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RESUMO

PEREIRA, VE. Modelagem Computacional de Escoamentos em Turbinas Francis Usando
a Plataforma OpenFOAM. 2025. 60 p. Trabalho de Conclusio de Curso (Graduacido em Enge-
nharia Mecanica) — Faculdade de Engenharia Mecanica, Universidade Federal de Uberlandia,
Uberlandia - MG, 2025.

Neste trabalho apresenta-se a modelagem e simulacdes computacionais de escoamentos in-
compressiveis turbulento em uma turbina Francis de geometria real, baseada na unidade da
Usina Hidrelétrica Foz do Chapecé, utilizando o software OpenFOAM. E desenvolvido um
modelo fisico representativo da maquina, formulado o modelo matematico-diferencial a partir
das equagdes de Navier-Stokes na forma URANS com modelo de turbuléncia k—€. A partir das
simulacdes, analisam-se qualitativamente os campos de pressao e de velocidade, verificando-se
comportamento coerente com o esperado para turbinas Francis e com resultados de referéncia da
literatura. Em seguida, sdo avaliadas duas abordagens para a estimativa da poténcia no eixo: uma
baseada na Primeira Lei da Termodinamica, utilizando grandezas médias em secdes de entrada e
saida, e outra a partir do momento no rotor calculado pela fun¢do forces do OpenFOAM. Obtém-
se poténcias de aproximadamente 170,61 MW e 107 MW, respectivamente, valores inferiores a
poténcia de projeto da unidade (212 MW), o que € discutido a luz das simplificagdes geométricas,
das condi¢des de contorno adotadas e das limitacdes do modelo de turbuléncia. Os resultados
demonstram o potencial da Dinamica dos Fluidos Computacional como ferramenta de anélise
em turbinas hidrdulicas, a0 mesmo tempo em que evidenciam a importancia de uma modelagem

cuidadosa para a obten¢do de previsdes quantitativas mais proximas do comportamento real.

Palavras-chave: Turbina Francis; CFD; OpenFOAM; URANS k—¢; poténcia hidraulica.



ABSTRACT

PEREIRA, V.E. Computational Modeling of Flows in Francis Turbines Using the Open-
FOAM Platform. 2025. 60 p. Trabalho de Conclusao de Curso (Graduacdo em Engenharia
Mecanica) — Faculdade de Engenharia Mecanica, Universidade Federal de Uberlandia, Uberlan-
dia - MG, 2025.

This work presents the modeling and numerical simulation of incompressible turbulent flow
in a Francis turbine with a real geometry, based on the unit installed at the Foz do Chapecé
Hydropower Plant, using the OpenFOAM software. A representative physical model of the
machine is developed, the mathematical model is formulated from the Navier—Stokes equations
in the URANS form with the k—¢ turbulence model. From the simulations, pressure and velocity
fields are qualitatively analyzed, showing behavior consistent with that expected for Francis
turbines and with reference results from the literature. Then, two approaches are used to estimate
the shaft power: one based on the First Law of Thermodynamics, using averaged quantities at
the inlet and outlet sections, and another based on the rotor moment computed by the forces
function of OpenFOAM. Powers of approximately 170.61 MW and 107 MW are obtained,
respectively, both lower than the design power of the unit (212 MW), which is discussed in
terms of geometric simplifications, boundary conditions and turbulence modeling limitations.
The results demonstrate the potential of Computational Fluid Dynamics as an analysis tool for
hydraulic turbines, while highlighting the importance of careful modeling to achieve quantitative

predictions closer to the real behavior.

Keywords: Francis turbine; CFD; OpenFOAM; URANS k—¢; hydraulic power.
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CAPITULO

INTRODUCAO

1.1 Matriz elétrica brasileira e o papel da hidroeletrici-
dade

A energia elétrica € um insumo essencial para o desenvolvimento econdmico e social,
influenciando diretamente a produ¢do industrial, a prestacao de servicos e a qualidade de vida da
populacdo. No Brasil, o setor elétrico € historicamente caracterizado por uma forte dependéncia
da fonte hidrica, o que diferencia a matriz elétrica brasileira daquela observada em outras grandes

economias, mais intensivas em combustiveis fosseis.(SILVA; OLIVEIRA, 2020)

De forma geral, a matriz elétrica brasileira apresenta elevada participacao de fontes
renovaveis, com destaque para as usinas hidrelétricas, que ainda respondem pela maior parte
da capacidade instalada e da energia captada e transformada no Sistema Interligado Nacional,
embora essa participacdo venha gradualmente diminuindo com a inserc¢io de outras fontes, como
edlica, solar fotovoltaica e biomassa (SILVA; OLIVEIRA, 2020; EMPRESA DE PESQUISA
ENERGETICA, 2025). Essa predominancia da hidroeletricidade decorre da abundancia de
recursos hidricos, da existéncia de grandes bacias hidrograficas com elevado potencial de queda
e vazdo e de politicas publicas que, ao longo de varias décadas, priorizaram a implantacdo de

grandes aproveitamentos hidrelétricos como estratégia central de expansao da oferta elétrica.

Por outro lado, a forte dependéncia da geragdo hidrelétrica torna o sistema elétrico
brasileiro vulnerdvel a variabilidade hidrol6gica. Estudos apontam alteragdes significativas nos
regimes de afluéncias as principais usinas hidrelétricas do pais, com indicios de ndo estacionarie-
dade associada a mudangas no uso do solo e possiveis efeitos das mudangas climaticas, o que
tem implicagdes para a seguranca de suprimento e para o planejamento da operagdo (SOUZA;
MARTINS, 2002; SILVA; COSTA, 2021). Episédios de crise hidrica, com redu¢do acentuada
dos niveis dos reservatdrios, evidenciam a necessidade de diversificacdo da matriz e de melhoria
da eficiéncia na utilizacdo dos recursos hidricos ja aproveitados (SILVA; COSTA, 2021; SOUZA;
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FERREIRA, 2015).

Nesse contexto, embora a participacao relativa da hidroeletricidade tenda a diminuir
com o crescimento de outras fontes renovédveis, como a energia edlica e a solar fotovoltaica, as
usinas hidrelétricas continuardo exercendo papel estruturante na matriz elétrica brasileira, seja
como fonte principal de transformagao, seja como tecnologia flexivel capaz de compensar a
variabilidade de outras fontes intermitentes (SOUZA; ALVES, 2025).

A operacao eficiente dessas usinas, com énfase na melhoria do desempenho hidraulico das
turbinas e na reducdo de perdas, torna-se, assim, fundamental para a seguranca energética, para a
moderacgdo de custos e para o aproveitamento sustentavel dos recursos hidricos disponiveis. A
Fig. 1 ilustra, de forma sintética, a participagc@o dos principais meios de transformacdo energética

na matriz elétrica brasileira em anos recentes e destaca a relevancia da hidroeletricidade nesse

contexto.

Figura 1 — Participag@o das principais fontes de transformag@o energética na matriz elétrica brasileira no
ano de 2024.

Edlica / Wind 14,1%
Solar/ Solar 9,3%

Gas Natural / Natural gas 6,3%
Bagago de cana / Sugarcane bagasse 4,9%

Licor Preto / Black Liquor 2,3%

Nuclear / Nuclear 2,1%

Importagéo liquida / Net imports 1,5%

QOutras Ndo Renovavel / Other Non renewable 1,5%
Carvao Vapor / Steam Coal 1,3%
Qutras Renovaveis / Other Renewables 0,9%

Oleo Diesel / Diesel Oil 0,6%

Fonte: EMPRESA DE PESQUISA ENERGETICA (2025).

1.2 Turbinas hidraulicas na transformacao energética hi-
drelétrica

Nas usinas hidrelétricas, a conversdo da energia hidrdulica em energia mecéanica ocorre
por meio de turbinas hidraulicas, que transferem a energia do escoamento para um eixo acoplado a

um "gerador elétrico". Diferentes tipos de turbinas sdo empregados em funcao das caracteristicas
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do aproveitamento (queda liquida disponivel, vazdo, queda bruta e restri¢des de operagdo), sendo

comum classifica-las em turbinas de a¢@o e turbinas de reagcdo (NECHLEBA, 1957).

As turbinas hidrdulicas podem ser classificadas em turbinas de acdo e turbinas de re-
acdo conforme o mecanismo de conversao de energia do fluido. Nas turbinas de agdo, toda a
energia hidrdulica € previamente convertida em energia cinética, e o trabalho mecénico € obtido
exclusivamente pela variagdo da quantidade de movimento do jato ao incidir sobre as pas, nao
ocorrendo variagdo significativa de pressdo no rotor, que opera a pressao aproximadamente
atmosférica. J4 nas turbinas de reacio, a conversao de energia ocorre tanto pela variagdo da
velocidade quanto pela variagc@o de pressdo do escoamento ao longo do rotor, o qual permanece
totalmente submerso, caracterizando um escoamento confinado e a necessidade do uso de tubo
de succdo para recuperagdo de energia, sendo esse tipo de turbina amplamente aplicado em

situacdes de quedas baixas a médias e grandes vazoes.

As turbinas Pelton sdo turbinas de ac¢do tipicas para altas quedas e baixas vazdes. Nelas,
a maior parte da conversao de energia ocorre na forma de interacdo entre jatos livres de dgua
e conchas (cavidades) usinadas na periferia do rotor. A energia de pressdo é convertida quase
integralmente em energia cinética antes de atingir o rotor, e a variacao de quantidade de movi-
mento do jato ao incidir nas conchas gera o torque no eixo (SARAVANAMUTTOO; ROGERS;
COHEN, 2009). Esse tipo de turbina é amplamente utilizado em usinas de alta queda, frequente-
mente em regides montanhosas. A Fig. 2 apresenta um esquema tipico de funcionamento desse

tipo de turbina.

Figura 2 — Esquema tipico de uma turbina Pelton, com jatos incidindo sobre as conchas na periferia do
rotor.

Brake Nozzle
Water from  Nozzle

3 Runner Shaft
Reservoir
\ |__— Runner
Penstock -~ \ n
asing
Wheel —s| & e
Spear rod
Spear (M - — — = = =
Jet of / :_:_:_:_:“:_:_:_:__ [~~——— Deflector
water | L s ]

Fonte: Poriyaan (2021).

As turbinas Kaplan, por sua vez, sdo turbinas de reacdo de escoamento axial, adequadas
a baixas quedas e altas vazdes. O escoamento atravessa um distribuidor dotado de diretrizes

ajustaveis e, em seguida, um rotor de pas orientdveis, de forma que tanto o angulo das direciona-



Capitulo 1. Introdugdo 18

doras quanto o das pds possa ser ajustado para diferentes vazdes e quedas, mantendo elevado
rendimento em ampla faixa operacional (NECHLEBA, 1957). Sdo comumente empregadas em
grandes rios de planicie, com desniveis relativamente pequenos. A Fig. 3 mostra um esquema

tipico de funcionamento desse tipo de turbina.

