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Resumo

A segmentação semântica de incêndios florestais em imagens de satélite é um problema

relevante para o monitoramento ambiental, especialmente devido ao forte desbalancea-

mento entre classes e à natureza esparsa dos focos de fogo. Neste trabalho, o estudo é

conduzido sobre imagens multiespectrais do satélite Sentinel-2 (resolução de 20 m), com

foco na identificação da classe incêndio. O objetivo desta dissertação é propor, imple-

mentar e avaliar um pipeline de segmentação semântica para detectar incêndios florestais,

investigando o impacto de diferentes backbones, funções de perda e estratégias de mitiga-

ção do desbalanceamento. A metodologia foi estruturada em dois ciclos experimentais:

no primeiro, de caráter exploratório, avaliou-se a U-Net com encoders Visual Geome-

try Group 16 (VGG-16) e EfficientNetB3, utilizando perdas tradicionais; no segundo,

foi adotado um pipeline otimizado com undersampling, data augmentation, perdas sen-

síveis à classe minoritária (Dice, Focal e Dice+Focal), treinamento em duas fases com

fine-tuning e calibração do limiar por varredura na validação maximizando F1-Score. Os

resultados indicam melhora substancial no Ciclo 2, com maior estabilidade e desempe-

nho, destacando-se a U-Net com backbone VGG-16, que apresentou métricas elevadas de

medida F1 (média harmônica entre Precisão e Precision/Recall) (F1-Score) e Interseção

sobre União (IoU) no conjunto de teste. A análise qualitativa confirmou maior coerência

espacial das máscaras preditas. Conclui-se que a combinação de balanceamento, funções

de perda adequadas e calibração do limiar de decisão é determinante para a segmentação

eficaz de incêndios em imagens multiespectrais do Sentinel-2.

Palavras-chave: Sensoriamento Remoto, Segmentação Semântica, Aprendizado Pro-

fundo, Queimadas, Sentinel-2, Incêndios Florestais. .



Abstract

Semantic segmentation of forest fires in satellite imagery is a relevant problem for

environmental monitoring, particularly due to severe class imbalance and the sparse spa-

tial distribution of fire events. In this work, the study is conducted using multispectral

Sentinel-2 images with 20 m spatial resolution, focusing on the accurate identification

of the fire class. The objective of this dissertation is to propose, implement, and eva-

luate a semantic segmentation pipeline for forest fire detection, investigating the impact

of different backbones, loss functions, and class imbalance mitigation strategies. The

methodology is structured into two experimental cycles. The first, exploratory in nature,

evaluates a U-Net architecture with VGG16 and EfficientNetB3 encoders using conventi-

onal loss functions. The second cycle adopts an optimized pipeline incorporating selective

undersampling, data augmentation, loss functions tailored to imbalanced data (Dice, Fo-

cal, and Dice+Focal), a two-stage training strategy with encoder fine-tuning, and decision

threshold calibration through validation-based sweeping to maximize the F1-score. The

results show substantial improvements in the second cycle, with increased stability and

performance, particularly for the U-Net with the VGG16 backbone, which achieved high

F1 and IoU scores on the test set. Qualitative analysis further confirmed improved spatial

coherence of the predicted masks. These findings indicate that combining class balancing

strategies, appropriate loss functions, and threshold calibration is essential for effective

forest fire segmentation in multispectral Sentinel-2 imagery.

Keywords: Remote Sensing, Semantic Segmentation, Deep Learning, Forest Fires, Sentinel-

2, Wildfires..
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Capítulo 1

Introdução

O monitoramento global de incêndios é viabilizado pelo emprego de dados de sensori-

amento remotoSensoriamento Remoto (SR) (BARMPOUTIS et al., 2020), campo que se

refere a uma técnica que envolve a coleta de informações sobre objeto, área ou evento na

superfície da Terra sem contato físico. O uso de imagens de satélite é fundamental para

a gestão de políticas de conservação ambiental (CHUVIECO et al., 2019). A detecção

de focos de incêndio ativo constitui uma área de pesquisa que busca extrair informações

críticas dessas imagens para embasar decisões.

Anomalias térmicas identificadas através de dados de satélite são frequentemente li-

gadas ao uso do solo, como incêndios para manutenção e conversão de terrenos, quei-

madas florestais, atividades industriais, e outros fenômenos naturais, incluindo erupções

vulcânicas. A utilização do fogo é uma prática comum para limpeza de terrenos pós-

desmatamento. Essa prática, quando executada sem monitoramento adequado, pode le-

var a consequências ambientais severas, incluindo a degradação do solo por meio da perda

de nutrientes vitais para o crescimento das plantas e impactos adversos na biodiversidade

e nos ecossistemas, bem como a deterioração da qualidade do ar (ÖZEL; ALAM; KHAN,

2024).

No Brasil, o problema das queimadas atingiu níveis alarmantes em 2024, de acordo

com MapBiomas (2024), iniciativa que faz parte do Sistema de Estimativas de Emissões

de Gases de Efeito Estufa (SEEG) do Observatório do Clima. Apenas no mês de agosto, a

área total queimada alcançou 5,65 milhões de hectares, representando quase metade (49%)

do total queimado desde o início do ano. Este valor corresponde a uma área equivalente

ao estado da Paraíba e representa um aumento de 149% em relação ao mesmo período

de 2023. Os incêndios impactaram severamente os biomas, com destaque para o Cerrado,

que sofreu uma devastação de 2,4 milhões de hectares em agosto de 2024, ou 43% da área

total queimada no Brasil no mesmo mês. A situação é agravada pelo fato de que quase

dois terços (65%) das queimadas em agosto ocorreram em vegetação nativa, indicando

uma relação direta com o desmatamento e a degradação ambiental. A Amazônia, outro

bioma vital, também foi amplamente afetada, com 2 milhões de hectares queimados. A
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combinação de atividades humanas e condições climáticas desfavoráveis, como a seca,

intensifica a ocorrência dessas queimadas e prejudica a biodiversidade.

De acordo com dados obitidos por meio do MapBiomas (2024), o aumento expressivo

das queimadas não se limitou a um único bioma. No Pantanal, por exemplo, a área

queimada entre janeiro e agosto de 2024 aumentou 249% em comparação com a média

dos cinco anos anteriores, totalizando 1,22 milhão de hectares. Na Mata Atlântica, houve

um crescimento de 683% na área queimada em agosto em relação à média histórica,

com 500 mil hectares consumidos pelo fogo, dos quais 72% eram áreas agropecuárias.

No estado de São Paulo, 86% da área queimada em 2024 ocorreu apenas em agosto,

afetando predominantemente plantações de cana-de-açúcar. Esses dados apontam para

uma tendência preocupante: a expansão das queimadas em áreas de vegetação nativa e

em biomas frágeis, exacerbada pela ação humana e pelas condições climáticas adversas.

A necessidade de medidas efetivas de prevenção e controle é urgente para mitigar os

impactos ambientais, climáticos e sociais decorrentes das queimadas em grande escala

(MapBiomas, 2024).

Ao redor do mundo, a situação com queimadas não é diferente, apesar de incêndios

florestais no Canadá sejam relativamente comuns (BUMA et al., 2022) as mudanças cli-

máticas estão levando a incêndios maiores e mais frequentes do que nas décadas passadas

(HANES et al., 2019). Dados da indicam que o aquecimento global está contribuindo

para um aumento de 30–50% na área global queimada até o final do século XXI(UNEP,

2022).

Neste trabalho, o foco recai sobre a detecção ativa de incêndios em imagens multies-

pectrais, por meio de métodos baseados em Aprendizado Profundo (AP) no campo de SR.

Embora existam outras abordagens relevantes — como o uso de sensores térmicos, câme-

ras de infravermelho ou dados meteorológicos —, a escolha por imagens multiespectrais

reflete a proposta metodológica adotada nesta pesquisa. Recentemente, métodos basea-

dos em AP no campo de SR ganharam destaque devido ao aumento nas possibilidades de

aplicação e ao bom desempenho apresentado. Métodos baseados em AP conseguem apren-

der automaticamente a partir de dados complexos em imagens de SR, utilizando diversas

camadas em redes neurais. Em sua revisão, eles destacam um crescimento significativo,

desde 2015, no número de publicações científicas que aplicam Aprendizado Profundo na

análise de imagens de SR, acompanhado por um aumento expressivo nas citações desses

trabalhos. Esse crescimento reforça o rápido interesse e evolução dos estudos de AP em

imagens de SR Khelifi e Mignotte (2020a).

Este estudo tem como objetivo aprimorar técnicas de detecção de incêndios baseadas

em inteligência artificialInteligência Artificial (IA), com ênfase no aumento da Precisão e

na redução de Falsos Positivos em dados obtidos a partir de imagens multiespectrais do

satélite Sentinel-2. Para isso, são empregadas redes neurais convolucionais profundas do

tipo U-Net, combinadas a encoders pré-treinados — VGG-16 e EfficientNet—, explorando
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o potencial do aprendizado transferido na extração de padrões espectrais e espaciais re-

levantes. Os objetivos específicos incluem a aplicação de técnicas de aumento de dados

com a biblioteca Albumentations (como rotações, inversões, ajustes de brilho e contraste),

o balanceamento do conjunto por undersampling seletivo e a otimização dos parâmetros

de treinamento dos modelos, utilizando uma função de perda composta (Dice Loss + Bi-

nary Focal Loss). Essas estratégias visam aumentar a sensibilidade dos modelos à classe

minoritária (fogo), garantindo maior robustez e generalização na detecção automática de

incêndios.

1.1 Motivação

O progresso contínuo na associação de IA para detecção de incêndios reflete uma

combinação de avanços tecnológicos e uma necessidade premente de inovação. As técni-

cas de AP, particularmente, têm mostrado grande potencial na interpretação de dados

complexos de sensoriamento remoto, possibilitando a identificação de sinais precoces de

incêndios florestais. No entanto, apesar dos avanços significativos, existem ainda lacunas

e desafios a serem superados, especialmente no que se refere à precisão e à redução de

falsos positivos, que são cruciais para a confiabilidade dos sistemas de detecção.

A otimização dos resultados obtidos em pesquisas anteriores não é apenas uma questão

de progresso técnico, mas também um imperativo para a segurança pública e a gestão

ambiental. A eficácia na detecção de incêndios tem um impacto direto na capacidade

de resposta das equipes de emergência, na minimização de danos ao meio ambiente e na

proteção da vida humana e da fauna. Portanto, o aprimoramento contínuo dos sistemas de

detecção baseados em IA, por meio da pesquisa e desenvolvimento, é vital para enfrentar

os desafios emergentes e dinâmicos associados aos incêndios florestais.

A vegetação possui importância vital para a humanidade, atuando como um recurso

natural essencial que oferece benefícios diretos e indiretos, como a regulação climática,

a manutenção da biodiversidade e a proteção do solo. No entanto, desastres naturais,

especialmente os incêndios florestais, comprometem esses benefícios e contribuem signi-

ficativamente para o aquecimento global. Por isso, a identificação automática e precoce

de incêndios florestais é fundamental, pois permite que os responsáveis pela gestão de

desastres planejem com antecedência estratégias de mitigação e táticas de combate ao

fogo, minimizando os danos ambientais e socioeconômicos (SCHROEDER et al., 2016).

1.2 Objetivos e Desafios da Pesquisa

O objetivo principal desta pesquisa consiste em propor, implementar e avaliar um

pipeline de segmentação semântica para a detecção de incêndios florestais em imagens

multiespectrais do satélite Sentinel-2, com ênfase na mitigação dos efeitos do forte des-
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balanceamento entre classes e na obtenção de modelos robustos para a classe de interesse

(incêndio). Para isso, foram investigadas variantes da arquitetura U-Net com encoders

pré-treinados e estratégias complementares de treinamento, balanceamento e calibração

do limiar de decisão.

