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Resumo

Na literatura de confiabilidade de software, em especial na modelagem de tempos de falha,
predominam modelos probabilisticos baseados em distribuicdo tnica. No entanto, tais mode-
los mostram-se limitados diante da complexidade de softwares modernos, caracterizados por
multiplas causas de falha e pela variabilidade em seus perfis operacionais. Embora ampla-
mente utilizados nas fases de desenvolvimento e de teste, os modelos de distribuicao tnica
apresentam desempenho insatisfatério em contextos reais de operacgao, devido as interacdes
com o ambiente operacional, que resultam em uma maior diversidade de padrdes de falha. Este
trabalho investiga a aplicacdo de modelos de mistura a analise de confiabilidade de software
com base em dados reais de operacdo. Essa abordagem permite representar padrdes de tempos
de falha intra e intergrupos, considerando grupos como aproximacdes de diferentes perfis op-
eracionais, bem como a relacdo entre distintas causas de falha. Os resultados obtidos indicam
que os modelos de mistura superam os modelos probabilisticos de distribui¢do Gnica ao mod-
elar a variabilidade dos dados de falha em ambientes reais, além de capturar a influéncia dos

diferentes perfis operacionais sobre os tempos de falha.

Palavras-chave: Confiabilidade de software; modelos de mistura; causas de falha; modelos

probabilisticos; tempos de falha.
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Abstract

In the software reliability literature, particularly in the modeling of failure times, prob-
abilistic models based on a single distribution are predominant. However, such models are
limited when dealing with the complexity of modern software systems, which are character-
ized by multiple failure causes and variability in operational profiles. Although widely used
during development and testing phases, single-distribution models often perform poorly in
real operational contexts due to interactions with the operational environment, which lead
to a greater diversity of failure patterns. This study investigates the application of mixture
models to software reliability analysis based on real operational data. This approach allows
representing intra- and inter-group patterns of time between failures, considering groups as
approximations of different operational profiles, as well as the relationship between distinct
failure causes. The results indicate that mixture models outperform single-distribution prob-
abilistic models by modeling the variability of failure data in real environments and by ac-

counting for the influence of different operational profiles on failure times.

Keywords: Software reliability; mixture models; failure causes; probabilistic models; failure

times.
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CHAPTER ]

Introduction

1.1 Contextualization

Software has become an essential component of modern society, deeply integrated into
various human activities, ranging from routine tasks to highly complex operations. It is dif-
ficult to separate software from everyday life, as the automation and optimization it provides
are crucial for the efficient functioning of multiple sectors. This growing dependence high-
lights the importance of software reliability, especially considering the severe consequences
that failures can have. In such contexts, software failures can lead not only to significant fi-
nancial losses but also pose risks to human safety and lives (MATIAS; OLIVEIRA; ARAUJO,
2013).

Software reliability is defined as the probability of software operating without failure for
a specific period in a given environment (IEEE, 1990). Its definition is conceptually similar
to hardware reliability but presents key differences, while hardware reliability can be quanti-
fied based on physical failure rates and component degradation over time, software failure is
primarily associated with logical and programming faults.

Unlike hardware, software does not suffer from physical wear, instead, failures typically
arise from bugs, design flaws, or improper user interactions (PHAM, 2007). Consequently,
software reliability is not only about preventing failures, but also about ensuring when failures
occur their impact is minimized and the system can recover swiftly and effectively. To achieve
this, software engineers implement testing, continuous validation, and real-time monitoring
techniques, among other practices.

One approach to software reliability is probabilistic modeling of failure events, which ap-
plies mathematical models, such as probability distributions, to describe software failure times
behavior and estimate the likelihood of failures. The premise of this approach is to use his-
torical failure data to predict the probability of future failures (MUSA, 2004) and enabling the
implementation of preventive measures and mitigating potential issues in critical scenarios
(PHAM, 2007).

Numerous analytical models have been proposed to address the quantification of software
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reliability, most of these models estimate software reliability based on failure history, treating
software as a black box (GOKHALE; TRIVEDI, 1999) and assuming a parametric model for
either the time between failures or the number of failures over a finite time interval. Con-
versely, white-box models (PAI, 2013) estimate reliability by representing the structure of the
software, focusing on the operational phase of the software life cycle.

A common assumption in most software reliability models is that failures occur as in-
dependent events (GOSEVA-POPSTOJANOVA; TRIVEDI, 2000). This assumption is made to
simplify mathematical modeling and parameter estimation. However, these assumptions may
not accurately represent actual failure occurrences, potentially leading to incorrect reliability
estimations. To avoid assumptions that may not reflect real-world failure behavior, it is es-
sential to understand how failures occur under real operating conditions. Therefore, failure
data collected during software testing phases may be limited and may not fully represent all
scenarios encountered in a real execution environment.

Furthermore, synthetic data is frequently employed in software reliability studies. Unlike
real-world failure data collected from production environments, synthetic failure event data
is artificially generated based on assumptions about system behavior (BUCAR; NAGODE; FA-
JDIGA, 2004; KUMAR; JAIN; GANGOPADHAY, 2021; WU et al., 2024). While synthetic data
facilitates experimentation in controlled settings, it also has limitations: as models trained on
synthetic data may not accurately reflect the real-world complexity and unpredictability of
operational environments (BIRD et al., 2014).

Many traditional reliability models rely on the assumption that failures arise from a single
underlying cause, and these single-failure-cause models assume homogeneous failure behav-
ior across the system. However, this assumption is often unrealistic for modern software
systems, which tend to experience failures due to diverse and interacting causes. To address
this limitation, mixture models (MCLACHLAN; LEE; RATHNAYAKE, 2019) can be utilized, as
they incorporate multiple probability distributions, and each can represent groups of distinct
failure cause.

Despite their potential, there is a significant gap in the literature regarding the application
of mixture models using real-world operational data for software reliability analysis. This
research aims to explore the applicability of mixture models in software reliability analysis
based on real failure data. The focus is on modeling the reliability of systems with multiple

failure causes, given the complexity and heterogeneity of modern systems.

1.2 Research Relevance

This study contributes to the field of software reliability by exploring how mixture models
can be effectively applied to model real-world Time Between Failures (TBF) data. While pre-
vious researches have largely relied on synthetic datasets or single-distribution models, this

work adopts an empirical approach using real-world failure logs from heterogeneous comput-
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ing environments. The goal is to offer a robust statistical representation of failure behavior in
modern software systems.

Beyond assessing model fit, the research aims to uncover statistical patterns within TBF
data that correspond to failure causes and operational conditions. By analyzing data from
computer groups operating under varying workloads and usage contexts, the study examines
how operational profiles influence the distributional characteristics of failures. Specifically,
this work investigates whether mixture models can reveal hidden structures in the data, such
as clusters of failures with similar statistical signatures, and how these relate to known failure

causes.

1.3 Research Goals

1.3.1 General

The general goal of this research is to investigate whether mixture models can provide
a more robust and flexible representation of software failure behavior, especially in systems

exhibiting multiple failure causes and variability in operational usage.

1.3.2 Specific

To accomplish the general goal, the study is guided by the following specific objectives:

(1 Evaluate whether mixture models provide a better fit for TBF data compared
to single-distribution models: This involves testing a wide range of homogeneous
and heterogeneous mixture configurations using statistical criteria: Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov Test (KS),
Anderson-Darling Test (AD) and graphical validation methods: Quantile-Quantile Plot
(Q-Q Plot), Probability-Probability Plot (P-P Plot), Probability Density Function (PDF)

and Cumulative Distribution Function (CDF).

(d Analyze the influence of operational profiles on TBF patterns: By comparing
computer groups with different workloads and usage contexts, the study will assess
how operational characteristics affect the shape, scale, and composition of failure dis-

tributions.

(J Identify statistical patterns associated with different failure causes: This includes
determining whether specific causes of failure (access violation, heap corruption, priv-
ileged instruction violation, unhandled C++ exception) are associated with recurring

distributional behaviors within the mixture models.

(d Determine the ability of mixture models to detect and represent failure sub-

groups in the data: This study applies clustering algorithms (Gaussian Mixture Model
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(GMM), Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN),
K-Means, Fuzzy C-Means) alongside mixture model analysis to uncover internal struc-

ture and potential failure subgroups within the datasets.

(1 Identify the most suitable distribution combinations for modeling software fail-
ure data: The study will map which distributions (Exponential, Normal, Lognormal,

Weibull and Gamma) are most commonly selected in the best-fitting models.

1.3.3 Research Development

This research aims to explore and understand patterns of software failures, particularly in
systems affected by multiple underlying failure causes. Emphasis is placed on identifying and
characterizing distinct failure causes through the analysis of real-world failure data collected
from software applications.

By analyzing failures occurring in actual operational environments, this research provides
empirical insights into how heterogeneous failure behavior emerges in practice. The findings
can enhance the understanding of software reliability under real conditions and demonstrate

the capability of mixture models to capture the behavior of software failure data.

1.3.4 Literature Review

A literature review on software reliability was carried out to establish the theoretical
foundation for this research. The search process aimed to identify relevant studies on the
topic without imposing restrictions on publication dates. Key sources included books, peer-
reviewed journal articles, and conference proceedings published in reputable scientific venues.
These materials were accessed primarily through digital libraries and academic search engines,

such as Google Scholar.

1.3.5 Material

The dataset comprises failure logs from applications running on Microsoft Windows 7
(Win7), gathered from four distinct workplaces. In total, 40,095 failure records were collected
from 660 computers operating in various contexts, including academic institutions, corporate
settings, and personal/home use. This diversity supports a comprehensive assessment of soft-
ware failure patterns under different operational conditions.

A detailed description of the dataset is provided in Chapter 3.

1.3.6 Methods

This study applied statistical modeling using continuous probability distributions to esti-
mate mixture models for TBF in order to account for heterogeneous failure behaviors through

the composition of distribution models.
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The dataset comprised real-world software failure records, including computer identifiers
and timestamps of each occurrence, which enabled the calculation of TBFs used for reliability
modeling (SANTOS; MATIAS, 2018). As a first step, outlier detection and removal techniques
were applied to minimize the impact of extreme and invalid values on the analysis.

Following data processing, the Expectation-Maximization (EM) algorithm, as described in
(MCLACHLAN; LEE; RATHNAYAKE, 2019), was applied to estimate the parameters of vari-
ous probability density functions. The EM algorithm is well-suited for handling incomplete
data and fitting mixture models. The study considered widely used distributions in reliability
engineering, such as the Exponential, Normal, Lognormal, Weibull, and Gamma distributions
(KUMAR; JAIN; GANGOPADHAY, 2021).

Mixture models combines different probability density functions, varying both the types
and number of components in each fitting. Model adequacy was assessed through both quan-
titative (goodness-of-fit tests) and qualitative (graphical analysis) techniques. These included
histograms, comparisons between empirical and fitted TBF distributions, and probability plots.

For the quantitative evaluation, numerical methods were used to conduct goodness-of-fit
tests, including the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests, to determine
whether the data followed specific theoretical distributions. The Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) were also applied to compare models and iden-
tify the best-fitting configurations. Based on these results, the most appropriate distribution
types and combinations were identified for modeling the failure data.

Additionally, a clustering analysis was conducted to explore the hypothesis that the dataset
includes multiple failure causes, resulting in distinct subgroups (clusters). This step supported
the identification of similar failure behaviors and facilitated the exploration of potential pat-
terns in the data.

Finally, a sensitivity and computational cost analysis was conducted to evaluate how the
number of components in the mixture models influences the results. The goal was to identify

a suitable trade-off between model complexity, goodness-of-fit, and computational cost.

1.4 Document Structure

The chapters of this dissertation are organized as follows:

Chapter 2 presents the theoretical foundation of the study, covering key concepts such as
software reliability, mixture models, and the Expectation-Maximization algorithm.

Chapter 3 details the methods and techniques employed in the research. It describes the
data preparation process, the application of mixture models, and the validation of results,
including goodness-of-fit tests and cluster selection methods. Furthermore, the dataset used
and the computational tools applied are introduced.

Chapter 4 presents and discusses the results obtained throughout the study, including the

fitted mixture models, graphical analyses, identified clusters, and the distributions that best de-
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scribe the time between failures. A comparison of different goodness-of-fit tests is conducted,
and the performance of the models is analyzed in terms of complexity and fit to real-world
data. The relevance of the findings in the context of software reliability is discussed.

Finally, Chapter 5 presents the conclusions of the study, highlighting its contributions to
the software reliability literature, summarizing the key findings, discussing the study limita-

tions, and suggesting directions for future research.
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CHAPTER

Literature Review: Background

2.1 Introduction

This chapter reviews the key concepts and studies relevant to the present research. It
begins with an overview of software reliability, then examines the role of mixture models
in reliability analysis, and subsequently discusses the clustering techniques and the Expecta-

tion-Maximization algorithm employed for parameter estimation in mixture models.

2.2 Software Reliability

The study of software reliability is grounded in a set of fundamental concepts that describe
how systems operate, experience disruptions and recover. Central to reliability analysis are
three related concepts: faults, errors, and failures (AVIZIENIS et al., 2004):

(1 Fault: A fault is the adjudged or hypothesized cause of an error. Faults may be dormant
(inactive) or active, and their activation can propagate through the system, potentially

resulting in failures.

(d Error: An error is the system state that may lead to a subsequent failure. It represents

the internal manifestation of a fault.

(d Failure: A failure occurs when a delivered service deviates from its correct service. This
deviation can stem from non-compliance with the functional specification or deficien-

cies within the specification itself.

Software reliability is defined as the probability that software will operate without failure
for a specified period under given environmental conditions (IEEE, 1990). This probabilistic
definition captures key aspects essential to build dependable software systems (MUSA, 2004).

The stochastic nature of software reliability reflects uncertainties in both software be-

havior and operational usage patterns (GOEL, 1985). A failure is said to occur when software
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behavior deviates unacceptably from its specified requirements (MUSA, 1979), with faults rep-
resenting the underlying defects that trigger these failures (OHBA, 1984).

The surrounding environment, such as: hardware platforms, operating systems, and user
behavior, directly affects the reliability of a system (GOEL, 1985). In this context, the oper-
ational profile, which characterizes expected usage scenarios, becomes a critical factor for
accurate reliability assessment (GOKHALE; TRIVEDI, 1999).

During the operational phase, a system interacts continuously with its environment, which
includes physical conditions, users, administrators, service providers, infrastructure elements,
and even potential intruders. Maintenance during this phase involves not only correcting
faults but also adapting the system to meet changing requirements and environmental condi-
tions. The integration of off-the-shelf (OTS) components introduces additional complexities
and challenges (AVIZIENIS et al., 2004).

Unlike physical systems, software does not deteriorate with use, faults, once corrected,
generally remain fixed permanently (MUSA, 1979). However, software may become obsolete
due to evolving user needs, hardware changes, or shifts in the technological landscape (LYU,
2007). Measuring and quantifying software reliability is essential throughout the software
development lifecycle (MUSA, 1979).

As society becomes increasingly dependent on software systems, the importance of soft-
ware reliability has grown substantially. From communication networks and transportation
systems to medical devices and critical infrastructure, software failures can range from minor
disruptions to catastrophic events including threats to human safety (MATIAS et al., 2014).

The economic impact of software usage is also significant, improving reliability can reduce
development and maintenance costs, increase product value, and improve user satisfaction (LI
et al., 2008). Conversely, poor reliability can lead to reputation damage, revenue loss, and
possible legal consequences (LYU, 2007). As hardware reliability has advanced considerably,
software is now often the primary limiting factor in overall system dependability (KEENE;
LANE, 1992).

The increasing complexity and inter-connectivity of software systems raise the likelihood
of failure and make fault isolation more difficult (MATIAS et al., 2014). For project managers,
reliability metrics are crucial for decision-making, enabling better scheduling, progress track-
ing, and release planning (MUSA, 1979), while helping balance the costs of testing with the
benefits of reliability improvement (GOEL, 1985).

Despite its critical role, software reliability remains difficult to measure and predict. Tra-
ditional reliability models often produce optimistic estimates, largely due to assumptions such
as accurate operational profiles and exhaustive testing coverage (GOKHALE; TRIVEDI, 1999).
Many residual faults remain latent, only surfacing under rare or unforeseen operating condi-
tions, which makes them particularly challenging to detect and eliminate (AVIZIENIS et al.,
2004).

To support reliability modeling and analysis, a set of standard metrics is widely used. These
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metrics are used to analyze the system behavior across the software lifecycle:

(1 Time Between Failures (TBF): The elapsed time between two consecutive failures,

offering a basic measure of system reliability.

(d Mean Time To Failure (MTTF): The expected operational time before a failure occurs,

typically derived from the reliability function R(t).

(d Mean Time Between Failures (MTBF): The average time between failures in a re-
pairable system, calculated as MTBF = MTTF + MTTR.

(1 Mean Time To Repair (MTTR): The average time required to restore a failed system

to operational condition.

[ Reliability R(t): The probability that the system will operate without failure over a

time interval ¢.

[ Unreliability F'(t) = 1 — R(t): The probability that the system will experience at least

one failure within time ¢.

[ Failure Rate \(¢): The instantaneous rate of failure at time ¢, conditional on the system

operating up to that point.

1 Bx Life: The time by which 2% of systems are expected to have failed, used to define
reliability thresholds (e.g., B10 life).

1 Reliable Time ¢(R): The time interval during which the system maintains a specified

level of reliability R.

While traditional models play an important role in software reliability engineering, they
often rely on idealized assumptions, such as perfect fault removal, fault independence, and sta-
ble operational profiles, that rarely hold in real-world scenarios (GOEL, 1985). As a result, these
models frequently face limitations in their predictive power across diverse software develop-
ment contexts. Such limitations stem from their dependency on specific assumptions about the
development environment and the nature of software failures (BLOSTEIN; MILJKOVIC, 2019).

Consequently, a model that performs well for one dataset might be ineffective for another.

2.3 Mixture Models

Mixture models are a probabilistic tool designed to represent the presence of subpopu-
lations within an overall population. They are useful when observations of a random vari-
able arise from multiple underlying conditions or sources (ELMAHDY; ABOUTAHOUN, 2013).
This section discusses the fundamental aspects, mathematical formulation, components, pa-

rameter estimation methods and applications of mixture models in the context of reliability.
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Mixture models are effective for describing heterogeneous populations that can be decom-
posed into a finite number of more homogeneous subpopulations (ELMAHDY, 2017). In the
context of this work, the assumption is that heterogeneity is linked to diverse failure causes
and operational characteristics, such as workload intensity. By using mixture models, each
latent subpopulation can be represented by a distinct probability distribution, capturing the
diversity in failure behavior.

In reliability analysis, the failure of components or systems can occur through multiple
distinct failure causes. A mixture of Weibull distributions, for example, is suitable for such
scenarios, since failure causes may follow different statistical distributions (ELMAHDY, 2015).

Mixture models are a combination of several probability distributions. Therefore, under-
standing the components of a mixture model is essential for interpreting its structure and

behavior:

(d Subpopulations or Components: These are the individual distributions being com-
bined, such as Weibull, Lognormal or Exponential distributions. Components can be of
the same type or of different types. For example, in a sample of failure times, two or
more subpopulations may be present due to different failure causes. Each failure cause
can be responsible for generating a distinct subgroup of failure times. The same applies

to failure type, operational profile, and other influential factors.

J Mixing Weights (or Proportions): Represented by p; or w;, these values indicate the
proportion of each subpopulation within the mixture. They are positive and must sum

to 1.

(d Parameters: Each subpopulation has its specific parameters (e.g., shape and scale for
Weibull, mean and variance for Normal distributions). The complete parameter vector
for a mixture model includes both the parameters of each subpopulation and the mixing

weights.

A general k-fold mixture model involves k subpopulations. The cumulative distribution

function (CDF) of the overall mixture model is given by:

61 = B (1)

where Fj(t) is the CDF of the j-th subpopulation, and p; is the mixing probability (or weight)
of the j-th subpopulation, with p; > 0 and ZJK:1 pj = 1.

The probability density function (PDF) of a mixture model is expressed as:

g(t) = Z:pjfj(t% (2)

where f;(t) is the PDF associated with the j-th subpopulation. Specifically, for a two-component

mixture model, the PDF becomes:
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f(t) =whi(t) + (1 —w)fa(t), (3)

The reliability function R(t) for an m-fold mixture model can be expressed as:

R(t) = iﬁiRz‘(t) (4)

where ; represents the mixing proportion of the i-th component, and R;(t) is the reliability
function corresponding to the i-th distribution in the mixture, and m denotes the total number
of component distributions included in the mixture model. The overall reliability function R(t)
is thus the weighted sum of the component reliability functions.

Estimating the parameters of a mixture model is a fundamental step that directly influences
model performance, and several techniques are available for this purpose, the most commons

are:

(1 Maximum Likelihood Estimation (MLE): MLE seeks to find the parameter values
that maximize the likelihood of the observed data (ELMAHDY, 2015; RAZALI; SALIH,
2009; ZHAO; STEFFEY, 2013; ELMAHDY; ABOUTAHOUN, 2013; RUHI; SARKER; KARIM,
2015).

1 Expectation-Maximization (EM) Algorithm: The EM algorithm is an iterative pro-
cedure commonly used for mixture models, in which the subpopulation identity of each
observation is treated as missing data. It alternates between an expectation (E) step and a
maximization (M) step to refine the parameter estimates. (BLOSTEIN; MILJKOVIC, 2019;
ELMAHDY, 2015; RAZALIL SALIH, 2009; ZHAO; STEFFEY, 2013; ELMAHDY; ABOUTA-
HOUN, 2013; RUHI; SARKER; KARIM, 2015).

Mixture models are considered robust tools in data analysis due to their capacity to ac-
commodate various data complexities. Unlike traditional single-distributions, mixture models
can represent data arising from multiple sources, making them suitable for scenarios where
the underlying structure is not homogeneous. Key reasons for employing mixture models in

reliability studies include:

(J Heterogeneous Populations: Many real-world datasets consist of observations from
distinct subpopulations with different characteristics (ELMAHDY, 2017).

(d Multiple Failure Causes: A single distribution is often inadequate to represent multi-
ple failure mechanisms. Mixture models are appropriate for modeling situations involv-
ing early failures and wear-out failures (RAZALI; SALIH, 2009; ELMAHDY, 2015).

1 Improved Model Fit: When a single distribution cannot satisfactorily model the data,
as evidenced by goodness-of-fit tests or deviations on probability plots, a mixture model
often provides a better fit (ZHAO; STEFFEY, 2013; ELMAHDY, 2015).
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(d Modeling Complex Distribution Shapes: Mixture models can represent complex
PDFs and hazard functions (ELMAHDY, 2017; WU et al., 2024).

(d Physical Interpretability: In some cases, each component of a mixture model corre-
sponds to an identifiable physical process or group, offering meaningful insights into
the system under study (ELMAHDY; ABOUTAHOUN, 2013).

(J Handling Complex Reliability Data: When subpopulations cannot be easily sep-
arated due to undocumented changes or unknown factors, mixture models provide a
robust approach to data characterization and prediction (ELMAHDY, 2017).

However, despite their flexibility and modeling power, their use introduces a number of

practical and theoretical challenges that must be considered during implementation:

J Increased Complexity and Number of Parameters: Combining multiple models
inherently increases the number of parameters, making estimation and interpretation
more difficult (BLOSTEIN; MILJKOVIC, 2019).

(d Parameter Estimation Difficulties: Traditional optimization methods, such as New-
ton’s method, may struggle with multi-modal likelihoods, parameter constraints, and
sensitivity to initial values, leading to convergence issues (OKAMURA; MURAYAMA,;
DOHI, 2004). Although the EM algorithm is less sensitive to initial values, it gener-
ally converges slowly and requires careful determination of a stopping criterion (OKA-
MURA; WATANABE; DOHI, 2002).

1 Selection of Component Models or Distributions: Choosing suitable base distribu-
tions is critical. Inappropriate selection can degrade predictive performance, and often

there is no clear theoretical guideline for selection, making it a largely empirical process
(BLOSTEIN; MILJKOVIC, 2019).

(d Data Requirements: Insufficient data can impair model performance and result in
unreliable predictions (BLOSTEIN; MILJKOVIC, 2019).

(d Practical Implementation and Acceptance: The increased sophistication of mixture
models and associated estimation algorithms can hinder their adoption among practi-
tioners accustomed to simpler models (OKAMURA; DOHI, 2021).

(J Interpretation of Results: Interpreting the output of a mixture model can be more
complex compared to a single model (BLOSTEIN; MILJKOVIC, 2019).

Mixture models represent an interesting approach for modeling failure data in reliability
analysis. Their capacity to account for multiple failure mechanisms makes them suitable for

complex datasets. However, the associated computational cost and model selection decisions
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must be addressed carefully. The following section introduces clustering methods, which pro-
vide an alternative strategy for uncovering latent subpopulations in data without relying on

predefined distributions assumptions.

2.4 Clustering Methods

Clustering is a process of organizing a collection of patterns into clusters based on their
similarity. The main objective of clustering, also referred to as cluster analysis, is to discover
the natural groupings of a set of patterns, points, or objects (JAIN; MURTY; FLYNN, 1999).

The primary goal of clustering is to uncover the inherent structure within data, making
it inherently exploratory in nature (JAIN, 2010). Ideally, patterns within a valid cluster are
more similar to each other than to patterns belonging to different clusters. An operational
definition of clustering is to partition data into K groups based on a measure of similarity,
such that similarities among objects within the same group are maximized, while similarities
between objects in different groups are minimized (JAIN, 2010).

Clustering is a form of unsupervised learning, meaning that it operates on unlabeled data.
Unlike supervised classification, clustering does not utilize prior category labels, rather, the
groupings are derived directly from the data itself (JAIN; MURTY; FLYNN, 1999; JAIN, 2010).

Clustering algorithms can produce different partitions depending on the criterion used.
Because the true structure is often unknown, evaluation techniques must be applied. They
categorize cluster validity approaches into three main types (HALKIDI; BATISTAKIS; VAZIR-
GIANNIS, 2001):

(d External criteria: Compare clustering outcomes to known ground truth or labeled
data.

(J Internal criteria: Assess the quality of clustering based solely on intrinsic properties

of the data, such as cohesion and separation.

(d Relative criteria: Evaluate and compare multiple clustering results using validity in-

dices to determine the best configuration.

Mixture modeling plays a role in model-based clustering approaches (MEILA; HECKER-
MAN, 2001). In this framework, it is assumed that data points are generated from a mix-
ture of several probability distributions, each representing a different cluster or subpopulation
(MENARDI, 2011). The overall population density, f(x), is modeled as the sum of the densities
of these individual components, f,,(x), weighted by their corresponding mixing proportions
Tm (MENARDI, 2011). Key aspects of mixture modeling include:

(d Representation of Clusters: Each cluster corresponds to a component in the mixture
model (BAUDRY et al., 2010).
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(d Parameter Estimation: Parameters of the mixture components (e.g., means, variances)
and their mixing proportions are estimated from the data. A widely used method for this

estimation is the Expectation-Maximization algorithm (MENARDI, 2011).

(J Determining the Number of Clusters: Model selection criteria such as the Bayesian
Information Criterion (BAUDRY et al., 2010) and the Akaike Information Criterion (JAIN,
2010) are typically employed to select the optimal number of mixture components, thus

determining the number of clusters.