Figura 3 — Esquema tipico de uma turbina Kaplan com fluxo axial, destacando o distribuidor e o rotor de
pés orientaveis.
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Fonte: Rehman e Khan (2019).

Entre esses extremos, as turbinas Francis ocupam posic¢ao intermedidria e correspondem a
um dos tipos mais utilizados em usinas hidrelétricas de médio e grande porte. Trata-se de turbinas
de reacdo de escoamento misto, nas quais o escoamento entra no distribuidor com componente
predominantemente radial, atravessa o rotor sofrendo forte curvatura e variacao de velocidade
e deixa a maquina com componente axial significativa (GANDHI, 2014). Essa configuragao
confere as turbinas Francis grande flexibilidade de aplicacdo em faixas intermedidrias de queda
e vazdo, o que explica sua ampla difusdo em empreendimentos de grande porte no Brasil e no

mundo. A Fig. 4 apresenta um esquema do escoamento em uma turbina Francis tipica.

Do ponto de vista hidraulico, as turbinas Francis apresentam escoamento tridimensional
complexo, com forte interagc@o entre distribuidor, rotor e tubo de succ¢do, presenga de gradientes
acentuados de pressdo e de velocidade e possibilidade de ocorréncia de separagcdo de escoamento
e cavitagdo em determinadas condi¢des operativas (GANDHI, 2014). A compreensao detalhada
desses escoamentos € essencial para o projeto e a otimizagdo de turbinas mais eficientes, bem
como para a mitigacao de fendmenos indesejdveis que podem afetar a vida util e a confiabilidade

dos equipamentos.
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Figura 4 — Esquema de uma turbina Francis, destacando caracol, distribuidor, rotor e tubo de succao.
Fonte: (ASAFF; OLIVEIRA; NEGRI, 2008)
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Fonte: Asaff, Oliveira e Negri (2008).

1.3 Dinamica dos Fluidos Computacional (CFD)

A Dindmica dos Fluidos Computacional (CFD, do inglés Computational Fluid Dynamics)
consiste no uso de métodos numéricos e recursos de computacao para obter solu¢gdes aproximadas
das equagdes que descrevem o escoamento de fluidos.(VERSTEEG; MALALASEKERA, 2007)
Em vez de buscar solucdes analiticas, normalmente invidveis em geometrias reais, o dominio de
escoamento € discretizado em uma malha de volumes de controle, sobre os quais se impdem as
equacgoes de balango de massa e de quantidade de movimento. Esse procedimento transforma
as equacoes diferenciais parciais de Navier—Stokes em sistemas de equacdes algébricas que
podem ser resolvidos iterativamente em computador.(VERSTEEG; MALALASEKERA, 2007;
FERZIGER; PERI¢, 2002)

No contexto de turbomdquinas hidrdulicas, como as turbinas Francis, a CFD permite
analisar escoamentos tridimensionais complexos, com variagdes acentuadas de velocidade e
pressao, forte curvatura de trajetdrias e presenca de fendmenos como separagao e recirculagao.
Por meio de simulagdes numéricas € possivel visualizar campos de velocidade e de pressao
em detalhes, avaliar a influéncia de diferentes condi¢des de operagdo (vazdo, queda, posi¢ao
do distribuidor), investigar o comportamento do escoamento entre as pas do rotor e no tubo de
succdo, bem como estimar grandezas integradas de interesse, como torque no eixo e poténcia
hidraulica convertida.(STOESSEL, 2014)

Neste trabalho, o CFD ¢é utilizado como ferramenta principal para estudar o escoamento
incompressivel turbulento em uma turbina Francis representativa, com o objetivo de analisar a
distribuicdo de velocidade e de pressdo no interior da mdquina e de estimar a poténcia entregue

ao eixo por diferentes métodos de pds-processamento. A Fig. 5 ilustra um exemplo de resultado
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numérico tipico, na forma de linhas de corrente de velocidade em um plano de corte da turbina.

Figura 5 — Linhas de corrente de velocidade em uma vista em corte da turbina Francis.
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Fonte: Elaborada pelo autor.
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CAPITULO

MODELO FiSICO

O modelo fisico considerado neste trabalho representa o escoamento de 4gua em uma
turbina Francis de geometria real, baseada na unidade instalada na Usina Hidrelétrica Foz do
Chapecd, tipica de empreendimentos de médio a grande porte no Brasil. O dominio computa-
cional inclui as principais regides hidrdulicas da maquina: duto de entrada, distribuidor, rotor
e regido de saida/coletor. A Fig. 6 apresenta uma visao geral da turbina estudada e das regides

consideradas no modelo.

Figura 6 — Dominio fisico da turbina Francis estudada.
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2.1 Descricao das regioes do dominio

O dominio de escoamento € subdividido em trés regides principais, conforme indicado

esquematicamente na Fig. 7.

Figura 7 — Dominio da turbina Francis com destaque para as regides: distribuidor, rotor e regido de
saida/coletor.

Fonte: Elaborada pelo autor.

O distribuidor, ilustrado em verde na Fig. 7, corresponde ao conduto que conduz a dgua
desde o conduto for¢ado até a carcaca em espiral (caracol). Nessa regido, a velocidade média é
aproximadamente uniforme e a pressao varia conforme a carga disponivel na usina. No modelo
computacional, a entrada é representada por uma segio de vazio prescrita de Q = 483 m? /s,
resultando em velocidade média de aproximadamente 8,78 m/s, devido a area de entrada ser
dada por 55,0 m?.

O distribuidor ainda contempla a regido composta pelas pds fixas responsaveis por
direcionar o escoamento que chega ao rotor. As diretrizes do distribuidor ajustam o angulo de
incidéncia da dgua sobre as pds moveis, influenciando diretamente a velocidade do fluido na
regido do rotor e o rendimento da turbina. No modelo fisico adotado, as pds do distribuidor
desviam o escoamento de uma direcao predominantemente radial para uma direcao adequada
a entrada nos canais do rotor, mantendo-se na posi¢ao nominal correspondente a condi¢ao de

operacdo de projeto.

O rotor € a regido central da turbina, onde se localizam as pds mdveis acopladas ao
eixo. E nesse componente que ocorre a principal conversao de energia hidrdulica em energia

mecanica. No modelo numérico, o rotor € representado por uma zona de malha rotativa submetida
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a movimento de corpo rigido com rotagdao imposta de 90 rpm, conforme especificado no capitulo
de modelo numérico-computacional. As for¢as hidrodindmicas atuando nas pas do rotor sio
posteriormente integradas para obtencdo do torque e da poté€ncia mecanica, grandezas discutidas
nas secoes de resultados. Uma importante simplificacdo no modelo é que as pas nao possuem
espessura significativa, ou seja sdo consideravelmente mais finas que as reais. No dominio

mostrado na Fig. 7, o rotor estd indicado em vermelho.

A regido de saida/coletor, envolve o tubo de suc¢do e a regido de saida, onde o escoamento
deixa a turbina e é conduzido ao canal de fuga. Nessa regido ocorre a recuperagdo parcial de
pressdo, e a condicao de contorno adotada € a de pressdo constante igual a zero, representando
um nivel de referéncia para a descarga. Gradientes nulos de velocidade sdo impostos na direcdo

normal a secdo de saida. Essa regido pode ser visualizada em azul na Fig. 7.

2.2 Hipoteses fisicas e propriedades do fluido

O escoamento é modelado como incompressivel, newtoniano e monofasico, considerando-
se a dgua liquida como fluido de trabalho, com massa especifica constante p = 1000 kg/m? e
viscosidade cinematica v = 1,0 x 107 m? /s. O escoamento é assumido isotérmico e adiabético,
isto €, ndo se considera transferéncia de energia térmica significativa entre o fluido e as paredes
da turbina (WHITE, 2002).

A cavitagdo ndo € modelada neste trabalho; assim, assume-se que a pressao local se
mantém acima da pressdo de vapor da d4gua em todas as regides do dominio (TRIVEDI; CER-
VANTES; DAHLHAUG, 2013). Essa hipotese é compativel com o objetivo principal do estudo,
que ¢ a andlise do campo de escoamento e a estimativa da poténcia mecanica entregue ao €ixo
em condicdes de operacdo nominal (STOESSEL, 2014).

2.3 Grandezas de interesse

As principais grandezas de interesse no modelo fisico sdo: os campos de velocidade e de
pressdo no interior do dominio, a distribui¢do de esfor¢os nas pds do rotor e a poténcia mecanica

associada ao torque no eixo.

A poténcia nominal de aproximadamente 212 MW corresponde ao valor de projeto da
unidade de referéncia da Usina Hidrelétrica Foz do Chapecd, adotado neste trabalho como
base de comparacgdo para os resultados computacionais. A estimativa da poténcia a partir da
Primeira Lei da Termodinamica e por meio da integracio das for¢as no rotor, via utilitario forces
(implementado como um functionObject no OpenFOAM, isto €, um recurso que permite calcular
e registrar automaticamente grandezas adicionais durante a simulacdo, como for¢as € momentos

no rotor), é detalhada nos capitulos posteriores.
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CAPITULO

MODELO MATEMATICO-DIFERENCIAL

A modelagem de um problema fisico matematicamente, tem por objetivo de escrever em
termos matemadticos um problema fisico, mantendo seu significado. Existe uma certa dificuldade
em relacdo a execucdo disso, uma vez que fazer uma modelagem exata pode ser invidvel. Nesse
sentido, sdo adotadas uma série de hipdteses simplificadoras na modelagem (SILVEIRA-NETO,
2020). Dessa forma, por meio da adocdo de simplificacdes se € possivel representar, com
relativa proximidade, resultados dos mais diversos fendmenos fisicos, possibilitando andlises e

conclusdes relevantes.

Diversos autores contribuiram para o desenvolvimento das equag¢des fundamentais que
descrevem o comportamento dos fluidos (WHITE, 2002). Com base nesses principios € nas
hipéteses assumidas no capitulo anterior, € possivel formular o problema de escoamento e resolveé-
lo computacionalmente. No presente trabalho adota-se a hipétese de escoamento incompressivel,

isotérmico e turbulento, sendo as equacdes que modelam o fendmeno apresentadas a seguir.

3.1 Equacao da Continuidade

E—kV-(pV):O (3.1)

Essa é a equagdo da continuidade, que resulta do balanco de massa para um volume
de controle. Nessa equacao, %—’t) ¢ a variacao da massa especifica em func¢io do tempo contida
em uma particula de fluido, V é o vetor velocidade, p a massa especifica e o operador V- € o
divergente, que € uma operagao vetorial, portanto, a segunda parcela da soma V - (p\7) ¢ o fluxo

liquido advectivo de massa (SILVEIRA-NETO, 2020).