A pesquisa foi conduzida a partir dos seguintes objetivos específicos:

❏ avaliar o desempenho da U-Net com diferentes backbones (VGG-16 e EfficientNetB3)

na segmentação da classe incêndio, considerando estabilidade do treinamento e de-

sempenho no conjunto de teste;

❏ analisar o impacto da escolha da função de perda em cenários desbalanceados, com-

parando Binary Cross-Entropy e Dice Loss com abordagens mais sensíveis à classe

minoritária, como Focal Loss e a perda composta Dice+Focal;

❏ investigar os efeitos do undersampling de amostras negativas e do data augmentation

(Albumentations) como mecanismos para aumentar a exposição do modelo a padrões

relevantes e reduzir vieses induzidos pelo desbalanceamento;

❏ avaliar uma estratégia de treinamento em duas fases, com congelamento inicial do

encoder e posterior fine-tuning, visando maior estabilidade de convergência e melhor

generalização;

❏ incorporar e avaliar uma etapa de calibração do threshold por varredura na valida-

ção, maximizando o F1-Score, e analisar seu efeito nas métricas finais e nas matrizes

de confusão;

❏ comparar sistematicamente as combinações de arquitetura e escolhas metodológi-

cas por meio de métricas orientadas à classe positiva (IoU, F1-Score, precision e

recall), reportadas para validação e teste, complementadas por análise qualitativa

das máscaras preditas.

Do ponto de vista dos desafios, destaca-se que a classe incêndio tende a ocupar regiões

pequenas e esparsas nas imagens, o que torna a segmentação particularmente sensível ao

desbalanceamento e à escolha do limiar de decisão. Além disso, a presença de pares ima-

gem/máscara com inconsistências ou regiões ausentes pode introduzir ruído no processo

de treinamento e avaliação. Assim, este estudo concentra-se na construção de um arranjo

experimental capaz de isolar e quantificar o impacto das principais decisões metodológicas

sobre o desempenho final dos modelos.

1.3 Hipótese

Considerando o forte desbalanceamento entre classes e a natureza esparsa da classe

incêndio nas imagens Sentinel-2, este trabalho parte da hipótese central de que:
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❏ a combinação de (i) funções de perda sensíveis à classe minoritária (Dice, Focal e

a perda composta Dice+Focal), (ii) estratégias de mitigação do desbalanceamento

no treinamento (e.g., undersampling de amostras negativas e data augmentation), e

(iii) calibração do limiar de decisão por varredura na validação (maximizando o F1-

Score) resulta em modelos de segmentação mais robustos e com melhor equilíbrio

entre precisão e recall, refletido em valores superiores de IoU e F1-Score no conjunto

de teste, quando comparados a abordagens tradicionais baseadas apenas em Binary

Cross-Entropy e limiar fixo.

Adicionalmente, assume-se como hipótese complementar que o desempenho e a esta-

bilidade do modelo dependem do backbone empregado, sendo esperado que arquiteturas

com encoders mais estáveis apresentem menor sensibilidade à escolha da função de perda

e do limiar de decisão, especialmente em cenários de desbalanceamento extremo.

1.4 Contribuições

Este trabalho apresenta uma abordagem reprodutível para segmentação semântica de

áreas queimadas em imagens multiespectrais Sentinel-2, com foco no desafio de desba-

lanceamento extremo entre classes (fundo vs. incêndio). Considerando a metodologia

adotada e os resultados experimentais obtidos, as principais contribuições são:

❏ Definição e implementação de um pipeline de preparação de dados para Sentinel-2,

contemplando organização do conjunto multiespectral, padronização do particiona-

mento (train/validation/test) e geração de amostras adequadas ao treinamento de

redes convolucionais para segmentação;

❏ Avaliação comparativa de arquiteturas U-Net com encoders pré-treinados, incluindo

VGG-16 e EfficientNetB3, analisando o impacto do backbone na qualidade de seg-

mentação sob o mesmo protocolo experimental e conjunto de métricas;

❏ Proposição e validação de uma estratégia explícita para lidar com o desbalancea-

mento de classes por meio de undersampling orientado ao conteúdo (priorizando

amostras com presença da classe minoritária) e data augmentation para ampliar a

variabilidade das amostras, reduzindo viés do modelo e melhorando a capacidade

de generalização;

❏ Investigação sistemática de funções de perda voltadas à classe minoritária, compa-

rando perdas clássicas (p.ex., Binary Cross-Entropy e Dice Loss) com uma função

de perda composta (combinação de termos para sobrepor desbalanceamento e re-

finar bordas), evidenciando ganhos de desempenho (especialmente em F1-score e

IoU) na segmentação da classe de incêndio;
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❏ Demonstração da eficácia do treinamento em duas fases (warm-up do decoder com

congelamento do encoder, seguido de fine-tuning do encoder), contribuindo para

estabilização do aprendizado, melhor convergência e incremento de desempenho nos

conjuntos de validação e teste;

❏ Disponibilização do código-fonte, configurações experimentais e artefatos de avalia-

ção (métricas, visualizações qualitativas e resultados por experimento) em repositó-

rio público, promovendo reprodutibilidade e facilitando o reuso por pesquisadores e

profissionais de monitoramento ambiental.

1.5 Organização da Dissertação

Esta dissertação está organizada em quatro capítulos, além desta introdução.

O Capítulo 2 apresenta a fundamentação teórica que sustenta o trabalho, contem-

plando conceitos de segmentação semântica e redes neurais convolucionais, a arquitetura

U-Net e encoders pré-treinados, bem como aspectos do sensoriamento remoto relevantes

ao estudo, incluindo características do satélite Sentinel-2 e discussões sobre composições

espectrais empregadas na detecção de queimadas. Também são revisados trabalhos cor-

relatos e abordagens recentes aplicadas à segmentação em imagens orbitais.

O Capítulo 3 descreve o desenho experimental adotado, incluindo o dataset utilizado,

o pré-processamento das imagens e a construção do pipeline de treinamento e avaliação.

São detalhadas as variações de arquitetura (U-Net com VGG-16 e EfficientNetB3), as

estratégias de mitigação do desbalanceamento (como undersampling e data augmenta-

tion), as funções de perda avaliadas (incluindo perdas compostas) e o procedimento de

calibração do limiar de decisão por varredura na validação.

O Capítulo 4 apresenta e analisa os resultados obtidos nos dois ciclos experimen-

tais, comparando as combinações de backbones e funções de perda com base em métricas

orientadas à classe incêndio, como IoU, F1-Score, precisão e recall. Além da avaliação

quantitativa, são discutidos o comportamento das curvas de aprendizado, as matrizes de

confusão e a análise qualitativa das máscaras preditas, destacando os efeitos das melhorias

introduzidas no Ciclo 2.

Por fim, o Capítulo 5 sintetiza os principais achados do estudo, revisita a hipótese

de pesquisa à luz dos resultados e apresenta limitações e direções para trabalhos futuros,

incluindo a exploração de arquiteturas baseadas em atenção, estratégias alternativas de

balanceamento, avaliação em múltiplos sensores e generalização para diferentes biomas e

configurações espectrais.
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Capítulo 2

Fundamentação Teórica

Nesta seção serão abordados os conceitos fundamentais que embasam o desenvolvi-

mento desta pesquisa e os principais trabalhos correlatos.

2.1 Métodos de Aprendizado Profundo em Imagens

de Sensoriamento Remoto

AP ou Deep Learning (DL) é uma subdisciplina do Machine Learning (ML) focada

no desenvolvimento de modelos capazes de aprender a partir de dados fornecidos, com o

objetivo de produzir os resultados esperados. O diferencial dessas técnicas está na utiliza-

ção de diversas camadas de processamento sobrepostas, o que possibilita a construção de

representações hierárquicas dos dados. Cada camada subsequente refina as informações

processadas pela anterior, permitindo a extração de características progressivamente mais

complexas e abstratas.

No contexto do reconhecimento de imagens, por exemplo, o modelo inicia a análise

a partir de informações básicas, como os píxeis. Em camadas mais profundas, essas

informações são combinadas para identificar padrões simples, como linhas e contornos,

até chegar a uma interpretação mais detalhada e complexa da imagem como um todo.

Nos últimos anos, o uso de técnicas de DL no campo do SR tem atraído atenção

devido ao seu desempenho robusto e à ampliação das possibilidades de aplicação (KHE-

LIFI; MIGNOTTE, 2020b). Essas técnicas são capazes de aprender automaticamente

representações complexas de dados em imagens de SR por meio de redes neurais compos-

tas por diversas camadas. Segundo esses autores, desde 2015, observa-se um crescimento

expressivo no número de publicações científicas relacionadas ao uso de DL para análise

de imagens de SR, acompanhado por um aumento significativo nas citações dessas publi-

cações, indicando o crescente interesse da comunidade científica.

Hoeser e Kuenzer (2020) também notam que, desde que o DL começou a ser aplicado

no SR por volta de 2015, o número de artigos publicados nessa área mais que dobrou a
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cada ano. Esse aumento é impulsionado pela maior disponibilidade de dados e pelo avanço

no poder computacional, especialmente com o uso de Graphics Processing Units (GPUs),

que facilitam o processamento em grande escala. As aplicações incluem diversas áreas,

como super-resolução de imagens, fusão de dados, remoção de ruído, previsão climática e

detecção de objetos utilizando sensores ópticos, multiespectrais, hiperespectrais e Radar

de Abertura Sintética (SAR).

O crescimento na quantidade de dados provenientes de diferentes sensores e fontes

heterogêneas tem possibilitado avanços no estudo de processos ambientais. Para esses

autores, as técnicas de DL são especialmente adequadas para lidar com os desafios rela-

cionados à fusão de dados de múltiplos sensores no SR.

2.2 Redes Neurais Convolucionais

O ML é um subconjunto da IA que envolve o treinamento de máquinas em grandes

conjuntos de dados para aprender padrões e fazer previsões. O AP, que envolve o treina-

mento de redes neurais com camadas, é uma subclasse poderosa do ML que demonstrou

notável sucesso em várias aplicações, como reconhecimento de imagens e fala.

As Redes Neurais Convolucionais (CNN) são um tipo popular de modelo de ML utili-

zado para reconhecimento de imagens, reconhecimento de fala e Natural Language Proces-

sing (NLP). As Redes Neurais Convolucionais (CNNs) foram bem-sucedidas em tarefas de

reconhecimento de imagens, alcançando resultados de ponta em vários benchmarks. Seu

sucesso se deve à capacidade de capturar características e padrões espaciais em imagens,

utilizando uma arquitetura hierárquica de camadas que realizam operações de convolu-

ção e extraem características em diferentes níveis de abstração (XIONG et al., 2021). A

Figura 1 ilustra o fluxo.

A relação hierárquica entre os principais campos da inteligência computacional. A

IA constitui o domínio mais amplo, englobando métodos e sistemas capazes de simular

aspectos do raciocínio humano. Dentro dela, o ML representa um subconjunto voltado

ao desenvolvimento de algoritmos que aprendem a partir de dados. O AP, por sua vez,

é uma vertente do aprendizado de máquina que utiliza redes neurais profundas para

modelar representações complexas. As CNN integram essa categoria, destacando-se como

uma das arquiteturas mais utilizadas em tarefas de reconhecimento de padrões e análise

de imagens.



2.2. Redes Neurais Convolucionais 33

Figura 1 – Relação hierárquica entre IA, Aprendizado de Máquina, Aprendizado Pro-
fundo e CNN. Fonte: Elaborado pela autora.

A U-Net é uma arquitetura de CNN projetada especificamente para tarefas de seg-

mentação de imagens biomédicas, mas que também tem sido aplicada em outras áreas de

segmentação de imagem. Caracteriza-se por sua forma em “U”, composta por duas partes

principais: um caminho de contração (encoder) e um caminho de expansão (decoder). O

caminho de contração segue a arquitetura típica de uma rede convolucional, na qual as

imagens são progressivamente reduzidas em tamanho através de camadas convolucionais

e de pooling, capturando características contextuais. O caminho de expansão consiste

em camadas de upsampling e convoluções que aumentam a resolução das características

extraídas, permitindo a recuperação precisa da localização espacial. Além disso, a U-Net

usa conexões de atalho (skip connections) que transferem mapas de características de alta

resolução do encoder para o decoder, preservando informações detalhadas essenciais para

uma segmentação precisa. Esta combinação de características permite que a U-Net ob-

tenha resultados de segmentação com assertividade notável, mesmo com uma quantidade

limitada de dados de treinamento Ronneberger, Fischer e Brox (2015).

No estudo de Pereira (2021), foi utilizada uma U-Net, essa arquitetura foi aplicada nas

imagens do Landsat-8, alcançando um desempenho destacado, com métricas de F-Score

acima de 90%. Quando aplicados em imagens do Sentinel-2, esses modelos mantiveram

uma performance robusta, com F-Score ultrapassando os 80%.

