. Segundo esses autores, desde 2015, observa-se um crescimento
expressivo no numero de publicacoes cientificas relacionadas ao uso de DL para anélise
de imagens de SR, acompanhado por um aumento significativo nas citagoes dessas publi-
cagoes, indicando o crescente interesse da comunidade cientifica.

Hoeser e Kuenzer (2020) também notam que, desde que o DL comegou a ser aplicado

no SR por volta de 2015, o nimero de artigos publicados nessa area mais que dobrou a
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cada ano. Esse aumento é impulsionado pela maior disponibilidade de dados e pelo avango
no poder computacional, especialmente com o uso de Graphics Processing Units (GPUs),
que facilitam o processamento em grande escala. As aplica¢oes incluem diversas areas,
como super-resolucao de imagens, fusdo de dados, remocao de ruido, previsao climatica e
deteccao de objetos utilizando sensores 6pticos, multiespectrais, hiperespectrais e Radar
de Abertura Sintética (SAR).

O crescimento na quantidade de dados provenientes de diferentes sensores e fontes
heterogéneas tem possibilitado avangos no estudo de processos ambientais. Para esses
autores, as técnicas de DL sao especialmente adequadas para lidar com os desafios rela-

cionados a fusao de dados de multiplos sensores no SR.

2.2 Redes Neurais Convolucionais

O ML é um subconjunto da IA que envolve o treinamento de méquinas em grandes
conjuntos de dados para aprender padroes e fazer previsoes. O AP, que envolve o treina-
mento de redes neurais com camadas, ¢ uma subclasse poderosa do ML que demonstrou
notavel sucesso em varias aplicagoes, como reconhecimento de imagens e fala.

As Redes Neurais Convolucionais (CNN) sdo um tipo popular de modelo de ML utili-
zado para reconhecimento de imagens, reconhecimento de fala e Natural Language Proces-
sing (NLP). As Redes Neurais Convolucionais (CNNs) foram bem-sucedidas em tarefas de
reconhecimento de imagens, alcancando resultados de ponta em varios benchmarks. Seu
sucesso se deve a capacidade de capturar caracteristicas e padroes espaciais em imagens,
utilizando uma arquitetura hierarquica de camadas que realizam operagoes de convolu-
¢ao e extraem caracteristicas em diferentes niveis de abstracao (XIONG et al., 2021). A
Figura 1 ilustra o fluxo.

A relagao hierarquica entre os principais campos da inteligéncia computacional. A
IA constitui o dominio mais amplo, englobando métodos e sistemas capazes de simular
aspectos do raciocinio humano. Dentro dela, o ML representa um subconjunto voltado
ao desenvolvimento de algoritmos que aprendem a partir de dados. O AP, por sua vez,
é uma vertente do aprendizado de maquina que utiliza redes neurais profundas para
modelar representagoes complexas. As CNN integram essa categoria, destacando-se como
uma das arquiteturas mais utilizadas em tarefas de reconhecimento de padroes e andlise

de imagens.
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Figura 1 — Relagao hierarquica entre IA, Aprendizado de Maquina, Aprendizado Pro-
fundo e CNN. Fonte: Elaborado pela autora.

A U-Net é uma arquitetura de CNN projetada especificamente para tarefas de seg-
mentagao de imagens biomédicas, mas que também tem sido aplicada em outras areas de
segmentacao de imagem. Caracteriza-se por sua forma em “U”, composta por duas partes
principais: um caminho de contragao (encoder) e um caminho de expansao (decoder). O
caminho de contragao segue a arquitetura tipica de uma rede convolucional, na qual as
imagens sao progressivamente reduzidas em tamanho através de camadas convolucionais
e de pooling, capturando caracteristicas contextuais. O caminho de expansao consiste
em camadas de upsampling e convolugoes que aumentam a resolucao das caracteristicas
extraidas, permitindo a recuperagao precisa da localizacao espacial. Além disso, a U-Net
usa conexoes de atalho (skip connections) que transferem mapas de caracteristicas de alta
resolucao do encoder para o decoder, preservando informagoes detalhadas essenciais para
uma segmentacao precisa. Esta combinagdo de caracteristicas permite que a U-Net ob-
tenha resultados de segmentacao com assertividade notavel, mesmo com uma quantidade
limitada de dados de treinamento Ronneberger, Fischer e Brox (2015).

No estudo de Pereira (2021), foi utilizada uma U-Net, essa arquitetura foi aplicada nas
imagens do Landsat-8, alcancando um desempenho destacado, com métricas de F-Score
acima de 90%. Quando aplicados em imagens do Sentinel-2, esses modelos mantiveram
uma performance robusta, com F-Score ultrapassando os 80%.

O uso de CNNs ja é bem estabelecido para tarefas de visdao computacional devido
a sua capacidade de extrair automaticamente caracteristicas hierarquicas complexas de
imagens. No contexto da detec¢do de incéndios, as arquiteturas VGG-16, InceptionV3 e
Xception foram adaptadas, demonstrando a versatilidade e eficacia das CNNs em reco-
nhecer padroes de fogo e fumaga em imagens (SATHISHKUMAR et al., 2023). A escolha

dessas arquiteturas especificas se deve as suas caracteristicas tinicas, como a profundidade
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das redes e a eficiéncia no tratamento de parametros, que sdo cruciais para o desempenho

na classificacao de imagens complexas relacionadas a incéndios.

2.3 Aumento de Dados

O aumento de dados pode ser utilizado para melhorar o desempenho de modelos de
AP, especialmente em cenérios na qual ha uma quantidade limitada de dados rotulados
disponiveis para treinamento. Essa técnica consiste na aplicacao de transformacoes nos
dados de entrada, como rotacoes, espelhamentos, distor¢oes e ajustes de cor, com o ob-
jetivo de expandir o conjunto de dados de treinamento, aumentando sua variabilidade e,
consequentemente, a capacidade do modelo de generalizar para novos dados.

Entre as bibliotecas disponiveis, a Albumentations destaca-se por sua eficiéncia e fle-
xibilidade na aplicagdo de transformagoes aleatérias em imagens, permitindo ampliar a
diversidade dos dados de entrada sem comprometer sua coeréncia seméantica. Essa bi-
blioteca oferece um conjunto abrangente de operacoes, como rotacoes, espelhamentos,
translagoes, variagoes de brilho e contraste, distor¢oes geométricas e ajustes de cor, que
podem ser combinadas dinamicamente durante o treinamento. Dessa forma, o uso da
Albumentations contribui para reduzir o sobreajuste e melhorar a capacidade de generali-
zagao dos modelos, promovendo um desempenho mais robusto em tarefas de segmentacao

e classificagdo de imagens Buslaev et al. (2020).

2.4 Sentinel-2

Os satélites Sentinel-2 sao instrumentos importantes para a observagao da Terra, usa-
dos especialmente para monitoramento ambiental, incluindo a deteccao de incéndios. Eles
capturam imagens multiespectrais, que sao imagens tiradas em varias faixas do espectro
de luz, permitindo a andlise de diferentes caracteristicas da superficie terrestre.

O Copernicus Sentinel-2A e Sentinel-2B sao satélites de alta resolugao espacial proje-
tados para fornecer dados 6pticos multiespectrais. Eles foram langados em uma érbita a
786 km de altitude, garantindo um tempo de revisita de 5 dias ao operar em conjunto.
Esses satélites sao equipados com um tnico instrumento de imageamento denominado
Multi-Spectral Instrument (MSI), que cobre uma faixa de 295 km.

O MSI utiliza um Telescopio Anastigmatico de Trés Espelhos (TMA), tecnologia que
permite capturar imagens em 13 diferentes bandas espectrais, desde o Visivel e Infraver-
melho Préximo (VNIR) até o infravermelho de Ondas Curtas Infravermelho de Ondas
Curtas (SWIR). Essas bandas funcionam como filtros de cor, ajudando a analisar varios
aspectos da superficie terrestre e da atmosfera, com resolucoes espaciais variando de 10

a 60 metros. Os nanémetros(nm) sao usados para medir os comprimentos de onda da
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2.5 Trabalhos Correlatos

Tecnologias de sensoriamento remoto e inteligéncia artificial possuem potencial para
apoiar o planejamento de conservacao, abrangendo a identificacao de habitats criticos, a
avaliacao de riscos ecossistémicos e a andlise de paisagens para monitoramento em larga
escala Christin, Hervet e Lecomte (2019). Em 2012, ocorreu uma revolugao na classi-
ficacdo de imagens com a introdugdo da AlexNet, uma arquitetura de rede neural con-
volucional que representou um marco no uso de aprendizado profundo (KRIZHEVSKY;
SUTSKEVER; HINTON, 2017). Desde entao, o aprendizado profundo tem sido aplicado
no sensoriamento remoto para aprimorar a classificacdo automatica de caracteristicas em
imagens de satélite. Redes convolucionais profundas supervisionadas aprendem a identifi-
car objetos em imagens utilizando dados brutos, com minima necessidade de conhecimento
prévio sobre as caracteristicas em analise. Na segmentacao semantica, por exemplo, o mo-
delo requer apenas uma mascara com rotulos para reconhecimento e treinamento eficazes
(WAGNER et al., 2019).

Pesquisas recentes tém explorado diferentes abordagens para aprimorar a eficicia das
CNNs no dominio de SR. Estudos tém demonstrado que a integracao de dados multies-
pectrais e hiperespectrais com CNNs pode melhorar de maneira consideravel a deteccao
de incéndios em diversas condi¢oes ambientais. Além disso, técnicas como transferéncia
de aprendizado e aumento de dados tém sido utilizadas para superar desafios relacionados
a escassez de dados rotulados, comuns nesse tipo de aplicacao.

A pesquisa no campo da deteccao de incéndios ativos concentra-se em fornecer méto-
dos apropriados para determinar se um determinado pixel em uma imagem multiespectral
corresponde a um incéndio ativo. Devido as diferentes altitudes orbitais dos satélites e
aos diversos sensores equipados com diferentes comprimentos de onda, esses métodos
geralmente precisam ser projetados especificamente para cada sistema. As imagens do
satélite Landsat-8 foram processadas por meio de condigdes propostas por Schroeder et
al. (2014), Murphy et al. (2016) e Kumar e Roy (2018), ajustadas especialmente para
o sensor Operational Land Imager (OLI) sobre métodos automaticos para deteccao de
regides com incéndios ativos datam da década de 1970, quando foram analisados os in-
tervalos espectrais mais adequados para detectar incéndios florestais (CHEN; MORTON;
RANDERSON;, 2024). Matson e Holben (1987) argumentaram que o sensoriamento re-
moto era a unica alternativa viavel para monitorar incéndios ativos em regioes isoladas,
utilizando o sensor Advanced Very High Resolution Radiometer (AVHRR) para detectar
atividade de fogo na Amazonia.

A classificagdo de imagens de SR continua sendo uma tarefa complexa e multifacetada,
enfrentando desafios devido ao grande volume de dados, a diversidade das caracteristicas
da paisagem e a presenca frequente de conjuntos de treinamento limitados e desbalance-
ados (BAN et al., 2020). Além disso, a eficicia da classificagdo e o custo computacional

associado sao afetados por uma variedade de fatores, incluindo a escolha dos algoritmos
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de classificagdo, o tipo de sensores de SR utilizados, técnicas de pré-processamento e
pos-processamento, a natureza das classes alvo e o nivel de desempenho desejado para o
produto final, e a selecdo e qualidade das amostras de treinamento.