No entanto, uma vez que no presente trabalho o escoamento € considerado incompressi-

vel, tém-se que a equagdo da continuidade passa a ser dada pela Equacgao 3.2
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V.V=0 (3.2)

Que indica que o campo de velocidade deve ser solenoidal, isto €, a massa de fluido que
entra em um volume de controle € exatamente igual ao que sai, garantindo o balanco de massa
(WHITE, 2002).

3.2 Balanco da Quantidade de Movimento Linear

A particularizacdo do teorema do Transporte de Reynolds para a 2¢ Lei de Newton
resulta nas equacdes diferenciais, dadas pelas Eqgs. 3.3, 3.4 e 3.5 (WHITE, 2002):

DV
dt

<l

pE—Vp+V-T=p (3.3)

Essa € a equacgdo que descreve o balanco de quantidade de movimento linear, podendo
ser entendida como a taxa de variagdo de quantidade de movimento linear de uma dada particula,
€ igual a resultante das forcas que agem sobre essa particula (VERSTEEG; MALALASEKERA,
2007). O desenvolvimento da Eq. 3.3, bem como da Eq. 3.1 pode ser visto de maneira completa

em Silveira-Neto (2020), White (2002).

As parcelas da Eq. 3.3 podem ser expressas como sendo pg, for¢a devida a gravidade,
61), forca devida ao gradiente de pressao, V-Ta forca viscosa, o tensor T que é dado pela Eq.
3.4 e, por fim a parcela p% ¢ o produto da massa especifica pela aceleracdo total, resultando na

forca, esse termo € expresso pela Eq. 3.5.

Txx Tyx Tx
T=|Ty Ty Ty (3.4)
Tz Tyz Tz

DV 9V n oV . A% n oV (3.5)
= u— y— wW— .
dt dt dx dy dz

E valido destacar que os termos u, v € w sio as componentes de V nas dire¢des x, y e z,

respectivamente.

Tendo isso em vista, e sendo o fluido utilizado nesse trabalho um fluido newtoniano, as
tensdes viscosas serdo proporcionais as taxas de deformacgao e ao coeficiente de viscosidade.

Assim,para escoamentos incompressiveis as componentes sdo dadas pela Eq. 3.6.
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wg o w(Ges) w(Ges
P=u(g+d) o ou(R+y (3.6)
dw | du dv | dw ad
H(mﬂy—z) “(a_z+a_y> 2U5:
Substituindo Eq. 3.4 na 3.3 resultando entdo nas chamadas equagdes de Navier-Stokes,

representadas, em sua forma simplificada, pela Eq. 3.7.

1= L el
Vp+g+V- (vVV) 3.7)

Vw.(vv):_l;

o1

Sendo v = u/p é a viscosidade cinematica.

Essas sdo as chamadas equacdes de Navier-Stokes. Sdo equacdes diferenciais parciais de
segunda ordem. Elas possuem quatro incégnitas, a pressao e as 3 componentes da velocidade,
dessa forma, devendo ser combinada a continuidade para que seja possivel a sua solugdo. Para

isso, condi¢Oes de contorno adequadas deverdo ser estabelecidas (WHITE, 2002).

3.3 Modelo URANS e o Modelo k—¢

As equacdes de Navier—Stokes s@o, em principio, suficientes para modelagem de escoa-
mentos em qualquer regime, seja ele laminar ou turbulento, para qualquer valor do Nimero de
Reynolds, que é um adimensional que indica a relacdo entre as forcas inerciais e forgas viscosas
em um fluido. No entanto, isso se torna um problema para elevados nimeros de Reynolds, pois se
terd um maior espectro de estrutura turbilhonares e estruturas de Kolmogorov cada vez menores,
o que exige malhas extremamente refinadas e passos de tempo muito pequenos para que todas as
estruturas sejam resolvidas, resultando em custo computacional proibitivo para a maioria das
aplicagdes de engenharia (SILVEIRA-NETO, 2020).

3.3.1 Filtragem e Decomposicao de Reynolds

Para contornar essa limitacao, aplicam-se operacdes de filtragem (ou de média) as
equagdes de Navier-Stokes, separando o campo instantdneo de uma varidvel genérica ¢ (¥,7) em

uma parte média e uma flutuacao, conforme a Eq. 3.8:

O(X,1) = @ (X,1)+¢'(X,1) (3.8)

Onde ¢ representa o valor médio (ou filtrado) e ¢’ a flutuagdo em torno desse valor.



Capitulo 3. Modelo Matemdtico-Diferencial 27

Aplicando essa decomposicao as equacdes de continuidade e de balanco de quantidade

de movimento linear, obtém-se as formas filtradas, dadas pelas Egs. 3.9 e 3.10:

o0ii; _
a—Xi =0 3.9)

di; o , . 1dp % fi
o tan ) = ootV e

J

(3.10)

Nessa formulagdo, o termo gravitacional foi incorporado ao termo fonte f;.

3.3.2 O Problema do Termo de Correlacao de Velocidades

A dificuldade surge pela presenga do termo ;u; na Eq. 3.10, que ndo pode ser diretamente
determinado a partir das varidveis médias. Substituindo a decomposi¢do de Reynolds u; = i; + u/}

e uj = i +u’; nesse termo, obtém-se:

7 7., /.7 1.,/
Wilj =ttt + v+ i+ (3.11)

Os termos mistos sdo nulos apds a média, restando:

i = W+ ugu’j (3.12)

Substituindo de volta na Eq. 3.10, obtém-se:

ow d . 19dp 9 (g ——\  fi

O novo termo — pu;u; € denominado tensor de Reynolds e representa o transporte de
quantidade de movimento linear devido as flutuag¢des turbulentas. Sua presenca gera o chamado
problema de fechamento das equacdes de URANS (Unsteady Reynolds-Averaged Navier—Stokes),

pois introduz seis incognitas adicionais sem equacgdes correspondentes.

3.3.3 Hipétese de Boussinesq

Para fechar o sistema, emprega-se a hipotese de Boussinesq, que assume que o tensor
de Reynolds pode ser relacionado ao gradiente da velocidade média de forma andloga ao

comportamento viscoso molecular:

M (8&,- -l-%) _ %k&j (3.14)

Onde:
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* U, é aviscosidade dinamica turbulenta;
o k= %uiu; € a energia cinética turbulenta;

* §;; é o delta de Kronecker.

Substituindo a Eq. 3.14 na Eq. 3.13, obtém-se as equa¢cdes de RANS, que sdo a base dos
modelos de turbuléncia do tipo URANS.

3.3.4 Modelo k— ¢

O modelo de fechamento a duas equacdes, k — €, € amplamente utilizado para calcular a
viscosidade turbulenta y; em termos de varidveis de transporte da turbuléncia. Segundo Versteeg
e Malalasekera (2007), define-se:

k2
= pCu (3.15)

As equacdes de balango para k e € sdo dadas por:

d(pk)  d(pkij) o w\ ok
o oy ox |\ Mo )ax) THTPE (3.16)
d(pe) d(peu;) 0 1\ o€ e 2
a dx;  Ox; s, Ix; +Cre = Caep— (3.17)

onde:

° _ au; au_j ol « ~ . .o
P = (a—x] + 8_x,> ax; €2 taxa de transformacdo de energia cinética turbulenta do escoa-

mento médio para a turbuléncia;

* Cy,Cie,Cae, Ok, O 580 constantes empiricas.
Os valores tipicos utilizados sdo:

Cy=0.09, Ce=144, Cpx=192, 0, =10, ce=13

O modelo URANS € uma extensao direta da formulagcdo RANS, mantendo os termos
ndo estaciondrios nas equagdes diferenciais. Isso permite capturar parcialmente as variacdes tem-

porais das grandes estruturas turbulentas, preservando o cardter médio estatistico da turbuléncia.
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CAPITULO

MODELO MATEMATICO-DISCRETO

Nesta secao, € apresentado o processo de discretizagdo das equacgdes diferenciais que
modelam o fendmeno (apresentadas no Capitulo 3) que descrevem o escoamento tridimensional,
transiente e turbulento na turbina Francis. A formulacdo discreta das equagdes diferenciais
que descrevem o escoamento de fluidos é uma etapa fundamental da CFD. E através dela que
as equacoes de balanco, expressas na forma diferencial, sdo transformadas em um conjunto
finito de equagdes algébricas, possibilitando sua solu¢do numérica por métodos iterativos. Essa
etapa constitui o elo entre o modelo fisico-matematico e sua representagdo computacional,
sendo determinante para a precisdo, estabilidade e eficiéncia da computacdo (VERSTEEG;
MALALASEKERA, 2007; MALISKA, 2023).

No presente trabalho, a discretizacao foi realizada segundo o Método dos Volumes
Finitos (MVF), amplamente adotado simula¢des CFD por garantir os balancgos local e global das
grandezas fisicas em cada volume de controle (VERSTEEG; MALALASEKERA, 2007). Essa
caracteristica o torna particularmente adequado para o estudo de turbomdquinas hidrdulicas, como
a turbina Francis deste projeto, nas quais os gradientes de pressdo e de velocidade apresentam

variacdes tridimensionais.

4.1 O Método dos Volumes Finitos (MVF)

O MVF € amplamente utilizado em CFD devido a sua caracteristica fundamental de
atender os balancos das propriedades fisicas, tais como massa, quantidade de movimento linear

e energia, em cada volume de controle e em todo o dominio de simulagdo.

Para a obten¢do das equagdes aproximadas do método se dispde de duas alternativas,
podendo ser via o balan¢o da propriedade de interesse nos volumes elementares, ou a partir da
equacdo diferencial na forma em que os fluxos estdo dentro do sinal da derivada, ou seja, sua

forma divergente, e assim integrar sobre o volume elementar, no espagco e no tempo.
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No contexto da equagdo de continuidade, parte-se de sua forma diferencial em divergente

para um escoamento bidimensional em regime permanente, dado pela Eq. 4.1.

2(pu) _ (pv)
dx + dy

=0 4.1)

Integrando a Eq. (4.1) sobre um volume de controle genérico bidimensional, limitado

nas direcdes x e y pelos planos w (west), e (east), s (south) e n (north), obtém-se a Eq. 4.2.

mre[dlpu)  d(pv) _
/S/W[ o + Jy }dxdy—O 4.2)

Aplicando o Teorema da Divergéncia em duas dimensdes, a integral de volume é conver-

tida em integrais de fluxo nas faces do volume de controle. Assim, resultando na Eq. 4.3.

