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Resumo

Na literatura de con�abilidade de software, em especial na modelagem de tempos de falha,

predominam modelos probabilísticos baseados em distribuição única. No entanto, tais mode-

los mostram-se limitados diante da complexidade de softwares modernos, caracterizados por

múltiplas causas de falha e pela variabilidade em seus per�s operacionais. Embora ampla-

mente utilizados nas fases de desenvolvimento e de teste, os modelos de distribuição única

apresentam desempenho insatisfatório em contextos reais de operação, devido às interações

com o ambiente operacional, que resultam em umamaior diversidade de padrões de falha. Este

trabalho investiga a aplicação de modelos de mistura à análise de con�abilidade de software

com base em dados reais de operação. Essa abordagem permite representar padrões de tempos

de falha intra e intergrupos, considerando grupos como aproximações de diferentes per�s op-

eracionais, bem como a relação entre distintas causas de falha. Os resultados obtidos indicam

que os modelos de mistura superam os modelos probabilísticos de distribuição única ao mod-

elar a variabilidade dos dados de falha em ambientes reais, além de capturar a in�uência dos

diferentes per�s operacionais sobre os tempos de falha.

Palavras-chave: Con�abilidade de software; modelos de mistura; causas de falha; modelos

probabilísticos; tempos de falha.
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Abstract

In the software reliability literature, particularly in the modeling of failure times, prob-

abilistic models based on a single distribution are predominant. However, such models are

limited when dealing with the complexity of modern software systems, which are character-

ized by multiple failure causes and variability in operational pro�les. Although widely used

during development and testing phases, single-distribution models often perform poorly in

real operational contexts due to interactions with the operational environment, which lead

to a greater diversity of failure patterns. This study investigates the application of mixture

models to software reliability analysis based on real operational data. This approach allows

representing intra- and inter-group patterns of time between failures, considering groups as

approximations of di�erent operational pro�les, as well as the relationship between distinct

failure causes. The results indicate that mixture models outperform single-distribution prob-

abilistic models by modeling the variability of failure data in real environments and by ac-

counting for the in�uence of di�erent operational pro�les on failure times.

Keywords: Software reliability; mixture models; failure causes; probabilistic models; failure

times.
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Chapter1

Introduction

1.1 Contextualization

Software has become an essential component of modern society, deeply integrated into

various human activities, ranging from routine tasks to highly complex operations. It is dif-

�cult to separate software from everyday life, as the automation and optimization it provides

are crucial for the e�cient functioning of multiple sectors. This growing dependence high-

lights the importance of software reliability, especially considering the severe consequences

that failures can have. In such contexts, software failures can lead not only to signi�cant �-

nancial losses but also pose risks to human safety and lives (MATIAS; OLIVEIRA; ARAUJO,

2013).

Software reliability is de�ned as the probability of software operating without failure for

a speci�c period in a given environment (IEEE, 1990). Its de�nition is conceptually similar

to hardware reliability but presents key di�erences, while hardware reliability can be quanti-

�ed based on physical failure rates and component degradation over time, software failure is

primarily associated with logical and programming faults.

Unlike hardware, software does not su�er from physical wear, instead, failures typically

arise from bugs, design �aws, or improper user interactions (PHAM, 2007). Consequently,

software reliability is not only about preventing failures, but also about ensuring when failures

occur their impact is minimized and the system can recover swiftly and e�ectively. To achieve

this, software engineers implement testing, continuous validation, and real-time monitoring

techniques, among other practices.

One approach to software reliability is probabilistic modeling of failure events, which ap-

plies mathematical models, such as probability distributions, to describe software failure times

behavior and estimate the likelihood of failures. The premise of this approach is to use his-

torical failure data to predict the probability of future failures (MUSA, 2004) and enabling the

implementation of preventive measures and mitigating potential issues in critical scenarios

(PHAM, 2007).

Numerous analytical models have been proposed to address the quanti�cation of software



Chapter 1. Introduction 18

reliability, most of these models estimate software reliability based on failure history, treating

software as a black box (GOKHALE; TRIVEDI, 1999) and assuming a parametric model for

either the time between failures or the number of failures over a �nite time interval. Con-

versely, white-box models (PAI, 2013) estimate reliability by representing the structure of the

software, focusing on the operational phase of the software life cycle.

A common assumption in most software reliability models is that failures occur as in-

dependent events (GOSEVA-POPSTOJANOVA; TRIVEDI, 2000). This assumption is made to

simplify mathematical modeling and parameter estimation. However, these assumptions may

not accurately represent actual failure occurrences, potentially leading to incorrect reliability

estimations. To avoid assumptions that may not re�ect real-world failure behavior, it is es-

sential to understand how failures occur under real operating conditions. Therefore, failure

data collected during software testing phases may be limited and may not fully represent all

scenarios encountered in a real execution environment.

Furthermore, synthetic data is frequently employed in software reliability studies. Unlike

real-world failure data collected from production environments, synthetic failure event data

is arti�cially generated based on assumptions about system behavior (BUČAR; NAGODE; FA-

JDIGA, 2004; KUMAR; JAIN; GANGOPADHAY, 2021; WU et al., 2024). While synthetic data

facilitates experimentation in controlled settings, it also has limitations: as models trained on

synthetic data may not accurately re�ect the real-world complexity and unpredictability of

operational environments (BIRD et al., 2014).

Many traditional reliability models rely on the assumption that failures arise from a single

underlying cause, and these single-failure-cause models assume homogeneous failure behav-

ior across the system. However, this assumption is often unrealistic for modern software

systems, which tend to experience failures due to diverse and interacting causes. To address

this limitation, mixture models (MCLACHLAN; LEE; RATHNAYAKE, 2019) can be utilized, as

they incorporate multiple probability distributions, and each can represent groups of distinct

failure cause.

Despite their potential, there is a signi�cant gap in the literature regarding the application

of mixture models using real-world operational data for software reliability analysis. This

research aims to explore the applicability of mixture models in software reliability analysis

based on real failure data. The focus is on modeling the reliability of systems with multiple

failure causes, given the complexity and heterogeneity of modern systems.

1.2 Research Relevance

This study contributes to the �eld of software reliability by exploring how mixture models

can be e�ectively applied to model real-world Time Between Failures (TBF) data. While pre-

vious researches have largely relied on synthetic datasets or single-distribution models, this

work adopts an empirical approach using real-world failure logs from heterogeneous comput-
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ing environments. The goal is to o�er a robust statistical representation of failure behavior in

modern software systems.

Beyond assessing model �t, the research aims to uncover statistical patterns within TBF

data that correspond to failure causes and operational conditions. By analyzing data from

computer groups operating under varying workloads and usage contexts, the study examines

how operational pro�les in�uence the distributional characteristics of failures. Speci�cally,

this work investigates whether mixture models can reveal hidden structures in the data, such

as clusters of failures with similar statistical signatures, and how these relate to known failure

causes.

1.3 Research Goals

1.3.1 General

The general goal of this research is to investigate whether mixture models can provide

a more robust and �exible representation of software failure behavior, especially in systems

exhibiting multiple failure causes and variability in operational usage.

1.3.2 Speci�c

To accomplish the general goal, the study is guided by the following speci�c objectives:

❏ Evaluate whether mixture models provide a better �t for TBF data compared

to single-distribution models: This involves testing a wide range of homogeneous

and heterogeneous mixture con�gurations using statistical criteria: Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov Test (KS),

Anderson-Darling Test (AD) and graphical validation methods: Quantile-Quantile Plot

(Q-Q Plot), Probability-Probability Plot (P-P Plot), Probability Density Function (PDF)

and Cumulative Distribution Function (CDF).

❏ Analyze the in�uence of operational pro�les on TBF patterns: By comparing

computer groups with di�erent workloads and usage contexts, the study will assess

how operational characteristics a�ect the shape, scale, and composition of failure dis-

tributions.

❏ Identify statistical patterns associatedwith di�erent failure causes: This includes

determining whether speci�c causes of failure (access violation, heap corruption, priv-

ileged instruction violation, unhandled C++ exception) are associated with recurring

distributional behaviors within the mixture models.

❏ Determine the ability of mixture models to detect and represent failure sub-

groups in the data: This study applies clustering algorithms (Gaussian Mixture Model
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(GMM), Hierarchical Density-Based Spatial Clustering of ApplicationswithNoise (HDBSCAN),

K-Means, Fuzzy C-Means) alongside mixture model analysis to uncover internal struc-

ture and potential failure subgroups within the datasets.

❏ Identify themost suitable distribution combinations formodeling software fail-

ure data: The study will map which distributions (Exponential, Normal, Lognormal,

Weibull and Gamma) are most commonly selected in the best-�tting models.

1.3.3 Research Development

This research aims to explore and understand patterns of software failures, particularly in

systems a�ected by multiple underlying failure causes. Emphasis is placed on identifying and

characterizing distinct failure causes through the analysis of real-world failure data collected

from software applications.

By analyzing failures occurring in actual operational environments, this research provides

empirical insights into how heterogeneous failure behavior emerges in practice. The �ndings

can enhance the understanding of software reliability under real conditions and demonstrate

the capability of mixture models to capture the behavior of software failure data.

1.3.4 Literature Review

A literature review on software reliability was carried out to establish the theoretical

foundation for this research. The search process aimed to identify relevant studies on the

topic without imposing restrictions on publication dates. Key sources included books, peer-

reviewed journal articles, and conference proceedings published in reputable scienti�c venues.

Thesematerials were accessed primarily through digital libraries and academic search engines,

such as Google Scholar.

1.3.5 Material

The dataset comprises failure logs from applications running on Microsoft Windows 7

(Win7), gathered from four distinct workplaces. In total, 40,095 failure records were collected

from 660 computers operating in various contexts, including academic institutions, corporate

settings, and personal/home use. This diversity supports a comprehensive assessment of soft-

ware failure patterns under di�erent operational conditions.

A detailed description of the dataset is provided in Chapter 3.

1.3.6 Methods

This study applied statistical modeling using continuous probability distributions to esti-

mate mixture models for TBF in order to account for heterogeneous failure behaviors through

the composition of distribution models.



Chapter 1. Introduction 21

The dataset comprised real-world software failure records, including computer identi�ers

and timestamps of each occurrence, which enabled the calculation of TBFs used for reliability

modeling (SANTOS; MATIAS, 2018). As a �rst step, outlier detection and removal techniques

were applied to minimize the impact of extreme and invalid values on the analysis.

Following data processing, the Expectation-Maximization (EM) algorithm, as described in

(MCLACHLAN; LEE; RATHNAYAKE, 2019), was applied to estimate the parameters of vari-

ous probability density functions. The EM algorithm is well-suited for handling incomplete

data and �tting mixture models. The study considered widely used distributions in reliability

engineering, such as the Exponential, Normal, Lognormal, Weibull, and Gamma distributions

(KUMAR; JAIN; GANGOPADHAY, 2021).

Mixture models combines di�erent probability density functions, varying both the types

and number of components in each �tting. Model adequacy was assessed through both quan-

titative (goodness-of-�t tests) and qualitative (graphical analysis) techniques. These included

histograms, comparisons between empirical and �tted TBF distributions, and probability plots.

For the quantitative evaluation, numerical methods were used to conduct goodness-of-�t

tests, including the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests, to determine

whether the data followed speci�c theoretical distributions. The Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) were also applied to comparemodels and iden-

tify the best-�tting con�gurations. Based on these results, the most appropriate distribution

types and combinations were identi�ed for modeling the failure data.

Additionally, a clustering analysis was conducted to explore the hypothesis that the dataset

includes multiple failure causes, resulting in distinct subgroups (clusters). This step supported

the identi�cation of similar failure behaviors and facilitated the exploration of potential pat-

terns in the data.

Finally, a sensitivity and computational cost analysis was conducted to evaluate how the

number of components in the mixture models in�uences the results. The goal was to identify

a suitable trade-o� between model complexity, goodness-of-�t, and computational cost.

1.4 Document Structure

The chapters of this dissertation are organized as follows:

Chapter 2 presents the theoretical foundation of the study, covering key concepts such as

software reliability, mixture models, and the Expectation–Maximization algorithm.

Chapter 3 details the methods and techniques employed in the research. It describes the

data preparation process, the application of mixture models, and the validation of results,

including goodness-of-�t tests and cluster selection methods. Furthermore, the dataset used

and the computational tools applied are introduced.

Chapter 4 presents and discusses the results obtained throughout the study, including the

�ttedmixturemodels, graphical analyses, identi�ed clusters, and the distributions that best de-
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scribe the time between failures. A comparison of di�erent goodness-of-�t tests is conducted,

and the performance of the models is analyzed in terms of complexity and �t to real-world

data. The relevance of the �ndings in the context of software reliability is discussed.

Finally, Chapter 5 presents the conclusions of the study, highlighting its contributions to

the software reliability literature, summarizing the key �ndings, discussing the study limita-

tions, and suggesting directions for future research.
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Chapter2

Literature Review: Background

2.1 Introduction

This chapter reviews the key concepts and studies relevant to the present research. It

begins with an overview of software reliability, then examines the role of mixture models

in reliability analysis, and subsequently discusses the clustering techniques and the Expecta-

tion–Maximization algorithm employed for parameter estimation in mixture models.

2.2 Software Reliability

The study of software reliability is grounded in a set of fundamental concepts that describe

how systems operate, experience disruptions and recover. Central to reliability analysis are

three related concepts: faults, errors, and failures (AVIZIENIS et al., 2004):

❏ Fault: A fault is the adjudged or hypothesized cause of an error. Faults may be dormant

(inactive) or active, and their activation can propagate through the system, potentially

resulting in failures.

❏ Error: An error is the system state that may lead to a subsequent failure. It represents

the internal manifestation of a fault.

❏ Failure: A failure occurs when a delivered service deviates from its correct service. This

deviation can stem from non-compliance with the functional speci�cation or de�cien-

cies within the speci�cation itself.

Software reliability is de�ned as the probability that software will operate without failure

for a speci�ed period under given environmental conditions (IEEE, 1990). This probabilistic

de�nition captures key aspects essential to build dependable software systems (MUSA, 2004).

The stochastic nature of software reliability re�ects uncertainties in both software be-

havior and operational usage patterns (GOEL, 1985). A failure is said to occur when software
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behavior deviates unacceptably from its speci�ed requirements (MUSA, 1979), with faults rep-

resenting the underlying defects that trigger these failures (OHBA, 1984).

The surrounding environment, such as: hardware platforms, operating systems, and user

behavior, directly a�ects the reliability of a system (GOEL, 1985). In this context, the oper-

ational pro�le, which characterizes expected usage scenarios, becomes a critical factor for

accurate reliability assessment (GOKHALE; TRIVEDI, 1999).

During the operational phase, a system interacts continuouslywith its environment, which

includes physical conditions, users, administrators, service providers, infrastructure elements,

and even potential intruders. Maintenance during this phase involves not only correcting

faults but also adapting the system to meet changing requirements and environmental condi-

tions. The integration of o�-the-shelf (OTS) components introduces additional complexities

and challenges (AVIZIENIS et al., 2004).

Unlike physical systems, software does not deteriorate with use, faults, once corrected,

generally remain �xed permanently (MUSA, 1979). However, software may become obsolete

due to evolving user needs, hardware changes, or shifts in the technological landscape (LYU,

2007). Measuring and quantifying software reliability is essential throughout the software

development lifecycle (MUSA, 1979).

As society becomes increasingly dependent on software systems, the importance of soft-

ware reliability has grown substantially. From communication networks and transportation

systems to medical devices and critical infrastructure, software failures can range from minor

disruptions to catastrophic events including threats to human safety (MATIAS et al., 2014).

The economic impact of software usage is also signi�cant, improving reliability can reduce

development and maintenance costs, increase product value, and improve user satisfaction (LI

et al., 2008). Conversely, poor reliability can lead to reputation damage, revenue loss, and

possible legal consequences (LYU, 2007). As hardware reliability has advanced considerably,

software is now often the primary limiting factor in overall system dependability (KEENE;

LANE, 1992).

The increasing complexity and inter-connectivity of software systems raise the likelihood

of failure and make fault isolation more di�cult (MATIAS et al., 2014). For project managers,

reliability metrics are crucial for decision-making, enabling better scheduling, progress track-

ing, and release planning (MUSA, 1979), while helping balance the costs of testing with the

bene�ts of reliability improvement (GOEL, 1985).

Despite its critical role, software reliability remains di�cult to measure and predict. Tra-

ditional reliability models often produce optimistic estimates, largely due to assumptions such

as accurate operational pro�les and exhaustive testing coverage (GOKHALE; TRIVEDI, 1999).

Many residual faults remain latent, only surfacing under rare or unforeseen operating condi-

tions, which makes them particularly challenging to detect and eliminate (AVIZIENIS et al.,

2004).

To support reliabilitymodeling and analysis, a set of standardmetrics is widely used. These
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metrics are used to analyze the system behavior across the software lifecycle:

❏ Time Between Failures (TBF): The elapsed time between two consecutive failures,

o�ering a basic measure of system reliability.

❏ Mean Time To Failure (MTTF): The expected operational time before a failure occurs,

typically derived from the reliability function R(t).

❏ Mean Time Between Failures (MTBF): The average time between failures in a re-

pairable system, calculated as MTBF = MTTF + MTTR.

❏ Mean Time To Repair (MTTR): The average time required to restore a failed system

to operational condition.

❏ Reliability R(t): The probability that the system will operate without failure over a

time interval t.

❏ Unreliability F (t) = 1−R(t): The probability that the system will experience at least

one failure within time t.

❏ Failure Rate λ(t): The instantaneous rate of failure at time t, conditional on the system

operating up to that point.

❏ Bx Life: The time by which x% of systems are expected to have failed, used to de�ne

reliability thresholds (e.g., B10 life).

❏ Reliable Time t(R): The time interval during which the system maintains a speci�ed

level of reliability R.

While traditional models play an important role in software reliability engineering, they

often rely on idealized assumptions, such as perfect fault removal, fault independence, and sta-

ble operational pro�les, that rarely hold in real-world scenarios (GOEL, 1985). As a result, these

models frequently face limitations in their predictive power across diverse software develop-

ment contexts. Such limitations stem from their dependency on speci�c assumptions about the

development environment and the nature of software failures (BLOSTEIN; MILJKOVIC, 2019).

Consequently, a model that performs well for one dataset might be ine�ective for another.

2.3 Mixture Models

Mixture models are a probabilistic tool designed to represent the presence of subpopu-

lations within an overall population. They are useful when observations of a random vari-

able arise frommultiple underlying conditions or sources (ELMAHDY; ABOUTAHOUN, 2013).

This section discusses the fundamental aspects, mathematical formulation, components, pa-

rameter estimation methods and applications of mixture models in the context of reliability.
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Mixture models are e�ective for describing heterogeneous populations that can be decom-

posed into a �nite number of more homogeneous subpopulations (ELMAHDY, 2017). In the

context of this work, the assumption is that heterogeneity is linked to diverse failure causes

and operational characteristics, such as workload intensity. By using mixture models, each

latent subpopulation can be represented by a distinct probability distribution, capturing the

diversity in failure behavior.

In reliability analysis, the failure of components or systems can occur through multiple

distinct failure causes. A mixture of Weibull distributions, for example, is suitable for such

scenarios, since failure causes may follow di�erent statistical distributions (ELMAHDY, 2015).

Mixture models are a combination of several probability distributions. Therefore, under-

standing the components of a mixture model is essential for interpreting its structure and

behavior:

❏ Subpopulations or Components: These are the individual distributions being com-

bined, such as Weibull, Lognormal or Exponential distributions. Components can be of

the same type or of di�erent types. For example, in a sample of failure times, two or

more subpopulations may be present due to di�erent failure causes. Each failure cause

can be responsible for generating a distinct subgroup of failure times. The same applies

to failure type, operational pro�le, and other in�uential factors.

❏ Mixing Weights (or Proportions): Represented by pj or wi, these values indicate the

proportion of each subpopulation within the mixture. They are positive and must sum

to 1.

❏ Parameters: Each subpopulation has its speci�c parameters (e.g., shape and scale for

Weibull, mean and variance for Normal distributions). The complete parameter vector

for a mixture model includes both the parameters of each subpopulation and the mixing

weights.

A general k-fold mixture model involves k subpopulations. The cumulative distribution

function (CDF) of the overall mixture model is given by:

G(t) =
K
∑

j=1

pjFj(t), (1)

where Fj(t) is the CDF of the j-th subpopulation, and pj is the mixing probability (or weight)

of the j-th subpopulation, with pj > 0 and
∑K

j=1 pj = 1.

The probability density function (PDF) of a mixture model is expressed as:

g(t) =
K
∑

j=1

pjfj(t), (2)

where fj(t) is the PDF associatedwith the j-th subpopulation. Speci�cally, for a two-component

mixture model, the PDF becomes:
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f(t) = wf1(t) + (1− w)f2(t), (3)

The reliability function R(t) for an m-fold mixture model can be expressed as:

R(t) =
m
∑

i=1

πiRi(t) (4)

where πi represents the mixing proportion of the i-th component, and Ri(t) is the reliability

function corresponding to the i-th distribution in the mixture, and m denotes the total number

of component distributions included in themixturemodel. The overall reliability functionR(t)

is thus the weighted sum of the component reliability functions.

Estimating the parameters of amixturemodel is a fundamental step that directly in�uences

model performance, and several techniques are available for this purpose, the most commons

are:

❏ Maximum Likelihood Estimation (MLE): MLE seeks to �nd the parameter values

that maximize the likelihood of the observed data (ELMAHDY, 2015; RAZALI; SALIH,

2009; ZHAO; STEFFEY, 2013; ELMAHDY;ABOUTAHOUN, 2013; RUHI; SARKER; KARIM,

2015).

❏ Expectation-Maximization (EM) Algorithm: The EM algorithm is an iterative pro-

cedure commonly used for mixture models, in which the subpopulation identity of each

observation is treated asmissing data. It alternates between an expectation (E) step and a

maximization (M) step to re�ne the parameter estimates. (BLOSTEIN;MILJKOVIC, 2019;

ELMAHDY, 2015; RAZALI; SALIH, 2009; ZHAO; STEFFEY, 2013; ELMAHDY; ABOUTA-

HOUN, 2013; RUHI; SARKER; KARIM, 2015).

Mixture models are considered robust tools in data analysis due to their capacity to ac-

commodate various data complexities. Unlike traditional single-distributions, mixture models

can represent data arising from multiple sources, making them suitable for scenarios where

the underlying structure is not homogeneous. Key reasons for employing mixture models in

reliability studies include:

❏ Heterogeneous Populations: Many real-world datasets consist of observations from

distinct subpopulations with di�erent characteristics (ELMAHDY, 2017).

❏ Multiple Failure Causes: A single distribution is often inadequate to represent multi-

ple failure mechanisms. Mixture models are appropriate for modeling situations involv-

ing early failures and wear-out failures (RAZALI; SALIH, 2009; ELMAHDY, 2015).

❏ Improved Model Fit: When a single distribution cannot satisfactorily model the data,

as evidenced by goodness-of-�t tests or deviations on probability plots, a mixture model

often provides a better �t (ZHAO; STEFFEY, 2013; ELMAHDY, 2015).
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❏ Modeling Complex Distribution Shapes: Mixture models can represent complex

PDFs and hazard functions (ELMAHDY, 2017; WU et al., 2024).

❏ Physical Interpretability: In some cases, each component of a mixture model corre-

sponds to an identi�able physical process or group, o�ering meaningful insights into

the system under study (ELMAHDY; ABOUTAHOUN, 2013).

❏ Handling Complex Reliability Data: When subpopulations cannot be easily sep-

arated due to undocumented changes or unknown factors, mixture models provide a

robust approach to data characterization and prediction (ELMAHDY, 2017).

However, despite their �exibility and modeling power, their use introduces a number of

practical and theoretical challenges that must be considered during implementation:

❏ Increased Complexity and Number of Parameters: Combining multiple models

inherently increases the number of parameters, making estimation and interpretation

more di�cult (BLOSTEIN; MILJKOVIC, 2019).

❏ Parameter Estimation Di�culties: Traditional optimization methods, such as New-

ton’s method, may struggle with multi-modal likelihoods, parameter constraints, and

sensitivity to initial values, leading to convergence issues (OKAMURA; MURAYAMA;

DOHI, 2004). Although the EM algorithm is less sensitive to initial values, it gener-

ally converges slowly and requires careful determination of a stopping criterion (OKA-

MURA; WATANABE; DOHI, 2002).

❏ Selection of Component Models or Distributions: Choosing suitable base distribu-

tions is critical. Inappropriate selection can degrade predictive performance, and often

there is no clear theoretical guideline for selection, making it a largely empirical process

(BLOSTEIN; MILJKOVIC, 2019).

❏ Data Requirements: Insu�cient data can impair model performance and result in

unreliable predictions (BLOSTEIN; MILJKOVIC, 2019).

❏ Practical Implementation and Acceptance: The increased sophistication of mixture

models and associated estimation algorithms can hinder their adoption among practi-

tioners accustomed to simpler models (OKAMURA; DOHI, 2021).

❏ Interpretation of Results: Interpreting the output of a mixture model can be more

complex compared to a single model (BLOSTEIN; MILJKOVIC, 2019).

Mixture models represent an interesting approach for modeling failure data in reliability

analysis. Their capacity to account for multiple failure mechanisms makes them suitable for

complex datasets. However, the associated computational cost and model selection decisions
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must be addressed carefully. The following section introduces clustering methods, which pro-

vide an alternative strategy for uncovering latent subpopulations in data without relying on

prede�ned distributions assumptions.

2.4 Clustering Methods

Clustering is a process of organizing a collection of patterns into clusters based on their

similarity. The main objective of clustering, also referred to as cluster analysis, is to discover

the natural groupings of a set of patterns, points, or objects (JAIN; MURTY; FLYNN, 1999).

The primary goal of clustering is to uncover the inherent structure within data, making

it inherently exploratory in nature (JAIN, 2010). Ideally, patterns within a valid cluster are

more similar to each other than to patterns belonging to di�erent clusters. An operational

de�nition of clustering is to partition data into K groups based on a measure of similarity,

such that similarities among objects within the same group are maximized, while similarities

between objects in di�erent groups are minimized (JAIN, 2010).

Clustering is a form of unsupervised learning, meaning that it operates on unlabeled data.