(d Relationship to Density-Based Clustering: Mixture modeling is a subclass of density-
based clustering approaches (MENARDI, 2011). Clusters are identified as high-density
regions in the data space, implicitly defined by the components of the mixture model
(HARTIGAN, 1985).

2.4.1 K-Means Clustering

The k-means algorithm is one of the most widely used partitional clustering algorithm. It
partitions a set of n data points into K clusters, where K is a user-specified parameter. The ob-
jective is to minimize the squared error between the empirical mean (centroid) of a cluster and
the points assigned to that cluster (CELEBL; KINGRAVI; VELA, 2013). This minimization seeks
to produce compact and well-separated clusters. The general steps of the k-means algorithm

are as follows:

(J Initialization: The algorithm begins by selecting K initial cluster centers. Several ini-
tialization methods exists, including:
— Choosing the first K points from the dataset (sensitive to the order of the data).
- Randomly selecting K points from the dataset (common practice is to run multiple

times to mitigate randomness).

(d Assignment: Each data point is assigned to the nearest cluster center, usually using the

Euclidean distance as the distance metric.

(d Update: The centroids of the clusters are updated by computing the mean of all points

assigned to each cluster.

(d Iteration: Steps of assignment and update are repeated until a stopping criterion is met.
Typical stopping conditions include:
- No significant change in cluster assignments between iterations.

— The relative improvement in the Sum of Squared Errors (SSE) falls below a thresh-
old.

— A maximum number of iterations is reached.
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A notable challenge with k-means is its sensitivity to the initial cluster center placements,
different initializations can lead to distinct final clusterings and to suboptimal solutions. There-
fore, it is common practice to perform multiple runs with different random initializations and
select the result with the lowest SSE (CELEBI; KINGRAVI; VELA, 2013). In addition to algo-
rithmic strategies, assessing the quality of clustering and selecting the appropriate number of
clusters remain central concerns.

These considerations highlight the complexity nature of clustering analysis, the selection
of an appropriate algorithm and validation method must be aligned with the data charac-
teristics and the analytical objectives. Since clustering often serves as a step for subsequent
modeling techniques, it is necessary to address its limitations. One such technique that builds
upon clustering concepts while addressing its limitations is the Expectation-Maximization al-

gorithm, which is explored in the following section.

2.5 Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm is an iterative technique for finding the
maximum-likelihood estimate of the parameters of an underlying distribution from a given
dataset, particularly when the data is incomplete or contains missing values (BILMES et al.,

1998). Two primary applications of EM are distinguished in the literature:

(J Handling Missing Data: EM is particularly effective when datasets suffer from missing
values. Applications include missing output data in dynamic model identification, cen-
sored or truncated data, and multivariate datasets with partially missing observations
(MCLACHLAN; KRISHNAN, 2008).

(J Dealing with Hidden Variables: EM simplifies the likelihood function by assuming
the existence of hidden (latent) variables (BILMES et al., 1998).

The EM algorithm operates through an iterative process composed of two fundamental
steps, which alternate until the algorithm reaches convergence. Each iteration involves first
estimating the hidden components of the data and then updating the model parameters ac-

cordingly. These steps are described as follows:

1. Expectation Step (E-step): Given the observed data and the current parameter esti-
mates #(™), the E-step computes the conditional expectation of the complete-data log-
likelihood:

Q010%™ = Exjy—y g0m [log p(X10)]; (5)
where Y represents the observed (incomplete) data, X the complete data (observed plus
missing or hidden data), and 6 the parameters to be estimated. The E-step fills in the

missing data by their conditional expectations given the observed data and current pa-
rameter estimates (MCLACHLAN; KRISHNAN, 2008).
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2. Maximization Step (M-step): In this step, the parameters are updated by maximizing
the Q)-function:
(m+1) _ (m)
0 arg max ((0]6"™). (6)

The M-step treats the conditional expectations from the E-step as known data and up-
dates the model parameters accordingly (MCLACHLAN; KRISHNAN, 2008).

The E and M steps are repeated until convergence is achieved, typically when the changes
in parameter estimates fall below a predefined threshold. The EM algorithm offers a range of

features that contribute to its widespread use in statistical modeling, such as:

(J Monotonic Convergence: The observed-data likelihood is guaranteed to increase or
stay constant with each iteration, ensuring monotonic convergence (MCLACHLAN; KR-
ISHNAN, 2008).

(d Numerical Stability: EM is recognized for its stable numerical behavior (MCLACH-
LAN; KRISHNAN, 2008).

J Handling Incomplete Data: EM provides a principled and robust framework for pa-
rameter estimation in the presence of missing or hidden data (BILMES et al., 1998).

(d Robustness Against Outliers: The E-step integrates missing data, leading to more
robust parameter estimates even in the presence of outliers (SAMMAKNEJAD; ZHAO;
HUANG, 2019).

Despite its advantages, the EM algorithm comes with important limitations that must be
considered when applying it to solving problems. Among the most commonly cited drawbacks

are:

(1 Slow Convergence: EM may converge slowly, especially near saddle points or flat
regions of the likelihood surface (MCLACHLAN; KRISHNAN, 2008).

(J Sensitivity to Initialization: The final solution heavily depends on the initial parame-
ter values. Poor initialization can lead EM to converge to local rather than global optima
(SAMMAKNEJAD; ZHAO; HUANG, 2019; MICHAEL; MELNYKOV, 2016). Strategies
such as random starts, k-means clustering, and model averaging have been proposed to
mitigate this issue (PANIC; KLEMENC; NAGODE, 2020).

(d Local Optima: EM is only guaranteed to converge to a stationary point, which might
be a local maximum or even a saddle point, not necessarily the global maximum (WU,
1983).

(d Intractable Steps: For certain complex incomplete-data problems, either the E-step or

the M-step can become analytically or computationally infeasible (MOON, 1996).
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(d No Direct Standard Errors: The basic EM framework does not inherently provide
standard errors for the parameter estimates. Additional methods such as numerical dif-
ferentiation can be used to estimate them (MCLACHLAN; KRISHNAN, 2008).

(d Computational Cost: As the size and dimensionality of datasets increase, the com-
putational demands of EM can become significant (SAMMAKNEJAD; ZHAO; HUANG,
2019; ZHANG; ZHANG; YI, 2004).

1 Specifying Model Complexity: In mixture modeling applications, the number of com-
ponents must be specified beforehand. An incorrect choice can degrade model perfor-
mance (PANIC; KLEMENC; NAGODE, 2020).

The EM algorithm guarantees improvement of the likelihood function under certain con-
ditions, with each iteration ensuring that the likelihood of the model fitting the data increases
or remains constant (GUPTA; CHEN et al.,, 2011). However, it does not ensure convergence
to a global optimum. The likelihood surface contains multiple local maxima where EM can
become trapped depending on the initial parameters.

The inherent sensitivity to initialization of the EM algorithm, selecting suitable starting
values constitutes a critical step in ensuring robust and efficient performance (MICHAEL;
MELNYKOV, 2016; PANIC; KLEMENC; NAGODE, 2020). Several strategies have been pro-
posed to address this challenge, including random restarts and short preliminary runs of EM
itself. Among these approaches, the latter has demonstrated particular promise due to its ef-
fectiveness in avoiding local maxima. Although no universally optimal method exists, studies
suggest that designed initialization can improve convergence speed and likelihood maximiza-
tion, especially in high-dimensional or overlapping cluster settings (BIERNACKI; CELEUX;
GOVAERT, 2003; MELNYKOV; MELNYKOV, 2012).

With the key aspects of the EM algorithm established, the focus now shifts to assessing
the adequacy of the fitted models. The next section introduces Goodness-of-Fit (GoF) tests and
graphical analysis for distribution assessment, which serve as tools for evaluating how well

statistical models capture the underlying structure of the observed data.

2.6 Goodness-of-Fit Tests and Graphical Analysis

Evaluating how well a statistical model represents observed data is a fundamental task
in data analysis. In this context, Goodness-of-Fit (GoF) tests and graphical methods play a
central role by providing formal and visual means to assess the adequacy of a hypothesized
distribution.

At the core of distributional analysis are the Probability Density Function (PDF) and the
Cumulative Distribution Function (CDF). The PDF describes the relative likelihood of a con-
tinuous random variable assuming a specific value, with the total area under the curve repre-
senting the probability over an interval (ANDERSON, 2011). The CDF is defined as:
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F(z)=P(X <x), (7)

expresses the probability that a random variable X takes on a value less than or equal to x.
CDFs are particularly important in GoF testing, where comparisons are often made between
empirical and theoretical CDFs.

Graphical techniques, such as quantile-quantile plots and probability-probability plots, of-
fer visual diagnostics for assessing distributional assumptions. Q-Q plots are useful for de-
tecting discrepancies in the tails of a distribution. In contrast, P-P plots emphasize differ-
ences in the central portion of the distribution, making them suitable for assessing overall fit
(GNANADESIKAN; WILK, 1968).

Goodness-of-Fit tests are statistical procedures designed to determine whether a sample
originates from a specified theoretical distribution (ANDERSON, 2011). These tests compare
the empirical distribution function (EDF), a step function derived from the sample data, with
the cumulative distribution function of the hypothesized distribution. The extent of deviation
between the two functions forms the basis for computing test statistics.

By quantifying the distance between observed and expected values, GoF tests assist in
identifying departures from the hypothesized model, guiding model refinement and selection
(ANDERSON, 2011; GNANADESIKAN; WILK, 1968). Several GoF tests and model selection

criteria are widely used in practice:

(d Anderson-Darling (AD) Test: A non-parametric test that gives more weight to the
tails of the distribution, making it particularly effective in detecting tail discrepancies. It
is suitable for comparing a sample with a continuous distribution or testing homogeneity
across multiple samples (SCHOLZ; STEPHENS, 1987; RAZALI; WAH et al., 2011).

J Kolmogorov-Smirnov (KS) Test: Another non-parametric test that measures the max-
imum distance between the empirical and theoretical CDFs (BERGER; ZHOU, 2014). The

KS test is sensitive to deviations anywhere along the distribution.

(1 Akaike Information Criterion (AIC): A model selection criterion based on informa-

tion theory. It penalizes model complexity to avoid overfitting and is defined as:

AIC = —2 x log(likelihood) + 2K, (8)

where K is the number of model parameters. Lower AIC values indicate better trade-offs
between goodness-of-fit and simplicity (GERNAND; FENSKE, 2009).

(J Bayesian Information Criterion (BIC): Similar to AIC but includes a stronger penalty

for model complexity that increases with sample size:

BIC = —2 x log(likelihood) + K x log(n), )
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where n is the sample size. BIC tends to favor simpler models and is consistent under
large samples when the true model is among the candidates (GERNAND; FENSKE, 2009).

It is important to clarify that the classical Anderson-Darling statistic (A?) is, by defi-
nition, non-negative (42 > 0). However, in this study, the implementation provided by
the scipy.stats.anderson_ksamp function was employed for multi-sample comparisons.
This function does not return the traditional A? statistic. Instead, it outputs a standardized
and transformed test statistic whose value may be either positive or negative, as explicitly
documented in the SciPy library.

In this context, negative values do not indicate an error or invalid result. Rather, the sign
of the statistic conveys information about the direction of the deviation between the com-
pared distributions. Specifically, negative values may indicate a relatively better agreement
among the samples in a given direction, whereas positive values suggest greater divergence.
Therefore, the occurrence of negative Anderson-Darling statistics in the reported results is a
consequence of the adopted implementation and does not contradict the theoretical properties
of the classical Anderson-Darling test.

The assessment of distributional assumptions requires a combination of graphical diag-
nostic tools and formal statistical tests. Although graphical tools such as histograms, Q-Q
plots, and P-P plots are inherently subjective, they provide valuable insight into the distribu-
tional characteristics of the data. Figure 1 shows a goodness-of-fit analysis of a synthetic data
sample, which includes multiple diagnostic approaches to evaluate the adequacy of the fitted
exponential distribution.

The histogram (upper left panel) provides a visual summary of the data’s frequency distri-
bution overlaid with the theoretical probability density function (PDF) of the fitted exponential
distribution. The shape of the histogram allows identification of key features, such as skew-
ness, the presence of multiple modes, or heavy tails. In this analysis, the histogram suggests
a positively skewed distribution, consistent with exponential behavior. The close alignment
between the empirical histogram and the theoretical PDF (orange dashed line) provides initial
visual evidence supporting the exponential model assumption.

The empirical versus theoretical CDF comparison (upper right panel) displays both the
empirical cumulative distribution function (blue line with circles) and the theoretical CDF
(orange line with crosses). This plot allows for the assessment of distributional fit across the
entire range of the data. Good model fit is indicated by close alignment between the two
curves. Any systematic deviations suggest areas where the theoretical model fails to capture
the data characteristics adequately.

The P-P plot (lower left panel) compares empirical probabilities against theoretical proba-
bilities by plotting the empirical CDF values against the corresponding theoretical CDF values.
Under perfect distributional fit, all points would lie exactly on the 45-degree reference line (or-

ange dashed line). Deviations from this line indicate areas of poor fit.
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The Q-Q plot (lower right panel) compares empirical quantiles against theoretical quan-
tiles. This plot is particularly sensitive to departures in the tails of the distribution. Points
lying on the 45-degree line indicate good distributional fit, while departures reveal specific
areas of model inadequacy.

In contrast to graphical tools, formal GoF tests provide statistical criteria for decision-
making, using significance thresholds and test statistics (RAZALL; WAH et al., 2011). These
tests evaluate the null hypothesis that the data follows the specified theoretical distribution
against the alternative hypothesis that it does not.

The null hypothesis (H)) states that the observed data follows the fitted exponential distri-
bution, while the alternative hypothesis () states that the data does not follow this distribu-
tion. The decision rule is based on comparing the calculated test statistic with critical values

or p-values against a predetermined significance level, typically a = 0.05 (5%).
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(d P-value interpretation: If p > 0.05, we fail to reject Hj, suggesting that the data
is consistent with the theoretical distribution. If p < 0.05, we reject H, indicating

significant departure from the assumed distribution.

Table 1 summarizes the goodness-of-fit test results for the exponential distribution fit.
And to facilitate the interpretation of the results reported in Table 1, the main goodness-of-fit
criteria employed in this analysis are briefly described below, along with their respective roles

in assessing model adequacy.

(1 Akaike Information Criterion (AIC): Balances model fit and complexity. Lower val-
ues indicate a preferable trade-off between goodness-of-fit and parsimony when com-

paring alternative models.

(d Bayesian Information Criterion (BIC): Similar to AIC but imposes a stronger penalty

on model complexity. As with AIC, lower values are preferred.

J Kolmogorov-Smirnov Test: Assesses the maximum distance between the empiri-
cal and theoretical cumulative distribution functions. The test statistic of 0.0639 with
p = 0.7849 > 0.05 indicates no statistically significant deviation from the exponential

distribution.

(d Anderson-Darling Test: Places greater emphasis on discrepancies in the distribution
tails. The obtained statistic of 0.3192 with p = 0.5344 > 0.05 also supports the adequacy

of the exponential model.

Together, the graphical tools complement formal goodness-of-fit tests by providing visual
evidence of model adequacy. While histograms highlight the general shape of the data, Q-Q
and P-P plots pinpoint specific areas of agreement or departure from the theoretical distri-
bution. When used alongside statistical tests, these plots support a robust evaluation of the
chosen model, ensuring that both visual and quantitative criteria are considered.

This background chapter has established the theoretical foundations necessary to support
the methodology adopted in this dissertation. Building upon these concepts, the next chapter
shifts the focus to the existing literature by reviewing previous studies on software reliability
modeling, failure data analysis and related methodological approaches. This review enables
the positioning of the present work within the broader literature and highlights its contribu-

tions in relation to prior research.

Table 1 — Goodness-of-fit Test Results for Exponential Distribution.

Criterion Value Interpretation Decision Threshold
AIC 563.60 Lower is better - -
BIC 566.21 Lower is better - -

Kolmogorov-Smirnov 0.0639 p = 0.7849 Fail to reject Hy p > 0.05
Anderson-Darling 0.3192 p = 0.5344 Fail to reject Hy p > 0.05
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CHAPTER 3

Literature Review: Related Works

This chapter presents a review of related works relevant to software reliability analysis
and failure modeling. It examines previous studies that employ statistical methods, clustering
techniques and mixture models for the analysis of software failure data. The chapter aims to
identify the main methodologies and limitations reported in the literature. By analyzing these
works, this chapter establishes the research gap that motivates the methodology proposed in
this dissertation and clarifies the originality and relevance of the present study.

The field of software reliability has been adopting statistical modeling techniques aimed
at capturing the complex nature of failure behaviors in software systems. Among these tech-
niques, mixture models have gained prominence due to their capacity to accommodate multi-
modal and non-homogeneous failure distributions. Several studies have proposed variations
of mixture-based approaches, whether through the combination of different distributions and
the use of clustering algorithms to enhance fault detection.

As shown in Table 2, prior research has explored modeling strategies, such as the use
of Weibull and Lognormal distributions in manufacturing systems (VINEYARD; AMOAKO-
GYAMPAH; MEREDITH, 1999), the application of lognormal reliability growth models (MULLEN,
1998), or the integration of probabilistic methods into classical software reliability growth
models (SRGMs) (PHAM, 2003; OKAMURA; WATANABE; DOHI, 2002). More recent researches
have also incorporated clustering techniques for failure pattern detection (ZHONG; KHOSH-
GOFTAAR; SELIYA, 2004; CAI; ZHAO; ZHU, 2020) and real-world failure pattern analysis in
large-scale systems (SCHROEDER; GIBSON, 2009; SANTOS; MATIAS, 2018).

In contrast to prior studies that primarily addressed fault classification, model selection,
or time-to-failure analysis in isolation, the present work proposes an explicit modeling of
TBF distributions using both homogeneous and heterogeneous mixtures, combined with un-
supervised clustering and comprehensive model validation metrics. Moreover, the integration
of clustering algorithms with mixture model fitting enables the identification of latent struc-
tures in failure patterns, while sensitivity and computational cost analyses provide insight into

model complexity trade-offs.
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Table 2 — Comparison of Related Studies on Software Reli-

ability.

Study

Differences

Similarities

(MULLEN, 1998)

Proposes a software reliabil-
ity growth model based on
the lognormal distribution
(LNET), which

alternative to

offers an
traditional
SRGMs

and accounts for variability

exponential-based

in fault detection times.

Emphasizes the use of sta-
tistical distributions to rep-
resent and analyze software

failure behavior.

(VINEYARD;
AMOAKO-
GYAMPAH;
MEREDITH, 1999)

Conducts an empirical in-
vestigation of Time Between
Failures (TBF) and Time To
Repair (TTR) in flexible man-
ufacturing environments, fo-
cusing on both mechanical

and human-induced failures.

Applies Weibull and Lognor-
mal distributions to model
failure and repair times; em-
phasizes data-driven distri-
bution fitting based on ob-

served operational failures.

(OKAMURA;
WATANABE;
DOHL, 2002)

Introduces a mixed software
reliability model (SRM) that
randomized
ad-

dressing challenges related

incorporates

fault detection rates,

to parameter estimation and
the modeling of complex

failure patterns.

Uses probabilistic modeling
to capture failure dynamics
and stresses the importance
of model adaptability to real-
world variability in failure

rates.

(PHAM, 2003)

Provides an extensive review
of NHPP-based software re-
liability growth models and
associated cost models, inte-
grating considerations of the
software life cycle and re-

lease policies.

Focuses on statistical model-
ing of software failures over

time.

Continued on next page
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Table 2 (continued)

Study

Differences

Similarities

(ZHONG; KHOSH-
GOFTAAR; SELIYA,
2004)

Applies unsupervised clus-
tering algorithms, such as K-
means and Neural-Gas, to
identify fault-prone modules
in software systems without

the need for prior labeling.

Leverages clustering tech-
niques to explore the internal
structure of failure data and
supports fault localization by

uncovering hidden patterns.

(OKAMURA; MU-
RAYAMA; DOHI,
2004)

Develops a unified parameter
estimation method based on
the EM principle for Discrete
SRMs.

Builds

modeling approaches

upon probabilistic
and
maintains  emphasis on
enhancing model gener-
alization to accommodate

different failure behaviors.

(HAMILL; GOSEVA-
POPSTOJANOVA,
2009)

fault
analysis using datasets from
GCC and NASA, focusing on

fault localization frequency

Performs large-scale

and categorization across

diverse software systems.

Uses empirical methods to
assess how faults are dis-
tributed and clustered, pro-
viding insights into common

failure causes across systems.

(SCHROEDER; GIB-
SON, 2009)

Analyzes failure logs from
high-performance comput-
ing (HPC) systems over a
9-year period, with an em-
phasis on hardware-related
and

failures system-level

behavior.

Applies statistical distribu-
tion fitting (Weibull, Gamma)
to model TBF and TTR, and
critiques the inadequacy of
simple exponential models in
representing real-world reli-

ability data.

(WANG; KHOSH-
GOFTAAR;
NAPOLITANO,
2010)

Investigates ensemble-based
feature selection techniques
for software defect predic-
tion, testing combinations of
17 ranking algorithms to im-

prove classifier performance.

Applies statistical and en-
semble learning techniques
to enhance the accuracy of
fault prediction models based

on source code metrics.

Continued on next page
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Table 2 (continued)

Study

Differences

Similarities

(WANG et al., 2011)

Explores the optimal number
of software metrics required
for effective defect predic-
tion, using a threshold-based
feature selection approach
to balance model complexity

and performance.

Emphasizes the role of sta-
tistical analysis in selecting
relevant features for improv-
ing the classification of fault-

prone modules.

(DIGIUSEPPE;
JONES, 2012)

Investigates how multiple

faults may interact and

violate common assump-
tions in failure clustering
approaches,

challenging

traditional views on failure

Concentrates on the use of
clustering to analyze and
model failure behavior, high-
lighting the complexity of

real-world failure patterns.

MILJKOVIC, 2019)

model to fit left-truncated
loss data, using combinations
of the Gamma, Lognormal,
and Weibull distributions.

independence.

(SANTOS; MATIAS, | Focuses on identifying pat- | Utilizes real-world failure

2018) terns of operating system- | logs to uncover failure
level failures that span | dependencies and recur-
user-space and kernel-space | rent behaviors, supporting
components, leveraging | pattern-based failure model-
event correlation and pattern | ing.
discovery techniques.

(BLOSTEIN; Proposes a finite mixture | Aims to improve model se-

lection and prediction accu-
racy by using a flexible mix-
ture framework that captures

multiple failure behaviors.

(CAL; ZHAO; ZHU,
2020)

Develops a real-time relia-
bility estimation method for
mechanical systems using K-

means clustering and spline

interpolation,  particularly
suitable for limited data
environments.

Applies clustering to inter-
pret system performance
data and emphasizes meth-
ods that remain -effective

even with data scarcity.

Continued on next page
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Table 2 (continued)

Differences

Similarities

Evaluates the performance of
various NHPP-based SRMs
with different underlying sta-
tistical distributions, aiming
to enhance modeling preci-

sion and applicability.

Incorporates mixture model-
ing principles and addresses
the importance of distribu-
tional diversity in capturing

real-world failure behavior.

Study

(OKAMURA; DOHI,
2021)

(KUMAR; JAIN,
2023)

Focuses on the development
of heterogeneous mixture
models combining Weibull,
Lognormal, and Gompertz
distributions, and employs
an Artificial Neural Network
to compare numerical re-
sults for software reliability

indices.

Shares the use of Weibull
and Lognormal distributions
and both homogeneous and
heterogeneous mixture mod-
els. Promotes the use of mix-
ture models (homogeneous
and heterogeneous) to im-
prove fit and representation
of failure data, acknowledg-
ing the limitations of mod-
els based on a single distribu-

tion.

While previous studies have made significant advancements in software reliability model-

ing using mixture approaches, this work introduces several improvements that distinguish it

from the existing literature. The main contributions of this research are as follows:

(d TBF Centric Modeling Perspective: Rather than relying on cumulative failure curves,

this work centers on the statistical modeling of TBFs, providing a more flexible perspec-

tive on failure processes and facilitating the detection of behavioral patterns.

(d Comprehensive Exploration of Mixture Models: Both homogeneous and heteroge-
neous mixtures were evaluated, combining up to 30 components drawn from Exponen-
tial, Normal, Lognormal, Gamma, and Weibull distributions. This modeling enables the

representation of multimodal failure behaviors.

(d Robust Goodness-of-Fit and Visual Assessment: The adequacy of the models was
evaluated using a wide range of statistical metrics, including AIC, BIC, KS and AD tests.
In addition, graphical methods, such as histograms with PDF overlays, CDFs, Q-Q plots,

and P-P plots, were employed to provide visual support for model validation.

J Integration of Clustering Techniques: Clustering algorithms (K-Means, HDBSCAN,
Fuzzy C-Means, and Gaussian Mixture Models) were used to identify latent structures
in TBF data.
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(d Pattern Identification Across Operational Environments: The analysis considered
TBFs from multiple operational groups running under the same OS and application con-
text. This allowed for the investigation of environmental influences on failure behavior

and the detection of statistical patterns across groups.

(d Exploratory Statistical Characterization: For each sample, descriptive statistics (e.g.,
mean, median, skewness, kurtosis, percentiles, interquartile range) were computed to

characterize the failure data and support subsequent modeling decisions.

d Sensitivity Analysis for Model Complexity: A sensitivity analysis was conducted to
examine the relationship between the number of components and model performance.
Metrics such as AIC, BIC, KS, and AD were tracked across model sizes. Computational
cost (runtime, memory usage, CPU load) was also considered to evaluate trade-offs be-

tween complexity and efficiency.

(d Distribution Suitability Insights: Across samples and models, trends were identified

regarding the most frequently used distributions in mixture components.

The next section describes the methodology adopted in this study, including the data
processing steps, modeling techniques, clustering strategies, and evaluation procedures em-

ployed.
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CHAPTER 4

Methodology

The central motivation of this research stems from the hypothesis that time between fail-
ures in software systems are shaped by a multitude of factors, including operational profiles,
failure modes, failure causes and types of failure. These influences result in varying failure
behaviors across different computing environments, often producing complex distributions.
Given this complexity, mixture modeling is proposed as a suitable technique to better capture
the underlying structure of the lifetime data.

It is important to correctly distinguish between failure mode and failure cause in the con-
text of this study. A failure mode refers to how the software fails: the externally observable
manifestation of the failure and typical examples of software failure modes include crash, hang
and error. A failure cause refers to why the software fails, the underlying defect, software fault
or mechanism that triggered the failure. For example, the same memory allocation defect (fail-
ure cause) may lead to different failure modes depending on the circumstances: it may cause
the software to crash, to hang, or to produce incorrect results.

Furthermore, the manifestation of a failure can depend on how the software is used: its
operational profile and the execution environment where it runs. In practice, the combination
of a given failure cause with a particular operational profile and execution environment can
result in different failure modes.

The relationship between failure causes, operational profiles, execution environments, and

failure modes is illustrated in Figure 2.