(de Almeida Pereira et al., 2021) introduziram um novo dataset publico contendo
mais de 150.000 patches de imagem, extraidos de imagens multiespectrais do Landsat-8
capturadas em agosto de 2020, com incéndios ativos em diversas localidades ao redor do
mundo. Este dataset foi dividido em duas partes: a primeira com saidas geradas por trés
algoritmos manuais conhecidos para deteccao de incéndios, e a segunda contendo méascaras
de fogo anotadas manualmente. O estudo demonstrou que redes neurais convolucionais
podem ser usadas para aproximar esses algoritmos manuais, alcancando uma precisao de
87,2% e um recall de 92,4% em comparacao com as anotacoes manuais, superando os
algoritmos manuais em termos de robustez na deteccao de incéndios ativos.

Os métodos utilizados no estudo incluem o treinamento de CNNs com diferentes ar-
quiteturas derivadas da U-Net para segmentacao de imagens, explorando a combinacao de
multiplos outputs de deteccao para melhorar os resultados. Os modelos foram treinados
para replicar os algoritmos manuais de (SCHROEDER et al., 2014), (MURPHY et al.,
2016) e (KUMAR,; ROY, 2018), que utilizam condigoes especificas baseadas em bandas
espectrais para detectar incéndios. As CNNs foram capazes de capturar as complexida-
des dessas o a votagao entre modelos, que mostrou um equilibrio superior entre precisao
e recall.

(PEREIRA et al., 2023) utilizou a arquitetura de redes neurais convolucionais U-
Net para segmentacao e mapeamento de ecossistemas de canga. Nesse caso, a U-Net foi
adaptada para a segmentacao de superficies naturais utilizando imagens do Sentinel-2,
ajustando a arquitetura para lidar com a menor resolugao espacial dessas imagens. A
abordagem combinou mascaras vetoriais derivadas de imagens com baixa cobertura de
nuvens e dados de campo, assegurando maior representatividade das classes segmentadas.

A metodologia empregou 2.061 tiles, sendo 927 representando o objeto de interesse
(e.g., vegetacdo) e 1.134 contendo apenas fundo. Tiles consistem em subdivisdes ou
recortes de uma cena de sensoriamento remoto em blocos menores, permitindo que o
treinamento de redes neurais seja realizado de forma mais eficiente, com menor demanda
de memoria e maior controle sobre a variabilidade espacial presente no conjunto de dados.

Para mitigar o overfitting e aumentar a robustez do modelo, foram aplicadas técni-
cas de aumento de dados, como rotagoes, ajustes de brilho, saturacao e matiz, além da
conversao para o espago de cor Hue, Saturation, Brightness (HSB). Esse modelo de cor
armazena informagoes em trés componentes: matiz (responsavel pela variagdo de cor),
saturagao (intensidade ou pureza da cor) e brilho (luminosidade do pixel). A possibili-
dade de manipular cada componente separadamente permite gerar variacoes controladas
e realistas nas imagens, ampliando a diversidade do conjunto de treinamento e tornando

o modelo mais capaz de generalizar para diferentes condi¢oes de iluminacao e coloracao.
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Em uma area de 30.000 ha no Vale do Rio Peixe Bravo, o algoritmo de aprendizado pro-
fundo identificou e segmentou 762 manchas de canga com uma precisao geral de 98,5%,
evidenciando o potencial preditivo das técnicas adotadas.

Enquanto (BOUGUETTAYA et al., 2022) concentram-se em dados coletados por
Veiculo Aéreo Nao Tripulado (VANTS), que tém maior flexibilidade e podem voar em
altitudes variadas,o trabalho aqui proposto considera imagens multiespectrais provenien-
tes de satélites para deteccao em larga escala. Os satélites, apesar de nao oferecerem a
flexibilidade de operagao dos VANTS, sdo essenciais para o monitoramento continuo e de
grandes areas.

(BOUGUETTAYA et al., 2022) ressaltam a importancia de algoritmos avangados de
CNN, mas enfrentam desafios relacionados a escassez de dados de treinamento de alta
qualidade para otimizar esses modelos em deteccao de incéndios. Em contraste, a presente
pesquisa busca abordar diretamente essa lacuna por meio da aplicacao de técnicas de
aumento de dados, que visam ampliar artificialmente o conjunto de dados disponivel
para o treinamento de modelos de aprendizado profundo. Esta técnica é particularmente
relevante no contexto de imagens de satélite, onde as variagoes climaticas e de cobertura
do terreno podem limitar a quantidade de dados rotulados adequados. O aumento de
dados tem o potencial de melhorar a generalizacdo dos modelos e, assim, aumentar a
acuracia e reduzir os falsos positivos, um desafio critico na deteccao de incéndios, como
confirmado através do trabalho de (SANTOS et al., 2023).

Os (ROSTAMI et al., 2022), no campo da detecgao de incéndios utilizando aprendizado
profundo aplicou a técnica de aumento de dados denominada como inversao, especifica-
mente a técnica de inversao horizontal, vertical e horizontal-vertical. Como resultado, as
amostras de treinamento quadruplicaram para 400 patches de imagem.

O RCAug se diferencia de métodos tradicionais ao aplicar transformagoes de maneira
aleatoria e dindmica durante o treinamento, gerando um ntimero virtualmente ilimitado de
novas imagens com alta variabilidade. Isso proporciona ao modelo a capacidade de lidar
melhor com varia¢oes complexas de iluminacao, escala e angulo. Em estudos anteriores,
essa técnica demonstrou melhorias significativas em métricas como o IoU e a F1l-score,
como evidenciado em Santos et al. (2023), que reportaram um aumento de 0,51 para 0,81
na métrica de IoU em imagens histologicas de tumores.

Por outro lado, técnicas tradicionais de aumento de dados, como o uso de flips hori-
zontais e verticais, tém sido amplamente empregadas em diversos trabalhos. No estudo
de (ROSTAMI et al., 2022), por exemplo, essas técnicas foram aplicadas ao treinamento
do modelo MultiScale-Net para deteccao de incéndios em imagens do Landsat-8. O au-
mento de dados foi utilizado principalmente para melhorar a capacidade do modelo de
lidar com diferentes orientacoes das imagens, quadruplicando o conjunto de treinamento
original. Embora eficaz em cenarios com grande quantidade de dados e em problemas

relativamente simples de detecgao, essa abordagem apresenta limitagoes na capacidade
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de generalizar para variagoes mais complexas, como mudangas dindmicas de iluminacao,
forma ou escala dos incéndios.

A comparagio entre essas abordagens revela que o RCAug oferece uma vantagem em
termos de variabilidade e capacidade de generalizacdao. Ao contrario das técnicas tradici-
onais, que introduzem uma variabilidade limitada nas imagens de treinamento, o RCAug
pode expandir a diversidade do conjunto de dados. A aplicacao continua de multiplas
transformacoes durante o treinamento permite que o modelo lide com a complexidade
inerente de cenarios naturais, como incéndios de diferentes tamanhos, formas e condic¢oes
atmosféricas.

Considerando os conhecimentos disponiveis (ANAYA; TRIPATHY; REINHARDT,
2023), o autor também afirma, com base nos seus estudos, que a escolha de um método
especifico de TA pode nao ser tao crucial quanto a qualidade e o balanceamento dos dados
utilizados no treinamento, isso porque a importancia da proporc¢ao entre pixels de fogo
e nao fogo no dataset de treinamento, pode ser um fator determinante na eficiéncia das
detecgoes.

(HE; GARCIA, 2009) afirma que é “é importante considerar como é feita a amostra-
gem dos dados de treinamento, especialmente se houver necessidade de mapear classes
raras” — como ¢ o caso dos incéndios — assim como forma de analisar o comportamento
de amostras balanceadas ou desbalanceados para o treinamento. (ANAYA; TRIPATHY;
REINHARDT, 2023) empregou duas abordagens distintas para o balanceamento de da-
dos em sua andalise. Primeiramente, adotou um formato balanceado, no qual a selegao de
pixels foi realizada de maneira aleatoria para assegurar uma proporcao equitativa de 1:1
entre pixels de nao fogo e fogo. Adicionalmente, explorou um formato desbalanceado, onde
a proporcao foi estabelecida em 1:100, significando que para cada pixel indicativo de in-
céndio, cem pixels representativos de auséncia de fogo foram selecionados aleatoriamente,
destacando uma metodologia intencionalmente inclinada para investigar os impactos de
disparidades acentuadas na distribuicao dos dados.

A importancia de adotar uma abordagem diversificada na formagao de amostras re-
side na natureza variavel dos incéndios e na complexidade dos ambientes em que ocorrem.
Incéndios podem variar em termos de intensidade, area afetada, e contexto ecoldgico,
tornando a tarefa de deteccao um desafio multidimensional. Além disso, condigoes at-
mosféricas, variagoes sazonais e a presenca de elementos que possam ser erroneamente
interpretados como fogo (como reflexos solares ou iluminagao artificial) introduzem com-
plexidade adicional na analise. Portanto, testar novas composi¢oes de amostras é vital
para desenvolver modelos que sejam capazes de discernir entre verdadeiros incéndios e fal-
sos positivos com maior acuracia, ajustando-se efetivamente a diversidade de dados encon-
trada em cendrios reais de sensoriamento remoto (ANAYA; TRIPATHY; REINHARDT,
2023).

Ja (SATHISHKUMAR et al., 2023) investigaram a detecgdo de incéndios florestais
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e fumaga em imagens com o uso de modelos de aprendizagem profunda pré-treinados,
dentre eles VGG-16, InceptionV3 e Xception. Para contornar o problema de esquecimento
catastrofico, os autores empregaram a técnica Learning without Forgetting (LwF), de
modo a manter o desempenho da rede em tarefas previamente aprendidas ao mesmo
tempo em que inserem novos conjuntos de dados. O estudo obteve resultados promissores,
destacando-se a arquitetura Xception, que alcancou 98,72% de acuracia na classificacao
do conjunto de dados original e manteve bons resultados para um novo conjunto de
imagens quando retreinada com LwF. Esse trabalho evidencia o potencial do uso de
transfer learning associado a estratégias que evitam o esquecimento de tarefas anteriores,
mostrando-se relevante para aplicacoes de monitoramento e deteccao de incéndios em
cenarios com dados limitados e em constante atualizagao.

O estudo conduzido por (LEE et al., 2024) propds uma abordagem automatizada para
deteccao de areas queimadas utilizando imagens do satélite Sentinel-2 na Republica da
Coreia. Com foco em 14 casos de incéndios florestais ocorridos entre 2019 e 2023, o tra-
balho explorou diferentes tipos de cobertura do solo e comparou métodos de aprendizado
profundo, aprendizado de maquina de indices espectrais. O objetivo principal foi identi-
ficar combinacoes otimizadas de modelos e dados de entrada para melhorar a precisao na
deteccao de areas queimadas.

A metodologia consistiu em seis etapas principais. Primeiro, as imagens do Sentinel-2
foram pré-processadas, incluindo correcdo atmosférica por meio do SenZ2cor, resamplea-
mento de bandas SWIR para alinhamento de resolugao espacial e equalizacao de histo-
grama para melhorar o contraste das imagens. Em seguida, dados de referéncia foram
gerados com base em inspegoes manuais de imagens do Google Earth, rotulando areas
queimadas para uso no treinamento e validacao dos modelos.