Unlike supervised classi�cation, clustering does not utilize prior category labels, rather, the

groupings are derived directly from the data itself (JAIN; MURTY; FLYNN, 1999; JAIN, 2010).

Clustering algorithms can produce di�erent partitions depending on the criterion used.

Because the true structure is often unknown, evaluation techniques must be applied. They

categorize cluster validity approaches into three main types (HALKIDI; BATISTAKIS; VAZIR-

GIANNIS, 2001):

❏ External criteria: Compare clustering outcomes to known ground truth or labeled

data.

❏ Internal criteria: Assess the quality of clustering based solely on intrinsic properties

of the data, such as cohesion and separation.

❏ Relative criteria: Evaluate and compare multiple clustering results using validity in-

dices to determine the best con�guration.

Mixture modeling plays a role in model-based clustering approaches (MEILĂ; HECKER-

MAN, 2001). In this framework, it is assumed that data points are generated from a mix-

ture of several probability distributions, each representing a di�erent cluster or subpopulation

(MENARDI, 2011). The overall population density, f(x), is modeled as the sum of the densities

of these individual components, fm(x), weighted by their corresponding mixing proportions

πm (MENARDI, 2011). Key aspects of mixture modeling include:

❏ Representation of Clusters: Each cluster corresponds to a component in the mixture

model (BAUDRY et al., 2010).
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❏ Parameter Estimation: Parameters of themixture components (e.g., means, variances)

and their mixing proportions are estimated from the data. A widely used method for this

estimation is the Expectation-Maximization algorithm (MENARDI, 2011).

❏ Determining the Number of Clusters: Model selection criteria such as the Bayesian

InformationCriterion (BAUDRY et al., 2010) and theAkaike InformationCriterion (JAIN,

2010) are typically employed to select the optimal number of mixture components, thus

determining the number of clusters.

❏ Relationship toDensity-BasedClustering: Mixturemodeling is a subclass of density-

based clustering approaches (MENARDI, 2011). Clusters are identi�ed as high-density

regions in the data space, implicitly de�ned by the components of the mixture model

(HARTIGAN, 1985).

2.4.1 K-Means Clustering

The k-means algorithm is one of the most widely used partitional clustering algorithm. It

partitions a set of n data points intoK clusters, whereK is a user-speci�ed parameter. The ob-

jective is to minimize the squared error between the empirical mean (centroid) of a cluster and

the points assigned to that cluster (CELEBI; KINGRAVI; VELA, 2013). This minimization seeks

to produce compact and well-separated clusters. The general steps of the k-means algorithm

are as follows:

❏ Initialization: The algorithm begins by selecting K initial cluster centers. Several ini-

tialization methods exists, including:

– Choosing the �rst K points from the dataset (sensitive to the order of the data).

– Randomly selecting K points from the dataset (common practice is to run multiple

times to mitigate randomness).

❏ Assignment: Each data point is assigned to the nearest cluster center, usually using the

Euclidean distance as the distance metric.

❏ Update: The centroids of the clusters are updated by computing the mean of all points

assigned to each cluster.

❏ Iteration: Steps of assignment and update are repeated until a stopping criterion is met.

Typical stopping conditions include:

– No signi�cant change in cluster assignments between iterations.

– The relative improvement in the Sum of Squared Errors (SSE) falls below a thresh-

old.

– A maximum number of iterations is reached.
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A notable challenge with k-means is its sensitivity to the initial cluster center placements,

di�erent initializations can lead to distinct �nal clusterings and to suboptimal solutions. There-

fore, it is common practice to perform multiple runs with di�erent random initializations and

select the result with the lowest SSE (CELEBI; KINGRAVI; VELA, 2013). In addition to algo-

rithmic strategies, assessing the quality of clustering and selecting the appropriate number of

clusters remain central concerns.

These considerations highlight the complexity nature of clustering analysis, the selection

of an appropriate algorithm and validation method must be aligned with the data charac-

teristics and the analytical objectives. Since clustering often serves as a step for subsequent

modeling techniques, it is necessary to address its limitations. One such technique that builds

upon clustering concepts while addressing its limitations is the Expectation-Maximization al-

gorithm, which is explored in the following section.

2.5 Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm is an iterative technique for �nding the

maximum-likelihood estimate of the parameters of an underlying distribution from a given

dataset, particularly when the data is incomplete or contains missing values (BILMES et al.,

1998). Two primary applications of EM are distinguished in the literature:

❏ HandlingMissingData: EM is particularly e�ective when datasets su�er frommissing

values. Applications include missing output data in dynamic model identi�cation, cen-

sored or truncated data, and multivariate datasets with partially missing observations

(MCLACHLAN; KRISHNAN, 2008).

❏ Dealing with Hidden Variables: EM simpli�es the likelihood function by assuming

the existence of hidden (latent) variables (BILMES et al., 1998).

The EM algorithm operates through an iterative process composed of two fundamental

steps, which alternate until the algorithm reaches convergence. Each iteration involves �rst

estimating the hidden components of the data and then updating the model parameters ac-

cordingly. These steps are described as follows:

1. Expectation Step (E-step): Given the observed data and the current parameter esti-

mates θ(m), the E-step computes the conditional expectation of the complete-data log-

likelihood:

Q(θ|θ(m)) = EX|Y =y,θ(m) [log p(X|θ)], (5)

where Y represents the observed (incomplete) data, X the complete data (observed plus

missing or hidden data), and θ the parameters to be estimated. The E-step �lls in the

missing data by their conditional expectations given the observed data and current pa-

rameter estimates (MCLACHLAN; KRISHNAN, 2008).
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2. Maximization Step (M-step): In this step, the parameters are updated by maximizing

the Q-function:

θ(m+1) = arg max
θ∈Ω

Q(θ|θ(m)). (6)

The M-step treats the conditional expectations from the E-step as known data and up-

dates the model parameters accordingly (MCLACHLAN; KRISHNAN, 2008).

The E and M steps are repeated until convergence is achieved, typically when the changes

in parameter estimates fall below a prede�ned threshold. The EM algorithm o�ers a range of

features that contribute to its widespread use in statistical modeling, such as:

❏ Monotonic Convergence: The observed-data likelihood is guaranteed to increase or

stay constant with each iteration, ensuringmonotonic convergence (MCLACHLAN; KR-

ISHNAN, 2008).

❏ Numerical Stability: EM is recognized for its stable numerical behavior (MCLACH-

LAN; KRISHNAN, 2008).

❏ Handling Incomplete Data: EM provides a principled and robust framework for pa-

rameter estimation in the presence of missing or hidden data (BILMES et al., 1998).

❏ Robustness Against Outliers: The E-step integrates missing data, leading to more

robust parameter estimates even in the presence of outliers (SAMMAKNEJAD; ZHAO;

HUANG, 2019).

Despite its advantages, the EM algorithm comes with important limitations that must be

consideredwhen applying it to solving problems. Among themost commonly cited drawbacks

are:

❏ Slow Convergence: EM may converge slowly, especially near saddle points or �at

regions of the likelihood surface (MCLACHLAN; KRISHNAN, 2008).

❏ Sensitivity to Initialization: The �nal solution heavily depends on the initial parame-

ter values. Poor initialization can lead EM to converge to local rather than global optima

(SAMMAKNEJAD; ZHAO; HUANG, 2019; MICHAEL; MELNYKOV, 2016). Strategies

such as random starts, k-means clustering, and model averaging have been proposed to

mitigate this issue (PANIĆ; KLEMENC; NAGODE, 2020).

❏ Local Optima: EM is only guaranteed to converge to a stationary point, which might

be a local maximum or even a saddle point, not necessarily the global maximum (WU,

1983).

❏ Intractable Steps: For certain complex incomplete-data problems, either the E-step or

the M-step can become analytically or computationally infeasible (MOON, 1996).
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❏ No Direct Standard Errors: The basic EM framework does not inherently provide

standard errors for the parameter estimates. Additional methods such as numerical dif-

ferentiation can be used to estimate them (MCLACHLAN; KRISHNAN, 2008).

❏ Computational Cost: As the size and dimensionality of datasets increase, the com-

putational demands of EM can become signi�cant (SAMMAKNEJAD; ZHAO; HUANG,

2019; ZHANG; ZHANG; YI, 2004).

❏ SpecifyingModel Complexity: Inmixturemodeling applications, the number of com-

ponents must be speci�ed beforehand. An incorrect choice can degrade model perfor-

mance (PANIĆ; KLEMENC; NAGODE, 2020).

The EM algorithm guarantees improvement of the likelihood function under certain con-

ditions, with each iteration ensuring that the likelihood of the model �tting the data increases

or remains constant (GUPTA; CHEN et al., 2011). However, it does not ensure convergence

to a global optimum. The likelihood surface contains multiple local maxima where EM can

become trapped depending on the initial parameters.

The inherent sensitivity to initialization of the EM algorithm, selecting suitable starting

values constitutes a critical step in ensuring robust and e�cient performance (MICHAEL;

MELNYKOV, 2016; PANIĆ; KLEMENC; NAGODE, 2020). Several strategies have been pro-

posed to address this challenge, including random restarts and short preliminary runs of EM

itself. Among these approaches, the latter has demonstrated particular promise due to its ef-

fectiveness in avoiding local maxima. Although no universally optimal method exists, studies

suggest that designed initialization can improve convergence speed and likelihood maximiza-

tion, especially in high-dimensional or overlapping cluster settings (BIERNACKI; CELEUX;

GOVAERT, 2003; MELNYKOV; MELNYKOV, 2012).

With the key aspects of the EM algorithm established, the focus now shifts to assessing

the adequacy of the �tted models. The next section introduces Goodness-of-Fit (GoF) tests and

graphical analysis for distribution assessment, which serve as tools for evaluating how well

statistical models capture the underlying structure of the observed data.

2.6 Goodness-of-Fit Tests and Graphical Analysis

Evaluating how well a statistical model represents observed data is a fundamental task

in data analysis. In this context, Goodness-of-Fit (GoF) tests and graphical methods play a

central role by providing formal and visual means to assess the adequacy of a hypothesized

distribution.

At the core of distributional analysis are the Probability Density Function (PDF) and the

Cumulative Distribution Function (CDF). The PDF describes the relative likelihood of a con-

tinuous random variable assuming a speci�c value, with the total area under the curve repre-

senting the probability over an interval (ANDERSON, 2011). The CDF is de�ned as:
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F (x) = P (X ≤ x), (7)

expresses the probability that a random variable X takes on a value less than or equal to x.

CDFs are particularly important in GoF testing, where comparisons are often made between

empirical and theoretical CDFs.

Graphical techniques, such as quantile-quantile plots and probability-probability plots, of-

fer visual diagnostics for assessing distributional assumptions. Q-Q plots are useful for de-

tecting discrepancies in the tails of a distribution. In contrast, P-P plots emphasize di�er-

ences in the central portion of the distribution, making them suitable for assessing overall �t

(GNANADESIKAN; WILK, 1968).

Goodness-of-Fit tests are statistical procedures designed to determine whether a sample

originates from a speci�ed theoretical distribution (ANDERSON, 2011). These tests compare

the empirical distribution function (EDF), a step function derived from the sample data, with

the cumulative distribution function of the hypothesized distribution. The extent of deviation

between the two functions forms the basis for computing test statistics.

By quantifying the distance between observed and expected values, GoF tests assist in

identifying departures from the hypothesized model, guiding model re�nement and selection

(ANDERSON, 2011; GNANADESIKAN; WILK, 1968). Several GoF tests and model selection

criteria are widely used in practice:

❏ Anderson-Darling (AD) Test: A non-parametric test that gives more weight to the

tails of the distribution, making it particularly e�ective in detecting tail discrepancies. It

is suitable for comparing a samplewith a continuous distribution or testing homogeneity

across multiple samples (SCHOLZ; STEPHENS, 1987; RAZALI; WAH et al., 2011).

❏ Kolmogorov-Smirnov (KS) Test: Another non-parametric test thatmeasures themax-

imum distance between the empirical and theoretical CDFs (BERGER; ZHOU, 2014). The

KS test is sensitive to deviations anywhere along the distribution.

❏ Akaike Information Criterion (AIC): A model selection criterion based on informa-

tion theory. It penalizes model complexity to avoid over�tting and is de�ned as:

AIC = −2× log(likelihood) + 2K, (8)

whereK is the number of model parameters. Lower AIC values indicate better trade-o�s

between goodness-of-�t and simplicity (GERNAND; FENSKE, 2009).

❏ Bayesian InformationCriterion (BIC): Similar to AIC but includes a stronger penalty

for model complexity that increases with sample size:

BIC = −2× log(likelihood) + K × log(n), (9)
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where n is the sample size. BIC tends to favor simpler models and is consistent under

large samples when the truemodel is among the candidates (GERNAND; FENSKE, 2009).

It is important to clarify that the classical Anderson–Darling statistic (A2) is, by de�-

nition, non-negative (A2 ≥ 0). However, in this study, the implementation provided by

the scipy.stats.anderson_ksamp function was employed for multi-sample comparisons.

This function does not return the traditional A2 statistic. Instead, it outputs a standardized

and transformed test statistic whose value may be either positive or negative, as explicitly

documented in the SciPy library.

In this context, negative values do not indicate an error or invalid result. Rather, the sign

of the statistic conveys information about the direction of the deviation between the com-

pared distributions. Speci�cally, negative values may indicate a relatively better agreement

among the samples in a given direction, whereas positive values suggest greater divergence.

Therefore, the occurrence of negative Anderson–Darling statistics in the reported results is a

consequence of the adopted implementation and does not contradict the theoretical properties

of the classical Anderson–Darling test.

The assessment of distributional assumptions requires a combination of graphical diag-

nostic tools and formal statistical tests. Although graphical tools such as histograms, Q-Q

plots, and P-P plots are inherently subjective, they provide valuable insight into the distribu-

tional characteristics of the data. Figure 1 shows a goodness-of-�t analysis of a synthetic data

sample, which includes multiple diagnostic approaches to evaluate the adequacy of the �tted

exponential distribution.

The histogram (upper left panel) provides a visual summary of the data’s frequency distri-

bution overlaid with the theoretical probability density function (PDF) of the �tted exponential

distribution. The shape of the histogram allows identi�cation of key features, such as skew-

ness, the presence of multiple modes, or heavy tails. In this analysis, the histogram suggests

a positively skewed distribution, consistent with exponential behavior. The close alignment

between the empirical histogram and the theoretical PDF (orange dashed line) provides initial

visual evidence supporting the exponential model assumption.

The empirical versus theoretical CDF comparison (upper right panel) displays both the

empirical cumulative distribution function (blue line with circles) and the theoretical CDF

(orange line with crosses). This plot allows for the assessment of distributional �t across the

entire range of the data. Good model �t is indicated by close alignment between the two

curves. Any systematic deviations suggest areas where the theoretical model fails to capture

the data characteristics adequately.

The P-P plot (lower left panel) compares empirical probabilities against theoretical proba-

bilities by plotting the empirical CDF values against the corresponding theoretical CDF values.

Under perfect distributional �t, all points would lie exactly on the 45-degree reference line (or-

ange dashed line). Deviations from this line indicate areas of poor �t.
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❏ P-value interpretation: If p > 0.05, we fail to reject H0, suggesting that the data

is consistent with the theoretical distribution. If p ≤ 0.05, we reject H0, indicating

signi�cant departure from the assumed distribution.

Table 1 summarizes the goodness-of-�t test results for the exponential distribution �t.

And to facilitate the interpretation of the results reported in Table 1, the main goodness-of-�t

criteria employed in this analysis are brie�y described below, along with their respective roles

in assessing model adequacy.

❏ Akaike Information Criterion (AIC): Balances model �t and complexity. Lower val-

ues indicate a preferable trade-o� between goodness-of-�t and parsimony when com-

paring alternative models.

❏ Bayesian InformationCriterion (BIC): Similar to AIC but imposes a stronger penalty

on model complexity. As with AIC, lower values are preferred.

❏ Kolmogorov–Smirnov Test: Assesses the maximum distance between the empiri-

cal and theoretical cumulative distribution functions. The test statistic of 0.0639 with

p = 0.7849 > 0.05 indicates no statistically signi�cant deviation from the exponential

distribution.

❏ Anderson–Darling Test: Places greater emphasis on discrepancies in the distribution

tails. The obtained statistic of 0.3192 with p = 0.5344 > 0.05 also supports the adequacy

of the exponential model.

Together, the graphical tools complement formal goodness-of-�t tests by providing visual

evidence of model adequacy. While histograms highlight the general shape of the data, Q-Q

and P-P plots pinpoint speci�c areas of agreement or departure from the theoretical distri-

bution. When used alongside statistical tests, these plots support a robust evaluation of the

chosen model, ensuring that both visual and quantitative criteria are considered.

This background chapter has established the theoretical foundations necessary to support

the methodology adopted in this dissertation. Building upon these concepts, the next chapter

shifts the focus to the existing literature by reviewing previous studies on software reliability

modeling, failure data analysis and related methodological approaches. This review enables

the positioning of the present work within the broader literature and highlights its contribu-

tions in relation to prior research.

Table 1 – Goodness-of-�t Test Results for Exponential Distribution.

Criterion Value Interpretation Decision Threshold

AIC 563.60 Lower is better – –
BIC 566.21 Lower is better – –
Kolmogorov–Smirnov 0.0639 p = 0.7849 Fail to reject H0 p > 0.05
Anderson–Darling 0.3192 p = 0.5344 Fail to reject H0 p > 0.05
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Chapter3

Literature Review: Related Works

This chapter presents a review of related works relevant to software reliability analysis

and failure modeling. It examines previous studies that employ statistical methods, clustering

techniques and mixture models for the analysis of software failure data. The chapter aims to

identify the main methodologies and limitations reported in the literature. By analyzing these

works, this chapter establishes the research gap that motivates the methodology proposed in

this dissertation and clari�es the originality and relevance of the present study.

The �eld of software reliability has been adopting statistical modeling techniques aimed

at capturing the complex nature of failure behaviors in software systems. Among these tech-

niques, mixture models have gained prominence due to their capacity to accommodate multi-

modal and non-homogeneous failure distributions. Several studies have proposed variations

of mixture-based approaches, whether through the combination of di�erent distributions and

the use of clustering algorithms to enhance fault detection.

As shown in Table 2, prior research has explored modeling strategies, such as the use

of Weibull and Lognormal distributions in manufacturing systems (VINEYARD; AMOAKO-

GYAMPAH;MEREDITH, 1999), the application of lognormal reliability growthmodels (MULLEN,

1998), or the integration of probabilistic methods into classical software reliability growth

models (SRGMs) (PHAM, 2003; OKAMURA;WATANABE;DOHI, 2002). More recent researches

have also incorporated clustering techniques for failure pattern detection (ZHONG; KHOSH-

GOFTAAR; SELIYA, 2004; CAI; ZHAO; ZHU, 2020) and real-world failure pattern analysis in

large-scale systems (SCHROEDER; GIBSON, 2009; SANTOS; MATIAS, 2018).

In contrast to prior studies that primarily addressed fault classi�cation, model selection,

or time-to-failure analysis in isolation, the present work proposes an explicit modeling of

TBF distributions using both homogeneous and heterogeneous mixtures, combined with un-

supervised clustering and comprehensive model validation metrics. Moreover, the integration

of clustering algorithms with mixture model �tting enables the identi�cation of latent struc-

tures in failure patterns, while sensitivity and computational cost analyses provide insight into

model complexity trade-o�s.
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Table 2 – Comparison of Related Studies on Software Reli-

ability.

Study Di�erences Similarities

(MULLEN, 1998) Proposes a software reliabil-

ity growth model based on

the lognormal distribution

(LNET), which o�ers an

alternative to traditional

exponential-based SRGMs

and accounts for variability

in fault detection times.

Emphasizes the use of sta-

tistical distributions to rep-

resent and analyze software

failure behavior.

(VINEYARD;

AMOAKO-

GYAMPAH;

MEREDITH, 1999)

Conducts an empirical in-

vestigation of Time Between

Failures (TBF) and Time To

Repair (TTR) in �exible man-

ufacturing environments, fo-

cusing on both mechanical

and human-induced failures.

Applies Weibull and Lognor-

mal distributions to model

failure and repair times; em-

phasizes data-driven distri-

bution �tting based on ob-

served operational failures.

(OKAMURA;

WATANABE;

DOHI, 2002)

Introduces a mixed software

reliability model (SRM) that

incorporates randomized

fault detection rates, ad-

dressing challenges related

to parameter estimation and

the modeling of complex

failure patterns.

Uses probabilistic modeling

to capture failure dynamics

and stresses the importance

of model adaptability to real-

world variability in failure

rates.

(PHAM, 2003) Provides an extensive review

of NHPP-based software re-

liability growth models and

associated cost models, inte-

grating considerations of the

software life cycle and re-

lease policies.

Focuses on statistical model-

ing of software failures over

time.

Continued on next page
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Table 2 (continued)

Study Di�erences Similarities

(ZHONG; KHOSH-

GOFTAAR; SELIYA,

2004)

Applies unsupervised clus-

tering algorithms, such as K-

means and Neural-Gas, to

identify fault-prone modules

in software systems without

the need for prior labeling.

Leverages clustering tech-

niques to explore the internal

structure of failure data and

supports fault localization by

uncovering hidden patterns.

(OKAMURA; MU-

RAYAMA; DOHI,

2004)

Develops a uni�ed parameter

estimation method based on

the EM principle for Discrete

SRMs.

Builds upon probabilistic

modeling approaches and

maintains emphasis on

enhancing model gener-

alization to accommodate

di�erent failure behaviors.

(HAMILL; GOSEVA-

POPSTOJANOVA,

2009)

Performs large-scale fault

analysis using datasets from

GCC and NASA, focusing on

fault localization frequency

and categorization across

diverse software systems.

Uses empirical methods to

assess how faults are dis-

tributed and clustered, pro-

viding insights into common

failure causes across systems.

(SCHROEDER; GIB-

SON, 2009)

Analyzes failure logs from

high-performance comput-

ing (HPC) systems over a

9-year period, with an em-

phasis on hardware-related

failures and system-level

behavior.

Applies statistical distribu-

tion �tting (Weibull, Gamma)

to model TBF and TTR, and

critiques the inadequacy of

simple exponential models in

representing real-world reli-

ability data.

(WANG; KHOSH-

GOFTAAR;

NAPOLITANO,

2010)

Investigates ensemble-based

feature selection techniques

for software defect predic-

tion, testing combinations of

17 ranking algorithms to im-

prove classi�er performance.

Applies statistical and en-

semble learning techniques

to enhance the accuracy of

fault prediction models based

on source code metrics.

Continued on next page
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Table 2 (continued)

Study Di�erences Similarities

(WANG et al., 2011) Explores the optimal number

of software metrics required

for e�ective defect predic-

tion, using a threshold-based

feature selection approach

to balance model complexity

and performance.

Emphasizes the role of sta-

tistical analysis in selecting

relevant features for improv-

ing the classi�cation of fault-

prone modules.

(DIGIUSEPPE;

JONES, 2012)

Investigates how multiple

faults may interact and

violate common assump-

tions in failure clustering

approaches, challenging

traditional views on failure

independence.

Concentrates on the use of

clustering to analyze and

model failure behavior, high-

lighting the complexity of

real-world failure patterns.

(SANTOS; MATIAS,

2018)

Focuses on identifying pat-

terns of operating system-

level failures that span

user-space and kernel-space

components, leveraging

event correlation and pattern

discovery techniques.

Utilizes real-world failure

logs to uncover failure

dependencies and recur-

rent behaviors, supporting

pattern-based failure model-

ing.

(BLOSTEIN;

MILJKOVIC, 2019)

Proposes a �nite mixture

model to �t left-truncated

loss data, using combinations

of the Gamma, Lognormal,

and Weibull distributions.

Aims to improve model se-

lection and prediction accu-

racy by using a �exible mix-

ture framework that captures

multiple failure behaviors.

(CAI; ZHAO; ZHU,

2020)

Develops a real-time relia-

bility estimation method for

mechanical systems using K-

means clustering and spline

interpolation, particularly

suitable for limited data

environments.

Applies clustering to inter-

pret system performance

data and emphasizes meth-

ods that remain e�ective

even with data scarcity.

Continued on next page
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Table 2 (continued)

Study Di�erences Similarities

(OKAMURA; DOHI,

2021)

Evaluates the performance of

various NHPP-based SRMs

with di�erent underlying sta-

tistical distributions, aiming

to enhance modeling preci-

sion and applicability.

Incorporates mixture model-

ing principles and addresses

the importance of distribu-

tional diversity in capturing

real-world failure behavior.

(KUMAR; JAIN,

2023)

Focuses on the development

of heterogeneous mixture

models combining Weibull,

Lognormal, and Gompertz

distributions, and employs

an Arti�cial Neural Network

to compare numerical re-

sults for software reliability

indices.

Shares the use of Weibull

and Lognormal distributions

and both homogeneous and

heterogeneous mixture mod-

els. Promotes the use of mix-

ture models (homogeneous

and heterogeneous) to im-

prove �t and representation

of failure data, acknowledg-

ing the limitations of mod-

els based on a single distribu-

tion.

While previous studies have made signi�cant advancements in software reliability model-

ing using mixture approaches, this work introduces several improvements that distinguish it

from the existing literature. The main contributions of this research are as follows:

❏ TBFCentricModeling Perspective: Rather than relying on cumulative failure curves,

this work centers on the statistical modeling of TBFs, providing a more �exible perspec-

tive on failure processes and facilitating the detection of behavioral patterns.

❏ Comprehensive Exploration of Mixture Models: Both homogeneous and heteroge-

neous mixtures were evaluated, combining up to 30 components drawn from Exponen-

tial, Normal, Lognormal, Gamma, and Weibull distributions. This modeling enables the

representation of multimodal failure behaviors.

❏ Robust Goodness-of-Fit and Visual Assessment: The adequacy of the models was

evaluated using a wide range of statistical metrics, including AIC, BIC, KS and AD tests.

In addition, graphical methods, such as histograms with PDF overlays, CDFs, Q-Q plots,

and P-P plots, were employed to provide visual support for model validation.

❏ Integration of Clustering Techniques: Clustering algorithms (K-Means, HDBSCAN,

Fuzzy C-Means, and Gaussian Mixture Models) were used to identify latent structures

in TBF data.
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❏ Pattern Identi�cation Across Operational Environments: The analysis considered

TBFs frommultiple operational groups running under the same OS and application con-

text. This allowed for the investigation of environmental in�uences on failure behavior

and the detection of statistical patterns across groups.

