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RESUMO

PEREIRA, V.E. Modelagem Computacional de Escoamentos em Turbinas Francis Usando
a Plataforma OpenFOAM. 2025. 60 p. Trabalho de Conclusão de Curso (Graduação em Enge-
nharia Mecânica) – Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia,
Uberlândia - MG, 2025.

Neste trabalho apresenta-se a modelagem e simulações computacionais de escoamentos in-

compressíveis turbulento em uma turbina Francis de geometria real, baseada na unidade da

Usina Hidrelétrica Foz do Chapecó, utilizando o software OpenFOAM. É desenvolvido um

modelo físico representativo da máquina, formulado o modelo matemático-diferencial a partir

das equações de Navier-Stokes na forma URANS com modelo de turbulência k–ε . A partir das

simulações, analisam-se qualitativamente os campos de pressão e de velocidade, verificando-se

comportamento coerente com o esperado para turbinas Francis e com resultados de referência da

literatura. Em seguida, são avaliadas duas abordagens para a estimativa da potência no eixo: uma

baseada na Primeira Lei da Termodinâmica, utilizando grandezas médias em seções de entrada e

saída, e outra a partir do momento no rotor calculado pela função forces do OpenFOAM. Obtêm-

se potências de aproximadamente 170,61 MW e 107 MW, respectivamente, valores inferiores à

potência de projeto da unidade (212 MW), o que é discutido à luz das simplificações geométricas,

das condições de contorno adotadas e das limitações do modelo de turbulência. Os resultados

demonstram o potencial da Dinâmica dos Fluidos Computacional como ferramenta de análise

em turbinas hidráulicas, ao mesmo tempo em que evidenciam a importância de uma modelagem

cuidadosa para a obtenção de previsões quantitativas mais próximas do comportamento real.

Palavras-chave: Turbina Francis; CFD; OpenFOAM; URANS k–ε ; potência hidráulica.



ABSTRACT

PEREIRA, V.E. Computational Modeling of Flows in Francis Turbines Using the Open-
FOAM Platform. 2025. 60 p. Trabalho de Conclusão de Curso (Graduação em Engenharia
Mecânica) – Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlân-
dia - MG, 2025.

This work presents the modeling and numerical simulation of incompressible turbulent flow

in a Francis turbine with a real geometry, based on the unit installed at the Foz do Chapecó

Hydropower Plant, using the OpenFOAM software. A representative physical model of the

machine is developed, the mathematical model is formulated from the Navier–Stokes equations

in the URANS form with the k–ε turbulence model. From the simulations, pressure and velocity

fields are qualitatively analyzed, showing behavior consistent with that expected for Francis

turbines and with reference results from the literature. Then, two approaches are used to estimate

the shaft power: one based on the First Law of Thermodynamics, using averaged quantities at

the inlet and outlet sections, and another based on the rotor moment computed by the forces

function of OpenFOAM. Powers of approximately 170.61 MW and 107 MW are obtained,

respectively, both lower than the design power of the unit (212 MW), which is discussed in

terms of geometric simplifications, boundary conditions and turbulence modeling limitations.

The results demonstrate the potential of Computational Fluid Dynamics as an analysis tool for

hydraulic turbines, while highlighting the importance of careful modeling to achieve quantitative

predictions closer to the real behavior.

Keywords: Francis turbine; CFD; OpenFOAM; URANS k–ε ; hydraulic power.
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CAPÍTULO

1

INTRODUÇÃO

1.1 Matriz elétrica brasileira e o papel da hidroeletrici-

dade

A energia elétrica é um insumo essencial para o desenvolvimento econômico e social,

influenciando diretamente a produção industrial, a prestação de serviços e a qualidade de vida da

população. No Brasil, o setor elétrico é historicamente caracterizado por uma forte dependência

da fonte hídrica, o que diferencia a matriz elétrica brasileira daquela observada em outras grandes

economias, mais intensivas em combustíveis fósseis.(SILVA; OLIVEIRA, 2020)

De forma geral, a matriz elétrica brasileira apresenta elevada participação de fontes

renováveis, com destaque para as usinas hidrelétricas, que ainda respondem pela maior parte

da capacidade instalada e da energia captada e transformada no Sistema Interligado Nacional,

embora essa participação venha gradualmente diminuindo com a inserção de outras fontes, como

eólica, solar fotovoltaica e biomassa (SILVA; OLIVEIRA, 2020; EMPRESA DE PESQUISA

ENERGÉTICA, 2025). Essa predominância da hidroeletricidade decorre da abundância de

recursos hídricos, da existência de grandes bacias hidrográficas com elevado potencial de queda

e vazão e de políticas públicas que, ao longo de várias décadas, priorizaram a implantação de

grandes aproveitamentos hidrelétricos como estratégia central de expansão da oferta elétrica.

Por outro lado, a forte dependência da geração hidrelétrica torna o sistema elétrico

brasileiro vulnerável à variabilidade hidrológica. Estudos apontam alterações significativas nos

regimes de afluências às principais usinas hidrelétricas do país, com indícios de não estacionarie-

dade associada à mudanças no uso do solo e possíveis efeitos das mudanças climáticas, o que

tem implicações para a segurança de suprimento e para o planejamento da operação (SOUZA;

MARTINS, 2002; SILVA; COSTA, 2021). Episódios de crise hídrica, com redução acentuada

dos níveis dos reservatórios, evidenciam a necessidade de diversificação da matriz e de melhoria

da eficiência na utilização dos recursos hídricos já aproveitados (SILVA; COSTA, 2021; SOUZA;
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FERREIRA, 2015).

Nesse contexto, embora a participação relativa da hidroeletricidade tenda a diminuir

com o crescimento de outras fontes renováveis, como a energia eólica e a solar fotovoltaica, as

usinas hidrelétricas continuarão exercendo papel estruturante na matriz elétrica brasileira, seja

como fonte principal de transformação, seja como tecnologia flexível capaz de compensar a

variabilidade de outras fontes intermitentes (SOUZA; ALVES, 2025).

A operação eficiente dessas usinas, com ênfase na melhoria do desempenho hidráulico das

turbinas e na redução de perdas, torna-se, assim, fundamental para a segurança energética, para a

moderação de custos e para o aproveitamento sustentável dos recursos hídricos disponíveis. A

Fig. 1 ilustra, de forma sintética, a participação dos principais meios de transformação energética

na matriz elétrica brasileira em anos recentes e destaca a relevância da hidroeletricidade nesse

contexto.

Figura 1 – Participação das principais fontes de transformação energética na matriz elétrica brasileira no
ano de 2024.

Fonte: EMPRESA DE PESQUISA ENERGÉTICA (2025).

.

1.2 Turbinas hidráulicas na transformação energética hi-

drelétrica

Nas usinas hidrelétricas, a conversão da energia hidráulica em energia mecânica ocorre

por meio de turbinas hidráulicas, que transferem a energia do escoamento para um eixo acoplado a

um "gerador elétrico". Diferentes tipos de turbinas são empregados em função das características
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do aproveitamento (queda líquida disponível, vazão, queda bruta e restrições de operação), sendo

comum classificá-las em turbinas de ação e turbinas de reação (NECHLEBA, 1957).

As turbinas hidráulicas podem ser classificadas em turbinas de ação e turbinas de re-

ação conforme o mecanismo de conversão de energia do fluido. Nas turbinas de ação, toda a

energia hidráulica é previamente convertida em energia cinética, e o trabalho mecânico é obtido

exclusivamente pela variação da quantidade de movimento do jato ao incidir sobre as pás, não

ocorrendo variação significativa de pressão no rotor, que opera à pressão aproximadamente

atmosférica. Já nas turbinas de reação, a conversão de energia ocorre tanto pela variação da

velocidade quanto pela variação de pressão do escoamento ao longo do rotor, o qual permanece

totalmente submerso, caracterizando um escoamento confinado e a necessidade do uso de tubo

de sucção para recuperação de energia, sendo esse tipo de turbina amplamente aplicado em

situações de quedas baixas a médias e grandes vazões.

As turbinas Pelton são turbinas de ação típicas para altas quedas e baixas vazões. Nelas,

a maior parte da conversão de energia ocorre na forma de interação entre jatos livres de água

e conchas (cavidades) usinadas na periferia do rotor. A energia de pressão é convertida quase

integralmente em energia cinética antes de atingir o rotor, e a variação de quantidade de movi-

mento do jato ao incidir nas conchas gera o torque no eixo (SARAVANAMUTTOO; ROGERS;

COHEN, 2009). Esse tipo de turbina é amplamente utilizado em usinas de alta queda, frequente-

mente em regiões montanhosas. A Fig. 2 apresenta um esquema típico de funcionamento desse

tipo de turbina.

Figura 2 – Esquema típico de uma turbina Pelton, com jatos incidindo sobre as conchas na periferia do
rotor.

Fonte: Poriyaan (2021).

As turbinas Kaplan, por sua vez, são turbinas de reação de escoamento axial, adequadas

a baixas quedas e altas vazões. O escoamento atravessa um distribuidor dotado de diretrizes

ajustáveis e, em seguida, um rotor de pás orientáveis, de forma que tanto o ângulo das direciona-
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doras quanto o das pás possa ser ajustado para diferentes vazões e quedas, mantendo elevado

rendimento em ampla faixa operacional (NECHLEBA, 1957). São comumente empregadas em

grandes rios de planície, com desníveis relativamente pequenos. A Fig. 3 mostra um esquema

típico de funcionamento desse tipo de turbina.

Figura 3 – Esquema típico de uma turbina Kaplan com fluxo axial, destacando o distribuidor e o rotor de
pás orientáveis.

Fonte: Rehman e Khan (2019).

Entre esses extremos, as turbinas Francis ocupam posição intermediária e correspondem a

um dos tipos mais utilizados em usinas hidrelétricas de médio e grande porte. Trata-se de turbinas

de reação de escoamento misto, nas quais o escoamento entra no distribuidor com componente

predominantemente radial, atravessa o rotor sofrendo forte curvatura e variação de velocidade

e deixa a máquina com componente axial significativa (GANDHI, 2014). Essa configuração

confere às turbinas Francis grande flexibilidade de aplicação em faixas intermediárias de queda

e vazão, o que explica sua ampla difusão em empreendimentos de grande porte no Brasil e no

mundo. A Fig. 4 apresenta um esquema do escoamento em uma turbina Francis típica.