Os métodos de aprendizado de maquina e profundo incluiram os modelos U-Net e
HRNet para DL e o framework AutoML. O U-Net utilizou uma arquitetura encoder-
decoder com conexoes skip, enquanto o HRNet combinou multiplas escalas de resolucao
em sua estrutura, utilizando a arquitetura HRNetV2-W48 com mecanismo OCR para
otimizar a segmentacao. No aprendizado de maquina, o AutoML automatizou processos
como pré-processamento, selecao de algoritmos e ajuste de hiperparametros, testando
modelos como Random Forest e Gradient Boosting.

A otimizacao de hiperparametros foi uma etapa essencial no estudo. Nos modelos de
DL, foram realizados testes iterativos para ajustar tamanho do lote, taxa de aprendizado
e tamanho dos recortes das imagens. Valores 6timos incluiram tamanhos de lote de 8 para
U-Net e 4 para HRNet, taxas de aprendizado de 5 x 107% ¢ 5 x 1073, respectivamente, e
recortes de 256 x 256 pixels. Para o AutoML, a busca em grade identificou configuragoes
ideais para cada algoritmo testado.

Os indices espectrais NDVI e NBR também foram analisados utilizando o método de

threshold automético (Otsu) para distinguir areas queimadas de ndo queimadas. Essa



2.5. Trabalhos Correlatos 43

abordagem foi comparada ao desempenho dos modelos de DL e ML, considerando as
combinagoes de bandas RGB e falsa cor (B4, B8, B3) como entradas.

Os resultados indicaram que o HRNet apresentou a maior precisao geral, com loU
de 89,40% em uma das areas de teste, enquanto o U-Net demonstrou maior robustez
em cenarios com dados desbalanceados, apesar de apresentar falsos positivos em areas
agricolas. O AutoML teve desempenho inferior ao DL, mas destacou-se pela automacao
do processo. A inclusdo de indices espectrais melhorou ligeiramente os resultados em
cenarios especificos. Imagens em falsa cor foram identificadas como a melhor combinagao
de entrada, destacando sua eficacia na deteccao de areas queimadas.

Este estudo contribui significativamente ao explorar técnicas avancadas de aprendi-
zado de maquina e profundo combinadas com andlise espectral, aplicadas a deteccao de
incéndios florestais em ambientes complexos. A otimizacao detalhada dos hiperpardme-
tros garantiu que os modelos fossem ajustados as caracteristicas especificas das imagens
Sentinel-2 e dos terrenos analisados. Os resultados reforcam o potencial de sistemas au-
tomaticos para suporte em estratégias de mitigacao e resposta a desastres ambientais.

Uma revisao sistemética conduzida por (MACHADO et al., 2023) analisou 37 estu-
dos publicados entre 2018 e 2023, revelando resultados promissores na aplicagao dessas
técnicas. Os autores identificaram que a maioria das implementagoes alcancou taxas de
precisao superiores a 90%, demonstrando a viabilidade e eficiéncia desses métodos para o
monitoramento florestal.

A relevancia desses sistemas automatizados torna-se ainda mais evidente quando con-
sideramos que, entre 2002 e 2016, aproximadamente 420 milhoes de hectares de floresta
foram consumidos por incéndios anualmente em escala global. Este cenario tende a se
agravar com as mudangas climaticas, que potencialmente aumentarao a frequéncia e in-
tensidade dos incéndios florestais.

Os estudos analisados foram categorizados em cinco principais abordagens: classifi-
cagdo pura, deteccao, deteccao combinada com classificagdo, segmentagio e segmentacao
com classificacio. Entretanto, apesar dos resultados promissores, persistem desafios sig-
nificativos na implementacao desses sistemas, principalmente relacionados a escassez de
dados de treinamento e ao desbalanceamento dos conjuntos de dados disponiveis.

Para superar essas limitagoes, a literatura sugere algumas dire¢des promissoras para
pesquisas futuras: a otimizacdo de hiperparametros através de técnicas bio-inspiradas, a
integragdo de multiplas fontes de dados (incluindo imagens de satélite, VANTS e drones),
a hibridizagdo de diferentes modelos de DL, e a implementacao de técnicas avancadas de
aumento de dados, como Neural Style Transfer e Redes Adversariais Generativas (GANs).
Além disso, a exploragao de diferentes estratégias de particionamento de dados pode
contribuir para melhorar o desempenho dos modelos.

A integracdo de multiplas fontes de dados merece destaque particular, pois permite

uma abordagem mais abrangente e robusta. Por exemplo, enquanto as imagens de satélite
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podem fornecer uma visao ampla para identificacao inicial de incéndios, os VANTSs e drones
podem complementar com dados detalhados em tempo real das areas afetadas, facilitando
analises mais precisas de danos e permitindo acesso a regides de dificil alcance, com custos
operacionais reduzidos em comparacao com métodos convencionais. A tabela abaixo tras

um resumo dos trabalhos explanados e comparativo com o atual trabalho:

Tabela 1 — Revisao de Estudos sobre Deteccao de Incéndios com Deep Learning

Autor Objetivo Metodologia Presente trabalho
CNN com camadas
convolucionais e
pooling para extragao
de caracteristicas.

Introducdo da AlexNet
Krizhevsky et al. (2017)  para classificacdo de
imagens.

Utilizo redes U-Net, VGG-16 e
Xception para detecgao de
incéndios.

Detecgdo de incéndios
Schroeder et al. (2016), em imagens do satélite
Murphy et al. (2016), Landsat-8, usando
Kumar et al. (2018) regras baseadas em

bandas espectrais.

Métodos heuristicos ~ No presente trabalho ha a aplicacio
aplicados as imagens de CNN para aprender padroes
Landsat-8, com ajuste automaticamente, sem necessidade
para o sensor OLL de regras manuais.

U-Net treinada para
Segmentacao de segmentacdo de Aplicacdo especifica para incéndios,
Pereira et al. (2023) ecossistemas de canga  superficies naturais,  utilizando dados multiespectrais e
com U-Net e Sentinel-2. com ajuste para baixa otimizacdo de hiperparametros.
resolucdo espacial.
Utilizo imagens do satélite

~ s . . Sentinel-2, que ainda sdo menos
Detecgdo de incéndios  Uso de imagens aéreas -4

Abdelmalek et al. (2022) com VANTS (drones)e de drones, otimizadas ©XPloradas em compar agdo ao
CNNs. para baixa altitude. Landsat, para deteccao de
incéndios em larga escala.

Técnicas de aumento

Aplicacdo de Data de dados. como Implemento aumento de dados, mas
Augmentation (aumento ‘mverséo’ com ajuste otimizado para
Santos et al. (2023) de dados) para melhorar horizontal/vertical e imagens de satélite
a generalizacdo de . multiespectrais, e foco na reducao
RCAug, aplicadas a
CNNs. ’ de falsos positivos.

incéndios.
Uso de técnicas de Data

. CNNs treinadas com
Augmentation para

aumento de dados para O presente trabalho inclui

Rostami et al. (2022) melhorar a detecgao de i otimizacao de hiperparametros,
AP . aumentar o nimero de . > .
incéndios em imagens além de imagens Sentinel-2.
amostras de fogo.
Landsat-8.

Comparagdo de
arquiteturas CNINs
(VGG-16, InceptionV3
e Xception) para
detecgdo de incéndios e
fumaga.

No trabalho em questdo, a Técnica
Aplicacdode LwF.  de LwF, devido alto custo envolvido
no processo de detecgdo.

Sathishkumar et al. (2023)

Fonte: Elaborado pela autora.
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CAPITULO

Metodologia

Neste trabalho, foi aplicada a Segmentacao Seméantica para detecgao de focos de incén-
dios florestais em imagens multiespectrais do satélite Sentinel-2, utilizando composigoes
em falsa cor (False Color) para realgar contrastes relevantes a tarefa. A segmentagao
foi formulada como um problema binario, com os pizels classificados como “incéndio” ou
“nao-incéndio”.

O fluxo metodologico desenvolvido compreendeu dois ciclos experimentais distintos,
conforme ilustrado no fluxograma a seguir. No primeiro ciclo, de carater exploratorio,
avaliou-se o desempenho da arquitetura U-Net com dois encoders diferentes: VGG-16 e
EfficientNetB3. Nesse estagio inicial, ndo foram aplicadas técnicas de balanceamento de
classes ou aumentacao de dados (data augmentation), e os modelos foram treinados com as
fungoes de perda Entropia Cruzada Binaria (BCE) e Dice Loss. Essa etapa foi essencial
para identificar as limitagoes enfrentadas na detecgao da classe minoritéria (incéndio),
refletidas principalmente nos baixos valores de IoU e F1-Score.

Com base nas deficiéncias observadas, o segundo ciclo experimental incorporou um
pipeline otimizado. A arquitetura Xception foi substituida pela EfficientNetB3 como
encoder da U-Net, e foram integradas miltiplas melhorias metodologicas: aplicacao de
undersampling para reduzir amostras sem ocorréncia de incéndio, aumentacao de dados
com a biblioteca Albumentations (incluindo flip, rotagao, brilho e contraste), além do
uso de uma funcao de perda composta (Dice Loss + Binary Focal Loss). O treinamento
também passou a ser conduzido em duas fases — inicialmente com o encoder congelado,
seguido de fine-tuning com taxa de aprendizado reduzida —, promovendo um aprendizado
mais estavel e eficiente. Para facilitar a reprodutibilidade e a comparacao entre os ciclos,
recomenda-se que a tabela comparativa entre Ciclo 1 e Ciclo 2 (com backbones, perdas,
balanceamento, aumentagao de dados e estratégia de threshold) seja apresentada nesta
segdo de Metodologia (no tépico de desenho experimental), e ndo apenas no Capitulo de
Resultados.

A avaliagao foi conduzida com foco nas métricas mais sensiveis ao desbalanceamento,

como ToU, F1-Score, precisao e revocagao (recall), todas aplicadas exclusivamente a classe
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“incéndio”. Adicionalmente, realizou-se uma analise qualitativa das predi¢oes por meio
da inspecao visual das mascaras geradas, permitindo avaliar ndo apenas a exatidao, mas
também a coeréncia morfoldgica das regides segmentadas.

O threshold de decisao empregado nas avaliacoes foi definido por varredura de th-
resholds maximizando o F'1-Score na validacao, fixando-se em 0,45 para BCE e 0,40 para
Dice Loss; os mesmos valores foram utilizados para computar as matrizes de confusao e
as métricas resumidas nas tabelas apresentadas no Capitulo de Resultados.

Resgatando o objetivo central deste trabalho — aplicar e avaliar modelos de segmen-
tacdo semantica para a deteccao de incéndios florestais em imagens multiespectrais do
satélite Sentinel-2 — foram conduzidos dois ciclos experimentais principais.

O primeiro ciclo experimental teve carater exploratorio e avaliou o desempenho da
U-Net com encoders VGG16 e Xception, utilizando, primeiramente, a funcdo de perda
BCE e, posteriormente, a Dice Loss. Esse ciclo permitiu evidenciar as dificuldades enfren-
tadas na segmentacao da classe “incéndio” nas imagens, com métricas de IoU e F1-Score
bastante reduzidas. Mesmo com a aplicacao da Dice Loss, os ganhos foram modestos,
revelando a necessidade de ajustes metodolégicos diante do desbalanceamento observado.