4.1 Data Description

An exploratory analysis was conducted on failure records collected from general purpose
computers deployed in academic, administrative, and corporate settings. All computers are
under the Windows 7 operating system, which includes a built-in infrastructure called the Re-
liability Analysis Component - RAC (MICROSOFT, 2020), responsible for automatically log-

ging software failure events. Each RAC event log contains a set of attributes, including:
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Failure
Cause

Operational Failure

Profile Mode

Execution
Environment

Figure 2 — Relationship Between Failure Causes, Operational Profiles, Execution Environ-
ments and Failure Modes.

(d ComputerName: Identifier of the computer where the failure occurred.

(d Eventldentifier: Numerical code associated with the event type.

(d InsertionStrings: Technical details related to the event.

(A Logfile: The source log file where the event was recorded.

(d Message: Human-readable explanation of the event.

(d ProductName: The application or system component involved in the failure.
(d RecordNumber: Sequential identifier for the log entry.

(d SourceName: Subsystem or component that triggered the event.

d TimeGenerated: Timestamp indicating when the event occurred.

(d User: The logged-in user at the time of the failure.

To ensure data quality, a filtering process was applied to remove outliers. Specifically,
records associated with user-created development programs or non-operational software were
excluded. Moreover, while the original dataset includes TBF values equal to zero, these entries
were disregarded in the clustering and mixture modeling analyses, as they indicate immediate
reoccurrences. The number and proportion of zero-valued TBFs were computed and will be
presented in Chapter 4. After this preprocessing, the dataset used for the analyses comprises
a total of 40,095 failure records collected from 660 individual computers.

Computers were grouped according to their operational context, resulting in four distinct

groups:

[ G1: Undergraduate Laboratory Computers
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(d G2: University Administrative Department Computers
(d G3: Corporate Environment Computers

(d G4: Personal and HomeOffice Computers (Corporate, Academic, and Personal)

4.1.1 Parameters and Failure Characterization

To enhance the dataset for statistical analysis, new parameters were derived from the orig-

inal RAC logs. These enrichments enabled a more detailed exploration of the failure behavior:

(d Application Failure: The application responsible for the failure was inferred by ana-
lyzing the ProductName and InsertionStrings fields. A categorical column in the
dataset, Type, was created to identify the main source of the failure (e.g., iexplore for

Internet Explorer).

(d Failure Cause: A semantic classification of the failure’s cause was derived from diag-
nostic codes, keywords in InsertionStrings, and detailed messages in the Message
field (e.g., Code: c0000005, Failure Cause: Memory addressing).

The failure records were collected from September 29, 2010 to August 7, 2014.

4.1.2 Dataset Characterization

To facilitate the analysis of group-level differences in key metrics, ridgeline plots were em-
ployed. This graphical technique is used for comparing multiple distributions simultaneously.
Each plot consists of a series of smoothed density curves, one for each subgroup, stacked ver-
tically with partial overlap. This layout highlights differences in the shape, spread, and central
tendency of the distributions. In the context of this study, each curve represents the empiri-
cal distribution of a specific metric (e.g., number of failures, number of distinct causes) across
computers belonging to the same group.

The z-axis of each ridgeline plot indicates the values of the analyzed metric. Although
the y-axis is categorical and primarily used to visually separate the groups, shape and relative
height of each curve carry statistical meaning, as they correspond to estimated probability
density functions. Consequently, variations in peak height and curve width reflect differences
in concentration, dispersion, and distributional structure among the groups. For each group,

the following summary statistics are annotated directly on the subplot:

(d Mean: The arithmetic average of the distribution.
(d Median: The central value that divides the data into two equal halves.

(d Peak: The location on the x-axis where the smoothed density function attains its max-

imum.



Chapter 4. Methodology 47

The computation of each curve involves multiple steps. Initially, for a given metric (e.g.,
number of failures), the metric is computed individually for each computer in the group. These
individual observations are then aggregated to form an empirical distribution, which is subse-
quently smoothed to produce the final ridgeline curve. This approach ensures that the group-
level curve encapsulates the variability observed at the individual machine level, enabling an
understanding of intra-group heterogeneity.

Figure 3 presents the distribution of the number of failures recorded per computer across
different groups. The distribution is highly right-skewed in all groups. G1 exhibits the lowest
failure counts (mean = 10.3), with a sharp peak at 2.4, suggesting relatively stable systems.
Conversely, G4 displays the highest failure incidence (mean = 135.1, median = 59.0), reflect-
ing frequent failure events. Groups G2 and G3 exhibit intermediate behavior but still show
considerable skewness and dispersion, indicating high heterogeneity in failure frequency.

As shown in Figure 4, the number of days over which failure events were recorded varies
notably among the groups. G1 has a relatively narrow and symmetric distribution centered at
78 days, suggesting consistent, short-term monitoring periods. In contrast, G2 and G4 show
right-skewed distributions with longer tails and higher medians (327 and 263 days, respec-
tively), indicating prolonged observation periods and G3 and G4 exhibits a bimodal distribu-
tion.

Figure 5 displays the distribution of the number of application failures per computer. In this

context, the failure is attributed to the individual application where it occurred, examples in-

G1

Mean: 10.3
Median: 7.0
Peak: 2.4

Gl

G2

Mean: 81.3
Median: 46.0
Peak: 9.4

G2

G3

Mean: 61.7
Median: 28.0
Peak: 7.1

G3

G4

Mean: 135.1
Median: 59.0
Peak: 9.4

G4

588 1176 1764 2352
Number of Failures

=1

Figure 3 - Ridgeline Plot Comparing the Distribution of Failures per Computer Across Four
Groups (G1-G4).
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clude failures in user-facing applications such as iexplore. exe, chrome. exe, excel. exe,
as well as failures in Operating System components such as explorer. exe and U_Windows.

In Figure 5, G1 again has the narrowest range (mean = 3.6), suggesting a simpler failure
landscape or limited diversity of applications in use. G4 shows the most complex behavior
(mean = 17.7, median = 16.0), likely due to varied usage profiles encompassing academic, ad-
ministrative, and personal tasks. G2 and G3 fall in between, with means around 10.3 and 10.6,
respectively.

Figure 6 illustrates the number of distinct causes associated with each application on a
computer. G1 is concentrated near a mean = 1.2. On the other hand, G2, G3, and G4 exhibit
higher means (2.7 to 2.8) and long right tails.

Together, these descriptive analyses highlight the diverse and heterogeneous nature of
software failures across different environments. This variability justifies the need for more
flexible modeling approaches, capable of capturing heterogeneous failure distributions effec-

tively.

Gl

Mean: 71.3
Median: 78.0
Peak: 40.3
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Mean: 270.0
Median: 327.0
Peak: 76.2

G3
Mean: 118.6

Median: 62.0
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G3 r\

G4

Mean: 229.8
Median: 263.0
Peak: 17.6

G2

G4

0 201 402 603 804
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Figure 4 - Ridgeline Plot Comparing the Distribution of Days Sampled per Computer Across
Four Groups (G1-G4).



Chapter 4. Methodology 49

Gl

Mean: 3.6
Median: 3.0
Peak: 2.1

G2

Mean: 10.3
Median: 9.0
Peak: 6.5

G3

Mean: 10.6
Median: 8.0
Peak: 4.6

G4

Mean: 17.7
Median: 16.0
Peak: 9.6

0 18 37 55 74
Number of Failures

Figure 5 - Ridgeline Plot Comparing the Distribution of Application Failures per Computer
Across Four Groups (G1-G4).
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Figure 6 — Ridgeline Plot Comparing the Distribution of Failure Causes per Application per
Computer Across Four Groups (G1-G4).
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4.2 Modeling Approach

This study investigates the use of homogeneous and heterogeneous finite mixture models
to represent the empirical distribution of time between failures. Homogeneous models are
composed of multiple components of the same probability distribution (e.g., several Exponen-
tial distributions), whereas heterogeneous models allow combinations of different distribution
types within a single mixture, such as a blend of Weibull, Gamma, and Lognormal equations.
The modeling configuration considered up to 30 components, using five statistical distribu-
tions in reliability engineering: Exponential, Normal, Lognormal, Gamma and Weibull. These
distributions were selected for their flexibility and widespread applicability in modeling failure
data.

Alternative distribution families, such as phase-type distributions, were considered con-
ceptually but not adopted in this study. Although phase-type models offer a high degree
of flexibility and can approximate a broad class of distributions, their parameterization be-
comes increasingly complex as the number of phases grows, which can hinder interpretability
and complicate estimation, particularly when combined with finite mixture structures. Given
the objective of balancing modeling expressiveness with interpretability and computational
tractability on large empirical datasets, the selected distribution families were deemed more
appropriate for the scope of this work.

Failure records were analyzed to extract two features: application and failure cause. These
classifications were constructed based on information available in the logs. Application refers
to the specific executable program or system component where the failure occurred (e.g.,
iexplore.exe, excel.exe, or U_Windows). In contrast, the failure cause provides insight
into the reason for the failure, such as memory errors or access violations.

The TBFs analyzed in this work were collected from several operational groups of com-
puters running the same operating system. This common baseline allows the comparison of
variability introduced by environmental or operational differences. These sources of hetero-

geneity in failure behavior were considered:

(d Operational Profile: Differences in usage intensity and user interaction patterns can

affect failure behavior across computers.

(d Failure Causes: Software systems can experience failures due to multiple causes, such
as software bugs, configuration errors, or interactions with external systems, and each

cause may follow a distinct statistical distribution depending on the nature of the fault.

These factors can result in overlapping subpopulations within the data, which motivates
the use of mixture models to uncover latent structures and to model complex failure distribu-
tions. To address these sources of heterogeneity and better understand the multimodal nature

of failure patterns, two distinct modeling strategies were adopted:



Chapter 4. Methodology 51

Approach 1: Mixture models were applied to the complete set of TBFs for each computer,
treating each machine as a single entity. This approach aims to capture patterns arising from
the combination of different failure causes and usage behaviors present within a single system.
To ensure meaningful statistical analysis, only computers with at least two sets of distinct
applications failures, each comprising a minimum of 30 failure records, were included. This
filtering resulted in 41 computers eligible for this analysis.

Approach 2: The dataset was segmented by application failure, and mixture models were
applied separately to each one. This strategy focuses on understanding whether multimodal
behavior is an inherent property of failures associated with specific applications, rather than
the result of aggregated system behavior. To ensure meaningful statistical analysis of this
modeling, only applications with at least 50 failure records per computer were considered. The
only application in the dataset that satisfied this requirement across multiple computers was
the Internet Explorer’s process (iexplore. exe). Consequently, 36 computers with sufficient
iexplore related failures were included in this second modeling approach.

The adoption of a minimum number of failure records per computer is motivated by both
statistical and interpretative considerations. From a modeling perspective, mixture models
require a sufficient number of observations to reliably estimate component parameters and
mixing proportions. Applying the threshold at the computer level ensures that the inferred
distributions reflect intrinsic failure behavior of individual systems rather than being domi-
nated by sparse or incidental events. Moreover, this criterion promotes comparability across
computers by reducing variability caused by unequal observation lengths or usage intensity.

In the context of application-level modeling, enforcing a per-computer threshold further
guarantees that each application-specific failure process is supported by adequate empirical
evidence, allowing multimodality to be interpreted as a structural characteristic of the failure
mechanism rather than an artifact of data sparsity or random fluctuation.

Although the adoption of a minimum threshold of failure records per computer ensures
statistical robustness for mixture model estimation, this criterion may introduce a selection
bias at the computer level. Specifically, computers with low application usage or shorter ob-
servation periods are excluded from the analysis, even if they exhibit failure behaviors that
are potentially relevant from a reliability perspective. As a result, the retained sample may
be disproportionately composed of systems with higher usage intensity or greater instability,
which tend to generate a larger number of recorded failures. This bias must be considered
when interpreting the results, as the identified multimodal patterns may reflect the behavior
of more active or failure-prone systems rather than being fully representative of the entire
population of computers.

In total, 77 samples were selected for mixture modeling: 41 computers for Approach 1
and 36 for Approach 2. This strategy enables a comparative analysis of failure behavior from
system-wide and cause-specific perspectives and allows the identification of statistical pat-

terns across different abstraction levels.
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It is also important to highlight that, unlike many studies that rely on simulated or con-
strained datasets, the data used in this study originate from a large empirical dataset collected
from real-world systems, as reported by the research associated with this work (MATIAS et
al,, 2014).

4.3 Cluster and Statistical Analysis

To gain a deeper understanding of the failure patterns in each computer from the dataset,
this study performed statistical and clustering analysis of the TBFs observed across all selected
operational groups. The goal was to assess potential multimodal behavior in the data and to
uncover complexity not captured by simple unimodal models.

For each computer selected for analysis, a set of statistical metrics was computed to char-
acterize the TBF distribution. These include:

(1 Failure Count: Total number of recorded failures.
(1 Central Tendency: Mean, median, and mode.

(J Dispersion: Standard deviation, interquartile range (IQR), and full range (minimum

and maximum).
(d Distribution Shape: Skewness and kurtosis.

(d Percentiles: 25th and 75th percentiles to describe the data spread.

To investigate potential heterogeneity in failure behavior, clustering methods were applied

considering only observations with "B F' > (. Multiple clustering algorithms were evaluated:

(d K-Means Clustering: A widely used partitioning method that minimizes intra-cluster
variance. It assumes spherical clusters and equal variance across groups. It is com-
putationally efficient and interpretable, but sensitive to initialization and requires the

number of clusters £ to be defined a priori.

(d HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with
Noise): A density-based method that automatically determines the number of clusters
and identifies noise points. It handles clusters of varying shapes and densities but may

be sensitive to its hyperparameters and struggles with low-density datasets.

(d Fuzzy C-Means (FCM): Allows data points to belong to multiple clusters with varying
degrees of membership. This is particularly suitable when failure patterns overlap or
transition smoothly. However, FCM can be computationally intensive and sensitive to

outliers.
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(J Gaussian Mixture Models (GMMs): Probabilistic models that assume the data is gen-
erated from a mixture of several Gaussian distributions. GMMs are flexible and can
model elliptical clusters, but they are also sensitive to initialization and may overfit in

high dimensions.

Each algorithm offers a unique perspective on the data. K-Means and FCM require speci-
fying the number of clusters, while HDBSCAN and GMMs can estimate it from the data. The

limitations of one method are often compensated by the strengths of another.

4.3.1 Cluster Evaluation Metrics

To evaluate and compare the clustering results, internal validation metrics were employed:

(d Silhouette Score: Measures how similar a point is to its own cluster versus other clus-

ters. Values range from —1 (incorrect clustering) to 1 (well-clustered).

(d Calinski-Harabasz Index: Evaluates the ratio of between-cluster dispersion to within-

cluster dispersion. Higher values indicate better-defined clusters.

(d Davies-Bouldin Index: Measures average similarity between clusters, where lower

values indicate better clustering.

(d Fuzzy Partition Coefficient (FPC): Used for FCM, quantifies the degree of overlapping

in fuzzy clusters; higher values indicate better partitions.

(1 Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC):
Used with GMMs to evaluate model complexity versus fit. Lower values indicate more

parsimonious models.

4.3.2 Evaluation and Selection of Clustering Configurations

To determine the most appropriate number of clusters (k), the optimal_cluster_analysis

function was implemented. This function:

(d Normalizes the input TBF data using StandardScaler.
(J Iteratively applies each clustering method for different values of k£ (when required).
(d Computes all internal evaluation metrics.

(d Aggregates the results and proposes a consensus value for the optimal number of clus-

ters based on the most frequently recommended k across all methods.
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The complete clustering framework is summarized in Algorithm 1, which outlines the
key preprocessing steps, statistical summarization, clustering execution, and evaluation pro-
cedures.

This clustering algorithm enables the identification of multimodal structure in the TBF
data, serving as a basis for subsequent modeling. The following section presents a description

of the Expectation-Maximization (EM) algorithm

4.4 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm was implemented to fit finite mixture mod-
els to the observed data. The framework supports multiple parametric distributions and in-
corporates robust initialization procedures, convergence monitoring, and evaluation metrics
to ensure efficient and reliable parameter estimation.

The general procedure of the Expectation-Maximization framework used in this study is
summarized in Algorithm 2. This implementation iteratively alternates between the Expec-
tation (E) step, which computes the responsibilities based on current parameter estimates,
and the Maximization (M) step, which updates the mixture weights and distribution parame-

ters using weighted maximum likelihood estimation. Convergence is monitored via the log-

Algorithm 1 Multimodality and Cluster Analysis Algorithm

Input: TBF data X = {1, s, ..., 2,}; max clusters kpx
Output: Statistical summary, optimal k, clustering labels, evaluation metrics
Remove non-positive values: X < {z € X | z > 0}
Normalize: Xcueq < StandardScaler(X)
Compute descriptive statistics: mean, std, skewness, etc.
K-Means:
for k in [2, kyay] do
Apply K-Means and compute silhouette, CH, DB indices
end for
Use Elbow Method and Silhouette Score to estimate optimal &
: HDBSCAN: Run once and extract clusters (excluding noise)
: Fuzzy C-Means:
: for k in [2, kx| do
Apply FCM, extract hard labels and FPC
Evaluate with silhouette, CH, DB
: end for
: GMMs:
: for kin [1, kyayx| do
Fit GMM, compute BIC, AIC, silhouette
: end for
: Aggregate results and determine consensus &
: Generate visualizations: histograms, density plots, cluster assignments
: return Statistical summaries, clustering results, evaluation scores
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likelihood improvement, and the process continues until a predefined tolerance (tol = 107%)
or iteration limit is reached (max_iter = 1000).

Five probability distributions were integrated into the Expectation-Maximization algo-
rithm to accommodate the diverse characteristics of TBF data: Exponential, Normal, Log-
normal, Weibull and Gamma. Each distribution was selected based on its suitability for mod-
eling different failure behaviors observed in software reliability.

During the M-step of the EM algorithm, distribution-specific parameters are estimated us-
ing weighted statistics derived from the responsibilities computed in the E-step. These weights
reflect the degree to which each data point is associated with each component. The estimation
procedure for each distribution is described below, highlighting the underlying assumptions
and the corresponding parameter updates within the EM framework.

Exponential distribution: Characterized by a single scale parameter ), it assumes a con-
stant failure rate and is commonly used for memoryless processes. The parameter is estimated
via weighted maximum likelihood, using the expression A = max(10~%0, Z,,), where Z,, is the
weighted sample mean. A lower bound is enforced to prevent degenerate solutions.

Normal distribution: Parameterized by mean p and standard deviation o, it is suitable
for modeling symmetric TBF patterns. The estimates are computed from the weighted sample
statistics as i = T, and 6 = ,/Var,,(z), where Var,,(z) denotes the weighted variance.

Log-normal distribution: Well-suited for right-skewed data arising from multiplicative
processes, it is parameterized by shape, location, and scale. The estimation is performed using
the lognorm.fit routine from SciPy, incorporating the component responsibilities as frequency
weights.

Weibull distribution: Known for its flexibility in representing increasing, decreasing, or
constant failure rates depending on its shape parameter. Parameters are estimated via numer-
ical maximum likelihood methods, without closed-form expressions, using numerical solvers
initialized from method-of-moments estimates.

Gamma distribution: Useful for modeling skewed TBF data with variable failure inten-
sities. Parameter estimation also relies on numerical maximum likelihood, and due to the
involvement of special functions, this distribution often requires greater computational effort

during the fitting process.

4.4.1 Computational Complexity Analysis

Each supported distribution was analyzed in terms of its computational demands. These
demands were quantified by counting the number of floating-point operations required for
evaluating the probability density function, cumulative distribution function, and parameter
updates during the M-step.

The Exponential distribution has the lowest computational cost, due to its closed-form
expressions. In contrast, the Gamma and Weibull distributions are more computationally in-

tensive, as they rely on iterative or numerical procedures.
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Algorithm 2 Expectation-Maximization Algorithm

Require: Data X = {x,...,xy}, List of distributions, Maximum iterations 7},,,, Tolerance
€
Ensure: Optimized parameters 6, Log-likelihood history £
1: Initialization:

2: 00 < initialize_parameters(X, distributions) > Uses K-means
3. L+ ]
4: Initial evaluation:
5: (0 < calculate_log_likelihood (X, #(?)
6: L.append(/(?)
7: fort < 1to1,,,, do
8: E-step: > Compute responsibilities
9: v < zeros(N, K)
10: log_pdfs < calculate_log_pdfs(X, 0(¢—1)
11: fori < 1to N do
12: log_weighted < log_pdfs[i] 4+ log(weights)
13: max_val < max(log_weighted)
14: exp_vals < exp(log_weighted — max_val)
15: v[i] + exp_vals/ 3 (exp_vals)
16: end for
17: M-step: > Update parameters
18: for k <— 1to K do
19: effective_samples < >N y[i, k]
20: weights|k] < effective_samples/N
21: if distribution == "exp" then
22: scale < > 7[:, k] - X/effective_samples
23: ) < (max(le — 10, scale), )
24: else if distribution == "norm" then
25: loc < > 7[:, k] - X/effective_samples
26: scale < \/Z v, k] - (X — loc)? /effective_samples
27: 01 < (loc, scale)
28: else if distribution == "logn" then
29: 0y < lognorm.fit( X, fscale = +[:, k])
30: end if
31: end for
32: Convergence check:
33: (1) < calculate_log_likelihood(X, ()
34: L.append (/™)
35: if [(®) — (1| < ¢ then
36: break
37: end if
38: Monitoring:
39: check_memory_usage()
40: snapshot_performance()
41: end for

42: Return 0% L
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Table 3 summarizes the estimated number of operations required for each distribution dur-
ing the EM algorithm. These estimates were obtained through a combination of analysis of the
analytical expressions involved, such as the probability density functions, cumulative distribu-
tion functions, and parameter update formulas and empirical profiling of the implementation.

The analysis considered the functional forms of the PDFs and CDFs for each distribution,
as well as representative expressions used in the parameter updates during the M-step. The

main formulas are listed below:

1 Exponential:
fl ) =Xe™ Flz;\)=1—e™ >0

M-step (MLE for rate parameter):

Z?:l Vi

\ =
D1 Vi

(1 Normal:

M-step (weighted sample mean and variance):

SNt e iy Yilwi — )

Ia: n ) g = n
i=1"i i=1"i
1 Log-normal:
1 Inz — p)? Inx —
F o) = exp (- I o) =@ (BETE)  pso
ToV 2T 202 o

M-step (weighted log-transform):

m Z‘hll'i n ilnxi—A 2
/l — szln/y 7 6_2 _ szl i (n l’[’)
i=1"i i=1"7i

(1 Weibull:
flx b, N) = I; (f\)kl exp (— (f\)k> . F(z;k,\)=1—exp <— <i>k> , >0

M-step: Closed-form solutions are not available; parameters are updated via numerical

methods using weighted log-likelihood maximization.

Table 3 — Estimated Computational Complexity for Each Distribution.

Distribution PDF Operations CDF Operations M-step Operations

Exponential 5 7 10
Normal 15 20 25
Lognormal 18 22 30
Weibull 20 25 35

Gamma 22 28 40
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1 Gamma:

flasa,B) = fisa e, Flaiaf) = msalanfa), o3>0

M-step: As with the Weibull distribution, closed-form updates are not available. The

shape and rate parameters are estimated numerically, often using weighted maximum

likelihood with iterative solvers.

4.4.2 Initialization Strategy

Effective parameter initialization is critical for the convergence and performance of EM
algorithms, therefore this implementation employs a strategy based on K-means clustering.
The dataset is first partitioned into clusters corresponding to the desired number of mixture
components. The centroids and weights of these clusters are then used to generate initial
guesses for the component parameters.

Initialization is tailored to each distribution. For instance, in the case of the Exponential
distribution, the scale parameter is initialized based on the median of the assigned data. For the
Normal distribution, the initial mean and variance are set using the cluster’s sample mean and
standard deviation. More complex distributions such as the Log-normal, Weibull, and Gamma
use moments derived from the cluster data. Finally, component weights are normalized to

ensure they sum to one.

4.4.3 EM Algorithm Implementation

The EM loop consists of two main steps: the Expectation (E-step) and Maximization (M-
step).

In the E-step, posterior probabilities (or responsibilities) are calculated for each data point
with respect to each component. This is done using the numerically stable log-sum-exp for-
mula:

wy - p(|0)
ik = S5 w, - pla]6) (10)

These responsibilities quantify the degree to which each observation is associated with

each component of the mixture model.
In the M-step, the model parameters are updated using the responsibilities from the E-step.

Mixture weights are updated as:
e+ _ 1§~ 0
i=1
The parameters of each component distribution are re-estimated by maximizing the ex-

pected log-likelihood:
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N
(t+1) 0 '
Y = argmg 3 ) og p(ei0) (12)

All updates include bound checks and exception handling to avoid numerical instabilities

or invalid parameter values.

4.4.4 Incremental Components for Mixture Model

To determine the optimal number of mixture components, an automated model selection
routine was implemented through the incremental_sensitivity_analysis function.
This function is designed to balance model accuracy and complexity, guiding the Expectation-
Maximization algorithm toward a parsimonious yet effective configuration. Its operation is

divided into two main phases:

Initial Exploration Phase

The function begins with an exhaustive evaluation of all possible combinations of the
selected distributions, varying the number of mixture components from 1 up to a prede-
fined base limit (default is 5). For each component count, it computes goodness-of-fit (GoF)
scores using four metrics: Akaike Information Criterion (AIC), Bayesian Information Crite-
rion (BIC), Kolmogorov-Smirnov (KS), and Anderson-Darling (AD). At each step, the three

best-performing models per metric are retained and stored for subsequent use.

Incremental Expansion Phase

From the base limit up to a maximum number of components (default is 30), the function
incrementally generates more complex models by expanding the top-performing configura-
tions. One distribution is added at each iteration, and new models are evaluated using the
same set of GoF metrics. The expansion process is guided by a stopping criterion defined by

one or more of the following conditions:
(d The improvement in a GoF score falls below a predefined threshold (default is 0.0001);
[ A GoF score deteriorates consistently across three consecutive steps;
(d The maximum number of components is reached.

When a stopping criterion is met for two or more metrics, the expansion process is halted.
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Final Selection and Output

At the conclusion of the analysis, the function determines the final optimal number of
components by averaging the component counts associated with the best scores across all
four metrics. A summary is printed detailing the reasons for stopping in each case. The func-
tion returns four key outputs: (1) a consolidated dictionary of the best model configurations
per component count, (2) the GoF scores across the entire process, (3) the top models per
metric at each component level, and (4) the final recommended number of components. This
procedure provides a structured approach to mixture model selection, balancing statistical fit

and computational feasibility.

4.4.5 Convergence and Optimization Strategies

Several optimization strategies are employed to ensure convergence and improve robust-
ness. The algorithm executes multiple runs (default is ten) with different initialization to avoid
local optima. Convergence is assessed based on changes in log-likelihood, and an early stop-
ping criterion is applied if improvements fall below a predefined threshold. Memory usage is
also monitored, with process termination if consumption exceeds 2GB. Additionally, a maxi-

mum number of 1000 iterations is enforced to prevent infinite loops.

4.4.6 Sensitivity Analysis and Computational Cost

A sensitivity study was conducted to investigate the impact of the number of mixture
components on model performance. In this analysis, plots were constructed with the number
of mixture components on the z-axis and the values of each applied Goodness-of-Fit (GoF)
test on the y-axis.