O uso de CNNs já é bem estabelecido para tarefas de visão computacional devido

à sua capacidade de extrair automaticamente características hierárquicas complexas de

imagens. No contexto da detecção de incêndios, as arquiteturas VGG-16, InceptionV3 e

Xception foram adaptadas, demonstrando a versatilidade e eficácia das CNNs em reco-

nhecer padrões de fogo e fumaça em imagens (SATHISHKUMAR et al., 2023). A escolha

dessas arquiteturas específicas se deve às suas características únicas, como a profundidade
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das redes e a eficiência no tratamento de parâmetros, que são cruciais para o desempenho

na classificação de imagens complexas relacionadas a incêndios.

2.3 Aumento de Dados

O aumento de dados pode ser utilizado para melhorar o desempenho de modelos de

AP, especialmente em cenários na qual há uma quantidade limitada de dados rotulados

disponíveis para treinamento. Essa técnica consiste na aplicação de transformações nos

dados de entrada, como rotações, espelhamentos, distorções e ajustes de cor, com o ob-

jetivo de expandir o conjunto de dados de treinamento, aumentando sua variabilidade e,

consequentemente, a capacidade do modelo de generalizar para novos dados.

Entre as bibliotecas disponíveis, a Albumentations destaca-se por sua eficiência e fle-

xibilidade na aplicação de transformações aleatórias em imagens, permitindo ampliar a

diversidade dos dados de entrada sem comprometer sua coerência semântica. Essa bi-

blioteca oferece um conjunto abrangente de operações, como rotações, espelhamentos,

translações, variações de brilho e contraste, distorções geométricas e ajustes de cor, que

podem ser combinadas dinamicamente durante o treinamento. Dessa forma, o uso da

Albumentations contribui para reduzir o sobreajuste e melhorar a capacidade de generali-

zação dos modelos, promovendo um desempenho mais robusto em tarefas de segmentação

e classificação de imagens Buslaev et al. (2020).

2.4 Sentinel-2

Os satélites Sentinel-2 são instrumentos importantes para a observação da Terra, usa-

dos especialmente para monitoramento ambiental, incluindo a detecção de incêndios. Eles

capturam imagens multiespectrais, que são imagens tiradas em várias faixas do espectro

de luz, permitindo a análise de diferentes características da superfície terrestre.

O Copernicus Sentinel-2A e Sentinel-2B são satélites de alta resolução espacial proje-

tados para fornecer dados ópticos multiespectrais. Eles foram lançados em uma órbita a

786 km de altitude, garantindo um tempo de revisita de 5 dias ao operar em conjunto.

Esses satélites são equipados com um único instrumento de imageamento denominado

Multi-Spectral Instrument (MSI), que cobre uma faixa de 295 km.

O MSI utiliza um Telescópio Anastigmático de Três Espelhos (TMA), tecnologia que

permite capturar imagens em 13 diferentes bandas espectrais, desde o Visível e Infraver-

melho Próximo (VNIR) até o infravermelho de Ondas Curtas Infravermelho de Ondas

Curtas (SWIR). Essas bandas funcionam como filtros de cor, ajudando a analisar vários

aspectos da superfície terrestre e da atmosfera, com resoluções espaciais variando de 10

a 60 metros. Os nanômetros(nm) são usados para medir os comprimentos de onda da
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2.5 Trabalhos Correlatos

Tecnologias de sensoriamento remoto e inteligência artificial possuem potencial para

apoiar o planejamento de conservação, abrangendo a identificação de habitats críticos, a

avaliação de riscos ecossistêmicos e a análise de paisagens para monitoramento em larga

escala Christin, Hervet e Lecomte (2019). Em 2012, ocorreu uma revolução na classi-

ficação de imagens com a introdução da AlexNet, uma arquitetura de rede neural con-

volucional que representou um marco no uso de aprendizado profundo (KRIZHEVSKY;

SUTSKEVER; HINTON, 2017). Desde então, o aprendizado profundo tem sido aplicado

no sensoriamento remoto para aprimorar a classificação automática de características em

imagens de satélite. Redes convolucionais profundas supervisionadas aprendem a identifi-

car objetos em imagens utilizando dados brutos, com mínima necessidade de conhecimento

prévio sobre as características em análise. Na segmentação semântica, por exemplo, o mo-

delo requer apenas uma máscara com rótulos para reconhecimento e treinamento eficazes

(WAGNER et al., 2019).

Pesquisas recentes têm explorado diferentes abordagens para aprimorar a eficácia das

CNNs no domínio de SR. Estudos têm demonstrado que a integração de dados multies-

pectrais e hiperespectrais com CNNs pode melhorar de maneira considerável a detecção

de incêndios em diversas condições ambientais. Além disso, técnicas como transferência

de aprendizado e aumento de dados têm sido utilizadas para superar desafios relacionados

à escassez de dados rotulados, comuns nesse tipo de aplicação.

A pesquisa no campo da detecção de incêndios ativos concentra-se em fornecer méto-

dos apropriados para determinar se um determinado pixel em uma imagem multiespectral

corresponde a um incêndio ativo. Devido às diferentes altitudes orbitais dos satélites e

aos diversos sensores equipados com diferentes comprimentos de onda, esses métodos

geralmente precisam ser projetados especificamente para cada sistema. As imagens do

satélite Landsat-8 foram processadas por meio de condições propostas por Schroeder et

al. (2014), Murphy et al. (2016) e Kumar e Roy (2018), ajustadas especialmente para

o sensor Operational Land Imager (OLI) sobre métodos automáticos para detecção de

regiões com incêndios ativos datam da década de 1970, quando foram analisados os in-

tervalos espectrais mais adequados para detectar incêndios florestais (CHEN; MORTON;

RANDERSON, 2024). Matson e Holben (1987) argumentaram que o sensoriamento re-

moto era a única alternativa viável para monitorar incêndios ativos em regiões isoladas,

utilizando o sensor Advanced Very High Resolution Radiometer (AVHRR) para detectar

atividade de fogo na Amazônia.

A classificação de imagens de SR continua sendo uma tarefa complexa e multifacetada,

enfrentando desafios devido ao grande volume de dados, a diversidade das características

da paisagem e a presença frequente de conjuntos de treinamento limitados e desbalance-

ados (BAN et al., 2020). Além disso, a eficácia da classificação e o custo computacional

associado são afetados por uma variedade de fatores, incluindo a escolha dos algoritmos
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de classificação, o tipo de sensores de SR utilizados, técnicas de pré-processamento e

pós-processamento, a natureza das classes alvo e o nível de desempenho desejado para o

produto final, e a seleção e qualidade das amostras de treinamento.

(de Almeida Pereira et al., 2021) introduziram um novo dataset público contendo

mais de 150.000 patches de imagem, extraídos de imagens multiespectrais do Landsat-8

capturadas em agosto de 2020, com incêndios ativos em diversas localidades ao redor do

mundo. Este dataset foi dividido em duas partes: a primeira com saídas geradas por três

algoritmos manuais conhecidos para detecção de incêndios, e a segunda contendo máscaras

de fogo anotadas manualmente. O estudo demonstrou que redes neurais convolucionais

podem ser usadas para aproximar esses algoritmos manuais, alcançando uma precisão de

87,2% e um recall de 92,4% em comparação com as anotações manuais, superando os

algoritmos manuais em termos de robustez na detecção de incêndios ativos.

Os métodos utilizados no estudo incluem o treinamento de CNNs com diferentes ar-

quiteturas derivadas da U-Net para segmentação de imagens, explorando a combinação de

múltiplos outputs de detecção para melhorar os resultados. Os modelos foram treinados

para replicar os algoritmos manuais de (SCHROEDER et al., 2014), (MURPHY et al.,

2016) e (KUMAR; ROY, 2018), que utilizam condições específicas baseadas em bandas

espectrais para detectar incêndios. As CNNs foram capazes de capturar as complexida-

des dessas o a votação entre modelos, que mostrou um equilíbrio superior entre precisão

e recall.

(PEREIRA et al., 2023) utilizou a arquitetura de redes neurais convolucionais U-

Net para segmentação e mapeamento de ecossistemas de canga. Nesse caso, a U-Net foi

adaptada para a segmentação de superfícies naturais utilizando imagens do Sentinel-2,

ajustando a arquitetura para lidar com a menor resolução espacial dessas imagens. A

abordagem combinou máscaras vetoriais derivadas de imagens com baixa cobertura de

nuvens e dados de campo, assegurando maior representatividade das classes segmentadas.

A metodologia empregou 2.061 tiles, sendo 927 representando o objeto de interesse

(e.g., vegetação) e 1.134 contendo apenas fundo. Tiles consistem em subdivisões ou

recortes de uma cena de sensoriamento remoto em blocos menores, permitindo que o

treinamento de redes neurais seja realizado de forma mais eficiente, com menor demanda

de memória e maior controle sobre a variabilidade espacial presente no conjunto de dados.

Para mitigar o overfitting e aumentar a robustez do modelo, foram aplicadas técni-

cas de aumento de dados, como rotações, ajustes de brilho, saturação e matiz, além da

conversão para o espaço de cor Hue, Saturation, Brightness (HSB). Esse modelo de cor

armazena informações em três componentes: matiz (responsável pela variação de cor),

saturação (intensidade ou pureza da cor) e brilho (luminosidade do pixel). A possibili-

dade de manipular cada componente separadamente permite gerar variações controladas

e realistas nas imagens, ampliando a diversidade do conjunto de treinamento e tornando

o modelo mais capaz de generalizar para diferentes condições de iluminação e coloração.
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Em uma área de 30.000 ha no Vale do Rio Peixe Bravo, o algoritmo de aprendizado pro-

fundo identificou e segmentou 762 manchas de canga com uma precisão geral de 98,5%,

evidenciando o potencial preditivo das técnicas adotadas.

Enquanto (BOUGUETTAYA et al., 2022) concentram-se em dados coletados por

Veículo Aéreo Não Tripulado (VANTs), que têm maior flexibilidade e podem voar em

altitudes variadas,o trabalho aqui proposto considera imagens multiespectrais provenien-

tes de satélites para detecção em larga escala. Os satélites, apesar de não oferecerem a

flexibilidade de operação dos VANTs, são essenciais para o monitoramento contínuo e de

grandes áreas.

(BOUGUETTAYA et al., 2022) ressaltam a importância de algoritmos avançados de

CNN, mas enfrentam desafios relacionados à escassez de dados de treinamento de alta

qualidade para otimizar esses modelos em detecção de incêndios. Em contraste, a presente

pesquisa busca abordar diretamente essa lacuna por meio da aplicação de técnicas de

aumento de dados, que visam ampliar artificialmente o conjunto de dados disponível

para o treinamento de modelos de aprendizado profundo. Esta técnica é particularmente

relevante no contexto de imagens de satélite, onde as variações climáticas e de cobertura

do terreno podem limitar a quantidade de dados rotulados adequados. O aumento de

dados tem o potencial de melhorar a generalização dos modelos e, assim, aumentar a

acurácia e reduzir os falsos positivos, um desafio crítico na detecção de incêndios, como

confirmado através do trabalho de (SANTOS et al., 2023).

Os (ROSTAMI et al., 2022), no campo da detecção de incêndios utilizando aprendizado

profundo aplicou a técnica de aumento de dados denominada como inversão, especifica-

mente a técnica de inversão horizontal, vertical e horizontal-vertical. Como resultado, as

amostras de treinamento quadruplicaram para 400 patches de imagem.

O RCAug se diferencia de métodos tradicionais ao aplicar transformações de maneira

aleatória e dinâmica durante o treinamento, gerando um número virtualmente ilimitado de

novas imagens com alta variabilidade. Isso proporciona ao modelo a capacidade de lidar

melhor com variações complexas de iluminação, escala e ângulo. Em estudos anteriores,

essa técnica demonstrou melhorias significativas em métricas como o IoU e a F1-score,

como evidenciado em Santos et al. (2023), que reportaram um aumento de 0,51 para 0,81

na métrica de IoU em imagens histológicas de tumores.