O segundo ciclo experimental foi concebido a partir das limitagoes observadas no Ciclo
1, mantendo a mesma arquitetura de referéncia (U-Net com codificadores pré-treinados
VGG16 e EfficientNetB3), porém incorporando melhorias metodologicas orientadas ao
cenario de forte desbalanceamento entre as classes “fogo” e “nao-fogo”. Assim, o objetivo
do Ciclo 2 nao ¢ substituir a linha de base, mas refind-la, permitindo uma compara-
¢ao controlada entre um treinamento convencional e uma configuracao mais adequada a
segmentagao de eventos raros em imagens Sentinel-2.

Em termos de manipulac¢ao de dados, o Ciclo 2 mantém os mesmos arquivos de di-
visao utilizados no Ciclo 1, garantindo comparabilidade completa entre os experimentos.
A principal diferenga consiste na ativacao explicita de um esquema de undersampling
sobre o conjunto de treino, no qual a classe majoritaria (auséncia de fogo) é reduzida
para se igualar, em nimero de amostras, a classe minoritdria (presenga de fogo). Esse
balanceamento visa atenuar o viés do modelo em favor da classe negativa e aumentar sua
sensibilidade a detecgao de areas queimadas.

Outro aprimoramento diz respeito a estratégia de data augmentation. Enquanto o Ci-
clo 1 utilizou apenas redimensionamento ou transformacoes simples, o Ciclo 2 adota um
pacote mais robusto, combinando operagdes geométricas (reflexoes, translagoes e rotagoes
leves) e fotométricas (variacao de brilho, contraste, matiz e desfoque). Essas transforma-
¢oes visam simular variagoes de iluminagao, condi¢bes atmosféricas e heterogeneidade
espectral da vegetacao, ampliando a capacidade de generalizacao dos modelos.

Além das melhorias de pré-processamento, o Ciclo 2 amplia o conjunto de fungoes
de perda avaliadas. Além da BCE e da Dice Loss, sdo introduzidas a Focal Loss e a

perda composta Dice+Focal, mais adequadas ao tratamento de classes raras e cenarios
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desbalanceados. O sweep do limiar de decisao também foi refinado, passando a considerar
um conjunto mais denso de valores no intervalo [0,10, 0,90], permitindo avaliar com maior
granularidade o compromisso entre precision, recall e IoU. Além disso, o Ciclo 2 investigou
sistematicamente o efeito de quatro fungoes de perda: BCE, Dice, Focal e a combinacao
Dice Focal. Em conjunto, esse arranjo experimental permitiu analisar o impacto isolado
e combinado das estratégias de balanceamento e das funcoes de perda.

Entre todas as combinacoes testadas, o modelo VGG-16 com Focal Loss obteve o
melhor desempenho global no Ciclo 2, alcangando valores de FI-score superiores a 0,96
tanto em validacao quanto em teste. KEsse comportamento superou significativamente
o observado no Ciclo 1, em que a auséncia de mecanismos explicitos de balanceamento
resultava em oscila¢oes acentuadas de precision e dificuldade de segmentar regioes menores
ou esparsas.

Ambos os experimentos foram gerados com base no conjunto integral de imagens do
FireDataset_ 20m — contendo 5.167 imagens para treinamento, 1.226 para validagao e
1.858 para teste. Além disso, foram realizados em ambiente computacional com proces-
sador AMD Ryzen 5 2500U, 24 GB de meméria DDR4 ¢ GPU AMD Radeon 535 com
2 GB de VRAM, sob sistema operacional Windows 10. O desenvolvimento foi condu-
zido em Python 3.9, com suporte das bibliotecas TensorFlow, NumPy, Matplotlib, Pillow,
scikit-image e tgdm.

O treinamento foi executado com o otimizador Adam, utilizando taxa de aprendizado
inicial de 1 x 107 e batches de quatro amostras. A fase de fine-tuning adotou uma taxa
reduzida (1 x 107°) para permitir ajustes graduais nos pesos do encoder. Mecanismos
de FEarly Stopping e Model Checkpoint foram empregados para prevenir sobreajuste e

armazenar os melhores pesos com base na métrica de IoU na validacgao.
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Dataset Sentinel-2
(5167 treino / 1226 validagao / 1858 teste)

Pré-processamento (comum)
false color  resize 256256
normalizagéo por backbone

Ciclo 1 - Exploratério Ciclo 2 - Com otimizagées

|
1 ;

Sem balanceamento Undersampling
(reduz amostras sem fogo)

Sem aumentagéo de dados Aumentagao (Albumentations)

flip « rotagao + brilho/contraste

Modelos Modelos
U-Net + VGG16 U-Net + VGG16
U-Net + Xception U-Net + EfficientNetB3
Perdas pordas
BCE - Dice BCE « Dice + Focal * Dice+Focal

Treinamento padréo Treino em 2 fases
Adam (LR=1e-4) * batch=4 1) encoder congelado
2) fine-tuning (LR=1e-5)

Selegao de limiar Selegéo de limiar
varredura de thresholds na validagéo varredura de thresholds na validacdo
(resolugio ampla) (resolugao refinada), maximizando F1;
limiar aplicado ao teste
Avaliagao Avaliagdo
loU « F1 « Precisio « recall loU - F1 - Procicde - recall
(classe incéndio) matrizes de confusao

N .

Comparagéo entre ciclos
diagnostico + impacto das melhorias

Discussdes e conclusoes
eficacia do pipeline ofimizado

Figura 5 — Fluxograma da metodologia proposta para a segmentac¢ao de incéndios flores-

tais.
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3.1 Aquisicao de Dados

O primeiro passo deste estudo envolveu a aquisicdo das imagens necessarias para o
treinamento e avaliacado dos modelos de segmentacao. As imagens utilizadas foram extrai-
das do FireDataset_20m, disponivel no site do projeto CIAR !. O projeto Chaine Image
Autonome et Réactive (CIAR), desenvolvido pelo IRT Saint Exupéry, foca no desenvolvi-
mento de arquiteturas de Inteligéncia Artificial voltadas ao processamento embarcado em
sistemas aeroespaciais, como satélites e drones. A iniciativa busca otimizar a autonomia
desses sistemas por meio da analise de imagens em tempo real, permitindo uma tomada
de decisao agil diretamente no hardware. Para isso, o projeto integra algoritmos de redes
neurais a dispositivos de baixo consumo energético, superando os desafios técnicos da
transmissao de dados e da laténcia em missoes criticas.

Os dados consistem em imagens de satélite com resolugao espacial de 20 metros, captu-
radas pelo satélite Sentinel-2. Para cada imagem, foram fornecidas pelo Instituto Francés
de Pesquisa Tecnolégica, mascaras de incéndio, marcando as areas de interesse que contém
incéndios. As imagens foram coletadas utilizando o formato False Color (B12, B11, B04),
uma combinacao de bandas espectrais que melhor capturam as caracteristicas relevantes
para a deteccao de incéndios. Como exemplo, a Figura 6 mostra uma das imagens de sa-
télite utilizadas no estudo, onde as areas de incéndio sao destacadas pela combinacao das
bandas B12, B11 e B04. A imagem é apresentada no formato de False Color, otimizada
para destacar as regioes afetadas por incéndios.

As respectivas mascaras de incéndio foram fornecidas para cada imagem, indicando
as areas de interesse que contém incéndios. Estas méscaras sao imagens binarias onde o
valor 1 representa as dreas queimadas (incéndio) e 0 representa as dreas nao queimadas.
As maéscaras sao fundamentais para o treinamento supervisionado, pois fornecem ground
truth que o modelo tenta aprender a prever (Figura 6):

O primeiro passo deste estudo envolveu a aquisicdo das imagens necessarias para
o treinamento e avaliacdo dos modelos de segmentacao. As imagens utilizadas foram
extraidas do site do projeto CIAR FireDataset_20m?*. Os dados consistem em imagens

de satélite com resolucao espacial de 20 metros, capturadas pelo satélite Sentinel-2.

1O conjunto de dados estd disponivel em:  <https://ciar.irt-saintexupery.com/index.php/s/

3RLvFSak6Qt7NnB?path=%2Fwildifre_ data_ 20m#teditor>
2 <https://ciar.irt-saintexupery.com/index.php/s/3RLvFSak6Qt7NnB?path=%2Fwildifre_ data__
20m#editor>
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(a) Composicao em Falsa Cor (B12, B11,

B04). (b) Méscara binaria de referéncia.

Figura 6 — Exemplo de uma imagem de satélite do Sentinel-2 no formato False Color e
sua respectiva mascara binaria, indicando as areas afetadas pelo incéndio.

Para garantir a consisténcia nas entradas dos modelos de segmentacao, as imagens
e mascaras foram redimensionadas para uma dimensao fixa de 256 x 256 pizels, o que
também ajudou a reduzir a complexidade computacional do processo. Além disso, o
conjunto de dados foi dividido em lotes de 4 imagens, com as imagens sendo agrupadas

para otimizar o treinamento.

3.2 Segmentacao

O processo de segmentacao foi realizado utilizando as seguintes arquiteturas de mo-
delos, U-Net com encoder VGG-16 e EfficientNetB3, cada uma com suas caracteristicas

especificas para lidar com as imagens de satélite.

3.2.1 U-Net (Arquitetura CNN Encoder-Decoder)

A U-Net é uma arquitetura de rede neural convolucional especializada em tarefas de
segmentacao de imagens. A principal caracteristica da U-Net é sua estrutura em forma
de “U”, composta por um caminho de contracao, que comprime as informacoes, e um
caminho de expansdo, que as reconstréi. Essa arquitetura permite uma segmentacao
precisa das regioes afetadas pelo fogo, preservando a resolucao espacial e detalhando as
areas de interesse nas imagens. A U-Net tem sido amplamente utilizada em diversas areas,
desde a segmentacao biomédica até o sensoriamento remoto.

A U-Net é particularmente adequada para a segmentacao de incéndios florestais, pois

combina alta precisdo espacial com a capacidade de identificar regides especificas nas
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imagens de satélite, que apresentam anomalias térmicas e sinais de fumaca. Suas skip
connections (conexoes de atalho) garantem que informagoes de alta resolucao sejam man-
tidas, o que é fundamental para evitar a perda de detalhes, especialmente em areas me-
nores ou com pouca visibilidade. A U-Net foi utilizada com sucesso por Ronneberger,
Fischer e Brox (2015) em varias tarefas de segmentacao de imagens, e sua aplicagao no

sensoriamento remoto para a deteccao de incéndios tem se mostrado promissora.

3.2.2 VGG16 com Transfer Learning

O modelo VGG-16 é uma arquitetura de rede neural convolucional caracterizada por
sua simplicidade e profundidade. Composto por varias camadas convolucionais seguidas
por camadas totalmente conectadas, o VGG-16 é amplamente utilizado para classificacao
de imagens, mas pode ser adaptado para tarefas de segmentacao e deteccao de padroes
especificos, como incéndios florestais, por meio da utilizacao de camadas adicionais. Sua
profundidade, combinada com a capacidade de aprender representacoes robustas, torna o
VGG1-6! (VGG1-6!) uma escolha eficaz para detectar padroes complexos em imagens
multiespectrais.