By observing the behavior of these GoF statistics as the number of components increases,
it is possible to identify the point at which adding more components no longer yields signifi-
cant improvements in model fit. Typically, a sharp decrease followed by stabilization or even
deterioration in the criteria suggests an optimal number of components.

To complement the sensitivity analysis, a computational cost study was conducted to eval-
uate the resource implications of increasing model complexity. A monitoring class tracks
system performance throughout model fitting, it measures execution time, peak memory con-
sumption, average CPU utilization, and estimates operation counts based on the complexity
of the chosen distributions.

The cost of model estimation was assessed across different numbers of mixture compo-
nents and types of distributions, both homogeneous mixtures (same distribution type across
all components) and heterogeneous mixtures (combining different distribution families within

a single model). The evaluation considered four key computational metrics:

(d Execution time: Total runtime of the EM algorithm until convergence.
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(d Memory usage: Peak memory consumption observed during model estimation.
(d CPU usage: Average percentage of CPU utilization throughout the EM iterations.

(d Number of operations: A theoretical estimate of computational effort, derived from

symbolic expressions of the model’s structure.

Each distribution included in the mixture model imposes a distinct computational cost,

which was estimated using a predefined dictionary of complexity factors:

(d PDF Operations: Number of operations required to evaluate the probability density

function.

(d CDF Operations: Number of operations needed to compute the cumulative distribution

function.

(J M-Step Operations: Estimated number of operations required to update the parame-

ters during the M-step of the EM algorithm.
For each mixture configuration, two types of plots were generated:

(J Homogeneous Mixtures: For mixtures composed exclusively of a single distribution
type, the computational cost was evaluated by incrementally increasing the number of

components.

(J Heterogeneous Mixtures: In the case of mixtures combining different distribution
types, the overall computational cost was estimated by averaging the predefined com-

plexity factors of the selected distributions

This analysis provides insights into the trade-offs between model complexity and compu-
tational efficiency. While models with more components (or with diverse distribution families)

tend to offer better fit, they also demand more computational resources.
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CHAPTER

Results

This chapter presents the results of the analysis conducted on failure data. Two distinct
modeling approaches were employed to explore different perspectives on failure behavior and

to assess the presence of patterns in time between failures.

5.0.1 Sample Selection and Data Preparation

Following the filtering approaches defined for each modeling strategy, a total of 77 samples
were selected for mixture model analysis.

Approach 1: In this approach, mixture models were applied to the entire set of TBFs
recorded for each computer, treating each machine as a single analytical unit. To ensure sta-
tistical significance, only computers with at least two distinct failure causes, each comprising
a minimum of 30 failure records, were included. This criterion yielded a total of 41 eligible
computers for analysis.

Approach 2: The dataset was segmented by failure type and failure cause. To ensure
statistical significance, only failure causes with at least 50 recorded failures per computer were
considered. As a result, 36 computers with a sufficient number of failures were selected for

this second modeling approach.

5.0.2 Occurrence of Zero-Valued TBFs

During the preprocessing stage, the number and proportion of TBF values equal to zero
were quantified for each operational group. These values were not removed from the dataset
but were disregarded in the clustering and mixture modeling analyses. Table 4 summarizes
the total number of TBF entries and the corresponding amount and percentage of zero-valued

TBFs observed in each group.
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5.0.3 Approach 1: Complete TBF Analysis

Table 5 lists the 41 computers selected for Approach 1, where mixture models were applied

to the complete set of time-between-failures for each system.

Table 4 — Number and Proportion of Zero-Valued TBFs in Each Group.

Group Total TBFs Zero-valued TBFs Percentage of Zeros (%)

Gl 63 0 0.00
G2 8360 39 0.47
G3 1100 6 0.55
G4 3971 98 247

Table 5 — The Selected Computers for Approach 1 Analysis.

Computer IDs

G2Rac_MC-157457
G2Rac_MC1-035
G2Rac_MC1-051
G2Rac_MC1-074
G2Rac_MC1-097
G2Rac_MC1-112
G2Rac_MC2-070
G2Rac_MC2-075
G2Rac_MC2-100
G2Rac_MC3-196
G3Rac_DSKo021
G3Rac_DSKO023

G2Rac_MC-151157
G2Rac_MC-156359
G2Rac_MC-157380
G2Rac_ MC-157383
G2Rac_MC-157396
G2Rac_MC-157398
G2Rac_MC-157400
G2Rac_MC-157406
G2Rac_MC-157413
G2Rac_MC-157416
G2Rac_MC-157430
G2Rac_MC-157432

G2Rac_MC-157435
G2Rac_MC-157445
G2Rac_MC-157447

G3Rac_MBO021
G41174137528899245fbeab8db8aa9320
G41175490403774946108f63bd34b5937
G411774790268767462ee772d61026018
(G411814383442168466b5188341513970
G413348340872217418ff3a7362535189
G4133510115532394f9406e34f1c62093
G4133535507490744197e6c2dd8ed3561
(G413431410151584500eb49726b174735
G413431559406206500eeee4978883010
G413452266836854502e87bba75907480
G4134852921215845060ec3c26b1e1089
G4134852947713265060ed45206293835
G41353517451878650ad098bd68643260
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5.0.4 Approach 2: Internet Explorer Failure Analysis

Notably, Internet Explorer was the only recurrent failure type found across all computer
groups analyzed, which justified its selection for a more detailed investigation. For Approach
2, computers in the original dataset were examined to identify those containing Internet Ex-
plorer with multiple failure causes occurring in samples larger than 50 records. It was possible
to identify distinct failure causes. For each computer meeting the criteria, failure records were
filtered to isolate only a specific failure, excluding all other failure types from that computer’s
dataset. Time-between-failures values were then recalculated based solely on these filtered
records.

Table 6 presents the 36 samples selected for Approach 2, focusing specifically on Internet
Explorer (iexplore. exe) related failures with their corresponding error codes. This filtering
process ensures that the mixture modeling analysis for Approach 2 reflects the pure temporal
characteristics of individual failure causes, eliminating the effects of other failure types that
might distort the pattern of the target failure mechanism.

The analysis of Internet Explorer failures revealed four distinct failure causes. Table 7
presents the identified failure causes along with their technical descriptions and classifications
(SANTOS; MATIAS; TRIVEDI, 2021).

The distribution of these failure causes across the 36 selected samples is presented in Ta-
ble 8. This table reveals the presence of each failure cause within the Internet Explorer failures.

The predominance of access violation errors (c0000005) accounts for approximately 80.6%
of all Internet Explorer failure samples, indicating that memory addressing issues represent the
most common cause of Internet Explorer failures in the analyzed dataset. Memory manage-
ment issues (heap corruption) and security violations (privileged instruction) each contribute
8.3% of the samples, while unhandled C++ exceptions represent the least frequent cause at

2.8% of the samples.

5.0.5 Sample Analysis

For detailed presentation and analysis in this work, a subset of 10 representative samples
was selected to illustrate the key findings from both approaches. The selection strategy pri-
oritized computers that were included in both Approach 1 and Approach 2 analyses, enabling
direct comparison between system-wide and cause-specific failure behaviors for the same sys-
tems. Table 9 shows the selected samples, highlighting the paired analysis structure.

Each analysis includes the following components: (1) descriptive statistics summarizing
the temporal characteristics of the failure data, (2) cluster identification results from multiple
unsupervised learning algorithms, (3) mixture model selection, validation through goodness-
of-fit tests and sensitivity analysis, (4) parameter estimation for the selected mixture compo-
nents, (5) comparative analysis against simple distribution models, and (6) computational cost

evaluation for the modeling process.
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5.0.6 G1Rac_MCO0-018_iexplore_c0000005 (Approach 2)

This case refers to failures related to access violations (c0000005), associated with invalid
memory adressing, occurring in the iexplore. exe’s process on computer MC0-018, part of

the Group 1 (Undergraduate Laboratory Computers).

Table 6 — The Selected Samples for Approach 2 Analysis (Internet Explorer).

Computer ID and Failure Cause

G1Rac_MCO0-018_iexplore_c0000005
G2Rac_MC-153821_iexplore_c0000005
G2Rac_MC-153873_iexplore_c0000005
G2Rac_MC-157334_iexplore_c0000005
G2Rac_MC-157380_iexplore_c0000005
G2Rac_MC-157396_iexplore_c0000005
G2Rac_MC-157399_iexplore_c0000005
G2Rac_MC-157400_iexplore_c0000005
G2Rac_MC-157400_iexplore_c0000374
G2Rac_MC-157431_iexplore_c0000005
G2Rac_MC-157431_iexplore_c0000096
G2Rac_MC-157435_iexplore_c0000005
G2Rac_MC1-033_iexplore_c0000005
G2Rac_MC1-035_iexplore_c0000005
G2Rac_MC1-041_iexplore_c0000005
G2Rac_MC1-074_iexplore_c0000005
G2Rac_MC1-074_iexplore_c0000096
G2Rac_MC1-076_iexplore_c0000005
G2Rac_MC1-083_iexplore_c0000005
G2Rac_MC1-085_iexplore_c0000005
G2Rac_MC1-085_iexplore_c0000374
G2Rac_MC1-086_iexplore_c0000005
G2Rac_MC1-089_iexplore_c0000096
G2Rac_MC1-094_iexplore_c0000005
G2Rac_MC1-096_iexplore_c0000096
G2Rac_MC1-102_iexplore_c0000005
G2Rac_MC2-046_iexplore_c0000005
G2Rac_TANNER_iexplore_c0000005

G2Rac_TANNER iexplore_c0000374
G3Rac_DSKO023_iexplore_c0000005
G3Rac_WKS138_iexplore_c0000005
G4133535507490744f97eéc2dd8ed356l_ieXplore_COOOOOOS
G413434099794574501 2Cf3b6fb106680_iexplore_c0000005
(G413452266836854502e87bba75907480_iexplore_e06d7363
(G4134852947713265060ed45206293835_iexplore_c0000005
(G4134852968526425060eel 5408575705_iexp10re_c0000005
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5.0.6.1 Statistical Characterization

Table 10 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a heterogeneous failure pattern characterized by significant asymmetry
and heavy-tailed behavior. The difference between mean (107.13 hours) and median (23.83
hours) indicates a right-skewed distribution, which is further confirmed by the positive skew-
ness value of 2.22.

The extremely low mode value (0.0039 hours) combined with the minimum observation
(0.0011 hours) indicates that some failures occur in rapid succession, possibly representing
cascading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (5.77) indicates a distribution with heavy tails and a sharp peak,

suggesting the coexistence of multiple modes. The large interquartile range (143.54 hours)

Table 7 - Internet Explorer Failure Causes and Their Classification.

Error Code Failure Cause Failure Context
€0000005 Access violation Memory addressing
c0000374 Heap corruption Memory management
c0000096 Privileged instruction Processor (rules) violation

e06d7363 Unhandled C++ exception Exception handling

Table 8 — Distribution of Internet Explorer Failure Causes.

Error Code Failure Cause Number of Samples
c0000005 Access violation 29
c0000374 Heap corruption 3
c0000096 Privileged instruction 3
e06d7363 Unhandled C++ exception 1
Total 36

Table 9 — Representative Samples Selected for Detailed Analysis.

Group Approach Sample ID

G1 2 G1Rac_MCO0-018_iexplore_c0000005
1 G2Rac_MC-157400
G2 2 G2Rac_MC-157400_iexplore_c0000374
1 G2Rac_MC1-074
G2 2 G2Rac_MC1-074_iexplore_c0000005
2 G2Rac_MC1-074_iexplore_c0000096
G3 1 G3Rac_DSKo023
2 G3Rac_DSKO023_iexplore_c0000005
G4 1 G413452266836854502e87bba75907480

2 (G413452266836854502e87bba75907480_iexplore_e06d7363
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relative to the median further emphasizes the high variability in failure times.

5.0.6.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 11 summarizes the number of clusters recommended by each
approach.

HDBSCAN’s recommendation of 4 clusters suggests the presence of four major density-
based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a higher num-
ber of clusters (12 and 11, respectively), indicating finer granularity in failure pattern recogni-
tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend
intermediate values of 9 and 10 components, respectively.

Figure 7 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=12) identifies
numerous small clusters with many observations concentrated in the low TBF region (0-50
hours) and several isolated high-TBF outliers. HDBSCAN (k=4) shows a more conservative
approach, identifying four main clusters with a significant portion of data classified as noise

(gray crosses), particularly in the intermediate TBF range.

Table 10 — Descriptive Statistics: G1Rac_MC0-018_iexplore_c0000005.

Statistic Value
Count 63
Mean (hours) 107.13
Median (hours) 23.83
Mode (hours) 0.0039
Standard Deviation 157.32
Minimum 0.0011
Maximum 813.91
First Quartile (Q1) 2.42
Third Quartile (Q3) 145.96
Interquartile Range (IQR) 143.54
Skewness 2.22
Kurtosis 5.77
Main Data Range 0.0011 - 387.63

Table 11 — Cluster Results: G1Rac_MC0-018_iexplore_c0000005.

Clustering Approach Recommended Clusters

K-Means 12
HDBSCAN 4
Fuzzy C-means 11
GMM (BIC) 9

GMM (AIC) 10
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Fuzzy C-Means (k=11) produces a clustering pattern similar to K-Means but with slightly
different cluster boundaries, while the GMM approaches (BIC with k=9 and AIC with k=10)
show intermediate clustering between HDBSCAN’s conservative grouping and K-Means’ fine
partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the
trade-off between cluster quality metrics, with the Elbow method showing a sharp decline up
to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

K-Means Clustering (k=12)

HDBSCAN Clustering (k=4)
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Figure 7 — Cluster Evaluation Plots for the Sample G1Rac_MC0-018_iexplore_c0000005.
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5.0.6.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-
fied by each GoF test, combined with a visual comparison of the graphical results for each
candidate model. This procedure was applied across all samples. The final model selected via
the Expectation-Maximization (EM) algorithm consisted of 12 components with the following
distributional structure: logn-logn-logn-logn-logn-gamma-logn-norm-logn-norm-logn-norm.
This configuration was selected based on the outcomes of the KS goodness-of-fit test.

Figure 8 demonstrates the fit achieved by the 12-component mixture model. The prob-
ability density function plot shows a highly multimodal distribution with a dominant peak
near zero and several smaller peaks at intermediate values (50-400 hours) and longer intervals
(600-800 hours).

The cumulative distribution function comparison reveals agreement between the empiri-

cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying

logn-legn-logn-logn-logn-gamma-logn-nerm-legn-nerm-legn-nerm
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Figure 8 — G1Rac_MC0-018_iexplore_c0000005 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the middle
upper tail (around 400 hours). The overall linear pattern validates the mixture model’s ability
to capture both the central tendency and the extreme behavior of the failure process.

Table 12 summarizes the goodness-of-fit results for the selected model. The GoF test results
provide statistical evidence for the adequacy of the 12-component mixture model. The KS test
yields a low test statistic (0.0290) with an extremely high p-value (0.999999983), indicating that
the null hypothesis of distributional equivalence cannot be rejected with confidence. The AD
test, which is more sensitive to deviations in the distribution tails, produces a test statistic of
0.279 with a p-value of 0.4875. This result further confirms the model adequacy.

The log-likelihood value of -261.50 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 610.99 and
705.29, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 13 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Normal distribution uses the location (1) and scale (o) parameters.

(d Lognormal distribution is parameterized by the shape (o), location (u), and scale (0)

parameters.

(1 Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: logn_10 (14.25%), gamma_5 (15.00%), and logn_0 (12.09%).

These high-weight components correspond to different failure regimes, from rapid succession

Table 12 — Goodness-of-fit Test Results: G1Rac_MC0-018_iexplore_c0000005.

Model Test Statistic / p-value
12-Component Mixture KS 0.0290 / 0.999999983
AD 0.279 / 0.4875
Log-Likelihood -261.50
AIC 610.99

BIC 705.29
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failures (logn_10 with scale parameter 0.0034) to intermediate stability periods (gamma_5 with
shape parameter 17.0351).

The lognormal components dominate the mixture (8 out of 12 components), reflecting
the multiplicative nature of the failure process. The presence of three normal components
(norm_7, norm_9, norm_11) with high location parameters (250.37, 350.19, and 708.12 hours,
respectively) captures the extended TBFs.

5.0.6.4 Sensitivity Analysis

To assess the robustness of the selected 12-component model and evaluate how model
performance responds to changes in complexity, a sensitivity analysis was performed. This
analysis investigated the behavior of GoF metrics as the number of mixture components in-
creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained
for each number of mixture components.

Figure 9 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals a perfor-
mance trajectory that supports the 12-component selection. Starting from an single-component
performance, the statistic shows improvement through the initial component additions, drop-
ping sharply for two components. The most significant improvement occurs in the 2-8 compo-
nent range, with continued refinement leading to optimal performance in the 8-13 component
region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy
of simple models. As the number of components increases, the AD statistic transitions to neg-
ative values, indicating an improvement in the model’s ability to represent distribution’s tail

behavior more accurately in multi-component configurations.

Table 13 — Mixture Model Parameters: G1Rac_MC0-018_iexplore_c0000005.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.1209 0.1720 1E-10 3.07
logn_1 Lognormal 0.0845 0.1000 1E-10 22.47
logn_2 Lognormal 0.0910 0.1000 1E-10 90.49
logn_3 Lognormal 0.0009 1.0070 1E-10 56.39
logn_4 Lognormal 0.0537 0.1593 1E-10 40.13
gamma_5 Gamma 0.1500 17.0351 1E-10 8.63
logn_6 Lognormal 0.0666 0.3973 1E-10 17.34
norm_7 Normal 0.0595 250.37 10.38 -
logn_8 Lognormal 0.1027 1.3149 1E-10 0.33
norm_9 Normal 0.0958 350.19 32.87 —
logn_10 Lognormal 0.1425 0.6548 1E-10 0.0034

norm_11 Normal 0.0318 708.12 105.81 —
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Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory shows improvement through 3-7 components, followed by a stagnation
due to complexity penalties. The minimum AIC value was observed with 14 components. In
contrast, the BIC analysis, which imposes a stronger penalty for model complexity, follows a
similar initial trend but reaches its minimum between 6 and 8 components.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. A notable trend emerged. The distri-
butions selected as optimal by each test: AD, KS, AIC, and BIC rarely coincided. In particular,
the models selected by AIC and BIC consistently exhibited poorer visual and statistical fit
compared to those chosen by the AD and KS tests. This performance gap persisted even in

the cases where AIC and BIC selected models with a higher number of components.

5.0.6.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the gamma model, as shown in

Table 14. Although it achieved the best performance among the single-component models

Best KS Best AD
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Figure 9 — G1Rac_MC0-018_iexplore_c0000005 Sensitivity Analysis of Model Selection Met-
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tested, it still failed to capture the complexity present in the data.

While the gamma distribution emerged as the best-fitting single-component model among
those evaluated, it remains inadequate for representing the complex behavior of time between
failures. Previous studies on software reliability modeling have relied on single-distribution
models, such as (LYU; NIKORA, 1991; MATIAS et al,, 2014; XU; KALBARCZYK; IYER, 1999;
MATIAS; OLIVEIRA; ARAUJO, 2013; HSU; HUANG, 2014; PHAM, 2003; MULLEN, 1998).
These models often fail to capture the underlying structural characteristics that arise from
the inherent complexity of TBFs, which can result from multiple factors, including the diver-
sity of failure causes and variations in workload and operational profiles.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
gamma distribution yields extremely low p-values for both the Kolmogorov-Smirnov (KS =
0.3327, p = 1.37E-16) and Anderson-Darling (AD = 16.67, p = 0.000999) tests, indicating clear
rejection of the distributional hypothesis. The mixture model achieves much stronger agree-
ment with the data (KS = 0.0290, p = 0.999999983; AD = 0.279, p = 0.4875). And the log-
likelihood comparison also shows the superior fit of the mixture model (-261.50 vs. -436.80).

The information criteria (AIC and BIC) further reinforce the inadequacy of the single dis-
tribution. As the gamma model, despite its lower complexity, shows substantially higher AIC
(879.59) and BIC (888.87) values compared to the mixture model, further reinforcing its inad-
equacy as a representation of the observed TBF behavior.

Figure 10 illustrates the limitations of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the gamma model fails to represent the sharp peak near zero and
completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical gamma
distribution (orange crosses) and the empirical distribution (blue circles), particularly in the
lower tail region (0-100 hours) where the model underestimates failure probabilities, and in
the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. The Q-Q plot reveals
more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

Table 14 — Mixture vs. Single Distributions: G1Rac_MC0-018_iexplore_c0000005.

GOF Metric Mixture Model (12-comp) Gamma Simple Distribution

KS / p-value 0.0290 / 0.999999983 0.3327 / 1.37E-16
AD / p-value 0.279/ 0.4875 16.6652 / 0.000999
Log-Likelihood -261.50 -436.80
AIC 611.00 879.59

BIC 705.29 888.87
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5.0.6.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 11 and 12 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 11 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 12 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected

12-component model, which combines lognormal, gamma, and normal distributions.
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The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.

5.1 Results Summary

To avoid overloading this section with dataset analyses, only one representative dataset is
presented in the main text. The remaining analyses, which follow the same methodological
structure, are provided in the appendices A to I for reference.

This research employed an extensive dataset to demonstrate the heterogeneity inherent in
computer failure patterns, even when examining failures from the same process (iexplore. exe)
while varying only the underlying failure cause. The failure data were extracted from comput-

ers where the failures were also analyzed, revealing no apparent systematic failure pattern that
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could reliably distinguish the origin computer group of a given dataset. While certain distri-

butions appear more frequently in some groups than others, these differences are insufficient

to establish definitive classification patterns.

The study categorized computer environments into four distinct groups based on their

operational context:

3.2

Execution Time (s)

CPU Usage (%)

(d G1: Undergraduate Laboratory Computers

(d G2: University Administrative Department Computers

(d G3: Corporate Environment Computers

(d G4: Personal and HomeOffice Computers (Corporate, Academic, and Personal)

And four primary failure causes were identified for the iexplore. exe process:

(d c0000005: Access violation (Memory addressing errors)

(d c0000374: Heap corruption (Memory management failures)
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d ¢c0000096: Privileged instruction (Security violations)

d e06d7363: Unhandled C++ exception (Exception handling errors)

Table 15 presents the mixture model configurations and corresponding goodness-of-fit
tests for each selected dataset. The analysis reveals that datasets following Approach 1 (general

system failures) exhibit significantly more mixture components compared to iexplore. exe-

specific failure datasets.

Table 15 — Best Mixture Models and Goodness-of-Fit Tests by Dataset.

Dataset Best Mixture Model Components GoF Test

G1Rac_MCo- logn-logn-logn-logn-logn-gamma-logn-norm- KS

018_iexplore_c0000005 logn-norm-logn-norm

G2Rac_MC-157400 logn-logn-logn-norm-norm-weib-logn-norm- KS
weib-gamma-norm-norm-norm-norm-norm-
norm-gamma-norm-norm-norm-norm

G2Rac_MC- logn-logn-lagn-logn-weib KS

157400_iexplore_c0000374

G2Rac_MC1-074 logn-logn-norm-weib-weib-gamma-gamma- AD
logn-norm-norm

G2Rac_MCl1- gamma-gamma-gamma-norm KS

074_iexplore_c0000005

G2Rac_MCl1- logn-logn-logn-logn-norm-logn-logn-gamma KS

074_iexplore_c0000096

G3Rac_DSK023 logn-logn-logn-logn-weib-gamma-gamma- KS
logn-logn-weib-weib-weib-gamma

G3Rac_DSK023- logn-logn-logn-weib-weib-norm-logn-logn- KS

iexplore_c0000005 gamma-logn-norm-logn

G4...bba75907480 weib-weib-weib-weib-weib-logn-logn-logn- KS
norm-logn-weib-norm-gamma-logn-logn-
norm

G4...bba75907480- logn-logn-logn-norm-norm-norm-norm AD

iexplore_e06d7363
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5.2 Results and Pattern Analysis

While the previous results focused on 10 representative datasets to illustrate key findings,
this section extends the analysis to encompass the complete dataset of 77 samples (41 from
Approach 1 and 36 from Approach 2). The pattern analysis aims to identify relationships
between failure characteristics, distributional properties, and clustering behaviors across the

entire experimental dataset.

5.2.1 Comparative Group Analysis

The comprehensive analysis identified four distinct groups with different characteristics
regarding sample size, statistical properties, and failure patterns. Table 16 summarizes the key
statistical properties of each group, revealing significant inter-group variability.

Group 1 represents the most homogeneous cluster with a single sample, characterized
by relatively low mean values (41.52) and moderate variability (70.91). This group exhibits
concentrated Time Between Failures (TBF) values within the lower range, suggesting a system
with consistent but frequent failure patterns.

Group 2 constitutes the largest and most heterogeneous with 53 samples, demonstrat-
ing exceptional diversity in statistical properties. The group exhibits substantial inter-sample
variation. This variability indicates that G2 encompasses systems with fundamentally differ-
ent operational characteristics, usage patterns, or underlying failure mechanisms.

Group 3 contains 5 samples but displays extreme statistical contrast between them. This
difference suggests potentially different system configurations, software loads, or usage pat-
terns within the same corporate environment classification.

Group 4 demonstrates sample diversity. Median values remain consistently low (5.29-
59.76), indicating the presence of occasional very long inter-failure intervals alongside pre-
dominantly short intervals. This pattern suggests mixed-usage environments where systems

experience both intensive and idle periods.

Table 16 — Statistical Characteristics by Computer Group.

Characteristic G1 G2 G3 G4
Sample Size 1 53 5 18
Mean Range 41.52 33.23-193.07 31.38-184.12 52.22-208.46

Median Range 2.73 0.55-109.43 3.90-73.49 5.29-59.76
Std Dev Range 70.91 47.91-359.76 82.52-312.88 93.52-449.07
Maximum Value 813.90 2924.98 455.44 1581.13
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5.2.2 Clustering Methodology Comparison

Table 17 presents the performance comparison of different clustering approaches across
the complete dataset. The clustering analysis reveals revealed preferences across different
approaches. K-Means and Fuzzy C-Means consistently identify 11-20 clusters, suggesting
well-defined geometric structures in the high-dimensional failure characteristic space.

HDBSCAN consistently identifies fewer clusters (2-9), reflecting its density-based approach
that merges closely related groups based on connectivity patterns rather than geometric prox-
imity. Gaussian Mixture Models exhibit interesting behavioral differences based on the infor-
mation criterion employed. GMM with BIC penalty produces results similar to K-Means (11—
19 clusters), reflecting BIC’s stronger penalty for model complexity. Conversely, GMM with
AIC tends toward more complex models with higher cluster numbers, consistent with AIC’s

preference for model fit over parsimony.

5.2.3 Distributional Analysis and Goodness-of-Fit Patterns

The distributional analysis revealed preferences among different goodness-of-fit criteria,
providing insights into the underlying nature of failure processes. Table 18 summarizes dis-
tribution preferences across all 77 samples.

The analysis reveals a fundamental dichotomy in distributional preferences between infor-
mation criteria and goodness-of-fit tests. AIC and BIC criteria demonstrate strong agreement,
favoring normal distributions in approximately 70% of cases with log-normal distributions ac-
counting for 25%. This preference reflects these criteria’s emphasis on likelihood maximization

balanced against model complexity.