Por outro lado, técnicas tradicionais de aumento de dados, como o uso de flips hori-

zontais e verticais, têm sido amplamente empregadas em diversos trabalhos. No estudo

de (ROSTAMI et al., 2022), por exemplo, essas técnicas foram aplicadas ao treinamento

do modelo MultiScale-Net para detecção de incêndios em imagens do Landsat-8. O au-

mento de dados foi utilizado principalmente para melhorar a capacidade do modelo de

lidar com diferentes orientações das imagens, quadruplicando o conjunto de treinamento

original. Embora eficaz em cenários com grande quantidade de dados e em problemas

relativamente simples de detecção, essa abordagem apresenta limitações na capacidade
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de generalizar para variações mais complexas, como mudanças dinâmicas de iluminação,

forma ou escala dos incêndios.

A comparação entre essas abordagens revela que o RCAug oferece uma vantagem em

termos de variabilidade e capacidade de generalização. Ao contrário das técnicas tradici-

onais, que introduzem uma variabilidade limitada nas imagens de treinamento, o RCAug

pode expandir a diversidade do conjunto de dados. A aplicação contínua de múltiplas

transformações durante o treinamento permite que o modelo lide com a complexidade

inerente de cenários naturais, como incêndios de diferentes tamanhos, formas e condições

atmosféricas.

Considerando os conhecimentos disponíveis (ANAYA; TRIPATHY; REINHARDT,

2023), o autor também afirma, com base nos seus estudos, que a escolha de um método

específico de IA pode não ser tão crucial quanto a qualidade e o balanceamento dos dados

utilizados no treinamento, isso porque a importância da proporção entre pixels de fogo

e não fogo no dataset de treinamento, pode ser um fator determinante na eficiência das

detecções.

(HE; GARCIA, 2009) afirma que é “é importante considerar como é feita a amostra-

gem dos dados de treinamento, especialmente se houver necessidade de mapear classes

raras” — como é o caso dos incêndios — assim como forma de analisar o comportamento

de amostras balanceadas ou desbalanceados para o treinamento. (ANAYA; TRIPATHY;

REINHARDT, 2023) empregou duas abordagens distintas para o balanceamento de da-

dos em sua análise. Primeiramente, adotou um formato balanceado, no qual a seleção de

pixels foi realizada de maneira aleatória para assegurar uma proporção equitativa de 1:1

entre pixels de não fogo e fogo. Adicionalmente, explorou um formato desbalanceado, onde

a proporção foi estabelecida em 1:100, significando que para cada pixel indicativo de in-

cêndio, cem pixels representativos de ausência de fogo foram selecionados aleatoriamente,

destacando uma metodologia intencionalmente inclinada para investigar os impactos de

disparidades acentuadas na distribuição dos dados.

A importância de adotar uma abordagem diversificada na formação de amostras re-

side na natureza variável dos incêndios e na complexidade dos ambientes em que ocorrem.

Incêndios podem variar em termos de intensidade, área afetada, e contexto ecológico,

tornando a tarefa de detecção um desafio multidimensional. Além disso, condições at-

mosféricas, variações sazonais e a presença de elementos que possam ser erroneamente

interpretados como fogo (como reflexos solares ou iluminação artificial) introduzem com-

plexidade adicional na análise. Portanto, testar novas composições de amostras é vital

para desenvolver modelos que sejam capazes de discernir entre verdadeiros incêndios e fal-

sos positivos com maior acurácia, ajustando-se efetivamente à diversidade de dados encon-

trada em cenários reais de sensoriamento remoto (ANAYA; TRIPATHY; REINHARDT,

2023).

Já (SATHISHKUMAR et al., 2023) investigaram a detecção de incêndios florestais
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e fumaça em imagens com o uso de modelos de aprendizagem profunda pré-treinados,

dentre eles VGG-16, InceptionV3 e Xception. Para contornar o problema de esquecimento

catastrófico, os autores empregaram a técnica Learning without Forgetting (LwF), de

modo a manter o desempenho da rede em tarefas previamente aprendidas ao mesmo

tempo em que inserem novos conjuntos de dados. O estudo obteve resultados promissores,

destacando-se a arquitetura Xception, que alcançou 98,72% de acurácia na classificação

do conjunto de dados original e manteve bons resultados para um novo conjunto de

imagens quando retreinada com LwF. Esse trabalho evidencia o potencial do uso de

transfer learning associado a estratégias que evitam o esquecimento de tarefas anteriores,

mostrando-se relevante para aplicações de monitoramento e detecção de incêndios em

cenários com dados limitados e em constante atualização.

O estudo conduzido por (LEE et al., 2024) propôs uma abordagem automatizada para

detecção de áreas queimadas utilizando imagens do satélite Sentinel-2 na República da

Coreia. Com foco em 14 casos de incêndios florestais ocorridos entre 2019 e 2023, o tra-

balho explorou diferentes tipos de cobertura do solo e comparou métodos de aprendizado

profundo, aprendizado de máquina de índices espectrais. O objetivo principal foi identi-

ficar combinações otimizadas de modelos e dados de entrada para melhorar a precisão na

detecção de áreas queimadas.

A metodologia consistiu em seis etapas principais. Primeiro, as imagens do Sentinel-2

foram pré-processadas, incluindo correção atmosférica por meio do Sen2cor, resamplea-

mento de bandas SWIR para alinhamento de resolução espacial e equalização de histo-

grama para melhorar o contraste das imagens. Em seguida, dados de referência foram

gerados com base em inspeções manuais de imagens do Google Earth, rotulando áreas

queimadas para uso no treinamento e validação dos modelos.

Os métodos de aprendizado de máquina e profundo incluíram os modelos U-Net e

HRNet para DL e o framework AutoML. O U-Net utilizou uma arquitetura encoder-

decoder com conexões skip, enquanto o HRNet combinou múltiplas escalas de resolução

em sua estrutura, utilizando a arquitetura HRNetV2-W48 com mecanismo OCR para

otimizar a segmentação. No aprendizado de máquina, o AutoML automatizou processos

como pré-processamento, seleção de algoritmos e ajuste de hiperparâmetros, testando

modelos como Random Forest e Gradient Boosting.

A otimização de hiperparâmetros foi uma etapa essencial no estudo. Nos modelos de

DL, foram realizados testes iterativos para ajustar tamanho do lote, taxa de aprendizado

e tamanho dos recortes das imagens. Valores ótimos incluíram tamanhos de lote de 8 para

U-Net e 4 para HRNet, taxas de aprendizado de 5 × 10−6 e 5 × 10−3, respectivamente, e

recortes de 256 × 256 pixels. Para o AutoML, a busca em grade identificou configurações

ideais para cada algoritmo testado.

Os índices espectrais NDVI e NBR também foram analisados utilizando o método de

threshold automático (Otsu) para distinguir áreas queimadas de não queimadas. Essa
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abordagem foi comparada ao desempenho dos modelos de DL e ML, considerando as

combinações de bandas RGB e falsa cor (B4, B8, B3) como entradas.

Os resultados indicaram que o HRNet apresentou a maior precisão geral, com IoU

de 89,40% em uma das áreas de teste, enquanto o U-Net demonstrou maior robustez

em cenários com dados desbalanceados, apesar de apresentar falsos positivos em áreas

agrícolas. O AutoML teve desempenho inferior ao DL, mas destacou-se pela automação

do processo. A inclusão de índices espectrais melhorou ligeiramente os resultados em

cenários específicos. Imagens em falsa cor foram identificadas como a melhor combinação

de entrada, destacando sua eficácia na detecção de áreas queimadas.

Este estudo contribui significativamente ao explorar técnicas avançadas de aprendi-

zado de máquina e profundo combinadas com análise espectral, aplicadas à detecção de

incêndios florestais em ambientes complexos. A otimização detalhada dos hiperparâme-

tros garantiu que os modelos fossem ajustados às características específicas das imagens

Sentinel-2 e dos terrenos analisados. Os resultados reforçam o potencial de sistemas au-

tomáticos para suporte em estratégias de mitigação e resposta a desastres ambientais.

Uma revisão sistemática conduzida por (MACHADO et al., 2023) analisou 37 estu-

dos publicados entre 2018 e 2023, revelando resultados promissores na aplicação dessas

técnicas. Os autores identificaram que a maioria das implementações alcançou taxas de

precisão superiores a 90%, demonstrando a viabilidade e eficiência desses métodos para o

monitoramento florestal.

A relevância desses sistemas automatizados torna-se ainda mais evidente quando con-

sideramos que, entre 2002 e 2016, aproximadamente 420 milhões de hectares de floresta

foram consumidos por incêndios anualmente em escala global. Este cenário tende a se

agravar com as mudanças climáticas, que potencialmente aumentarão a frequência e in-

tensidade dos incêndios florestais.

Os estudos analisados foram categorizados em cinco principais abordagens: classifi-

cação pura, detecção, detecção combinada com classificação, segmentação e segmentação

com classificação. Entretanto, apesar dos resultados promissores, persistem desafios sig-

nificativos na implementação desses sistemas, principalmente relacionados à escassez de

dados de treinamento e ao desbalanceamento dos conjuntos de dados disponíveis.

Para superar essas limitações, a literatura sugere algumas direções promissoras para

pesquisas futuras: a otimização de hiperparâmetros através de técnicas bio-inspiradas, a

integração de múltiplas fontes de dados (incluindo imagens de satélite, VANTs e drones),

a hibridização de diferentes modelos de DL, e a implementação de técnicas avançadas de

aumento de dados, como Neural Style Transfer e Redes Adversariais Generativas (GANs).

Além disso, a exploração de diferentes estratégias de particionamento de dados pode

contribuir para melhorar o desempenho dos modelos.

A integração de múltiplas fontes de dados merece destaque particular, pois permite

uma abordagem mais abrangente e robusta. Por exemplo, enquanto as imagens de satélite
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Capítulo 3

Metodologia

Neste trabalho, foi aplicada a Segmentação Semântica para detecção de focos de incên-

dios florestais em imagens multiespectrais do satélite Sentinel-2, utilizando composições

em falsa cor (False Color) para realçar contrastes relevantes à tarefa. A segmentação

foi formulada como um problema binário, com os pixels classificados como “incêndio” ou

“não-incêndio”.

O fluxo metodológico desenvolvido compreendeu dois ciclos experimentais distintos,

conforme ilustrado no fluxograma a seguir. No primeiro ciclo, de caráter exploratório,

avaliou-se o desempenho da arquitetura U-Net com dois encoders diferentes: VGG-16 e

EfficientNetB3. Nesse estágio inicial, não foram aplicadas técnicas de balanceamento de

classes ou aumentação de dados (data augmentation), e os modelos foram treinados com as

funções de perda Entropia Cruzada Binária (BCE) e Dice Loss. Essa etapa foi essencial

para identificar as limitações enfrentadas na detecção da classe minoritária (incêndio),

refletidas principalmente nos baixos valores de IoU e F1-Score.

Com base nas deficiências observadas, o segundo ciclo experimental incorporou um

pipeline otimizado. A arquitetura Xception foi substituída pela EfficientNetB3 como

encoder da U-Net, e foram integradas múltiplas melhorias metodológicas: aplicação de

undersampling para reduzir amostras sem ocorrência de incêndio, aumentação de dados

com a biblioteca Albumentations (incluindo flip, rotação, brilho e contraste), além do

uso de uma função de perda composta (Dice Loss + Binary Focal Loss). O treinamento

também passou a ser conduzido em duas fases — inicialmente com o encoder congelado,

seguido de fine-tuning com taxa de aprendizado reduzida —, promovendo um aprendizado

mais estável e eficiente. Para facilitar a reprodutibilidade e a comparação entre os ciclos,

recomenda-se que a tabela comparativa entre Ciclo 1 e Ciclo 2 (com backbones, perdas,

balanceamento, aumentação de dados e estratégia de threshold) seja apresentada nesta

seção de Metodologia (no tópico de desenho experimental), e não apenas no Capítulo de

Resultados.

A avaliação foi conduzida com foco nas métricas mais sensíveis ao desbalanceamento,

como IoU, F1-Score, precisão e revocação (recall), todas aplicadas exclusivamente à classe
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“incêndio”. Adicionalmente, realizou-se uma análise qualitativa das predições por meio

da inspeção visual das máscaras geradas, permitindo avaliar não apenas a exatidão, mas

também a coerência morfológica das regiões segmentadas.