[ lpul,=pul,Jdy+ [ [pv],—pv] dx=0 3)

Para se obter uma forma discreta, as integrais sdo aproximadas assumindo que o fluxo
madssico em cada face pode ser representado por seu valor médio no centro da face multiplicado
pela drea da face. No caso bidimensional, as dreas das faces leste e oeste sdo Ay, enquanto as

areas das faces norte e sul sdo Ax. Assim, chega-se a expressao dada pela Eq. 4.4.

puly|,—puly| +pvAx| —pvAx| =0 (4.4)

Que constitui a forma discreta da equacao de continuidade para o volume de controle P.

Figura 8 ilustra um volume de controle bidimensional genérico, com as faces identificadas

pelos indices n, s, e € 0, 0 que auxilia na visualizacdo das grandezas presentes na Eq. (4.4).

Alternativamente, € possivel chegar diretamente a Eq. (4.4) realizando o balanco de
massa no volume de controle finito mostrado na Figura 8, isto €, impondo que a soma algébrica

dos fluxos massicos pelas faces seja nula, t€m-se a Eq. 4.5.

puly|,—puly| +pvAx| —pvAx| =0 (4.5)

Dessa forma, observa-se que tanto o caminho que parte da forma diferencial em diver-
gente e integra sobre o volume de controle, quanto o caminho que realiza diretamente o balanco

de massa no volume finito, conduzem a mesma forma discreta da equagdo de continuidade.

O OpenFOAM implementa essa formulagdo de modo generalizado, permitindo que
cada termo diferencial seja tratado de forma independente e configurdvel através dos arquivos
de controle fvSchemes e fvSolution. Essa estrutura modular possibilita ao usuario selecionar

esquemas de discretizacdo de diferentes ordens de precisdo, ajustando o balanco entre estabilidade
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Figura 8 — Balango de massa no elemento.
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Fonte: Maliska (2023).

e acurdcia numérica de acordo com a complexidade do escoamento modelado (OpenFOAM
Foundation, 2024).

Em resumo, o Método dos Volumes Finitos constitui a base numérica que viabiliza a
resolucdo computacional das equagdes de balangco do escoamento tridimensional turbulento na
turbina Francis, garantindo a o modelo fisico e a consisténcia matematica em todo o dominio

computacional.

4.2 Discretizacao dos Termos

As escolhas dos métodos de discretizacao sdo definidas no diciondrio system/fvSchemes
e determinam a precisdo e estabilidade da simulacao, o software OpenFOAM dispde de uma

grande liberdade para que o usudrio escolha como cada discretizagdo sera feita.

4.2.1 Discretizacao Temporal

O termo transiente, responsével pela variacdo temporal das propriedades dentro de cada

volume de controle, € discretizado utilizando o esquema backward.

O esquema backward corresponde a formulacdo de Euler, que utiliza os valores da
varidvel nos instantes de tempo atual (n) e anteriores (n— 1) e (n—2), para o caso de discretiza¢do

de segunda ordem. A discretizacdo temporal da derivada € expressa pela Eq. 4.6 (OpenFOAM
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Foundation, 2024).

d 1 /3 1
ot (¢n) = Az (E‘Pn —2¢p—1+ E(PnZ) (4.6)

Na Eq. 4.6 At representa o passo de tempo. Essa € uma formulacao de segunda ordem e
transiente. A escolha deste esquema justifica-se, por ser um esquema de segunda ordem temporal,
garantindo maior precisdo na evolu¢do temporal das varidveis, reduzindo o erro de truncamento

em compara¢do com esquemas de primeira ordem.

4.2.2 Discretizacao dos Termos Advectivos

Os termos advectivos presentes nas equagdes de balanco de quantidade de movimento
linear sdo nao lineares. Sendo necessdria a sua discretizagdo e utiliza¢do de modelos de interpola-

¢do, para uma ilustragcdo simplificada dos métodos serd considerado um dominio unidimensional.

Um dos métodos utilizados € o das diferencgas centradas, em que se € feito uma interpola-
¢ao linear entre o nd P e os nds vizinhos. Em caso de os volumes serem de mesma dimensdo o
valor da propriedade ¢ na interface desejada serd a média entre os valores de cada centro, caso
contrdrio serd uma média ponderada em funcdo da distancia (MIRANDA, 2019). A Fig. 9 ilustra

€8SC processo.

Figura 9 — Método diferengas centradas.

Oe

Fonte: Miranda (2019).

Na imagem € possivel ver que a informagdo ¢ na posi¢do e, por exemplo é obtida por

meio da interpolacdo linear das informagdes na posicao P e E.
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O esquema de diferencas centradas apresenta uma limitacao fundamental em problemas
fortemente convectivos, pois ndo leva em conta a dire¢do do escoamento. Nesse esquema, o valor
da propriedade ¢ em uma face € obtido a partir da média entre os valores nodais adjacentes,
de modo que, por exemplo, a face localizada a oeste € influenciada simultaneamente por ¢p e
¢w, independentemente de qual né estd a montante. Em escoamentos fortemente advectivos
de oeste para leste, isso € indesejavel, pois o valor na face deveria ser predominantemente
influenciado pelo né W, que estd a montante, e nao pelo n6 P, que estd a jusante (VERSTEEG;
MALALASEKERA, 2007).

Além disso, o esquema de diferencas centradas nao € bounded, ou seja, ndo garante
que as varidveis calculadas permanecam dentro de limites fisicamente admissiveis, podendo
resultar em valores ndo fisicos, e também, possui comportamento predominantemente dispersivo,
o que favorece o aparecimento de oscilagdes numéricas em regides com elevadas velocidades
ou quando a malha ndo € suficientemente refinada (VERSTEEG; MALALASEKERA, 2007).
Essas caracteristicas tornam o método mais suscetivel a instabilidades em escoamentos com
altas velocidades e malhas relativamente grosseiras, ao passo que esquemas upwind, tendem a
ser mais robustos e estaveis nessas condi¢des (VERSTEEG; MALALASEKERA, 2007).

Para contornar essa deficiéncia, emprega-se o esquema upwind, também conhecido como
esquema da “célula doadora”. Esse método incorpora explicitamente a dire¢cdo do escoamento ao
determinar o valor transportado para a face, de modo que a propriedade ¢ na face é tomada igual
ao valor no né a montante. Como por exemplo, para a face w em um escoamento unidimensional
com velocidade positiva, tem-se que o valor da propriedade ¢ serd igual ao seu valor no né6 W,

como ilustra a Fig. 10.

Dessa forma, para esse sentido da velocidade, esse método pode ser descrito por meio do

sistema expresso pela Eq. 4.7. E trivial as equacdes para o outro sentido.

v = Pw
0. = ¢p

4.7)
Tendo isso em vista, para esse trabalho o método escolhido serd o upwind.

4.2.3 Discretizacao dos Termos Difusivos

Para o fluxo difusivo faz-se necessdrio o conhecimento do gradiente da varidvel na face.
E entdo aplicado o esquema de Gauss e feita uma interpolacdo linear dos termos. Dessa forma,
para realizar isso € escolhido no OpenFOAM o esquema Gauss linear limited corrected 0.33,

assim:

* Gauss linear: Calcula o gradiente na face usando os valores dos centros das células

(precisdo de segunda ordem).
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Figura 10 — Método upwind
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Fonte: Versteeg e Malalasekera (2007).

* corrected: Adiciona um termo explicito de correcdo para a ndo-ortogonalidade, melho-

rando a precisdo em malhas curvas.

* limited 0.33: Limita a contribuicdo do termo de corre¢do a 33% (0.33) do valor
total. Isso é um balanco entre precisdo (uma correcdo completa, ‘1.0°, seria instdvel) e
estabilidade (nenhuma correcao, ‘0.0°, seria impreciso). Para a malha de uma turbina

Francis, esta corre¢do € fundamental.

4.2.4 Discretizacao do Gradiente

O célculo do gradiente (V@) é crucial. Para esse trabalho se utilizou a interpolacao
linear para encontrar os valores da varidvel de interesse nas faces a partir dos centros, e en-
tdo aplica o Teorema de Gauss para encontrar o gradiente no centro da célula (VERSTEEG;
MALALASEKERA, 2007).

4.3 Acoplamento Pressao—Velocidade

Em escoamentos incompressiveis, ndo ha uma equacdo de balango escrita diretamente
para a pressdo. Em vez disso, o campo de pressdo ajusta-se de modo a garantir que o campo de
velocidade satisfaca a equagdo de continuidade V -u = 0 (FORTUNA, 2012; FERZIGER; PERIC,

2002). Do ponto de vista matemético, a pressao pode ser interpretada como um multiplicador de
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Lagrange associado a imposi¢c@o da incompressibilidade, isto €, ela surge justamente da exigéncia

de que o escoamento permanega divergente nulo (FORTUNA, 2012).

Isso cria um problema de acoplamento pressdo—velocidade: o campo de velocidades
deve satisfazer simultaneamente as equagdes de balango de quantidade de movimento linear
e a continuidade, mas a pressao s6 € conhecida apds a solug¢do conjunta do sistema. Métodos
numéricos baseados em volumes finitos tratam esse acoplamento construindo, a partir das
equacdes discretizadas, uma equacdo para a pressao (ou correcao de pressdo) que forca o balanco
de massa em cada volume de controle (FORTUNA, 2012; FERZIGER; PERI¢, 2002).

Esquemas clédssicos como SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) e PISO (Pressure Implicit with Splitting of Operators) resolvem esse acoplamento de
maneiras distintas: o SIMPLE é formulado como um processo iterativo para problemas estaci-
ondrios, enquanto o PISO € voltado a simulagdes transientes, realizando multiplas corre¢cdes
de pressdo dentro de cada passo de tempo (FERZIGER; PERI¢, 2002; MIRANDA, 2019). O
algoritmo PIMPLE (merged PISO-SIMPLE), utilizado no OpenFOAM, combina essas duas
abordagens em um dnico procedimento, permitindo tratar tanto escoamentos transientes quanto
pseudo-transientes com um mesmo esquema de acoplamento pressdo—velocidade.(MIRANDA,
2019; GREENSHIELDS; WELLER, 2022)

A seguir, descreve-se em mais detalhes a formulacio conceitual do PIMPLE, destacando
sua motivagao, o esquema légico do algoritmo e o passo a passo de execugdo dentro de cada

passo de tempo numérico.

4.3.1 Algoritmo PIMPLE

O algoritmo PIMPLE € um esquema de acoplamento pressao—velocidade amplamente
utilizado em casos do OpenFOAM para a solucdo das equacdes de Navier—Stokes discretizadas
pelo método dos volumes finitos. Ele combina caracteristicas dos métodos PISO e SIMPLE,
permitindo que sejam simulados problemas transientes e pseudo-transientes rumo ao regime
permanente (JASAK, 1996; FERZIGER; PERI¢, 2002; GREENSHIELDS; WELLER, 2022).