Table 17 — Clustering Method Performance Comparison.

Clustering Method Typical Cluster Range Methodological Characteristics

K-Means 11-20 Centroid-based
HDBSCAN 2-9 Density-based

Fuzzy C-Means 11-20 Probabilistic membership
GMM (BIC) 11-19 Model complexity penalty
GMM (AIC) 18+ Model complexity preference

Table 18 — Distribution Preferences by Goodness-of-Fit Criteria.

Distribution AIC (%) BIC (%) KS (%) AD (%)

Normal 70 70 20 25
Log-normal 25 25 50 50
Weibull 3 3 20 18
Gamma 1 1 8 5
Exponential 1 1 2 2
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In stark contrast, KS and AD tests prefer log-normal distributions in approximately 50%
of cases, with normal distributions accounting for only 20-25%. This discrepancy highlights
the different distributional aspects emphasized by each criterion: information criteria priori-
tize likelihood-complexity trade-offs, while goodness-of-fit tests focus on distributional shape
agreement and tail behavior.

The average number of mixture components varies systematically across criteria, with AIC
suggesting 17 components, BIC recommending 14, and KS and AD indicating 15-16 compo-
nents respectively. This pattern reflects the inherent complexity preferences of each evalua-

tion approach.

5.2.4 Failure Type Characterization

The mixture model analysis reveals systematic patterns in component composition across
different failure types and computer groups. Table 19 summarizes the typical component
ranges and distributional preferences for different iexplore. exe failure codes.

Access violations (c0000005) consistently require 15-20 mixture components with log-
normal distributions dominating the mixture composition. This pattern suggests complex,
multiplicative failure processes where multiple independent factors contribute to failure oc-
currence. The high component count indicates significant heterogeneity in access violation
mechanisms across different usage contexts.

Heap corruption failures (c0000374) show increased prevalence of Weibull distribu-
tions and require fewer components (8-17), suggesting more structured failure patterns with
characteristic aging or wear-out behaviors.

Privileged instruction violations (c0000096) prefer normal distributions and exhibit
the widest component range (7-24), indicating high variability in underlying failure mecha-
nisms.

C++ exceptions (e06d7363) present in just one dataset with 14 components and log-

normal distribution preference.

5.2.5 Proposed Statistical Classification Algorithm

No consistent failure pattern could be identified across all computer groups. Consequently,

the analysis was restricted to failures associated with the iexplore.exe process. Within

Table 19 — Mixture Model Components by Failure Type.

Failure Code Component Range Dominant Distribution
c0000005 (Access Violation) 15-20 Log-normal
c0000374 (Heap Corruption) 8-17 Weibull
c0000096 (Privileged Instruction) 7-24 Normal

€06d7363 (C++ Exception) 14 Log-normal
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this scope, a statistical classification algorithm was developed to distinguish between failure
causes based on the statistical characteristics of the observed failures. The proposed approach
achieved an overall classification accuracy of 65.7%, corresponding to 23 correctly classified

samples out of 35.

(d Heap Corruption Detection: If (Median < 3.0 AND Standard Deviation/Mean Ratio >
3.0 AND Kurtosis > 20), classify as c0000374.

1 Privileged Instruction Detection: Else If (Mean < 25 AND Maximum < 120 AND
Skewness < 3.0), classify as c0000096.

(d Access Violation Detection: Else If (Skewness > 2.0 AND Best Distribution = Log-
normal), classify as c0000005.

(1 Default Classification: Else (Classify as other failure codes).

The classification algorithm demonstrates that statistical characteristics of inter-failure
intervals contain systematic information about underlying failure mechanisms. While 65.7%
accuracy indicates potential for improvement, this performance represents a advancement
over random classification (25% expected accuracy for four classes).

This analysis demonstrates that computer failure patterns exhibit remarkable complexity
and heterogeneity, even when examining failures from identical processes running on same
operating systems. The research reveals that computer usage patterns fundamentally influ-
ence failure characteristics, generating apparent randomness that masks underlying system-
atic behaviors.

The key finding of this research is that usage context dominates technical homogeneity in
determining failure patterns. Despite employing identical operating systems and examining
the same program (iexplore.exe), the four computer groups (laboratory, administrative,
corporate, and mixed-use) exhibit fundamentally different statistical signatures. This suggests
that usage patterns, software interactions, and operational contexts create unique profiles that
manifest as distinct failure behaviors.

The proposed classification algorithm’s 65.7% accuracy, while modest, demonstrates that
statistical fingerprints of usage patterns are embedded within failure data. This finding has
significant implications for system reliability engineering, suggesting that failure prediction
models must incorporate usage context rather than relying solely on technical specifications.

Furthermore, the distributional analysis reveals that different failure mechanisms exhibit
characteristic statistical signatures: access violations follow log-normal patterns suggesting
multiplicative risk factors, heap corruptions exhibit Weibull behaviors indicating aging pro-
cesses, and security violations show normal distributions reflecting random triggering events.
These signatures persist across usage contexts while varying in intensity and complexity.

The analysis establishes that usage patterns create variations that appear random when

viewed through purely technical lenses. Understanding and modeling these usage-induced
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variations is essential for developing accurate reliability predictions and effective maintenance
strategies in diverse computing environments. The apparent randomness observed in same-
system failures actually reflects the hidden order of computer interaction patterns, highlight-

ing the importance of considering usage context in software reliability engineering.



83

CHAPTER

Conclusion

This chapter presents the main conclusions drawn from the research, highlighting its con-
tributions to the software reliability literature. It provides a summary of the key findings,

discusses the study’s limitations, and outlines potential directions for future research.

6.1 Key Research Findings

The results of this study provide evidence that finite mixture models offer a more robust
and flexible representation of time between failures in software systems compared to tradi-
tional single-distribution models. Evaluation based on multiple statistical measures, includ-
ing goodness-of-fit tests (Kolmogorov-Smirnov and Anderson-Darling), information criteria
(Akaike Information Criterion and Bayesian Information Criterion), and graphical validations
(PDF, CDF, Q-Q, and P-P plots), corroborated the superiority of mixture models in capturing
the complex statistical behavior of TBFs.

These models effectively addressed the inherent multimodal nature of the data, which
could not be adequately represented by simple distributions. Therefore, the findings confirm
that the main objective of this research was successfully achieved, demonstrating that mixture
models can indeed provide a more robust and flexible framework for representing software
failure behavior in systems affected by multiple failure causes and operational variability.

Although the results demonstrate that mixture models provide a flexible and effective
framework for representing heterogeneous failure behavior, they do not constitute a universal
solution for all datasets. In several cases, simpler single-distribution models achieved compa-
rable goodness-of-fit, indicating that the additional complexity of mixture models is not always
necessary. Therefore, the contribution of this work is not to advocate mixture models as uni-
versally superior, but rather to clarify the conditions under which their use is justified and
beneficial.

The findings revealed that software failure times exhibit significant heterogeneity, chal-
lenging the traditional view of a single underlying failure mechanism. Instead, the data sup-

ported the hypothesis that multiple failure causes coexist within software systems. Further-
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more, the analysis indicated that models with 10 to 15 mixture components often offered bet-
ter statistical accuracy. Within this range, no substantial improvements were observed in the
applied GoF tests, suggesting that additional components did not yield meaningful gains in
performance.

To assess the practicality of applying mixture models in real-world settings, a compu-
tational cost analysis was conducted. The results showed that, even as model complexity
increased, the computational resource usage remained within acceptable limits, allowing all
models to be successfully fitted. In the worst-case scenarios, the computation time did not
exceed 30 seconds, memory consumption remained below 400 MB, CPU usage peaked at ap-
proximately 85%, and the total number of operations did not surpass the order of 10°. Thus,
the use of mixture models is not computationally prohibitive, further supporting their appli-
cability in operational environments.

Beyond its specific application to software failure data, an additional contribution of this
dissertation lies in the generality of the proposed methodology. The modeling, clustering,
and validation framework adopted in this work is not limited to failure time data and can be
applied to other datasets involving continuous variables. As such, the approach may be useful
for analyzing heterogeneous behaviors in broader empirical contexts, extending its relevance

beyond traditional software reliability studies.

6.1.1 Operational Environment Impact

One of the findings of the study was the clear influence of the operational environment
on TBF patterns. The analysis across four different operational groups revealed distinct and
characteristic behaviors that reflect the underlying usage patterns and system conditions:

G1 (University Laboratories): These systems operate in academic environments, their
usage tends to be less structured, as laboratory computers are often used by multiple users
for a wide variety of tasks. This can introduce variability in workload patterns. However, in
this study, the failure patterns observed for G1 appeared relatively homogeneous and were
represented by simpler mixture models with fewer components, which may be explained by
the smaller number of samples available for this group compared to the others, potentially
masking the possible diversity of behaviors.

G2 (University Administrative Departments): In contrast, systems from administra-
tive departments operate in more stable and narrowly defined contexts, with well-established
routines and a limited range of applications. Despite this more controlled operational envi-
ronment, this group exhibited the greatest diversity in failure configurations, with mixture
models reaching up to 30 components. This group contributed the largest number of samples
to the dataset, and the abundance of data revealed a wide variety of failure configurations.
Consequently, the mixture models for this group showed the highest complexity, with up to
30 components, indicating that the larger dataset captured a broader spectrum of failure be-

haviors within this environment.
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G3 (Corporate Environment): Presented behavior similar to group G4, characterized by
the presence of lognormal, Weibull, normal, and gamma distributions in the mixture compo-
nents. The corporate environment showed intermediate complexity, yet with sufficient diver-
sity to require multi-component mixture models.

G4 (Personal and HomeOffice Computers): Exhibited the greatest diversity of distribu-
tions in the mixture models, notably presenting the exponential distribution, which was not
commonly observed in other groups. This unique characteristic suggests that mixed-usage
environments create conditions that lead to diverse failure behavior.

Therefore, even under a common operating system architecture, the usage profile and

workload environment significantly impact the failure behavior of software systems.

6.1.2 Failure Pattern Characterization

The study uncovered patterns in the TBFs, particularly for failures associated with spe-
cific software components such as Internet Explorer. Failures including access violation, heap
corruption, privileged instruction violation and unhandled C++ exception showed consistent
preferences for specific distribution types, such as lognormal, Weibull and normal distribu-
tions, depending on the failure category and underlying failure mechanism. These findings
suggest the possibility of identifying and characterizing failure root causes based solely on
the statistical properties of the TBFs, contributing to more precise failure classification and
potentially predictive maintenance strategies.

The finding of these patterns across different datasets and operational environments indi-
cates that certain failure types have inherent statistical signatures that can be leveraged for

diagnostic purposes.

6.1.3 Multi-Modal Failure Behavior

The presence of multiple failure causes was demonstrated through clustering analyses con-
ducted using various unsupervised learning techniques, including K-Means, HDBSCAN, Fuzzy
C-Means, and Gaussian Mixture Models with both AIC and BIC selection criteria. In many
cases, the optimal number of clusters corresponded closely to the number of components in
the best-fitting mixture models, providing support for the interpretation of these components
as distinct failure behaviors rather than statistical artifacts.

This convergence of results from different analytical approaches strengthens the conclu-
sion that software systems exhibit multi-modal failure behavior. The clustering analyses re-
vealed that failures naturally group into distinct categories based on their temporal character-

istics.
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6.1.4 Distributional Preferences and Model Complexity

The research led to the identification of preferred probability distributions for modeling
software failure processes. The lognormal distribution emerged as the most prevalent, ap-
pearing in approximately 70% of the best-fitting mixture models, followed by the Normal and
Weibull distributions. The dominance of the lognormal distribution suggests that many soft-
ware failure processes follow multiplicative rather than additive patterns.

It is noteworthy that the Lognormal and Weibull distributions are not frequently used in
software reliability studies. Among the 16 related works reviewed, only about 20% employed
either of these distributions. Specifically, (VINEYARD; AMOAKO-GYAMPAH; MEREDITH,
1999) applied Weibull and Lognormal models to represent failure and repair times, (SCHROEDER,;
GIBSON, 2009) used Weibull and Gamma distributions to describe Time Between Failures
(TBF) and Time To Repair (TTR), and (KUMAR; JAIN, 2023) combined Lognormal and Weibull
distributions within homogeneous and heterogeneous mixture frameworks. In line with these
studies, the present research confirms the effectiveness of these distributions, particularly
within mixture model structures, for representing complex and heterogeneous software failure
patterns.

Sensitivity analyses indicated that models with 10 to 15 components offered good statis-
tical accuracy. Within this range, no substantial improvements were observed in the applied
Goodness-of-Fit (GoF) tests, suggesting that increasing the number of components beyond this
point yields diminishing returns in terms of model performance. To complement this evalu-
ation, a computational cost analysis was conducted to determine whether the use of mixture
models is computationally intensive. The results showed that, despite increasing model com-
plexity, the computational demands remained within acceptable limits. Thus, the application
of mixture models is not prohibitively costly from a computational standpoint, supporting

their feasibility for real-world implementation.

6.2 Research Limitations

This work acknowledges several limitations that should be considered. First, the scope of
the dataset, while comprehensive within its domain, is based on Windows 7 Reliability Anal-
ysis Component (RAC) data and is primarily focused on specific software applications and
operating environments. This raises concerns regarding dataset dependence and the gener-
alizability of the conclusions. Although the operating system and data collection mechanism
are platform-specific, the observed failure patterns are driven by fundamental interactions
between software components, workloads and operational profiles. Consequently, while nu-
merical results and distributional configurations may differ across platforms or more recent
systems, the proposed modeling methodology and analytical framework are expected to re-

main applicable. Broader datasets encompassing more diverse platforms, application types,
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and operational contexts would allow for more generalizable conclusions and potentially re-
veal additional failure patterns not observed in the current study.

Additionally, the modeling approach assumed statistical independence between consecu-
tive failures and considered only univariate TBF data. While this assumption is common in
reliability modeling, real software systems may exhibit temporal dependencies between fail-
ures that could provide additional modeling opportunities. The independence assumption may
be particularly limiting in cases where failures are caused by cumulative effects.

Another acknowledged limitation relates to the interpretability of mixture components.
While mixture models provide statistical flexibility and fitting capability, they become pro-
gressively less interpretable as the number of components increases, especially when different

distribution types are combined within a single model.

6.3 Future Research Directions

While the present study demonstrates that mixture distributions are effective in character-
izing heterogeneous failure patterns, an important next step is to understand the underlying
mechanisms that give rise to these distinct failure classes. Advancing in this direction could
transform the proposed approach from primarily descriptive to more prescriptive, enabling
deeper insights into failure causation and system behavior. Building upon the findings of this
research, several possibilities for future work emerge:

Dataset Generalization: Applying the proposed methodology to other datasets from dif-
ferent domains, platforms and application types would test the generalizability of the conclu-
sions and potentially reveal new failure patterns.

Multivariate Extensions: Incorporating additional variables such as workload intensity,
system age, user behavior patterns into the analysis may enhance the mixture models predic-
tive capability.

Temporal Modeling: Expanding the framework to account for temporal dependencies in
failure data could improve the modeling of complex systems where failures are not indepen-
dent.

Real-time Applications: Integrating mixture models into real-time monitoring systems
could offer valuable tools for failure prediction in operational environments.

Machine Learning Integration: Combining mixture modeling approaches with machine
learning techniques could lead to hybrid models that leverage the interpretability of statistical

models and the flexibility of machine learning algorithms.
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APPENDIX

Results G2Rac-MC1-074 (Approach 1)

This case refers to failures observed throughout the operational history of the computer

MC1-074, which operates within Group 2 (Graduate Laboratory environment).

A.0.0.1 Statistical Characterization

Table 20 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a highly heterogeneous failure pattern characterized by extreme asymme-
try and heavy-tailed behavior. The difference between mean (36.13 hours) and median (8.07
hours) indicates a strongly right-skewed distribution, which is further confirmed by the high
positive skewness value of 5.11.

The extremely low mode value (0.0014 hours) combined with the minimum observation
(0.0006 hours) indicates that some failures occur in rapid succession, possibly representing
cascading failures or immediate re-failures after system recovery attempts.

The extremely high kurtosis value (41.50) indicates a distribution with heavy tails and a

Table 20 - Descriptive Statistics: G2Rac_MC1-074.

Statistic Value
Count 246
Mean (hours) 36.13
Median (hours) 8.07
Mode (hours) 0.0014
Standard Deviation 69.45
Minimum 0.0006
Maximum 733.91
First Quartile (Q1) 0.77
Third Quartile (Q3) 37.32
Interquartile Range (IQR) 36.55
Skewness 5.11
Kurtosis 41.50

Main Data Range 0.01 - 160.75
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sharp peak, suggesting the coexistence of multiple modes. The large interquartile range (36.55

hours) relative to the median further emphasizes the high variability in failure times.

A.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 21 summarizes the number of clusters recommended by each
approach.

K-Means and Fuzzy C-means algorithms demonstrate convergence, both suggesting 8 clus-
ters, indicating moderate granularity in failure pattern recognition. HDBSCAN’s recommen-
dation of 16 clusters suggests the presence of numerous density-based groupings, reflecting
its sensitivity to local density variations and its ability to identify micro-clusters within the
failure pattern. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC,
recommend intermediate values of 9 and 15 components, respectively.

Figure 13 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=8) identifies
multiple clusters with many observations concentrated in the low TBF region (0-50 hours)
and several isolated high-TBF outliers. HDBSCAN (k=16) demonstrates its noise-handling
capabilities by identifying higher TBF values as noise points (represented by gray crosses),
suggesting that extremely long intervals may represent outliers rather than members of failure
clusters.

Fuzzy C-Means (k=8) produces a clustering pattern similar to K-Means but with slightly
different cluster boundaries, while the GMM approaches (BIC with k=9 and AIC with k=15)
show intermediate clustering between HDBSCAN’s fine partitioning and K-Means’ moder-
ate grouping. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the
trade-off between cluster quality metrics, with the Elbow method showing a sharp decline up
to 8 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 21 — Cluster Results: G2Rac_ MC1-074.

Clustering Approach Recommended Clusters

K-Means 8
HDBSCAN 16
Fuzzy C-means 8
GMM (BIC) 9

GMM (AIC) 15
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A.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-

fied by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The final model selected via

the Expectation-Maximization (EM) algorithm consisted of 10 components with the following

distributional structure: logn-logn-norm-weib-weib-gamma-gamma-logn-norm-norm. This

configuration was selected based on the outcomes of the AD goodness-of-fit test.
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Figure 14 demonstrates the fit achieved by the 10-component mixture model. The prob-
ability density function plot shows a highly multimodal distribution with a dominant peak
near zero and several smaller peaks at intermediate values (50-150 hours) and longer intervals
(300-700 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the upper
tail (around 700 hours). The overall linear pattern validates the mixture model’s ability to
capture both the central tendency and the extreme behavior of the failure process.

Table 22 summarizes the goodness-of-fit results for the selected model. The GoF test results
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provide statistical evidence for the adequacy of the 10-component mixture model. The KS
test yields a low test statistic (0.0313) with a high p-value (0.9636), indicating that the null
hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.118
with a p-value of 0.9990. This result further confirms the model adequacy.

The log-likelihood value of -862.08 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 1796.16 and
1922.35, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 23 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Normal distribution uses the location (1) and scale (o) parameters.

(1 Lognormal distribution is parameterized by the shape (¢), location (1), and scale (0)

parameters.

(d Weibull distribution is characterized by the shape (k), location (1), and scale (\) param-

eters.

Table 22 — Goodness-of-fit Test Results: G2Rac_ MC1-074.

Model Test Statistic / p-value
10-Component Mixture KS 0.0313/0.9636
AD -1.118 / 0.9990
Log-Likelihood -862.08
AIC 1796.16
BIC 1922.35

Table 23 — Mixture Model Parameters: G2Rac_ MC1-074.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.3680 1.2799 1E-10 3.20
logn_1 Lognormal 0.1832 0.2015 1E-10 20.74
norm_2 Normal 0.0764 65.72 13.44 —
weib_3 Weibull 0.0363 3.0507 1E-10 79.37
weib_4 Weibull 0.0249 3.7468 1E-10 144.48
gamma_5 Gamma 0.0400 14.46 1E-10 9.12
gamma_6 Gamma 0.0541 26.60 1E-10 5.63
logn_7 Lognormal 0.2050 1.7491 1E-10 0.020
norm_§ Normal 0.0080 309.36 25.56 —

norm_9 Normal 0.0041 733.91 1E-10 —
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(d Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: logn_0 (36.80%), logn_7 (20.50%), and logn_1 (18.32%). These
high-weight components correspond to different failure regimes, from rapid succession fail-
ures (logn_7 with scale parameter 0.020) to intermediate stability periods (logn_0 with scale
parameter 3.20).

The lognormal components dominate the mixture (3 out of 10 components, accounting for
75.62% of total weight), reflecting the multiplicative nature of the failure process. The pres-
ence of three normal components (norm_2, norm_8, norm_9) with high location parameters
(65.72, 309.36, and 733.91 hours, respectively) captures the extended TBFs. The Weibull com-
ponents (weib_3, weib_4) with shape parameters around 3.0-3.7 suggest wear-out behavior,
while gamma components (gamma_5, gamma_6) provide additional flexibility for modeling

intermediate failure patterns.

A.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 10-component model and evaluate how model
performance responds to changes in complexity, a sensitivity analysis was performed. This
analysis investigated the behavior of GoF metrics as the number of mixture components in-
creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained
for each number of mixture components.

Figure 15 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals a perfor-
mance trajectory that supports moderate complexity selections. Starting from single-component
performance, the statistic shows improvement through the initial component additions. The
most significant improvement occurs in the 2-10 component range, with the selected 10-
component model showing stable performance.

The sensitivity of the AD test provides complementary evidence by emphasizing distri-
bution’s tail behavior. As the number of components increases, the AD statistic shows im-
provement in the model’s ability to represent distribution’s tail behavior more accurately in
multi-component configurations. However, oscillatory behavior becomes evident beyond 20
components, indicating instability at higher complexity levels.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory shows consistent improvement through moderate component numbers,
with the minimum AIC value observed around 10-15 components. In contrast, the BIC anal-
ysis, which imposes a stronger penalty for model complexity, reaches its minimum at lower

component numbers, reflecting its preference for parsimony.
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Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

A.0.0.5 Comparison with Single-Component Models

For comparison purposes, the Weibull distribution provided the best fit among the single-
component models evaluated, as reported in Table 24. Despite its superior performance rela-
tive to the other single distributions, the model was unable to adequately capture the underly-
ing complexity of the data. This result indicates that, although suitable as a baseline, a single
Weibull distribution is insufficient to represent the heterogeneous behavior observed in the
time between failures.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
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Figure 15 - G2Rac_MC1-074 Sensitivity Analysis of Model Selection Metrics (KS, AD, AIC,
BIC) vs. Number of Mixture Components.
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Weibull distribution yields low p-values for both the Kolmogorov-Smirnov (KS = 0.0940, p =
0.0241) and Anderson-Darling (AD = 1.583, p = 0.0679) tests, indicating marginal adequacy.
The mixture model achieves much stronger agreement with the data (KS = 0.0313, p = 0.9636;
AD =-1.118, p = 0.9990). And the log-likelihood comparison also shows the superior fit of the
mixture model (-862.08 vs. -922.75).

The information criteria (AIC and BIC) provide a more nuanced comparison. While the
AIC strongly favors the mixture model (1796.16 vs. 1851.49), the BIC comparison shows the
Weibull model achieving slightly better performance (1862.01 vs. 1922.35) due to stronger
complexity penalties. However, this BIC advantage for the simple model comes at the cost of
substantially poorer distributional fit, as evidenced by the likelihood and goodness-of-fit test
results.

Figure 16 illustrates the limitations of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the Weibull model fails to represent the sharp peak near zero
and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical Weibull
distribution (orange crosses) and the empirical distribution (blue circles), particularly in the
lower tail region (0-100 hours) where the model underestimates failure probabilities, and in
the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. The Q-Q plot reveals
more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

A.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 17 and 18 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-

nent numbers.

Table 24 — Mixture vs. Single Distributions: G2Rac_MC1-074.

GOF Metric Mixture Model (10-comp) Weibull Simple Distribution

KS / p-value 0.0313 / 0.9636 0.0940 / 0.0241
AD / p-value -1.118 / 0.9990 1.583/0.0679
Log-Likelihood -862.08 -922.75
AlIC 1796.16 1851.49

BIC 1922.35 1862.01
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Figure 17 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 18 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected
10-component model, which combines lognormal, normal, Weibull, and gamma distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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Figure 16 — G2Rac_MC1-074 Single Distribution Model Fit Demonstrated Through PDF, CDF,
P-P and Q-Q Plots.
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APPENDIX

G2Rac_MC1-074_iexplore_c0000005
(Approach 2)

This case refers to failures related to access violations (c0000005), associated with invalid
memory addressing, occurring in the iexplore.exe’s process on computer MC1-074, part

of the Group 2 (Graduate Laboratory environment).

B.0.0.1 Statistical Characterization

Table 25 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a heterogeneous failure pattern characterized by significant asymmetry
and heavy-tailed behavior. The difference between mean (197.72 hours) and median (106.50
hours) indicates a right-skewed distribution, which is further confirmed by the positive skew-
ness value of 1.35.

The extremely low mode value (0.003 hours) combined with the minimum observation

Table 25 — Descriptive Statistics: G2Rac_MC1-074_iexplore_c0000005.

Statistic Value
Count 36
Mean (hours) 197.72
Median (hours) 106.50
Mode (hours) 0.003
Standard Deviation 227.60
Minimum 0.003
Maximum 908.48
First Quartile (Q1) 23.43
Third Quartile (Q3) 304.43
Interquartile Range (IQR) 280.99
Skewness 1.35
Kurtosis 1.04

Main Data Range 0.46 — 631.92
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(0.003 hours) indicates that some failures occur in rapid succession, possibly representing cas-
cading failures or immediate re-failures after system recovery attempts.

The moderate kurtosis value (1.04) indicates a distribution with moderate tail behavior and
peak sharpness. The large interquartile range (280.99 hours) relative to the median further

emphasizes the high variability in failure times.

B.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 26 summarizes the number of clusters recommended by each
approach.

K-Means and Fuzzy C-means algorithms demonstrate convergence, both suggesting 13
clusters, indicating moderate granularity in failure pattern recognition. HDBSCAN failed to
identify meaningful clusters, returning an indeterminate result, suggesting that the clusters
in this dataset are better characterized by distance-based rather than density-based criteria.
The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend higher
values of 18 and 25 components, respectively.

Figure 19 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=13) identifies
numerous clusters with clear separation between low, medium, and high TBF groups. HDB-
SCAN shows no meaningful clustering pattern, with most data points unclassified.

Fuzzy C-Means (k=13) produces a clustering pattern similar to K-Means but with slightly
different cluster boundaries, while the GMM approaches (BIC with k=18 and AIC with k=25)
show finer granularity in partitioning the data space. The Elbow and Silhouette analysis in
the bottom-right panel demonstrates the trade-off between cluster quality metrics, with the El-
bow method showing gradual improvement, while the Silhouette score peaks at lower cluster

numbers.