O threshold de decisão empregado nas avaliações foi definido por varredura de th-

resholds maximizando o F1-Score na validação, fixando-se em 0,45 para BCE e 0,40 para

Dice Loss; os mesmos valores foram utilizados para computar as matrizes de confusão e

as métricas resumidas nas tabelas apresentadas no Capítulo de Resultados.

Resgatando o objetivo central deste trabalho — aplicar e avaliar modelos de segmen-

tação semântica para a detecção de incêndios florestais em imagens multiespectrais do

satélite Sentinel-2 — foram conduzidos dois ciclos experimentais principais.

O primeiro ciclo experimental teve caráter exploratório e avaliou o desempenho da

U-Net com encoders VGG16 e Xception, utilizando, primeiramente, a função de perda

BCE e, posteriormente, a Dice Loss. Esse ciclo permitiu evidenciar as dificuldades enfren-

tadas na segmentação da classe “incêndio” nas imagens, com métricas de IoU e F1-Score

bastante reduzidas. Mesmo com a aplicação da Dice Loss, os ganhos foram modestos,

revelando a necessidade de ajustes metodológicos diante do desbalanceamento observado.

O segundo ciclo experimental foi concebido a partir das limitações observadas no Ciclo

1, mantendo a mesma arquitetura de referência (U-Net com codificadores pré-treinados

VGG16 e EfficientNetB3), porém incorporando melhorias metodológicas orientadas ao

cenário de forte desbalanceamento entre as classes “fogo” e “não-fogo”. Assim, o objetivo

do Ciclo 2 não é substituir a linha de base, mas refiná-la, permitindo uma compara-

ção controlada entre um treinamento convencional e uma configuração mais adequada à

segmentação de eventos raros em imagens Sentinel-2.

Em termos de manipulação de dados, o Ciclo 2 mantém os mesmos arquivos de di-

visão utilizados no Ciclo 1, garantindo comparabilidade completa entre os experimentos.

A principal diferença consiste na ativação explícita de um esquema de undersampling

sobre o conjunto de treino, no qual a classe majoritária (ausência de fogo) é reduzida

para se igualar, em número de amostras, à classe minoritária (presença de fogo). Esse

balanceamento visa atenuar o viés do modelo em favor da classe negativa e aumentar sua

sensibilidade à detecção de áreas queimadas.

Outro aprimoramento diz respeito à estratégia de data augmentation. Enquanto o Ci-

clo 1 utilizou apenas redimensionamento ou transformações simples, o Ciclo 2 adota um

pacote mais robusto, combinando operações geométricas (reflexões, translações e rotações

leves) e fotométricas (variação de brilho, contraste, matiz e desfoque). Essas transforma-

ções visam simular variações de iluminação, condições atmosféricas e heterogeneidade

espectral da vegetação, ampliando a capacidade de generalização dos modelos.

Além das melhorias de pré-processamento, o Ciclo 2 amplia o conjunto de funções

de perda avaliadas. Além da BCE e da Dice Loss, são introduzidas a Focal Loss e a

perda composta Dice+Focal, mais adequadas ao tratamento de classes raras e cenários
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desbalanceados. O sweep do limiar de decisão também foi refinado, passando a considerar

um conjunto mais denso de valores no intervalo [0,10, 0,90], permitindo avaliar com maior

granularidade o compromisso entre precision, recall e IoU. Além disso, o Ciclo 2 investigou

sistematicamente o efeito de quatro funções de perda: BCE, Dice, Focal e a combinação

Dice Focal. Em conjunto, esse arranjo experimental permitiu analisar o impacto isolado

e combinado das estratégias de balanceamento e das funções de perda.

Entre todas as combinações testadas, o modelo VGG-16 com Focal Loss obteve o

melhor desempenho global no Ciclo 2, alcançando valores de F1-score superiores a 0,96

tanto em validação quanto em teste. Esse comportamento superou significativamente

o observado no Ciclo 1, em que a ausência de mecanismos explícitos de balanceamento

resultava em oscilações acentuadas de precision e dificuldade de segmentar regiões menores

ou esparsas.

Ambos os experimentos foram gerados com base no conjunto integral de imagens do

FireDataset_20m — contendo 5.167 imagens para treinamento, 1.226 para validação e

1.858 para teste. Além disso, foram realizados em ambiente computacional com proces-

sador AMD Ryzen 5 2500U, 24 GB de memória DDR4 e GPU AMD Radeon 535 com

2 GB de VRAM, sob sistema operacional Windows 10. O desenvolvimento foi condu-

zido em Python 3.9, com suporte das bibliotecas TensorFlow, NumPy, Matplotlib, Pillow,

scikit-image e tqdm.

O treinamento foi executado com o otimizador Adam, utilizando taxa de aprendizado

inicial de 1 × 10−4 e batches de quatro amostras. A fase de fine-tuning adotou uma taxa

reduzida (1 × 10−5) para permitir ajustes graduais nos pesos do encoder. Mecanismos

de Early Stopping e Model Checkpoint foram empregados para prevenir sobreajuste e

armazenar os melhores pesos com base na métrica de IoU na validação.
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CICLO 2 — OtimizadoCICLO 1 — Exploratório

Dataset Sentinel-2
(5167 treino / 1226 validação / 1858 teste)

Pré-processamento (comum)𝙛𝙖𝙡𝙨𝙚 𝙘𝙤𝙡𝙤𝙧 • resize 256×256
normalização por 𝙗𝙖𝙘𝙠𝙗𝙤𝙣𝙚

Sem balanceamento 𝙐𝙣𝙙𝙚𝙧𝙨𝙖𝙢𝙥𝙡𝙞𝙣𝙜
(reduz amostras sem fogo)

Sem aumentação de dados

𝗠𝗼𝗱𝗲𝗹𝗼𝔀
U-Net + VGG16

U-Net + 𝙓𝙘𝙚𝙥𝙩𝙞𝙤𝙣

𝗣𝗲𝗿𝗱𝗮𝔀𝘽𝘾𝙀 • 𝘿𝙞𝙘𝙚

𝗧𝗿𝗲𝗶𝗻𝗮𝗺𝗲𝗻𝔁𝗼 𝗽𝗮𝗱𝗿ã𝗼
Adam (LR=1e-4) • batch=4

𝗦𝗲𝗹𝗲çã𝗼 𝗱𝗲 𝗹𝗶𝗺𝗶𝗮𝗿
varredura de 𝙩𝙝𝙧𝙚𝙨𝙝𝙤𝙡𝙙𝙨 na validação

(resolução ampla)

𝗔𝘃𝗮𝗹𝗶𝗮çã𝗼
IoU • F1 • Precisão • 𝙧𝙚𝙘𝙖𝙡𝙡

(classe incêndio)

Aumentação (𝘼𝙡𝙗𝙪𝙢𝙚𝙣𝙩𝙖𝙩𝙞𝙤𝙣𝙨)𝙛𝙡𝙞𝙥 • rotação • brilho/contraste

𝗠𝗼𝗱𝗲𝗹𝗼𝔀
U-Net + VGG16

U-Net + 𝙀𝙛𝙛𝙞𝙘𝙞𝙚𝙣𝙩𝙉𝙚𝙩𝘽3

𝗣𝗲𝗿𝗱𝗮𝔀𝘽𝘾𝙀 • 𝘿𝙞𝙘𝙚 • 𝙁𝙤𝙘𝙖𝙡 • 𝘿𝙞𝙘𝙚+𝙁𝙤𝙘𝙖𝙡

𝗧𝗿𝗲𝗶𝗻𝗼 𝗲𝗺 𝟮 𝗳𝗮𝔀𝗲𝔀
1) 𝙚𝙣𝙘𝙤𝙙𝙚𝙧 congelado

2) 𝙛𝙞𝙣𝙚-𝙩𝙪𝙣𝙞𝙣𝙜 (LR=1e-5)

𝗦𝗲𝗹𝗲çã𝗼 𝗱𝗲 𝗹𝗶𝗺𝗶𝗮𝗿
varredura de 𝙩𝙝𝙧𝙚𝙨𝙝𝙤𝙡𝙙𝙨 na validação
(resolução refinada), maximizando F1;

limiar aplicado ao teste

𝗔𝘃𝗮𝗹𝗶𝗮çã𝗼
IoU • F1 • Precisão • 𝙧𝙚𝙘𝙖𝙡𝙡

matrizes de confusão

Comparação entre ciclos
diagnóstico + impacto das melhorias

Discussões e conclusões
eficácia do pipeline otimizado

Ciclo 1 - Exploratório Ciclo 2 - Com otimizações

Figura 5 – Fluxograma da metodologia proposta para a segmentação de incêndios flores-
tais.
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3.1 Aquisição de Dados

O primeiro passo deste estudo envolveu a aquisição das imagens necessárias para o

treinamento e avaliação dos modelos de segmentação. As imagens utilizadas foram extraí-

das do FireDataset_20m, disponível no site do projeto CIAR 1. O projeto Chaîne Image

Autonome et Réactive (CIAR), desenvolvido pelo IRT Saint Exupéry, foca no desenvolvi-

mento de arquiteturas de Inteligência Artificial voltadas ao processamento embarcado em

sistemas aeroespaciais, como satélites e drones. A iniciativa busca otimizar a autonomia

desses sistemas por meio da análise de imagens em tempo real, permitindo uma tomada

de decisão ágil diretamente no hardware. Para isso, o projeto integra algoritmos de redes

neurais a dispositivos de baixo consumo energético, superando os desafios técnicos da

transmissão de dados e da latência em missões críticas.

Os dados consistem em imagens de satélite com resolução espacial de 20 metros, captu-

radas pelo satélite Sentinel-2. Para cada imagem, foram fornecidas pelo Instituto Francês

de Pesquisa Tecnológica, máscaras de incêndio, marcando as áreas de interesse que contêm

incêndios. As imagens foram coletadas utilizando o formato False Color (B12, B11, B04),

uma combinação de bandas espectrais que melhor capturam as características relevantes

para a detecção de incêndios. Como exemplo, a Figura 6 mostra uma das imagens de sa-

télite utilizadas no estudo, onde as áreas de incêndio são destacadas pela combinação das

bandas B12, B11 e B04. A imagem é apresentada no formato de False Color, otimizada

para destacar as regiões afetadas por incêndios.

As respectivas máscaras de incêndio foram fornecidas para cada imagem, indicando

as áreas de interesse que contêm incêndios. Estas máscaras são imagens binárias onde o

valor 1 representa as áreas queimadas (incêndio) e 0 representa as áreas não queimadas.

As máscaras são fundamentais para o treinamento supervisionado, pois fornecem ground

truth que o modelo tenta aprender a prever (Figura 6):

O primeiro passo deste estudo envolveu a aquisição das imagens necessárias para

o treinamento e avaliação dos modelos de segmentação. As imagens utilizadas foram

extraídas do site do projeto CIAR FireDataset_20m2. Os dados consistem em imagens

de satélite com resolução espacial de 20 metros, capturadas pelo satélite Sentinel-2.

1 O conjunto de dados está disponível em: <https://ciar.irt-saintexupery.com/index.php/s/
3RLvFSak6Qt7NnB?path=%2Fwildifre_data_20m#editor>

2 <https://ciar.irt-saintexupery.com/index.php/s/3RLvFSak6Qt7NnB?path=%2Fwildifre_data_
20m#editor>





3.2. Segmentação 51

imagens de satélite, que apresentam anomalias térmicas e sinais de fumaça. Suas skip

connections (conexões de atalho) garantem que informações de alta resolução sejam man-

tidas, o que é fundamental para evitar a perda de detalhes, especialmente em áreas me-

nores ou com pouca visibilidade. A U-Net foi utilizada com sucesso por Ronneberger,

Fischer e Brox (2015) em várias tarefas de segmentação de imagens, e sua aplicação no

sensoriamento remoto para a detecção de incêndios tem se mostrado promissora.

3.2.2 VGG16 com Transfer Learning

O modelo VGG-16 é uma arquitetura de rede neural convolucional caracterizada por

sua simplicidade e profundidade. Composto por várias camadas convolucionais seguidas

por camadas totalmente conectadas, o VGG-16 é amplamente utilizado para classificação

de imagens, mas pode ser adaptado para tarefas de segmentação e detecção de padrões

específicos, como incêndios florestais, por meio da utilização de camadas adicionais. Sua

profundidade, combinada com a capacidade de aprender representações robustas, torna o

VGG1-6! (VGG1-6!) uma escolha eficaz para detectar padrões complexos em imagens

multiespectrais.