A simplicidade da arquitetura do VGG-16, aliada a sua eficicia em segmentacao de
imagens, facilita sua adaptagao para tarefas de deteccao de incéndios. A possibilidade
de incorporar camadas de segmentacao a rede permite a identificacao precisa das regides
afetadas por incéndios, ao mesmo tempo em que minimiza o risco de falsos positivos,
especialmente quando combinada com técnicas de aprendizado transferido. A arquitetura
VGG16 foi explorada por Sathishkumar et al. (2023) para a identificacdo de padroes de
fumaca e fogo em imagens multiespectrais, mostrando resultados consistentes na deteccao

de incéndios em diferentes tipos de terreno.

3.2.3 EfficientNetB3

Essa escolha foi motivada por seu design escalavel, que equilibra profundidade, largura
e resolucao de forma eficiente, alcangando alto desempenho com menor custo computaci-
onal (TAN; LE, 2020).

Na literatura recente, a EfficientNet tem se mostrado eficaz em tarefas de segmen-
tacao semantica em imagens multiespectrais de satélite. Por exemplo, Soundararajan et
al. Soundararajan et al. (2025) utilizaram a variante EfficientNet-B08 como encoder em
uma arquitetura DeepLabV3+, alcancando valores de IoU superiores a 0,91 na deteccao
de areas queimadas e desmatadas com imagens Sentinel-2.

Outros estudos exploraram variagoes da U-Net, como RAUNet e AUNet, com encoders
modernos aplicados a dados do Sentinel-2, obtendo resultados robustos em cenérios com
forte desbalanceamento de classes (SHIRVANI; ABDI; GOODMAN, 2023).
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3.2.4 Meétricas

A avaliagdo dos modelos foi conduzida com o objetivo de quantificar o desempenho das
previsoes feitas sobre o conjunto de teste, utilizando métricas fundamentais para a tarefa
de segmentacao de incéndios. As principais métricas computadas durante a avaliacao
foram Loss, IoU, Precision e Recall.

A funcao de perda utilizada foi a BCE, também conhecida como Log Loss. De acordo
com (GOODMAN; MILLER; SMYTH, 1991) uma fungao de perda utilizada para proble-
mas de classificagdo binaria e pode ser aplicada efetivamente em tarefas de segmentacao
binaria. Em problemas de segmentagdo, o objetivo ¢é classificar cada pizel de uma ima-
gem em uma das duas classes: a classe de interesse (no caso, incéndio) ou o fundo (néo
incéndio). A BCE mede a dissimilaridade entre a probabilidade predita pelo modelo para
cada pizel e a classe verdadeira (1 ou 0) correspondente a esse pizel.

O coeficiente IoU foi calculado para avaliar a qualidade da sobreposicao entre as areas
preditas e as areas reais de incéndio, representadas pelas mascaras de ground through. O
IoU foi calculado pizel a pizel, obtendo-se a razdo entre a intersecdo e a unido das areas

identificadas corretamente como incéndio:

VerdadeirosPositivos(TP) (1)
TP + FalsosNegativos(FN) + FalsosPositivos(FP)

Essa métrica é especialmente 1til para problemas de segmentagao, pois penaliza de

IoU =

forma severa os falsos positivos e falsos negativos.
A Precisao foi calculada para avaliar a taxa de acerto do modelo nas observagoes
classificadas como positivas. Ou seja, ela quantifica a proporcao de pizels classificados

corretamente como incéndio entre todos os pizels classificados como incéndio pelo modelo:

P (2
TP + FP
O Recall foi calculado para medir a capacidade do modelo de identificar corretamente
as observacoes positivas, ou seja, as areas de incéndio. Ele calcula a proporcao de pi-
zels com incéndio corretamente classificados entre todos os pizels que realmente possuem

incéndio. A equacao utilizada foi:

R= ot (3
TP + FN

Além das métricas quantitativas, foi efetuada uma andalise qualitativa dos resultados.
As previsoes das maéscaras de incéndio foram sobrepostas as imagens RGB originais,
permitindo uma inspecao visual dos focos de incéndio detectados. Isso proporcionou uma
melhor compreensao das areas afetadas e do desempenho do modelo em diferentes regices
das imagens. Para quantificar e validar os resultados de maneira mais detalhada, matrizes
de confusao pizel a pizel foram geradas, com o objetivo de avaliar a distribuicao de TP,

FP, FN e Verdadeiros Negativos (TN) em cada uma das imagens de teste.
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A implementacao completa do pipeline metodologico descrito neste capitulo, incluindo
os dois ciclos experimentais, encontra-se disponivel em um repositério piblico. O codigo
contempla as rotinas de pré-processamento, treinamento, varredura de limiar, avaliacao

quantitativa e geracao das figuras e tabelas apresentadas neste trabalho.?

3 Repositério piblico: <https://github.com/Natalia-oli/mestrado-segmentacao-incendios-sentinel2>.
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CAPITULO 4

Resultados

4.0.1 Primeiro Ciclo Experimental: Avaliacao com Binary Cros-

sentropy e Dice Loss

Observou-se que a U-Net com VGG-16 apresentou desempenho consistentemente su-
perior, enquanto a EfficientNetB3 melhorou de modo perceptivel quando treinada com
Dice Loss em comparacao a Binary Cross-Entropy, sugerindo maior sensibilidade a classe
minoritaria fogo com perdas baseadas em sobreposicao.

As curvas de treinamento e validacao reforcam essa leitura: com VGG-16, as métricas
convergem rapidamente a valores altos e estaveis; com EfficientNetB3, a Dice Loss acelera
a subida e estabilizacao do recall e da métrica IoU frente a BCE. A Tabela 2 apresenta

o comportamento das métricas na validagao:

Tabela 2 — Métricas obtidas na validacdo para a U-Net com encoders e fungoes de perda

(ciclo 1).

Funcgao de Perda Encoder IoU F1-Score precision  Recall
Binary Crossentropy VGG-16 0,9388 0,9684 0,9667 0,9701
Dice Loss VGG-16 0,9378 0,9679 0,9670  0,9689
Binary Crossentropy FEfficientNetB3 00,7112 0,8312 0,8242 0,8384
Dice Loss EfficientNetB3 0,7446 0,8536  0,8495 0,8576

Fonte: elaboracao prépria.

No teste, a lideranga do VGG-16 com BCE se mantém, com melhora marginal sobre a
validagao, indicando boa capacidade de generalizacao. Ainda sobre VGG-16, a Dice Loss
exibe precision ligeiramente superior (0,9736) as custas de recall menor, sinalizando um
limiar efetivo mais conservador. Ja no EfficientNetB3, a Dice Loss volta a ser a melhor
escolha, elevando tanto IoU quanto FI-Score -Score em relagao a BCE, o que reforga o

beneficio de perdas sensiveis a classe minoritaria para esse encoder. Veja a Tabela 3:
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Tabela 3 — Métricas obtidas no teste para a U-Net com diferentes encoders e fungoes de
perda (ciclo 1). Resultados calculados no limiar 6timo selecionado na

validacao.

Funcdo de Perda Encoder IoU F1-Score precision  Recall
Binary Crossentropy VGG-16 0,9406 0,9694 0,9683  0,9705
Dice Loss VGG-16 0,9370 0,9675 0,9736  0,9615
Binary Crossentropy EfficientNetB3 00,6702 0,8025 0,7910 0,8143
Dice Loss EfficientNetB3 0,7014 0,8245 0,8079 0,8418

Fonte: elaboragao propria.

Em relacdo a curva de perda da VGG-16 com BCE apresenta queda acentuada até
aproximadamente a 4—6% época e, depois, estabilizacao em patamar baixo, com distancia
minima entre treino e validacao. Esse comportamento sugere boa capacidade de gene-
ralizacdo no regime atual (mesmo sem fortes augmentations), além de uma otimizagao
eficiente da cabeca de segmentacdo. A proximidade entre as curvas mitiga a hipétese de
underfitting e corrobora os resultados de validacdo reportados acima.

Com a EfficientNetB3, a perda também decai de forma consistente, porém a separagao
entre as curvas de treino e validacao é mais evidente, sobretudo no inicio do treinamento.
Isso indica maior volatilidade na fase inicial e possivel dependéncia mais forte de hiperpa-
rametros (taxa de aprendizado, regularizagao) e da preparacao dos dados (normalizagao
e proporc¢ao classe minoritaria). Embora a perda final também atinja patamar baixo, a
diferenca relativa para a VGG-16 antecipa as métricas de validagao inferiores observa-
das a seguir, sugerindo que, sob BCE e nas condigoes atuais do conjunto, a arquitetura
VGG-16 estd mais alinhada com o padrao de heterogeneidade das imagens e com o grau
de desbalanceamento presente(Figura 7).

Ainda na Figura 7, a trajetéria de F1-Score/loU confirma a leitura da perda: ha ganho
expressivo nas primeiras épocas e saturagao precoce. O pareamento de precision e recall
indica que o limiar global adotado esta adequado, evitando tanto a supersegmentacao
quanto a omissao de focos. Em contextos de fogo esparso, esse equilibrio é particular-
mente relevante, pois o custo de FN pode ser alto, enquanto excesso de FP compromete
a utilidade operacional. O perfil observado sugere que, para VGG-16+BCE, a capaci-
dade representacional do encoder é suficiente para delinear fronteiras de queima com boa
consisténcia intra-época.

Apesar de convergir, a EfficientNetB3 atinge niveis de F1/IoU visivelmente menores,
com flutuagoes iniciais mais marcadas entre precision e recall, a Figura 7 representa esse
comportamento. Esse padrao é compativel com uma fronteira de decisdo mais sensivel
ao desbalanceamento espacial, quando treinada apenas com BCE. Portanto, a penali-
zacao uniforme da BCE, sem reponderacao, pode nao enfatizar suficientemente a classe

minoritaria para esse encoder, que tende a exigir [osses ou schemes de treino mais robusto.
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Figura 7 — Curvas de treinamento e métricas para encoders com Binary Crossentropy no

Ciclo 1.

Ao trocar BCE por Dice (Figura 8), o VGG-16 mantém desempenho alto e estével,

enquanto o EfficientNetB3 apresenta ganho substancial em F'7-Score/loU. Essa melhora

é coerente com a propria definicdo da Dice Loss. Em sintese, a Dice reduz a lacuna entre

os encoders, embora o VGG-16 permaneca superior neste ciclo.
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Figura 8 — Curvas de treinamento e métricas para Dice Loss.

Nas Figuras 8(a)—(b), observa-se que a wval. loss do VGG-16 decresce de forma mo-
notonica, aproximando-se rapidamente da curva de treino e sugerindo boa generaliza-
¢d0 ja nas primeiras épocas. Em contraste, o EfficientNetB3 mantém maior distancia
treino—validacao até aproximadamente a época 10, indicando convergéncia mais lenta e
maior sensibilidade as primeiras atualizagoes dos pesos. Esse comportamento ¢ compa-
tivel com encoders mais profundos e com maior regularizacao implicita, que tendem a
exigir mais épocas para estabilizar a otimizacao quando treinados com Dice.

As Figuras 8(c)—(d) explicitam o efeito da Dice: o VGG-16 atinge e sustenta métricas
elevadas (F1-Score ~ 0,968, loU =~ 0,938, com precision/recall superiores a 0,96), en-
quanto o EfficientNetB3 melhora substancialmente em relagao ao BCE, estabilizando em
F1-Score ~ 0,854 e IoU =~ 0,745. Notam-se oscilacoes iniciais no EfficientNetB3 (variacao
entre épocas ~6-10), que se atenuam apds a redugao adaptativa da taxa de aprendizado
(ReduceLROnPlateau), produzindo trajetérias mais suaves e consistente crescimento das
métricas. Em termos praticos, a Dice diminui o viés para o fundo e aumenta a sobrepo-
sicdo nas regioes minoritarias; ainda assim, neste ciclo, o VGG-16 permanece superior e
mais estavel ao longo de todo o treinamento.