Do ponto de vista hidráulico, as turbinas Francis apresentam escoamento tridimensional

complexo, com forte interação entre distribuidor, rotor e tubo de sucção, presença de gradientes

acentuados de pressão e de velocidade e possibilidade de ocorrência de separação de escoamento

e cavitação em determinadas condições operativas (GANDHI, 2014). A compreensão detalhada

desses escoamentos é essencial para o projeto e a otimização de turbinas mais eficientes, bem

como para a mitigação de fenômenos indesejáveis que podem afetar a vida útil e a confiabilidade

dos equipamentos.
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Figura 4 – Esquema de uma turbina Francis, destacando caracol, distribuidor, rotor e tubo de sucção.
Fonte: (ASAFF; OLIVEIRA; NEGRI, 2008)

Fonte: Asaff, Oliveira e Negri (2008).

1.3 Dinâmica dos Fluidos Computacional (CFD)

A Dinâmica dos Fluidos Computacional (CFD, do inglês Computational Fluid Dynamics)

consiste no uso de métodos numéricos e recursos de computação para obter soluções aproximadas

das equações que descrevem o escoamento de fluidos.(VERSTEEG; MALALASEKERA, 2007)

Em vez de buscar soluções analíticas, normalmente inviáveis em geometrias reais, o domínio de

escoamento é discretizado em uma malha de volumes de controle, sobre os quais se impõem as

equações de balanço de massa e de quantidade de movimento. Esse procedimento transforma

as equações diferenciais parciais de Navier–Stokes em sistemas de equações algébricas que

podem ser resolvidos iterativamente em computador.(VERSTEEG; MALALASEKERA, 2007;

FERZIGER; PERIć, 2002)

No contexto de turbomáquinas hidráulicas, como as turbinas Francis, a CFD permite

analisar escoamentos tridimensionais complexos, com variações acentuadas de velocidade e

pressão, forte curvatura de trajetórias e presença de fenômenos como separação e recirculação.

Por meio de simulações numéricas é possível visualizar campos de velocidade e de pressão

em detalhes, avaliar a influência de diferentes condições de operação (vazão, queda, posição

do distribuidor), investigar o comportamento do escoamento entre as pás do rotor e no tubo de

sucção, bem como estimar grandezas integradas de interesse, como torque no eixo e potência

hidráulica convertida.(STOESSEL, 2014)

Neste trabalho, o CFD é utilizado como ferramenta principal para estudar o escoamento

incompressível turbulento em uma turbina Francis representativa, com o objetivo de analisar a

distribuição de velocidade e de pressão no interior da máquina e de estimar a potência entregue

ao eixo por diferentes métodos de pós-processamento. A Fig. 5 ilustra um exemplo de resultado
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numérico típico, na forma de linhas de corrente de velocidade em um plano de corte da turbina.

Figura 5 – Linhas de corrente de velocidade em uma vista em corte da turbina Francis.

Fonte: Elaborada pelo autor.



21

CAPÍTULO

2

MODELO FÍSICO

O modelo físico considerado neste trabalho representa o escoamento de água em uma

turbina Francis de geometria real, baseada na unidade instalada na Usina Hidrelétrica Foz do

Chapecó, típica de empreendimentos de médio a grande porte no Brasil. O domínio computa-

cional inclui as principais regiões hidráulicas da máquina: duto de entrada, distribuidor, rotor

e região de saída/coletor. A Fig. 6 apresenta uma visão geral da turbina estudada e das regiões

consideradas no modelo.

Figura 6 – Domínio físico da turbina Francis estudada.

Fonte: Elaborada pelo autor.
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2.1 Descrição das regiões do domínio

O domínio de escoamento é subdividido em três regiões principais, conforme indicado

esquematicamente na Fig. 7.

Figura 7 – Domínio da turbina Francis com destaque para as regiões: distribuidor, rotor e região de
saída/coletor.

Fonte: Elaborada pelo autor.

O distribuidor, ilustrado em verde na Fig. 7, corresponde ao conduto que conduz a água

desde o conduto forçado até a carcaça em espiral (caracol). Nessa região, a velocidade média é

aproximadamente uniforme e a pressão varia conforme a carga disponível na usina. No modelo

computacional, a entrada é representada por uma seção de vazão prescrita de Q = 483 m3/s,

resultando em velocidade média de aproximadamente 8,78 m/s, devido a àrea de entrada ser

dada por 55,0 m2.

O distribuidor ainda contempla a região composta pelas pás fixas responsáveis por

direcionar o escoamento que chega ao rotor. As diretrizes do distribuidor ajustam o ângulo de

incidência da água sobre as pás móveis, influenciando diretamente a velocidade do fluido na

região do rotor e o rendimento da turbina. No modelo físico adotado, as pás do distribuidor

desviam o escoamento de uma direção predominantemente radial para uma direção adequada

à entrada nos canais do rotor, mantendo-se na posição nominal correspondente à condição de

operação de projeto.

O rotor é a região central da turbina, onde se localizam as pás móveis acopladas ao

eixo. É nesse componente que ocorre a principal conversão de energia hidráulica em energia

mecânica. No modelo numérico, o rotor é representado por uma zona de malha rotativa submetida
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a movimento de corpo rígido com rotação imposta de 90 rpm, conforme especificado no capítulo

de modelo numérico-computacional. As forças hidrodinâmicas atuando nas pás do rotor são

posteriormente integradas para obtenção do torque e da potência mecânica, grandezas discutidas

nas seções de resultados. Uma importante simplificação no modelo é que as pás não possuem

espessura significativa, ou seja são consideravelmente mais finas que as reais. No domínio

mostrado na Fig. 7, o rotor está indicado em vermelho.

A região de saída/coletor, envolve o tubo de sucção e a região de saída, onde o escoamento

deixa a turbina e é conduzido ao canal de fuga. Nessa região ocorre a recuperação parcial de

pressão, e a condição de contorno adotada é a de pressão constante igual a zero, representando

um nível de referência para a descarga. Gradientes nulos de velocidade são impostos na direção

normal à seção de saída. Essa região pode ser visualizada em azul na Fig. 7.

2.2 Hipóteses físicas e propriedades do fluido

O escoamento é modelado como incompressível, newtoniano e monofásico, considerando-

se a água líquida como fluido de trabalho, com massa específica constante ρ = 1000 kg/m3 e

viscosidade cinemática ν = 1,0×10−6 m2/s. O escoamento é assumido isotérmico e adiabático,

isto é, não se considera transferência de energia térmica significativa entre o fluido e as paredes

da turbina (WHITE, 2002).

A cavitação não é modelada neste trabalho; assim, assume-se que a pressão local se

mantém acima da pressão de vapor da água em todas as regiões do domínio (TRIVEDI; CER-

VANTES; DAHLHAUG, 2013). Essa hipótese é compatível com o objetivo principal do estudo,

que é a análise do campo de escoamento e a estimativa da potência mecânica entregue ao eixo

em condições de operação nominal (STOESSEL, 2014).

2.3 Grandezas de interesse

As principais grandezas de interesse no modelo físico são: os campos de velocidade e de

pressão no interior do domínio, a distribuição de esforços nas pás do rotor e a potência mecânica

associada ao torque no eixo.

A potência nominal de aproximadamente 212 MW corresponde ao valor de projeto da

unidade de referência da Usina Hidrelétrica Foz do Chapecó, adotado neste trabalho como

base de comparação para os resultados computacionais. A estimativa da potência a partir da

Primeira Lei da Termodinâmica e por meio da integração das forças no rotor, via utilitário forces

(implementado como um functionObject no OpenFOAM, isto é, um recurso que permite calcular

e registrar automaticamente grandezas adicionais durante a simulação, como forças e momentos

no rotor), é detalhada nos capítulos posteriores.



24

CAPÍTULO

3

MODELO MATEMÁTICO-DIFERENCIAL

A modelagem de um problema físico matematicamente, tem por objetivo de escrever em

termos matemáticos um problema físico, mantendo seu significado. Existe uma certa dificuldade

em relação a execução disso, uma vez que fazer uma modelagem exata pode ser inviável. Nesse

sentido, são adotadas uma série de hipóteses simplificadoras na modelagem (SILVEIRA-NETO,

2020). Dessa forma, por meio da adoção de simplificações se é possível representar, com

relativa proximidade, resultados dos mais diversos fenômenos físicos, possibilitando análises e

conclusões relevantes.

Diversos autores contribuíram para o desenvolvimento das equações fundamentais que

descrevem o comportamento dos fluidos (WHITE, 2002). Com base nesses princípios e nas

hipóteses assumidas no capítulo anterior, é possível formular o problema de escoamento e resolvê-

lo computacionalmente. No presente trabalho adota-se a hipótese de escoamento incompressível,

isotérmico e turbulento, sendo as equações que modelam o fenômeno apresentadas a seguir.

3.1 Equação da Continuidade

∂ρ

∂ t
+∇ · (ρ~V ) = 0 (3.1)

Essa é a equação da continuidade, que resulta do balanço de massa para um volume

de controle. Nessa equação, ∂ρ
∂ t

é a variação da massa específica em função do tempo contida

em uma partícula de fluido, ~V é o vetor velocidade, ρ a massa específica e o operador ∇· é o

divergente, que é uma operação vetorial, portanto, a segunda parcela da soma ∇ · (ρ~V ) é o fluxo

liquido advectivo de massa (SILVEIRA-NETO, 2020).

No entanto, uma vez que no presente trabalho o escoamento é considerado incompressí-

vel, têm-se que a equação da continuidade passa a ser dada pela Equação 3.2
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~∇ ·~V = 0 (3.2)

Que indica que o campo de velocidade deve ser solenoidal, isto é, a massa de fluido que

entra em um volume de controle é exatamente igual ao que sai, garantindo o balanço de massa

(WHITE, 2002).

3.2 Balanço da Quantidade de Movimento Linear

A particularização do teorema do Transporte de Reynolds para a 2a Lei de Newton

resulta nas equações diferenciais, dadas pelas Eqs. 3.3, 3.4 e 3.5 (WHITE, 2002):

ρ~g−~∇p+~∇ · ¯̄τ = ρ
D~V

dt
(3.3)

Essa é a equação que descreve o balanço de quantidade de movimento linear, podendo

ser entendida como a taxa de variação de quantidade de movimento linear de uma dada partícula,

é igual a resultante das forças que agem sobre essa partícula (VERSTEEG; MALALASEKERA,

2007). O desenvolvimento da Eq. 3.3, bem como da Eq. 3.1 pode ser visto de maneira completa

em Silveira-Neto (2020), White (2002).