De forma geral, o PISO é mais adequado a simulac¢des explicitamente transientes, pois
realiza multiplas corre¢des de pressao dentro de cada passo de tempo, garantindo um bom
acoplamento pressdo—velocidade, porém com limita¢des de estabilidade quanto ao tamanho do
passo de tempo. J4 o SIMPLE, por sua vez, € formulado como um método iterativo estaciondrio,
sendo bastante robusto para problemas em regime permanente, mas menos conveniente quando
se deseja manter rigorosamente a natureza transiente do escoamento (FERZIGER; PERI¢, 2002;
VERSTEEG; MALALASEKERA, 2007).

O PIMPLE surge como uma combinagdo desses dois métodos, onde em cada passo
de tempo € introduzido um lago iterativo externo, semelhante ao SIMPLE, dentro do qual sdao

realizadas uma ou mais corre¢des de pressao no estilo PISO. Esse arranjo permite ajustar, de
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forma relativamente independente, o nimero de iteracdes internas e o nimero de correcoes de
pressdo, além da aplicagdo de fatores de sub-relaxacdo. Dessa maneira, o usudrio pode configurar
o0 algoritmo de modo mais orientado a simulacdes transientes (com poucas iteracoes internas e
maior fidelidade temporal) ou mais orientado a simulagdes estaciondrias via pseudo-transiente
(com mais iteracOes internas € maior énfase na convergéncia a cada passo) (JASAK, 1996;
GREENSHIELDS; WELLER, 2022).

Uma vantagem importante do PIMPLE ¢ a flexibilidade numérica, o mesmo algoritmo,
com pequenas mudancas de configuracdo, pode ser utilizado tanto para escoamentos transientes
quanto para a obtenc¢do de solucdes em regime permanente. Em particular, o uso de um passo
de tempo fisico relativamente grande, combinado com sub-relaxacdo adequada e um nimero
suficiente de iteracdes internas, permite explorar a robustez tipica do SIMPLE, sem abrir mao da
estrutura de correcdo de pressao do PISO. Isso explica a ado¢ao disseminada do PIMPLE em
ambientes de simulacio baseados em volumes finitos, como o OpenFOAM, especialmente em
problemas de engenharia mecanica envolvendo escoamentos incompressiveis ou fracamente com-
pressiveis em geometria complexa (FERZIGER; PERI¢, 2002; GREENSHIELDS; WELLER,
2022).

4.3.2 Estrutura do algoritmo

A Figura 11 apresenta o fluxograma conceitual do algoritmo PIMPLE, destacando os
trés niveis hierdrquicos de iteragcdo: o lago de tempo, o laco externo PIMPLE e o sub-laco de

corregdes de pressao.

O funcionamento do algoritmo PIMPLE pode ser organizado em um conjunto de etapas,

diretamente associadas ao fluxograma da Figura 11:

1. Inicializacao e laco de tempo
No inicio da simula¢@o definem-se os campos iniciais de velocidade u(x,7y), pressdo
p(x,1p) e, quando relevante, temperatura T (X,#y) ou outros escalares transportados. Tam-
bém se escolhem o passo de tempo Az e o tempo final z.,4. A partir dai, avanga-se no tempo

em um lago externo, atualizando a solugdo de " para "1 = " + Ar.

2. Equacio de balanco de quantidade de movimento linear e definicao de A, b e H(u)

Uma vez realizada a discretizacdo por volumes finitos, a equacdo de quantidade de movi-

mento linear incompressivel pode ser escrita, em forma compacta, como mostra a Eq. 4.8.

Au—b=—Vp (4.8)

Na Eq. 4.8 o termo A ¢ a matriz de coeficientes da equa¢do de momento (diagonal principal
e vizinhanga) e b retine os termos conhecidos na iteracdo atual (termos fontes, termos

explicitos, entre outros).
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Figura 11 — Fluxograma do algoritmo PIMPLE.
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Fonte: Greenshields e Weller (2022).

Para simplificar a notagdo, introduz-se o operador H(u) definido pela Eq. 4.9.
H(u) = —(A"u—Db) (4.9)

Na Eq. 4.9 € importante notar que aparece uma matriz A*, essa matriz ¢ uma decomposicao
de A no entanto sem a diagonal principal. Desse modo, a equagdo de balanco de quantidade

de movimento linear assume a forma dada pela Eq. 4.10.
Agqu=H(u)—-Vp (4.10)

Na Eq. 4.10 a matriz Aq € o que restou apos retirar a matriz A*, ou seja, € a matriz somente

com a diagonal principal. Nesse contexto, H(u) agrega todos os termos da equacdo de
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balan¢o de quantidade de movimento linear que ndo envolvem diretamente o gradiente
de pressdo, avaliados com os campos conhecidos da iteragdo corrente. Em formulacoes
por volumes finitos, essa quantidade é construida a partir dos fluxos de face e das fontes
conhecidas, de forma que apenas a velocidade em cada célula permaneca implicita na
matriz Ag. Uma importante observacdo € que na Fig. 11 a matriz Ag também € chamada

de A, no entanto ndo estid em negrito.

3. Sub-relaxacao da quantidade de movimento linear
Para aumentar a estabilidade numérica, especialmente em problemas fortemente nao
lineares, aplica-se sub-relaxacdo ao campo de velocidade. A cada iteragdo, o incremento

calculado para u € atenuado por um fator @,, de modo que a atualizagdo efetiva obedece a

unovo — uantlgo + w, (ucorrlgldo o uantlgo) 7 ( 4.1 1)

em que ucorrlgldo

€ a solucdo obtida da equacao de momento antes da aplicacdo da sub-
relaxagdo. Quando @, = 1, ndo ha sub-relaxacdo; valores @, < 1 amortecem as mudancas

em u, aumentando a robustez as custas de mais iteragdes.

4. Preditor de quantidade de movimento linear (inicio do laco PIMPLE)
Fixando um campo de pressdo provisorio p*, resolve-se a equagdo de predig¢do de veloci-
dade conforme Eq. 4.12.
Au*=H(u)—Vp~, (4.12)

Obtendo-se a velocidade predita u*.

Essa velocidade geralmente ndo respeita V- u* = 0, o que motiva as etapas subsequentes

de correcdo de pressao e fluxos dentro do lago PIMPLE.

5. Construcao da equacao de pressao
A partir da forma discretizada da equacdo de quantidade de movimento dada pela Eq. 4.10,

pode-se escrever a velocidade em funcdo do gradiente de pressdo como mostra a Eq. 4.13
(GREENSHIELDS; WELLER, 2022).

H(u) 1
=—7*—-——V 4.13
"TTAr AP *+13)
Substituindo essa expressdo na equacdo de continuidade incompressivel, V-u = 0, obtém-

se uma equagdo de Poisson para a pressao:

v. (Aidvp) —V. (%) : (4.14)

que corresponde, ao bloco pressure equation da Figura 11. Em formula¢des por volumes
finitos, essa equagdo € escrita em termos dos fluxos de face e dos coeficientes das células,
dando origem a chamada equacdo de pressdo utilizada nas corre¢des de pressao e de
fluxos dentro do laco PIMPLE.
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6. Sub-laco tipo PISO: correcao de pressao e fluxos
Em cada correcdo do sub-laco tipo PISO, resolve-se a equacdo de pressao para obter um
campo atualizado p, o qual € entdo utilizado para corrigir os fluxos de face. De forma

esquemadtica, pode-se escrever

p+—p+ép, (4.15)
Or < Or+0¢£(6p), (4.16)

em que 8 p representa o incremento de pressio obtido na solug¢do da equagédo de pressdo
e 6¢¢(0p) é a corregdo correspondente nos fluxos volumétricos (ou de massa) em cada
face, em func¢do do novo gradiente de pressao. Esse processo de “resolver a equacio de
pressdo — corrigir pressao e fluxos” € repetido algumas vezes dentro do sub—laco PISO,

reduzindo progressivamente o erro de divergéncia em cada passo de tempo.

7. Correcao final da quantidade de movimento linear com H(u)

Com os fluxos e a pressao atualizados, a velocidade € atualizada conforme Eq. (4.17):

H(u) 1

_ V phovo

[&d [\d l) )

novo
u —

(4.17)

Onde H(u)/Aq representa, de maneira simbdlica, a contribui¢do de todos os termos ndo
relacionados ao gradiente de pressao (adveccao, difusao e fontes), divididos pelos coefici-
entes de Agq. Na prética, essa operacgdo € realizada célula a célula usando os coeficientes ja

montados na etapa da quantidade de movimento linear.

8. Convergéncia do laco PIMPLE e avanco no tempo
Ao final de cada iteracdo PIMPLE avaliam-se critérios internos de convergéncia, como
a reducao dos residuos das equagdes ou a variacao relativa dos campos entre iteragdes
sucessivas. Se os critérios ndo forem atendidos, o laco PIMPLE se repete: retorna-se a
etapa de predicdo da quantidade de movimento linear usando os campos ja atualizados de
p>ue ¢r. Quando a convergéncia interna € alcangada, os campos para "*1 530 aceitos e o

lago de tempo avanca para o proximo passo.

Em resumo, H(u) deve ser entendido como o operador que agrega todos os termos
conhecidos da equacio de quantidade de movimento linear em uma dada iteragdo, enquanto a
matriz A fornece os coeficientes implicitos dessa equacdo, a matriz posteriormente é separada em
duas, uma contendo os termos da diagonal principal e a outra os demais termos. A sub-relaxagdo
atua diretamente sobre as atualizacdes dos campos u e p, limitando cada incremento a uma fragdo
controlada do valor corrigido, o que aumenta a robustez do acoplamento pressdo—velocidade em

simulagdes transientes ou fortemente nao lineares.
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CAPITULO

MODELO NUMERICO-COMPUTACIONAL

5.1 Sistemas lineares provenientes da discretizacao

A discretizacdo das equagdes de balango, com as quais € possivel modelar o problema
pelo método dos volumes finitos conduz, para cada varidvel escalar ou vetorial, a um sistema
linear da forma

A¢ =D, (5.1)

em que A é uma matriz esparsa resultante da discretizagdo dos termos advectivos, difusivos
e, quando aplicavel, dos termos transientes, @ é o vetor de incdgnitas (por exemplo, p, um
componente de velocidade U (também chamado de V, k ou €) e b é o vetor de termos fonte
conhecidos (FERZIGER; PERI¢, 2002; MOUKALLED; MANGANI; DARWISH, 2016).

No OpenFOAM, esses sistemas sdo resolvidos iterativamente, utilizando diferentes
solvers e smoothers, que sdo recursos do software, de acordo com as propriedades de A (simetria,
defini¢do positiva, grau de diagonal-dominancia) e com o papel fisico de cada varidvel (JASAK,
1996; GREENSHIELDS; WELLER, 2022). A seguir descrevem-se os métodos adotados neste
trabalho.