A simplicidade da arquitetura do VGG-16, aliada à sua eficácia em segmentação de

imagens, facilita sua adaptação para tarefas de detecção de incêndios. A possibilidade

de incorporar camadas de segmentação à rede permite a identificação precisa das regiões

afetadas por incêndios, ao mesmo tempo em que minimiza o risco de falsos positivos,

especialmente quando combinada com técnicas de aprendizado transferido. A arquitetura

VGG16 foi explorada por Sathishkumar et al. (2023) para a identificação de padrões de

fumaça e fogo em imagens multiespectrais, mostrando resultados consistentes na detecção

de incêndios em diferentes tipos de terreno.

3.2.3 EfficientNetB3

Essa escolha foi motivada por seu design escalável, que equilibra profundidade, largura

e resolução de forma eficiente, alcançando alto desempenho com menor custo computaci-

onal (TAN; LE, 2020).

Na literatura recente, a EfficientNet tem se mostrado eficaz em tarefas de segmen-

tação semântica em imagens multiespectrais de satélite. Por exemplo, Soundararajan et

al. Soundararajan et al. (2025) utilizaram a variante EfficientNet-B08 como encoder em

uma arquitetura DeepLabV3+, alcançando valores de IoU superiores a 0,91 na detecção

de áreas queimadas e desmatadas com imagens Sentinel-2.

Outros estudos exploraram variações da U-Net, como RAUNet e AUNet, com encoders

modernos aplicados a dados do Sentinel-2, obtendo resultados robustos em cenários com

forte desbalanceamento de classes (SHIRVANI; ABDI; GOODMAN, 2023).
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3.2.4 Métricas

A avaliação dos modelos foi conduzida com o objetivo de quantificar o desempenho das

previsões feitas sobre o conjunto de teste, utilizando métricas fundamentais para a tarefa

de segmentação de incêndios. As principais métricas computadas durante a avaliação

foram Loss, IoU, Precision e Recall.

A função de perda utilizada foi a BCE, também conhecida como Log Loss. De acordo

com (GOODMAN; MILLER; SMYTH, 1991) uma função de perda utilizada para proble-

mas de classificação binária e pode ser aplicada efetivamente em tarefas de segmentação

binária. Em problemas de segmentação, o objetivo é classificar cada pixel de uma ima-

gem em uma das duas classes: a classe de interesse (no caso, incêndio) ou o fundo (não

incêndio). A BCE mede a dissimilaridade entre a probabilidade predita pelo modelo para

cada pixel e a classe verdadeira (1 ou 0) correspondente a esse pixel.

O coeficiente IoU foi calculado para avaliar a qualidade da sobreposição entre as áreas

preditas e as áreas reais de incêndio, representadas pelas máscaras de ground through. O

IoU foi calculado pixel a pixel, obtendo-se a razão entre a interseção e a união das áreas

identificadas corretamente como incêndio:

IoU =
V erdadeirosPositivos(TP)

TP + FalsosNegativos(FN) + FalsosPositivos(FP)
(1)

Essa métrica é especialmente útil para problemas de segmentação, pois penaliza de

forma severa os falsos positivos e falsos negativos.

A Precisão foi calculada para avaliar a taxa de acerto do modelo nas observações

classificadas como positivas. Ou seja, ela quantifica a proporção de pixels classificados

corretamente como incêndio entre todos os pixels classificados como incêndio pelo modelo:

P =
TP

TP + FP
(2)

O Recall foi calculado para medir a capacidade do modelo de identificar corretamente

as observações positivas, ou seja, as áreas de incêndio. Ele calcula a proporção de pi-

xels com incêndio corretamente classificados entre todos os pixels que realmente possuem

incêndio. A equação utilizada foi:

R =
TP

TP + FN
(3)

Além das métricas quantitativas, foi efetuada uma análise qualitativa dos resultados.

As previsões das máscaras de incêndio foram sobrepostas às imagens RGB originais,

permitindo uma inspeção visual dos focos de incêndio detectados. Isso proporcionou uma

melhor compreensão das áreas afetadas e do desempenho do modelo em diferentes regiões

das imagens. Para quantificar e validar os resultados de maneira mais detalhada, matrizes

de confusão pixel a pixel foram geradas, com o objetivo de avaliar a distribuição de TP,

FP, FN e Verdadeiros Negativos (TN) em cada uma das imagens de teste.
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A implementação completa do pipeline metodológico descrito neste capítulo, incluindo

os dois ciclos experimentais, encontra-se disponível em um repositório público. O código

contempla as rotinas de pré-processamento, treinamento, varredura de limiar, avaliação

quantitativa e geração das figuras e tabelas apresentadas neste trabalho.3

3 Repositório público: <https://github.com/Natalia-oli/mestrado-segmentacao-incendios-sentinel2>.
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Capítulo 4

Resultados

4.0.1 Primeiro Ciclo Experimental: Avaliação com Binary Cros-

sentropy e Dice Loss

Observou-se que a U -Net com VGG-16 apresentou desempenho consistentemente su-

perior, enquanto a EfficientNetB3 melhorou de modo perceptível quando treinada com

Dice Loss em comparação à Binary Cross-Entropy, sugerindo maior sensibilidade à classe

minoritária fogo com perdas baseadas em sobreposição.

As curvas de treinamento e validação reforçam essa leitura: com VGG-16, as métricas

convergem rapidamente a valores altos e estáveis; com EfficientNetB3, a Dice Loss acelera

a subida e estabilização do recall e da métrica IoU frente à BCE. A Tabela 2 apresenta

o comportamento das métricas na validação:

Tabela 2 – Métricas obtidas na validação para a U -Net com encoders e funções de perda
(ciclo 1).

Função de Perda Encoder IoU F1-Score precision Recall

Binary Crossentropy VGG-16 0,9388 0,9684 0,9667 0,9701
Dice Loss VGG-16 0,9378 0,9679 0,9670 0,9689

Binary Crossentropy EfficientNetB3 0,7112 0,8312 0,8242 0,8384
Dice Loss EfficientNetB3 0,7446 0,8536 0,8495 0,8576

Fonte: elaboração própria.

No teste, a liderança do VGG-16 com BCE se mantém, com melhora marginal sobre a

validação, indicando boa capacidade de generalização. Ainda sobre VGG-16, a Dice Loss

exibe precision ligeiramente superior (0,9736) às custas de recall menor, sinalizando um

limiar efetivo mais conservador. Já no EfficientNetB3, a Dice Loss volta a ser a melhor

escolha, elevando tanto IoU quanto F1-Score -Score em relação à BCE, o que reforça o

benefício de perdas sensíveis à classe minoritária para esse encoder. Veja a Tabela 3:
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Tabela 3 – Métricas obtidas no teste para a U -Net com diferentes encoders e funções de
perda (ciclo 1). Resultados calculados no limiar ótimo selecionado na

validação.

Função de Perda Encoder IoU F1-Score precision Recall

Binary Crossentropy VGG-16 0,9406 0,9694 0,9683 0,9705

Dice Loss VGG-16 0,9370 0,9675 0,9736 0,9615

Binary Crossentropy EfficientNetB3 0,6702 0,8025 0,7910 0,8143
Dice Loss EfficientNetB3 0,7014 0,8245 0,8079 0,8418

Fonte: elaboração própria.

Em relação a curva de perda da VGG-16 com BCE apresenta queda acentuada até

aproximadamente a 4ª–6ª época e, depois, estabilização em patamar baixo, com distância

mínima entre treino e validação. Esse comportamento sugere boa capacidade de gene-

ralização no regime atual (mesmo sem fortes augmentations), além de uma otimização

eficiente da cabeça de segmentação. A proximidade entre as curvas mitiga a hipótese de

underfitting e corrobora os resultados de validação reportados acima.

Com a EfficientNetB3, a perda também decai de forma consistente, porém a separação

entre as curvas de treino e validação é mais evidente, sobretudo no início do treinamento.

Isso indica maior volatilidade na fase inicial e possível dependência mais forte de hiperpa-

râmetros (taxa de aprendizado, regularização) e da preparação dos dados (normalização

e proporção classe minoritária). Embora a perda final também atinja patamar baixo, a

diferença relativa para a VGG-16 antecipa as métricas de validação inferiores observa-

das a seguir, sugerindo que, sob BCE e nas condições atuais do conjunto, a arquitetura

VGG-16 está mais alinhada com o padrão de heterogeneidade das imagens e com o grau

de desbalanceamento presente(Figura 7).

Ainda na Figura 7, a trajetória de F1-Score/IoU confirma a leitura da perda: há ganho

expressivo nas primeiras épocas e saturação precoce. O pareamento de precision e recall

indica que o limiar global adotado está adequado, evitando tanto a supersegmentação

quanto a omissão de focos. Em contextos de fogo esparso, esse equilíbrio é particular-

mente relevante, pois o custo de FN pode ser alto, enquanto excesso de FP compromete

a utilidade operacional. O perfil observado sugere que, para VGG-16+BCE, a capaci-

dade representacional do encoder é suficiente para delinear fronteiras de queima com boa

consistência intra-época.

Apesar de convergir, a EfficientNetB3 atinge níveis de F1/IoU visivelmente menores,

com flutuações iniciais mais marcadas entre precision e recall, a Figura 7 representa esse

comportamento. Esse padrão é compatível com uma fronteira de decisão mais sensível

ao desbalanceamento espacial, quando treinada apenas com BCE. Portanto, a penali-

zação uniforme da BCE, sem reponderação, pode não enfatizar suficientemente a classe

minoritária para esse encoder, que tende a exigir losses ou schemes de treino mais robusto.
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augmentation espacial/fotométrica para reduzir a variância nas épocas iniciais do Effi-

cientNetB3, e (iii) calibrar o limiar de decisão com base na curva precision–recall do

conjunto de validação. A expectativa é reduzir o gap treino–validação do EfficientNetB3

nas primeiras épocas e aumentar sua IoU sem degradar precision, aproximando seu pata-

mar do observado no VGG-16.

As matrizes de confusão normalizadas da validação (Figura 9) mostram um padrão

consistente com o desbalanceamento do conjunto: a classe de fundo apresenta false po-

sitives praticamente nulos em todos os cenários (especificidade muito alta), enquanto as

diferenças entre arquiteturas e funções de perda emergem sobretudo no recall da classe

fogo (true positives). Em termos práticos, o erro dominante é de false negative, isto é,

regiões com fogo que deixam de ser segmentadas.

Comparando as combinações com Binary Crossentropy, observa-se que o VGG-16

atinge TP ≈ 0,97 e FN ≈ 0,03 com limiar ótimo 0,45 [Figura 9(a)], ao passo que o

EfficientNetB3, no mesmo limiar, retém TP ≈ 0,84 e FN ≈ 0,16 [Figura 9(b)]. Esse

hiato de ∼ 13 p.p. em recall explica a superioridade do VGG-16 nas métricas agregadas

(F1-Score e IoU) sob BCE : ambos os modelos mantêm precision elevada graças ao fundo

dominante, mas o VGG-16 erra menos por omissão de fogo.

Ao substituir BCE por Dice Loss e ajustar o limiar ótimo para 0,40, o VGG-16 virtu-

almente preserva o desempenho (TP ≈ 0,97; FN ≈ 0,03) [Figura 9(c)], sugerindo saídas já

bem calibradas em torno da fronteira de decisão. O EfficientNetB3, por sua vez, apresenta

ganho mensurável de recall (TP ≈ 0,86; FN ≈ 0,14) sem penalizar os FP [Figura 9(d)].

Esse comportamento é compatível com a natureza da Dice, que recompensa diretamente

a sobreposição entre máscaras e, portanto, reduz o viés para a classe majoritária típico

da BCE em cenários altamente desbalanceados.

Esses resultados reforçam que a escolha do ponto de operação (função de perda +

limiar) deve ser orientada pelo custo do erro: para monitoramento e alerta de incêndios,

costuma-se privilegiar recall elevado (redução de FN ), aceitando um pequeno incremento

de FP desde que operacionalmente manejável. No presente ciclo, o VGG-16 já opera

próximo do teto de recall com FP mínimos; o EfficientNetB3 responde melhor a ajustes

sensíveis ao desbalanceamento (p. ex., Dice) e ao limiar, indicando margem adicional para

otimização por curva precision–recall e calibração de probabilidade.