Esses achados motivam, para o ciclo 2, (i) testar perda composta, (ii) reforgar data
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augmentation espacial/fotométrica para reduzir a varidncia nas épocas iniciais do Effi-
cientNetB3, e (iii) calibrar o limiar de decisao com base na curva precision—recall do
conjunto de validagdo. A expectativa é reduzir o gap treino—validagdo do EfficientNetB3
nas primeiras épocas e aumentar sua loU sem degradar precision, aproximando seu pata-
mar do observado no VGG-16.

As matrizes de confusdo normalizadas da valida¢do (Figura 9) mostram um padrao
consistente com o desbalanceamento do conjunto: a classe de fundo apresenta false po-
sitives praticamente nulos em todos os cendrios (especificidade muito alta), enquanto as
diferencas entre arquiteturas e fungoes de perda emergem sobretudo no recall da classe
fogo (true positives). Em termos préticos, o erro dominante é de false negative, isto é,
regioes com fogo que deixam de ser segmentadas.

Comparando as combinagoes com Binary Crossentropy, observa-se que o VGG-16
atinge TP ~ 0,97 e FN =~ 0,03 com limiar 6timo 0,45 [Figura 9(a)], ao passo que o
EfficientNetB3, no mesmo limiar, retém TP ~ 0,84 ¢ FN ~ 0,16 [Figura 9(b)]. Esse
hiato de ~ 13 p.p. em recall explica a superioridade do VGG-16 nas métricas agregadas
(F'1-Score e IoU) sob BCE: ambos os modelos mantém precision elevada gragas ao fundo
dominante, mas o VGG-16 erra menos por omissao de fogo.

Ao substituir BCE por Dice Loss e ajustar o limiar 6timo para 0,40, o VGG-16 virtu-
almente preserva o desempenho (TP =~ 0,97; FN ~ 0,03) [Figura 9(c)], sugerindo saidas ja
bem calibradas em torno da fronteira de decisao. O EfficientNetB3, por sua vez, apresenta
ganho mensuravel de recall (TP ~ 0,86; FN ~ 0,14) sem penalizar os F'P [Figura 9(d)].
Esse comportamento é compativel com a natureza da Dice, que recompensa diretamente
a sobreposi¢ao entre mascaras e, portanto, reduz o viés para a classe majoritaria tipico
da BCFE em cenérios altamente desbalanceados.

Esses resultados reforcam que a escolha do ponto de operacao (fungdo de perda +
limiar) deve ser orientada pelo custo do erro: para monitoramento e alerta de incéndios,
costuma-se privilegiar recall elevado (reducao de FN), aceitando um pequeno incremento
de FP desde que operacionalmente manejavel. No presente ciclo, o VGG-16 ja opera
proximo do teto de recall com FP minimos; o EfficientNetB3 responde melhor a ajustes
sensiveis ao desbalanceamento (p. ex., Dice) e ao limiar, indicando margem adicional para,
otimizacao por curva precision—recall e calibragao de probabilidade.

Do ponto de vista diagnéstico, a predominancia de FN sugere trés fontes provaveis
de erro: (i) focos pequenos e fragmentados, que desaparecem com o downsampling para
256 x 256 e com filtros de maior stride; (ii) bordas de fogo finas ou parcialmente encobertas
por fumaga, nas quais a incerteza do modelo tende a ficar abaixo do limiar; e (iii) confusao
com padroes espectrais de solo exposto/rocha brilhante em angulos solares extremos, que

reduzem o contraste com a classe fogo.
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VGG16 — Validagdao Normalizada (thr=0.45)
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(c) VGG-16 (val., thr= 0,40) — limiar mais
baixo mantém FP =~ 0 e nédo altera
significante o recall (TP ~ 0,97; FN =~ 0,03),
indicando boa calibracao.
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(d) EfficientNetB3 (val., thr=0,40) —
pequeno ganho util de recall (TP ~ 0,86; FN
~ 0,14) sem aumento visivel de FP,
mostrando sensibilidade ao limiar.

Figura 9 — Matrizes de confusao normalizadas na validagdo com limiares 6timos por fun-
¢ao de perda (BCE: 0,45; Dice: 0,40). Ambos os modelos mantém FP muito
baixos devido ao fundo dominante; a diferenca central esta no recall da classe
fogo.

Em sintese, as matrizes corroboram a narrativa das curvas de treinamento: ambos os
encoders mantém precision alta em virtude do fundo dominante, e a diferenciacao entre
modelos e perdas aparece principalmente no recall da classe de interesse. A Dice reduz
parcialmente a lacuna do EfficientNetB3 relativamente ao VGG-16, mas, neste ciclo, o
VGG-16 permanece superior e mais estavel. Esse quadro estabelece uma linha de base

solida para avaliar, no ciclo 2, o impacto de perdas compostas, multiescala e calibracao
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fina do limiar sobre a reducao de F'N sem degradacao relevante de precision.

Os resultados no conjunto de teste confirmam o padrao observado na validacao, a
partir das Figuras 10(a)—(c), o VGG-16 permanece consistentemente superior ao Effi-
cientNetB3 em todos os cenarios, com diferencas mais pronunciadas quando se utiliza
Binary Crossentropy (BCE). Com BCE, o VGG-16 preserva alta sensibilidade a classe
fogo (TP = 0,97) e erro de omissao reduzido (FN = 0,03), sem penalizar a classe de fundo,
que se mantém com FP proximos de zero. Ao migrar para Dice, o VGG-16 mantém o
mesmo regime de pouca confusao no fundo e apenas ligeira queda de recall (TP = 0,96),
sugerindo boa calibracao do limiar e robustez do encoder diante de mudancas na funcao
de perda.

Para o EfficientNetB3, a troca de BCE por Dice é decisiva: o recall de fogo sobe
de aproximadamente 0,81 para 0,86, sem aumento visivel de FP. Em termos praticos,
Dice reduz o viés para a classe majoritaria (fundo), melhorando a cobertura de regides
queimadas que tendem a ser pequenas, esparsas e fragmentadas. Essa melhora, ainda que
nao elimine a diferenca para o VGG-16, reduz a lacuna entre os encoders e reforca que
perdas class-imbalance aware favorecem tarefas em que a classe de interesse ocupa fracao
diminuta da cena.

As quatro matrizes de confusdo evidenciam um traco comum: FP residuais para o
fundo (TN =~ 1,00) em todos os modelos e perdas, refletindo o forte desbalanceamento
espacial do problema. Assim, a métrica que realmente distingue as combinacoes é o recall
da classe fogo. No VGG-16, BCE e Dice produzem acertos elevados e estaveis em fogo
(TP ~ 0,97 e = 0,96), ao passo que, no EfficientNetB3, Dice atenua omissoes sistematicas
(queda de FN de ~ 0,19 para ~ 0,14). Esse comportamento é coerente com as curvas
de treinamento: no EfficientNetB3 observam-se oscilagoes nas primeiras épocas e uma
convergéncia mais lenta, o que torna a perda Dice particularmente 1til para estabilizar o
aprendizado da classe minoritaria.

Sob a ética de decisdo, os limiares selecionados na validagao (BCE: 0,45; Dice: 0,40)
generalizam para o teste sem distorg¢oes visiveis, indicando boa calibracao dos scores.
Em problemas altamente desbalanceados, pequenas variagoes de limiar podem deslocar
o ponto de operagao no espaco precision—recall; aqui, o ajuste mais baixo para Dice
preserva FP préximos de zero e melhora a sensibilidade do EfficientNetB3, sem sacrificar
a seletividade do VGG-16. Isso sugere que, além da funcao de perda, a selecao criteriosa
do limiar a partir de curvas Precision—Recall (curva Precisdo—Sensibilidade) (PR) deve

ser mantida como procedimento padrao.
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VGG16 — Teste Normalizada (thr=0.45)
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~ 0,04) com FP ainda ~ 0 — bom equilibrio
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(d) EfficientNetB3 — teste, Dice (thr= 0,40):
ganho claro de recall vs. BCE (TP = 0,86;
FN =~ 0,14) preservando FP baixo — Dice

reduz o viés para o fundo.

Figura 10 — Matrizes de confusdo normalizadas no conjunto de teste para U-Net com
VGG-16 e EfficientNetB3, avaliadas com limiares escolhidos na validacao
(BCE: 0,45; Dice: 0,40). Em todos os casos, o fundo apresenta FP ~ 0
(TN = 1,00), evidenciando o desequilibrio de classes.

O conjunto de teste confirma que: (i) o VGG-16 é um ponto de referéncia estavel e de

alta sensibilidade, relativamente indiferente a escolha entre BCE e Dice; (ii) o Efficient-

NetB3 depende mais de perdas class-imbalance aware para atingir patamares competitivos

de recall; e (iii) a combinagao entre fungao de perda adequada e selegao de limiar orien-

tada por validagao é determinante para controlar o compromisso entre precision e recall
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em cenarios extremos de desbalanceamento.

A analise dos erros indica que os principais falsos negativos concentram-se em frentes
de fogo muito delgadas, bordas seméanticas ruidosas (transi¢oes fogo—solo exposto) e ar-
tefatos espectrais que mimetizam cicatrizes (sombra de nuvens, trilhas vidrias e campos
recém-expostos). Esses padroes sdo consistentes com a superioridade do VGG-16 em
limites e texturas de baixa frequéncia e com a maior sensibilidade do EfficientNetB3 ao
regime de optimization warm-up, que, quando combinado a Dice, aprende a “valorizar”
regides positivas raras e descontinuas. Tais achados motivam, para o ciclo 2, explorar per-
das compostas (por exemplo, Dice+Focal) visando reduzir omissoes residuais, incorporar
data augmentation espacial/fotométrica mais agressiva para mitigar a varidncia inicial
do EfficientNetB3, e avaliar pds-processamentos morfologicos leves ou condicionados a
contexto para recompor fragmentagao em cicatrizes finas, sem inflacionar FP.

As Tabelas 4 e 5 sintetizam o Ciclo 1. No conjunto de valida¢io, o VGG-16 apresenta
os melhores valores de F'1-Score (0.968) e IoU (0.939) com BCE, mantendo desempenho
praticamente idéntico com Dice, o que indica robustez do encoder as escolhas de funcao
de perda. Para o EfficientNetB3, a substituicao de BCE por Dice eleva F1-Score de 0.831
para 0.854 e IoU de 0.711 para 0.745, reduzindo o viés para o fundo e melhorando a

cobertura de regides queimadas.

Tabela 4 — Métricas na validacao
(limiares oriundos da
validacao).

Tabela 5 — Métricas no teste (usando os
limiares da validacao).

Backbone Loss Thr precision Recall F1-Score IoU

Backbone Loss Thr precision Recall F1-Score IoU

: ‘ EfficientNetB3 BCE 0450 0.791  0.814  0.803  0.670
EfficientNetB3 BCE 0450 0824 0839 081 0711 EfficientNetB3 Dice 0.400 0.808  0.842  0.825  0.701
EfficientNetB3 Dice 0.400 0.850 0.858 0.854 0.745 VGG-16 BCE 0.450 0.968 0.971 0.969 0.941
VGG-16 BCE 0450 0967 0970  0.968  0.939 VGG-16 Dice 0400 0974 0961  0.968  0.937

VGG-16 Dice 0.400 0.967 0.969 0.968 0.938

Nota: negrito destaca o melhor F1-Score e Nota: megrito destaca o melhor F1 e IoU no

IoU na validagao.
Limiar adotado: BCE = 0,45; Dice = 0,40.

teste.