❏ Exploratory Statistical Characterization: For each sample, descriptive statistics (e.g.,

mean, median, skewness, kurtosis, percentiles, interquartile range) were computed to

characterize the failure data and support subsequent modeling decisions.

❏ Sensitivity Analysis for Model Complexity: A sensitivity analysis was conducted to

examine the relationship between the number of components and model performance.

Metrics such as AIC, BIC, KS, and AD were tracked across model sizes. Computational

cost (runtime, memory usage, CPU load) was also considered to evaluate trade-o�s be-

tween complexity and e�ciency.

❏ Distribution Suitability Insights: Across samples and models, trends were identi�ed

regarding the most frequently used distributions in mixture components.

The next section describes the methodology adopted in this study, including the data

processing steps, modeling techniques, clustering strategies, and evaluation procedures em-

ployed.
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Chapter4

Methodology

The central motivation of this research stems from the hypothesis that time between fail-

ures in software systems are shaped by a multitude of factors, including operational pro�les,

failure modes, failure causes and types of failure. These in�uences result in varying failure

behaviors across di�erent computing environments, often producing complex distributions.

Given this complexity, mixture modeling is proposed as a suitable technique to better capture

the underlying structure of the lifetime data.

It is important to correctly distinguish between failure mode and failure cause in the con-

text of this study. A failure mode refers to how the software fails: the externally observable

manifestation of the failure and typical examples of software failure modes include crash, hang

and error. A failure cause refers to why the software fails, the underlying defect, software fault

or mechanism that triggered the failure. For example, the same memory allocation defect (fail-

ure cause) may lead to di�erent failure modes depending on the circumstances: it may cause

the software to crash, to hang, or to produce incorrect results.

Furthermore, the manifestation of a failure can depend on how the software is used: its

operational pro�le and the execution environment where it runs. In practice, the combination

of a given failure cause with a particular operational pro�le and execution environment can

result in di�erent failure modes.

The relationship between failure causes, operational pro�les, execution environments, and

failure modes is illustrated in Figure 2.

4.1 Data Description

An exploratory analysis was conducted on failure records collected from general purpose

computers deployed in academic, administrative, and corporate settings. All computers are

under the Windows 7 operating system, which includes a built-in infrastructure called the Re-

liability Analysis Component - RAC (MICROSOFT, 2020), responsible for automatically log-

ging software failure events. Each RAC event log contains a set of attributes, including:
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❏ G2: University Administrative Department Computers

❏ G3: Corporate Environment Computers

❏ G4: Personal and HomeO�ce Computers (Corporate, Academic, and Personal)

4.1.1 Parameters and Failure Characterization

To enhance the dataset for statistical analysis, new parameters were derived from the orig-

inal RAC logs. These enrichments enabled a more detailed exploration of the failure behavior:

❏ Application Failure: The application responsible for the failure was inferred by ana-

lyzing the ProductName and InsertionStrings �elds. A categorical column in the

dataset, Type, was created to identify the main source of the failure (e.g., iexplore for

Internet Explorer).

❏ Failure Cause: A semantic classi�cation of the failure’s cause was derived from diag-

nostic codes, keywords in InsertionStrings, and detailed messages in the Message

�eld (e.g., Code: c0000005, Failure Cause: Memory addressing).

The failure records were collected from September 29, 2010 to August 7, 2014.

4.1.2 Dataset Characterization

To facilitate the analysis of group-level di�erences in key metrics, ridgeline plots were em-

ployed. This graphical technique is used for comparing multiple distributions simultaneously.

Each plot consists of a series of smoothed density curves, one for each subgroup, stacked ver-

tically with partial overlap. This layout highlights di�erences in the shape, spread, and central

tendency of the distributions. In the context of this study, each curve represents the empiri-

cal distribution of a speci�c metric (e.g., number of failures, number of distinct causes) across

computers belonging to the same group.

The x-axis of each ridgeline plot indicates the values of the analyzed metric. Although

the y-axis is categorical and primarily used to visually separate the groups, shape and relative

height of each curve carry statistical meaning, as they correspond to estimated probability

density functions. Consequently, variations in peak height and curve width re�ect di�erences

in concentration, dispersion, and distributional structure among the groups. For each group,

the following summary statistics are annotated directly on the subplot:

❏ Mean: The arithmetic average of the distribution.

❏ Median: The central value that divides the data into two equal halves.

❏ Peak: The location on the x-axis where the smoothed density function attains its max-

imum.
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The computation of each curve involves multiple steps. Initially, for a given metric (e.g.,

number of failures), the metric is computed individually for each computer in the group. These

individual observations are then aggregated to form an empirical distribution, which is subse-

quently smoothed to produce the �nal ridgeline curve. This approach ensures that the group-

level curve encapsulates the variability observed at the individual machine level, enabling an

understanding of intra-group heterogeneity.

Figure 3 presents the distribution of the number of failures recorded per computer across

di�erent groups. The distribution is highly right-skewed in all groups. G1 exhibits the lowest

failure counts (mean = 10.3), with a sharp peak at 2.4, suggesting relatively stable systems.

Conversely, G4 displays the highest failure incidence (mean = 135.1, median = 59.0), re�ect-

ing frequent failure events. Groups G2 and G3 exhibit intermediate behavior but still show

considerable skewness and dispersion, indicating high heterogeneity in failure frequency.

As shown in Figure 4, the number of days over which failure events were recorded varies

notably among the groups. G1 has a relatively narrow and symmetric distribution centered at

78 days, suggesting consistent, short-term monitoring periods. In contrast, G2 and G4 show

right-skewed distributions with longer tails and higher medians (327 and 263 days, respec-

tively), indicating prolonged observation periods and G3 and G4 exhibits a bimodal distribu-

tion.

Figure 5 displays the distribution of the number of application failures per computer. In this

context, the failure is attributed to the individual application where it occurred, examples in-

Figure 3 – Ridgeline Plot Comparing the Distribution of Failures per Computer Across Four
Groups (G1–G4).
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clude failures in user-facing applications such as iexplore.exe, chrome.exe, excel.exe,

as well as failures in Operating System components such as explorer.exe and U_Windows.

In Figure 5, G1 again has the narrowest range (mean = 3.6), suggesting a simpler failure

landscape or limited diversity of applications in use. G4 shows the most complex behavior

(mean = 17.7, median = 16.0), likely due to varied usage pro�les encompassing academic, ad-

ministrative, and personal tasks. G2 and G3 fall in between, with means around 10.3 and 10.6,

respectively.

Figure 6 illustrates the number of distinct causes associated with each application on a

computer. G1 is concentrated near a mean = 1.2. On the other hand, G2, G3, and G4 exhibit

higher means (2.7 to 2.8) and long right tails.

Together, these descriptive analyses highlight the diverse and heterogeneous nature of

software failures across di�erent environments. This variability justi�es the need for more

�exible modeling approaches, capable of capturing heterogeneous failure distributions e�ec-

tively.

Figure 4 – Ridgeline Plot Comparing the Distribution of Days Sampled per Computer Across
Four Groups (G1–G4).
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4.2 Modeling Approach

This study investigates the use of homogeneous and heterogeneous �nite mixture models

to represent the empirical distribution of time between failures. Homogeneous models are

composed of multiple components of the same probability distribution (e.g., several Exponen-

tial distributions), whereas heterogeneous models allow combinations of di�erent distribution

types within a single mixture, such as a blend of Weibull, Gamma, and Lognormal equations.

The modeling con�guration considered up to 30 components, using �ve statistical distribu-

tions in reliability engineering: Exponential, Normal, Lognormal, Gamma and Weibull. These

distributions were selected for their �exibility andwidespread applicability inmodeling failure

data.

Alternative distribution families, such as phase-type distributions, were considered con-

ceptually but not adopted in this study. Although phase-type models o�er a high degree

of �exibility and can approximate a broad class of distributions, their parameterization be-

comes increasingly complex as the number of phases grows, which can hinder interpretability

and complicate estimation, particularly when combined with �nite mixture structures. Given

the objective of balancing modeling expressiveness with interpretability and computational

tractability on large empirical datasets, the selected distribution families were deemed more

appropriate for the scope of this work.

Failure records were analyzed to extract two features: application and failure cause. These

classi�cations were constructed based on information available in the logs. Application refers

to the speci�c executable program or system component where the failure occurred (e.g.,

iexplore.exe, excel.exe, or U_Windows). In contrast, the failure cause provides insight

into the reason for the failure, such as memory errors or access violations.

The TBFs analyzed in this work were collected from several operational groups of com-

puters running the same operating system. This common baseline allows the comparison of

variability introduced by environmental or operational di�erences. These sources of hetero-

geneity in failure behavior were considered:

❏ Operational Pro�le: Di�erences in usage intensity and user interaction patterns can

a�ect failure behavior across computers.

❏ Failure Causes: Software systems can experience failures due to multiple causes, such

as software bugs, con�guration errors, or interactions with external systems, and each

cause may follow a distinct statistical distribution depending on the nature of the fault.

These factors can result in overlapping subpopulations within the data, which motivates

the use of mixture models to uncover latent structures and to model complex failure distribu-

tions. To address these sources of heterogeneity and better understand the multimodal nature

of failure patterns, two distinct modeling strategies were adopted:
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Approach 1: Mixture models were applied to the complete set of TBFs for each computer,

treating each machine as a single entity. This approach aims to capture patterns arising from

the combination of di�erent failure causes and usage behaviors present within a single system.

To ensure meaningful statistical analysis, only computers with at least two sets of distinct

applications failures, each comprising a minimum of 30 failure records, were included. This

�ltering resulted in 41 computers eligible for this analysis.

Approach 2: The dataset was segmented by application failure, and mixture models were

applied separately to each one. This strategy focuses on understanding whether multimodal

behavior is an inherent property of failures associated with speci�c applications, rather than

the result of aggregated system behavior. To ensure meaningful statistical analysis of this

modeling, only applications with at least 50 failure records per computer were considered. The

only application in the dataset that satis�ed this requirement across multiple computers was

the Internet Explorer’s process (iexplore.exe). Consequently, 36 computers with su�cient

iexplore related failures were included in this second modeling approach.

The adoption of a minimum number of failure records per computer is motivated by both

statistical and interpretative considerations. From a modeling perspective, mixture models

require a su�cient number of observations to reliably estimate component parameters and

mixing proportions. Applying the threshold at the computer level ensures that the inferred

distributions re�ect intrinsic failure behavior of individual systems rather than being domi-

nated by sparse or incidental events. Moreover, this criterion promotes comparability across

computers by reducing variability caused by unequal observation lengths or usage intensity.

In the context of application-level modeling, enforcing a per-computer threshold further

guarantees that each application-speci�c failure process is supported by adequate empirical

evidence, allowing multimodality to be interpreted as a structural characteristic of the failure

mechanism rather than an artifact of data sparsity or random �uctuation.

Although the adoption of a minimum threshold of failure records per computer ensures

statistical robustness for mixture model estimation, this criterion may introduce a selection

bias at the computer level. Speci�cally, computers with low application usage or shorter ob-

servation periods are excluded from the analysis, even if they exhibit failure behaviors that

are potentially relevant from a reliability perspective. As a result, the retained sample may

be disproportionately composed of systems with higher usage intensity or greater instability,

which tend to generate a larger number of recorded failures. This bias must be considered

when interpreting the results, as the identi�ed multimodal patterns may re�ect the behavior

of more active or failure-prone systems rather than being fully representative of the entire

population of computers.

In total, 77 samples were selected for mixture modeling: 41 computers for Approach 1

and 36 for Approach 2. This strategy enables a comparative analysis of failure behavior from

system-wide and cause-speci�c perspectives and allows the identi�cation of statistical pat-

terns across di�erent abstraction levels.
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It is also important to highlight that, unlike many studies that rely on simulated or con-

strained datasets, the data used in this study originate from a large empirical dataset collected

from real-world systems, as reported by the research associated with this work (MATIAS et

al., 2014).

4.3 Cluster and Statistical Analysis

To gain a deeper understanding of the failure patterns in each computer from the dataset,

this study performed statistical and clustering analysis of the TBFs observed across all selected

operational groups. The goal was to assess potential multimodal behavior in the data and to

uncover complexity not captured by simple unimodal models.

For each computer selected for analysis, a set of statistical metrics was computed to char-

acterize the TBF distribution. These include:

❏ Failure Count: Total number of recorded failures.

❏ Central Tendency: Mean, median, and mode.

❏ Dispersion: Standard deviation, interquartile range (IQR), and full range (minimum

and maximum).

❏ Distribution Shape: Skewness and kurtosis.

❏ Percentiles: 25th and 75th percentiles to describe the data spread.

To investigate potential heterogeneity in failure behavior, clustering methods were applied

considering only observations with TBF > 0. Multiple clustering algorithms were evaluated:

❏ K-Means Clustering: A widely used partitioning method that minimizes intra-cluster

variance. It assumes spherical clusters and equal variance across groups. It is com-

putationally e�cient and interpretable, but sensitive to initialization and requires the

number of clusters k to be de�ned a priori.

❏ HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with

Noise): A density-based method that automatically determines the number of clusters

and identi�es noise points. It handles clusters of varying shapes and densities but may

be sensitive to its hyperparameters and struggles with low-density datasets.

❏ Fuzzy C-Means (FCM): Allows data points to belong to multiple clusters with varying

degrees of membership. This is particularly suitable when failure patterns overlap or

transition smoothly. However, FCM can be computationally intensive and sensitive to

outliers.
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❏ Gaussian Mixture Models (GMMs): Probabilistic models that assume the data is gen-

erated from a mixture of several Gaussian distributions. GMMs are �exible and can

model elliptical clusters, but they are also sensitive to initialization and may over�t in

high dimensions.

Each algorithm o�ers a unique perspective on the data. K-Means and FCM require speci-

fying the number of clusters, while HDBSCAN and GMMs can estimate it from the data. The

limitations of one method are often compensated by the strengths of another.

4.3.1 Cluster Evaluation Metrics

To evaluate and compare the clustering results, internal validation metrics were employed:

❏ Silhouette Score: Measures how similar a point is to its own cluster versus other clus-

ters. Values range from −1 (incorrect clustering) to 1 (well-clustered).

❏ Calinski-Harabasz Index: Evaluates the ratio of between-cluster dispersion to within-

cluster dispersion. Higher values indicate better-de�ned clusters.

❏ Davies-Bouldin Index: Measures average similarity between clusters, where lower

values indicate better clustering.

❏ Fuzzy PartitionCoe�cient (FPC):Used for FCM, quanti�es the degree of overlapping

in fuzzy clusters; higher values indicate better partitions.

❏ Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC):

Used with GMMs to evaluate model complexity versus �t. Lower values indicate more

parsimonious models.

4.3.2 Evaluation and Selection of Clustering Con�gurations

To determine themost appropriate number of clusters (k), the optimal_cluster_analysis

function was implemented. This function:

❏ Normalizes the input TBF data using StandardScaler.

❏ Iteratively applies each clustering method for di�erent values of k (when required).

❏ Computes all internal evaluation metrics.

❏ Aggregates the results and proposes a consensus value for the optimal number of clus-

ters based on the most frequently recommended k across all methods.
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The complete clustering framework is summarized in Algorithm 1, which outlines the

key preprocessing steps, statistical summarization, clustering execution, and evaluation pro-

cedures.

This clustering algorithm enables the identi�cation of multimodal structure in the TBF

data, serving as a basis for subsequent modeling. The following section presents a description

of the Expectation-Maximization (EM) algorithm

4.4 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithmwas implemented to �t �nite mixture mod-

els to the observed data. The framework supports multiple parametric distributions and in-

corporates robust initialization procedures, convergence monitoring, and evaluation metrics

to ensure e�cient and reliable parameter estimation.

The general procedure of the Expectation-Maximization framework used in this study is

summarized in Algorithm 2. This implementation iteratively alternates between the Expec-

tation (E) step, which computes the responsibilities based on current parameter estimates,

and the Maximization (M) step, which updates the mixture weights and distribution parame-

ters using weighted maximum likelihood estimation. Convergence is monitored via the log-

Algorithm 1Multimodality and Cluster Analysis Algorithm

1: Input: TBF data X = {x1, x2, . . . , xn}; max clusters kmax

2: Output: Statistical summary, optimal k, clustering labels, evaluation metrics
3: Remove non-positive values: X ← {x ∈ X | x > 0}
4: Normalize: Xscaled ← StandardScaler(X)
5: Compute descriptive statistics: mean, std, skewness, etc.
6: K-Means:

7: for k in [2, kmax] do
8: Apply K-Means and compute silhouette, CH, DB indices
9: end for

10: Use Elbow Method and Silhouette Score to estimate optimal k
11: HDBSCAN: Run once and extract clusters (excluding noise)
12: Fuzzy C-Means:

13: for k in [2, kmax] do
14: Apply FCM, extract hard labels and FPC
15: Evaluate with silhouette, CH, DB
16: end for

17: GMMs:

18: for k in [1, kmax] do
19: Fit GMM, compute BIC, AIC, silhouette
20: end for

21: Aggregate results and determine consensus k
22: Generate visualizations: histograms, density plots, cluster assignments
23: return Statistical summaries, clustering results, evaluation scores
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likelihood improvement, and the process continues until a prede�ned tolerance (tol = 10−4)

or iteration limit is reached (max_iter = 1000).

Five probability distributions were integrated into the Expectation-Maximization algo-

rithm to accommodate the diverse characteristics of TBF data: Exponential, Normal, Log-

normal, Weibull and Gamma. Each distribution was selected based on its suitability for mod-

eling di�erent failure behaviors observed in software reliability.

During the M-step of the EM algorithm, distribution-speci�c parameters are estimated us-

ingweighted statistics derived from the responsibilities computed in the E-step. These weights

re�ect the degree to which each data point is associated with each component. The estimation

procedure for each distribution is described below, highlighting the underlying assumptions

and the corresponding parameter updates within the EM framework.

Exponential distribution: Characterized by a single scale parameter λ, it assumes a con-

stant failure rate and is commonly used for memoryless processes. The parameter is estimated

via weighted maximum likelihood, using the expression λ̂ = max(10−10, x̄w), where x̄w is the

weighted sample mean. A lower bound is enforced to prevent degenerate solutions.

Normal distribution: Parameterized by mean µ and standard deviation σ, it is suitable

for modeling symmetric TBF patterns. The estimates are computed from the weighted sample

statistics as µ̂ = x̄w and σ̂ =
√

Varw(x), where Varw(x) denotes the weighted variance.

Log-normal distribution: Well-suited for right-skewed data arising from multiplicative

processes, it is parameterized by shape, location, and scale. The estimation is performed using

the lognorm.�t routine from SciPy, incorporating the component responsibilities as frequency

weights.

Weibull distribution: Known for its �exibility in representing increasing, decreasing, or

constant failure rates depending on its shape parameter. Parameters are estimated via numer-

ical maximum likelihood methods, without closed-form expressions, using numerical solvers

initialized from method-of-moments estimates.

Gamma distribution: Useful for modeling skewed TBF data with variable failure inten-

sities. Parameter estimation also relies on numerical maximum likelihood, and due to the

involvement of special functions, this distribution often requires greater computational e�ort

during the �tting process.

4.4.1 Computational Complexity Analysis

Each supported distribution was analyzed in terms of its computational demands. These

demands were quanti�ed by counting the number of �oating-point operations required for

evaluating the probability density function, cumulative distribution function, and parameter

updates during the M-step.

The Exponential distribution has the lowest computational cost, due to its closed-form

expressions. In contrast, the Gamma and Weibull distributions are more computationally in-

tensive, as they rely on iterative or numerical procedures.
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Algorithm 2 Expectation-Maximization Algorithm

Require: Data X = {x1, ..., xN}, List of distributions, Maximum iterations Tmax, Tolerance
ϵ

Ensure: Optimized parameters θ, Log-likelihood history L
1: Initialization:

2: θ(0) ← initialize_parameters(X, distributions) ▷ Uses K-means
3: L ← []
4: Initial evaluation:

5: ℓ(0) ← calculate_log_likelihood(X, θ(0))
6: L.append(ℓ(0))
7: for t← 1 to Tmax do

8: E-step: ▷ Compute responsibilities
9: γ ← zeros(N, K)
10: log_pdfs← calculate_log_pdfs(X, θ(t−1))
11: for i← 1 to N do

12: log_weighted← log_pdfs[i] + log(weights)
13: max_val← max(log_weighted)
14: exp_vals← exp(log_weighted−max_val)
15: γ[i]← exp_vals/

∑

(exp_vals)
16: end for

17: M-step: ▷ Update parameters
18: for k ← 1 to K do

19: e�ective_samples← ∑N
i=1 γ[i, k]

20: weights[k]← e�ective_samples/N
21: if distribution == "exp" then
22: scale← ∑

γ[:, k] ·X/e�ective_samples
23: θk ← (max(1e− 10, scale), )
24: else if distribution == "norm" then
25: loc← ∑

γ[:, k] ·X/e�ective_samples

26: scale←
√

∑

γ[:, k] · (X − loc)2/e�ective_samples
27: θk ← (loc, scale)
28: else if distribution == "logn" then
29: θk ← lognorm.�t(X, fscale = γ[:, k])
30: end if

31: end for

32: Convergence check:

33: ℓ(t) ← calculate_log_likelihood(X, θ(t))
34: L.append(ℓ(t))
35: if |ℓ(t) − ℓ(t−1)| < ϵ then
36: break

37: end if

38: Monitoring:

39: check_memory_usage()
40: snapshot_performance()
41: end for

42: Return θ(t),L
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Table 3 summarizes the estimated number of operations required for each distribution dur-

ing the EM algorithm. These estimates were obtained through a combination of analysis of the

analytical expressions involved, such as the probability density functions, cumulative distribu-

tion functions, and parameter update formulas and empirical pro�ling of the implementation.

The analysis considered the functional forms of the PDFs and CDFs for each distribution,

as well as representative expressions used in the parameter updates during the M-step. The

main formulas are listed below:

❏ Exponential:

f(x; λ) = λe−λx, F (x; λ) = 1− e−λx, x ≥ 0

M-step (MLE for rate parameter):

λ̂ =

∑n
i=1 γi

∑n
i=1 γixi

❏ Normal:

f(x; µ, σ) =
1

σ
√

2π
exp

(

−(x− µ)2

2σ2

)

, F (x; µ, σ) =
1

2

[

1 + erf

(

x− µ

σ
√

2

)]

M-step (weighted sample mean and variance):

µ̂ =

∑n
i=1 γixi
∑n

i=1 γi

, σ̂2 =

∑n
i=1 γi(xi − µ̂)2

∑n
i=1 γi

❏ Log-normal:

f(x; µ, σ) =
1

xσ
√

2π
exp

(

−(ln x− µ)2

2σ2

)

, F (x; µ, σ) = Φ

(

ln x− µ

σ

)

, x > 0

M-step (weighted log-transform):

µ̂ =

∑n
i=1 γi ln xi
∑n

i=1 γi

, σ̂2 =

∑n
i=1 γi(ln xi − µ̂)2

∑n
i=1 γi

❏ Weibull:

f(x; k, λ) =
k

λ

(

x

λ

)k−1

exp

(

−
(

x

λ

)k
)

, F (x; k, λ) = 1− exp

(

−
(

x

λ

)k
)

, x ≥ 0

M-step: Closed-form solutions are not available; parameters are updated via numerical

methods using weighted log-likelihood maximization.

Table 3 – Estimated Computational Complexity for Each Distribution.

Distribution PDF Operations CDF Operations M-step Operations

Exponential 5 7 10
Normal 15 20 25
Lognormal 18 22 30
Weibull 20 25 35
Gamma 22 28 40
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❏ Gamma:

f(x; α, β) =
βα

Γ(α)
xα−1e−βx, F (x; α, β) =

1

Γ(α)
γ(α, βx), x > 0

M-step: As with the Weibull distribution, closed-form updates are not available. The

shape and rate parameters are estimated numerically, often using weighted maximum

likelihood with iterative solvers.

4.4.2 Initialization Strategy

E�ective parameter initialization is critical for the convergence and performance of EM

algorithms, therefore this implementation employs a strategy based on K-means clustering.

The dataset is �rst partitioned into clusters corresponding to the desired number of mixture

components. The centroids and weights of these clusters are then used to generate initial

guesses for the component parameters.

Initialization is tailored to each distribution. For instance, in the case of the Exponential

distribution, the scale parameter is initialized based on themedian of the assigned data. For the

Normal distribution, the initial mean and variance are set using the cluster’s sample mean and

standard deviation. More complex distributions such as the Log-normal, Weibull, and Gamma

use moments derived from the cluster data. Finally, component weights are normalized to

ensure they sum to one.

4.4.3 EM Algorithm Implementation

The EM loop consists of two main steps: the Expectation (E-step) and Maximization (M-

step).

In the E-step, posterior probabilities (or responsibilities) are calculated for each data point

with respect to each component. This is done using the numerically stable log-sum-exp for-

mula:

rik =
wk · p(xi|θk)

∑K
j=1 wj · p(xi|θj)

(10)

These responsibilities quantify the degree to which each observation is associated with

each component of the mixture model.

In the M-step, the model parameters are updated using the responsibilities from the E-step.

Mixture weights are updated as:

w
(t+1)
k =

1

N

N
∑

i=1

r
(t)
ik (11)

The parameters of each component distribution are re-estimated by maximizing the ex-

pected log-likelihood:
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θ
(t+1)
k = arg max

θ

N
∑

i=1

r
(t)
ik log p(xi|θ) (12)

All updates include bound checks and exception handling to avoid numerical instabilities

or invalid parameter values.

4.4.4 Incremental Components for Mixture Model

To determine the optimal number of mixture components, an automated model selection

routine was implemented through the incremental_sensitivity_analysis function.

This function is designed to balance model accuracy and complexity, guiding the Expectation-

Maximization algorithm toward a parsimonious yet e�ective con�guration. Its operation is

divided into two main phases:

Initial Exploration Phase

The function begins with an exhaustive evaluation of all possible combinations of the

selected distributions, varying the number of mixture components from 1 up to a prede-

�ned base limit (default is 5). For each component count, it computes goodness-of-�t (GoF)

scores using four metrics: Akaike Information Criterion (AIC), Bayesian Information Crite-

rion (BIC), Kolmogorov-Smirnov (KS), and Anderson-Darling (AD). At each step, the three

best-performing models per metric are retained and stored for subsequent use.