5.1.1 Meétodo multigrid GAMG

Para a variavel pressido, o sistema A, p = b, € resolvido com o solver GAMG (Geometric-
Algebraic MultiGrid), um método multigrid algebraico implementado no OpenFOAM (GRE-
ENSHIELDS; WELLER, 2022). A ideia basica do multigrid € atacar os erros de alta e baixa
frequéncia em escalas de malha diferentes: métodos iterativos cldssicos (como Jacobi e Gauss—Seidel)
reduzem eficientemente componentes de erro de alta frequéncia, mas sdo lentos para erros de
baixa frequéncia (MOUKALLED; MANGANI; DARWISH, 2016). O multigrid constréi uma
hierarquia de malhas ou niveis (da malha fina para malhas progressivamente mais grossas),

resolvendo o sistema em cada nivel e transferindo corre¢des entre eles.
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De forma esquemitica, um ciclo multigrid aplicado ao sistema A,p = b, pode ser

descrito como:

1. aplicar algumas iteragdes de suavizacao (smoothing) no nivel mais fino, reduzindo princi-

palmente os componentes de erro de alta frequéncia;

2. restringir (R') o residuo para um nivel de malha mais grosso, transferindo os erros de

baixa frequéncia para esse nivel;

3. resolver (ou aproximar) o problema no nivel grosso, obtendo uma correcao para a solu¢ao

nesse nivel;

4. prolongar (P') a correcdo obtida no nivel grosso de volta a onivel mais fino, distribuindo-a

sobre os graus de liberdade da malha original;

5. aplicar novamente suavizagdo no nivel fino, se necessdrio, para eliminar os erros de alta

frequéncia remanescentes.

A Figura 12 ilustra esse processo em um ciclo em V, em que as operacgdes de restri¢ao
(R',R?) levam o problema para niveis de malha progressivamente mais grossos e as operagoes

de prolongamento (PZ, P!) trazem de volta as correcdes para o nivel fino.

Figura 12 — Esquema de um ciclo em V multigrid, mostrando os operadores de restricio (R',R?) e
prolongamento (P2, P') entre os diferentes niveis de malha.
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Fonte: Verdugo e Wall (2016).

O GAMG constréi essa hierarquia a partir da prépria matriz A, por procedimentos
puramente algébricos (algebraic multigrid), sem exigir informacdes geométricas explicitas da
malha (MOUKALLED; MANGANI; DARWISH, 2016). No presente trabalho, o GAMG foi
configurado com suavizador DICGaussSeidel, tolerancia absoluta de 107> e tolerancia relativa
de 1073 para a pressio intermedidria (p), e tolerAncia mais rigorosa (107, relTol = 0) para a

pressdo final (pFinal), conforme o arquivo fvSolution.
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5.1.2 Smoothers: DICGaussSeidel e symGaussSeidel

Os smoothers sdo operadores de suavizagdo aplicados dentro dos solvers iterativos
para reduzir componentes de erro de alta frequéncia no residuo (MOUKALLED; MANGANI;
DARWISH, 2016). Neste trabalho foram utilizados:

* DICGaussSeidel: combina a decomposicao incompleta da matriz (Diagonal Incomplete
Cholesky, DIC) com o método de Gauss—Seidel, atuando como pré-condicionador e
suavizador eficiente para sistemas simétricos e definidos positivos, como o proveniente
da equacdo de pressao. Esse smoother é particularmente adequado quando acoplado ao
GAMG.

» symGaussSeidel: variacdo simétrica do método de Gauss—Seidel, em que a varredura nas
linhas da matriz é feita em duas direcdes (frente e ré), o que melhora as propriedades
de convergéncia em relagdo ao Gauss—Seidel simples, especialmente para matrizes nao
estritamente simétricas (FERZIGER; PERI¢, 2002).

A escolha de DICGaussSeidel para a pressdo e symGaussSeidel para as varidveis de
quantidade de movimento linear segue recomendacdes da documentacdo do OpenFOAM e
de estudos de validagdo em escoamentos incompressiveis (JASAK, 1996; GREENSHIELDS;
WELLER, 2022).

5.1.3 Solver smoothSolver

Para as varidveis de velocidade e turbuléncia, os sistemas lineares Ay o = by sdo re-
solvidos com o smoothSolver, um solver iterativo genérico que pode empregar esquemas do
tipo Gauss—Seidel, gradiente conjugado ou variagdes destes, sempre associado a um smoother
adequado (GREENSHIELDS; WELLER, 2022). Nos casos considerados, as matrizes associadas
a U, k e € sdo tipicamente diagonais-dominantes e menos rigidas que a matriz da pressdo, o que

torna o smoothSolver apropriado e computacionalmente eficiente para essas varidveis.

No arquivo fvSolution adotou-se smoothSolver com suavizador symGaussSeidel, para
a solucdo dos sistemas lineares associados aos campos de velocidade U, k e €. Nas iteracdes
internas, foram empregadas tolerancia absoluta de 107 e tolerancia relativa de 10!, nas itera-
¢oOes internas, enquanto nas iteracoes finais ((Ulklepsilon)Final) utilizou-se tolerancia absoluta
de 107° com relTol = 0.

5.1.4 Associacao solver—variavel e critérios de convergéncia

A Tabela 1 resume a associacao entre varidveis, solvers, smoothers e critérios de conver-

géncia adotados no fvSolution.
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Tabela 1 — Configuracdo dos solvers lineares no fvSolution.

Varidvel Solver Smoother Tolerancia relTol
p GAMG DICGaussSeidel 107> 1073
pFinal GAMG DICGaussSeidel 1076 0
pcorr.* GAMG DICGaussSeidel 1072 0
MeshPhi smoothSolver symGaussSeidel 1072 0
U,k,e smoothSolver symGaussSeidel 107° 107!
U,k,€ (final) smoothSolver symGaussSeidel 10-6 0

Essa configuracdo explora a robustez do GAMG para a pressao, a eficiéncia do smooth-
Solver para as varidveis de quantidade de movimento linear e turbuléncia e o uso de tolerancias
mais rigorosas nas etapas finais de cada passo de tempo. Na Tabela 1, a coluna Tolerdncia indica
o valor absoluto do residuo alvo para cada sistema linear, enquanto rel7ol especifica o critério de
parada relativo, isto &, a fracao do residuo inicial abaixo da qual o solver pode ser interrompido.
Valores de relTol iguais a zero implicam que o critério de convergéncia é controlado apenas pela
tolerancia absoluta, o que € desejdvel nas solucdes finais de cada passo de tempo, em consonancia

com o esquema de acoplamento PIMPLE discutido na Secao 4.3.

5.2 Dominio computacional e malhas

O dominio computacional é composto por duas regides principais: uma regifo rotativa,
associada ao rotor, € uma regido estatica em que estdo as demais regides, coletor, distribuido,
entre outras. A regido estaciondria € discretizada por uma malha estrutural estdtica, enquanto a
regido do rotor € discretizada por uma malha rotativa, movimentada ao longo do tempo por meio
de um modelo de malha dindmica (dynamic mesh) no OpenFOAM 12. Essas duas regides sao
acopladas por interfaces ndo conformes, nas quais a comunicacdo de fluxos € tratada por meio

de condi¢des de contorno do tipo nonConformalCyclic.

5.2.1 Geracao de geometria e malha no SALOME

A geometria tridimensional do dominio e a geracdo da malha foram realizadas no software
SALOME, uma plataforma livre de pré-processamento que permite a criacdo de modelos CAD,
definicdo de dominios e geracdo de malhas compativeis com ferramentas de CFD (SALOME
Project, 2024).

No SALOME, o dominio foi particionado em volumes correspondentes as regides
estacionaria (distribuidor e coletor) e rotativa (rotor), definindo-se zonas de malha (cell zones)
compativeis com a posterior defini¢do da regido rotativa no OpenFOAM. As superficies que
compdem as interfaces entre o rotor e as regides estaciondrias foram explicitamente nomeadas,
de forma a serem exportadas como patches distintos no arquivo polyMesh/boundary, permitindo

a posterior associagao as condicdes de contorno nonConformalCyclic do OpenFOAM 12.



Capitulo 5. Modelo Numérico-Computacional 44

Além da divisdo em regides estaciondria e rotativa, € importante destacar que a malha foi
construida predominantemente com elementos tetraédricos no volume e com uma camada de
elementos prismaticos nas superficies proximas as paredes do rotor. Esses prismas sdo alongados
na dire¢do normal as paredes, formando camadas bem finas destinadas a descrever a camada
limite turbulenta com maior resolugfio e a manter valores de y* em faixa adequada ao modelo de

turbuléncia empregado.

5.2.2 Malha estacionaria, malha rotativa e interfaces

A malha do dominio estaciondrio abrange quase que a turbina em sua totalidade, desde a
regido de entrada até a saida, sendo a Uinica excecao a regido do rotor. Essa malha permanece
fixa durante toda a simulacdo, e sera nela que grandes parte das condi¢des de contorno sao

implementadas, a Fig. 13

Figura 13 — Malha da turbina, visualizagcdo no Paraview.
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Fonte: Elaborada pelo autor.

A regido em que compreendida pelo rotor € uma malha dinAmica com rotagdo imposta.
Para melhor captar os efeitos da turbina foi feita implementacio dessa condi¢cdo, por meio de um
recurso do software chamado de dynamicMeshDict. Uma representagdo grafica da malha dessa

regido pode ser vizualizada na Fig. 14.

Por fim outra regido que vale destacar € a regido de interface entre ambas as malhas, essa
regido € definida em duas regides uma na entrada do rotor e outra na saida, cada uma delas é
compostas por duas faces coincidentes as quais sdo posteriormente associados a condi¢des de
contorno nao conformes do tipo nonConformalCyclic. Dessa forma, mesmo que as malhas das
duas regides nao possuam coincidéncia nodal nas superficies de contato, € possivel garantir a

transferéncia consistente de fluxos de massa, de quantidade de movimento e de energia entre
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Figura 14 — Malha do rotor, visualizacido no Paraview.

Fonte: Elaborada pelo autor.

elas. Uma representacdo dessa regido pode ser vista na Fig. 15, que mostra a vista geral e um

detalhe ampliado da interface.

Figura 15 — Regiao de interface entre as malhas: vista geral (a) e interface isolada (b).

(a) Vista geral da regido de interface. (b) Interface destacada em detalhe.

Fonte: Elaborada pelo autor.

5.2.3 Malha dinamica e interfaces nao conformes no OpenFOAM 12

A movimentacdo da malha na regido do rotor foi implementada por meio do mecanismo

de malha dindmica do OpenFOAM 12, configurado no arquivo constant/dynamicMeshDict.