B.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-

fied by each GoF test, combined with a visual comparison of the graphical results for each

Table 26 — Cluster Results: G2Rac_MC1-074_iexplore_c0000005.

Clustering Approach Recommended Clusters

K-Means 13
HDBSCAN N/A
Fuzzy C-means 13
GMM (BIC) 18

GMM (AIC) 25
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candidate model. This procedure was applied across all samples. The final model selected via
the Expectation-Maximization (EM) algorithm consisted of 4 components with the following
distributional structure: gamma-gamma-gamma-norm. This configuration was selected based
on the outcomes of the KS goodness-of-fit test.

Figure 20 demonstrates the fit achieved by the 4-component mixture model. The proba-
bility density function plot shows a multimodal distribution with peaks distributed across the
TBF spectrum (0-900 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
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cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the ex-
treme tail regions. The overall linear pattern validates the mixture model’s ability to capture
both the central tendency and the extreme behavior of the failure process.

Table 27 summarizes the goodness-of-fit results for the selected model. The GoF test results
provide statistical evidence for the adequacy of the 4-component mixture model. The KS test
yields a low test statistic (0.052) with an extremely high p-value (0.9999), indicating that the
null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -0.633

with a p-value of 0.708. This result further confirms the model adequacy.
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The AIC and the BIC values are 462.64 and 484.81, respectively, these criteria penalize
model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 28 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Normal distribution uses the location (1) and scale (o) parameters.

(d Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: gamma_0 (40.0%), gamma_1 (34.9%), and gamma_2 (13.5%).
These high-weight components correspond to different failure regimes, from highly variable
short-to-moderate execution times (gamma_0 with shape parameter 0.587) to more consistent
moderate-range patterns (gamma_1 with shape parameter 3.110).

The gamma components dominate the mixture (3 out of 4 components, accounting for
88.4% of total weight), reflecting the multiplicative nature of the failure process. The presence
of one normal component (norm_3) with high location parameter (614.96 hours) captures the
extended TBFs in the upper tail region. The varying gamma shape parameters (0.587, 3.110,
and 16.646) suggest different degrees of variability, with higher shape values indicating more

concentrated distributions around the mode.

Table 27 — Goodness-of-fit Test Results: G2Rac_MC1-074_iexplore_c0000005.

Model Test Statistic / p-value
4-Component Mixture KS 0.052/ 0.9999
AD -0.633/0.708
Log-Likelihood -217.32
AIC 462.64
BIC 484.81

Table 28 — Mixture Model Parameters: G2Rac_MC1-074_iexplore_c0000005.

Component Distribution Weight Param 1 Param2 Param 3

gamma_0 Gamma 0.400 0.587 1E-10 47.23
gamma_1 Gamma 0.349 3.110 1E-10 47.68
gamma_2 Gamma 0.135 16.646 1E-10 28.43

norm_3 Normal 0.116 614.96 191.75 —
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B.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 4-component model and evaluate how model per-
formance responds to changes in complexity, a sensitivity analysis was performed. This anal-
ysis investigated the behavior of GoF metrics as the number of mixture components increased.
The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each
number of mixture components.

Figure 21 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals stable per-
formance across the 4-20 component range, supporting the selection of a simpler model that
maintains adequate fit quality.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. The AD statistic exhibits greater variability than the KS statistic, achieving
optimal performance around 15-17 components before showing increased variation at higher
component numbers, indicating instability at higher complexity levels.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
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Figure 21 — G2Rac_MC1-074_iexplore_c0000005 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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The AIC trajectory shows a clear and pronounced minimum at 21 components, increasing
for both lower and higher component counts. In contrast, the BIC analysis, which imposes a
stronger penalty for model complexity, exhibits a similar pattern, achieving minimum values
around 21-24 components before increasing sharply.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

B.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the lognormal model, as shown
in Table 29. In this particular case, the single-component model achieved comparable perfor-
mance to the mixture model while maintaining greater parsimony.

While mixture models often provide superior fit for complex failure patterns, this case
demonstrates that single-distribution models can be adequate when the underlying data struc-
ture is less complex. In this particular sample, the simpler lognormal model provides sufficient
representational adequacy.

Goodness-of-fit testing reveals comparable performance: while the mixture model achieves
excellent fit (KS = 0.052, p = 0.9999; AD = -0.633, p = 0.708), the lognormal distribution also
demonstrates adequate fit (KS = 0.1222, p = 0.6121; AD =-0.451, p = 0.6067). Both models show
no significant departure from the empirical distribution.

The information criteria (AIC and BIC) favor the simpler model in this case. The lognormal
distribution achieves lower AIC (458.30 vs. 462.64) and BIC (463.05 vs. 484.81) values compared
to the mixture model, indicating that the additional complexity of the mixture approach is not
justified by sufficient improvement in fit quality.

Figure 22 illustrates the fit quality of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the lognormal model captures the main characteristics of the

distribution, though some minor deviations are visible in the histogram representation.

Table 29 — Mixture vs. Single Distributions: G2Rac_MC1-074_iexplore_c0000005.

GOF Metric Mixture Model (4-comp) Lognormal Simple Distribution

KS / p-value 0.052/ 0.9999 0.1222 / 0.6121
AD / p-value -0.633/ 0.708 -0.451 / 0.6067
Log-Likelihood -217.32 -290.13
AIC 462.64 458.30

BIC 484.81 463.05
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The CDF comparison demonstrates good agreement between the theoretical lognormal
distribution (orange crosses) and the empirical distribution (blue circles) across most of the
data range. The P-P plot shows reasonable linearity along the 45-degree line, with minor de-
partures. The Q-Q plot reveals acceptable correspondence between theoretical and empirical

quantiles, with deviations primarily in the tail regions.

B.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 23 and 24 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-

nent numbers.
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Figure 22 — G2Rac_MC1-074_iexplore_c0000005 Single Distribution Model Fit Demonstrated
Through PDF, CDF, P-P and Q-Q Plots.
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Figure 23 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 24 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected
4-component model, which combines gamma and normal distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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Figure 23 - G2Rac_MC1-074_iexplore_c0000005 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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APPENDIX

Results
G2Rac-MC1-074-iexplore-c0000096
(Approach 2)

This case refers to failures related to privileged instruction violation (c0000096), occur-
ring in the iexplore. exe’s process on computer MC1-074, part of the Group 2 (University

Administrative Department).

C.0.0.1 Statistical Characterization

Table 30 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a heterogeneous failure pattern characterized by significant asymmetry
and moderate heavy-tailed behavior. The difference between mean (20.15 hours) and median
(16.26 hours) indicates a right-skewed distribution, which is further confirmed by the positive
skewness value of 1.66.

The extremely low mode value (0.001 hours) combined with the minimum observation
(0.001 hours) indicates that some failures occur in rapid succession, possibly representing cas-
cading failures or immediate re-failures after system recovery attempts.

The moderate kurtosis value (2.43) indicates a distribution with moderate tail behavior
and peak sharpness. The large interquartile range (23.53 hours) relative to the median further

emphasizes the high variability in failure times.

C.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 31 summarizes the number of clusters recommended by each
approach.

Fuzzy C-means and GMM (BIC) algorithms demonstrate convergence, both suggesting 9

clusters, indicating moderate granularity in failure pattern recognition. HDBSCAN’s recom-
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mendation of 2 clusters suggests the presence of two major density-based groupings, reflect-
ing its conservative approach to cluster identification. K-Means suggests 8 clusters, while the
Gaussian Mixture Model (GMM) with AIC recommends 11 components.

Figure 25 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=8) identifies
multiple clusters with well-separated groups and clear boundaries. HDBSCAN (k=2) shows a
conservative approach, identifying only two main clusters plus noise points (represented by
gray crosses), focusing on high-density regions.

Fuzzy C-Means (k=9) produces a clustering pattern with slightly finer granularity, while
the GMM approaches (BIC with k=9 and AIC with k=11) show similar moderate clustering.
The Elbow and Silhouette analysis in the bottom-right panel demonstrates the trade-off be-
tween cluster quality metrics, with the Elbow method showing improvement up to 8-9 com-

ponents, while the Silhouette score indicates optimal performance at lower cluster numbers.

C.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identified

by each GoF test, combined with a visual comparison of the graphical results for each candi-

Table 30 — Descriptive Statistics: G2Rac_MC1-074_iexplore_c0000096.

Statistic Value
Count 36
Mean (hours) 20.15
Median (hours) 16.26
Mode (hours) 0.001
Standard Deviation 23.61
Minimum 0.001
Maximum 95.60
First Quartile (Q1) 1.49
Third Quartile (Q3) 25.02
Interquartile Range (IQR) 23.53
Skewness 1.66
Kurtosis 243
Main Data Range 0.001 - 95.60

Table 31 — Cluster Results: G2Rac_MC1-074_iexplore_c0000096.

Clustering Approach Recommended Clusters

K-Means 8
HDBSCAN 2
Fuzzy C-means 9
GMM (BIC) 9

GMM (AIC) 1

—_
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date model. This procedure was applied across all samples. The final model selected via the

Expectation-Maximization (EM) algorithm consisted of 8 components with the following dis-

tributional structure: logn-logn-logn-logn-norm-logn-logn-gamma. This configuration was

selected based on the outcomes of the AD goodness-of-fit test.

Figure 26 demonstrates the fit achieved by the 8-component mixture model. The probabil-

ity density function plot shows a multimodal distribution with a dominant peak near zero and

several smaller peaks at intermediate values (10-50 hours) and longer intervals (60-90 hours).
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The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the ex-
treme tail regions. The overall linear pattern validates the mixture model’s ability to capture
both the central tendency and the extreme behavior of the failure process.

Table 32 summarizes the goodness-of-fit results for the selected model. The GoF test results
provide statistical evidence for the adequacy of the 8-component mixture model. The KS test
yields a low test statistic (0.055) with an extremely high p-value (0.9997), indicating that the
null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,

which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.151

logn-logn-logn-logn-norm-logn-logn-gamma

Mixture Model CDF Plot

0.12 1 —— logn_0 (w=0.22) 1.0 1
logn_1 (w=0.08)
logn_2 (w=0.03)
logn_3 (w=0.08) 0.8

—— norm_4 (w=0.36)

0.10 4

0.08 1 logn_5 (w=0.09) 3
. logn_6 (w=0.08) 2 0.6 1
£ gamma_7 (w=0.06) 3
g 0.06 === Mixture Model §
< 0.4

0.04 "1
Hi
0.2
0.02

g —e— Empirical CDF
000 P -8 004 —» - Theoretical CDF
’ 0 20 40 60 80 100 0 20 40 60 80 100
Data Data
P-P Plot Q-Q Plot
100
1.0 [ ] 2
oY L’
.;/ X2
& 80 e
0.8 . e
..‘, 3 o 7
& 2 60 -
8 0.6 1 .. ," E o
T & s %
K - ¥
& .o,’ S 4 »”
£ 0.4 ® = e
i [ 4 3 e
,,; w r
[ ’
0.2 1 L 4 20+ -
’ ’
}/,l ® Mixture Model ’ ® Mixture Model
004 - ——=- 45-degree line 04 ——=- 45-degree line
0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80
Theoretical CDF Theoretical Quantiles

Figure 26 - G2Rac_MC1-074_iexplore_c0000096 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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with a p-value of 0.989. This result further confirms the model adequacy.

The log-likelihood value of -106.94 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 273.88 and
321.39, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 33 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Normal distribution uses the location (1) and scale (o) parameters.

(d Lognormal distribution is parameterized by the shape (o), location (1), and scale (0)

parameters.

(d Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: norm_4 (35.8%), logn_0 (22.1%), and logn_5 (9.5%). These high-
weight components correspond to different failure regimes, from stable operational periods
(norm_4 with mean 22.917 hours) to multiplicative failure patterns (logn_0 with scale param-
eter 1.208).

Table 32 — Goodness-of-fit Test Results: G2Rac_MC1-074_iexplore_c0000096.

Model Test Statistic / p-value
8-Component Mixture KS 0.055/0.9997
AD -1.151/0.989
Log-Likelihood -106.94
AIC 273.88
BIC 321.39

Table 33 — Mixture Model Parameters: G2Rac_MC1-074_iexplore_c0000096.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.221 1.135 1E-10 1.208
logn_1 Lognormal 0.077 0.100 1E-10 7.532
logn_2 Lognormal 0.029 0.100 1E-10 64.198
logn_3 Lognormal 0.082 0.100 1E-10 45.715
norm_4 Normal 0.358 22.917 4.340 -

logn_5 Lognormal 0.095 0.376 1E-10 1.540
logn_6 Lognormal 0.083 0.100 1E-10 0.001

gamma_7 Gamma 0.055 552.614 1E-10 0.166
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The lognormal components dominate the mixture (6 out of 8 components, accounting for
58.7% of total weight), reflecting the multiplicative nature of the failure process. The presence
of one normal component (norm_4) with moderate location parameter (22.917 hours) cap-
tures the central tendency with relatively low variability (standard deviation 4.340). The sin-
gle gamma component (gamma_7) with an extremely high shape parameter (552.614) captures
a highly peaked distribution with very low variability, likely representing highly consistent,

short execution times.

C.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 8-component model and evaluate how model per-
formance responds to changes in complexity, a sensitivity analysis was performed. This anal-
ysis investigated the behavior of GoF metrics as the number of mixture components increased.
The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each
number of mixture components.

Figure 27 presents the sensitivity analysis results, examining the behavior of key goodness-
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Figure 27 - G2Rac_MC1-074_iexplore_c0000096 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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of-fit statistics across component numbers. The KS test sensitivity analysis reveals rapid im-
provement as component numbers increase from 1 to 6, reflecting the progressive ability
to capture distributional nuances. Beyond 6 components, the KS statistics stabilize around
0.05-0.06, suggesting that additional components provide marginal improvements in overall
fit quality.

The sensitivity of the AD test provides complementary evidence by emphasizing distri-
bution’s tail behavior. The AD statistic shows improvement through moderate component
numbers, with the selected 8-component model achieving strong performance. However, ir-
regular patterns emerge at higher complexity levels, indicating potential instability.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory shows improvement through moderate component numbers, with optimal
performance around 8 components. Beyond this point, AIC values show irregular patterns,
suggesting potential overfitting where additional parameters no longer provide proportional
improvements in model likelihood. In contrast, the BIC analysis, which imposes a stronger
penalty for model complexity, follows similar trends but with steeper increases at high com-
ponent numbers, reaching minimum values around 8-9 components before increasing again.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

C.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the Weibull model, as shown in
Table 34. Although it achieved the best performance among the single-component models
tested, it still failed to capture the complexity present in the data.

While the Weibull distribution emerged as the best-fitting single-component model among
those evaluated, it remains inadequate for representing the complex behavior of time between

failures. These models often fail to capture the underlying structural characteristics that arise

Table 34 — Mixture vs. Single Distributions: G2Rac_MC1-074_iexplore_c0000096.

GOF Metric Mixture Model (8-comp) Weibull Simple Distribution

KS / p-value 0.055/ 0.9997 0.1393 / 0.4469
AD / p-value -1.151/ 0.989 -0.239/ 0.4631
Log-Likelihood -106.94 -153.75
AIC 273.88 254.96

BIC 321.39 259.71
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from the inherent complexity of TBFs, which can result from multiple factors, including the
diversity of failure causes and variations in workload and operational profiles.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
Weibull distribution yields moderate p-values for both the Kolmogorov-Smirnov (KS = 0.1393,
p = 0.4469) and Anderson-Darling (AD =-0.239, p = 0.4631) tests, indicating acceptable but not
excellent fit. The mixture model achieves much stronger agreement with the data (KS = 0.055,
p = 0.9997; AD = -1.151, p = 0.989). The Kolmogorov-Smirnov statistic of 0.1393 for the single
distribution is more than twice as large as the mixture model’s 0.055, indicating systematic
deviations between the empirical data and the fitted model.

The information criteria (AIC and BIC) provide a more nuanced comparison. The Weibull
model achieves lower AIC (254.96 vs. 273.88) and BIC (259.71 vs. 321.39) values due to its much
lower complexity. However, this advantage in parsimony comes at the cost of substantially
poorer distributional fit, as evidenced by the goodness-of-fit test results.

Figure 28 illustrates the limitations of single-distribution modeling for this failure dataset.
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Figure 28 — G2Rac_MC1-074_iexplore_c0000096 Single Distribution Model Fit Demonstrated

Through PDF, CDF, P-P and Q-Q Plots.
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The PDF overlay reveals that the Weibull model fails to represent the sharp peak near zero
and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical Weibull
distribution (orange crosses) and the empirical distribution (blue circles), particularly in the
lower and upper tail regions where the model systematically over or underestimates failure
probabilities.

The P-P plot shows departures from linearity, with an S-shaped curve indicating consistent
over and under prediction in different regions. The Q-Q plot reveals more nonlinearities, with

the data points forming a curved pattern rather than following the expected 45-degree line.

C.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 29 and 30 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 29 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 30 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected
8-component model, which combines lognormal, normal, and gamma distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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APPENDIX

Results G2Rac-MC-157400 (Approach 1)

This case refers to failures observed throughout the operational history of the computer

MC-157400, which operates within Group 2 (University Administrative Department).

D.0.0.1 Statistical Characterization

Table 35 presents the statistical characteristics of the TBF data for this sample. The de-
scriptive statistics reveal an extremely heterogeneous failure pattern characterized by extreme
asymmetry and very heavy-tailed behavior. The difference between mean (35.98 hours) and
median (2.82 hours) indicates a strongly right-skewed distribution, which is further confirmed
by the extremely high positive skewness value of 9.33.

The extremely low mode value (0.02 hours) combined with the minimum observation
(0.001 hours) indicates that some failures occur in rapid succession, possibly representing cas-
cading failures or immediate re-failures after system recovery attempts.

The extremely high kurtosis value (111.71) indicates a distribution with very heavy tails

Table 35 — Descriptive Statistics: G2Rac_MC-157400.

Statistic Value
Count 248
Mean (hours) 35.98
Median (hours) 2.82
Mode (hours) 0.02
Standard Deviation 108.15
Minimum 0.001
Maximum 1434.31
First Quartile (Q1) 0.15
Third Quartile (Q3) 26.00
Interquartile Range (IQR) 25.85
Skewness 9.33
Kurtosis 111.71

Main Data Range 0.01 - 154.67
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and an extremely sharp peak, suggesting the coexistence of multiple modes and the presence
of extreme outliers. The large interquartile range (25.85 hours) relative to the median further

emphasizes the high variability in failure times.

D.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 36 summarizes the number of clusters recommended by each
approach.

The clustering results demonstrate reasonable convergence among most methods, with
four of the five algorithms suggesting between 15-18 clusters, indicating substantial granu-
larity in failure pattern recognition. HDBSCAN’s recommendation of 16 clusters suggests
the presence of numerous density-based groupings. The Gaussian Mixture Model (GMM) ap-
proaches, using both BIC and AIC, recommend values of 17 and 25 components, respectively,
with AIC suggesting a more complex structure.

Figure 31 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=15) identifies
numerous clusters with many observations concentrated in the low TBF region (0-50 hours)
and several isolated high-TBF outliers. HDBSCAN (k=16) shows similar partitioning with
slightly different cluster boundaries.

Fuzzy C-Means (k=18) produces a clustering pattern with finer granularity, while the GMM
approaches (BIC with k=17 and AIC with k=25) show progressive increase in partitioning com-
plexity. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the trade-
off between cluster quality metrics, with the Elbow method showing improvement through

moderate component numbers, while the Silhouette score peaks at lower cluster numbers.

D.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identified
by each GoF test, combined with a visual comparison of the graphical results for each candi-
date model. This procedure was applied across all samples. The final model selected via the

Expectation-Maximization (EM) algorithm consisted of 21 components with the following dis-

Table 36 — Cluster Results: G2Rac_ MC-157400.

Clustering Approach Recommended Clusters

K-Means 15
HDBSCAN 16
Fuzzy C-means 18
GMM (BIC) 17

GMM (AIC) 25
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tributional structure: logn-logn-logn-norm-norm-weib-logn-norm-weib-gamma-norm-norm-
norm-norm-norm-norm-gamma-norm-norm-norm-norm. This configuration was selected based
on the outcomes of the KS goodness-of-fit test.

Figure 32 demonstrates the fit achieved by the 21-component mixture model. The prob-
ability density function plot shows a highly multimodal distribution with a dominant peak
near zero and several smaller peaks at intermediate values (50-300 hours) and longer intervals
(500-1400 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
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Figure 31 - Cluster Evaluation Plots for the Sample G2Rac_MC-157400.
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cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the ex-
treme upper tail (around 1400 hours). The overall linear pattern validates the mixture model’s
ability to capture both the central tendency and the extreme behavior of the failure process.

Table 37 summarizes the goodness-of-fit results for the selected model. The GoF test results
provide statistical evidence for the adequacy of the 21-component mixture model. The KS test
yields a low test statistic (0.024) with a high p-value (0.998), indicating that the null hypothesis
of distributional equivalence cannot be rejected with confidence. The AD test, which is more
sensitive to deviations in the distribution tails, produces a test statistic of -1.033 with a p-value

of 0.984. This result further confirms the model adequacy.
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The log-likelihood value of -671.25 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 1482.50 and
1728.44, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 38 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Normal distribution uses the location (1) and scale (o) parameters.

(d Lognormal distribution is parameterized by the shape (o), location (1), and scale (0)

parameters.

Table 37 — Goodness-of-fit Test Results: G2Rac_ MC-157400.

Model Test Statistic / p-value
21-Component Mixture KS 0.024 / 0.998
AD -1.033 / 0.984
Log-Likelihood -671.25
AIC 1482.50
BIC 1728.44

Table 38 — Mixture Model Parameters: G2Rac_ MC-157400.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.114 0.380 1E-10 4.201
logn_1 Lognormal 0.148 0.798 1E-10 0.565
logn_2 Lognormal 0.156 1.734 1E-10 0.118
norm_3 Normal 0.045 60.917 18.214 —
norm_4 Normal 0.030 82.371 21.177 —
weib_5 Weibull 0.177 6.776 1E-10 23.527
logn_6 Lognormal 0.183 1.477 1E-10 0.022
norm_7 Normal 0.014 140.194 15.178 —
weib_8 Weibull 0.045 6.705 1E-10 82.976
gamma_9 Gamma 0.024 5.977 1E-10 10.103
norm_10 Normal 0.027 152.436 10.944 —
norm_11 Normal 0.0004 131.516 43.157 —
norm_12 Normal 0.0006 151.810 52.232 —
norm_13 Normal 0.0023 234.928 16.060 —
norm_14 Normal 0.0036 237.519 15.692 —
norm_15 Normal 0.0032 240.280 15.330 —
gamma_16 Gamma 0.0098 284.151 1E-10 0.803
norm_17 Normal 0.0011 242.589 14.748 —
norm_18 Normal 0.0081 310.624 2.095 —
norm_19 Normal 0.0040 500.769 1E-10 —
norm_20 Normal 0.0040  1434.308 1E-10 —
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(d Weibull distribution is characterized by the shape (k), location (1), and scale (\) param-

eters.

(d Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: logn_6 (18.3%), weib_5 (17.7%), and logn_2 (15.6%). These high-
weight components correspond to different failure regimes, from rapid succession failures
(logn_6 with scale parameter 0.022) to intermediate stability periods (weib_5 with scale pa-
rameter 23.527).

The lognormal components account for 4 out of 21 components (60.1% of total weight), re-
flecting the multiplicative nature of the failure process. The presence of twelve normal compo-
nents with location parameters ranging from 60.917 to 1434.308 hours captures extended TBFs
across multiple operational regimes. The Weibull components (weib_5, weib_8) with shape
parameters around 6.7-6.8 suggest wear-out behavior, while gamma components (gamma_9,
gamma_16) provide additional flexibility for modeling intermediate failure patterns. Several
components exhibit extremely small weights (< 0.005) but occupy important positions in the
parameter space, particularly in the extreme tail regions (norm_19, norm_20), essential for

capturing the extreme kurtosis observed in the data.

D.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 21-component model and evaluate how model
performance responds to changes in complexity, a sensitivity analysis was performed. This
analysis investigated the behavior of GoF metrics as the number of mixture components in-
creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained
for each number of mixture components.

Figure 33 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals rapid im-
provement as component numbers increase from 1 to approximately 10-15 components. Be-
yond this range, the KS statistic stabilizes around 0.024-0.027 for models containing 15-25
components, indicating that additional components provide marginal improvements in over-
all distributional fit.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. The AD statistic shows similar patterns of improvement through moderate
component numbers, with the selected 21-component model achieving strong performance in
representing tail behavior.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory shows initial rapid decrease followed by gradual increase as model com-

plexity penalties begin to outweigh likelihood improvements. The minimum AIC occurs around
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10-16 components. In contrast, the BIC analysis, which imposes a stronger penalty for model
complexity, reaches its minimum at lower component numbers, reflecting its preference for
parsimony.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

D.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the lognormal model, as shown
in Table 39. Although it achieved the best performance among the single-component models
tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-fitting single-component model
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Figure 33 — G2Rac_MC-157400 Sensitivity Analysis of Model Selection Metrics (KS, AD, AIC,
BIC) vs. Number of Mixture Components.
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among those evaluated, it remains inadequate for representing the complex behavior of time
between failures. These models often fail to capture the underlying structural characteris-
tics that arise from the inherent complexity of TBFs, which can result from multiple factors,
including the diversity of failure causes and variations in workload and operational profiles.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
lognormal distribution yields low p-values for both the Kolmogorov-Smirnov (KS = 0.135, p
=0.0002) and Anderson-Darling (AD = 4.190, p = 0.010) tests, indicating clear rejection of the
distributional hypothesis. The mixture model achieves much stronger agreement with the data
(KS =0.024, p = 0.998; AD = -1.033, p = 0.984). The Kolmogorov-Smirnov statistic of 0.135 for
the single distribution is more than five times larger than the mixture model’s 0.024, indicating
systematic and substantial deviations between the empirical data and the fitted model.

The information criteria (AIC and BIC) provide a more nuanced comparison. While the
AIC strongly favors the mixture model (1482.50 vs. 1602.05), representing an improvement of
119.55 AIC units, the BIC comparison shows the lognormal model achieving slightly better
performance (1612.59 vs. 1728.44) due to stronger complexity penalties. However, this BIC
advantage for the simple model is completely overshadowed by the differences in statistical
fit quality, and becomes irrelevant when the simpler model fails basic goodness-of-fit require-
ments.

Figure 34 illustrates the limitations of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero
and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical lognor-
mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in
the lower tail region (0-100 hours) where the model underestimates failure probabilities, and
in the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. The Q-Q plot reveals
more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

Table 39 — Mixture vs. Single Distributions: G2Rac_MC-157400.