Incremental Expansion Phase

From the base limit up to a maximum number of components (default is 30), the function

incrementally generates more complex models by expanding the top-performing con�gura-

tions. One distribution is added at each iteration, and new models are evaluated using the

same set of GoF metrics. The expansion process is guided by a stopping criterion de�ned by

one or more of the following conditions:

❏ The improvement in a GoF score falls below a prede�ned threshold (default is 0.0001);

❏ A GoF score deteriorates consistently across three consecutive steps;

❏ The maximum number of components is reached.

When a stopping criterion is met for two or more metrics, the expansion process is halted.
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Final Selection and Output

At the conclusion of the analysis, the function determines the �nal optimal number of

components by averaging the component counts associated with the best scores across all

four metrics. A summary is printed detailing the reasons for stopping in each case. The func-

tion returns four key outputs: (1) a consolidated dictionary of the best model con�gurations

per component count, (2) the GoF scores across the entire process, (3) the top models per

metric at each component level, and (4) the �nal recommended number of components. This

procedure provides a structured approach to mixture model selection, balancing statistical �t

and computational feasibility.

4.4.5 Convergence and Optimization Strategies

Several optimization strategies are employed to ensure convergence and improve robust-

ness. The algorithm executes multiple runs (default is ten) with di�erent initialization to avoid

local optima. Convergence is assessed based on changes in log-likelihood, and an early stop-

ping criterion is applied if improvements fall below a prede�ned threshold. Memory usage is

also monitored, with process termination if consumption exceeds 2GB. Additionally, a maxi-

mum number of 1000 iterations is enforced to prevent in�nite loops.

4.4.6 Sensitivity Analysis and Computational Cost

A sensitivity study was conducted to investigate the impact of the number of mixture

components on model performance. In this analysis, plots were constructed with the number

of mixture components on the x-axis and the values of each applied Goodness-of-Fit (GoF)

test on the y-axis.

By observing the behavior of these GoF statistics as the number of components increases,

it is possible to identify the point at which adding more components no longer yields signi�-

cant improvements in model �t. Typically, a sharp decrease followed by stabilization or even

deterioration in the criteria suggests an optimal number of components.

To complement the sensitivity analysis, a computational cost study was conducted to eval-

uate the resource implications of increasing model complexity. A monitoring class tracks

system performance throughout model �tting, it measures execution time, peak memory con-

sumption, average CPU utilization, and estimates operation counts based on the complexity

of the chosen distributions.

The cost of model estimation was assessed across di�erent numbers of mixture compo-

nents and types of distributions, both homogeneous mixtures (same distribution type across

all components) and heterogeneous mixtures (combining di�erent distribution families within

a single model). The evaluation considered four key computational metrics:

❏ Execution time: Total runtime of the EM algorithm until convergence.
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❏ Memory usage: Peak memory consumption observed during model estimation.

❏ CPU usage: Average percentage of CPU utilization throughout the EM iterations.

❏ Number of operations: A theoretical estimate of computational e�ort, derived from

symbolic expressions of the model’s structure.

Each distribution included in the mixture model imposes a distinct computational cost,

which was estimated using a prede�ned dictionary of complexity factors:

❏ PDF Operations: Number of operations required to evaluate the probability density

function.

❏ CDFOperations: Number of operations needed to compute the cumulative distribution

function.

❏ M-Step Operations: Estimated number of operations required to update the parame-

ters during the M-step of the EM algorithm.

For each mixture con�guration, two types of plots were generated:

❏ Homogeneous Mixtures: For mixtures composed exclusively of a single distribution

type, the computational cost was evaluated by incrementally increasing the number of

components.

❏ Heterogeneous Mixtures: In the case of mixtures combining di�erent distribution

types, the overall computational cost was estimated by averaging the prede�ned com-

plexity factors of the selected distributions

This analysis provides insights into the trade-o�s between model complexity and compu-

tational e�ciency. While models with more components (or with diverse distribution families)

tend to o�er better �t, they also demand more computational resources.
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Chapter5

Results

This chapter presents the results of the analysis conducted on failure data. Two distinct

modeling approaches were employed to explore di�erent perspectives on failure behavior and

to assess the presence of patterns in time between failures.

5.0.1 Sample Selection and Data Preparation

Following the �ltering approaches de�ned for eachmodeling strategy, a total of 77 samples

were selected for mixture model analysis.

Approach 1: In this approach, mixture models were applied to the entire set of TBFs

recorded for each computer, treating each machine as a single analytical unit. To ensure sta-

tistical signi�cance, only computers with at least two distinct failure causes, each comprising

a minimum of 30 failure records, were included. This criterion yielded a total of 41 eligible

computers for analysis.

Approach 2: The dataset was segmented by failure type and failure cause. To ensure

statistical signi�cance, only failure causes with at least 50 recorded failures per computer were

considered. As a result, 36 computers with a su�cient number of failures were selected for

this second modeling approach.

5.0.2 Occurrence of Zero-Valued TBFs

During the preprocessing stage, the number and proportion of TBF values equal to zero

were quanti�ed for each operational group. These values were not removed from the dataset

but were disregarded in the clustering and mixture modeling analyses. Table 4 summarizes

the total number of TBF entries and the corresponding amount and percentage of zero-valued

TBFs observed in each group.
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5.0.3 Approach 1: Complete TBF Analysis

Table 5 lists the 41 computers selected for Approach 1, where mixture models were applied

to the complete set of time-between-failures for each system.

Table 4 – Number and Proportion of Zero-Valued TBFs in Each Group.

Group Total TBFs Zero-valued TBFs Percentage of Zeros (%)

G1 63 0 0.00
G2 8360 39 0.47
G3 1100 6 0.55
G4 3971 98 2.47

Table 5 – The Selected Computers for Approach 1 Analysis.

Computer IDs

G2Rac_MC-151157 G2Rac_MC-157457
G2Rac_MC-156359 G2Rac_MC1-035
G2Rac_MC-157380 G2Rac_MC1-051
G2Rac_MC-157383 G2Rac_MC1-074
G2Rac_MC-157396 G2Rac_MC1-097
G2Rac_MC-157398 G2Rac_MC1-112
G2Rac_MC-157400 G2Rac_MC2-070
G2Rac_MC-157406 G2Rac_MC2-075
G2Rac_MC-157413 G2Rac_MC2-100
G2Rac_MC-157416 G2Rac_MC3-196
G2Rac_MC-157430 G3Rac_DSK021
G2Rac_MC-157432 G3Rac_DSK023
G2Rac_MC-157435 G3Rac_MB021
G2Rac_MC-157445 G41174137528899245fbeab8db8aa9320
G2Rac_MC-157447 G41175490403774946108f63bd34b5937

G411774790268767462ee772d61026018
G411814383442168466b518834f513970
G4133483408722174f8�3a7362535189
G4133510115532394f9406e34f1c62093
G4133535507490744f97e6c2dd8ed3561
G413431410151584500eb49726b174735
G413431559406206500eeee4978883010
G413452266836854502e87bba75907480
G4134852921215845060ec3c26b1e1089
G4134852947713265060ed45206293835
G41353517451878650ad098bd68643260
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5.0.4 Approach 2: Internet Explorer Failure Analysis

Notably, Internet Explorer was the only recurrent failure type found across all computer

groups analyzed, which justi�ed its selection for a more detailed investigation. For Approach

2, computers in the original dataset were examined to identify those containing Internet Ex-

plorer with multiple failure causes occurring in samples larger than 50 records. It was possible

to identify distinct failure causes. For each computer meeting the criteria, failure records were

�ltered to isolate only a speci�c failure, excluding all other failure types from that computer’s

dataset. Time-between-failures values were then recalculated based solely on these �ltered

records.

Table 6 presents the 36 samples selected for Approach 2, focusing speci�cally on Internet

Explorer (iexplore.exe) related failures with their corresponding error codes. This �ltering

process ensures that the mixture modeling analysis for Approach 2 re�ects the pure temporal

characteristics of individual failure causes, eliminating the e�ects of other failure types that

might distort the pattern of the target failure mechanism.

The analysis of Internet Explorer failures revealed four distinct failure causes. Table 7

presents the identi�ed failure causes along with their technical descriptions and classi�cations

(SANTOS; MATIAS; TRIVEDI, 2021).

The distribution of these failure causes across the 36 selected samples is presented in Ta-

ble 8. This table reveals the presence of each failure cause within the Internet Explorer failures.

The predominance of access violation errors (c0000005) accounts for approximately 80.6%

of all Internet Explorer failure samples, indicating thatmemory addressing issues represent the

most common cause of Internet Explorer failures in the analyzed dataset. Memory manage-

ment issues (heap corruption) and security violations (privileged instruction) each contribute

8.3% of the samples, while unhandled C++ exceptions represent the least frequent cause at

2.8% of the samples.

5.0.5 Sample Analysis

For detailed presentation and analysis in this work, a subset of 10 representative samples

was selected to illustrate the key �ndings from both approaches. The selection strategy pri-

oritized computers that were included in both Approach 1 and Approach 2 analyses, enabling

direct comparison between system-wide and cause-speci�c failure behaviors for the same sys-

tems. Table 9 shows the selected samples, highlighting the paired analysis structure.

Each analysis includes the following components: (1) descriptive statistics summarizing

the temporal characteristics of the failure data, (2) cluster identi�cation results from multiple

unsupervised learning algorithms, (3) mixture model selection, validation through goodness-

of-�t tests and sensitivity analysis, (4) parameter estimation for the selected mixture compo-

nents, (5) comparative analysis against simple distribution models, and (6) computational cost

evaluation for the modeling process.
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5.0.6 G1Rac_MC0-018_iexplore_c0000005 (Approach 2)

This case refers to failures related to access violations (c0000005), associated with invalid

memory adressing, occurring in the iexplore.exe’s process on computer MC0-018, part of

the Group 1 (Undergraduate Laboratory Computers).

Table 6 – The Selected Samples for Approach 2 Analysis (Internet Explorer).

Computer ID and Failure Cause

G1Rac_MC0-018_iexplore_c0000005
G2Rac_MC-153821_iexplore_c0000005
G2Rac_MC-153873_iexplore_c0000005
G2Rac_MC-157334_iexplore_c0000005
G2Rac_MC-157380_iexplore_c0000005
G2Rac_MC-157396_iexplore_c0000005
G2Rac_MC-157399_iexplore_c0000005
G2Rac_MC-157400_iexplore_c0000005
G2Rac_MC-157400_iexplore_c0000374
G2Rac_MC-157431_iexplore_c0000005
G2Rac_MC-157431_iexplore_c0000096
G2Rac_MC-157435_iexplore_c0000005
G2Rac_MC1-033_iexplore_c0000005
G2Rac_MC1-035_iexplore_c0000005
G2Rac_MC1-041_iexplore_c0000005
G2Rac_MC1-074_iexplore_c0000005
G2Rac_MC1-074_iexplore_c0000096
G2Rac_MC1-076_iexplore_c0000005
G2Rac_MC1-083_iexplore_c0000005
G2Rac_MC1-085_iexplore_c0000005
G2Rac_MC1-085_iexplore_c0000374
G2Rac_MC1-086_iexplore_c0000005
G2Rac_MC1-089_iexplore_c0000096
G2Rac_MC1-094_iexplore_c0000005
G2Rac_MC1-096_iexplore_c0000096
G2Rac_MC1-102_iexplore_c0000005
G2Rac_MC2-046_iexplore_c0000005
G2Rac_TANNER_iexplore_c0000005
G2Rac_TANNER_iexplore_c0000374
G3Rac_DSK023_iexplore_c0000005
G3Rac_WKS138_iexplore_c0000005
G4133535507490744f97e6c2dd8ed3561_iexplore_c0000005
G4134340997945745012cf3b6fb106680_iexplore_c0000005
G413452266836854502e87bba75907480_iexplore_e06d7363
G4134852947713265060ed45206293835_iexplore_c0000005
G4134852968526425060ee15408575705_iexplore_c0000005
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5.0.6.1 Statistical Characterization

Table 10 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a heterogeneous failure pattern characterized by signi�cant asymmetry

and heavy-tailed behavior. The di�erence between mean (107.13 hours) and median (23.83

hours) indicates a right-skewed distribution, which is further con�rmed by the positive skew-

ness value of 2.22.

The extremely low mode value (0.0039 hours) combined with the minimum observation

(0.0011 hours) indicates that some failures occur in rapid succession, possibly representing

cascading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (5.77) indicates a distribution with heavy tails and a sharp peak,

suggesting the coexistence of multiple modes. The large interquartile range (143.54 hours)

Table 7 – Internet Explorer Failure Causes and Their Classi�cation.

Error Code Failure Cause Failure Context

c0000005 Access violation Memory addressing
c0000374 Heap corruption Memory management
c0000096 Privileged instruction Processor (rules) violation
e06d7363 Unhandled C++ exception Exception handling

Table 8 – Distribution of Internet Explorer Failure Causes.

Error Code Failure Cause Number of Samples

c0000005 Access violation 29
c0000374 Heap corruption 3
c0000096 Privileged instruction 3
e06d7363 Unhandled C++ exception 1

Total 36

Table 9 – Representative Samples Selected for Detailed Analysis.

Group Approach Sample ID

G1 2 G1Rac_MC0-018_iexplore_c0000005

G2
1 G2Rac_MC-157400
2 G2Rac_MC-157400_iexplore_c0000374

G2
1 G2Rac_MC1-074
2 G2Rac_MC1-074_iexplore_c0000005
2 G2Rac_MC1-074_iexplore_c0000096

G3
1 G3Rac_DSK023
2 G3Rac_DSK023_iexplore_c0000005

G4
1 G413452266836854502e87bba75907480
2 G413452266836854502e87bba75907480_iexplore_e06d7363
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relative to the median further emphasizes the high variability in failure times.

5.0.6.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 11 summarizes the number of clusters recommended by each

approach.

HDBSCAN’s recommendation of 4 clusters suggests the presence of four major density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a higher num-

ber of clusters (12 and 11, respectively), indicating �ner granularity in failure pattern recogni-

tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend

intermediate values of 9 and 10 components, respectively.

Figure 7 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=12) identi�es

numerous small clusters with many observations concentrated in the low TBF region (0-50

hours) and several isolated high-TBF outliers. HDBSCAN (k=4) shows a more conservative

approach, identifying four main clusters with a signi�cant portion of data classi�ed as noise

(gray crosses), particularly in the intermediate TBF range.

Table 10 – Descriptive Statistics: G1Rac_MC0-018_iexplore_c0000005.

Statistic Value

Count 63
Mean (hours) 107.13
Median (hours) 23.83
Mode (hours) 0.0039
Standard Deviation 157.32
Minimum 0.0011
Maximum 813.91
First Quartile (Q1) 2.42
Third Quartile (Q3) 145.96
Interquartile Range (IQR) 143.54
Skewness 2.22
Kurtosis 5.77
Main Data Range 0.0011 – 387.63

Table 11 – Cluster Results: G1Rac_MC0-018_iexplore_c0000005.

Clustering Approach Recommended Clusters

K-Means 12
HDBSCAN 4
Fuzzy C-means 11
GMM (BIC) 9
GMM (AIC) 10
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Fuzzy C-Means (k=11) produces a clustering pattern similar to K-Means but with slightly

di�erent cluster boundaries, while the GMM approaches (BIC with k=9 and AIC with k=10)

show intermediate clustering between HDBSCAN’s conservative grouping and K-Means’ �ne

partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the

trade-o� between cluster quality metrics, with the Elbow method showing a sharp decline up

to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Figure 7 – Cluster Evaluation Plots for the Sample G1Rac_MC0-018_iexplore_c0000005.
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5.0.6.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The �nal model selected via

the Expectation-Maximization (EM) algorithm consisted of 12 components with the following

distributional structure: logn-logn-logn-logn-logn-gamma-logn-norm-logn-norm-logn-norm.

This con�guration was selected based on the outcomes of the KS goodness-of-�t test.

Figure 8 demonstrates the �t achieved by the 12-component mixture model. The prob-

ability density function plot shows a highly multimodal distribution with a dominant peak

near zero and several smaller peaks at intermediate values (50-400 hours) and longer intervals

(600-800 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

Figure 8 – G1Rac_MC0-018_iexplore_c0000005 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot

shows linearity along the 45-degree line, indicating that the mixture model accurately repre-

sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further con�rms model adequacy, with linear correspondence

between theoretical and empirical quantiles. Minor deviations are observed only at the middle

upper tail (around 400 hours). The overall linear pattern validates the mixture model’s ability

to capture both the central tendency and the extreme behavior of the failure process.

Table 12 summarizes the goodness-of-�t results for the selectedmodel. The GoF test results

provide statistical evidence for the adequacy of the 12-component mixture model. The KS test

yields a low test statistic (0.0290) with an extremely high p-value (0.999999983), indicating that

the null hypothesis of distributional equivalence cannot be rejected with con�dence. The AD

test, which is more sensitive to deviations in the distribution tails, produces a test statistic of

0.279 with a p-value of 0.4875. This result further con�rms the model adequacy.

The log-likelihood value of -261.50 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 610.99 and

705.29, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 13 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: logn_10 (14.25%), gamma_5 (15.00%), and logn_0 (12.09%).

These high-weight components correspond to di�erent failure regimes, from rapid succession

Table 12 – Goodness-of-�t Test Results: G1Rac_MC0-018_iexplore_c0000005.

Model Test Statistic / p-value

12-Component Mixture KS 0.0290 / 0.999999983
AD 0.279 / 0.4875

Log-Likelihood -261.50
AIC 610.99
BIC 705.29
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failures (logn_10 with scale parameter 0.0034) to intermediate stability periods (gamma_5with

shape parameter 17.0351).

The lognormal components dominate the mixture (8 out of 12 components), re�ecting

the multiplicative nature of the failure process. The presence of three normal components

(norm_7, norm_9, norm_11) with high location parameters (250.37, 350.19, and 708.12 hours,

respectively) captures the extended TBFs.

5.0.6.4 Sensitivity Analysis

To assess the robustness of the selected 12-component model and evaluate how model

performance responds to changes in complexity, a sensitivity analysis was performed. This

analysis investigated the behavior of GoF metrics as the number of mixture components in-

creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained

for each number of mixture components.

Figure 9 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals a perfor-

mance trajectory that supports the 12-component selection. Starting from an single-component

performance, the statistic shows improvement through the initial component additions, drop-

ping sharply for two components. The most signi�cant improvement occurs in the 2-8 compo-

nent range, with continued re�nement leading to optimal performance in the 8-13 component

region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy

of simple models. As the number of components increases, the AD statistic transitions to neg-

ative values, indicating an improvement in the model’s ability to represent distribution’s tail

behavior more accurately in multi-component con�gurations.

Table 13 – Mixture Model Parameters: G1Rac_MC0-018_iexplore_c0000005.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.1209 0.1720 1E-10 3.07
logn_1 Lognormal 0.0845 0.1000 1E-10 22.47
logn_2 Lognormal 0.0910 0.1000 1E-10 90.49
logn_3 Lognormal 0.0009 1.0070 1E-10 56.39
logn_4 Lognormal 0.0537 0.1593 1E-10 40.13
gamma_5 Gamma 0.1500 17.0351 1E-10 8.63
logn_6 Lognormal 0.0666 0.3973 1E-10 17.34
norm_7 Normal 0.0595 250.37 10.38 —
logn_8 Lognormal 0.1027 1.3149 1E-10 0.33
norm_9 Normal 0.0958 350.19 32.87 —
logn_10 Lognormal 0.1425 0.6548 1E-10 0.0034
norm_11 Normal 0.0318 708.12 105.81 —
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Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows improvement through 3-7 components, followed by a stagnation

due to complexity penalties. The minimum AIC value was observed with 14 components. In

contrast, the BIC analysis, which imposes a stronger penalty for model complexity, follows a

similar initial trend but reaches its minimum between 6 and 8 components.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. A notable trend emerged. The distri-

butions selected as optimal by each test: AD, KS, AIC, and BIC rarely coincided. In particular,

the models selected by AIC and BIC consistently exhibited poorer visual and statistical �t

compared to those chosen by the AD and KS tests. This performance gap persisted even in

the cases where AIC and BIC selected models with a higher number of components.

5.0.6.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the gamma model, as shown in

Table 14. Although it achieved the best performance among the single-component models

Figure 9 – G1Rac_MC0-018_iexplore_c0000005 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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tested, it still failed to capture the complexity present in the data.

While the gamma distribution emerged as the best-�tting single-component model among

those evaluated, it remains inadequate for representing the complex behavior of time between

failures. Previous studies on software reliability modeling have relied on single-distribution

models, such as (LYU; NIKORA, 1991; MATIAS et al., 2014; XU; KALBARCZYK; IYER, 1999;

MATIAS; OLIVEIRA; ARAUJO, 2013; HSU; HUANG, 2014; PHAM, 2003; MULLEN, 1998).

These models often fail to capture the underlying structural characteristics that arise from

the inherent complexity of TBFs, which can result from multiple factors, including the diver-

sity of failure causes and variations in workload and operational pro�les.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

gamma distribution yields extremely low p-values for both the Kolmogorov–Smirnov (KS =

0.3327, p = 1.37E-16) and Anderson–Darling (AD = 16.67, p = 0.000999) tests, indicating clear

rejection of the distributional hypothesis. The mixture model achieves much stronger agree-

ment with the data (KS = 0.0290, p = 0.999999983; AD = 0.279, p = 0.4875). And the log-

likelihood comparison also shows the superior �t of the mixture model (-261.50 vs. -436.80).

The information criteria (AIC and BIC) further reinforce the inadequacy of the single dis-

tribution. As the gamma model, despite its lower complexity, shows substantially higher AIC

(879.59) and BIC (888.87) values compared to the mixture model, further reinforcing its inad-

equacy as a representation of the observed TBF behavior.

Figure 10 illustrates the limitations of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the gamma model fails to represent the sharp peak near zero and

completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical gamma

distribution (orange crosses) and the empirical distribution (blue circles), particularly in the

lower tail region (0-100 hours) where the model underestimates failure probabilities, and in

the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. TheQ-Q plot reveals

more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

Table 14 – Mixture vs. Single Distributions: G1Rac_MC0-018_iexplore_c0000005.

GOF Metric Mixture Model (12-comp) Gamma Simple Distribution

KS / p-value 0.0290 / 0.999999983 0.3327 / 1.37E-16
AD / p-value 0.279 / 0.4875 16.6652 / 0.000999
Log-Likelihood -261.50 -436.80
AIC 611.00 879.59
BIC 705.29 888.87
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5.0.6.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 11 and 12 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 11 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 12 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

12-component model, which combines lognormal, gamma, and normal distributions.

Figure 10 – G1Rac_MC0-018_iexplore_c0000005 Single Distribution Model Fit Demonstrated
Through PDF, CDF, P-P and Q-Q Plots.
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The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

5.1 Results Summary

To avoid overloading this section with dataset analyses, only one representative dataset is

presented in the main text. The remaining analyses, which follow the same methodological

structure, are provided in the appendices A to I for reference.

This research employed an extensive dataset to demonstrate the heterogeneity inherent in

computer failure patterns, evenwhen examining failures from the same process (iexplore.exe)

while varying only the underlying failure cause. The failure data were extracted from comput-

ers where the failures were also analyzed, revealing no apparent systematic failure pattern that

Figure 11 – G1Rac_MC0-018_iexplore_c0000005 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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could reliably distinguish the origin computer group of a given dataset. While certain distri-

butions appear more frequently in some groups than others, these di�erences are insu�cient

to establish de�nitive classi�cation patterns.

The study categorized computer environments into four distinct groups based on their

operational context:

❏ G1: Undergraduate Laboratory Computers

❏ G2: University Administrative Department Computers

❏ G3: Corporate Environment Computers

❏ G4: Personal and HomeO�ce Computers (Corporate, Academic, and Personal)

And four primary failure causes were identi�ed for the iexplore.exe process:

❏ c0000005: Access violation (Memory addressing errors)

❏ c0000374: Heap corruption (Memory management failures)

Figure 12 – G1Rac_MC0-018_iexplore_c0000005 Computational Cost Analysis of Heteroge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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❏ c0000096: Privileged instruction (Security violations)

❏ e06d7363: Unhandled C++ exception (Exception handling errors)

Table 15 presents the mixture model con�gurations and corresponding goodness-of-�t

tests for each selected dataset. The analysis reveals that datasets followingApproach 1 (general

system failures) exhibit signi�cantly more mixture components compared to iexplore.exe-

speci�c failure datasets.

Table 15 – Best Mixture Models and Goodness-of-Fit Tests by Dataset.

Dataset Best Mixture Model Components GoF Test

G1Rac_MC0-
018_iexplore_c0000005

logn-logn-logn-logn-logn-gamma-logn-norm-
logn-norm-logn-norm

KS

G2Rac_MC-157400 logn-logn-logn-norm-norm-weib-logn-norm-
weib-gamma-norm-norm-norm-norm-norm-
norm-gamma-norm-norm-norm-norm

KS

G2Rac_MC-
157400_iexplore_c0000374

logn-logn-lagn-logn-weib KS

G2Rac_MC1-074 logn-logn-norm-weib-weib-gamma-gamma-
logn-norm-norm

AD

G2Rac_MC1-
074_iexplore_c0000005

gamma-gamma-gamma-norm KS

G2Rac_MC1-
074_iexplore_c0000096

logn-logn-logn-logn-norm-logn-logn-gamma KS

G3Rac_DSK023 logn-logn-logn-logn-weib-gamma-gamma-
logn-logn-weib-weib-weib-gamma

KS

G3Rac_DSK023-
iexplore_c0000005

logn-logn-logn-weib-weib-norm-logn-logn-
gamma-logn-norm-logn

KS

G4...bba75907480 weib-weib-weib-weib-weib-logn-logn-logn-
norm-logn-weib-norm-gamma-logn-logn-
norm

KS

G4...bba75907480-
iexplore_e06d7363

logn-logn-logn-norm-norm-norm-norm AD
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5.2 Results and Pattern Analysis

While the previous results focused on 10 representative datasets to illustrate key �ndings,

this section extends the analysis to encompass the complete dataset of 77 samples (41 from

Approach 1 and 36 from Approach 2). The pattern analysis aims to identify relationships

between failure characteristics, distributional properties, and clustering behaviors across the

entire experimental dataset.