As parcelas da Eq. 3.3 podem ser expressas como sendo ρ~g, força devida à gravidade,
~∇p, força devida ao gradiente de pressão, ~∇ · ¯̄τ a força viscosa, o tensor ¯̄τ que é dado pela Eq.

3.4 e, por fim a parcela ρ D~V
dt

é o produto da massa específica pela aceleração total, resultando na

força, esse termo é expresso pela Eq. 3.5.

¯̄τ =







τxx τyx τzx

τxy τyy τzy

τxz τyz τzz






(3.4)

D~V

dt
=

∂~V

∂ t
+u

∂~V

∂x
+ v

∂~V

∂y
+w

∂~V

∂ z
(3.5)

É valido destacar que os termos u, v e w são as componentes de ~V nas direções x, y e z,

respectivamente.

Tendo isso em vista, e sendo o fluido utilizado nesse trabalho um fluido newtoniano, as

tensões viscosas serão proporcionais às taxas de deformação e ao coeficiente de viscosidade.

Assim,para escoamentos incompressíveis as componentes são dadas pela Eq. 3.6.
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¯̄τ =


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
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∂y

+ ∂v
∂x

)

µ
(

∂w
∂x

+ ∂u
∂ z

)

µ
(

∂u
∂y

+ ∂v
∂x

)

2µ ∂v
∂y

µ
(

∂v
∂ z

+ ∂w
∂y

)

µ
(

∂w
∂x

+ ∂u
∂ z

)

µ
(

∂v
∂ z

+ ∂w
∂y

)

2µ ∂w
∂ z











(3.6)

Substituindo Eq. 3.4 na 3.3 resultando então nas chamadas equações de Navier-Stokes,

representadas, em sua forma simplificada, pela Eq. 3.7.

∂~V

∂ t
+~∇ ·

(

~V~V
)

=−
1
ρ
~∇p+~g+~∇ ·

(

ν~∇~V
)

(3.7)

Sendo ν = µ/ρ é a viscosidade cinemática.

Essas são as chamadas equações de Navier-Stokes. São equações diferenciais parciais de

segunda ordem. Elas possuem quatro incógnitas, a pressão e as 3 componentes da velocidade,

dessa forma, devendo ser combinada à continuidade para que seja possível a sua solução. Para

isso, condições de contorno adequadas deverão ser estabelecidas (WHITE, 2002).

3.3 Modelo URANS e o Modelo k− ε

As equações de Navier–Stokes são, em princípio, suficientes para modelagem de escoa-

mentos em qualquer regime, seja ele laminar ou turbulento, para qualquer valor do Número de

Reynolds, que é um adimensional que indica a relação entre as forças inerciais e forças viscosas

em um fluido. No entanto, isso se torna um problema para elevados números de Reynolds, pois se

terá um maior espectro de estrutura turbilhonares e estruturas de Kolmogorov cada vez menores,

o que exige malhas extremamente refinadas e passos de tempo muito pequenos para que todas as

estruturas sejam resolvidas, resultando em custo computacional proibitivo para a maioria das

aplicações de engenharia (SILVEIRA-NETO, 2020).

3.3.1 Filtragem e Decomposição de Reynolds

Para contornar essa limitação, aplicam-se operações de filtragem (ou de média) às

equações de Navier–Stokes, separando o campo instantâneo de uma variável genérica φ(~x, t) em

uma parte média e uma flutuação, conforme a Eq. 3.8:

φ(~x, t) = φ̄(~x, t)+φ ′(~x, t) (3.8)

Onde φ̄ representa o valor médio (ou filtrado) e φ ′ a flutuação em torno desse valor.
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Aplicando essa decomposição às equações de continuidade e de balanço de quantidade

de movimento linear, obtêm-se as formas filtradas, dadas pelas Eqs. 3.9 e 3.10:

∂ ūi

∂xi
= 0 (3.9)

∂ ūi

∂ t
+

∂

∂x j

(

uiu j

)

=−
1
ρ

∂ p̄

∂xi
+ν

∂ 2ūi

∂x2
j

+
f̄i

ρ
(3.10)

Nessa formulação, o termo gravitacional foi incorporado ao termo fonte fi.

3.3.2 O Problema do Termo de Correlação de Velocidades

A dificuldade surge pela presença do termo uiu j na Eq. 3.10, que não pode ser diretamente

determinado a partir das variáveis médias. Substituindo a decomposição de Reynolds ui = ūi+u′i

e u j = ū j +u′j nesse termo, obtém-se:

uiu j = ūiū j + ūiu
′

j +u′iū j +u′iu
′

j (3.11)

Os termos mistos são nulos após a média, restando:

uiu j = ūiū j +u′iu
′

j (3.12)

Substituindo de volta na Eq. 3.10, obtém-se:

∂ ūi

∂ t
+

∂

∂x j
(ūiū j) =−

1
ρ

∂ p̄

∂xi
+

∂

∂x j

(

ν
∂ ūi

∂x j
−u′iu

′

j

)

+
f̄i

ρ
(3.13)

O novo termo −ρu′iu
′

j é denominado tensor de Reynolds e representa o transporte de

quantidade de movimento linear devido às flutuações turbulentas. Sua presença gera o chamado

problema de fechamento das equações de URANS (Unsteady Reynolds-Averaged Navier–Stokes),

pois introduz seis incógnitas adicionais sem equações correspondentes.

3.3.3 Hipótese de Boussinesq

Para fechar o sistema, emprega-se a hipótese de Boussinesq, que assume que o tensor

de Reynolds pode ser relacionado ao gradiente da velocidade média de forma análoga ao

comportamento viscoso molecular:

− u′iu
′

j =
µt

ρ

(

∂ ūi

∂x j
+

∂ ū j

∂xi

)

−
2
3

kδi j (3.14)

Onde:
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• µt é a viscosidade dinâmica turbulenta;

• k = 1
2u′iu

′

i é a energia cinética turbulenta;

• δi j é o delta de Kronecker.

Substituindo a Eq. 3.14 na Eq. 3.13, obtêm-se as equações de RANS, que são a base dos

modelos de turbulência do tipo URANS.

3.3.4 Modelo k− ε

O modelo de fechamento a duas equações, k− ε , é amplamente utilizado para calcular a

viscosidade turbulenta µt em termos de variáveis de transporte da turbulência. Segundo Versteeg

e Malalasekera (2007), define-se:

µt = ρCµ
k2

ε
(3.15)

As equações de balanço para k e ε são dadas por:

∂ (ρk)

∂ t
+

∂ (ρkū j)

∂x j
=

∂

∂x j

[(

µ +
µt

σk

)

∂k

∂x j

]

+Pk−ρε (3.16)

∂ (ρε)

∂ t
+

∂ (ρε ū j)

∂x j
=

∂

∂x j

[(

µ +
µt

σε

)

∂ε

∂x j

]

+C1ε
ε

k
Pk−C2ερ

ε2

k
(3.17)

onde:

• Pk = µt

(

∂ ūi

∂x j
+

∂ ū j

∂xi

)

∂ ūi

∂x j
é a taxa de transformação de energia cinética turbulenta do escoa-

mento médio para a turbulência;

• Cµ ,C1ε ,C2ε ,σk,σε são constantes empíricas.

Os valores típicos utilizados são:

Cµ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1.0, σε = 1.3

O modelo URANS é uma extensão direta da formulação RANS, mantendo os termos

não estacionários nas equações diferenciais. Isso permite capturar parcialmente as variações tem-

porais das grandes estruturas turbulentas, preservando o caráter médio estatístico da turbulência.
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CAPÍTULO

4

MODELO MATEMÁTICO-DISCRETO

Nesta seção, é apresentado o processo de discretização das equações diferenciais que

modelam o fenômeno (apresentadas no Capítulo 3) que descrevem o escoamento tridimensional,

transiente e turbulento na turbina Francis. A formulação discreta das equações diferenciais

que descrevem o escoamento de fluidos é uma etapa fundamental da CFD. É através dela que

as equações de balanço, expressas na forma diferencial, são transformadas em um conjunto

finito de equações algébricas, possibilitando sua solução numérica por métodos iterativos. Essa

etapa constitui o elo entre o modelo físico-matemático e sua representação computacional,

sendo determinante para a precisão, estabilidade e eficiência da computação (VERSTEEG;

MALALASEKERA, 2007; MALISKA, 2023).

No presente trabalho, a discretização foi realizada segundo o Método dos Volumes

Finitos (MVF), amplamente adotado simulações CFD por garantir os balanços local e global das

grandezas físicas em cada volume de controle (VERSTEEG; MALALASEKERA, 2007). Essa

característica o torna particularmente adequado para o estudo de turbomáquinas hidráulicas, como

a turbina Francis deste projeto, nas quais os gradientes de pressão e de velocidade apresentam

variações tridimensionais.

4.1 O Método dos Volumes Finitos (MVF)

O MVF é amplamente utilizado em CFD devido à sua característica fundamental de

atender os balanços das propriedades físicas, tais como massa, quantidade de movimento linear

e energia, em cada volume de controle e em todo o domínio de simulação.

Para a obtenção das equações aproximadas do método se dispõe de duas alternativas,

podendo ser via o balanço da propriedade de interesse nos volumes elementares, ou a partir da

equação diferencial na forma em que os fluxos estão dentro do sinal da derivada, ou seja, sua

forma divergente, e assim integrar sobre o volume elementar, no espaço e no tempo.
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No contexto da equação de continuidade, parte-se de sua forma diferencial em divergente

para um escoamento bidimensional em regime permanente, dado pela Eq. 4.1.

∂ (ρu)

∂x
+

∂ (ρv)

∂y
= 0 (4.1)

Integrando a Eq. (4.1) sobre um volume de controle genérico bidimensional, limitado

nas direções x e y pelos planos w (west), e (east), s (south) e n (north), obtém-se a Eq. 4.2.

∫ n

s

∫ e

w

[

∂ (ρu)

∂x
+

∂ (ρv)

∂y

]

dxdy = 0 (4.2)

Aplicando o Teorema da Divergência em duas dimensões, a integral de volume é conver-

tida em integrais de fluxo nas faces do volume de controle. Assim, resultando na Eq. 4.3.