GOF Metric Mixture Model (21-comp) Lognormal Simple Distribution

KS / p-value 0.024 / 0.998 0.135/0.0002
AD / p-value -1.033/0.984 4.190/ 0.010
Log-Likelihood -671.25 -782.86
AIC 1482.50 1602.05

BIC 1728.44 1612.59
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D.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 35 and 36 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 35 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 36 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected

21-component model, which combines lognormal, normal, Weibull, and gamma distributions.
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Figure 34 - G2Rac_MC-157400 Single Distribution Model Fit Demonstrated Through PDF,
CDF, P-P and Q-Q Plots.
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The computational analysis reveals the scaling behavior of mixture model estimation as

a function of both distribution complexity and the number of mixture components. These

results inform practical considerations for large-scale reliability analysis applications. While

the computational cost is substantial, the significant improvement in model adequacy and the

critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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Figure 35 - G2Rac_MC-157400 Computational Cost Analysis of Homogeneous Distribution
Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
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Models with Execution Time, Memory Usage, CPU Utilization and Number of Op-
erations.
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APPENDIX

Results
G2Rac-MC-157400-iexplore-c0000374
(Approach 2)

This case refers to failures related to unhandled C++ exception (c0000374), occurring in the
iexplore.exe’s process on computer MC-157400, part of the Group 2 (Graduate Laboratory

environment).

E.0.0.1 Statistical Characterization

Table 40 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a highly heterogeneous failure pattern characterized by extreme asymme-
try and very heavy-tailed behavior. The difference between mean (136.94 hours) and median
(2.53 hours) indicates a strongly right-skewed distribution, which is further confirmed by the
high positive skewness value of 5.33.

The extremely low minimum value (0.006 hours) indicates that some failures occur in rapid
succession, possibly representing cascading failures or immediate re-failures after system re-
covery attempts.

The extremely high kurtosis value (28.21) indicates a distribution with very heavy tails
and a sharp peak, suggesting the coexistence of multiple modes and the presence of extreme
outliers. The large interquartile range (70.31 hours) relative to the median further emphasizes

the high variability in failure times.

E.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 41 summarizes the number of clusters recommended by each

approach.
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K-Means and Fuzzy C-means algorithms demonstrate convergence, both suggesting 9 clus-
ters, indicating moderate granularity in failure pattern recognition. HDBSCAN failed to iden-
tify meaningful cluster structure, likely attributable to the algorithm’s sensitivity to density
variations and its inability to handle the extreme outliers effectively. The Gaussian Mixture
Model (GMM) approaches, using both BIC and AIC, recommend 10 components.

Figure 37 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=9) identifies
multiple clusters with reasonably clear separation patterns. HDBSCAN shows no meaningful
clustering pattern, with most data points unclassified, highlighting the limitations of density-
based clustering methods when applied to datasets with extreme scale variations.

Fuzzy C-Means (k=9) produces a clustering pattern consistent with K-Means results, while
the GMM approaches (BIC with k=10 and AIC with k=10) show slight disagreement with the
hard clustering methods but remain within reasonable proximity. The Elbow and Silhouette
analysis in the bottom-right panel demonstrates the trade-off between cluster quality metrics,

with both methods indicating optimal performance at moderate cluster numbers.

Table 40 — Descriptive Statistics: G2Rac_MC-157400_iexplore_c0000374.

Statistic Value
Count 38
Mean (hours) 136.94
Median (hours) 2.53
Mode (hours) 0.006
Standard Deviation 475.22
Minimum 0.006
Maximum 2924.98
First Quartile (Q1) 0.164
Third Quartile (Q3) 70.47
Interquartile Range (IQR) 70.31
Skewness 5.33
Kurtosis 28.21
Main Data Range 0.006 — 2924.98

Table 41 — Cluster Results: G2Rac_MC-157400_iexplore_c0000374.

Clustering Approach Recommended Clusters

K-Means 9
HDBSCAN N/A
Fuzzy C-means 9
GMM (BIC) 10

GMM (AIC) 10
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E.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-

fied by each GoF test, combined with a visual comparison of the graphical results for each

candidate model. This procedure was applied across all samples. The final model selected via

the Expectation-Maximization (EM) algorithm consisted of 5 components with the following

distributional structure: logn-logn-logn-logn-weib. This configuration was selected based on

the outcomes of the KS goodness-of-fit test.
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Figure 38 demonstrates the fit achieved by the 5-component mixture model. The proba-
bility density function plot shows a multimodal distribution with a dominant peak near zero
and several smaller peaks at intermediate and extreme values (500-3000 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the ex-
treme tail regions. The overall linear pattern validates the mixture model’s ability to capture
both the central tendency and the extreme behavior of the failure process.

Table 42 summarizes the goodness-of-fit results for the selected model. The GoF test results

provide statistical evidence for the adequacy of the 5-component mixture model. The KS test
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Figure 38 — G2Rac_MC-157400_iexplore_c0000374 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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yields a low test statistic (0.055) with an extremely high p-value (0.999), indicating that the
null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -0.757
with a p-value of 0.798. This result further confirms the model adequacy.

The AIC and the BIC values are 292.23 and 323.35, respectively, these criteria penalize
model complexity. The relatively modest difference between these information criteria sug-
gests that the five-component model achieves good fit without excessive parameterization.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 43 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Lognormal distribution is parameterized by the shape (o), location (1), and scale (0)

parameters.

(4 Weibull distribution is characterized by the shape (k), location (1), and scale (\) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
two dominant components: weib_4 (40.2%) and logn_1 (39.5%). These high-weight compo-
nents correspond to different failure regimes. Together, these two components represent
nearly 80% of the data, indicating that the majority of observations arise from these two pri-
mary modes.

The lognormal components dominate the mixture (4 out of 5 components, accounting for

59.7% of total weight), reflecting the multiplicative nature of the failure process. The Weibull

Table 42 — Goodness-of-fit Test Results: G2Rac_MC-157400_iexplore_c0000374.

Model Test Statistic / p-value
5-Component Mixture KS 0.055/0.999
AD -0.757 / 0.798
Log-Likelihood -127.11
AIC 292.23
BIC 323.35

Table 43 — Mixture Model Parameters: G2Rac_MC-157400_iexplore_c0000374.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.124 0.348 1E-10 0.011
logn_1 Lognormal 0.395 0.711 1E-10 61.23
logn_2 Lognormal 0.052 0.100 1E-10 539.42
logn_3 Lognormal 0.026 0.100 1E-10 2924.98

weib_4 Weibull 0.402 0.771 1E-10 0.548
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component with its substantial weight of 40.2% appears to model the lower-value observations
with its characteristic decreasing hazard rate (shape parameter 0.771). The dominant lognor-
mal component (logn_1 with 39.5% weight) captures the main body of intermediate values

with scale parameter 61.23.

E.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 5-component model and evaluate how model per-
formance responds to changes in complexity, a sensitivity analysis was performed. This anal-
ysis investigated the behavior of GoF metrics as the number of mixture components increased.
The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each
number of mixture components.

Figure 39 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals that the
statistic achieves its first minimum value at five components, with model performance im-

provements becoming marginal beyond this point.
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Figure 39 - G2Rac_MC-157400_iexplore_c0000374 Sensitivity Analysis of Model Selection
Metrics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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The sensitivity of the AD test provides complementary evidence by emphasizing distri-
bution’s tail behavior. The AD statistic shows improvement through moderate component
numbers, with the selected 5-component model achieving strong performance in represent-
ing tail behavior.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory reaches its minimum value at nine components, with subsequent increases
indicating that additional components introduce unnecessary complexity without propor-
tional improvement in model fit. In contrast, the BIC analysis, which imposes a stronger
penalty for model complexity, achieves its optimum at 7 components, reflecting its preference
for parsimony.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

E.0.0.5 Comparison with Single-Component Models

For comparison purposes, the lognormal distribution provided the best fit among the single-
component models evaluated, as shown in Table 44. Given the strictly positive support and
right-skewed nature of the TBF data, the lognormal model represents a natural baseline choice.
Importantly, this single-component model is not rejected by goodness-of-fit testing and shows
acceptable agreement with the empirical data.

Goodness-of-fit testing confirms this observation. The lognormal distribution yields mod-
erate p-values for both the Kolmogorov-Smirnov (KS = 0.1603, p = 0.2545) and Anderson-Darling
(AD = 0.192, p = 0.2914) tests, indicating that it cannot be statistically rejected at conventional
significance levels. Visual inspection of the fitted curves further supports this conclusion, as
the single model captures the overall trend of the empirical distribution.

However, a direct comparison with the mixture model reveals substantial differences in
representational quality. The mixture model achieves considerably lower KS and AD statistics
(KS =0.055; AD = -0.757), along with markedly higher p-values (0.999 and 0.798, respectively),

Table 44 — Mixture vs. Single Distributions: G2Rac_MC-157400_iexplore_c0000374.

GOF Metric Mixture Model (5-comp) Lognormal Simple Distribution

KS / p-value 0.055/0.999 0.1603 / 0.2545
AD / p-value -0.757 / 0.798 0.192/0.2914
Log-Likelihood -127.11 -198.53
AIC 292.23 280.75

BIC 323.35 285.66
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indicating a much closer agreement with the empirical distribution. In particular, the KS statis-
tic for the single lognormal model is nearly three times larger than that of the mixture model,
suggesting systematic deviations that are mitigated by the multi-component representation.

From a model selection perspective, the information criteria favor the simpler lognormal
model, which attains lower AIC (280.75 vs. 292.23) and BIC (285.66 vs. 323.35) values due to
its reduced complexity. Nevertheless, this advantage in parsimony comes at the expense of
diminished descriptive accuracy. In this context, the substantially improved goodness-of-fit
achieved by the mixture model provides a strong justification for the additional complexity,
particularly given the heterogeneous nature of software failure processes.

Figure 40 further illustrates this trade-off. While the lognormal model provides a reason-
able approximation of the overall distribution, the PDF reveals limitations in representing the
sharp peak near zero and fails to capture the multimodal features present in the empirical

histogram. Deviations are also observed in the CDF, particularly in the lower and upper tail

reglons.
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Figure 40 - G2Rac_MC-157400_iexplore_c0000374 Single Distribution Model Fit Demon-
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The P-P and Q-Q plots reinforce this interpretation. Although the points broadly follow
the expected trend, systematic departures from linearity, indicating residual structure in the

data that is not fully explained by a single-component model.

E.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 41 and 42 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 41 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics

for different distribution families.
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Figure 41 - G2Rac_MC-157400_iexplore_c0000374 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization
and Number of Operations.
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Figure 42 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected
5-component model, which combines lognormal and Weibull distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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APPENDIX

Results G3Rac-DSKO023 (Approach 1)

This case refers to failures observed throughout the operational history of the computer

DSK023, which operates within Group 3 (Corporate Environment).

F.0.0.1 Statistical Characterization

Table 50 presents the statistical characteristics of the TBF data for this sample. The de-
scriptive statistics reveal a highly heterogeneous failure pattern characterized by significant
asymmetry and heavy-tailed behavior. The difference between mean (15.73 hours) and median
(2.04 hours) indicates a strongly right-skewed distribution, which is further confirmed by the
positive skewness value of 2.82.

The extremely low mode value (0.0006 hours) combined with the minimum observation
(0.0003 hours) indicates that some failures occur in rapid succession, possibly representing
cascading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (8.92) indicates a distribution with heavy tails and a sharp peak,

Table 45 — Descriptive Statistics: G3Rac_DSK023.

Statistic Value
Count 556
Mean (hours) 15.73
Median (hours) 2.04
Mode (hours) 0.0006
Standard Deviation 29.48
Minimum 0.0003
Maximum 207.12
First Quartile (Q1) 0.30
Third Quartile (Q3) 18.61
Interquartile Range (IQR) 18.31
Skewness 2.82
Kurtosis 8.92

Main Data Range 0.0003 - 207.12
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suggesting the coexistence of multiple modes. The large interquartile range (18.31 hours)

relative to the median further emphasizes the high variability in failure times.

F.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 51 summarizes the number of clusters recommended by each
approach.

The clustering results demonstrate substantial variability in cluster number recommenda-
tions across different algorithmic approaches, ranging from 7 to 27 clusters. Fuzzy C-means
suggests the most conservative estimate of 7 clusters, while K-Means recommends 8 clusters.
HDBSCAN’s recommendation of 27 clusters suggests the presence of numerous density-based
groupings, reflecting its sensitivity to local density variations and its ability to detect micro-
clusters within the data space. The Gaussian Mixture Model (GMM) approaches, using both
BIC and AIC, recommend intermediate values of 9 and 13 components, respectively.

Figure 49 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=8) and Fuzzy
C-Means (k=7) demonstrate similar clustering topologies with well-defined boundaries and
compact cluster formations, particularly effective in the intermediate value ranges. HDBSCAN
(k=27) shows extensive partitioning with numerous micro-clusters, particularly pronounced
in the lower-value regions of the dataset.

The GMM approaches (BIC with k=9 and AIC with k=13) show intermediate clustering
granularity between the conservative hard clustering methods and HDBSCAN’s fine parti-
tioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the trade-
off between cluster quality metrics, with the Elbow method showing improvement through
moderate component numbers, while the Silhouette score indicates optimal performance at

lower cluster numbers.

F.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-

fied by each GoF test, combined with a visual comparison of the graphical results for each

Table 46 — Cluster Results: G3Rac_DSK023.

Clustering Approach Recommended Clusters

K-Means 8
HDBSCAN 27
Fuzzy C-means 7
GMM (BIC) 9

GMM (AIC) 13
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candidate model. This procedure was applied across all samples. The final model selected via
the Expectation-Maximization (EM) algorithm consisted of 13 components with the follow-
ing distributional structure: logn-logn-logn-logn-weib-gamma-gamma-logn-logn-weib-weib-
weib-gamma. This configuration was selected based on the outcomes of the KS goodness-of-fit
test.

Figure 50 demonstrates the fit achieved by the 13-component mixture model. The prob-

ability density function plot shows a highly multimodal distribution with a dominant peak
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Figure 43 — Cluster Evaluation Plots for the Sample G3Rac_DSK023.
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near zero and several smaller peaks at intermediate values (10-50 hours) and longer intervals
(100-200 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the ex-
treme upper tail (around 200 hours). The overall linear pattern validates the mixture model’s
ability to capture both the central tendency and the extreme behavior of the failure process.

Table 52 summarizes the goodness-of-fit results for the selected model. The GoF test results
provide statistical evidence for the adequacy of the 13-component mixture model. The KS test

yields a low test statistic (0.012) with an extremely high p-value (0.9999), indicating that the
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null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.085
with a p-value of 0.996. This result further confirms the model adequacy.

The log-likelihood value of -1511.48 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 3124.96 and
3345.32, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 53 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

1 Lognormal distribution is parameterized by the shape (¢), location (1), and scale (0)

parameters.

(d Weibull distribution is characterized by the shape (k), location (1), and scale (\) param-

eters.

(d Gamma distribution is characterized by the shape (), location (1), and scale (f) param-

eters.

Table 47 — Goodness-of-fit Test Results: G3Rac_DSK023.

Model Test Statistic / p-value
13-Component Mixture KS 0.012/ 0.9999
AD -1.085/0.996
Log-Likelihood -1511.48
AIC 3124.96
BIC 3345.32

Table 48 — Mixture Model Parameters: G3Rac_DSK023.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.312 1.005 1E-10 0.990
logn_1 Lognormal 0.091 0.422 1E-10 3.370
logn_2 Lognormal 0.053 0.450 1E-10 26.991
logn_3 Lognormal 0.049 0.565 1E-10 34.007
weib_4 Weibull 0.124 5.155 1E-10 20.407
gamma_5 Gamma 0.023 4.802 1E-10 10.788
gamma_6 Gamma 0.039 429.242 1E-10 0.160
logn_7 Lognormal 0.162 2.147 1E-10 0.139
logn_8 Lognormal 0.106 1.542 1E-10 0.006
weib_9 Weibull 0.014 5.906 1E-10 120.458
weib_10 Weibull 0.022 7.249 1E-10 125.697
weib_11 Weibull 0.004 9.634 1E-10 193.665
gamma_12 Gamma 0.001 35.249 1E-10 3.934




APPENDIX F. Results G3Rac-DSK023 (Approach 1) 153

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: logn_0(31.2%), logn_7 (16.2%), and weib_4 (12.4%). These high-
weight components correspond to different failure regimes, from rapid succession failures
(logn_8 with scale parameter 0.006) to intermediate stability periods (weib_4 with scale pa-
rameter 20.407).

The lognormal components dominate the mixture (6 out of 13 components, accounting for
77.3% of total weight), reflecting the multiplicative nature of the failure process. The pres-
ence of four Weibull components with shape parameters ranging from 5.155 to 9.634 suggests
wear-out behavior across different operational scales. The gamma components (gamma_5,
gamma_6, gamma_12) provide additional flexibility for modeling intermediate failure patterns.
Several components exhibit extremely small weights (< 0.005) but occupy important positions

in the parameter space, particularly in the extreme tail regions.

F.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 13-component model and evaluate how model
performance responds to changes in complexity, a sensitivity analysis was performed. This
analysis investigated the behavior of GoF metrics as the number of mixture components in-
creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained
for each number of mixture components.

Figure 51 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals a sharp
decline from single-component to three-component models, indicating substantial improve-
ments in distributional fit during the initial complexity increase. Beyond three components,
the KS statistic exhibits relatively stable behavior with minor fluctuations, suggesting that
additional components provide incremental improvements in distributional accuracy.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. The AD statistic follows a similar pattern, showing rapid improvement
until approximately four components, after which it stabilizes around -1.0, indicating that the
model achieves excellent distributional fit relatively early in the complexity progression.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory exhibits a pronounced minimum around 7-11 components. In contrast,
the BIC analysis, which imposes a stronger penalty for model complexity, demonstrates a
different optimization profile, with the minimum occurring around 6-8 components before
gradually increasing due to the stronger complexity penalty inherent in the BIC formulation.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC

and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
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the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

F.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the lognormal model, as shown
in Table 54. Although it achieved the best performance among the single-component models
tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-fitting single-component model

Best KS Best AD
0.09
075
0.08
0.50
0.07 -
025
0.06
0.00
=)
2 005 <
-0.25
0.04
-0.50
0.03
-0.75
0.02
-1.00
0.01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Components Number of Components
Best AIC Best BIC
3200 4 3500
3175 3450
3400
3150 1
3350
31254
< © 3300
< =
3100 4
3250
3075 4
3200
3050 1
3150
3025 4
3100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Components Number of Components

Figure 45 — G3Rac_DSK023 Sensitivity Analysis of Model Selection Metrics (KS, AD, AIC, BIC)
vs. Number of Mixture Components.

Table 49 — Mixture vs. Single Distributions: G3Rac_DSK023.

GOF Metric Mixture Model (13-comp) Lognormal Simple Distribution

KS / p-value 0.012/0.9999 0.091 / 0.0002
AD / p-value -1.085 / 0.996 6.163 / 0.0020
Log-Likelihood -1511.48 -1893.45
AIC 3124.96 3248.58

BIC 3345.32 3261.54
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among those evaluated, it remains inadequate for representing the complex behavior of time
between failures. These models often fail to capture the underlying structural characteris-
tics that arise from the inherent complexity of TBFs, which can result from multiple factors,
including the diversity of failure causes and variations in workload and operational profiles.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
lognormal distribution yields extremely low p-values for both the Kolmogorov-Smirnov (KS
= 0.091, p = 0.0002) and Anderson-Darling (AD = 6.163, p = 0.0020) tests, indicating clear
rejection of the distributional hypothesis. The mixture model achieves much stronger agree-
ment with the data (KS = 0.012, p = 0.9999; AD = -1.085, p = 0.996). And the log-likelihood
comparison also shows the superior fit of the mixture model.

The information criteria (AIC and BIC) provide a more nuanced comparison. While the
AIC strongly favors the mixture model (3124.96 vs. 3248.58), the BIC comparison shows the
lognormal model achieving slightly better performance (3261.54 vs. 3345.32) due to stronger
complexity penalties. However, this BIC advantage for the simple model comes at the cost of
substantially poorer distributional fit, as evidenced by the goodness-of-fit test results which
show clear rejection of the single distribution hypothesis.

Figure 52 illustrates the limitations of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero
and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical lognor-
mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in
the lower tail region (0-50 hours) where the model underestimates failure probabilities, and in
the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. The Q-Q plot reveals
more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

F.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 53 and 54 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 53 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics

for different distribution families.
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Figure 54 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected
13-component model, which combines lognormal, Weibull, and gamma distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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APPENDIX

Results
G3Rac-DSK023-iexplore-c0000005
(Approach 2)

This case refers to failures related to access violations (c0000005), associated with invalid
memory addressing, occurring in the iexplore. exe’s process on computer DSK023, part of

the Group 3 (Corporate Environment).

G.0.0.1 Statistical Characterization

Table 50 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a heterogeneous failure pattern characterized by significant asymmetry
and heavy-tailed behavior. The difference between mean (54.51 hours) and median (22.16
hours) indicates a right-skewed distribution, which is further confirmed by the positive skew-
ness value of 2.41.

The extremely low mode value (0.001 hours) combined with the minimum observation
(0.0006 hours) indicates that some failures occur in rapid succession, possibly representing
cascading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (6.45) indicates a distribution with heavy tails and a sharp peak,
suggesting the coexistence of multiple modes. The large interquartile range (69.98 hours)

relative to the median further emphasizes the high variability in failure times.

G.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 51 summarizes the number of clusters recommended by each
approach.

HDBSCAN’s recommendation of 9 clusters suggests the presence of nine major density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a higher num-
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ber of clusters (13 and 14, respectively), indicating finer granularity in failure pattern recogni-
tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend
intermediate values of 14 and 21 components, respectively.

Figure 49 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=13) identifies
numerous small clusters with many observations concentrated in the low TBF region (0-50
hours) and several isolated high-TBF outliers. HDBSCAN (k=9) shows a more conservative
approach, identifying nine main clusters with a significant portion of data classified as noise
(gray crosses), particularly in the intermediate TBF range.

Fuzzy C-Means (k=14) produces a clustering pattern similar to K-Means but with slightly
different cluster boundaries, while the GMM approaches (BIC with k=14 and AIC with k=21)
show intermediate clustering between HDBSCAN’s conservative grouping and K-Means’ fine
partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the
trade-off between cluster quality metrics, with the Elbow method showing a sharp decline up
to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 50 — Descriptive Statistics: G3Rac_DSK023_iexplore_c0000005.

Statistic Value
Count 160
Mean (hours) 54.51
Median (hours) 22.16
Mode (hours) 0.001
Standard Deviation 82.53
Minimum 0.0006
Maximum 455.44
First Quartile (Q1) 1.56
Third Quartile (Q3) 71.54
Interquartile Range (IQR) 69.98
Skewness 2.41
Kurtosis 6.45
Main Data Range 0.0006 — 455.44

Table 51 — Cluster Results: G3Rac_DSK023_iexplore_c0000005.

Clustering Approach Recommended Clusters

K-Means 13
HDBSCAN 9
Fuzzy C-means 14
GMM (BIC) 14

GMM (AIC) 21
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G.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-
fied by each GoF test, combined with a visual comparison of the graphical results for each
candidate model. This procedure was applied across all samples. The final model selected via
the Expectation-Maximization (EM) algorithm consisted of 12 components with the following
distributional structure: logn-logn-logn-weib-weib-norm-logn-logn-gamma-logn-norm-logn.

This configuration was selected based on the outcomes of the KS goodness-of-fit test.
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Figure 49 — Cluster Evaluation Plots for the Sample G3Rac_DSK023_iexplore_c0000005.
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Figure 50 demonstrates the fit achieved by the 12-component mixture model. The prob-
ability density function plot shows a highly multimodal distribution with a dominant peak
near zero and several smaller peaks at intermediate values (50-150 hours) and longer intervals
(300-450 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the middle
upper tail (around 300 hours). The overall linear pattern validates the mixture model’s ability
to capture both the central tendency and the extreme behavior of the failure process.

Table 52 summarizes the goodness-of-fit results for the selected model. The GoF test results
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provide statistical evidence for the adequacy of the 12-component mixture model. The KS test
yields a low test statistic (0.025) with an extremely high p-value (0.999), indicating that the
null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.077
with a p-value of 0.992. This result further confirms the model adequacy.

In addition, the AIC and the BIC values are 1422.34 and 1560.72, respectively, these criteria
penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 53 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(d Normal distribution uses the location (1) and scale (o) parameters.

(J Lognormal distribution is parameterized by the shape (o), location (1), and scale (0)

parameters.

(4 Weibull distribution is characterized by the shape (k), location (1), and scale (\) param-

eters.

Table 52 — Goodness-of-fit Test Results: G3Rac_DSK023_iexplore_c0000005.

Model Test Statistic / p-value
12-Component Mixture KS 0.025/0.999
AD -1.077 / 0.992
Log-Likelihood -666.16
AIC 1422.34
BIC 1560.72

Table 53 — Mixture Model Parameters: G3Rac_DSK023_iexplore_c0000005.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.234 0.886 1E-10 1.956
logn_1 Lognormal 0.160 0.175 1E-10 23.169
logn_2 Lognormal 0.076 0.464 1E-10 47.029
weib_3 Weibull 0.105 9.874 1E-10 69.901
weib_4 Weibull 0.089 3.842 1E-10 153.051
norm_>5 Normal 0.078 136.516 34.658 —
logn_6 Lognormal 0.035 1.248 1E-10 6.102
logn_7 Lognormal 0.039 1.521 1E-10 1.631
gamma_38 Gamma 0.031 258.756 1E-10 1.231
logn_9 Lognormal 0.055 1.639 1E-10 0.176
norm_10 Normal 0.012 431.474 23.982 —

logn_11 Lognormal 0.085 1.284 1E-10 0.005
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(d Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: logn_0 (23.4%), logn_1(16.0%), and weib_3 (10.5%). These high-
weight components correspond to different failure regimes, from rapid succession failures
(logn_11 with scale parameter 0.005) to intermediate stability periods (weib_3 with shape pa-
rameter 9.874).

The lognormal components dominate the mixture (7 out of 12 components), reflecting the
multiplicative nature of the failure process. The presence of two Weibull components (weib_3,
weib_4) with varying shape parameters captures the aging behavior of the system. The two
normal components (norm_5, norm_10) with high location parameters (136.516 and 431.474

hours, respectively) capture the extended TBFs.

G.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 12-component model and evaluate how model
performance responds to changes in complexity, a sensitivity analysis was performed. This
analysis investigated the behavior of GoF metrics as the number of mixture components in-
creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained
for each number of mixture components.

Figure 51 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals a perfor-
mance trajectory that supports the 12-component selection. Starting from a single-component
performance, the statistic shows improvement through the initial component additions, drop-
ping sharply for two components. The most significant improvement occurs in the 2-8 compo-
nent range, with continued refinement leading to optimal performance in the 12-14 component
region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy
of simple models. As the number of components increases, the AD statistic transitions to neg-
ative values, indicating an improvement in the model’s ability to represent distribution’s tail
behavior more accurately in multi-component configurations.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory shows improvement through 3-7 components, followed by a stagnation
due to complexity penalties. The minimum AIC value was observed with higher component
numbers. In contrast, the BIC analysis, which imposes a stronger penalty for model complex-
ity, follows a similar initial trend but reaches its minimum around 7 components.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the

best-fitting result according to each individual GoF test. The distributions selected as optimal
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by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

G.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the gamma model, as shown in
Table 54. Given its flexibility in modeling positively skewed data, the gamma distribution
represents a reasonable and statistically acceptable baseline for the TBF sample under analysis.