5.2.1 Comparative Group Analysis

The comprehensive analysis identi�ed four distinct groups with di�erent characteristics

regarding sample size, statistical properties, and failure patterns. Table 16 summarizes the key

statistical properties of each group, revealing signi�cant inter-group variability.

Group 1 represents the most homogeneous cluster with a single sample, characterized

by relatively low mean values (41.52) and moderate variability (70.91). This group exhibits

concentrated Time Between Failures (TBF) values within the lower range, suggesting a system

with consistent but frequent failure patterns.

Group 2 constitutes the largest and most heterogeneous with 53 samples, demonstrat-

ing exceptional diversity in statistical properties. The group exhibits substantial inter-sample

variation. This variability indicates that G2 encompasses systems with fundamentally di�er-

ent operational characteristics, usage patterns, or underlying failure mechanisms.

Group 3 contains 5 samples but displays extreme statistical contrast between them. This

di�erence suggests potentially di�erent system con�gurations, software loads, or usage pat-

terns within the same corporate environment classi�cation.

Group 4 demonstrates sample diversity. Median values remain consistently low (5.29–

59.76), indicating the presence of occasional very long inter-failure intervals alongside pre-

dominantly short intervals. This pattern suggests mixed-usage environments where systems

experience both intensive and idle periods.

Table 16 – Statistical Characteristics by Computer Group.

Characteristic G1 G2 G3 G4

Sample Size 1 53 5 18
Mean Range 41.52 33.23–193.07 31.38–184.12 52.22–208.46
Median Range 2.73 0.55–109.43 3.90–73.49 5.29–59.76
Std Dev Range 70.91 47.91–359.76 82.52–312.88 93.52–449.07
Maximum Value 813.90 2924.98 455.44 1581.13
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5.2.2 Clustering Methodology Comparison

Table 17 presents the performance comparison of di�erent clustering approaches across

the complete dataset. The clustering analysis reveals revealed preferences across di�erent

approaches. K-Means and Fuzzy C-Means consistently identify 11–20 clusters, suggesting

well-de�ned geometric structures in the high-dimensional failure characteristic space.

HDBSCAN consistently identi�es fewer clusters (2–9), re�ecting its density-based approach

that merges closely related groups based on connectivity patterns rather than geometric prox-

imity. Gaussian Mixture Models exhibit interesting behavioral di�erences based on the infor-

mation criterion employed. GMM with BIC penalty produces results similar to K-Means (11–

19 clusters), re�ecting BIC’s stronger penalty for model complexity. Conversely, GMM with

AIC tends toward more complex models with higher cluster numbers, consistent with AIC’s

preference for model �t over parsimony.

5.2.3 Distributional Analysis and Goodness-of-Fit Patterns

The distributional analysis revealed preferences among di�erent goodness-of-�t criteria,

providing insights into the underlying nature of failure processes. Table 18 summarizes dis-

tribution preferences across all 77 samples.

The analysis reveals a fundamental dichotomy in distributional preferences between infor-

mation criteria and goodness-of-�t tests. AIC and BIC criteria demonstrate strong agreement,

favoring normal distributions in approximately 70% of cases with log-normal distributions ac-

counting for 25%. This preference re�ects these criteria’s emphasis on likelihoodmaximization

balanced against model complexity.

Table 17 – Clustering Method Performance Comparison.

Clustering Method Typical Cluster Range Methodological Characteristics

K-Means 11–20 Centroid-based
HDBSCAN 2–9 Density-based
Fuzzy C-Means 11–20 Probabilistic membership
GMM (BIC) 11–19 Model complexity penalty
GMM (AIC) 18+ Model complexity preference

Table 18 – Distribution Preferences by Goodness-of-Fit Criteria.

Distribution AIC (%) BIC (%) KS (%) AD (%)

Normal 70 70 20 25
Log-normal 25 25 50 50
Weibull 3 3 20 18
Gamma 1 1 8 5
Exponential 1 1 2 2
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In stark contrast, KS and AD tests prefer log-normal distributions in approximately 50%

of cases, with normal distributions accounting for only 20–25%. This discrepancy highlights

the di�erent distributional aspects emphasized by each criterion: information criteria priori-

tize likelihood-complexity trade-o�s, while goodness-of-�t tests focus on distributional shape

agreement and tail behavior.

The average number of mixture components varies systematically across criteria, with AIC

suggesting 17 components, BIC recommending 14, and KS and AD indicating 15–16 compo-

nents respectively. This pattern re�ects the inherent complexity preferences of each evalua-

tion approach.

5.2.4 Failure Type Characterization

The mixture model analysis reveals systematic patterns in component composition across

di�erent failure types and computer groups. Table 19 summarizes the typical component

ranges and distributional preferences for di�erent iexplore.exe failure codes.

Access violations (c0000005) consistently require 15–20 mixture components with log-

normal distributions dominating the mixture composition. This pattern suggests complex,

multiplicative failure processes where multiple independent factors contribute to failure oc-

currence. The high component count indicates signi�cant heterogeneity in access violation

mechanisms across di�erent usage contexts.

Heap corruption failures (c0000374) show increased prevalence of Weibull distribu-

tions and require fewer components (8–17), suggesting more structured failure patterns with

characteristic aging or wear-out behaviors.

Privileged instruction violations (c0000096) prefer normal distributions and exhibit

the widest component range (7–24), indicating high variability in underlying failure mecha-

nisms.

C++ exceptions (e06d7363) present in just one dataset with 14 components and log-

normal distribution preference.

5.2.5 Proposed Statistical Classi�cation Algorithm

No consistent failure pattern could be identi�ed across all computer groups. Consequently,

the analysis was restricted to failures associated with the iexplore.exe process. Within

Table 19 – Mixture Model Components by Failure Type.

Failure Code Component Range Dominant Distribution

c0000005 (Access Violation) 15–20 Log-normal
c0000374 (Heap Corruption) 8–17 Weibull
c0000096 (Privileged Instruction) 7–24 Normal
e06d7363 (C++ Exception) 14 Log-normal



Chapter 5. Results 81

this scope, a statistical classi�cation algorithm was developed to distinguish between failure

causes based on the statistical characteristics of the observed failures. The proposed approach

achieved an overall classi�cation accuracy of 65.7%, corresponding to 23 correctly classi�ed

samples out of 35.

❏ Heap Corruption Detection: If (Median < 3.0 AND Standard Deviation/Mean Ratio >

3.0 AND Kurtosis > 20), classify as c0000374.

❏ Privileged Instruction Detection: Else If (Mean < 25 AND Maximum < 120 AND

Skewness < 3.0), classify as c0000096.

❏ Access Violation Detection: Else If (Skewness > 2.0 AND Best Distribution = Log-

normal), classify as c0000005.

❏ Default Classi�cation: Else (Classify as other failure codes).

The classi�cation algorithm demonstrates that statistical characteristics of inter-failure

intervals contain systematic information about underlying failure mechanisms. While 65.7%

accuracy indicates potential for improvement, this performance represents a advancement

over random classi�cation (25% expected accuracy for four classes).

This analysis demonstrates that computer failure patterns exhibit remarkable complexity

and heterogeneity, even when examining failures from identical processes running on same

operating systems. The research reveals that computer usage patterns fundamentally in�u-

ence failure characteristics, generating apparent randomness that masks underlying system-

atic behaviors.

The key �nding of this research is that usage context dominates technical homogeneity in

determining failure patterns. Despite employing identical operating systems and examining

the same program (iexplore.exe), the four computer groups (laboratory, administrative,

corporate, and mixed-use) exhibit fundamentally di�erent statistical signatures. This suggests

that usage patterns, software interactions, and operational contexts create unique pro�les that

manifest as distinct failure behaviors.

The proposed classi�cation algorithm’s 65.7% accuracy, while modest, demonstrates that

statistical �ngerprints of usage patterns are embedded within failure data. This �nding has

signi�cant implications for system reliability engineering, suggesting that failure prediction

models must incorporate usage context rather than relying solely on technical speci�cations.

Furthermore, the distributional analysis reveals that di�erent failure mechanisms exhibit

characteristic statistical signatures: access violations follow log-normal patterns suggesting

multiplicative risk factors, heap corruptions exhibit Weibull behaviors indicating aging pro-

cesses, and security violations show normal distributions re�ecting random triggering events.

These signatures persist across usage contexts while varying in intensity and complexity.

The analysis establishes that usage patterns create variations that appear random when

viewed through purely technical lenses. Understanding and modeling these usage-induced
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variations is essential for developing accurate reliability predictions and e�ective maintenance

strategies in diverse computing environments. The apparent randomness observed in same-

system failures actually re�ects the hidden order of computer interaction patterns, highlight-

ing the importance of considering usage context in software reliability engineering.
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Chapter6

Conclusion

This chapter presents the main conclusions drawn from the research, highlighting its con-

tributions to the software reliability literature. It provides a summary of the key �ndings,

discusses the study’s limitations, and outlines potential directions for future research.

6.1 Key Research Findings

The results of this study provide evidence that �nite mixture models o�er a more robust

and �exible representation of time between failures in software systems compared to tradi-

tional single-distribution models. Evaluation based on multiple statistical measures, includ-

ing goodness-of-�t tests (Kolmogorov–Smirnov and Anderson–Darling), information criteria

(Akaike Information Criterion and Bayesian Information Criterion), and graphical validations

(PDF, CDF, Q–Q, and P–P plots), corroborated the superiority of mixture models in capturing

the complex statistical behavior of TBFs.

These models e�ectively addressed the inherent multimodal nature of the data, which

could not be adequately represented by simple distributions. Therefore, the �ndings con�rm

that the main objective of this research was successfully achieved, demonstrating that mixture

models can indeed provide a more robust and �exible framework for representing software

failure behavior in systems a�ected by multiple failure causes and operational variability.

Although the results demonstrate that mixture models provide a �exible and e�ective

framework for representing heterogeneous failure behavior, they do not constitute a universal

solution for all datasets. In several cases, simpler single-distribution models achieved compa-

rable goodness-of-�t, indicating that the additional complexity ofmixturemodels is not always

necessary. Therefore, the contribution of this work is not to advocate mixture models as uni-

versally superior, but rather to clarify the conditions under which their use is justi�ed and

bene�cial.

The �ndings revealed that software failure times exhibit signi�cant heterogeneity, chal-

lenging the traditional view of a single underlying failure mechanism. Instead, the data sup-

ported the hypothesis that multiple failure causes coexist within software systems. Further-
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more, the analysis indicated that models with 10 to 15 mixture components often o�ered bet-

ter statistical accuracy. Within this range, no substantial improvements were observed in the

applied GoF tests, suggesting that additional components did not yield meaningful gains in

performance.

To assess the practicality of applying mixture models in real-world settings, a compu-

tational cost analysis was conducted. The results showed that, even as model complexity

increased, the computational resource usage remained within acceptable limits, allowing all

models to be successfully �tted. In the worst-case scenarios, the computation time did not

exceed 30 seconds, memory consumption remained below 400 MB, CPU usage peaked at ap-

proximately 85%, and the total number of operations did not surpass the order of 105. Thus,

the use of mixture models is not computationally prohibitive, further supporting their appli-

cability in operational environments.

Beyond its speci�c application to software failure data, an additional contribution of this

dissertation lies in the generality of the proposed methodology. The modeling, clustering,

and validation framework adopted in this work is not limited to failure time data and can be

applied to other datasets involving continuous variables. As such, the approach may be useful

for analyzing heterogeneous behaviors in broader empirical contexts, extending its relevance

beyond traditional software reliability studies.

6.1.1 Operational Environment Impact

One of the �ndings of the study was the clear in�uence of the operational environment

on TBF patterns. The analysis across four di�erent operational groups revealed distinct and

characteristic behaviors that re�ect the underlying usage patterns and system conditions:

G1 (University Laboratories): These systems operate in academic environments, their

usage tends to be less structured, as laboratory computers are often used by multiple users

for a wide variety of tasks. This can introduce variability in workload patterns. However, in

this study, the failure patterns observed for G1 appeared relatively homogeneous and were

represented by simpler mixture models with fewer components, which may be explained by

the smaller number of samples available for this group compared to the others, potentially

masking the possible diversity of behaviors.

G2 (University Administrative Departments): In contrast, systems from administra-

tive departments operate in more stable and narrowly de�ned contexts, with well-established

routines and a limited range of applications. Despite this more controlled operational envi-

ronment, this group exhibited the greatest diversity in failure con�gurations, with mixture

models reaching up to 30 components. This group contributed the largest number of samples

to the dataset, and the abundance of data revealed a wide variety of failure con�gurations.

Consequently, the mixture models for this group showed the highest complexity, with up to

30 components, indicating that the larger dataset captured a broader spectrum of failure be-

haviors within this environment.
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G3 (Corporate Environment): Presented behavior similar to group G4, characterized by

the presence of lognormal, Weibull, normal, and gamma distributions in the mixture compo-

nents. The corporate environment showed intermediate complexity, yet with su�cient diver-

sity to require multi-component mixture models.

G4 (Personal andHomeO�ceComputers): Exhibited the greatest diversity of distribu-

tions in the mixture models, notably presenting the exponential distribution, which was not

commonly observed in other groups. This unique characteristic suggests that mixed-usage

environments create conditions that lead to diverse failure behavior.

Therefore, even under a common operating system architecture, the usage pro�le and

workload environment signi�cantly impact the failure behavior of software systems.

6.1.2 Failure Pattern Characterization

The study uncovered patterns in the TBFs, particularly for failures associated with spe-

ci�c software components such as Internet Explorer. Failures including access violation, heap

corruption, privileged instruction violation and unhandled C++ exception showed consistent

preferences for speci�c distribution types, such as lognormal, Weibull and normal distribu-

tions, depending on the failure category and underlying failure mechanism. These �ndings

suggest the possibility of identifying and characterizing failure root causes based solely on

the statistical properties of the TBFs, contributing to more precise failure classi�cation and

potentially predictive maintenance strategies.

The �nding of these patterns across di�erent datasets and operational environments indi-

cates that certain failure types have inherent statistical signatures that can be leveraged for

diagnostic purposes.

6.1.3 Multi-Modal Failure Behavior

The presence of multiple failure causes was demonstrated through clustering analyses con-

ducted using various unsupervised learning techniques, including K-Means, HDBSCAN, Fuzzy

C-Means, and Gaussian Mixture Models with both AIC and BIC selection criteria. In many

cases, the optimal number of clusters corresponded closely to the number of components in

the best-�tting mixture models, providing support for the interpretation of these components

as distinct failure behaviors rather than statistical artifacts.

This convergence of results from di�erent analytical approaches strengthens the conclu-

sion that software systems exhibit multi-modal failure behavior. The clustering analyses re-

vealed that failures naturally group into distinct categories based on their temporal character-

istics.
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6.1.4 Distributional Preferences and Model Complexity

The research led to the identi�cation of preferred probability distributions for modeling

software failure processes. The lognormal distribution emerged as the most prevalent, ap-

pearing in approximately 70% of the best-�tting mixture models, followed by the Normal and

Weibull distributions. The dominance of the lognormal distribution suggests that many soft-

ware failure processes follow multiplicative rather than additive patterns.

It is noteworthy that the Lognormal and Weibull distributions are not frequently used in

software reliability studies. Among the 16 related works reviewed, only about 20% employed

either of these distributions. Speci�cally, (VINEYARD; AMOAKO-GYAMPAH; MEREDITH,

1999) appliedWeibull and Lognormalmodels to represent failure and repair times, (SCHROEDER;

GIBSON, 2009) used Weibull and Gamma distributions to describe Time Between Failures

(TBF) and Time To Repair (TTR), and (KUMAR; JAIN, 2023) combined Lognormal andWeibull

distributions within homogeneous and heterogeneous mixture frameworks. In line with these

studies, the present research con�rms the e�ectiveness of these distributions, particularly

withinmixturemodel structures, for representing complex and heterogeneous software failure

patterns.

Sensitivity analyses indicated that models with 10 to 15 components o�ered good statis-

tical accuracy. Within this range, no substantial improvements were observed in the applied

Goodness-of-Fit (GoF) tests, suggesting that increasing the number of components beyond this

point yields diminishing returns in terms of model performance. To complement this evalu-

ation, a computational cost analysis was conducted to determine whether the use of mixture

models is computationally intensive. The results showed that, despite increasing model com-

plexity, the computational demands remained within acceptable limits. Thus, the application

of mixture models is not prohibitively costly from a computational standpoint, supporting

their feasibility for real-world implementation.

6.2 Research Limitations

This work acknowledges several limitations that should be considered. First, the scope of

the dataset, while comprehensive within its domain, is based on Windows 7 Reliability Anal-

ysis Component (RAC) data and is primarily focused on speci�c software applications and

operating environments. This raises concerns regarding dataset dependence and the gener-

alizability of the conclusions. Although the operating system and data collection mechanism

are platform-speci�c, the observed failure patterns are driven by fundamental interactions

between software components, workloads and operational pro�les. Consequently, while nu-

merical results and distributional con�gurations may di�er across platforms or more recent

systems, the proposed modeling methodology and analytical framework are expected to re-

main applicable. Broader datasets encompassing more diverse platforms, application types,



Chapter 6. Conclusion 87

and operational contexts would allow for more generalizable conclusions and potentially re-

veal additional failure patterns not observed in the current study.

Additionally, the modeling approach assumed statistical independence between consecu-

tive failures and considered only univariate TBF data. While this assumption is common in

reliability modeling, real software systems may exhibit temporal dependencies between fail-

ures that could provide additional modeling opportunities. The independence assumptionmay

be particularly limiting in cases where failures are caused by cumulative e�ects.

Another acknowledged limitation relates to the interpretability of mixture components.

While mixture models provide statistical �exibility and �tting capability, they become pro-

gressively less interpretable as the number of components increases, especially when di�erent

distribution types are combined within a single model.

6.3 Future Research Directions

While the present study demonstrates that mixture distributions are e�ective in character-

izing heterogeneous failure patterns, an important next step is to understand the underlying

mechanisms that give rise to these distinct failure classes. Advancing in this direction could

transform the proposed approach from primarily descriptive to more prescriptive, enabling

deeper insights into failure causation and system behavior. Building upon the �ndings of this

research, several possibilities for future work emerge:

Dataset Generalization: Applying the proposed methodology to other datasets from dif-

ferent domains, platforms and application types would test the generalizability of the conclu-

sions and potentially reveal new failure patterns.

Multivariate Extensions: Incorporating additional variables such as workload intensity,

system age, user behavior patterns into the analysis may enhance the mixture models predic-

tive capability.

Temporal Modeling: Expanding the framework to account for temporal dependencies in

failure data could improve the modeling of complex systems where failures are not indepen-

dent.

Real-time Applications: Integrating mixture models into real-time monitoring systems

could o�er valuable tools for failure prediction in operational environments.

Machine Learning Integration: Combiningmixturemodeling approaches withmachine

learning techniques could lead to hybrid models that leverage the interpretability of statistical

models and the �exibility of machine learning algorithms.
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APPENDIXA

Results G2Rac-MC1-074 (Approach 1)

This case refers to failures observed throughout the operational history of the computer

MC1-074, which operates within Group 2 (Graduate Laboratory environment).

A.0.0.1 Statistical Characterization

Table 20 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a highly heterogeneous failure pattern characterized by extreme asymme-

try and heavy-tailed behavior. The di�erence between mean (36.13 hours) and median (8.07

hours) indicates a strongly right-skewed distribution, which is further con�rmed by the high

positive skewness value of 5.11.

The extremely low mode value (0.0014 hours) combined with the minimum observation

(0.0006 hours) indicates that some failures occur in rapid succession, possibly representing

cascading failures or immediate re-failures after system recovery attempts.

The extremely high kurtosis value (41.50) indicates a distribution with heavy tails and a

Table 20 – Descriptive Statistics: G2Rac_MC1-074.

Statistic Value

Count 246
Mean (hours) 36.13
Median (hours) 8.07
Mode (hours) 0.0014
Standard Deviation 69.45
Minimum 0.0006
Maximum 733.91
First Quartile (Q1) 0.77
Third Quartile (Q3) 37.32
Interquartile Range (IQR) 36.55
Skewness 5.11
Kurtosis 41.50
Main Data Range 0.01 – 160.75
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sharp peak, suggesting the coexistence of multiple modes. The large interquartile range (36.55

hours) relative to the median further emphasizes the high variability in failure times.

A.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 21 summarizes the number of clusters recommended by each

approach.

K-Means and Fuzzy C-means algorithms demonstrate convergence, both suggesting 8 clus-

ters, indicating moderate granularity in failure pattern recognition. HDBSCAN’s recommen-

dation of 16 clusters suggests the presence of numerous density-based groupings, re�ecting

its sensitivity to local density variations and its ability to identify micro-clusters within the

failure pattern. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC,

recommend intermediate values of 9 and 15 components, respectively.

Figure 13 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=8) identi�es

multiple clusters with many observations concentrated in the low TBF region (0-50 hours)

and several isolated high-TBF outliers. HDBSCAN (k=16) demonstrates its noise-handling

capabilities by identifying higher TBF values as noise points (represented by gray crosses),

suggesting that extremely long intervals may represent outliers rather thanmembers of failure

clusters.

Fuzzy C-Means (k=8) produces a clustering pattern similar to K-Means but with slightly

di�erent cluster boundaries, while the GMM approaches (BIC with k=9 and AIC with k=15)

show intermediate clustering between HDBSCAN’s �ne partitioning and K-Means’ moder-

ate grouping. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the

trade-o� between cluster quality metrics, with the Elbow method showing a sharp decline up

to 8 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 21 – Cluster Results: G2Rac_MC1-074.

Clustering Approach Recommended Clusters

K-Means 8
HDBSCAN 16
Fuzzy C-means 8
GMM (BIC) 9
GMM (AIC) 15
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A.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The �nal model selected via

the Expectation-Maximization (EM) algorithm consisted of 10 components with the following

distributional structure: logn-logn-norm-weib-weib-gamma-gamma-logn-norm-norm. This

con�guration was selected based on the outcomes of the AD goodness-of-�t test.

Figure 13 – Cluster Evaluation Plots for the Sample G2Rac_MC1-074.
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Figure 14 demonstrates the �t achieved by the 10-component mixture model. The prob-

ability density function plot shows a highly multimodal distribution with a dominant peak

near zero and several smaller peaks at intermediate values (50-150 hours) and longer intervals

(300-700 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot

shows linearity along the 45-degree line, indicating that the mixture model accurately repre-

sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further con�rms model adequacy, with linear correspondence

between theoretical and empirical quantiles. Minor deviations are observed only at the upper

tail (around 700 hours). The overall linear pattern validates the mixture model’s ability to

capture both the central tendency and the extreme behavior of the failure process.

Table 22 summarizes the goodness-of-�t results for the selectedmodel. The GoF test results

Figure 14 – G2Rac_MC1-074 Mixture Model Fit Demonstrated Through PDF, CDF, P-P and Q-
Q Plots.
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provide statistical evidence for the adequacy of the 10-component mixture model. The KS

test yields a low test statistic (0.0313) with a high p-value (0.9636), indicating that the null

hypothesis of distributional equivalence cannot be rejected with con�dence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.118

with a p-value of 0.9990. This result further con�rms the model adequacy.

The log-likelihood value of -862.08 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 1796.16 and

1922.35, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 23 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Weibull distribution is characterized by the shape (k), location (µ), and scale (λ) param-

eters.

Table 22 – Goodness-of-�t Test Results: G2Rac_MC1-074.

Model Test Statistic / p-value

10-Component Mixture KS 0.0313 / 0.9636
AD -1.118 / 0.9990

Log-Likelihood -862.08
AIC 1796.16
BIC 1922.35

Table 23 – Mixture Model Parameters: G2Rac_MC1-074.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.3680 1.2799 1E-10 3.20
logn_1 Lognormal 0.1832 0.2015 1E-10 20.74
norm_2 Normal 0.0764 65.72 13.44 —
weib_3 Weibull 0.0363 3.0507 1E-10 79.37
weib_4 Weibull 0.0249 3.7468 1E-10 144.48
gamma_5 Gamma 0.0400 14.46 1E-10 9.12
gamma_6 Gamma 0.0541 26.60 1E-10 5.63
logn_7 Lognormal 0.2050 1.7491 1E-10 0.020
norm_8 Normal 0.0080 309.36 25.56 —
norm_9 Normal 0.0041 733.91 1E-10 —
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❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: logn_0 (36.80%), logn_7 (20.50%), and logn_1 (18.32%). These

high-weight components correspond to di�erent failure regimes, from rapid succession fail-

ures (logn_7 with scale parameter 0.020) to intermediate stability periods (logn_0 with scale

parameter 3.20).

The lognormal components dominate the mixture (3 out of 10 components, accounting for

75.62% of total weight), re�ecting the multiplicative nature of the failure process. The pres-

ence of three normal components (norm_2, norm_8, norm_9) with high location parameters

(65.72, 309.36, and 733.91 hours, respectively) captures the extended TBFs. The Weibull com-

ponents (weib_3, weib_4) with shape parameters around 3.0-3.7 suggest wear-out behavior,

while gamma components (gamma_5, gamma_6) provide additional �exibility for modeling

intermediate failure patterns.

A.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 10-component model and evaluate how model

performance responds to changes in complexity, a sensitivity analysis was performed. This

analysis investigated the behavior of GoF metrics as the number of mixture components in-

creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained

for each number of mixture components.

Figure 15 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals a perfor-

mance trajectory that supportsmoderate complexity selections. Starting from single-component

performance, the statistic shows improvement through the initial component additions. The

most signi�cant improvement occurs in the 2-10 component range, with the selected 10-

component model showing stable performance.

The sensitivity of the AD test provides complementary evidence by emphasizing distri-

bution’s tail behavior. As the number of components increases, the AD statistic shows im-

provement in the model’s ability to represent distribution’s tail behavior more accurately in

multi-component con�gurations. However, oscillatory behavior becomes evident beyond 20

components, indicating instability at higher complexity levels.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows consistent improvement through moderate component numbers,

with the minimum AIC value observed around 10-15 components. In contrast, the BIC anal-

ysis, which imposes a stronger penalty for model complexity, reaches its minimum at lower

component numbers, re�ecting its preference for parsimony.
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Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

A.0.0.5 Comparison with Single-Component Models

For comparison purposes, the Weibull distribution provided the best �t among the single-

component models evaluated, as reported in Table 24. Despite its superior performance rela-

tive to the other single distributions, the model was unable to adequately capture the underly-

ing complexity of the data. This result indicates that, although suitable as a baseline, a single

Weibull distribution is insu�cient to represent the heterogeneous behavior observed in the

time between failures.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

Figure 15 – G2Rac_MC1-074 Sensitivity Analysis of Model Selection Metrics (KS, AD, AIC,
BIC) vs. Number of Mixture Components.
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Weibull distribution yields low p-values for both the Kolmogorov–Smirnov (KS = 0.0940, p =

0.0241) and Anderson–Darling (AD = 1.583, p = 0.0679) tests, indicating marginal adequacy.