∫ n

s

[

ρu
∣

∣

e
−ρu

∣

∣

w

]

dy+
∫ e

w

[

ρv
∣

∣

n
−ρv

∣

∣

s

]

dx = 0 (4.3)

Para se obter uma forma discreta, as integrais são aproximadas assumindo que o fluxo

mássico em cada face pode ser representado por seu valor médio no centro da face multiplicado

pela área da face. No caso bidimensional, as áreas das faces leste e oeste são ∆y, enquanto as

áreas das faces norte e sul são ∆x. Assim, chega-se à expressão dada pela Eq. 4.4.

ρu∆y
∣

∣

e
−ρu∆y

∣

∣

w
+ρv∆x

∣

∣

n
−ρv∆x

∣

∣

s
= 0 (4.4)

Que constitui a forma discreta da equação de continuidade para o volume de controle P.

Figura 8 ilustra um volume de controle bidimensional genérico, com as faces identificadas

pelos índices n, s, e e o, o que auxilia na visualização das grandezas presentes na Eq. (4.4).

Alternativamente, é possível chegar diretamente à Eq. (4.4) realizando o balanço de

massa no volume de controle finito mostrado na Figura 8, isto é, impondo que a soma algébrica

dos fluxos mássicos pelas faces seja nula, têm-se a Eq. 4.5.

ρu∆y
∣

∣

e
−ρu∆y

∣

∣

w
+ρv∆x

∣

∣

n
−ρv∆x

∣

∣

s
= 0 (4.5)

Dessa forma, observa-se que tanto o caminho que parte da forma diferencial em diver-

gente e integra sobre o volume de controle, quanto o caminho que realiza diretamente o balanço

de massa no volume finito, conduzem à mesma forma discreta da equação de continuidade.

O OpenFOAM implementa essa formulação de modo generalizado, permitindo que

cada termo diferencial seja tratado de forma independente e configurável através dos arquivos

de controle fvSchemes e fvSolution. Essa estrutura modular possibilita ao usuário selecionar

esquemas de discretização de diferentes ordens de precisão, ajustando o balanço entre estabilidade
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Figura 8 – Balanço de massa no elemento.

Fonte: Maliska (2023).

e acurácia numérica de acordo com a complexidade do escoamento modelado (OpenFOAM

Foundation, 2024).

Em resumo, o Método dos Volumes Finitos constitui a base numérica que viabiliza a

resolução computacional das equações de balanço do escoamento tridimensional turbulento na

turbina Francis, garantindo a o modelo físico e a consistência matemática em todo o domínio

computacional.

4.2 Discretização dos Termos

As escolhas dos métodos de discretização são definidas no dicionário system/fvSchemes

e determinam a precisão e estabilidade da simulação, o software OpenFOAM dispõe de uma

grande liberdade para que o usuário escolha como cada discretização será feita.

4.2.1 Discretização Temporal

O termo transiente, responsável pela variação temporal das propriedades dentro de cada

volume de controle, é discretizado utilizando o esquema backward.

O esquema backward corresponde à formulação de Euler, que utiliza os valores da

variável nos instantes de tempo atual (n) e anteriores (n−1) e (n−2), para o caso de discretização

de segunda ordem. A discretização temporal da derivada é expressa pela Eq. 4.6 (OpenFOAM
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Foundation, 2024).

∂

∂ t
(φn) =

1
∆t

(

3
2

φn−2φn−1 +
1
2

φn−2

)

(4.6)

Na Eq. 4.6 ∆t representa o passo de tempo. Essa é uma formulação de segunda ordem e

transiente. A escolha deste esquema justifica-se, por ser um esquema de segunda ordem temporal,

garantindo maior precisão na evolução temporal das variáveis, reduzindo o erro de truncamento

em comparação com esquemas de primeira ordem.

4.2.2 Discretização dos Termos Advectivos

Os termos advectivos presentes nas equações de balanço de quantidade de movimento

linear são não lineares. Sendo necessária a sua discretização e utilização de modelos de interpola-

ção, para uma ilustração simplificada dos métodos será considerado um domínio unidimensional.

Um dos métodos utilizados é o das diferenças centradas, em que se é feito uma interpola-

ção linear entre o nó P e os nós vizinhos. Em caso de os volumes serem de mesma dimensão o

valor da propriedade φ na interface desejada será a média entre os valores de cada centro, caso

contrário será uma média ponderada em função da distância (MIRANDA, 2019). A Fig. 9 ilustra

esse processo.

Figura 9 – Método diferenças centradas.

Fonte: Miranda (2019).

Na imagem é possível ver que a informação φ na posição e, por exemplo é obtida por

meio da interpolação linear das informações na posição P e E.
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O esquema de diferenças centradas apresenta uma limitação fundamental em problemas

fortemente convectivos, pois não leva em conta a direção do escoamento. Nesse esquema, o valor

da propriedade φ em uma face é obtido a partir da média entre os valores nodais adjacentes,

de modo que, por exemplo, a face localizada a oeste é influenciada simultaneamente por φP e

φW , independentemente de qual nó está a montante. Em escoamentos fortemente advectivos

de oeste para leste, isso é indesejável, pois o valor na face deveria ser predominantemente

influenciado pelo nó W , que está a montante, e não pelo nó P, que está a jusante (VERSTEEG;

MALALASEKERA, 2007).

Além disso, o esquema de diferenças centradas não é bounded, ou seja, não garante

que as variáveis calculadas permaneçam dentro de limites fisicamente admissíveis, podendo

resultar em valores não físicos, e também, possui comportamento predominantemente dispersivo,

o que favorece o aparecimento de oscilações numéricas em regiões com elevadas velocidades

ou quando a malha não é suficientemente refinada (VERSTEEG; MALALASEKERA, 2007).

Essas características tornam o método mais suscetível a instabilidades em escoamentos com

altas velocidades e malhas relativamente grosseiras, ao passo que esquemas upwind, tendem a

ser mais robustos e estáveis nessas condições (VERSTEEG; MALALASEKERA, 2007).

Para contornar essa deficiência, emprega-se o esquema upwind, também conhecido como

esquema da “célula doadora”. Esse método incorpora explicitamente a direção do escoamento ao

determinar o valor transportado para a face, de modo que a propriedade φ na face é tomada igual

ao valor no nó a montante. Como por exemplo, para a face w em um escoamento unidimensional

com velocidade positiva, tem-se que o valor da propriedade φ será igual ao seu valor no nó W ,

como ilustra a Fig. 10.

Dessa forma, para esse sentido da velocidade, esse método pode ser descrito por meio do

sistema expresso pela Eq. 4.7. É trivial as equações para o outro sentido.







φw = φW

φe = φP

(4.7)

Tendo isso em vista, para esse trabalho o método escolhido será o upwind.

4.2.3 Discretização dos Termos Difusivos

Para o fluxo difusivo faz-se necessário o conhecimento do gradiente da variável na face.

É então aplicado o esquema de Gauss e feita uma interpolação linear dos termos. Dessa forma,

para realizar isso é escolhido no OpenFOAM o esquema Gauss linear limited corrected 0.33,

assim:

• Gauss linear: Calcula o gradiente na face usando os valores dos centros das células

(precisão de segunda ordem).
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Figura 10 – Método upwind

Fonte: Versteeg e Malalasekera (2007).

• corrected: Adiciona um termo explícito de correção para a não-ortogonalidade, melho-

rando a precisão em malhas curvas.

• limited 0.33: Limita a contribuição do termo de correção a 33% (0.33) do valor

total. Isso é um balanço entre precisão (uma correção completa, ‘1.0‘, seria instável) e

estabilidade (nenhuma correção, ‘0.0‘, seria impreciso). Para a malha de uma turbina

Francis, esta correção é fundamental.

4.2.4 Discretização do Gradiente

O cálculo do gradiente (∇φ ) é crucial. Para esse trabalho se utilizou a interpolação

linear para encontrar os valores da variável de interesse nas faces a partir dos centros, e en-

tão aplica o Teorema de Gauss para encontrar o gradiente no centro da célula (VERSTEEG;

MALALASEKERA, 2007).

4.3 Acoplamento Pressão–Velocidade

Em escoamentos incompressíveis, não há uma equação de balanço escrita diretamente

para a pressão. Em vez disso, o campo de pressão ajusta-se de modo a garantir que o campo de

velocidade satisfaça a equação de continuidade ∇ ·u = 0 (FORTUNA, 2012; FERZIGER; PERIć,

2002). Do ponto de vista matemático, a pressão pode ser interpretada como um multiplicador de
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Lagrange associado à imposição da incompressibilidade, isto é, ela surge justamente da exigência

de que o escoamento permaneça divergente nulo (FORTUNA, 2012).

Isso cria um problema de acoplamento pressão–velocidade: o campo de velocidades

deve satisfazer simultaneamente as equações de balanço de quantidade de movimento linear

e a continuidade, mas a pressão só é conhecida após a solução conjunta do sistema. Métodos

numéricos baseados em volumes finitos tratam esse acoplamento construindo, a partir das

equações discretizadas, uma equação para a pressão (ou correção de pressão) que força o balanço

de massa em cada volume de controle (FORTUNA, 2012; FERZIGER; PERIć, 2002).

Esquemas clássicos como SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-

tions) e PISO (Pressure Implicit with Splitting of Operators) resolvem esse acoplamento de

maneiras distintas: o SIMPLE é formulado como um processo iterativo para problemas estaci-

onários, enquanto o PISO é voltado a simulações transientes, realizando múltiplas correções

de pressão dentro de cada passo de tempo (FERZIGER; PERIć, 2002; MIRANDA, 2019). O

algoritmo PIMPLE (merged PISO–SIMPLE), utilizado no OpenFOAM, combina essas duas

abordagens em um único procedimento, permitindo tratar tanto escoamentos transientes quanto

pseudo-transientes com um mesmo esquema de acoplamento pressão–velocidade.(MIRANDA,

2019; GREENSHIELDS; WELLER, 2022)

A seguir, descreve-se em mais detalhes a formulação conceitual do PIMPLE, destacando

sua motivação, o esquema lógico do algoritmo e o passo a passo de execução dentro de cada

passo de tempo numérico.

4.3.1 Algoritmo PIMPLE

O algoritmo PIMPLE é um esquema de acoplamento pressão–velocidade amplamente

utilizado em casos do OpenFOAM para a solução das equações de Navier–Stokes discretizadas

pelo método dos volumes finitos. Ele combina características dos métodos PISO e SIMPLE,

permitindo que sejam simulados problemas transientes e pseudo-transientes rumo ao regime

permanente (JASAK, 1996; FERZIGER; PERIć, 2002; GREENSHIELDS; WELLER, 2022).