Nesse diciondrio, se € definido algumas condi¢des, a op¢do motionSolver solidBody

indica que a zona de células escolhidas, que no caso ird contemplar a regido onde se localiza o
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rotor, se movimenta como um corpo rigido, de acordo com uma outra func¢do, a rotatingMotion.
O eixo de rotacdo € definido pelo vetor axis (0 1 0) e o ponto de origem pelo vetor origin (0 0 0),
indicando basicamente que o rotor gira na dire¢do y em torno do seu eixo central. A velocidade
angular € especificada por meio de uma tabela omega, permitindo prescrever, em funcao do
tempo, a rotacdo da regido do rotor, que para esse caso foi de 90 RPM, € valido destacar que na

montagem de caso ao inserir esse parametro na funcdo ele deve ser colocado em rad/s.

A conexdo entre a malha moével do rotor e a malha estacionaria do distribuidor e do
coletor € realizada por meio de patches do tipo nonConformalCyclic, definidos no arquivo

constant/polyMesh/boundary. Por exemplo, os trechos:

nonConformalCyclic_on_rotor_inlet

{
type nonConformalCyclic;
neighbourPatch nonConformalCyclic_on_distr_outlet;
originalPatch  rotor_inlet;
matchTolerance 0.0001;
}

nonConformalCyclic_on_distr_outlet

{
type nonConformalCyclic;
neighbourPatch nonConformalCyclic_on_rotor_inlet;
originalPatch  distr_outlet;
matchTolerance 0.0001;
+

indicam que os patches originais rotor_inlet e distr_outlet formam um par de inter-
face ndo conforme. A op¢ao matchTolerance controla a tolerancia geométrica empregada pelo

OpenFOAM para associar as faces de um lado as faces do lado oposto da interface.

De forma semelhante, sdo definidas interfaces nao conformes entre rotor_outlet € in-
let_outlet_region. A presenga dos patches auxiliares do tipo nonConformalError permite ao
OpenFOAM registrar eventuais inconsisténcias na montagem dessas interfaces durante o pré-

processamento.

A combinac@o do movimento de corpo rigido da zona roforZone com o tratamento de
interfaces nao conformes via nonConformalCyclic permite representar, de forma consistente,
0 escoamento através da interface entre a regido estaciondria (distribuidor/coletor) e a regiao

rotativa (rotor), sem a necessidade de reconstrucdo da malha a cada passo de tempo.
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5.3 Condicoes de Contorno

As condicdes de contorno exercem papel fundamental na correta modelagem computaci-
onal do problema fisico. A Figura 16 apresenta as principais regides do dominio onde foram

impostas as condicdes de entrada, saida e interfaces entre as regides estaciondria e rotativa.

Figura 16 — Regides de entrada, saida e interface, visualiza¢do no Paraview.

Fonte: Elaborada pelo autor.

Na regido de entrada (destacada em vermelho na Figura 16) € imposta uma vazao
volumétrica de dgua de Q = 483 m3/ s. No OpenFOAM, essa condicdo é implementada por
meio de uma condicdo de contorno no campo de velocidade, equivalente a prescricao de um
perfil uniforme ao longo de toda a se¢@o de entrada, resultando em uma velocidade média de
aproximadamente u;, = 8,78 m/s. Para a pressdo cinematica, a condi¢do de contorno adotada
¢ de gradiente nulo, ou seja, Vp = 0 nessa superficie, permitindo que o campo de pressao
seja determinado pelo escoamento interno e pela condi¢do de saida. Os termos do modelo de
turbuléncia k e € s@o prescritos como valores fixos iguais ao campo interno (valor da célula
adjacente), enquanto a viscosidade turbulenta cinemaética v; € do tipo calculated, ou seja, ndo é
imposta como condicdo de contorno, sendo determinada pelo modelo de fechamento turbulento,

com valor inicial nulo.

Na regido de saida (em verde na Figura 16) a pressao € especificada como valor fixo de
referéncia, p = 0, representando a descarga livre para algum reservatdrio. Para a velocidade,
adota-se uma condi¢do do tipo inletOutlet, que se comporta como condi¢ao gradiente nulo
quando o escoamento € dirigido para fora do dominio e como condi¢@o de entrada com valor zero
em caso de eventual recirculag@o. As varidveis de turbuléncia k e € utilizam também condi¢des do
tipo inletOutlet, tomando o valor interno como referéncia, enquanto V; € tratada como calculated

na saida.
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As regides em azul na Figura 16 correspondem as interfaces entre a malha estaciondria
(distribuidor/coletor) e a malha rotativa (rotor). Do ponto de vista dos campos de pressao,
de velocidade e varidveis de turbuléncia, essas superficies sao modeladas com condicao de
gradiente nulo (Vp =0, VU-n=0, Vk-n=0, Ve-n =0 e Vv, -n = 0). O acoplamento
geométrico e de fluxos através dessas interfaces € realizado pelas condi¢cdes ndo conformes
do tipo nonConformalCyclic, definidas na malha, de forma que a transferéncia de massa,
quantidade de movimento e energia entre as regides estaciondria e rotativa seja tratada pelo

proprio esquema de interpolagdo da interface, sem impor valores adicionais nos campos.

As superficies solidas que formam as paredes do distribuidor, do coletor e das pas do
rotor sdo tratadas com condi¢@o de ndo deslizamento para a velocidade, o que implica U = 0 nas
paredes estaciondrias e velocidade igual a velocidade local da parede nas regides em movimento,
modeladas por condi¢des consistentes com o movimento de corpo rigido imposto a malha. Para
a pressao, adota-se gradiente nulo em todas as paredes, o que € compativel com a condicdo de
impermeabilidade. No que diz respeito as varidveis de turbuléncia, utilizam-se funcdes de parede
padrdao do modelo k-€: kgRWallFunction para k, epsilonWallFunction para € e nutkWallFunction
para V;, permitindo representar o comportamento da camada limite turbulenta junto as paredes

sem necessidade de resolver explicitamente a subcamada viscosa.

De forma a sintetizar as condi¢des de contorno adotadas para cada regido do dominio e
para cada varidvel resolvida, apresenta-se a Tabela 2. Nela sdo reunidos, de maneira compacta,
os tipos de condicao impostos para a pressao, a velocidade, as varidveis de turbulénciake € e a
viscosidade turbulenta cinemaética v; nas superficies de entrada, saida, interfaces entre regiao
estaciondria e rotativa e paredes. Essa organizagdo facilita a visualizacdo conjunta do modelo de

contorno empregado e sua relagdo com a fisica do escoamento na turbina.

Tabela 2 — Condig¢des de contorno por regido e variavel.

Regido p (cin.) U k, € v,

Entrada grad. nulo vazdo volum. valor fixo (= interno)  calculated (=0)
Saida fixo p =0 inletOutlet inletOutlet (= interno) calculated
Interfaces grad. nulo grad. nulo grad. nulo grad. nulo
Paredes fixas grad. nulo no-slip funcgdes de parede nutkWallFunction

Paredes rotativas  grad. nulo vel. da parede funcdes de parede nutkWallFunction
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CAPITULO

RESULTADOS

Tendo entdo feito as simulacdes com as condi¢des de contorno citadas e adotando os
métodos de discretizacdo, de resolugdo de sistemas lineares citados acima, foram obtidos impor-
tantes resultados a respeito do campo de pressdo e velocidade, o que permitiu uma importante
andlise detalhada do escoamento na turbina Francis. A partir dos resultados foram entao re-
alizados dois cdlculos a fim de estimar a poténcia no eixo: um baseado na Primeira Lei da

Termodinamica e outro utilizando a biblioteca forces, fun¢do nativa do OpenFOAM.

6.1 Campos de Pressao e de Velocidade

Antes de partir para o célculo da poténcia € vdlida a andlise dos campos de pressao e de
velocidade a fim de verificar se 0 escoamento apresenta comportamento coerente com o esperado

para turbinas Francis.

A principio pode-se visualizar o comportamento do campo de pressdo, a Fig. 17 ilustra a

distribui¢do da pressdo ao longo do dominio da turbina.

Observa-se uma regido de baixa pressao na vizinhanga do rotor, bem como uma redugdo
global de pressdo entre a regido de entrada e a regido de saida, associada a perda de carga ao
longo da maquina. Esse comportamento é coerente com resultados numéricos reportados na
literatura para turbinas Francis operando préximas ao ponto de projeto (STOESSEL, 2014) como

ilustrado na Fig. 18.

Dessa forma, pode-se dizer que qualitativamente, no que diz respeito ao campo de

pressdo, a turbina estd comportando conforme o esperado.

Para a velocidade espera-se que o fluido acelere até chegar a regido do rotor e logo em
seguida reduza sua velocidade. E possivel a verificagdo desse comportamento na Fig. 19, que

mostra o modulo da velocidade em planos de corte representativos.
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Figura 17 — Distribuic¢do da press@o ao longo da vista em corte.
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Fonte: Elaborada pelo autor.

Figura 18 — Distribuicio de pressdo na turbina.
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Além da andlise qualitativa dos campos, foram extraidos, por meio de utilitarios do

OpenFOAM, valores médios de pressao e de mdédulo de velocidade nas se¢des de entrada e saida
da turbina. Os resultados obtidos foram:
* Entrada: p/p = 343,96 m?/s? e Vipeq = 8,78 mis;

* Saida: p/p = 0 m?/s? e Vipeq = 7,65 m/s.

Esses valores serdo utilizados, na secdo seguinte, para o cdlculo da diferenca de carga

total entre entrada e saida e, consequentemente, para a estimativa da poténcia hidrdulica pela

Primeira Lei da Termodinamica.
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Figura 19 — Distribuicio da velocidade ao longo da vista em corte.
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Fonte: Elaborada pelo autor.

6.2 Calculo da Poténcia pela 1¢ Lei da Termodinamica

No solver utilizado, que é destinado a escoamentos incompressiveis, permite trabalhar
fazendo uso de uma pressdo modificada, que é também normalizada pela massa especifica. E
dessa forma, no intuito de se obter a pressao normal, faz-se necessdrio adicionar a ela a altura de

coluna de 4gua dessa forma, a pressdo na saida é dada entdo pela Eq. 6.1.

%:psafda—l—gh:0+9,81-8,344:81,85 m? /s (6.1)

Tendo isso em vista, foi feito o cdlculo da poténcia, ou seja o trabalho que o sistema ird

exercer. A 14 Lei da Termodinamica para um volume de controle é dada pela Eq. 6.2.