The mixture model achieves much stronger agreement with the data (KS = 0.0313, p = 0.9636;

AD = -1.118, p = 0.9990). And the log-likelihood comparison also shows the superior �t of the

mixture model (-862.08 vs. -922.75).

The information criteria (AIC and BIC) provide a more nuanced comparison. While the

AIC strongly favors the mixture model (1796.16 vs. 1851.49), the BIC comparison shows the

Weibull model achieving slightly better performance (1862.01 vs. 1922.35) due to stronger

complexity penalties. However, this BIC advantage for the simple model comes at the cost of

substantially poorer distributional �t, as evidenced by the likelihood and goodness-of-�t test

results.

Figure 16 illustrates the limitations of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the Weibull model fails to represent the sharp peak near zero

and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical Weibull

distribution (orange crosses) and the empirical distribution (blue circles), particularly in the

lower tail region (0-100 hours) where the model underestimates failure probabilities, and in

the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. TheQ-Q plot reveals

more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

A.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 17 and 18 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Table 24 – Mixture vs. Single Distributions: G2Rac_MC1-074.

GOF Metric Mixture Model (10-comp) Weibull Simple Distribution

KS / p-value 0.0313 / 0.9636 0.0940 / 0.0241
AD / p-value -1.118 / 0.9990 1.583 / 0.0679
Log-Likelihood -862.08 -922.75
AIC 1796.16 1851.49
BIC 1922.35 1862.01
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Figure 17 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 18 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

10-component model, which combines lognormal, normal, Weibull, and gamma distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 16 – G2Rac_MC1-074 Single Distribution Model Fit Demonstrated Through PDF, CDF,
P-P and Q-Q Plots.
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Figure 17 – G2Rac_MC1-074 Computational Cost Analysis of Homogeneous Distribution
Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
erations.
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Figure 18 – G2Rac_MC1-074 Computational Cost Analysis of Heterogeneous Distribution
Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
erations.
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APPENDIXB

G2Rac_MC1-074_iexplore_c0000005

(Approach 2)

This case refers to failures related to access violations (c0000005), associated with invalid

memory addressing, occurring in the iexplore.exe’s process on computer MC1-074, part

of the Group 2 (Graduate Laboratory environment).

B.0.0.1 Statistical Characterization

Table 25 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a heterogeneous failure pattern characterized by signi�cant asymmetry

and heavy-tailed behavior. The di�erence between mean (197.72 hours) and median (106.50

hours) indicates a right-skewed distribution, which is further con�rmed by the positive skew-

ness value of 1.35.

The extremely low mode value (0.003 hours) combined with the minimum observation

Table 25 – Descriptive Statistics: G2Rac_MC1-074_iexplore_c0000005.

Statistic Value

Count 36
Mean (hours) 197.72
Median (hours) 106.50
Mode (hours) 0.003
Standard Deviation 227.60
Minimum 0.003
Maximum 908.48
First Quartile (Q1) 23.43
Third Quartile (Q3) 304.43
Interquartile Range (IQR) 280.99
Skewness 1.35
Kurtosis 1.04
Main Data Range 0.46 – 631.92
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(0.003 hours) indicates that some failures occur in rapid succession, possibly representing cas-

cading failures or immediate re-failures after system recovery attempts.

The moderate kurtosis value (1.04) indicates a distribution with moderate tail behavior and

peak sharpness. The large interquartile range (280.99 hours) relative to the median further

emphasizes the high variability in failure times.

B.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 26 summarizes the number of clusters recommended by each

approach.

K-Means and Fuzzy C-means algorithms demonstrate convergence, both suggesting 13

clusters, indicating moderate granularity in failure pattern recognition. HDBSCAN failed to

identify meaningful clusters, returning an indeterminate result, suggesting that the clusters

in this dataset are better characterized by distance-based rather than density-based criteria.

The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend higher

values of 18 and 25 components, respectively.

Figure 19 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=13) identi�es

numerous clusters with clear separation between low, medium, and high TBF groups. HDB-

SCAN shows no meaningful clustering pattern, with most data points unclassi�ed.

Fuzzy C-Means (k=13) produces a clustering pattern similar to K-Means but with slightly

di�erent cluster boundaries, while the GMM approaches (BIC with k=18 and AIC with k=25)

show �ner granularity in partitioning the data space. The Elbow and Silhouette analysis in

the bottom-right panel demonstrates the trade-o� between cluster quality metrics, with the El-

bow method showing gradual improvement, while the Silhouette score peaks at lower cluster

numbers.

B.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

Table 26 – Cluster Results: G2Rac_MC1-074_iexplore_c0000005.

Clustering Approach Recommended Clusters

K-Means 13
HDBSCAN N/A
Fuzzy C-means 13
GMM (BIC) 18
GMM (AIC) 25
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candidate model. This procedure was applied across all samples. The �nal model selected via

the Expectation-Maximization (EM) algorithm consisted of 4 components with the following

distributional structure: gamma-gamma-gamma-norm. This con�guration was selected based

on the outcomes of the KS goodness-of-�t test.

Figure 20 demonstrates the �t achieved by the 4-component mixture model. The proba-

bility density function plot shows a multimodal distribution with peaks distributed across the

TBF spectrum (0-900 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

Figure 19 – Cluster Evaluation Plots for the Sample G2Rac_MC1-074_iexplore_c0000005.
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The AIC and the BIC values are 462.64 and 484.81, respectively, these criteria penalize

model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 28 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: gamma_0 (40.0%), gamma_1 (34.9%), and gamma_2 (13.5%).

These high-weight components correspond to di�erent failure regimes, from highly variable

short-to-moderate execution times (gamma_0 with shape parameter 0.587) to more consistent

moderate-range patterns (gamma_1 with shape parameter 3.110).

The gamma components dominate the mixture (3 out of 4 components, accounting for

88.4% of total weight), re�ecting the multiplicative nature of the failure process. The presence

of one normal component (norm_3) with high location parameter (614.96 hours) captures the

extended TBFs in the upper tail region. The varying gamma shape parameters (0.587, 3.110,

and 16.646) suggest di�erent degrees of variability, with higher shape values indicating more

concentrated distributions around the mode.

Table 27 – Goodness-of-�t Test Results: G2Rac_MC1-074_iexplore_c0000005.

Model Test Statistic / p-value

4-Component Mixture KS 0.052 / 0.9999
AD -0.633 / 0.708

Log-Likelihood -217.32
AIC 462.64
BIC 484.81

Table 28 – Mixture Model Parameters: G2Rac_MC1-074_iexplore_c0000005.

Component Distribution Weight Param 1 Param 2 Param 3

gamma_0 Gamma 0.400 0.587 1E-10 47.23
gamma_1 Gamma 0.349 3.110 1E-10 47.68
gamma_2 Gamma 0.135 16.646 1E-10 28.43
norm_3 Normal 0.116 614.96 191.75 —
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B.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 4-component model and evaluate how model per-

formance responds to changes in complexity, a sensitivity analysis was performed. This anal-

ysis investigated the behavior of GoF metrics as the number of mixture components increased.

The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each

number of mixture components.

Figure 21 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals stable per-

formance across the 4-20 component range, supporting the selection of a simpler model that

maintains adequate �t quality.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. The AD statistic exhibits greater variability than the KS statistic, achieving

optimal performance around 15-17 components before showing increased variation at higher

component numbers, indicating instability at higher complexity levels.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

Figure 21 – G2Rac_MC1-074_iexplore_c0000005 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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The AIC trajectory shows a clear and pronounced minimum at 21 components, increasing

for both lower and higher component counts. In contrast, the BIC analysis, which imposes a

stronger penalty for model complexity, exhibits a similar pattern, achieving minimum values

around 21-24 components before increasing sharply.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

B.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the lognormal model, as shown

in Table 29. In this particular case, the single-component model achieved comparable perfor-

mance to the mixture model while maintaining greater parsimony.

While mixture models often provide superior �t for complex failure patterns, this case

demonstrates that single-distribution models can be adequate when the underlying data struc-

ture is less complex. In this particular sample, the simpler lognormal model provides su�cient

representational adequacy.

Goodness-of-�t testing reveals comparable performance: while themixturemodel achieves

excellent �t (KS = 0.052, p = 0.9999; AD = -0.633, p = 0.708), the lognormal distribution also

demonstrates adequate �t (KS = 0.1222, p = 0.6121; AD = -0.451, p = 0.6067). Both models show

no signi�cant departure from the empirical distribution.

The information criteria (AIC and BIC) favor the simpler model in this case. The lognormal

distribution achieves lower AIC (458.30 vs. 462.64) and BIC (463.05 vs. 484.81) values compared

to the mixture model, indicating that the additional complexity of the mixture approach is not

justi�ed by su�cient improvement in �t quality.

Figure 22 illustrates the �t quality of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the lognormal model captures the main characteristics of the

distribution, though some minor deviations are visible in the histogram representation.

Table 29 – Mixture vs. Single Distributions: G2Rac_MC1-074_iexplore_c0000005.

GOF Metric Mixture Model (4-comp) Lognormal Simple Distribution

KS / p-value 0.052 / 0.9999 0.1222 / 0.6121
AD / p-value -0.633 / 0.708 -0.451 / 0.6067
Log-Likelihood -217.32 -290.13
AIC 462.64 458.30
BIC 484.81 463.05
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The CDF comparison demonstrates good agreement between the theoretical lognormal

distribution (orange crosses) and the empirical distribution (blue circles) across most of the

data range. The P-P plot shows reasonable linearity along the 45-degree line, with minor de-

partures. The Q-Q plot reveals acceptable correspondence between theoretical and empirical

quantiles, with deviations primarily in the tail regions.

B.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 23 and 24 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 22 – G2Rac_MC1-074_iexplore_c0000005 Single Distribution Model Fit Demonstrated
Through PDF, CDF, P-P and Q-Q Plots.
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Figure 23 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 24 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

4-component model, which combines gamma and normal distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 23 – G2Rac_MC1-074_iexplore_c0000005 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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Figure 24 – G2Rac_MC1-074_iexplore_c0000005 Computational Cost Analysis of Heteroge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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APPENDIXC

Results

G2Rac-MC1-074-iexplore-c0000096

(Approach 2)

This case refers to failures related to privileged instruction violation (c0000096), occur-

ring in the iexplore.exe’s process on computer MC1-074, part of the Group 2 (University

Administrative Department).

C.0.0.1 Statistical Characterization

Table 30 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a heterogeneous failure pattern characterized by signi�cant asymmetry

and moderate heavy-tailed behavior. The di�erence between mean (20.15 hours) and median

(16.26 hours) indicates a right-skewed distribution, which is further con�rmed by the positive

skewness value of 1.66.

The extremely low mode value (0.001 hours) combined with the minimum observation

(0.001 hours) indicates that some failures occur in rapid succession, possibly representing cas-

cading failures or immediate re-failures after system recovery attempts.

The moderate kurtosis value (2.43) indicates a distribution with moderate tail behavior

and peak sharpness. The large interquartile range (23.53 hours) relative to the median further

emphasizes the high variability in failure times.

C.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 31 summarizes the number of clusters recommended by each

approach.

Fuzzy C-means and GMM (BIC) algorithms demonstrate convergence, both suggesting 9

clusters, indicating moderate granularity in failure pattern recognition. HDBSCAN’s recom-
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mendation of 2 clusters suggests the presence of two major density-based groupings, re�ect-

ing its conservative approach to cluster identi�cation. K-Means suggests 8 clusters, while the

Gaussian Mixture Model (GMM) with AIC recommends 11 components.

Figure 25 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=8) identi�es

multiple clusters with well-separated groups and clear boundaries. HDBSCAN (k=2) shows a

conservative approach, identifying only two main clusters plus noise points (represented by

gray crosses), focusing on high-density regions.

Fuzzy C-Means (k=9) produces a clustering pattern with slightly �ner granularity, while

the GMM approaches (BIC with k=9 and AIC with k=11) show similar moderate clustering.

The Elbow and Silhouette analysis in the bottom-right panel demonstrates the trade-o� be-

tween cluster quality metrics, with the Elbow method showing improvement up to 8-9 com-

ponents, while the Silhouette score indicates optimal performance at lower cluster numbers.

C.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi�ed

by each GoF test, combined with a visual comparison of the graphical results for each candi-

Table 30 – Descriptive Statistics: G2Rac_MC1-074_iexplore_c0000096.

Statistic Value

Count 36
Mean (hours) 20.15
Median (hours) 16.26
Mode (hours) 0.001
Standard Deviation 23.61
Minimum 0.001
Maximum 95.60
First Quartile (Q1) 1.49
Third Quartile (Q3) 25.02
Interquartile Range (IQR) 23.53
Skewness 1.66
Kurtosis 2.43
Main Data Range 0.001 – 95.60

Table 31 – Cluster Results: G2Rac_MC1-074_iexplore_c0000096.

Clustering Approach Recommended Clusters

K-Means 8
HDBSCAN 2
Fuzzy C-means 9
GMM (BIC) 9
GMM (AIC) 11
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date model. This procedure was applied across all samples. The �nal model selected via the

Expectation-Maximization (EM) algorithm consisted of 8 components with the following dis-

tributional structure: logn-logn-logn-logn-norm-logn-logn-gamma. This con�guration was

selected based on the outcomes of the AD goodness-of-�t test.

Figure 26 demonstrates the �t achieved by the 8-component mixture model. The probabil-

ity density function plot shows a multimodal distribution with a dominant peak near zero and

several smaller peaks at intermediate values (10-50 hours) and longer intervals (60-90 hours).

Figure 25 – Cluster Evaluation Plots for the Sample G2Rac_MC1-074_iexplore_c0000096.
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with a p-value of 0.989. This result further con�rms the model adequacy.

The log-likelihood value of -106.94 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 273.88 and

321.39, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 33 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: norm_4 (35.8%), logn_0 (22.1%), and logn_5 (9.5%). These high-

weight components correspond to di�erent failure regimes, from stable operational periods

(norm_4 with mean 22.917 hours) to multiplicative failure patterns (logn_0 with scale param-

eter 1.208).

Table 32 – Goodness-of-�t Test Results: G2Rac_MC1-074_iexplore_c0000096.

Model Test Statistic / p-value

8-Component Mixture KS 0.055 / 0.9997
AD -1.151 / 0.989

Log-Likelihood -106.94
AIC 273.88
BIC 321.39

Table 33 – Mixture Model Parameters: G2Rac_MC1-074_iexplore_c0000096.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.221 1.135 1E-10 1.208
logn_1 Lognormal 0.077 0.100 1E-10 7.532
logn_2 Lognormal 0.029 0.100 1E-10 64.198
logn_3 Lognormal 0.082 0.100 1E-10 45.715
norm_4 Normal 0.358 22.917 4.340 —
logn_5 Lognormal 0.095 0.376 1E-10 1.540
logn_6 Lognormal 0.083 0.100 1E-10 0.001
gamma_7 Gamma 0.055 552.614 1E-10 0.166
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The lognormal components dominate the mixture (6 out of 8 components, accounting for

58.7% of total weight), re�ecting the multiplicative nature of the failure process. The presence

of one normal component (norm_4) with moderate location parameter (22.917 hours) cap-

tures the central tendency with relatively low variability (standard deviation 4.340). The sin-

gle gamma component (gamma_7) with an extremely high shape parameter (552.614) captures

a highly peaked distribution with very low variability, likely representing highly consistent,

short execution times.

C.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 8-component model and evaluate how model per-

formance responds to changes in complexity, a sensitivity analysis was performed. This anal-

ysis investigated the behavior of GoF metrics as the number of mixture components increased.

The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each

number of mixture components.

Figure 27 presents the sensitivity analysis results, examining the behavior of key goodness-

Figure 27 – G2Rac_MC1-074_iexplore_c0000096 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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of-�t statistics across component numbers. The KS test sensitivity analysis reveals rapid im-

provement as component numbers increase from 1 to 6, re�ecting the progressive ability

to capture distributional nuances. Beyond 6 components, the KS statistics stabilize around

0.05-0.06, suggesting that additional components provide marginal improvements in overall

�t quality.

The sensitivity of the AD test provides complementary evidence by emphasizing distri-

bution’s tail behavior. The AD statistic shows improvement through moderate component

numbers, with the selected 8-component model achieving strong performance. However, ir-

regular patterns emerge at higher complexity levels, indicating potential instability.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows improvement through moderate component numbers, with optimal

performance around 8 components. Beyond this point, AIC values show irregular patterns,

suggesting potential over�tting where additional parameters no longer provide proportional

improvements in model likelihood. In contrast, the BIC analysis, which imposes a stronger

penalty for model complexity, follows similar trends but with steeper increases at high com-

ponent numbers, reaching minimum values around 8-9 components before increasing again.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

C.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the Weibull model, as shown in

Table 34. Although it achieved the best performance among the single-component models

tested, it still failed to capture the complexity present in the data.

While theWeibull distribution emerged as the best-�tting single-component model among

those evaluated, it remains inadequate for representing the complex behavior of time between

failures. These models often fail to capture the underlying structural characteristics that arise

Table 34 – Mixture vs. Single Distributions: G2Rac_MC1-074_iexplore_c0000096.

GOF Metric Mixture Model (8-comp) Weibull Simple Distribution

KS / p-value 0.055 / 0.9997 0.1393 / 0.4469
AD / p-value -1.151 / 0.989 -0.239 / 0.4631
Log-Likelihood -106.94 -153.75
AIC 273.88 254.96
BIC 321.39 259.71
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from the inherent complexity of TBFs, which can result from multiple factors, including the

diversity of failure causes and variations in workload and operational pro�les.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

Weibull distribution yields moderate p-values for both the Kolmogorov–Smirnov (KS = 0.1393,

p = 0.4469) and Anderson–Darling (AD = -0.239, p = 0.4631) tests, indicating acceptable but not

excellent �t. The mixture model achieves much stronger agreement with the data (KS = 0.055,

p = 0.9997; AD = -1.151, p = 0.989). The Kolmogorov-Smirnov statistic of 0.1393 for the single

distribution is more than twice as large as the mixture model’s 0.055, indicating systematic

deviations between the empirical data and the �tted model.

The information criteria (AIC and BIC) provide a more nuanced comparison. The Weibull

model achieves lower AIC (254.96 vs. 273.88) and BIC (259.71 vs. 321.39) values due to its much

lower complexity. However, this advantage in parsimony comes at the cost of substantially

poorer distributional �t, as evidenced by the goodness-of-�t test results.

Figure 28 illustrates the limitations of single-distribution modeling for this failure dataset.

Figure 28 – G2Rac_MC1-074_iexplore_c0000096 Single Distribution Model Fit Demonstrated
Through PDF, CDF, P-P and Q-Q Plots.
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The PDF overlay reveals that the Weibull model fails to represent the sharp peak near zero

and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical Weibull

distribution (orange crosses) and the empirical distribution (blue circles), particularly in the

lower and upper tail regions where the model systematically over or underestimates failure

probabilities.

The P-P plot shows departures from linearity, with an S-shaped curve indicating consistent

over and under prediction in di�erent regions. The Q-Q plot reveals more nonlinearities, with

the data points forming a curved pattern rather than following the expected 45-degree line.

C.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 29 and 30 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 29 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 30 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

8-component model, which combines lognormal, normal, and gamma distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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Figure 29 – G2Rac_MC1-074_iexplore_c0000096 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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Figure 30 – G2Rac_MC1-074_iexplore_c0000096 Computational Cost Analysis of Heteroge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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APPENDIXD

Results G2Rac-MC-157400 (Approach 1)

This case refers to failures observed throughout the operational history of the computer

MC-157400, which operates within Group 2 (University Administrative Department).

D.0.0.1 Statistical Characterization

Table 35 presents the statistical characteristics of the TBF data for this sample. The de-

scriptive statistics reveal an extremely heterogeneous failure pattern characterized by extreme

asymmetry and very heavy-tailed behavior. The di�erence between mean (35.98 hours) and

median (2.82 hours) indicates a strongly right-skewed distribution, which is further con�rmed

by the extremely high positive skewness value of 9.33.

The extremely low mode value (0.02 hours) combined with the minimum observation

(0.001 hours) indicates that some failures occur in rapid succession, possibly representing cas-

cading failures or immediate re-failures after system recovery attempts.

The extremely high kurtosis value (111.71) indicates a distribution with very heavy tails

Table 35 – Descriptive Statistics: G2Rac_MC-157400.

Statistic Value

Count 248
Mean (hours) 35.98
Median (hours) 2.82
Mode (hours) 0.02
Standard Deviation 108.15
Minimum 0.001
Maximum 1434.31
First Quartile (Q1) 0.15
Third Quartile (Q3) 26.00
Interquartile Range (IQR) 25.85
Skewness 9.33
Kurtosis 111.71
Main Data Range 0.01 – 154.67
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and an extremely sharp peak, suggesting the coexistence of multiple modes and the presence

of extreme outliers. The large interquartile range (25.85 hours) relative to the median further

emphasizes the high variability in failure times.

D.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 36 summarizes the number of clusters recommended by each

approach.

The clustering results demonstrate reasonable convergence among most methods, with

four of the �ve algorithms suggesting between 15-18 clusters, indicating substantial granu-

larity in failure pattern recognition. HDBSCAN’s recommendation of 16 clusters suggests

the presence of numerous density-based groupings. The Gaussian Mixture Model (GMM) ap-

proaches, using both BIC and AIC, recommend values of 17 and 25 components, respectively,

with AIC suggesting a more complex structure.

Figure 31 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=15) identi�es

numerous clusters with many observations concentrated in the low TBF region (0-50 hours)

and several isolated high-TBF outliers. HDBSCAN (k=16) shows similar partitioning with

slightly di�erent cluster boundaries.

Fuzzy C-Means (k=18) produces a clustering patternwith �ner granularity, while the GMM

approaches (BICwith k=17 andAICwith k=25) show progressive increase in partitioning com-

plexity. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the trade-

o� between cluster quality metrics, with the Elbow method showing improvement through

moderate component numbers, while the Silhouette score peaks at lower cluster numbers.

D.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi�ed

by each GoF test, combined with a visual comparison of the graphical results for each candi-

date model. This procedure was applied across all samples. The �nal model selected via the

Expectation-Maximization (EM) algorithm consisted of 21 components with the following dis-

Table 36 – Cluster Results: G2Rac_MC-157400.

Clustering Approach Recommended Clusters

K-Means 15
HDBSCAN 16
Fuzzy C-means 18
GMM (BIC) 17
GMM (AIC) 25
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tributional structure: logn-logn-logn-norm-norm-weib-logn-norm-weib-gamma-norm-norm-

norm-norm-norm-norm-gamma-norm-norm-norm-norm. This con�gurationwas selected based

on the outcomes of the KS goodness-of-�t test.

Figure 32 demonstrates the �t achieved by the 21-component mixture model. The prob-

ability density function plot shows a highly multimodal distribution with a dominant peak

near zero and several smaller peaks at intermediate values (50-300 hours) and longer intervals

(500-1400 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

Figure 31 – Cluster Evaluation Plots for the Sample G2Rac_MC-157400.
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The log-likelihood value of -671.25 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 1482.50 and

1728.44, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 38 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

Table 37 – Goodness-of-�t Test Results: G2Rac_MC-157400.

Model Test Statistic / p-value

21-Component Mixture KS 0.024 / 0.998
AD -1.033 / 0.984

Log-Likelihood -671.25
AIC 1482.50
BIC 1728.44

Table 38 – Mixture Model Parameters: G2Rac_MC-157400.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.114 0.380 1E-10 4.201
logn_1 Lognormal 0.148 0.798 1E-10 0.565
logn_2 Lognormal 0.156 1.734 1E-10 0.118
norm_3 Normal 0.045 60.917 18.214 —
norm_4 Normal 0.030 82.371 21.177 —
weib_5 Weibull 0.177 6.776 1E-10 23.527
logn_6 Lognormal 0.183 1.477 1E-10 0.022
norm_7 Normal 0.014 140.194 15.178 —
weib_8 Weibull 0.045 6.705 1E-10 82.976
gamma_9 Gamma 0.024 5.977 1E-10 10.103
norm_10 Normal 0.027 152.436 10.944 —
norm_11 Normal 0.0004 131.516 43.157 —
norm_12 Normal 0.0006 151.810 52.232 —
norm_13 Normal 0.0023 234.928 16.060 —
norm_14 Normal 0.0036 237.519 15.692 —
norm_15 Normal 0.0032 240.280 15.330 —
gamma_16 Gamma 0.0098 284.151 1E-10 0.803
norm_17 Normal 0.0011 242.589 14.748 —
norm_18 Normal 0.0081 310.624 2.095 —
norm_19 Normal 0.0040 500.769 1E-10 —
norm_20 Normal 0.0040 1434.308 1E-10 —
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❏ Weibull distribution is characterized by the shape (k), location (µ), and scale (λ) param-

eters.

❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: logn_6 (18.3%), weib_5 (17.7%), and logn_2 (15.6%). These high-

weight components correspond to di�erent failure regimes, from rapid succession failures

(logn_6 with scale parameter 0.022) to intermediate stability periods (weib_5 with scale pa-

rameter 23.527).

The lognormal components account for 4 out of 21 components (60.1% of total weight), re-

�ecting the multiplicative nature of the failure process. The presence of twelve normal compo-

nents with location parameters ranging from 60.917 to 1434.308 hours captures extended TBFs

across multiple operational regimes. The Weibull components (weib_5, weib_8) with shape

parameters around 6.7-6.8 suggest wear-out behavior, while gamma components (gamma_9,

gamma_16) provide additional �exibility for modeling intermediate failure patterns. Several

components exhibit extremely small weights (< 0.005) but occupy important positions in the

parameter space, particularly in the extreme tail regions (norm_19, norm_20), essential for

capturing the extreme kurtosis observed in the data.

D.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 21-component model and evaluate how model

performance responds to changes in complexity, a sensitivity analysis was performed. This

analysis investigated the behavior of GoF metrics as the number of mixture components in-

creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained

for each number of mixture components.