De forma geral, o PISO é mais adequado a simulações explicitamente transientes, pois

realiza múltiplas correções de pressão dentro de cada passo de tempo, garantindo um bom

acoplamento pressão–velocidade, porém com limitações de estabilidade quanto ao tamanho do

passo de tempo. Já o SIMPLE, por sua vez, é formulado como um método iterativo estacionário,

sendo bastante robusto para problemas em regime permanente, mas menos conveniente quando

se deseja manter rigorosamente a natureza transiente do escoamento (FERZIGER; PERIć, 2002;

VERSTEEG; MALALASEKERA, 2007).

O PIMPLE surge como uma combinação desses dois métodos, onde em cada passo

de tempo é introduzido um laço iterativo externo, semelhante ao SIMPLE, dentro do qual são

realizadas uma ou mais correções de pressão no estilo PISO. Esse arranjo permite ajustar, de
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forma relativamente independente, o número de iterações internas e o número de correções de

pressão, além da aplicação de fatores de sub-relaxação. Dessa maneira, o usuário pode configurar

o algoritmo de modo mais orientado a simulações transientes (com poucas iterações internas e

maior fidelidade temporal) ou mais orientado a simulações estacionárias via pseudo-transiente

(com mais iterações internas e maior ênfase na convergência a cada passo) (JASAK, 1996;

GREENSHIELDS; WELLER, 2022).

Uma vantagem importante do PIMPLE é a flexibilidade numérica, o mesmo algoritmo,

com pequenas mudanças de configuração, pode ser utilizado tanto para escoamentos transientes

quanto para a obtenção de soluções em regime permanente. Em particular, o uso de um passo

de tempo físico relativamente grande, combinado com sub-relaxação adequada e um número

suficiente de iterações internas, permite explorar a robustez típica do SIMPLE, sem abrir mão da

estrutura de correção de pressão do PISO. Isso explica a adoção disseminada do PIMPLE em

ambientes de simulação baseados em volumes finitos, como o OpenFOAM, especialmente em

problemas de engenharia mecânica envolvendo escoamentos incompressíveis ou fracamente com-

pressíveis em geometria complexa (FERZIGER; PERIć, 2002; GREENSHIELDS; WELLER,

2022).

4.3.2 Estrutura do algoritmo

A Figura 11 apresenta o fluxograma conceitual do algoritmo PIMPLE, destacando os

três níveis hierárquicos de iteração: o laço de tempo, o laço externo PIMPLE e o sub-laço de

correções de pressão.

O funcionamento do algoritmo PIMPLE pode ser organizado em um conjunto de etapas,

diretamente associadas ao fluxograma da Figura 11:

1. Inicialização e laço de tempo

No início da simulação definem-se os campos iniciais de velocidade u(x, t0), pressão

p(x, t0) e, quando relevante, temperatura T (x, t0) ou outros escalares transportados. Tam-

bém se escolhem o passo de tempo ∆t e o tempo final tend. A partir daí, avança-se no tempo

em um laço externo, atualizando a solução de tn para tn+1 = tn +∆t.

2. Equação de balanço de quantidade de movimento linear e definição de A, b e H(u)

Uma vez realizada a discretização por volumes finitos, a equação de quantidade de movi-

mento linear incompressível pode ser escrita, em forma compacta, como mostra a Eq. 4.8.

Au−b =−∇p (4.8)

Na Eq. 4.8 o termo A é a matriz de coeficientes da equação de momento (diagonal principal

e vizinhança) e b reúne os termos conhecidos na iteração atual (termos fontes, termos

explícitos, entre outros).



Capítulo 4. Modelo Matemático-Discreto 37

Figura 11 – Fluxograma do algoritmo PIMPLE.

Fonte: Greenshields e Weller (2022).

Para simplificar a notação, introduz-se o operador H(u) definido pela Eq. 4.9.

H(u) =−(A∗u−b) (4.9)

Na Eq. 4.9 é importante notar que aparece uma matriz A∗, essa matriz é uma decomposição

de A no entanto sem a diagonal principal. Desse modo, a equação de balanço de quantidade

de movimento linear assume a forma dada pela Eq. 4.10.

Ad u = H(u)−∇p (4.10)

Na Eq. 4.10 a matriz Ad é o que restou apos retirar a matriz A∗, ou seja, é a matriz somente

com a diagonal principal. Nesse contexto, H(u) agrega todos os termos da equação de
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balanço de quantidade de movimento linear que não envolvem diretamente o gradiente

de pressão, avaliados com os campos conhecidos da iteração corrente. Em formulações

por volumes finitos, essa quantidade é construída a partir dos fluxos de face e das fontes

conhecidas, de forma que apenas a velocidade em cada célula permaneça implícita na

matriz Ad. Uma importante observação é que na Fig. 11 a matriz Ad também é chamada

de A, no entanto não está em negrito.

3. Sub-relaxação da quantidade de movimento linear

Para aumentar a estabilidade numérica, especialmente em problemas fortemente não

lineares, aplica-se sub-relaxação ao campo de velocidade. A cada iteração, o incremento

calculado para u é atenuado por um fator ωu, de modo que a atualização efetiva obedece a

unovo
← uantigo +ωu

(

ucorrigido
−uantigo), (4.11)

em que ucorrigido é a solução obtida da equação de momento antes da aplicação da sub-

relaxação. Quando ωu = 1, não há sub-relaxação; valores ωu < 1 amortecem as mudanças

em u, aumentando a robustez às custas de mais iterações.

4. Preditor de quantidade de movimento linear (início do laço PIMPLE)

Fixando um campo de pressão provisório p∗, resolve-se a equação de predição de veloci-

dade conforme Eq. 4.12.

Au∗ = H(u)−∇p∗, (4.12)

Obtendo-se a velocidade predita u∗.

Essa velocidade geralmente não respeita ∇ ·u∗ = 0, o que motiva as etapas subsequentes

de correção de pressão e fluxos dentro do laço PIMPLE.

5. Construção da equação de pressão

A partir da forma discretizada da equação de quantidade de movimento dada pela Eq. 4.10,

pode-se escrever a velocidade em função do gradiente de pressão como mostra a Eq. 4.13

(GREENSHIELDS; WELLER, 2022).

u =
H(u)
Ad
−

1
Ad

∇p (4.13)

Substituindo essa expressão na equação de continuidade incompressível, ∇·u = 0, obtém-

se uma equação de Poisson para a pressão:

∇·

(

1
Ad

∇p

)

= ∇·

(

H(u)
Ad

)

, (4.14)

que corresponde, ao bloco pressure equation da Figura 11. Em formulações por volumes

finitos, essa equação é escrita em termos dos fluxos de face e dos coeficientes das células,

dando origem à chamada equação de pressão utilizada nas correções de pressão e de

fluxos dentro do laço PIMPLE.



Capítulo 4. Modelo Matemático-Discreto 39

6. Sub–laço tipo PISO: correção de pressão e fluxos

Em cada correção do sub–laço tipo PISO, resolve-se a equação de pressão para obter um

campo atualizado p, o qual é então utilizado para corrigir os fluxos de face. De forma

esquemática, pode-se escrever

p← p+δ p, (4.15)

φ f ← φ f +δφ f (δ p), (4.16)

em que δ p representa o incremento de pressão obtido na solução da equação de pressão

e δφ f (δ p) é a correção correspondente nos fluxos volumétricos (ou de massa) em cada

face, em função do novo gradiente de pressão. Esse processo de “resolver a equação de

pressão→ corrigir pressão e fluxos” é repetido algumas vezes dentro do sub–laço PISO,

reduzindo progressivamente o erro de divergência em cada passo de tempo.

7. Correção final da quantidade de movimento linear com H(u)

Com os fluxos e a pressão atualizados, a velocidade é atualizada conforme Eq. (4.17):

unovo =
H(u)
Ad
−

1
Ad

∇pnovo, (4.17)

Onde H(u)/Ad representa, de maneira simbólica, a contribuição de todos os termos não

relacionados ao gradiente de pressão (advecção, difusão e fontes), divididos pelos coefici-

entes de Ad. Na prática, essa operação é realizada célula a célula usando os coeficientes já

montados na etapa da quantidade de movimento linear.

8. Convergência do laço PIMPLE e avanço no tempo

Ao final de cada iteração PIMPLE avaliam-se critérios internos de convergência, como

a redução dos resíduos das equações ou a variação relativa dos campos entre iterações

sucessivas. Se os critérios não forem atendidos, o laço PIMPLE se repete: retorna-se à

etapa de predição da quantidade de movimento linear usando os campos já atualizados de

p, u e φ f . Quando a convergência interna é alcançada, os campos para tn+1 são aceitos e o

laço de tempo avança para o próximo passo.

Em resumo, H(u) deve ser entendido como o operador que agrega todos os termos

conhecidos da equação de quantidade de movimento linear em uma dada iteração, enquanto a

matriz A fornece os coeficientes implícitos dessa equação, a matriz posteriormente é separada em

duas, uma contendo os termos da diagonal principal e a outra os demais termos. A sub-relaxação

atua diretamente sobre as atualizações dos campos u e p, limitando cada incremento a uma fração

controlada do valor corrigido, o que aumenta a robustez do acoplamento pressão–velocidade em

simulações transientes ou fortemente não lineares.
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CAPÍTULO

5

MODELO NUMÉRICO-COMPUTACIONAL

5.1 Sistemas lineares provenientes da discretização

A discretização das equações de balanço, com as quais é possível modelar o problema

pelo método dos volumes finitos conduz, para cada variável escalar ou vetorial, a um sistema

linear da forma

Aφφφ = b, (5.1)

em que A é uma matriz esparsa resultante da discretização dos termos advectivos, difusivos

e, quando aplicável, dos termos transientes, φφφ é o vetor de incógnitas (por exemplo, p, um

componente de velocidade U (também chamado de ~V , k ou ε) e b é o vetor de termos fonte

conhecidos (FERZIGER; PERIć, 2002; MOUKALLED; MANGANI; DARWISH, 2016).

No OpenFOAM, esses sistemas são resolvidos iterativamente, utilizando diferentes

solvers e smoothers, que são recursos do software, de acordo com as propriedades de A (simetria,

definição positiva, grau de diagonal-dominância) e com o papel físico de cada variável (JASAK,

1996; GREENSHIELDS; WELLER, 2022). A seguir descrevem-se os métodos adotados neste

trabalho.