No teste, o comportamento se confirma: o VGG-16 com BCE atinge os maiores
F1-Score (0.969) e IoU (0.941), enquanto o EfficientNetB3 volta a se beneficiar de Dice
(F1-Score de 0.825 e IoU de 0.701, superiores aos de BCE). Importante notar que os
limiares definidos na validagao (0.45 para BCE e 0.40 para Dice) transferem-se bem para
o teste, sem inflagdo de falsos positivos: o ganho de EfficientNetB3 com Dice decorre
majoritariamente de maior recall da classe fogo.

Em sintese, o VGG-16 estabelece o patamar de referéncia no Ciclo 1, com alta sensi-
bilidade e sobreposi¢ao espacial; o EfficientNetB3, por sua vez, requer fungoes de perda
class-imbalance aware (Dice) para operar em regime competitivo. Esses achados orien-
tam as intervengoes do Ciclo 2 (perdas compostas, data augmentation mais agressiva
e calibra¢ao de limiar via curvas PR) para reduzir omissoes residuais sem sacrificar a

seletividade.
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4.0.2 Ciclo 2: objetivos, desenho experimental e comparativo

com o Ciclo 1

Considerando o contexto do Ciclo 1 e as altera¢oes implementadas no Ciclo 2, algumas
analises estao disponiveis abaixo.

A Figura 11 sintetiza o comportamento de treino e validagao da U-Net com backbone
VGG-16 no Ciclo 2 para as quatro fungoes de perda avaliadas. De forma geral, observa-
se que o uso de undersampling aliado as augmentations permitiu que todos os cenarios
convergissem rapidamente nas primeiras épocas, com redugoes consistentes da funcao de
perda e estabilizacao das métricas acima de 0,9 para a maior parte das combinagoes. Nas
subfiguras (al) e (a2), correspondentes a BCE, a perda decresce de maneira monétona
e suave, enquanto F1-Score, 1oU, precision e recall de treino e validacao apresentam
trajetorias muito proximas desde as primeiras épocas. Esse comportamento indica um
regime de treino estavel, com baixa discrepancia entre conjuntos e auséncia de sobreajuste
marcado. A BCE, embora originalmente menos sensivel ao desbalanceamento extremo,
passa a se beneficiar da distribuicao mais equilibrada de pizels obtida com o undersampling
do Ciclo 2, o que explica a elevagao dos valores de IoU e F1-Score em relacao ao Ciclo 1,
sem sacrificar a recall da classe fogo.

As subfiguras (bl) e (b2), associadas & perda Dice, revelam um comportamento mais
irregular nas épocas iniciais, com oscilacoes nas métricas de validacao e um distancia-
mento maior em relacdo as curvas de treino. Essa instabilidade inicial é consistente com
a natureza da Dice Loss em cenarios fortemente desbalanceados, uma vez que pequenas
variagoes na segmentacao dos poucos pizels positivos podem provocar flutuagoes signifi-
cativas na métrica. Ainda assim, apds algumas épocas, as curvas tendem a estabilizacao
e F1-Score e IoU atingem patamares satisfatorios, embora inferiores aos observados com
BCE, Focal e DiceFocal. Em termos praticos, isso indica que a perda puramente baseada
em sobreposicao de regioes melhora a deteccao de dreas queimadas em relagao ao Ciclo 1,
mas ainda nao explora todo o potencial da VGG-16 quando comparada as abordagens
que combinam ou reponderam exemplos dificeis.

J& ao observar as subfiguras (cl) e (c2), que representam a Focal Loss, nota-se um
rapido decaimento da perda, com métricas de validacao elevadas desde as primeiras épo-
cas. Ha, contudo, um pico pontual de instabilidade em uma das épocas, visivel como um
aumento abrupto no valor da perda e queda temporaria nas métricas, provavelmente as-
sociado a um minibatch com distribuicao atipica de pizels positivos ou a alta sensibilidade
da Focal a exemplos considerados “dificeis”. Essa oscilacao é rapidamente corrigida nas
épocas subsequentes, e o treinamento converge para um regime em que precision, recall e
F1 permanecem préximas de 1,0. O resultado final é uma rede capaz de manter alta recall
dos pizels de fogo, reduzindo falsos negativos em comparacao a BCE e principalmente a
Dice, o que é coerente com os altos valores de F1-Score e IoU observados nas tabelas de

desempenho do Ciclo 2.
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Figura 11 — Curvas de perda e métricas de treino/validacao da U-Net com backbone
VGG-16 no Ciclo 2, considerando as diferentes fungoes de perda.
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Por fim, as subfiguras (d1) e (d2) mostram o comportamento da fun¢ao composta Di-
ceFocal. Ao combinar um termo de sobreposicao (Dice) com o mecanismo de reponderagao
da Focal, observa-se um compromisso mais equilibrado entre estabilidade e sensibilidade a
classe minoritaria. As curvas de perda apresentam decaimento suave, sem os picos abrup-
tos observados em Focal isolada, enquanto as métricas de treino e validagao se mantém
altas e com pequena lacuna entre si ao longo de todo o treinamento. Esse padrao indica
que a fungdo composta conseguiu explorar a capacidade representacional da VGG-16 ao
mesmo tempo em que mitiga as principais limitagoes de cada componente individual: re-
duz a instabilidade tipica da Dice em cenarios extremamente desbalanceados e, ao mesmo
tempo, controla a agressividade da Focal em relacao a exemplos raros. Em conjunto com
os resultados de validagao e teste, conclui-se que, no contexto do Ciclo 2, a VGG-16 com-
binada com perdas Focal e, sobretudo, DiceFocal se destaca como a configuragdo mais
robusta, superando de forma consistente os desempenhos obtidos no Ciclo 1.

A Figura 12 apresenta as curvas de perda e métricas para a U-Net com backbone

EfficientNetB3 no Ciclo 2, também sob as quatro fungoes de perda avaliadas.
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Figura 12 — Curvas de perda e métricas de treino/validagdo da U-Net com backbone Effi-
cientNetB3 no Ciclo 2, considerando as diferentes funcoes de perda.
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De maneira geral, todas as combinac¢oes convergem para valores altos de F1-Score e
IoU, porém com patamares ligeiramente inferiores aos observados para a VGG-16 o que
reforga a tendéncia ja identificada no Ciclo 1 de que a VGG-16 se adapta melhor as ca-
racteristicas espectrais e espaciais das cenas de queimadas consideradas neste trabalho.
Nas subfiguras (al) e (a2), correspondentes a BCE, a perda apresenta decaimento rapido
e estavel, enquanto as métricas de treino e validacao crescem de forma quase mondtona,
alcancando valores em torno de 0,8-0,85 de F1-Score e IoU. A distancia entre curvas
de treino e validacao é pequena, sugerindo boa capacidade de generalizacao apos a apli-
cacao do undersampling e das augmentations. No entanto, o patamar final permanece
abaixo daquele obtido pela VGG-16 com a mesma funcdo de perda, indicando que a
maior profundidade e complexidade da EfficientNetB3 nao se convertem necessariamente
em ganhos de desempenho para esse tipo de segmentacao binaria em dados Sentinel-2
altamente desbalanceados.

O comportamento observado com a Dice Loss, nas subfiguras (bl) e (b2), reforca
essa diferenca de sensibilidade entre backbones. Assim como na VGG-16, as curvas de
perda e métricas apresentam maior variabilidade nas primeiras épocas, mas no caso da
EfficientNetB3 essa instabilidade é ainda mais pronunciada e persiste por um nimero
maior de épocas, refletindo uma resposta mais sensivel as flutuagdes na proporcao de
pizels positivos apés o undersampling. Apesar disso, o modelo converge para valores de
F1-Score e ToU satisfatorios, ligeiramente superiores aos obtidos com BCE, o que sugere
que a Dice contribui para melhorar a segmentacao das regioes afetadas pelo fogo.

Nas subfiguras (c1) e (c2), associadas a Focal Loss, a EfficientNetB3 apresenta curvas
de perda decrescentes e métricas que aumentam de forma relativamente suave, sem os
picos acentuados de instabilidade observados na VGG-16. Isso sugere que, para esse
backbone, a Focal Loss é numericamente mais estavel ao longo do treino, possivelmente
em fun¢do da forma como a EfficientNetB3 distribui a ativagdo ao longo das camadas
profundas. Ainda assim, os patamares finais de F'1-Score e loU permanecem ligeiramente
abaixo daqueles alcancados pela ’ com Focal, indicando que a maior estabilidade numérica
nao se traduz, necessariamente, em superioridade de desempenho. Em contrapartida,
compara-se favoravelmente & BCE e a Dice no proprio EfficientNetB3, reduzindo o ntimero
de falsos negativos e aproximando o modelo da performance desejada para aplicacao
pratica.

Ja as subfiguras (d1) e (d2) mostram o comportamento da perda composta DiceFocal
na EfficientNetB3. As curvas de perda exibem decaimento regular, com estabilizacao nas
ultimas épocas, enquanto as métricas de treino e validacao convergem para valores de
F1-Score préximos aos observados com Focal, mas com IoU ligeiramente superior e menor
discrepancia entre conjuntos. Esse padrao indica que a combinacao dos termos Dice e
Focal ajuda a EfficientNetB3 a explorar melhor as regides de fronteira das queimadas,

mantendo alta recall e precision mesmo diante da forte assimetria entre classes. Quando
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comparada as curvas equivalentes da VGG-16, nota-se que o backbone EfficientNetB3 se
beneficia mais claramente da funcao composta do que das perdas individuais, reduzindo
o gap em relacao ao desempenho da VGG-16, ainda que nao o elimine.

Enquanto a VGG-16 atinge os melhores resultados absolutos, a EfficientNetB3 torna-
se competitiva quando associada a fungoes de perda mais sofisticadas, como a DiceFocal,
o que ¢é particularmente relevante em cenarios operacionais em que se deseje explorar
arquiteturas mais modernas preservando, ao mesmo tempo, a robustez frente ao desba-
lanceamento extremo dos dados.

Os mapas de confusdo normalizados da UNet com backbone VGG-16 no conjunto de
validagao do Ciclo 2, representado nas figuras 13, 14, 15 e 16 evidenciam que todas as
func¢oes de perda mantém desempenho extremamente alto para a classe “nao fogo”. Em
todos os casos, a proporc¢ao de verdadeiros negativos aproxima-se de 1,0, com praticamente
auséncia de falsos positivos, indicando que o modelo raramente rotula o fundo como
fogo. Para a classe de interesse, observa-se que aproximadamente 0,96 dos pizels sao
corretamente identificados, enquanto cerca de 0,04 continuam sendo confundidos com
fundo. Essa estabilidade ao longo de BCFE, Dice, Focal e, sobretudo, DiceFocal reflete o
efeito combinado do undersampling e da fun¢ao de perda composta, que reduz a tendéncia
observada no Ciclo 1 de favorecer excessivamente a classe majoritaria e penaliza de forma
mais equilibrada falsos positivos e falsos negativos para fogo. Além disso, os limiares
6timos distintos (por exemplo, thr = 0,52 para BCFE, 0,42 para Dice e 0,40 para DiceFocal)
mostram que o ajuste fino do limiar de decisao é relevante para explorar todo o potencial
da métrica F'1-Score, mas nao altera qualitativamente o padrao de alta separagao entre

as classes.
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Figura 13 — Matrizes de confusao normalizadas da U-Net com backboneVGG-16 no con-
junto de validacao do Ciclo 2, considerando as diferentes func¢oes de perda.