Do ponto de vista diagnóstico, a predominância de FN sugere três fontes prováveis

de erro: (i) focos pequenos e fragmentados, que desaparecem com o downsampling para

256×256 e com filtros de maior stride; (ii) bordas de fogo finas ou parcialmente encobertas

por fumaça, nas quais a incerteza do modelo tende a ficar abaixo do limiar; e (iii) confusão

com padrões espectrais de solo exposto/rocha brilhante em ângulos solares extremos, que

reduzem o contraste com a classe fogo.
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fina do limiar sobre a redução de FN sem degradação relevante de precision.

Os resultados no conjunto de teste confirmam o padrão observado na validação, a

partir das Figuras 10(a)–(c), o VGG-16 permanece consistentemente superior ao Effi-

cientNetB3 em todos os cenários, com diferenças mais pronunciadas quando se utiliza

Binary Crossentropy (BCE). Com BCE, o VGG-16 preserva alta sensibilidade à classe

fogo (TP ≈ 0,97) e erro de omissão reduzido (FN ≈ 0,03), sem penalizar a classe de fundo,

que se mantém com FP próximos de zero. Ao migrar para Dice, o VGG-16 mantém o

mesmo regime de pouca confusão no fundo e apenas ligeira queda de recall (TP ≈ 0,96),

sugerindo boa calibração do limiar e robustez do encoder diante de mudanças na função

de perda.

Para o EfficientNetB3, a troca de BCE por Dice é decisiva: o recall de fogo sobe

de aproximadamente 0,81 para 0,86, sem aumento visível de FP. Em termos práticos,

Dice reduz o viés para a classe majoritária (fundo), melhorando a cobertura de regiões

queimadas que tendem a ser pequenas, esparsas e fragmentadas. Essa melhora, ainda que

não elimine a diferença para o VGG-16, reduz a lacuna entre os encoders e reforça que

perdas class-imbalance aware favorecem tarefas em que a classe de interesse ocupa fração

diminuta da cena.

As quatro matrizes de confusão evidenciam um traço comum: FP residuais para o

fundo (TN ≈ 1,00) em todos os modelos e perdas, refletindo o forte desbalanceamento

espacial do problema. Assim, a métrica que realmente distingue as combinações é o recall

da classe fogo. No VGG-16, BCE e Dice produzem acertos elevados e estáveis em fogo

(TP ≈ 0,97 e ≈ 0,96), ao passo que, no EfficientNetB3, Dice atenua omissões sistemáticas

(queda de FN de ≈ 0,19 para ≈ 0,14). Esse comportamento é coerente com as curvas

de treinamento: no EfficientNetB3 observam-se oscilações nas primeiras épocas e uma

convergência mais lenta, o que torna a perda Dice particularmente útil para estabilizar o

aprendizado da classe minoritária.

Sob a ótica de decisão, os limiares selecionados na validação (BCE: 0,45; Dice: 0,40)

generalizam para o teste sem distorções visíveis, indicando boa calibração dos scores.

Em problemas altamente desbalanceados, pequenas variações de limiar podem deslocar

o ponto de operação no espaço precision–recall; aqui, o ajuste mais baixo para Dice

preserva FP próximos de zero e melhora a sensibilidade do EfficientNetB3, sem sacrificar

a seletividade do VGG-16. Isso sugere que, além da função de perda, a seleção criteriosa

do limiar a partir de curvas Precision–Recall (curva Precisão–Sensibilidade) (PR) deve

ser mantida como procedimento padrão.
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em cenários extremos de desbalanceamento.

A análise dos erros indica que os principais falsos negativos concentram-se em frentes

de fogo muito delgadas, bordas semânticas ruidosas (transições fogo–solo exposto) e ar-

tefatos espectrais que mimetizam cicatrizes (sombra de nuvens, trilhas viárias e campos

recém-expostos). Esses padrões são consistentes com a superioridade do VGG-16 em

limites e texturas de baixa frequência e com a maior sensibilidade do EfficientNetB3 ao

regime de optimization warm-up, que, quando combinado à Dice, aprende a “valorizar”

regiões positivas raras e descontínuas. Tais achados motivam, para o ciclo 2, explorar per-

das compostas (por exemplo, Dice+Focal) visando reduzir omissões residuais, incorporar

data augmentation espacial/fotométrica mais agressiva para mitigar a variância inicial

do EfficientNetB3, e avaliar pós-processamentos morfológicos leves ou condicionados a

contexto para recompor fragmentação em cicatrizes finas, sem inflacionar FP.

As Tabelas 4 e 5 sintetizam o Ciclo 1. No conjunto de validação, o VGG-16 apresenta

os melhores valores de F1-Score (0.968) e IoU (0.939) com BCE, mantendo desempenho

praticamente idêntico com Dice, o que indica robustez do encoder às escolhas de função

de perda. Para o EfficientNetB3, a substituição de BCE por Dice eleva F1-Score de 0.831

para 0.854 e IoU de 0.711 para 0.745, reduzindo o viés para o fundo e melhorando a

cobertura de regiões queimadas.

Tabela 4 – Métricas na validação
(limiares oriundos da

validação).
Backbone Loss Thr precision Recall F1-Score IoU

EfficientNetB3 BCE 0.450 0.824 0.839 0.831 0.711

EfficientNetB3 Dice 0.400 0.850 0.858 0.854 0.745

VGG-16 BCE 0.450 0.967 0.970 0.968 0.939

VGG-16 Dice 0.400 0.967 0.969 0.968 0.938

Nota: negrito destaca o melhor F1-Score e

IoU na validação.

Tabela 5 – Métricas no teste (usando os
limiares da validação).

Backbone Loss Thr precision Recall F1-Score IoU

EfficientNetB3 BCE 0.450 0.791 0.814 0.803 0.670

EfficientNetB3 Dice 0.400 0.808 0.842 0.825 0.701

VGG-16 BCE 0.450 0.968 0.971 0.969 0.941

VGG-16 Dice 0.400 0.974 0.961 0.968 0.937

Nota: negrito destaca o melhor F1 e IoU no

teste.

Limiar adotado: BCE = 0,45; Dice = 0,40.

No teste, o comportamento se confirma: o VGG-16 com BCE atinge os maiores

F1-Score (0.969) e IoU (0.941), enquanto o EfficientNetB3 volta a se beneficiar de Dice

(F1-Score de 0.825 e IoU de 0.701, superiores aos de BCE). Importante notar que os

limiares definidos na validação (0.45 para BCE e 0.40 para Dice) transferem-se bem para

o teste, sem inflação de falsos positivos: o ganho de EfficientNetB3 com Dice decorre

majoritariamente de maior recall da classe fogo.

Em síntese, o VGG-16 estabelece o patamar de referência no Ciclo 1, com alta sensi-

bilidade e sobreposição espacial; o EfficientNetB3, por sua vez, requer funções de perda

class-imbalance aware (Dice) para operar em regime competitivo. Esses achados orien-

tam as intervenções do Ciclo 2 (perdas compostas, data augmentation mais agressiva

e calibração de limiar via curvas PR) para reduzir omissões residuais sem sacrificar a

seletividade.
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4.0.2 Ciclo 2: objetivos, desenho experimental e comparativo

com o Ciclo 1

Considerando o contexto do Ciclo 1 e as alterações implementadas no Ciclo 2, algumas

análises estão disponíveis abaixo.

A Figura 11 sintetiza o comportamento de treino e validação da U-Net com backbone

VGG-16 no Ciclo 2 para as quatro funções de perda avaliadas. De forma geral, observa-

se que o uso de undersampling aliado às augmentations permitiu que todos os cenários

convergissem rapidamente nas primeiras épocas, com reduções consistentes da função de

perda e estabilização das métricas acima de 0,9 para a maior parte das combinações. Nas

subfiguras (a1) e (a2), correspondentes à BCE, a perda decresce de maneira monótona

e suave, enquanto F1-Score, IoU, precision e recall de treino e validação apresentam

trajetórias muito próximas desde as primeiras épocas. Esse comportamento indica um

regime de treino estável, com baixa discrepância entre conjuntos e ausência de sobreajuste

marcado. A BCE, embora originalmente menos sensível ao desbalanceamento extremo,

passa a se beneficiar da distribuição mais equilibrada de pixels obtida com o undersampling

do Ciclo 2, o que explica a elevação dos valores de IoU e F1-Score em relação ao Ciclo 1,

sem sacrificar a recall da classe fogo.

As subfiguras (b1) e (b2), associadas à perda Dice, revelam um comportamento mais

irregular nas épocas iniciais, com oscilações nas métricas de validação e um distancia-

mento maior em relação às curvas de treino. Essa instabilidade inicial é consistente com

a natureza da Dice Loss em cenários fortemente desbalanceados, uma vez que pequenas

variações na segmentação dos poucos pixels positivos podem provocar flutuações signifi-

cativas na métrica. Ainda assim, após algumas épocas, as curvas tendem à estabilização

e F1-Score e IoU atingem patamares satisfatórios, embora inferiores aos observados com

BCE, Focal e DiceFocal. Em termos práticos, isso indica que a perda puramente baseada

em sobreposição de regiões melhora a detecção de áreas queimadas em relação ao Ciclo 1,

mas ainda não explora todo o potencial da VGG-16 quando comparada às abordagens

que combinam ou reponderam exemplos difíceis.

Já ao observar as subfiguras (c1) e (c2), que representam a Focal Loss, nota-se um

rápido decaimento da perda, com métricas de validação elevadas desde as primeiras épo-

cas. Há, contudo, um pico pontual de instabilidade em uma das épocas, visível como um

aumento abrupto no valor da perda e queda temporária nas métricas, provavelmente as-

sociado a um minibatch com distribuição atípica de pixels positivos ou à alta sensibilidade

da Focal a exemplos considerados “difíceis”. Essa oscilação é rapidamente corrigida nas

épocas subsequentes, e o treinamento converge para um regime em que precision, recall e

F1 permanecem próximas de 1,0. O resultado final é uma rede capaz de manter alta recall

dos pixels de fogo, reduzindo falsos negativos em comparação à BCE e principalmente à

Dice, o que é coerente com os altos valores de F1-Score e IoU observados nas tabelas de

desempenho do Ciclo 2.
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Por fim, as subfiguras (d1) e (d2) mostram o comportamento da função composta Di-

ceFocal. Ao combinar um termo de sobreposição (Dice) com o mecanismo de reponderação

da Focal, observa-se um compromisso mais equilibrado entre estabilidade e sensibilidade à

classe minoritária. As curvas de perda apresentam decaimento suave, sem os picos abrup-

tos observados em Focal isolada, enquanto as métricas de treino e validação se mantêm

altas e com pequena lacuna entre si ao longo de todo o treinamento. Esse padrão indica

que a função composta conseguiu explorar a capacidade representacional da VGG-16 ao

mesmo tempo em que mitiga as principais limitações de cada componente individual: re-

duz a instabilidade típica da Dice em cenários extremamente desbalanceados e, ao mesmo

tempo, controla a agressividade da Focal em relação a exemplos raros. Em conjunto com

os resultados de validação e teste, conclui-se que, no contexto do Ciclo 2, a VGG-16 com-

binada com perdas Focal e, sobretudo, DiceFocal se destaca como a configuração mais

robusta, superando de forma consistente os desempenhos obtidos no Ciclo 1.

A Figura 12 apresenta as curvas de perda e métricas para a U-Net com backbone

EfficientNetB3 no Ciclo 2, também sob as quatro funções de perda avaliadas.
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De maneira geral, todas as combinações convergem para valores altos de F1-Score e

IoU, porém com patamares ligeiramente inferiores aos observados para a VGG-16 o que

reforça a tendência já identificada no Ciclo 1 de que a VGG-16 se adapta melhor às ca-

racterísticas espectrais e espaciais das cenas de queimadas consideradas neste trabalho.