5.1.1 Método multigrid GAMG

Para a variável pressão, o sistema Ap p = bp é resolvido com o solver GAMG (Geometric-

Algebraic MultiGrid), um método multigrid algebraico implementado no OpenFOAM (GRE-

ENSHIELDS; WELLER, 2022). A ideia básica do multigrid é atacar os erros de alta e baixa

frequência em escalas de malha diferentes: métodos iterativos clássicos (como Jacobi e Gauss–Seidel)

reduzem eficientemente componentes de erro de alta frequência, mas são lentos para erros de

baixa frequência (MOUKALLED; MANGANI; DARWISH, 2016). O multigrid constrói uma

hierarquia de malhas ou níveis (da malha fina para malhas progressivamente mais grossas),

resolvendo o sistema em cada nível e transferindo correções entre eles.
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De forma esquemática, um ciclo multigrid aplicado ao sistema Ap p = bp pode ser

descrito como:

1. aplicar algumas iterações de suavização (smoothing) no nível mais fino, reduzindo princi-

palmente os componentes de erro de alta frequência;

2. restringir (R1) o resíduo para um nível de malha mais grosso, transferindo os erros de

baixa frequência para esse nível;

3. resolver (ou aproximar) o problema no nível grosso, obtendo uma correção para a solução

nesse nível;

4. prolongar (P1) a correção obtida no nível grosso de volta a onível mais fino, distribuindo-a

sobre os graus de liberdade da malha original;

5. aplicar novamente suavização no nível fino, se necessário, para eliminar os erros de alta

frequência remanescentes.

A Figura 12 ilustra esse processo em um ciclo em V, em que as operações de restrição

(R1,R2) levam o problema para níveis de malha progressivamente mais grossos e as operações

de prolongamento (P2,P1) trazem de volta as correções para o nível fino.

Figura 12 – Esquema de um ciclo em V multigrid, mostrando os operadores de restrição (R1,R2) e
prolongamento (P2,P1) entre os diferentes níveis de malha.

Fonte: Verdugo e Wall (2016).

O GAMG constrói essa hierarquia a partir da própria matriz Ap por procedimentos

puramente algébricos (algebraic multigrid), sem exigir informações geométricas explícitas da

malha (MOUKALLED; MANGANI; DARWISH, 2016). No presente trabalho, o GAMG foi

configurado com suavizador DICGaussSeidel, tolerância absoluta de 10−5 e tolerância relativa

de 10−3 para a pressão intermediária (p), e tolerância mais rigorosa (10−6, relTol = 0) para a

pressão final (pFinal), conforme o arquivo fvSolution.
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5.1.2 Smoothers: DICGaussSeidel e symGaussSeidel

Os smoothers são operadores de suavização aplicados dentro dos solvers iterativos

para reduzir componentes de erro de alta frequência no resíduo (MOUKALLED; MANGANI;

DARWISH, 2016). Neste trabalho foram utilizados:

• DICGaussSeidel: combina a decomposição incompleta da matriz (Diagonal Incomplete

Cholesky, DIC) com o método de Gauss–Seidel, atuando como pré-condicionador e

suavizador eficiente para sistemas simétricos e definidos positivos, como o proveniente

da equação de pressão. Esse smoother é particularmente adequado quando acoplado ao

GAMG.

• symGaussSeidel: variação simétrica do método de Gauss–Seidel, em que a varredura nas

linhas da matriz é feita em duas direções (frente e ré), o que melhora as propriedades

de convergência em relação ao Gauss–Seidel simples, especialmente para matrizes não

estritamente simétricas (FERZIGER; PERIć, 2002).

A escolha de DICGaussSeidel para a pressão e symGaussSeidel para as variáveis de

quantidade de movimento linear segue recomendações da documentação do OpenFOAM e

de estudos de validação em escoamentos incompressíveis (JASAK, 1996; GREENSHIELDS;

WELLER, 2022).

5.1.3 Solver smoothSolver

Para as variáveis de velocidade e turbulência, os sistemas lineares Aφ φφφ = bφ são re-

solvidos com o smoothSolver, um solver iterativo genérico que pode empregar esquemas do

tipo Gauss–Seidel, gradiente conjugado ou variações destes, sempre associado a um smoother

adequado (GREENSHIELDS; WELLER, 2022). Nos casos considerados, as matrizes associadas

a U, k e ε são tipicamente diagonais-dominantes e menos rígidas que a matriz da pressão, o que

torna o smoothSolver apropriado e computacionalmente eficiente para essas variáveis.

No arquivo fvSolution adotou-se smoothSolver com suavizador symGaussSeidel, para

a solução dos sistemas lineares associados aos campos de velocidade U, k e ε . Nas iterações

internas, foram empregadas tolerância absoluta de 10−6 e tolerância relativa de 10−1, nas itera-

ções internas, enquanto nas iterações finais ((U|k|epsilon)Final) utilizou-se tolerância absoluta

de 10−6 com relTol = 0.

5.1.4 Associação solver–variável e critérios de convergência

A Tabela 1 resume a associação entre variáveis, solvers, smoothers e critérios de conver-

gência adotados no fvSolution.
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Tabela 1 – Configuração dos solvers lineares no fvSolution.

Variável Solver Smoother Tolerância relTol
p GAMG DICGaussSeidel 10−5 10−3

pFinal GAMG DICGaussSeidel 10−6 0
pcorr.* GAMG DICGaussSeidel 10−2 0
MeshPhi smoothSolver symGaussSeidel 10−2 0
U,k,ε smoothSolver symGaussSeidel 10−6 10−1

U,k,ε (final) smoothSolver symGaussSeidel 10−6 0

Essa configuração explora a robustez do GAMG para a pressão, a eficiência do smooth-

Solver para as variáveis de quantidade de movimento linear e turbulência e o uso de tolerâncias

mais rigorosas nas etapas finais de cada passo de tempo. Na Tabela 1, a coluna Tolerância indica

o valor absoluto do resíduo alvo para cada sistema linear, enquanto relTol especifica o critério de

parada relativo, isto é, a fração do resíduo inicial abaixo da qual o solver pode ser interrompido.

Valores de relTol iguais a zero implicam que o critério de convergência é controlado apenas pela

tolerância absoluta, o que é desejável nas soluções finais de cada passo de tempo, em consonância

com o esquema de acoplamento PIMPLE discutido na Seção 4.3.

5.2 Domínio computacional e malhas

O domínio computacional é composto por duas regiões principais: uma região rotativa,

associada ao rotor, e uma região estática em que estão as demais regiões, coletor, distribuido,

entre outras. A região estacionária é discretizada por uma malha estrutural estática, enquanto a

região do rotor é discretizada por uma malha rotativa, movimentada ao longo do tempo por meio

de um modelo de malha dinâmica (dynamic mesh) no OpenFOAM 12. Essas duas regiões são

acopladas por interfaces não conformes, nas quais a comunicação de fluxos é tratada por meio

de condições de contorno do tipo nonConformalCyclic.

5.2.1 Geração de geometria e malha no SALOME

A geometria tridimensional do domínio e a geração da malha foram realizadas no software

SALOME, uma plataforma livre de pré-processamento que permite a criação de modelos CAD,

definição de domínios e geração de malhas compatíveis com ferramentas de CFD (SALOME

Project, 2024).

No SALOME, o domínio foi particionado em volumes correspondentes às regiões

estacionária (distribuidor e coletor) e rotativa (rotor), definindo-se zonas de malha (cell zones)

compatíveis com a posterior definição da região rotativa no OpenFOAM. As superfícies que

compõem as interfaces entre o rotor e as regiões estacionárias foram explicitamente nomeadas,

de forma a serem exportadas como patches distintos no arquivo polyMesh/boundary, permitindo

a posterior associação às condições de contorno nonConformalCyclic do OpenFOAM 12.



Capítulo 5. Modelo Numérico-Computacional 44

Além da divisão em regiões estacionária e rotativa, é importante destacar que a malha foi

construída predominantemente com elementos tetraédricos no volume e com uma camada de

elementos prismáticos nas superfícies próximas às paredes do rotor. Esses prismas são alongados

na direção normal às paredes, formando camadas bem finas destinadas a descrever a camada

limite turbulenta com maior resolução e a manter valores de y+ em faixa adequada ao modelo de

turbulência empregado.

5.2.2 Malha estacionária, malha rotativa e interfaces

A malha do domínio estacionário abrange quase que a turbina em sua totalidade, desde a

região de entrada até a saída, sendo a única exceção a região do rotor. Essa malha permanece

fixa durante toda a simulação, e será nela que grandes parte das condições de contorno são

implementadas, a Fig. 13

Figura 13 – Malha da turbina, visualização no Paraview.

Fonte: Elaborada pelo autor.

A região em que compreendida pelo rotor é uma malha dinâmica com rotação imposta.

Para melhor captar os efeitos da turbina foi feita implementação dessa condição, por meio de um

recurso do software chamado de dynamicMeshDict. Uma representação gráfica da malha dessa

região pode ser vizualizada na Fig. 14.

Por fim outra região que vale destacar é a região de interface entre ambas as malhas, essa

região é definida em duas regiões uma na entrada do rotor e outra na saída, cada uma delas é

compostas por duas faces coincidentes as quais são posteriormente associados a condições de

contorno não conformes do tipo nonConformalCyclic. Dessa forma, mesmo que as malhas das

duas regiões não possuam coincidência nodal nas superfícies de contato, é possível garantir a

transferência consistente de fluxos de massa, de quantidade de movimento e de energia entre
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Figura 14 – Malha do rotor, visualização no Paraview.

Fonte: Elaborada pelo autor.

elas. Uma representação dessa região pode ser vista na Fig. 15, que mostra a vista geral e um

detalhe ampliado da interface.

Figura 15 – Região de interface entre as malhas: vista geral (a) e interface isolada (b).

(a) Vista geral da região de interface. (b) Interface destacada em detalhe.

Fonte: Elaborada pelo autor.

5.2.3 Malha dinâmica e interfaces não conformes no OpenFOAM 12

A movimentação da malha na região do rotor foi implementada por meio do mecanismo

de malha dinâmica do OpenFOAM 12, configurado no arquivo constant/dynamicMeshDict.

Nesse dicionário, se é definido algumas condições, a opção motionSolver solidBody

indica que a zona de células escolhidas, que no caso irá contemplar a região onde se localiza o
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rotor, se movimenta como um corpo rígido, de acordo com uma outra função, a rotatingMotion.