Quando se analisa as matrizes de confusao normalizadas do VGG-16 no conjunto de
teste nas Figuras 14 e 16 abaixo, o comportamento observado em validacao é essencial-
mente preservado. A diagonal principal permanece concentrada, com taxas de verdadeiros
positivos para fogo entre 0,96 e 0,97 e fracao de falsos negativos em torno de 0,03-0,04,
o que indica boa capacidade de generalizacao do modelo para imagens nao utilizadas no
ajuste de hiperparametros. A manutencao dessa estrutura entre validacao e teste é parti-
cularmente evidente para a combinacao VGG-16 + DiceFocal, que apresentou os melhores
valores globais de F'1-Score e IoU no Ciclo 2. Em comparacao com o Ciclo 1, as matrizes
do Ciclo 2 exibem maior densidade na diagonal principal e redugdo visual de erros na

classe minoritaria, sinalizando que a estratégia atual de balanceamento e escolha de fun-
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¢ao de perda foi mais eficaz para capturar cicatrizes de incéndio em cenarios altamente

desbalanceados.
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Figura 14 — Matrizes de confusdo normalizadas da U-Net com backbone VGG-16 no con-
junto de teste do Ciclo 2, considerando as diferentes fun¢oes de perda.

Em se tratando das matrizes de confusao da UNet com EfficientNetB3 para o conjunto

de validacao(Figura 15) revelam um comportamento distinto. Embora a classe “nao fogo”

também apresente proporcao de verdadeiros negativos proxima de 1,0, a classe de fogo

¢ menos favorecida que no VGG-16: a taxa de verdadeiros positivos varia em torno de

0,82-0,85, enquanto a fracao de falsos negativos permanece entre 0,15 e 0,18. Isso significa

que, mesmo apos o undersampling, o EfficientNetB3 tende a deixar escapar uma proporcao

maior de pizels de fogo do que o VGG-16, o que se alinha com os valores de F1-Score e
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IoU mais modestos observados nas tabelas de desempenho do Ciclo 2. Os limiares 6timos

encontrados (por exemplo, thr = 0,36 para BCE, 0,70 para Dice e 0,82 para DiceFocal)

sao mais extremos do que aqueles do VGG-16, sugerindo que o EfficientNetB3 produz

distribuicoes de probabilidade mais dispersas e exige ajustes mais agressivos no limiar

para se aproximar de um compromisso adequado entre sensibilidade e precision:
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Figura 15 — Matrizes de confusao normalizadas da U-Net com backbone EfficientNetB3
no conjunto de validacao do Ciclo 2, considerando as diferentes fungoes de

perda.

No conjunto de teste, as matrizes de confusdao do EfficientNetB3 16 confirmam essa
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tendéncia. A classe de fundo continua sendo bem representada, porém as taxas de ver-
dadeiros positivos para fogo se mantém abaixo das obtidas pelo VGG-16, com intervalos
aproximados de 0,82-0,84 e fracoes correspondentes de falsos negativos em torno de 0,16—
0,18. Outro ponto relevante é que, ao contrario do VGG-16, o EfficientNetB3 apresenta
uma proporgao visivelmente maior de falsos positivos (fundo rotulado como fogo), o que
pode implicar maior taxa de alarmes falsos em cendrios operacionais. Essa assimetria en-
tre falsos negativos e falsos positivos é modulada pelos diferentes limiares 6timos — mais
baixos para BCE e mais elevados para Dice e DiceFocal — refletindo o compromisso entre
maximizar a deteccao de areas queimadas e controlar a supersegmentacao sobre regides
de vegetacao nao queimada.

De forma integrada, a comparagdo das matrizes de confusao dos dois backbones no
Ciclo 2 reforga a conclusao de que o VGG-16, especialmente em combinacao com a fungao
de perda DiceFocal, oferece o melhor compromisso entre reducao de falsos negativos em
fogo e manutencao de uma taxa quase nula de falsos positivos. O EfficientNetB3, por
sua vez, apresenta um perfil mais arriscado, com maior sensibilidade a variacoes de limiar
e tendéncia a produzir tanto mais falsos negativos quanto mais falsos positivos que o
VGG-16. Em relacao ao Ciclo 1, a visualizacdo conjunta das matrizes evidencia que o
uso de undersampling e de uma funcao de perda composta contribuiu para aumentar
a separacao entre classes, sobretudo no VGG-16, que passa a apresentar matrizes mais
“limpas”, com diagonais mais marcadas e menor dispersao de erros. Esses resultados
corroboram a escolha do backbone VGG-16 e da funcao DiceFocal como configuracao de
referéncia para o restante da dissertacao.

De maneira geral, observa-se que o VGG-16 supera consistentemente o EfficientNetB3
em todas as métricas avaliadas, tanto na validacao quanto no teste. Esse comportamento
sugere que a arquitetura mais simples e menos profunda do VGG-16 é particularmente
adequada ao cenario de forte desbalanceamento e de baixa variabilidade espectral nas
cicatrizes de incéndio de imagens Sentinel-2. Enquanto o EfficientNetB3 demonstra maior
sensibilidade ao ajuste de limiar e tende a produzir mais erros tanto por omissao quanto
por comissao, o VGG-16 apresenta um equilibrio mais estavel, com valores elevados de
F1 e IoU, mantendo uma taxa reduzida de falsos negativos.

A fungado DiceFocal mostrou-se a mais eficaz entre todas as avaliadas. No VGG-16,

essa funcao de perda alcangou os maiores
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Figura 16 — Matrizes de confusdo normalizadas da U-Net com backbone EfficientNetB3
no conjunto de teste do Ciclo 2, considerando as diferentes fungoes de perda.
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CAPITULO 5

Conclusao

Os resultados apresentados ao longo deste capitulo evidenciam, de forma consistente,
o impacto das escolhas metodolégicas adotadas na tarefa de segmentagdo seméantica de
incéndios florestais em imagens multiespectrais do satélite Sentinel-2. A conducgao de dois
ciclos experimentais permitiu ndo apenas avaliar o desempenho absoluto dos modelos,
mas também compreender de maneira sistematica os fatores responsaveis pelas limitagoes
observadas inicialmente e pelas melhorias obtidas posteriormente.

No Ciclo 1, de carater exploratério, os experimentos revelaram dificuldades signifi-
cativas na identificagao da classe minoritaria, especialmente em cenarios de forte desba-
lanceamento entre classes. Embora a substituicao da Binary Cross-Entropy pela Dice
Loss tenha promovido ganhos pontuais, as métricas de IoU e FI-Score permaneceram
limitadas, indicando que ajustes isolados na func¢ao de perda nao eram suficientes para
mitigar os efeitos do desbalanceamento e da baixa representatividade espacial do fogo nas
imagens.

Em contraste, os resultados do Ciclo 2 demonstram de forma clara a eficacia do pipe-
line otimizado proposto neste trabalho. A introducao do undersampling no conjunto de
treinamento, aliada ao uso de técnicas de data augmentation e a adogcao de uma estratégia
de treinamento em duas fases, resultou em melhorias expressivas tanto em desempenho
quanto em estabilidade. A varredura sistematica de thresholds na validagao, com selecao
do limiar que maximiza o F'1-Score, mostrou-se particularmente relevante para a calibra-
¢ao dos modelos, refletindo diretamente na qualidade das métricas reportadas no conjunto
de teste.

Do ponto de vista arquitetural, os resultados indicam que a U-Net com backbone
VGG-16 apresentou desempenho superior e mais estavel em comparacao a EfficientNetB3,
especialmente no que se refere as métricas sensiveis ao desbalanceamento. Enquanto o
VGG-16 manteve valores elevados e consistentes de F1-Score e IoU independentemente
da funcao de perda utilizada, o EfficientNetB3 revelou maior sensibilidade a escolha da
perda e do limiar de decisao, sugerindo maior instabilidade na separacao entre as classes.

A anélise comparativa das fungoes de perda reforga ainda a relevancia de estratégias
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sensiveis ao desbalanceamento. As perdas Dice e DiceFocal destacaram-se no Efficient-
NetB3, enquanto no VGG-16 os resultados praticamente equivalentes entre as diferentes
perdas evidenciam a robustez desse backbone frente as variagdbes metodologicas avaliadas.
Esse comportamento sugere que arquiteturas mais profundas e estaveis podem reduzir a
dependéncia de ajustes finos na funcao de perda, embora tais ajustes permanecam impor-
tantes em arquiteturas mais sensiveis.

Por fim, a analise qualitativa das méascaras preditas, apresentada ao final do capitulo,
complementa os resultados quantitativos ao evidenciar melhorias ndo apenas métricas,
mas também morfologicas. Observa-se maior coeréncia espacial das regioes segmentadas
no Ciclo 2, com reducao de falsos positivos dispersos e melhor delineamento dos focos de
incéndio, corroborando as conclusdes extraidas das matrizes de confusao e das métricas
agregadas.

Em conjunto, os resultados obtidos confirmam que a combinagao de balanceamento de
classes, fungoes de perda adequadas, calibracao criteriosa do limiar de decisdo e estratégias
de treinamento progressivo constitui um fator determinante para o sucesso da segmentacao
de incéndios florestais em imagens multiespectrais. Esses achados fornecem uma base
solida para as discussoes e conclusoes apresentadas no capitulo seguinte.

Como diregoes futuras, sugere-se investigar estratégias complementares como:

0 Uso de oversampling com sintese de amostras (e.g., SMOTE adaptado para imagens)

para enriquecer a classe minoritaria;

0 Aplicagao de arquiteturas hibridas ou baseadas em atengao (e.g., Attention, U-Net,

Swin-UNet);
1 Testes em diferentes composi¢oes espectrais e resolugao espacial;
 Avaliacao em multiplos sensores.

Esta dissertacao contribui metodologicamente para o campo de visao computacional
aplicada ao sensoriamento remoto ambiental, fornecendo subsidios para a construcao de
sistemas operacionais de detec¢ao de queimadas com base em imagens orbitais multies-

pectrais.

5.1 Contribuicoes em Producao Bibliografica

A partir dos resultados obtidos neste trabalho, foi elaborado e submetido o artigo
intitulado Segmentacao seméntica de incéndios florestais em imagens do Sentinel-2 usando
arquiteturas de aprendizado por transferéncia a revista cientifica Revista de Informatica
Teérica e Aplicada, encontrando-se atualmente em processo de avaliagao.

O artigo apresenta uma analise comparativa entre diferentes fungdes de perda (Binary

Crossentropy e Dice Loss) e a aplicagdo de encoders com transferéncia de aprendizado
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(VGG-16 e EfficientNetb3), bem como os avangos alcangados com a adogao de técnicas
como undersampling, data augmentation e funcao de perda composta. O trabalho des-
taca o impacto das decisdes metodoldgicas sobre o desempenho dos modelos em tarefas
de segmentacao de regioes de incéndio, discutindo seus desdobramentos para aplicacoes

operacionais em monitoramento ambiental e mitigacao de desastres naturais.
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