Nas subfiguras (a1) e (a2), correspondentes à BCE, a perda apresenta decaimento rápido

e estável, enquanto as métricas de treino e validação crescem de forma quase monótona,

alcançando valores em torno de 0,8–0,85 de F1-Score e IoU. A distância entre curvas

de treino e validação é pequena, sugerindo boa capacidade de generalização após a apli-

cação do undersampling e das augmentations. No entanto, o patamar final permanece

abaixo daquele obtido pela VGG-16 com a mesma função de perda, indicando que a

maior profundidade e complexidade da EfficientNetB3 não se convertem necessariamente

em ganhos de desempenho para esse tipo de segmentação binária em dados Sentinel-2

altamente desbalanceados.

O comportamento observado com a Dice Loss, nas subfiguras (b1) e (b2), reforça

essa diferença de sensibilidade entre backbones. Assim como na VGG-16, as curvas de

perda e métricas apresentam maior variabilidade nas primeiras épocas, mas no caso da

EfficientNetB3 essa instabilidade é ainda mais pronunciada e persiste por um número

maior de épocas, refletindo uma resposta mais sensível às flutuações na proporção de

pixels positivos após o undersampling. Apesar disso, o modelo converge para valores de

F1-Score e IoU satisfatórios, ligeiramente superiores aos obtidos com BCE, o que sugere

que a Dice contribui para melhorar a segmentação das regiões afetadas pelo fogo.

Nas subfiguras (c1) e (c2), associadas à Focal Loss, a EfficientNetB3 apresenta curvas

de perda decrescentes e métricas que aumentam de forma relativamente suave, sem os

picos acentuados de instabilidade observados na VGG-16. Isso sugere que, para esse

backbone, a Focal Loss é numericamente mais estável ao longo do treino, possivelmente

em função da forma como a EfficientNetB3 distribui a ativação ao longo das camadas

profundas. Ainda assim, os patamares finais de F1-Score e IoU permanecem ligeiramente

abaixo daqueles alcançados pela ’ com Focal, indicando que a maior estabilidade numérica

não se traduz, necessariamente, em superioridade de desempenho. Em contrapartida,

compara-se favoravelmente à BCE e à Dice no próprio EfficientNetB3, reduzindo o número

de falsos negativos e aproximando o modelo da performance desejada para aplicação

prática.

Já as subfiguras (d1) e (d2) mostram o comportamento da perda composta DiceFocal

na EfficientNetB3. As curvas de perda exibem decaimento regular, com estabilização nas

últimas épocas, enquanto as métricas de treino e validação convergem para valores de

F1-Score próximos aos observados com Focal, mas com IoU ligeiramente superior e menor

discrepância entre conjuntos. Esse padrão indica que a combinação dos termos Dice e

Focal ajuda a EfficientNetB3 a explorar melhor as regiões de fronteira das queimadas,

mantendo alta recall e precision mesmo diante da forte assimetria entre classes. Quando
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comparada às curvas equivalentes da VGG-16, nota-se que o backbone EfficientNetB3 se

beneficia mais claramente da função composta do que das perdas individuais, reduzindo

o gap em relação ao desempenho da VGG-16, ainda que não o elimine.

Enquanto a VGG-16 atinge os melhores resultados absolutos, a EfficientNetB3 torna-

se competitiva quando associada a funções de perda mais sofisticadas, como a DiceFocal,

o que é particularmente relevante em cenários operacionais em que se deseje explorar

arquiteturas mais modernas preservando, ao mesmo tempo, a robustez frente ao desba-

lanceamento extremo dos dados.

Os mapas de confusão normalizados da UNet com backbone VGG-16 no conjunto de

validação do Ciclo 2, representado nas figuras 13, 14, 15 e 16 evidenciam que todas as

funções de perda mantêm desempenho extremamente alto para a classe “não fogo”. Em

todos os casos, a proporção de verdadeiros negativos aproxima-se de 1,0, com praticamente

ausência de falsos positivos, indicando que o modelo raramente rotula o fundo como

fogo. Para a classe de interesse, observa-se que aproximadamente 0,96 dos pixels são

corretamente identificados, enquanto cerca de 0,04 continuam sendo confundidos com

fundo. Essa estabilidade ao longo de BCE, Dice, Focal e, sobretudo, DiceFocal reflete o

efeito combinado do undersampling e da função de perda composta, que reduz a tendência

observada no Ciclo 1 de favorecer excessivamente a classe majoritária e penaliza de forma

mais equilibrada falsos positivos e falsos negativos para fogo. Além disso, os limiares

ótimos distintos (por exemplo, thr = 0,52 para BCE, 0,42 para Dice e 0,40 para DiceFocal)

mostram que o ajuste fino do limiar de decisão é relevante para explorar todo o potencial

da métrica F1-Score, mas não altera qualitativamente o padrão de alta separação entre

as classes.
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tendência. A classe de fundo continua sendo bem representada, porém as taxas de ver-

dadeiros positivos para fogo se mantêm abaixo das obtidas pelo VGG-16, com intervalos

aproximados de 0,82–0,84 e frações correspondentes de falsos negativos em torno de 0,16–

0,18. Outro ponto relevante é que, ao contrário do VGG-16, o EfficientNetB3 apresenta

uma proporção visivelmente maior de falsos positivos (fundo rotulado como fogo), o que

pode implicar maior taxa de alarmes falsos em cenários operacionais. Essa assimetria en-

tre falsos negativos e falsos positivos é modulada pelos diferentes limiares ótimos — mais

baixos para BCE e mais elevados para Dice e DiceFocal — refletindo o compromisso entre

maximizar a detecção de áreas queimadas e controlar a supersegmentação sobre regiões

de vegetação não queimada.

De forma integrada, a comparação das matrizes de confusão dos dois backbones no

Ciclo 2 reforça a conclusão de que o VGG-16, especialmente em combinação com a função

de perda DiceFocal, oferece o melhor compromisso entre redução de falsos negativos em

fogo e manutenção de uma taxa quase nula de falsos positivos. O EfficientNetB3, por

sua vez, apresenta um perfil mais arriscado, com maior sensibilidade a variações de limiar

e tendência a produzir tanto mais falsos negativos quanto mais falsos positivos que o

VGG-16. Em relação ao Ciclo 1, a visualização conjunta das matrizes evidencia que o

uso de undersampling e de uma função de perda composta contribuiu para aumentar

a separação entre classes, sobretudo no VGG-16, que passa a apresentar matrizes mais

“limpas”, com diagonais mais marcadas e menor dispersão de erros. Esses resultados

corroboram a escolha do backbone VGG-16 e da função DiceFocal como configuração de

referência para o restante da dissertação.

De maneira geral, observa-se que o VGG-16 supera consistentemente o EfficientNetB3

em todas as métricas avaliadas, tanto na validação quanto no teste. Esse comportamento

sugere que a arquitetura mais simples e menos profunda do VGG-16 é particularmente

adequada ao cenário de forte desbalanceamento e de baixa variabilidade espectral nas

cicatrizes de incêndio de imagens Sentinel-2. Enquanto o EfficientNetB3 demonstra maior

sensibilidade ao ajuste de limiar e tende a produzir mais erros tanto por omissão quanto

por comissão, o VGG-16 apresenta um equilíbrio mais estável, com valores elevados de

F1 e IoU, mantendo uma taxa reduzida de falsos negativos.

A função DiceFocal mostrou-se a mais eficaz entre todas as avaliadas. No VGG-16,

essa função de perda alcançou os maiores
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Capítulo 5

Conclusão

Os resultados apresentados ao longo deste capítulo evidenciam, de forma consistente,

o impacto das escolhas metodológicas adotadas na tarefa de segmentação semântica de

incêndios florestais em imagens multiespectrais do satélite Sentinel-2. A condução de dois

ciclos experimentais permitiu não apenas avaliar o desempenho absoluto dos modelos,

mas também compreender de maneira sistemática os fatores responsáveis pelas limitações

observadas inicialmente e pelas melhorias obtidas posteriormente.

No Ciclo 1, de caráter exploratório, os experimentos revelaram dificuldades signifi-

cativas na identificação da classe minoritária, especialmente em cenários de forte desba-

lanceamento entre classes. Embora a substituição da Binary Cross-Entropy pela Dice

Loss tenha promovido ganhos pontuais, as métricas de IoU e F1-Score permaneceram

limitadas, indicando que ajustes isolados na função de perda não eram suficientes para

mitigar os efeitos do desbalanceamento e da baixa representatividade espacial do fogo nas

imagens.

Em contraste, os resultados do Ciclo 2 demonstram de forma clara a eficácia do pipe-

line otimizado proposto neste trabalho. A introdução do undersampling no conjunto de

treinamento, aliada ao uso de técnicas de data augmentation e à adoção de uma estratégia

de treinamento em duas fases, resultou em melhorias expressivas tanto em desempenho

quanto em estabilidade. A varredura sistemática de thresholds na validação, com seleção

do limiar que maximiza o F1-Score, mostrou-se particularmente relevante para a calibra-

ção dos modelos, refletindo diretamente na qualidade das métricas reportadas no conjunto

de teste.

Do ponto de vista arquitetural, os resultados indicam que a U-Net com backbone

VGG-16 apresentou desempenho superior e mais estável em comparação à EfficientNetB3,

especialmente no que se refere às métricas sensíveis ao desbalanceamento. Enquanto o

VGG-16 manteve valores elevados e consistentes de F1-Score e IoU independentemente

da função de perda utilizada, o EfficientNetB3 revelou maior sensibilidade à escolha da

perda e do limiar de decisão, sugerindo maior instabilidade na separação entre as classes.

A análise comparativa das funções de perda reforça ainda a relevância de estratégias
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sensíveis ao desbalanceamento. As perdas Dice e DiceFocal destacaram-se no Efficient-

NetB3, enquanto no VGG-16 os resultados praticamente equivalentes entre as diferentes

perdas evidenciam a robustez desse backbone frente às variações metodológicas avaliadas.

Esse comportamento sugere que arquiteturas mais profundas e estáveis podem reduzir a

dependência de ajustes finos na função de perda, embora tais ajustes permaneçam impor-

tantes em arquiteturas mais sensíveis.

Por fim, a análise qualitativa das máscaras preditas, apresentada ao final do capítulo,

complementa os resultados quantitativos ao evidenciar melhorias não apenas métricas,

mas também morfológicas. Observa-se maior coerência espacial das regiões segmentadas

no Ciclo 2, com redução de falsos positivos dispersos e melhor delineamento dos focos de

incêndio, corroborando as conclusões extraídas das matrizes de confusão e das métricas

agregadas.

Em conjunto, os resultados obtidos confirmam que a combinação de balanceamento de

classes, funções de perda adequadas, calibração criteriosa do limiar de decisão e estratégias

de treinamento progressivo constitui um fator determinante para o sucesso da segmentação

de incêndios florestais em imagens multiespectrais. Esses achados fornecem uma base

sólida para as discussões e conclusões apresentadas no capítulo seguinte.

Como direções futuras, sugere-se investigar estratégias complementares como:

❏ Uso de oversampling com síntese de amostras (e.g., SMOTE adaptado para imagens)

para enriquecer a classe minoritária;

❏ Aplicação de arquiteturas híbridas ou baseadas em atenção (e.g., Attention, U-Net,

Swin-UNet);

❏ Testes em diferentes composições espectrais e resolução espacial;

❏ Avaliação em múltiplos sensores.

Esta dissertação contribui metodologicamente para o campo de visão computacional

aplicada ao sensoriamento remoto ambiental, fornecendo subsídios para a construção de

sistemas operacionais de detecção de queimadas com base em imagens orbitais multies-

pectrais.

5.1 Contribuições em Produção Bibliográfica

A partir dos resultados obtidos neste trabalho, foi elaborado e submetido o artigo

intitulado Segmentação semântica de incêndios florestais em imagens do Sentinel-2 usando

arquiteturas de aprendizado por transferência à revista científica Revista de Informática

Teórica e Aplicada, encontrando-se atualmente em processo de avaliação.

O artigo apresenta uma análise comparativa entre diferentes funções de perda (Binary

Crossentropy e Dice Loss) e a aplicação de encoders com transferência de aprendizado
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(VGG-16 e EfficientNetb3), bem como os avanços alcançados com a adoção de técnicas

como undersampling, data augmentation e função de perda composta. O trabalho des-

taca o impacto das decisões metodológicas sobre o desempenho dos modelos em tarefas

de segmentação de regiões de incêndio, discutindo seus desdobramentos para aplicações

operacionais em monitoramento ambiental e mitigação de desastres naturais.
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