O eixo de rotação é definido pelo vetor axis (0 1 0) e o ponto de origem pelo vetor origin (0 0 0),

indicando basicamente que o rotor gira na direção y em torno do seu eixo central. A velocidade

angular é especificada por meio de uma tabela omega, permitindo prescrever, em função do

tempo, a rotação da região do rotor, que para esse caso foi de 90 RPM, é válido destacar que na

montagem de caso ao inserir esse parâmetro na função ele deve ser colocado em rad/s.

A conexão entre a malha móvel do rotor e a malha estacionária do distribuidor e do

coletor é realizada por meio de patches do tipo nonConformalCyclic, definidos no arquivo

constant/polyMesh/boundary. Por exemplo, os trechos:

nonConformalCyclic_on_rotor_inlet

{

type nonConformalCyclic;

neighbourPatch nonConformalCyclic_on_distr_outlet;

originalPatch rotor_inlet;

matchTolerance 0.0001;

}

nonConformalCyclic_on_distr_outlet

{

type nonConformalCyclic;

neighbourPatch nonConformalCyclic_on_rotor_inlet;

originalPatch distr_outlet;

matchTolerance 0.0001;

}

indicam que os patches originais rotor_inlet e distr_outlet formam um par de inter-

face não conforme. A opção matchTolerance controla a tolerância geométrica empregada pelo

OpenFOAM para associar as faces de um lado às faces do lado oposto da interface.

De forma semelhante, são definidas interfaces não conformes entre rotor_outlet e in-

let_outlet_region. A presença dos patches auxiliares do tipo nonConformalError permite ao

OpenFOAM registrar eventuais inconsistências na montagem dessas interfaces durante o pré-

processamento.

A combinação do movimento de corpo rígido da zona rotorZone com o tratamento de

interfaces não conformes via nonConformalCyclic permite representar, de forma consistente,

o escoamento através da interface entre a região estacionária (distribuidor/coletor) e a região

rotativa (rotor), sem a necessidade de reconstrução da malha a cada passo de tempo.
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5.3 Condições de Contorno

As condições de contorno exercem papel fundamental na correta modelagem computaci-

onal do problema físico. A Figura 16 apresenta as principais regiões do domínio onde foram

impostas as condições de entrada, saída e interfaces entre as regiões estacionária e rotativa.

Figura 16 – Regiões de entrada, saída e interface, visualização no Paraview.

Fonte: Elaborada pelo autor.

Na região de entrada (destacada em vermelho na Figura 16) é imposta uma vazão

volumétrica de água de Q = 483 m3/s. No OpenFOAM, essa condição é implementada por

meio de uma condição de contorno no campo de velocidade, equivalente à prescrição de um

perfil uniforme ao longo de toda a seção de entrada, resultando em uma velocidade média de

aproximadamente uin = 8,78 m/s. Para a pressão cinemática, a condição de contorno adotada

é de gradiente nulo, ou seja, ∇p = 0 nessa superfície, permitindo que o campo de pressão

seja determinado pelo escoamento interno e pela condição de saída. Os termos do modelo de

turbulência k e ε são prescritos como valores fixos iguais ao campo interno (valor da célula

adjacente), enquanto a viscosidade turbulenta cinemática νt é do tipo calculated, ou seja, não é

imposta como condição de contorno, sendo determinada pelo modelo de fechamento turbulento,

com valor inicial nulo.

Na região de saída (em verde na Figura 16) a pressão é especificada como valor fixo de

referência, p = 0, representando a descarga livre para algum reservatório. Para a velocidade,

adota-se uma condição do tipo inletOutlet, que se comporta como condição gradiente nulo

quando o escoamento é dirigido para fora do domínio e como condição de entrada com valor zero

em caso de eventual recirculação. As variáveis de turbulência k e ε utilizam também condições do

tipo inletOutlet, tomando o valor interno como referência, enquanto νt é tratada como calculated

na saída.
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As regiões em azul na Figura 16 correspondem às interfaces entre a malha estacionária

(distribuidor/coletor) e a malha rotativa (rotor). Do ponto de vista dos campos de pressão,

de velocidade e variáveis de turbulência, essas superfícies são modeladas com condição de

gradiente nulo (∇p = 0, ∇U · n = 0, ∇k · n = 0, ∇ε · n = 0 e ∇νt · n = 0). O acoplamento

geométrico e de fluxos através dessas interfaces é realizado pelas condições não conformes

do tipo nonConformalCyclic, definidas na malha, de forma que a transferência de massa,

quantidade de movimento e energia entre as regiões estacionária e rotativa seja tratada pelo

próprio esquema de interpolação da interface, sem impor valores adicionais nos campos.

As superfícies sólidas que formam as paredes do distribuidor, do coletor e das pás do

rotor são tratadas com condição de não deslizamento para a velocidade, o que implica U = 0 nas

paredes estacionárias e velocidade igual à velocidade local da parede nas regiões em movimento,

modeladas por condições consistentes com o movimento de corpo rígido imposto à malha. Para

a pressão, adota-se gradiente nulo em todas as paredes, o que é compatível com a condição de

impermeabilidade. No que diz respeito às variáveis de turbulência, utilizam-se funções de parede

padrão do modelo k-ε : kqRWallFunction para k, epsilonWallFunction para ε e nutkWallFunction

para νt , permitindo representar o comportamento da camada limite turbulenta junto às paredes

sem necessidade de resolver explicitamente a subcamada viscosa.

De forma a sintetizar as condições de contorno adotadas para cada região do domínio e

para cada variável resolvida, apresenta-se a Tabela 2. Nela são reunidos, de maneira compacta,

os tipos de condição impostos para a pressão, a velocidade, as variáveis de turbulência k e ε e a

viscosidade turbulenta cinemática νt nas superfícies de entrada, saída, interfaces entre região

estacionária e rotativa e paredes. Essa organização facilita a visualização conjunta do modelo de

contorno empregado e sua relação com a física do escoamento na turbina.

Tabela 2 – Condições de contorno por região e variável.

Região p (cin.) U k, ε νt

Entrada grad. nulo vazão volum. valor fixo (= interno) calculated (=0)
Saída fixo p = 0 inletOutlet inletOutlet (= interno) calculated
Interfaces grad. nulo grad. nulo grad. nulo grad. nulo
Paredes fixas grad. nulo no-slip funções de parede nutkWallFunction
Paredes rotativas grad. nulo vel. da parede funções de parede nutkWallFunction
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CAPÍTULO

6

RESULTADOS

Tendo então feito as simulações com as condições de contorno citadas e adotando os

métodos de discretização, de resolução de sistemas lineares citados acima, foram obtidos impor-

tantes resultados à respeito do campo de pressão e velocidade, o que permitiu uma importante

análise detalhada do escoamento na turbina Francis. A partir dos resultados foram então re-

alizados dois cálculos a fim de estimar a potência no eixo: um baseado na Primeira Lei da

Termodinâmica e outro utilizando a biblioteca forces, função nativa do OpenFOAM.

6.1 Campos de Pressão e de Velocidade

Antes de partir para o cálculo da potência é válida a análise dos campos de pressão e de

velocidade a fim de verificar se o escoamento apresenta comportamento coerente com o esperado

para turbinas Francis.

A princípio pode-se visualizar o comportamento do campo de pressão, a Fig. 17 ilustra a

distribuição da pressão ao longo do domínio da turbina.

Observa-se uma região de baixa pressão na vizinhança do rotor, bem como uma redução

global de pressão entre a região de entrada e a região de saída, associada à perda de carga ao

longo da máquina. Esse comportamento é coerente com resultados numéricos reportados na

literatura para turbinas Francis operando próximas ao ponto de projeto (STOESSEL, 2014) como

ilustrado na Fig. 18.

Dessa forma, pode-se dizer que qualitativamente, no que diz respeito ao campo de

pressão, a turbina está comportando conforme o esperado.

Para a velocidade espera-se que o fluido acelere até chegar a região do rotor e logo em

seguida reduza sua velocidade. É possível a verificação desse comportamento na Fig. 19, que

mostra o módulo da velocidade em planos de corte representativos.
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Figura 17 – Distribuição da pressão ao longo da vista em corte.

Fonte: Elaborada pelo autor.

Figura 18 – Distribuição de pressão na turbina.

Fonte: Stoessel (2014).

Além da análise qualitativa dos campos, foram extraídos, por meio de utilitários do

OpenFOAM, valores médios de pressão e de módulo de velocidade nas seções de entrada e saída

da turbina. Os resultados obtidos foram:

• Entrada: p/ρ = 343,96 m2/s2 e Vméd = 8,78 m/s;

• Saída: p/ρ = 0 m2/s2 e Vméd = 7,65 m/s.

Esses valores serão utilizados, na seção seguinte, para o cálculo da diferença de carga

total entre entrada e saída e, consequentemente, para a estimativa da potência hidráulica pela

Primeira Lei da Termodinâmica.
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Figura 19 – Distribuição da velocidade ao longo da vista em corte.

Fonte: Elaborada pelo autor.

6.2 Cálculo da Potência pela 1a Lei da Termodinâmica

No solver utilizado, que é destinado a escoamentos incompressíveis, permite trabalhar

fazendo uso de uma pressão modificada, que é também normalizada pela massa específica. E

dessa forma, no intuito de se obter a pressão normal, faz-se necessário adicionar a ela a altura de

coluna de água dessa forma, a pressão na saída é dada então pela Eq. 6.1.

p2

ρ
= psaída +gh = 0+9,81 ·8,344 = 81,85 m2/s2 (6.1)

Tendo isso em vista, foi feito o cálculo da potência, ou seja o trabalho que o sistema irá

exercer. A 1a Lei da Termodinâmica para um volume de controle é dada pela Eq. 6.2.