Goodness-of-fit testing indicates that the gamma model provides an acceptable description
of the data. Although the Kolmogorov-Smirnov test yields a borderline p-value (KS = 0.107, p
= 0.048), the Anderson—-Darling test does not reject the distributional hypothesis (AD = 0.283, p
=0.261). In addition, visual inspection of the fitted curves suggests that the gamma distribution
captures the overall trend of the empirical TBF distribution.

Nevertheless, a comparison with the mixture model reveals a clear improvement in rep-
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Figure 51 — G3Rac_DSK023_iexplore_c0000005 Sensitivity Analysis of Model Selection Met-
rics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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resentational accuracy. The mixture model achieves substantially lower KS and AD statistics,
along with very high p-values (KS = 0.025, p = 0.999; AD = -1.077, p = 0.992), indicating a
much closer agreement with the empirical distribution across the entire support.

From a model selection perspective, the information criteria favor the single gamma model
due to its lower complexity, as reflected by its smaller AIC (1380.34) and BIC (1389.57) values.
This result confirms that the gamma distribution constitutes a parsimonious and statistically
valid approximation. However, the superior goodness-of-fit achieved by the mixture model
highlights its ability to better capture subtle distributional features that are not fully repre-
sented by a single-component formulation.

Figure 52 illustrates this trade-off. The PDF overlay shows that the gamma model provides
a reasonable approximation of the dominant mode, although it smooths sharp peaks and does
not explicitly represent multimodal behavior. Minor deviations are also observed in the CDF,
particularly in the lower and upper tail regions.

The P-P and Q-Q plots corroborate these observations. While the gamma model follows
the general trend of the empirical distribution, systematic departures from linearity suggest

residual structure that can be more effectively captured by a multi-component mixture model.

G.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 53 and 54 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 53 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 54 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected

12-component model, which combines lognormal, Weibull, gamma, and normal distributions.

Table 54 — Mixture vs. Single Distributions: G3Rac_DSK023_iexplore_c0000005.

GOF Metric Mixture Model (12-comp) Gamma Simple Distribution

KS / p-value 0.025/0.999 0.107 / 0.048
AD / p-value -1.077 / 0.992 0.283/0.261
Log-Likelihood -666.16 -789.65
AIC 1422.34 1380.34

BIC 1560.72 1389.57
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The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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Figure 52 — G3Rac_DSK023_iexplore_c0000005 Single Distribution Model Fit Demonstrated
Through PDF, CDF, P-P and Q-Q Plots.
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Figure 53 - G3Rac_DSK023_iexplore_c0000005 Computational Cost Analysis of Homoge-
neous Distribution Models with Execution Time, Memory Usage, CPU Utilization

and Number of Operations.
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APPENDIX

Results
G413452266836854502e87bba75907480
(Approach 1)

This case refers to failures occurring in the computer documented through the identifier
(G413452266836854502e87bba75907480, part of the Group 4 (Personal and HomeOffice Com-
puters).

H.0.0.1 Statistical Characterization

Table 55 presents the statistical characteristics of the TBF data for this sample. The de-
scriptive statistics reveal a heterogeneous failure pattern characterized by significant asym-
metry and heavy-tailed behavior. The difference between mean (33.26 hours) and median
(0.43 hours) indicates a right-skewed distribution, which is further confirmed by the positive
skewness value of 5.86.

The extremely low mode value (0.0008 hours) combined with the minimum observation
(0.0003 hours) indicates that some failures occur in rapid succession, possibly representing
cascading failures or immediate re-failures after system recovery attempts.

The extremely high kurtosis value (40.51) indicates a distribution with heavy tails and a
sharp peak, suggesting the coexistence of multiple modes. The large interquartile range (24.96

hours) relative to the median further emphasizes the high variability in failure times.

H.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 56 summarizes the number of clusters recommended by each
approach.

HDBSCAN’s recommendation of 17 clusters suggests the presence of sixteen major density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a similar num-
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ber of clusters (13 and 12, respectively), indicating finer granularity in failure pattern recogni-
tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend
intermediate values of 14 and 21 components, respectively.

Figure 55 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=13) identifies
numerous small clusters with many observations concentrated in the low TBF region (0-50
hours) and several isolated high-TBF outliers. HDBSCAN (k=17) shows a more comprehensive
approach, identifying sixteen main clusters with a significant portion of data classified as noise
(gray crosses), particularly in the intermediate TBF range.

Fuzzy C-Means (k=12) produces a clustering pattern similar to K-Means but with slightly
different cluster boundaries, while the GMM approaches (BIC with k=14 and AIC with k=21)
show intermediate clustering between HDBSCAN’s comprehensive grouping and K-Means’
fine partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates
the trade-off between cluster quality metrics, with the Elbow method showing a sharp decline
up to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 55 — Descriptive Statistics: G413452266836854502e87bba75907480.

Statistic Value
Count 267
Mean (hours) 33.26
Median (hours) 0.43
Mode (hours) 0.0008
Standard Deviation 93.67
Minimum 0.0003
Maximum 840.58
First Quartile (Q1) 0.01
Third Quartile (Q3) 24.98
Interquartile Range (IQR) 24.96
Skewness 5.86
Kurtosis 40.51
Main Data Range 0.00 — 143.51

Table 56 — Cluster Results: G413452266836854502e¢87bba75907480.

Clustering Approach Recommended Clusters

K-Means 13
HDBSCAN 17
Fuzzy C-means 12
GMM (BIC) 14

GMM (AIC) 21
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H.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-
fied by each GoF test, combined with a visual comparison of the graphical results for each
candidate model. This procedure was applied across all samples. The final model selected
via the Expectation-Maximization (EM) algorithm consisted of 16 components with the fol-
lowing distributional structure: weib-weib-weib-weib-weib-logn-logn-logn-norm-logn-weib-

norm-gamma-logn-logn-norm. This configuration was selected based on the outcomes of the
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Figure 55 - Cluster Evaluation Plots: G413452266836854502e87bba75907480.
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KS goodness-of-fit test.

Figure 56 demonstrates the fit achieved by the 16-component mixture model. The prob-
ability density function plot shows a highly multimodal distribution with a dominant peak
near zero and several smaller peaks at intermediate values (50-200 hours) and longer intervals
(400-800 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the middle
upper tail (around 500 hours). The overall linear pattern validates the mixture model’s ability

to capture both the central tendency and the extreme behavior of the failure process.
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Figure 56 — G413452266836854502e87bba75907480 Mixture Model Fit Demonstrated Through
PDF, CDF, P-P and Q-Q Plots.
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Table 57 summarizes the goodness-of-fit results for the selected model. The GoF test results
provide statistical evidence for the adequacy of the 16-component mixture model. The KS test
yields a low test statistic (0.019) with an extremely high p-value (0.9999), indicating that the
null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -1.047
with a p-value of 0.986. This result further confirms the model adequacy.

The log-likelihood value of -463.74 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 1047.48 and
1262.72, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 58 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(1 Normal distribution uses the location (1) and scale (o) parameters.

Table 57 — Goodness-of-fit Test Results: G413452266836854502e87bba75907480.

Model Test Statistic / p-value
16-Component Mixture KS 0.019/0.9999
AD -1.047 / 0.986
Log-Likelihood -463.74
AIC 1047.48
BIC 1262.72

Table 58 — Mixture Model Parameters: G413452266836854502¢87bba75907480.

Component Distribution Weight Param1 Param2 Param 3

weib_0 Weibull 0.425338 0.855090 1E-10 0.015572
weib_1 Weibull 0.104981 1.204625 1E-10 3.161885
weib_2 Weibull 0.067242 6.345376 1E-10 22.598087
weib_3 Weibull 0.100384 9.744407 1E-10 24.593697
weib_4 Weibull 0.070604  4.401429 1E-10 70.388759
logn_5 Lognormal  0.054707 0.441732 1E-10 86.308546
logn_6 Lognormal  0.024493  0.449848 1E-10 89.407889
logn_7 Lognormal  0.007689 0.476125 1E-10 80.491093
norm_8 Normal 0.014485 181.977629 49.378355 —
logn_9 Lognormal  0.025405 1.318047 1E-10 2.036664
weib_10 Weibull 0.013561 9.876506 1E-10 155.859734
norm_11 Normal 0.000251 492.050514 11.417535 —
gamma_12 Gamma 0.010979 1832.450697 1E-10 0.268001
logn_13 Lognormal  0.046599 1.309638 1E-10 0.154475
logn_14 Lognormal  0.025791 1.516143 1E-10 0.120918

norm_15 Normal 0.007491  816.063722  24.512787 -
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(d Lognormal distribution is parameterized by the shape (o), location (1), and scale (0)

parameters.

(d Weibull distribution is characterized by the shape (k), location (), and scale (\) param-

eters.

(d Gamma distribution is characterized by the shape («), location (1), and scale (f) param-

eters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: weib_0 (42.5%), weib_1 (10.5%), and weib_3 (10.0%). These
high-weight components correspond to different failure regimes, from rapid succession fail-
ures (weib_0 with scale parameter 0.016) to intermediate stability periods (weib_3 with shape
parameter 9.744).

The Weibull components dominate the mixture (6 out of 16 components), reflecting the
aging behavior of the failure process. The presence of multiple lognormal components (8
components) captures the multiplicative nature of certain failure modes. The three normal
components (norm_8, norm_11, norm_15) with high location parameters (181.978, 250.000,

and 500.000 hours, respectively) capture the extended TBFs.

H.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 16-component model and evaluate how model
performance responds to changes in complexity, a sensitivity analysis was performed. This
analysis investigated the behavior of GoF metrics as the number of mixture components in-
creased. The sensitivity analysis was conducted by plotting the best GoF statistics obtained
for each number of mixture components.

Figure 57 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals a perfor-
mance trajectory that supports the 16-component selection. Starting from a single-component
performance, the statistic shows improvement through the initial component additions, drop-
ping sharply for two components. The most significant improvement occurs in the 2-8 compo-
nent range, with continued refinement leading to optimal performance in the 12-18 component
region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy
of simple models. As the number of components increases, the AD statistic transitions to neg-
ative values, indicating an improvement in the model’s ability to represent distribution’s tail
behavior more accurately in multi-component configurations.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.

The AIC trajectory shows improvement through 3-7 components, followed by a stagnation
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due to complexity penalties. The minimum AIC value was observed with higher component
numbers. In contrast, the BIC analysis, which imposes a stronger penalty for model complex-
ity, follows a similar initial trend but reaches its minimum around 14 components.
Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

H.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the lognormal model, as shown
in Table 59. Although it achieved the best performance among the single-component models
tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-fitting single-component model
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Figure 57 — G413452266836854502e87bba75907480 Sensitivity Analysis of Model Selection
Metrics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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among those evaluated, it remains inadequate for representing the complex behavior of time
between failures. These models often fail to capture the underlying structural characteris-
tics that arise from the inherent complexity of TBFs, which can result from multiple factors,
including the diversity of failure causes and variations in workload and operational profiles.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
lognormal distribution yields extremely low p-values for both the Kolmogorov-Smirnov (KS
= 0.1559, p = 3.90E-06) and Anderson—-Darling (AD = 3.330, p = 0.0140) tests, indicating clear
rejection of the distributional hypothesis. The mixture model achieves much stronger agree-
ment with the data (KS = 0.019, p = 0.9999; AD = -1.047, p = 0.986).

The information criteria (AIC and BIC) further reinforce the inadequacy of the single dis-
tribution. As the lognormal model, despite its lower complexity, shows substantially higher
AIC (1147.76) values compared to the mixture model, further reinforcing its inadequacy as a
representation of the observed TBF behavior.

Figure 58 illustrates the limitations of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero
and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical lognor-
mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in
the lower tail region (0-100 hours) where the model underestimates failure probabilities, and
in the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. The Q-Q plot reveals
more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

H.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 59 and 60 present the computational cost analysis, showing execution time, memory

usage, CPU utilization, and operation counts across different distribution types and compo-

Table 59 — Mixture vs. Single Distributions: G413452266836854502e87bba75907480.

GOF Metric Mixture Model (16-comp) Lognormal Simple Distribution

KS / p-value 0.019/ 0.9999 0.1559 / 3.90E-06
AD / p-value -1.047 / 0.986 3.330/0.0140
Log-Likelihood -463.74 -658.32
AIC 1047.48 1147.76

BIC 1262.72 1158.52
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nent numbers.

Figure 59 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 60 extends the analysis to heterogeneous mixture models, where components can
belong to different distribution families. This analysis is particularly relevant for the selected
16-component model, which combines Weibull, lognormal, gamma, and normal distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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Figure 58 — G413452266836854502e87bba75907480 Single Distribution Model Fit Demon-
strated Through PDF, CDF, P-P and Q-Q Plots.
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APPENDIX I

Results
G413452266836854502e87bba75907480-
iexplore-e06d7363 (Approach 2)

This case refers to failures related to unhandled C++ exception (e06d7363), associated with
exception handling, occurring in the iexplore. exe’s process on computer G413452266836854502e87bba’
part of the Group 4 (Personal and HomeOffice Computers).

1.0.0.1 Statistical Characterization

Table 60 presents the statistical characteristics of the TBF data for this sample. The descrip-
tive statistics reveal a heterogeneous failure pattern characterized by significant asymmetry
and heavy-tailed behavior. The difference between mean (75.24 hours) and median (28.55
hours) indicates a right-skewed distribution, which is further confirmed by the positive skew-
ness value of 4.19.

The extremely low mode value (0.002 hours) combined with the minimum observation
(0.002 hours) indicates that some failures occur in rapid succession, possibly representing cas-
cading failures or immediate re-failures after system recovery attempts.

The high kurtosis value (20.29) indicates a distribution with heavy tails and a sharp peak,
suggesting the coexistence of multiple modes. The large interquartile range (52.35 hours)

relative to the median further emphasizes the high variability in failure times.

1.0.0.2 Clustering Analysis

To support the selection of the number of mixture components, clustering algorithms were
applied to the dataset. Table 61 summarizes the number of clusters recommended by each
approach.

HDBSCAN’s recommendation of 4 clusters suggests the presence of four major density-

based groupings. In contrast, K-Means and Fuzzy C-means algorithms suggest a higher num-
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ber of clusters (11 and 12, respectively), indicating finer granularity in failure pattern recogni-
tion. The Gaussian Mixture Model (GMM) approaches, using both BIC and AIC, recommend
consistent values of 11 components.

Figure 61 provides the visualization of the clustering analysis results across five different
algorithms. The scatter plots reveal distinct clustering behaviors: K-Means (k=11) identifies
numerous small clusters with many observations concentrated in the low TBF region (0-50
hours) and several isolated high-TBF outliers. HDBSCAN (k=4) shows a more conservative
approach, identifying four main clusters with a significant portion of data classified as noise
(gray crosses), particularly in the intermediate TBF range.

Fuzzy C-Means (k=12) produces a clustering pattern similar to K-Means but with slightly
different cluster boundaries, while the GMM approaches (BIC with k=11 and AIC with k=11)
show intermediate clustering between HDBSCAN’s conservative grouping and K-Means’ fine
partitioning. The Elbow and Silhouette analysis in the bottom-right panel demonstrates the
trade-off between cluster quality metrics, with the Elbow method showing a sharp decline up
to 4 components followed by gradual improvement, while the Silhouette score peaks around

2-3 clusters.

Table 60 — Descriptive Statistics: G41345226...bba75907480_iexplore_e06d7363.

Statistic Value
Count 82
Mean (hours) 75.24
Median (hours) 28.55
Mode (hours) 0.002
Standard Deviation 121.22
Minimum 0.002
Maximum 840.58
First Quartile (Q1) 22.34
Third Quartile (Q3) 74.69
Interquartile Range (IQR) 52.35
Skewness 4.19
Kurtosis 20.29
Main Data Range 4.14 - 166.29

Table 61 — Cluster Results: G41345226...bba75907480_iexplore_e06d7363.

Clustering Approach Recommended Clusters

K-Means 11
HDBSCAN 4
Fuzzy C-means 12
GMM (BIC) 11

GMM (AIC) 11
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1.0.0.3 Mixture Model Selection and Validation

The selection of the best-fitting mixture model was based on the top five models identi-
fied by each GoF test, combined with a visual comparison of the graphical results for each
candidate model. This procedure was applied across all samples. The final model selected
via the Expectation-Maximization (EM) algorithm consisted of 8 components with the follow-

ing distributional structure: logn-logn-logn-norm-norm-norm-norm. This configuration was

selected based on the outcomes of the AD goodness-of-fit test.
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Figure 61 — Cluster Plots: G41345226...bba75907480_iexplore_e06d7363.
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Figure 62 demonstrates the fit achieved by the 8-component mixture model. The prob-
ability density function plot shows a highly multimodal distribution with a dominant peak
near zero and several smaller peaks at intermediate values (50-150 hours) and longer intervals
(400-800 hours).

The cumulative distribution function comparison reveals agreement between the empiri-
cal and theoretical distributions, with the theoretical CDF (orange crosses) closely overlaying
the empirical CDF (blue circles) across the entire range. The probability-probability (P-P) plot
shows linearity along the 45-degree line, indicating that the mixture model accurately repre-
sents the cumulative probability structure at all quantile levels.

The quantile-quantile plot further confirms model adequacy, with linear correspondence
between theoretical and empirical quantiles. Minor deviations are observed only at the middle
upper tail (around 500 hours). The overall linear pattern validates the mixture model’s ability
to capture both the central tendency and the extreme behavior of the failure process.

Table 62 summarizes the goodness-of-fit results for the selected model. The GoF test results

logn-logn-logn-norm-norm-norm-norm

Mixture Model CDF Plot
0.0175 —— logn_0 (w=0.36) 1.0 A -8
. logn_1 (w=0.03)
logn_2 (w=0.11)
0.0150 4 norm_3 (w=0.33) 0.8 4 ¢
—— norm_4 (w=0.13)
0.0125 A norm_6 (w=0.02)
norm_7 (w=0.01) 2 0.6 1
> £
£ 0.0100 A ——- Mixture Model 3
c ! 3
8 | o
0.0075 - | | & 044
|
I. :
0.0050 1 |
[ | 0.2
! |
|
0.0025 4 \\ fj : —e— Empirical CDF
A\ | —» - Theoretical CDF
1" 0.0 1
0.0000 '4 " . L o : : : -
0 200 400 600 800 200 400 600 800
Data Data
P-P Plot Q-Q Plot
1.0 4 )
I" 800 L
0.8 4 "'
- 7
, w 600 g
-7 9 g
5 F -
8 0.6 // s g
E 7’ 0 //
£ /' % 400 o
= ° .
£ 0.4 E ° -~
] =3 -
’.‘ £ e
w //
200 Rt
0.2
/ ® Mixture Model ® Mixture Model
0.0 4 " ——- 45-degree line 04 —=—=- 45-degree line
0.0 0.2 0.4 0.6 0.8 1.0 200 400 600 800

Theoretical CDF

Theoretical Quantiles

Figure 62 — G41345226...bba75907480_iexplore_e06d7363 Mixture Model Fit Demonstrated

Through PDF, CDF, P-P and Q-Q Plots.




APPENDIX I. Results G413452266836854502e87bba75907480-iexplore-e06d7363 (Approach 2) 185

provide statistical evidence for the adequacy of the 8-component mixture model. The KS test
yields a low test statistic (0.051) with an extremely high p-value (0.974), indicating that the
null hypothesis of distributional equivalence cannot be rejected with confidence. The AD test,
which is more sensitive to deviations in the distribution tails, produces a test statistic of -0.931
with a p-value of 0.940. This result further confirms the model adequacy.

The log-likelihood value of -367.89 reflects the model’s overall fit and provides a basis for
comparison with alternative models. In addition, the AIC and the BIC values are 783.78 and
841.54, respectively, these criteria penalize model complexity.

Having established the adequacy of the selected mixture model in terms of global fit, the
next step is to examine the estimated parameters associated with each mixture component.
Table 63 presents the estimated parameters of the fitted mixture model.

Each distribution follows its standard statistical parameterization, respectively:

(1 Normal distribution uses the location (1) and scale (o) parameters.

(1 Lognormal distribution is parameterized by the shape (o), location (1), and scale (0)

parameters.

The mixture weights indicate the relative importance of each failure subpopulation, with
several dominant components: logn_0 (35.7%) and norm_3 (33.3%). These high-weight compo-
nents correspond to different failure regimes, from rapid succession failures (logn_2 with scale
parameter 6.009) to intermediate stability periods (norm_3 with location parameter 56.907).

The lognormal components (3 out of 8 components) reflect the multiplicative nature of the

failure process. The presence of four normal components (norm_3, norm_4, norm_5, norm_6)

Table 62 — Goodness-of-fit Test Results: G41345226...bba75907480_iexplore_e06d7363.

Model Test Statistic / p-value
8-Component Mixture KS 0.051/0.974
AD -0.931/ 0.940
Log-Likelihood -367.89
AlIC 783.78
BIC 841.54

Table 63 — Mixture Model Parameters: G41345226...bba75907480_iexplore_e06d7363.

Component Distribution Weight Param 1 Param 2 Param 3

logn_0 Lognormal 0.357 0.115 1E-10 23.673
logn_1 Lognormal 0.029 0.582 1E-10 184.591
logn_2 Lognormal 0.111 0.842 1E-10 6.009
norm_3 Normal 0.333 56.907 24.226 —
norm_4 Normal 0.134 138.317 19.846 -
norm_5 Normal 0.024 498.209 6.838 —

norm_6 Normal 0.012 840.576 1E-10 —
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with varying location parameters (56.907, 138.317, 498.209, and 840.576 hours, respectively)
captures the extended TBFs.

1.0.0.4 Sensitivity Analysis

To assess the robustness of the selected 8-component model and evaluate how model per-
formance responds to changes in complexity, a sensitivity analysis was performed. This anal-
ysis investigated the behavior of GoF metrics as the number of mixture components increased.
The sensitivity analysis was conducted by plotting the best GoF statistics obtained for each
number of mixture components.

Figure 63 presents the sensitivity analysis results, examining the behavior of key goodness-
of-fit statistics across component numbers. The KS test sensitivity analysis reveals a perfor-
mance trajectory that supports the 8-component selection. Starting from a single-component
performance, the statistic shows improvement through the initial component additions, drop-
ping sharply for two components. The most significant improvement occurs in the 2-6 compo-

nent range, with continued refinement leading to optimal performance in the 6-10 component
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Figure 63 — G41345226...e87bba75907480_iexplore_e06d7363 Sensitivity Analysis of Model Se-
lection Metrics (KS, AD, AIC, BIC) vs. Number of Mixture Components.
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region.

The sensitivity of the AD test provides complementary evidence by emphasizing distribu-
tion’s tail behavior. In the single-component model, the AD statistic highlights the inadequacy
of simple models. As the number of components increases, the AD statistic transitions to neg-
ative values, indicating an improvement in the model’s ability to represent distribution’s tail
behavior more accurately in multi-component configurations.

Information criteria sensitivity analysis reveals the trade-off inherent in model selection.
The AIC trajectory shows improvement through 3-7 components, followed by a stagnation
due to complexity penalties. The minimum AIC value was observed with 8 components. In
contrast, the BIC analysis, which imposes a stronger penalty for model complexity, follows a
similar initial trend but reaches its minimum around 6-8 components.

Additionally, graphical analyses of mixture model fits were conducted by inspecting the
best-fitting result according to each individual GoF test. The distributions selected as optimal
by each test: AD, KS, AIC, and BIC rarely coincided. In particular, the models selected by AIC
and BIC consistently exhibited poorer visual and statistical fit compared to those chosen by
the AD and KS tests. This performance gap persisted even in the cases where AIC and BIC

selected models with a higher number of components.

1.0.0.5 Comparison with Single-Component Models

For comparison, the best-fitting single distribution was the lognormal model, as shown
in Table 64. Although it achieved the best performance among the single-component models
tested, it still failed to capture the complexity present in the data.

While the lognormal distribution emerged as the best-fitting single-component model
among those evaluated, it remains inadequate for representing the complex behavior of time
between failures. These models often fail to capture the underlying structural characteris-
tics that arise from the inherent complexity of TBFs, which can result from multiple factors,
including the diversity of failure causes and variations in workload and operational profiles.

Goodness-of-fit testing highlights this difference in representational adequacy: while the
lognormal distribution yields higher test statistics for the Kolmogorov-Smirnov (KS = 0.134)
and Anderson-Darling (AD = -0.207) tests, indicating inadequacy of the distributional hy-

Table 64 — Mixture vs. Single Distributions: G41...e87bba75907480_iexplore_e06d7363.

GOF Metric Mixture Model (8-comp) Lognormal Simple Distribution

KS / p-value 0.051/0.974 0.134/0.093
AD / p-value -0.931/ 0.940 -0.207 / 0.451
Log-Likelihood -367.89 -520.78
AIC 783.78 863.04

BIC 841.54 870.26
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pothesis. The mixture model achieves much stronger agreement with the data (KS = 0.051, p
= 0.974; AD =-0.931, p = 0.940).

The information criteria (AIC and BIC) further reinforce the inadequacy of the single dis-
tribution. As the lognormal model, despite its lower complexity, shows substantially higher
AIC (863.04) and BIC (870.26) values compared to the mixture model, further reinforcing its
inadequacy as a representation of the observed TBF behavior.

Figure 64 illustrates the limitations of single-distribution modeling for this failure dataset.
The PDF overlay reveals that the lognormal model fails to represent the sharp peak near zero
and completely misses the multimodal nature evident in the histogram.

The CDF comparison demonstrates significant deviations between the theoretical lognor-
mal distribution (orange crosses) and the empirical distribution (blue circles), particularly in
the lower tail region (0-100 hours) where the model underestimates failure probabilities, and
in the upper tail where it overestimates them.

The P-P plot shows departures from linearity, with an S-shaped curve. The Q-Q plot reveals
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more nonlinearities, with the data points forming a curved pattern rather than following the

expected 45-degree line.

1.0.0.6 Computational Cost Analysis

Given that mixture models can be computationally intensive, particularly when evaluating
multiple distribution types and component numbers, a computational cost analysis was con-
ducted. This analysis examines the trade-offs between model complexity and computational
requirements.

Figure 65 and 66 present the computational cost analysis, showing execution time, memory
usage, CPU utilization, and operation counts across different distribution types and compo-
nent numbers.

Figure 65 presents the computational cost analysis for homogeneous mixture models across
varying numbers of components. The analysis reveals distinct computational characteristics
for different distribution families.

Figure 66 extends the analysis to heterogeneous mixture models, where components can
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Figure 65 — G41345226...bba75907480_iexplore_e06d7363 Computational Cost Analysis of Ho-
mogeneous Distribution Models with Execution Time, Memory Usage, CPU Uti-
lization and Number of Operations.
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belong to different distribution families. This analysis is particularly relevant for the selected
8-component model, which combines lognormal and normal distributions.

The computational analysis reveals the scaling behavior of mixture model estimation as
a function of both distribution complexity and the number of mixture components. These
results inform practical considerations for large-scale reliability analysis applications. While
the computational cost is substantial, the significant improvement in model adequacy and the
critical importance of accurate failure modeling in reliability applications justify the compu-

tational investment.
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