Figure 33 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals rapid im-

provement as component numbers increase from 1 to approximately 10-15 components. Be-

yond this range, the KS statistic stabilizes around 0.024-0.027 for models containing 15-25

components, indicating that additional components provide marginal improvements in over-

all distributional �t.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. The AD statistic shows similar patterns of improvement throughmoderate

component numbers, with the selected 21-component model achieving strong performance in

representing tail behavior.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows initial rapid decrease followed by gradual increase as model com-

plexity penalties begin to outweigh likelihood improvements. TheminimumAIC occurs around
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10-16 components. In contrast, the BIC analysis, which imposes a stronger penalty for model

complexity, reaches its minimum at lower component numbers, re�ecting its preference for

parsimony.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

D.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the lognormal model, as shown

in Table 39. Although it achieved the best performance among the single-component models

tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-�tting single-component model

Figure 33 – G2Rac_MC-157400 Sensitivity Analysis of Model Selection Metrics (KS, AD, AIC,
BIC) vs. Number of Mixture Components.
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among those evaluated, it remains inadequate for representing the complex behavior of time

between failures. These models often fail to capture the underlying structural characteris-

tics that arise from the inherent complexity of TBFs, which can result from multiple factors,

including the diversity of failure causes and variations in workload and operational pro�les.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

lognormal distribution yields low p-values for both the Kolmogorov–Smirnov (KS = 0.135, p

= 0.0002) and Anderson–Darling (AD = 4.190, p = 0.010) tests, indicating clear rejection of the

distributional hypothesis. Themixturemodel achievesmuch stronger agreement with the data

(KS = 0.024, p = 0.998; AD = -1.033, p = 0.984). The Kolmogorov-Smirnov statistic of 0.135 for

the single distribution is more than �ve times larger than the mixture model’s 0.024, indicating

systematic and substantial deviations between the empirical data and the �tted model.

The information criteria (AIC and BIC) provide a more nuanced comparison. While the

AIC strongly favors the mixture model (1482.50 vs. 1602.05), representing an improvement of

119.55 AIC units, the BIC comparison shows the lognormal model achieving slightly better

performance (1612.59 vs. 1728.44) due to stronger complexity penalties. However, this BIC

advantage for the simple model is completely overshadowed by the di�erences in statistical

�t quality, and becomes irrelevant when the simpler model fails basic goodness-of-�t require-

ments.

Figure 34 illustrates the limitations of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero

and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical lognor-

mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in

the lower tail region (0-100 hours) where the model underestimates failure probabilities, and

in the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. TheQ-Q plot reveals

more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

Table 39 – Mixture vs. Single Distributions: G2Rac_MC-157400.

GOF Metric Mixture Model (21-comp) Lognormal Simple Distribution

KS / p-value 0.024 / 0.998 0.135 / 0.0002
AD / p-value -1.033 / 0.984 4.190 / 0.010
Log-Likelihood -671.25 -782.86
AIC 1482.50 1602.05
BIC 1728.44 1612.59
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D.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 35 and 36 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 35 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 36 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

21-component model, which combines lognormal, normal, Weibull, and gamma distributions.

Figure 34 – G2Rac_MC-157400 Single Distribution Model Fit Demonstrated Through PDF,
CDF, P-P and Q-Q Plots.
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The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 35 – G2Rac_MC-157400 Computational Cost Analysis of Homogeneous Distribution
Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
erations.
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Figure 36 – G2Rac_MC-157400 Computational Cost Analysis of Heterogeneous Distribution
Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
erations.
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APPENDIXE

Results

G2Rac-MC-157400-iexplore-c0000374

(Approach 2)

This case refers to failures related to unhandled C++ exception (c0000374), occurring in the

iexplore.exe’s process on computer MC-157400, part of the Group 2 (Graduate Laboratory

environment).

E.0.0.1 Statistical Characterization

Table 40 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a highly heterogeneous failure pattern characterized by extreme asymme-

try and very heavy-tailed behavior. The di�erence between mean (136.94 hours) and median

(2.53 hours) indicates a strongly right-skewed distribution, which is further con�rmed by the

high positive skewness value of 5.33.

The extremely lowminimum value (0.006 hours) indicates that some failures occur in rapid

succession, possibly representing cascading failures or immediate re-failures after system re-

covery attempts.

The extremely high kurtosis value (28.21) indicates a distribution with very heavy tails

and a sharp peak, suggesting the coexistence of multiple modes and the presence of extreme

outliers. The large interquartile range (70.31 hours) relative to the median further emphasizes

the high variability in failure times.

E.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 41 summarizes the number of clusters recommended by each

approach.
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K-Means and Fuzzy C-means algorithms demonstrate convergence, both suggesting 9 clus-

ters, indicating moderate granularity in failure pattern recognition. HDBSCAN failed to iden-

tify meaningful cluster structure, likely attributable to the algorithm’s sensitivity to density

variations and its inability to handle the extreme outliers e�ectively. The Gaussian Mixture

Model (GMM) approaches, using both BIC and AIC, recommend 10 components.

Figure 37 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=9) identi�es

multiple clusters with reasonably clear separation patterns. HDBSCAN shows no meaningful

clustering pattern, with most data points unclassi�ed, highlighting the limitations of density-

based clustering methods when applied to datasets with extreme scale variations.

Fuzzy C-Means (k=9) produces a clustering pattern consistent with K-Means results, while

the GMM approaches (BIC with k=10 and AIC with k=10) show slight disagreement with the

hard clustering methods but remain within reasonable proximity. The Elbow and Silhouette

analysis in the bottom-right panel demonstrates the trade-o� between cluster quality metrics,

with both methods indicating optimal performance at moderate cluster numbers.

Table 40 – Descriptive Statistics: G2Rac_MC-157400_iexplore_c0000374.

Statistic Value

Count 38
Mean (hours) 136.94
Median (hours) 2.53
Mode (hours) 0.006
Standard Deviation 475.22
Minimum 0.006
Maximum 2924.98
First Quartile (Q1) 0.164
Third Quartile (Q3) 70.47
Interquartile Range (IQR) 70.31
Skewness 5.33
Kurtosis 28.21
Main Data Range 0.006 – 2924.98

Table 41 – Cluster Results: G2Rac_MC-157400_iexplore_c0000374.

Clustering Approach Recommended Clusters

K-Means 9
HDBSCAN N/A
Fuzzy C-means 9
GMM (BIC) 10
GMM (AIC) 10
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E.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The �nal model selected via

the Expectation-Maximization (EM) algorithm consisted of 5 components with the following

distributional structure: logn-logn-logn-logn-weib. This con�guration was selected based on

the outcomes of the KS goodness-of-�t test.

Figure 37 – Cluster Evaluation Plots: G2Rac_MC-157400_iexplore_c0000374.
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Figure 38 demonstrates the �t achieved by the 5-component mixture model. The proba-

bility density function plot shows a multimodal distribution with a dominant peak near zero

and several smaller peaks at intermediate and extreme values (500-3000 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot

shows linearity along the 45-degree line, indicating that the mixture model accurately repre-

sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further con�rms model adequacy, with linear correspondence

between theoretical and empirical quantiles. Minor deviations are observed only at the ex-

treme tail regions. The overall linear pattern validates the mixture model’s ability to capture

both the central tendency and the extreme behavior of the failure process.

Table 42 summarizes the goodness-of-�t results for the selectedmodel. The GoF test results

provide statistical evidence for the adequacy of the 5-component mixture model. The KS test

Figure 38 – G2Rac_MC-157400_iexplore_c0000374 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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yields a low test statistic (0.055) with an extremely high p-value (0.999), indicating that the

null hypothesis of distributional equivalence cannot be rejected with con�dence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -0.757

with a p-value of 0.798. This result further con�rms the model adequacy.

The AIC and the BIC values are 292.23 and 323.35, respectively, these criteria penalize

model complexity. The relatively modest di�erence between these information criteria sug-

gests that the �ve-component model achieves good �t without excessive parameterization.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 43 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Weibull distribution is characterized by the shape (k), location (µ), and scale (λ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

two dominant components: weib_4 (40.2%) and logn_1 (39.5%). These high-weight compo-

nents correspond to di�erent failure regimes. Together, these two components represent

nearly 80% of the data, indicating that the majority of observations arise from these two pri-

mary modes.

The lognormal components dominate the mixture (4 out of 5 components, accounting for

59.7% of total weight), re�ecting the multiplicative nature of the failure process. The Weibull

Table 42 – Goodness-of-�t Test Results: G2Rac_MC-157400_iexplore_c0000374.

Model Test Statistic / p-value

5-Component Mixture KS 0.055 / 0.999
AD -0.757 / 0.798

Log-Likelihood -127.11
AIC 292.23
BIC 323.35

Table 43 – Mixture Model Parameters: G2Rac_MC-157400_iexplore_c0000374.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.124 0.348 1E-10 0.011
logn_1 Lognormal 0.395 0.711 1E-10 61.23
logn_2 Lognormal 0.052 0.100 1E-10 539.42
logn_3 Lognormal 0.026 0.100 1E-10 2924.98
weib_4 Weibull 0.402 0.771 1E-10 0.548
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component with its substantial weight of 40.2% appears to model the lower-value observations

with its characteristic decreasing hazard rate (shape parameter 0.771). The dominant lognor-

mal component (logn_1 with 39.5% weight) captures the main body of intermediate values

with scale parameter 61.23.

E.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 5-component model and evaluate how model per-

formance responds to changes in complexity, a sensitivity analysis was performed. This anal-

ysis investigated the behavior of GoF metrics as the number of mixture components increased.

The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each

number of mixture components.

Figure 39 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals that the

statistic achieves its �rst minimum value at �ve components, with model performance im-

provements becoming marginal beyond this point.

Figure 39 – G2Rac_MC-157400_iexplore_c0000374 Sensitivity Analysis of Model Selection
Metrics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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The sensitivity of the AD test provides complementary evidence by emphasizing distri-

bution’s tail behavior. The AD statistic shows improvement through moderate component

numbers, with the selected 5-component model achieving strong performance in represent-

ing tail behavior.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory reaches its minimum value at nine components, with subsequent increases

indicating that additional components introduce unnecessary complexity without propor-

tional improvement in model �t. In contrast, the BIC analysis, which imposes a stronger

penalty for model complexity, achieves its optimum at 7 components, re�ecting its preference

for parsimony.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

E.0.0.5 Comparison with Single-Component Models

For comparison purposes, the lognormal distribution provided the best �t among the single-

component models evaluated, as shown in Table 44. Given the strictly positive support and

right-skewed nature of the TBF data, the lognormal model represents a natural baseline choice.

Importantly, this single-component model is not rejected by goodness-of-�t testing and shows

acceptable agreement with the empirical data.

Goodness-of-�t testing con�rms this observation. The lognormal distribution yields mod-

erate p-values for both the Kolmogorov–Smirnov (KS = 0.1603, p = 0.2545) andAnderson–Darling

(AD = 0.192, p = 0.2914) tests, indicating that it cannot be statistically rejected at conventional

signi�cance levels. Visual inspection of the �tted curves further supports this conclusion, as

the single model captures the overall trend of the empirical distribution.

However, a direct comparison with the mixture model reveals substantial di�erences in

representational quality. The mixture model achieves considerably lower KS and AD statistics

(KS = 0.055; AD = -0.757), along with markedly higher p-values (0.999 and 0.798, respectively),

Table 44 – Mixture vs. Single Distributions: G2Rac_MC-157400_iexplore_c0000374.

GOF Metric Mixture Model (5-comp) Lognormal Simple Distribution

KS / p-value 0.055 / 0.999 0.1603 / 0.2545
AD / p-value -0.757 / 0.798 0.192 / 0.2914
Log-Likelihood -127.11 -198.53
AIC 292.23 280.75
BIC 323.35 285.66
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indicating amuch closer agreement with the empirical distribution. In particular, the KS statis-

tic for the single lognormal model is nearly three times larger than that of the mixture model,

suggesting systematic deviations that are mitigated by the multi-component representation.

From a model selection perspective, the information criteria favor the simpler lognormal

model, which attains lower AIC (280.75 vs. 292.23) and BIC (285.66 vs. 323.35) values due to

its reduced complexity. Nevertheless, this advantage in parsimony comes at the expense of

diminished descriptive accuracy. In this context, the substantially improved goodness-of-�t

achieved by the mixture model provides a strong justi�cation for the additional complexity,

particularly given the heterogeneous nature of software failure processes.

Figure 40 further illustrates this trade-o�. While the lognormal model provides a reason-

able approximation of the overall distribution, the PDF reveals limitations in representing the

sharp peak near zero and fails to capture the multimodal features present in the empirical

histogram. Deviations are also observed in the CDF, particularly in the lower and upper tail

regions.

Figure 40 – G2Rac_MC-157400_iexplore_c0000374 Single Distribution Model Fit Demon-
strated Through PDF, CDF, P-P and Q-Q Plots.
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The P–P and Q–Q plots reinforce this interpretation. Although the points broadly follow

the expected trend, systematic departures from linearity, indicating residual structure in the

data that is not fully explained by a single-component model.

E.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 41 and 42 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 41 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 41 – G2Rac_MC-157400_iexplore_c0000374 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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Figure 42 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

5-component model, which combines lognormal and Weibull distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 42 – G2Rac_MC-157400_iexplore_c0000374 Computational Cost Analysis of Heteroge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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APPENDIXF

Results G3Rac-DSK023 (Approach 1)

This case refers to failures observed throughout the operational history of the computer

DSK023, which operates within Group 3 (Corporate Environment).

F.0.0.1 Statistical Characterization

Table 50 presents the statistical characteristics of the TBF data for this sample. The de-

scriptive statistics reveal a highly heterogeneous failure pattern characterized by signi�cant

asymmetry and heavy-tailed behavior. The di�erence betweenmean (15.73 hours) andmedian

(2.04 hours) indicates a strongly right-skewed distribution, which is further con�rmed by the

positive skewness value of 2.82.

The extremely low mode value (0.0006 hours) combined with the minimum observation

(0.0003 hours) indicates that some failures occur in rapid succession, possibly representing

cascading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (8.92) indicates a distribution with heavy tails and a sharp peak,

Table 45 – Descriptive Statistics: G3Rac_DSK023.

Statistic Value

Count 556
Mean (hours) 15.73
Median (hours) 2.04
Mode (hours) 0.0006
Standard Deviation 29.48
Minimum 0.0003
Maximum 207.12
First Quartile (Q1) 0.30
Third Quartile (Q3) 18.61
Interquartile Range (IQR) 18.31
Skewness 2.82
Kurtosis 8.92
Main Data Range 0.0003 – 207.12
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suggesting the coexistence of multiple modes. The large interquartile range (18.31 hours)

relative to the median further emphasizes the high variability in failure times.

F.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 51 summarizes the number of clusters recommended by each

approach.

The clustering results demonstrate substantial variability in cluster number recommenda-

tions across di�erent algorithmic approaches, ranging from 7 to 27 clusters. Fuzzy C-means

suggests the most conservative estimate of 7 clusters, while K-Means recommends 8 clusters.

HDBSCAN’s recommendation of 27 clusters suggests the presence of numerous density-based

groupings, re�ecting its sensitivity to local density variations and its ability to detect micro-

clusters within the data space. The Gaussian Mixture Model (GMM) approaches, using both

BIC and AIC, recommend intermediate values of 9 and 13 components, respectively.

Figure 49 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=8) and Fuzzy

C-Means (k=7) demonstrate similar clustering topologies with well-de�ned boundaries and

compact cluster formations, particularly e�ective in the intermediate value ranges. HDBSCAN

(k=27) shows extensive partitioning with numerous micro-clusters, particularly pronounced

in the lower-value regions of the dataset.

The GMM approaches (BIC with k=9 and AIC with k=13) show intermediate clustering

granularity between the conservative hard clustering methods and HDBSCAN’s �ne parti-

tioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the trade-

o� between cluster quality metrics, with the Elbow method showing improvement through

moderate component numbers, while the Silhouette score indicates optimal performance at

lower cluster numbers.

F.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

Table 46 – Cluster Results: G3Rac_DSK023.

Clustering Approach Recommended Clusters

K-Means 8
HDBSCAN 27
Fuzzy C-means 7
GMM (BIC) 9
GMM (AIC) 13
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near zero and several smaller peaks at intermediate values (10-50 hours) and longer intervals

(100-200 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot

shows linearity along the 45-degree line, indicating that the mixture model accurately repre-

sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further con�rms model adequacy, with linear correspondence

between theoretical and empirical quantiles. Minor deviations are observed only at the ex-

treme upper tail (around 200 hours). The overall linear pattern validates the mixture model’s

ability to capture both the central tendency and the extreme behavior of the failure process.

Table 52 summarizes the goodness-of-�t results for the selectedmodel. The GoF test results

provide statistical evidence for the adequacy of the 13-component mixture model. The KS test

yields a low test statistic (0.012) with an extremely high p-value (0.9999), indicating that the

Figure 44 – G3Rac_DSK023 Mixture Model Fit Demonstrated Through PDF, CDF, P-P and Q-
Q Plots.
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null hypothesis of distributional equivalence cannot be rejected with con�dence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.085

with a p-value of 0.996. This result further con�rms the model adequacy.

The log-likelihood value of -1511.48 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 3124.96 and

3345.32, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 53 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Weibull distribution is characterized by the shape (k), location (µ), and scale (λ) param-

eters.

❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

Table 47 – Goodness-of-�t Test Results: G3Rac_DSK023.

Model Test Statistic / p-value

13-Component Mixture KS 0.012 / 0.9999
AD -1.085 / 0.996

Log-Likelihood -1511.48
AIC 3124.96
BIC 3345.32

Table 48 – Mixture Model Parameters: G3Rac_DSK023.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.312 1.005 1E-10 0.990
logn_1 Lognormal 0.091 0.422 1E-10 3.370
logn_2 Lognormal 0.053 0.450 1E-10 26.991
logn_3 Lognormal 0.049 0.565 1E-10 34.007
weib_4 Weibull 0.124 5.155 1E-10 20.407
gamma_5 Gamma 0.023 4.802 1E-10 10.788
gamma_6 Gamma 0.039 429.242 1E-10 0.160
logn_7 Lognormal 0.162 2.147 1E-10 0.139
logn_8 Lognormal 0.106 1.542 1E-10 0.006
weib_9 Weibull 0.014 5.906 1E-10 120.458
weib_10 Weibull 0.022 7.249 1E-10 125.697
weib_11 Weibull 0.004 9.634 1E-10 193.665
gamma_12 Gamma 0.001 35.249 1E-10 3.934
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The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: logn_0 (31.2%), logn_7 (16.2%), andweib_4 (12.4%). These high-

weight components correspond to di�erent failure regimes, from rapid succession failures

(logn_8 with scale parameter 0.006) to intermediate stability periods (weib_4 with scale pa-

rameter 20.407).

The lognormal components dominate the mixture (6 out of 13 components, accounting for

77.3% of total weight), re�ecting the multiplicative nature of the failure process. The pres-

ence of four Weibull components with shape parameters ranging from 5.155 to 9.634 suggests

wear-out behavior across di�erent operational scales. The gamma components (gamma_5,

gamma_6, gamma_12) provide additional �exibility formodeling intermediate failure patterns.

Several components exhibit extremely small weights (< 0.005) but occupy important positions

in the parameter space, particularly in the extreme tail regions.

F.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 13-component model and evaluate how model

performance responds to changes in complexity, a sensitivity analysis was performed. This

analysis investigated the behavior of GoF metrics as the number of mixture components in-

creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained

for each number of mixture components.

Figure 51 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals a sharp

decline from single-component to three-component models, indicating substantial improve-

ments in distributional �t during the initial complexity increase. Beyond three components,

the KS statistic exhibits relatively stable behavior with minor �uctuations, suggesting that

additional components provide incremental improvements in distributional accuracy.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. The AD statistic follows a similar pattern, showing rapid improvement

until approximately four components, after which it stabilizes around -1.0, indicating that the

model achieves excellent distributional �t relatively early in the complexity progression.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory exhibits a pronounced minimum around 7-11 components. In contrast,

the BIC analysis, which imposes a stronger penalty for model complexity, demonstrates a

di�erent optimization pro�le, with the minimum occurring around 6-8 components before

gradually increasing due to the stronger complexity penalty inherent in the BIC formulation.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by
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the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

F.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the lognormal model, as shown

in Table 54. Although it achieved the best performance among the single-component models

tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-�tting single-component model

Figure 45 – G3Rac_DSK023 Sensitivity Analysis of Model SelectionMetrics (KS, AD, AIC, BIC)
vs. Number of Mixture Components.

Table 49 – Mixture vs. Single Distributions: G3Rac_DSK023.

GOF Metric Mixture Model (13-comp) Lognormal Simple Distribution

KS / p-value 0.012 / 0.9999 0.091 / 0.0002
AD / p-value -1.085 / 0.996 6.163 / 0.0020
Log-Likelihood -1511.48 -1893.45
AIC 3124.96 3248.58
BIC 3345.32 3261.54
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among those evaluated, it remains inadequate for representing the complex behavior of time

between failures. These models often fail to capture the underlying structural characteris-

tics that arise from the inherent complexity of TBFs, which can result from multiple factors,

including the diversity of failure causes and variations in workload and operational pro�les.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

lognormal distribution yields extremely low p-values for both the Kolmogorov–Smirnov (KS

= 0.091, p = 0.0002) and Anderson–Darling (AD = 6.163, p = 0.0020) tests, indicating clear

rejection of the distributional hypothesis. The mixture model achieves much stronger agree-

ment with the data (KS = 0.012, p = 0.9999; AD = -1.085, p = 0.996). And the log-likelihood

comparison also shows the superior �t of the mixture model.

The information criteria (AIC and BIC) provide a more nuanced comparison. While the

AIC strongly favors the mixture model (3124.96 vs. 3248.58), the BIC comparison shows the

lognormal model achieving slightly better performance (3261.54 vs. 3345.32) due to stronger

complexity penalties. However, this BIC advantage for the simple model comes at the cost of

substantially poorer distributional �t, as evidenced by the goodness-of-�t test results which

show clear rejection of the single distribution hypothesis.

Figure 52 illustrates the limitations of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero

and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical lognor-

mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in

the lower tail region (0-50 hours) where the model underestimates failure probabilities, and in

the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. TheQ-Q plot reveals

more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

F.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 53 and 54 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 53 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.
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Figure 54 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

13-component model, which combines lognormal, Weibull, and gamma distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 46 – G3Rac_DSK023 Single Distribution Model Fit Demonstrated Through PDF, CDF,
P-P and Q-Q Plots.
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Figure 47 – G3Rac_DSK023 Computational Cost Analysis of Homogeneous Distribution Mod-
els with Execution Time, Memory Usage, CPU Utilization and Number of Opera-
tions.
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Figure 48 – G3Rac_DSK023 Computational Cost Analysis of Heterogeneous Distribution
Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
erations.
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APPENDIXG

Results

G3Rac-DSK023-iexplore-c0000005

(Approach 2)

This case refers to failures related to access violations (c0000005), associated with invalid

memory addressing, occurring in the iexplore.exe’s process on computer DSK023, part of

the Group 3 (Corporate Environment).

G.0.0.1 Statistical Characterization

Table 50 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a heterogeneous failure pattern characterized by signi�cant asymmetry

and heavy-tailed behavior. The di�erence between mean (54.51 hours) and median (22.16

hours) indicates a right-skewed distribution, which is further con�rmed by the positive skew-

ness value of 2.41.

The extremely low mode value (0.001 hours) combined with the minimum observation

(0.0006 hours) indicates that some failures occur in rapid succession, possibly representing

cascading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (6.45) indicates a distribution with heavy tails and a sharp peak,

suggesting the coexistence of multiple modes. The large interquartile range (69.98 hours)

relative to the median further emphasizes the high variability in failure times.

G.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 51 summarizes the number of clusters recommended by each

approach.

HDBSCAN’s recommendation of 9 clusters suggests the presence of nine major density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a higher num-
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ber of clusters (13 and 14, respectively), indicating �ner granularity in failure pattern recogni-

tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend

intermediate values of 14 and 21 components, respectively.

Figure 49 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=13) identi�es

numerous small clusters with many observations concentrated in the low TBF region (0-50

hours) and several isolated high-TBF outliers. HDBSCAN (k=9) shows a more conservative

approach, identifying nine main clusters with a signi�cant portion of data classi�ed as noise

(gray crosses), particularly in the intermediate TBF range.

Fuzzy C-Means (k=14) produces a clustering pattern similar to K-Means but with slightly

di�erent cluster boundaries, while the GMM approaches (BIC with k=14 and AIC with k=21)

show intermediate clustering between HDBSCAN’s conservative grouping and K-Means’ �ne

partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the

trade-o� between cluster quality metrics, with the Elbow method showing a sharp decline up

to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 50 – Descriptive Statistics: G3Rac_DSK023_iexplore_c0000005.

Statistic Value

Count 160
Mean (hours) 54.51
Median (hours) 22.16
Mode (hours) 0.001
Standard Deviation 82.53
Minimum 0.0006
Maximum 455.44
First Quartile (Q1) 1.56
Third Quartile (Q3) 71.54
Interquartile Range (IQR) 69.98
Skewness 2.41
Kurtosis 6.45
Main Data Range 0.0006 – 455.44

Table 51 – Cluster Results: G3Rac_DSK023_iexplore_c0000005.

Clustering Approach Recommended Clusters

K-Means 13
HDBSCAN 9
Fuzzy C-means 14
GMM (BIC) 14
GMM (AIC) 21
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G.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The �nal model selected via

the Expectation-Maximization (EM) algorithm consisted of 12 components with the following

distributional structure: logn-logn-logn-weib-weib-norm-logn-logn-gamma-logn-norm-logn.

This con�guration was selected based on the outcomes of the KS goodness-of-�t test.

Figure 49 – Cluster Evaluation Plots for the Sample G3Rac_DSK023_iexplore_c0000005.
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Figure 50 demonstrates the �t achieved by the 12-component mixture model. The prob-

ability density function plot shows a highly multimodal distribution with a dominant peak

near zero and several smaller peaks at intermediate values (50-150 hours) and longer intervals

(300-450 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot

shows linearity along the 45-degree line, indicating that the mixture model accurately repre-

sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further con�rms model adequacy, with linear correspondence

between theoretical and empirical quantiles. Minor deviations are observed only at the middle

upper tail (around 300 hours). The overall linear pattern validates the mixture model’s ability

to capture both the central tendency and the extreme behavior of the failure process.