SE =80 — W (6.2)

Ou seja a variacdo da energia € um resultado da diferenga entre a troca de energia na

forma de calor e de trabalho. A variacdo da energia pode ser descrita pela Eq. 6.3
2 2

V2 Vv
ez—elzhz—h1+72—71+gzz—gzl (6.3)

Note que os indices 1 e 2 indicam entrada e saida, respectivamente. Além disso, a entalpia

pode ser escrita por meio da Eq. 6.4.

p
h=u+= (6.4)
P

Dado que o sistema € isotérmico, pode-se entdo dizer que u; =~ u, uma vez que a energia

interna varia mais sensivelmente com a variac@o da pressdo. Dessa forma, chega-se a Eq. 6.5

Vi Vi
82—61:(uz—l—%)—(ul—|—%)—|—72—71—|—g22—g21:5Q—5W (6.5)
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Adotando a simplifica¢do da energia interna proposta e sabendo que o sistema ¢ adiaba-

tico, ou seja, 6Q = 0, a Eq. 6.5 pode ser simplificada novamente, resultando na Eq. 6.6.

Vi V¢
P2_Pv B 7 eZ = —6W (6.6)

pp 2 2

Dessa forma, obterd-se-a o trabalho exercido pela turbina, fazendo o produto pela vazio

massica obtém-se a poténcia, assim chega-se a Eq. 6.7.

. Vi V2
W:—m<%—%+72—71+gZ2—g21) (6.7)

Substituindo-se na Eq. (6.7) os valores médios de pressao e velocidade obtidos nas secdes
de entrada e saida, bem como as cotas geométricas consideradas para o escoamento, resulta
em uma poténcia no eixo de aproximadamente W = 170,61 MW, valor que sera comparado, na

secdo seguinte, com a poténcia estimada por meio da biblioteca forces do OpenFOAM.

6.2.1 Calculo da poténcia por meio do recurso Forces

Uma vez feita via 1¢ Lei da Termodinamica, partiu-se para utilizag¢do do recursos Forces,
uma biblioteca do OpenFOAM, que realiza o cdlulo do somatério das forgas aplicadas a uma face,
bem como o momento realizado em torno de um eixo, desa forma permitindo que se estimasse a

poténcia.

6.2.2 Funcionamento da funcao forces do OpenFOAM

A fungdo forces do OpenFOAM calcula as for¢as e momentos aplicados pelo escoamento
sobre uma superficie definida pelo usudrio. O célculo € feito pela integracio das contribuicdes

de pressdo e tensdes viscosas sobre todas as faces do patch especificado.

6.2.2.1 Forcas de pressdo e viscosas.

A forca total F sobre uma superficie S € dada por:
F:/(—pn—H:-n) ds, (6.8)
S

onde p € a pressdo, n € a normal unitdria da superficie, e T € o tensor de tensdes viscosas.

Para um fluido newtoniano, o tensor viscoso é:
T=u(Vu+Vvu'), (6.9)

sendo u a viscosidade dindmica e u o campo de velocidades.
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Assim, as forcas sdo divididas em:

F,= —/pndS, (6.10)
S
Fv:/(t-n)dS, 6.11)
S
F=F,+F,. (6.12)

6.2.2.2 Forma discreta usada pelo OpenFOAM.

Como o método é baseado em volumes finitos, as integrais sdo aproximadas por somas

sobre as faces f do patch:

N—pranf, (613)

F, ~ (cf ns)Ay, (6.14)
f

F~ Z pfnf+ Tr- nf)]Af (6.15)
f

6.2.2.3 Momento calculado pelo forces.

O momento em relacdo a um ponto de referéncia ry (CofR) é:

M:/(r—ro)x(—pn—l—'r-n)dS. (6.16)
N
Na forma discreta:
M~} (rp—ro) x [—pms+(T;-my)] Ay (6.17)
f

6.2.2.4 Resumo do funcionamento.

Em sintese, o forces:

* 1€ os campos de pressdo p e velocidade u;

* interpola esses valores para as faces do patch;

calcula pressdo e tensdes viscosas em cada face;

* integra numericamente as contribui¢des para obter F e M.

Esse cdlculo permite obter for¢cas, momentos e coeficientes aerodinamicos diretamente

durante a simulagdo.

Assim, uma vez possuindo os valores de momento, e sabendo a velocidade de rotacao

imposta pelo rotor, € possivel estimar a poténcia por meio da Eq. 6.18.

W=Y Mo (6.18)
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Para melhorar ilustra como a poténcia foi variando até se chegar ao regime permanente

foi feito um gréfico ja com a poténcia em MW que pode ser visualizado na Fig. 20.

Figura 20 — Evolug¢ao temporal da poténcia no eixo obtida a partir do momento calculado pela fungédo
forces.
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Fonte: Elaborada pelo autor.

Dessa forma, obteve-se uma poténcia de cerca de 107 MW.

6.3 Analise dos Resultados

Tendo em vista os resultados obtidos nas se¢des anteriores, observa-se uma discrepancia
significativa entre a poténcia de projeto da unidade (212 MW) e os valores calculados computa-
cionalmente: cerca de 170,61 MW pelo balanco de energia (Primeira Lei da Termodinamica) e
aproximadamente 107 MW a partir do momento no rotor calculado pela funcao forces. Nesta
secao discutem-se possiveis causas para essas diferencas, a luz das simplificagdes adotadas no

modelo fisico e numérico.

Em primeiro lugar, o modelo geométrico utilizado, embora baseado em uma turbina real
(UHE Foz do Chapecd), apresenta simplificagdes em relacdo a geometria completa da unidade,
especialmente em detalhes construtivos do distribuidor, do rotor e do tubo de succao. Pequenas
variagcdes na geometria podem afetar de forma sensivel a distribuicdo de escoamento nos canais

entre pas, alterando o campo de pressodes e, consequentemente, o torque resultante no eixo.

Em segundo lugar, a rotacao do rotor foi imposta como condicdo de contorno (90 rpm),
em vez de resultar de um acoplamento dindmico entre torque hidrdulico e carga mecanica do
gerador. Isso significa que a poténcia hidraulica disponivel € aquela compativel com a queda

de carga efetivamente reproduzida pela simulagdo, que por sua vez depende das condi¢des de
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contorno de pressao e velocidade adotadas. Qualquer desvio entre essas condi¢des e os valores

reais de operacdo da unidade implica uma diferenca direta na poténcia obtida.

Outro fator relevante € a modelagem da turbuléncia. O uso do modelo URANS k—¢
padrdo, embora amplamente empregado em aplica¢des de engenharia, representa a turbuléncia de
forma média e pode ndo capturar adequadamente estruturas tridimensionais complexas presentes
no escoamento de turbinas Francis, especialmente em regides de forte curvatura e no tubo de
succdo. Isso afeta a previsdo das perdas por mistura e, em ultima instancia, o balango de energia

entre entrada e saida.

Adicionalmente, diferencas entre os dois métodos de estimacao de poténcia devem ser
destacadas. O valor de 170,61 MW, obtido pela Primeira Lei, baseia-se em médias de pressao e
velocidade em secdes bem definidas de entrada e saida, representando uma estimativa global da
poténcia hidrdulica transferida ao escoamento. Ja o valor de 107 MW resulta da integracio local
das forgas de pressdo e viscosas sobre as superficies do rotor, fornecendo diretamente o torque

mecanico no eixo.

Por fim, € importante ressaltar que, apesar das discrepancias em relacao a poténcia de
projeto, os campos de pressao e velocidade obtidos apresentam comportamento qualitativamente
compativel com resultados de referéncia da literatura para turbinas Francis, indicando que o
escoamento global foi representado de forma coerente. Dessa forma, os valores de poténcia
estimados devem ser interpretados como uma aproximacao sujeita as simplificagdes de geometria,
condig¢des de contorno e modelagem numérica adotadas, € ndo como uma reproducgdo exata do
desempenho da unidade real. Mas ainda se ha espaco para aprimoramento através de estudos
de refinamento de malha, testes com outros modelos de turbuléncia (uma alternativa seria o
modelo k — @ SST), além de uso de outros esquemas, por exemplo, foi usado o upwind para este

trabalho, poderia se aumentar a ordem desse método visando melhorias nos resultados.
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CONCLUSAO

O presente trabalho teve como objetivo investigar o escoamento incompressivel turbu-
lento em uma turbina Francis de geometria real, associada a UHE Foz do Chapecd, utilizando
o software OpenFOAM, e avaliar diferentes formas de estimar a poténcia entregue ao eixo a
partir dos resultados numéricos. Para isso, foi desenvolvido um modelo fisico representativo da
turbina, formulado o modelo matemdtico-diferencial com base nas equacdes de Navier-Stokes
em sua forma URANS com modelo de turbuléncia k—¢, e implementado o modelo numérico-

computacional via método dos volumes finitos.

A andlise qualitativa dos campos de pressao e velocidade mostrou que o escoamento
obtido € coerente com o comportamento esperado para turbinas Francis operando préximas ao
ponto de projeto, apresentando aceleracao do escoamento na regido do rotor, recuperacdo de
pressao no tubo de succdo e distribuicdes de pressao consistentes com resultados de referéncia
da literatura. Esse fato indica que, apesar das simplificacdes adotadas, o modelo numérico foi

capaz de reproduzir de forma plausivel as principais caracteristicas hidraulicas da maquina.

Do ponto de vista quantitativo, foram avaliadas duas abordagens para estimativa da
poténcia. A partir da Primeira Lei da Termodinamica, usando médias de pressao e velocidade
nas secoes de entrada e saida, obteve-se uma poténcia da ordem de 170,61 MW. J4 por meio
da integracdo do momento no rotor utilizando a funcdo forces, a poténcia estimada foi de
aproximadamente 107 MW. Ambos os valores ficaram abaixo da poténcia nominal de projeto da
unidade (212 MW), refletindo as limitagdes inerentes a representagdo geométrica, as condi¢des

de contorno e ao modelo de turbuléncia empregados.

As principais fontes provdveis dessa discrepancia incluem: simplificacdes na geometria
do dominio em relacdo a maquina real; imposicao da rotacdo do rotor em vez de um acoplamento
dindmico com a carga do gerador; incertezas nas condi¢des de contorno de pressdo e vazao;
e limitagdes do modelo URANS k—¢ na captura de estruturas tridimensionais e perdas locais

complexas, especialmente no tubo de succdo. Ainda assim, o estudo cumpriu o objetivo de
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demonstrar a aplicacdo de CFD em turbinas Francis e de comparar metodologias distintas de

célculo de poténcia a partir de resultados numéricos.

Como perspectivas para trabalhos futuros, sugerem-se: o refinamento da geometria do
modelo, aproximando-a ainda mais da turbina real; a realiza¢cdo de uma interagdo fluido-estrutura,
a fim de eliminar a necessidade de imposicao da rotagao; a ado¢cdo de modelos de turbuléncia mais
avancados (como SST k—® ou abordagens hibridas RANS—LES); e a calibracao das condi¢des
de contorno com base em dados operacionais ou experimentais da unidade. Tais aprimoramentos
tendem a reduzir as incertezas na estimativa de poténcia e a tornar a simulacdo numérica uma

ferramenta ainda mais confidvel para andlise e otimizacdo de turbinas hidraulicas.
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