δE = δQ−δW (6.2)

Ou seja a variação da energia é um resultado da diferença entre a troca de energia na

forma de calor e de trabalho. A variação da energia pode ser descrita pela Eq. 6.3

e2− e1 = h2−h1 +
V 2

2

2
−

V 2
1

2
+gZ2−gZ1 (6.3)

Note que os índices 1 e 2 indicam entrada e saída, respectivamente. Além disso, a entalpia

pode ser escrita por meio da Eq. 6.4.

h = u+
p

ρ
(6.4)

Dado que o sistema é isotérmico, pode-se então dizer que u1 ≈ u2, uma vez que a energia

interna varia mais sensivelmente com a variação da pressão. Dessa forma, chega-se a Eq. 6.5

e2− e1 = (u2 +
p2

ρ
)− (u1 +

p1

ρ
)+

V 2
2

2
−

V 2
1

2
+gZ2−gZ1 = δQ−δW (6.5)
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Adotando a simplificação da energia interna proposta e sabendo que o sistema é adiabá-

tico, ou seja, δQ = 0, a Eq. 6.5 pode ser simplificada novamente, resultando na Eq. 6.6.

p2

ρ
−

p1

ρ
+

V 2
2

2
−

V 2
1

2
+gZ2−gZ1 =−δW (6.6)

Dessa forma, obterá-se-a o trabalho exercido pela turbina, fazendo o produto pela vazão

mássica obtém-se a potência, assim chega-se a Eq. 6.7.

Ẇ =−ṁ

(

p2

ρ
−

p1

ρ
+

V 2
2

2
−

V 2
1

2
+gZ2−gZ1

)

(6.7)

Substituindo-se na Eq. (6.7) os valores médios de pressão e velocidade obtidos nas seções

de entrada e saída, bem como as cotas geométricas consideradas para o escoamento, resulta

em uma potência no eixo de aproximadamente Ẇ = 170,61 MW, valor que será comparado, na

seção seguinte, com a potência estimada por meio da biblioteca forces do OpenFOAM.

6.2.1 Cálculo da potência por meio do recurso Forces

Uma vez feita via 1a Lei da Termodinâmica, partiu-se para utilização do recursos Forces,

uma biblioteca do OpenFOAM, que realiza o cálulo do somatório das forças aplicadas a uma face,

bem como o momento realizado em torno de um eixo, desa forma permitindo que se estimasse a

potência.

6.2.2 Funcionamento da função forces do OpenFOAM

A função forces do OpenFOAM calcula as forças e momentos aplicados pelo escoamento

sobre uma superfície definida pelo usuário. O cálculo é feito pela integração das contribuições

de pressão e tensões viscosas sobre todas as faces do patch especificado.

6.2.2.1 Forças de pressão e viscosas.

A força total F sobre uma superfície S é dada por:

F =
∫

S
(−pn+ τττ ·n) dS, (6.8)

onde p é a pressão, n é a normal unitária da superfície, e τττ é o tensor de tensões viscosas.

Para um fluido newtoniano, o tensor viscoso é:

τττ = µ
(

∇u+∇uT
)

, (6.9)

sendo µ a viscosidade dinâmica e u o campo de velocidades.
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Assim, as forças são divididas em:

Fp =−
∫

S
pndS, (6.10)

Fv =
∫

S
(τττ ·n)dS, (6.11)

F = Fp +Fv. (6.12)

6.2.2.2 Forma discreta usada pelo OpenFOAM.

Como o método é baseado em volumes finitos, as integrais são aproximadas por somas

sobre as faces f do patch:

Fp ≈−∑
f

p f n f A f , (6.13)

Fv ≈∑
f

(

τττ f ·n f

)

A f , (6.14)

F≈∑
f

[

−p f n f +
(

τττ f ·n f

)]

A f . (6.15)

6.2.2.3 Momento calculado pelo forces.

O momento em relação a um ponto de referência r0 (CofR) é:

M =
∫

S
(r− r0)× (−pn+ τττ ·n)dS. (6.16)

Na forma discreta:

M≈∑
f

(

r f − r0
)

×

[

−p f n f +
(

τττ f ·n f

)]

A f . (6.17)

6.2.2.4 Resumo do funcionamento.

Em síntese, o forces:

• lê os campos de pressão p e velocidade u;

• interpola esses valores para as faces do patch;

• calcula pressão e tensões viscosas em cada face;

• integra numericamente as contribuições para obter F e M.

Esse cálculo permite obter forças, momentos e coeficientes aerodinâmicos diretamente

durante a simulação.

Assim, uma vez possuindo os valores de momento, e sabendo a velocidade de rotação

imposta pelo rotor, é possível estimar a potência por meio da Eq. 6.18.

Ẇ = ∑Mω (6.18)
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Para melhorar ilustra como a potência foi variando até se chegar ao regime permanente

foi feito um gráfico já com a potência em MW que pode ser visualizado na Fig. 20.

Figura 20 – Evolução temporal da potência no eixo obtida a partir do momento calculado pela função
forces.

Fonte: Elaborada pelo autor.

Dessa forma, obteve-se uma potência de cerca de 107 MW.

6.3 Análise dos Resultados

Tendo em vista os resultados obtidos nas seções anteriores, observa-se uma discrepância

significativa entre a potência de projeto da unidade (212 MW) e os valores calculados computa-

cionalmente: cerca de 170,61 MW pelo balanço de energia (Primeira Lei da Termodinâmica) e

aproximadamente 107 MW a partir do momento no rotor calculado pela função forces. Nesta

seção discutem-se possíveis causas para essas diferenças, à luz das simplificações adotadas no

modelo físico e numérico.

Em primeiro lugar, o modelo geométrico utilizado, embora baseado em uma turbina real

(UHE Foz do Chapecó), apresenta simplificações em relação à geometria completa da unidade,

especialmente em detalhes construtivos do distribuidor, do rotor e do tubo de sucção. Pequenas

variações na geometria podem afetar de forma sensível a distribuição de escoamento nos canais

entre pás, alterando o campo de pressões e, consequentemente, o torque resultante no eixo.

Em segundo lugar, a rotação do rotor foi imposta como condição de contorno (90 rpm),

em vez de resultar de um acoplamento dinâmico entre torque hidráulico e carga mecânica do

gerador. Isso significa que a potência hidráulica disponível é aquela compatível com a queda

de carga efetivamente reproduzida pela simulação, que por sua vez depende das condições de
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contorno de pressão e velocidade adotadas. Qualquer desvio entre essas condições e os valores

reais de operação da unidade implica uma diferença direta na potência obtida.

Outro fator relevante é a modelagem da turbulência. O uso do modelo URANS k–ε

padrão, embora amplamente empregado em aplicações de engenharia, representa a turbulência de

forma média e pode não capturar adequadamente estruturas tridimensionais complexas presentes

no escoamento de turbinas Francis, especialmente em regiões de forte curvatura e no tubo de

sucção. Isso afeta a previsão das perdas por mistura e, em última instância, o balanço de energia

entre entrada e saída.

Adicionalmente, diferenças entre os dois métodos de estimação de potência devem ser

destacadas. O valor de 170,61 MW, obtido pela Primeira Lei, baseia-se em médias de pressão e

velocidade em seções bem definidas de entrada e saída, representando uma estimativa global da

potência hidráulica transferida ao escoamento. Já o valor de 107 MW resulta da integração local

das forças de pressão e viscosas sobre as superfícies do rotor, fornecendo diretamente o torque

mecânico no eixo.

Por fim, é importante ressaltar que, apesar das discrepâncias em relação à potência de

projeto, os campos de pressão e velocidade obtidos apresentam comportamento qualitativamente

compatível com resultados de referência da literatura para turbinas Francis, indicando que o

escoamento global foi representado de forma coerente. Dessa forma, os valores de potência

estimados devem ser interpretados como uma aproximação sujeita às simplificações de geometria,

condições de contorno e modelagem numérica adotadas, e não como uma reprodução exata do

desempenho da unidade real. Mas ainda se há espaço para aprimoramento através de estudos

de refinamento de malha, testes com outros modelos de turbulência (uma alternativa seria o

modelo k−ω SST ), além de uso de outros esquemas, por exemplo, foi usado o upwind para este

trabalho, poderia se aumentar a ordem desse método visando melhorias nos resultados.
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7

CONCLUSÃO

O presente trabalho teve como objetivo investigar o escoamento incompressível turbu-

lento em uma turbina Francis de geometria real, associada à UHE Foz do Chapecó, utilizando

o software OpenFOAM, e avaliar diferentes formas de estimar a potência entregue ao eixo a

partir dos resultados numéricos. Para isso, foi desenvolvido um modelo físico representativo da

turbina, formulado o modelo matemático-diferencial com base nas equações de Navier-Stokes

em sua forma URANS com modelo de turbulência k–ε , e implementado o modelo numérico-

computacional via método dos volumes finitos.

A análise qualitativa dos campos de pressão e velocidade mostrou que o escoamento

obtido é coerente com o comportamento esperado para turbinas Francis operando próximas ao

ponto de projeto, apresentando aceleração do escoamento na região do rotor, recuperação de

pressão no tubo de sucção e distribuições de pressão consistentes com resultados de referência

da literatura. Esse fato indica que, apesar das simplificações adotadas, o modelo numérico foi

capaz de reproduzir de forma plausível as principais características hidráulicas da máquina.

Do ponto de vista quantitativo, foram avaliadas duas abordagens para estimativa da

potência. A partir da Primeira Lei da Termodinâmica, usando médias de pressão e velocidade

nas seções de entrada e saída, obteve-se uma potência da ordem de 170,61 MW. Já por meio

da integração do momento no rotor utilizando a função forces, a potência estimada foi de

aproximadamente 107 MW. Ambos os valores ficaram abaixo da potência nominal de projeto da

unidade (212 MW), refletindo as limitações inerentes à representação geométrica, às condições

de contorno e ao modelo de turbulência empregados.

As principais fontes prováveis dessa discrepância incluem: simplificações na geometria

do domínio em relação à máquina real; imposição da rotação do rotor em vez de um acoplamento

dinâmico com a carga do gerador; incertezas nas condições de contorno de pressão e vazão;

e limitações do modelo URANS k–ε na captura de estruturas tridimensionais e perdas locais

complexas, especialmente no tubo de sucção. Ainda assim, o estudo cumpriu o objetivo de
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demonstrar a aplicação de CFD em turbinas Francis e de comparar metodologias distintas de

cálculo de potência a partir de resultados numéricos.

Como perspectivas para trabalhos futuros, sugerem-se: o refinamento da geometria do

modelo, aproximando-a ainda mais da turbina real; a realização de uma interação fluido-estrutura,

a fim de eliminar a necessidade de imposição da rotação; a adoção de modelos de turbulência mais

avançados (como SST k–ω ou abordagens híbridas RANS–LES); e a calibração das condições

de contorno com base em dados operacionais ou experimentais da unidade. Tais aprimoramentos

tendem a reduzir as incertezas na estimativa de potência e a tornar a simulação numérica uma

ferramenta ainda mais confiável para análise e otimização de turbinas hidráulicas.
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