Table 52 summarizes the goodness-of-�t results for the selectedmodel. The GoF test results

Figure 50 – G3Rac_DSK023_iexplore_c0000005 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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provide statistical evidence for the adequacy of the 12-component mixture model. The KS test

yields a low test statistic (0.025) with an extremely high p-value (0.999), indicating that the

null hypothesis of distributional equivalence cannot be rejected with con�dence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.077

with a p-value of 0.992. This result further con�rms the model adequacy.

In addition, the AIC and the BIC values are 1422.34 and 1560.72, respectively, these criteria

penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 53 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Weibull distribution is characterized by the shape (k), location (µ), and scale (λ) param-

eters.

Table 52 – Goodness-of-�t Test Results: G3Rac_DSK023_iexplore_c0000005.

Model Test Statistic / p-value

12-Component Mixture KS 0.025 / 0.999
AD -1.077 / 0.992

Log-Likelihood -666.16
AIC 1422.34
BIC 1560.72

Table 53 – Mixture Model Parameters: G3Rac_DSK023_iexplore_c0000005.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.234 0.886 1E-10 1.956
logn_1 Lognormal 0.160 0.175 1E-10 23.169
logn_2 Lognormal 0.076 0.464 1E-10 47.029
weib_3 Weibull 0.105 9.874 1E-10 69.901
weib_4 Weibull 0.089 3.842 1E-10 153.051
norm_5 Normal 0.078 136.516 34.658 —
logn_6 Lognormal 0.035 1.248 1E-10 6.102
logn_7 Lognormal 0.039 1.521 1E-10 1.631
gamma_8 Gamma 0.031 258.756 1E-10 1.231
logn_9 Lognormal 0.055 1.639 1E-10 0.176
norm_10 Normal 0.012 431.474 23.982 —
logn_11 Lognormal 0.085 1.284 1E-10 0.005
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❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: logn_0 (23.4%), logn_1 (16.0%), andweib_3 (10.5%). These high-

weight components correspond to di�erent failure regimes, from rapid succession failures

(logn_11 with scale parameter 0.005) to intermediate stability periods (weib_3 with shape pa-

rameter 9.874).

The lognormal components dominate the mixture (7 out of 12 components), re�ecting the

multiplicative nature of the failure process. The presence of twoWeibull components (weib_3,

weib_4) with varying shape parameters captures the aging behavior of the system. The two

normal components (norm_5, norm_10) with high location parameters (136.516 and 431.474

hours, respectively) capture the extended TBFs.

G.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 12-component model and evaluate how model

performance responds to changes in complexity, a sensitivity analysis was performed. This

analysis investigated the behavior of GoF metrics as the number of mixture components in-

creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained

for each number of mixture components.

Figure 51 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals a perfor-

mance trajectory that supports the 12-component selection. Starting from a single-component

performance, the statistic shows improvement through the initial component additions, drop-

ping sharply for two components. The most signi�cant improvement occurs in the 2-8 compo-

nent range, with continued re�nement leading to optimal performance in the 12-14 component

region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy

of simple models. As the number of components increases, the AD statistic transitions to neg-

ative values, indicating an improvement in the model’s ability to represent distribution’s tail

behavior more accurately in multi-component con�gurations.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows improvement through 3-7 components, followed by a stagnation

due to complexity penalties. The minimum AIC value was observed with higher component

numbers. In contrast, the BIC analysis, which imposes a stronger penalty for model complex-

ity, follows a similar initial trend but reaches its minimum around 7 components.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal
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by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

G.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the gamma model, as shown in

Table 54. Given its �exibility in modeling positively skewed data, the gamma distribution

represents a reasonable and statistically acceptable baseline for the TBF sample under analysis.

Goodness-of-�t testing indicates that the gammamodel provides an acceptable description

of the data. Although the Kolmogorov–Smirnov test yields a borderline p-value (KS = 0.107, p

= 0.048), the Anderson–Darling test does not reject the distributional hypothesis (AD = 0.283, p

= 0.261). In addition, visual inspection of the �tted curves suggests that the gamma distribution

captures the overall trend of the empirical TBF distribution.

Nevertheless, a comparison with the mixture model reveals a clear improvement in rep-

Figure 51 – G3Rac_DSK023_iexplore_c0000005 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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resentational accuracy. The mixture model achieves substantially lower KS and AD statistics,

along with very high p-values (KS = 0.025, p = 0.999; AD = –1.077, p = 0.992), indicating a

much closer agreement with the empirical distribution across the entire support.

From amodel selection perspective, the information criteria favor the single gammamodel

due to its lower complexity, as re�ected by its smaller AIC (1380.34) and BIC (1389.57) values.

This result con�rms that the gamma distribution constitutes a parsimonious and statistically

valid approximation. However, the superior goodness-of-�t achieved by the mixture model

highlights its ability to better capture subtle distributional features that are not fully repre-

sented by a single-component formulation.

Figure 52 illustrates this trade-o�. The PDF overlay shows that the gamma model provides

a reasonable approximation of the dominant mode, although it smooths sharp peaks and does

not explicitly represent multimodal behavior. Minor deviations are also observed in the CDF,

particularly in the lower and upper tail regions.

The P–P and Q–Q plots corroborate these observations. While the gamma model follows

the general trend of the empirical distribution, systematic departures from linearity suggest

residual structure that can be more e�ectively captured by a multi-component mixture model.

G.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 53 and 54 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 53 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 54 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

12-component model, which combines lognormal, Weibull, gamma, and normal distributions.

Table 54 – Mixture vs. Single Distributions: G3Rac_DSK023_iexplore_c0000005.

GOF Metric Mixture Model (12-comp) Gamma Simple Distribution

KS / p-value 0.025 / 0.999 0.107 / 0.048
AD / p-value -1.077 / 0.992 0.283 / 0.261
Log-Likelihood -666.16 -789.65
AIC 1422.34 1380.34
BIC 1560.72 1389.57
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The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 52 – G3Rac_DSK023_iexplore_c0000005 Single Distribution Model Fit Demonstrated
Through PDF, CDF, P-P and Q-Q Plots.
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Figure 53 – G3Rac_DSK023_iexplore_c0000005 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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Figure 54 – G3Rac_DSK023_iexplore_c0000005 Computational Cost Analysis of Heteroge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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APPENDIXH

Results

G413452266836854502e87bba75907480

(Approach 1)

This case refers to failures occurring in the computer documented through the identi�er

G413452266836854502e87bba75907480, part of the Group 4 (Personal and HomeO�ce Com-

puters).

H.0.0.1 Statistical Characterization

Table 55 presents the statistical characteristics of the TBF data for this sample. The de-

scriptive statistics reveal a heterogeneous failure pattern characterized by signi�cant asym-

metry and heavy-tailed behavior. The di�erence between mean (33.26 hours) and median

(0.43 hours) indicates a right-skewed distribution, which is further con�rmed by the positive

skewness value of 5.86.

The extremely low mode value (0.0008 hours) combined with the minimum observation

(0.0003 hours) indicates that some failures occur in rapid succession, possibly representing

cascading failures or immediate re-failures after system recovery attempts.

The extremely high kurtosis value (40.51) indicates a distribution with heavy tails and a

sharp peak, suggesting the coexistence of multiple modes. The large interquartile range (24.96

hours) relative to the median further emphasizes the high variability in failure times.

H.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 56 summarizes the number of clusters recommended by each

approach.

HDBSCAN’s recommendation of 17 clusters suggests the presence of sixteenmajor density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a similar num-
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ber of clusters (13 and 12, respectively), indicating �ner granularity in failure pattern recogni-

tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend

intermediate values of 14 and 21 components, respectively.

Figure 55 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=13) identi�es

numerous small clusters with many observations concentrated in the low TBF region (0-50

hours) and several isolated high-TBF outliers. HDBSCAN (k=17) shows a more comprehensive

approach, identifying sixteenmain clusters with a signi�cant portion of data classi�ed as noise

(gray crosses), particularly in the intermediate TBF range.

Fuzzy C-Means (k=12) produces a clustering pattern similar to K-Means but with slightly

di�erent cluster boundaries, while the GMM approaches (BIC with k=14 and AIC with k=21)

show intermediate clustering between HDBSCAN’s comprehensive grouping and K-Means’

�ne partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates

the trade-o� between cluster quality metrics, with the Elbow method showing a sharp decline

up to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 55 – Descriptive Statistics: G413452266836854502e87bba75907480.

Statistic Value

Count 267
Mean (hours) 33.26
Median (hours) 0.43
Mode (hours) 0.0008
Standard Deviation 93.67
Minimum 0.0003
Maximum 840.58
First Quartile (Q1) 0.01
Third Quartile (Q3) 24.98
Interquartile Range (IQR) 24.96
Skewness 5.86
Kurtosis 40.51
Main Data Range 0.00 – 143.51

Table 56 – Cluster Results: G413452266836854502e87bba75907480.

Clustering Approach Recommended Clusters

K-Means 13
HDBSCAN 17
Fuzzy C-means 12
GMM (BIC) 14
GMM (AIC) 21



APPENDIX H. Results G413452266836854502e87bba75907480 (Approach 1) 172

H.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The �nal model selected

via the Expectation-Maximization (EM) algorithm consisted of 16 components with the fol-

lowing distributional structure: weib-weib-weib-weib-weib-logn-logn-logn-norm-logn-weib-

norm-gamma-logn-logn-norm. This con�guration was selected based on the outcomes of the

Figure 55 – Cluster Evaluation Plots: G413452266836854502e87bba75907480.
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KS goodness-of-�t test.

Figure 56 demonstrates the �t achieved by the 16-component mixture model. The prob-

ability density function plot shows a highly multimodal distribution with a dominant peak

near zero and several smaller peaks at intermediate values (50-200 hours) and longer intervals

(400-800 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot

shows linearity along the 45-degree line, indicating that the mixture model accurately repre-

sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further con�rms model adequacy, with linear correspondence

between theoretical and empirical quantiles. Minor deviations are observed only at the middle

upper tail (around 500 hours). The overall linear pattern validates the mixture model’s ability

to capture both the central tendency and the extreme behavior of the failure process.

Figure 56 – G413452266836854502e87bba75907480 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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Table 57 summarizes the goodness-of-�t results for the selectedmodel. The GoF test results

provide statistical evidence for the adequacy of the 16-component mixture model. The KS test

yields a low test statistic (0.019) with an extremely high p-value (0.9999), indicating that the

null hypothesis of distributional equivalence cannot be rejected with con�dence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.047

with a p-value of 0.986. This result further con�rms the model adequacy.

The log-likelihood value of -463.74 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 1047.48 and

1262.72, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 58 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

Table 57 – Goodness-of-�t Test Results: G413452266836854502e87bba75907480.

Model Test Statistic / p-value

16-Component Mixture KS 0.019 / 0.9999
AD -1.047 / 0.986

Log-Likelihood -463.74
AIC 1047.48
BIC 1262.72

Table 58 – Mixture Model Parameters: G413452266836854502e87bba75907480.

Component Distribution Weight Param 1 Param 2 Param 3

weib_0 Weibull 0.425338 0.855090 1E-10 0.015572
weib_1 Weibull 0.104981 1.204625 1E-10 3.161885
weib_2 Weibull 0.067242 6.345376 1E-10 22.598087
weib_3 Weibull 0.100384 9.744407 1E-10 24.593697
weib_4 Weibull 0.070604 4.401429 1E-10 70.388759
logn_5 Lognormal 0.054707 0.441732 1E-10 86.308546
logn_6 Lognormal 0.024493 0.449848 1E-10 89.407889
logn_7 Lognormal 0.007689 0.476125 1E-10 80.491093
norm_8 Normal 0.014485 181.977629 49.378355 —
logn_9 Lognormal 0.025405 1.318047 1E-10 2.036664
weib_10 Weibull 0.013561 9.876506 1E-10 155.859734
norm_11 Normal 0.000251 492.050514 11.417535 —
gamma_12 Gamma 0.010979 1832.450697 1E-10 0.268001
logn_13 Lognormal 0.046599 1.309638 1E-10 0.154475
logn_14 Lognormal 0.025791 1.516143 1E-10 0.120918
norm_15 Normal 0.007491 816.063722 24.512787 —
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❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

❏ Weibull distribution is characterized by the shape (k), location (µ), and scale (λ) param-

eters.

❏ Gamma distribution is characterized by the shape (α), location (µ), and scale (θ) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: weib_0 (42.5%), weib_1 (10.5%), and weib_3 (10.0%). These

high-weight components correspond to di�erent failure regimes, from rapid succession fail-

ures (weib_0 with scale parameter 0.016) to intermediate stability periods (weib_3 with shape

parameter 9.744).

The Weibull components dominate the mixture (6 out of 16 components), re�ecting the

aging behavior of the failure process. The presence of multiple lognormal components (8

components) captures the multiplicative nature of certain failure modes. The three normal

components (norm_8, norm_11, norm_15) with high location parameters (181.978, 250.000,

and 500.000 hours, respectively) capture the extended TBFs.

H.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 16-component model and evaluate how model

performance responds to changes in complexity, a sensitivity analysis was performed. This

analysis investigated the behavior of GoF metrics as the number of mixture components in-

creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained

for each number of mixture components.

Figure 57 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals a perfor-

mance trajectory that supports the 16-component selection. Starting from a single-component

performance, the statistic shows improvement through the initial component additions, drop-

ping sharply for two components. The most signi�cant improvement occurs in the 2-8 compo-

nent range, with continued re�nement leading to optimal performance in the 12-18 component

region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy

of simple models. As the number of components increases, the AD statistic transitions to neg-

ative values, indicating an improvement in the model’s ability to represent distribution’s tail

behavior more accurately in multi-component con�gurations.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows improvement through 3-7 components, followed by a stagnation
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due to complexity penalties. The minimum AIC value was observed with higher component

numbers. In contrast, the BIC analysis, which imposes a stronger penalty for model complex-

ity, follows a similar initial trend but reaches its minimum around 14 components.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

H.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the lognormal model, as shown

in Table 59. Although it achieved the best performance among the single-component models

tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-�tting single-component model

Figure 57 – G413452266836854502e87bba75907480 Sensitivity Analysis of Model Selection
Metrics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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among those evaluated, it remains inadequate for representing the complex behavior of time

between failures. These models often fail to capture the underlying structural characteris-

tics that arise from the inherent complexity of TBFs, which can result from multiple factors,

including the diversity of failure causes and variations in workload and operational pro�les.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

lognormal distribution yields extremely low p-values for both the Kolmogorov–Smirnov (KS

= 0.1559, p = 3.90E-06) and Anderson–Darling (AD = 3.330, p = 0.0140) tests, indicating clear

rejection of the distributional hypothesis. The mixture model achieves much stronger agree-

ment with the data (KS = 0.019, p = 0.9999; AD = -1.047, p = 0.986).

The information criteria (AIC and BIC) further reinforce the inadequacy of the single dis-

tribution. As the lognormal model, despite its lower complexity, shows substantially higher

AIC (1147.76) values compared to the mixture model, further reinforcing its inadequacy as a

representation of the observed TBF behavior.

Figure 58 illustrates the limitations of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero

and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical lognor-

mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in

the lower tail region (0-100 hours) where the model underestimates failure probabilities, and

in the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. TheQ-Q plot reveals

more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

H.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 59 and 60 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

Table 59 – Mixture vs. Single Distributions: G413452266836854502e87bba75907480.

GOF Metric Mixture Model (16-comp) Lognormal Simple Distribution

KS / p-value 0.019 / 0.9999 0.1559 / 3.90E-06
AD / p-value -1.047 / 0.986 3.330 / 0.0140
Log-Likelihood -463.74 -658.32
AIC 1047.48 1147.76
BIC 1262.72 1158.52
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nent numbers.

Figure 59 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 60 extends the analysis to heterogeneous mixture models, where components can

belong to di�erent distribution families. This analysis is particularly relevant for the selected

16-component model, which combines Weibull, lognormal, gamma, and normal distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 58 – G413452266836854502e87bba75907480 Single Distribution Model Fit Demon-
strated Through PDF, CDF, P-P and Q-Q Plots.
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Figure 59 – G413452266836854502e87bba75907480 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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Figure 60 – G413452266836854502e87bba75907480 Computational Cost Analysis of Heteroge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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APPENDIX I

Results

G413452266836854502e87bba75907480-

iexplore-e06d7363 (Approach 2)

This case refers to failures related to unhandled C++ exception (e06d7363), associated with

exception handling, occurring in the iexplore.exe’s process on computer G413452266836854502e87bba75907480,

part of the Group 4 (Personal and HomeO�ce Computers).

I.0.0.1 Statistical Characterization

Table 60 presents the statistical characteristics of the TBF data for this sample. The descrip-

tive statistics reveal a heterogeneous failure pattern characterized by signi�cant asymmetry

and heavy-tailed behavior. The di�erence between mean (75.24 hours) and median (28.55

hours) indicates a right-skewed distribution, which is further con�rmed by the positive skew-

ness value of 4.19.

The extremely low mode value (0.002 hours) combined with the minimum observation

(0.002 hours) indicates that some failures occur in rapid succession, possibly representing cas-

cading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (20.29) indicates a distribution with heavy tails and a sharp peak,

suggesting the coexistence of multiple modes. The large interquartile range (52.35 hours)

relative to the median further emphasizes the high variability in failure times.

I.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were

applied to the dataset. Table 61 summarizes the number of clusters recommended by each

approach.

HDBSCAN’s recommendation of 4 clusters suggests the presence of four major density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a higher num-
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ber of clusters (11 and 12, respectively), indicating �ner granularity in failure pattern recogni-

tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend

consistent values of 11 components.

Figure 61 provides the visualization of the clustering analysis results across �ve di�erent

algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=11) identi�es

numerous small clusters with many observations concentrated in the low TBF region (0-50

hours) and several isolated high-TBF outliers. HDBSCAN (k=4) shows a more conservative

approach, identifying four main clusters with a signi�cant portion of data classi�ed as noise

(gray crosses), particularly in the intermediate TBF range.

Fuzzy C-Means (k=12) produces a clustering pattern similar to K-Means but with slightly

di�erent cluster boundaries, while the GMM approaches (BIC with k=11 and AIC with k=11)

show intermediate clustering between HDBSCAN’s conservative grouping and K-Means’ �ne

partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the

trade-o� between cluster quality metrics, with the Elbow method showing a sharp decline up

to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 60 – Descriptive Statistics: G41345226...bba75907480_iexplore_e06d7363.

Statistic Value

Count 82
Mean (hours) 75.24
Median (hours) 28.55
Mode (hours) 0.002
Standard Deviation 121.22
Minimum 0.002
Maximum 840.58
First Quartile (Q1) 22.34
Third Quartile (Q3) 74.69
Interquartile Range (IQR) 52.35
Skewness 4.19
Kurtosis 20.29
Main Data Range 4.14 – 166.29

Table 61 – Cluster Results: G41345226...bba75907480_iexplore_e06d7363.

Clustering Approach Recommended Clusters

K-Means 11
HDBSCAN 4
Fuzzy C-means 12
GMM (BIC) 11
GMM (AIC) 11
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I.0.0.3 Mixture Model Selection and Validation

The selection of the best-�tting mixture model was based on the top �ve models identi-

�ed by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The �nal model selected

via the Expectation-Maximization (EM) algorithm consisted of 8 components with the follow-

ing distributional structure: logn-logn-logn-norm-norm-norm-norm. This con�guration was

selected based on the outcomes of the AD goodness-of-�t test.

Figure 61 – Cluster Plots: G41345226...bba75907480_iexplore_e06d7363.
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provide statistical evidence for the adequacy of the 8-component mixture model. The KS test

yields a low test statistic (0.051) with an extremely high p-value (0.974), indicating that the

null hypothesis of distributional equivalence cannot be rejected with con�dence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -0.931

with a p-value of 0.940. This result further con�rms the model adequacy.

The log-likelihood value of -367.89 re�ects the model’s overall �t and provides a basis for

comparison with alternative models. In addition, the AIC and the BIC values are 783.78 and

841.54, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global �t, the

next step is to examine the estimated parameters associated with each mixture component.

Table 63 presents the estimated parameters of the �tted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

❏ Normal distribution uses the location (µ) and scale (σ) parameters.

❏ Lognormal distribution is parameterized by the shape (σ), location (µ), and scale (θ)

parameters.

The mixture weights indicate the relative importance of each failure subpopulation, with

several dominant components: logn_0 (35.7%) and norm_3 (33.3%). These high-weight compo-

nents correspond to di�erent failure regimes, from rapid succession failures (logn_2 with scale

parameter 6.009) to intermediate stability periods (norm_3 with location parameter 56.907).

The lognormal components (3 out of 8 components) re�ect the multiplicative nature of the

failure process. The presence of four normal components (norm_3, norm_4, norm_5, norm_6)

Table 62 – Goodness-of-�t Test Results: G41345226...bba75907480_iexplore_e06d7363.

Model Test Statistic / p-value

8-Component Mixture KS 0.051 / 0.974
AD -0.931 / 0.940

Log-Likelihood -367.89
AIC 783.78
BIC 841.54

Table 63 – Mixture Model Parameters: G41345226...bba75907480_iexplore_e06d7363.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.357 0.115 1E-10 23.673
logn_1 Lognormal 0.029 0.582 1E-10 184.591
logn_2 Lognormal 0.111 0.842 1E-10 6.009
norm_3 Normal 0.333 56.907 24.226 —
norm_4 Normal 0.134 138.317 19.846 —
norm_5 Normal 0.024 498.209 6.838 —
norm_6 Normal 0.012 840.576 1E-10 —
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with varying location parameters (56.907, 138.317, 498.209, and 840.576 hours, respectively)

captures the extended TBFs.

I.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 8-component model and evaluate how model per-

formance responds to changes in complexity, a sensitivity analysis was performed. This anal-

ysis investigated the behavior of GoF metrics as the number of mixture components increased.

The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each

number of mixture components.

Figure 63 presents the sensitivity analysis results, examining the behavior of key goodness-

of-�t statistics across component numbers. The KS test sensitivity analysis reveals a perfor-

mance trajectory that supports the 8-component selection. Starting from a single-component

performance, the statistic shows improvement through the initial component additions, drop-

ping sharply for two components. The most signi�cant improvement occurs in the 2-6 compo-

nent range, with continued re�nement leading to optimal performance in the 6-10 component

Figure 63 – G41345226...e87bba75907480_iexplore_e06d7363 Sensitivity Analysis of Model Se-
lection Metrics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-

tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy

of simple models. As the number of components increases, the AD statistic transitions to neg-

ative values, indicating an improvement in the model’s ability to represent distribution’s tail

behavior more accurately in multi-component con�gurations.

Information criteria sensitivity analysis reveals the trade-o� inherent in model selection.

The AIC trajectory shows improvement through 3-7 components, followed by a stagnation

due to complexity penalties. The minimum AIC value was observed with 8 components. In

contrast, the BIC analysis, which imposes a stronger penalty for model complexity, follows a

similar initial trend but reaches its minimum around 6-8 components.

Additionally, graphical analyses of mixture model �ts were conducted by inspecting the

best-�tting result according to each individual GoF test. The distributions selected as optimal

by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical �t compared to those chosen by

the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

I.0.0.5 Comparison with Single-Component Models

For comparison, the best-�tting single distribution was the lognormal model, as shown

in Table 64. Although it achieved the best performance among the single-component models

tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-�tting single-component model

among those evaluated, it remains inadequate for representing the complex behavior of time

between failures. These models often fail to capture the underlying structural characteris-

tics that arise from the inherent complexity of TBFs, which can result from multiple factors,

including the diversity of failure causes and variations in workload and operational pro�les.

Goodness-of-�t testing highlights this di�erence in representational adequacy: while the

lognormal distribution yields higher test statistics for the Kolmogorov–Smirnov (KS = 0.134)

and Anderson–Darling (AD = -0.207) tests, indicating inadequacy of the distributional hy-

Table 64 – Mixture vs. Single Distributions: G41...e87bba75907480_iexplore_e06d7363.

GOF Metric Mixture Model (8-comp) Lognormal Simple Distribution

KS / p-value 0.051 / 0.974 0.134 / 0.093
AD / p-value -0.931 / 0.940 -0.207 / 0.451
Log-Likelihood -367.89 -520.78
AIC 783.78 863.04
BIC 841.54 870.26
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pothesis. The mixture model achieves much stronger agreement with the data (KS = 0.051, p

= 0.974; AD = -0.931, p = 0.940).

The information criteria (AIC and BIC) further reinforce the inadequacy of the single dis-

tribution. As the lognormal model, despite its lower complexity, shows substantially higher

AIC (863.04) and BIC (870.26) values compared to the mixture model, further reinforcing its

inadequacy as a representation of the observed TBF behavior.

Figure 64 illustrates the limitations of single-distribution modeling for this failure dataset.

The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero

and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates signi�cant deviations between the theoretical lognor-

mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in

the lower tail region (0-100 hours) where the model underestimates failure probabilities, and

in the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. TheQ-Q plot reveals

Figure 64 – G41345226...bba75907480_iexplore_e06d7363 Single Distribution Model Fit
Demonstrated Through PDF, CDF, P-P and Q-Q Plots.
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more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

I.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating

multiple distribution types and component numbers, a computational cost analysis was con-

ducted. This analysis examines the trade-o�s between model complexity and computational

requirements.

Figure 65 and 66 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across di�erent distribution types and compo-

nent numbers.

Figure 65 presents the computational cost analysis for homogeneousmixturemodels across

varying numbers of components. The analysis reveals distinct computational characteristics

for di�erent distribution families.

Figure 66 extends the analysis to heterogeneous mixture models, where components can

Figure 65 – G41345226...bba75907480_iexplore_e06d7363 Computational Cost Analysis of Ho-
mogeneous Distribution Models with Execution Time, Memory Usage, CPU Uti-
lization and Number of Operations.
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belong to di�erent distribution families. This analysis is particularly relevant for the selected

8-component model, which combines lognormal and normal distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the signi�cant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

Figure 66 – G41345226...bba75907480_iexplore_e06d7363 Computational Cost Analysis of
Heterogeneous Distribution Models with Execution Time, Memory Usage, CPU
Utilization and Number of Operations.
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