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Resumo

Este trabalho propõe uma abordagem baseada em Aprendizado Federado para a avaliação da

qualidade de imagens biomédicas, preservando a privacidade dos dados sensíveis dos pacientes.

Diferente de métodos tradicionais que centralizam os dados em um único servidor, o Aprendi-

zado Federado permite que o treinamento do modelo ocorra de forma descentralizada, com os

dados permanecendo localmente nos dispositivos das instituições participantes. Apesar de seus

benefícios de privacidade, o Aprendizado Federado enfrenta a heterogeneidade dos dados e a

participação ineficiente dos clientes. A fim de otimizar a eficiência do treinamento colabora-

tivo, e de superar desafios referentes à heterogeneidade dos dados, é incorporado ao sistema

um mecanismo de seleção de clientes baseado em Otimização por Enxame de Partículas (PSO),

que considera critérios como a qualidade dos dados, diversidade amostral e capacidade compu-

tacional dos clientes. Essa estratégia visa melhorar a performance global do modelo ao mesmo

tempo em que reduz custos de comunicação e evita o uso ineficiente de recursos. Além disso,

supera desafios relacionados à seleção aleatória de clientes realizada com FedAvg, que pode

se tornar um problema intratável na análise combinatória para obtenção dos melhores clientes.

Os experimentos foram conduzidos com conjuntos de dados públicos de doenças, avaliando a

robustez do modelo em ambientes heterogêneos. Os resultados demonstram que a combinação

entre Aprendizado Federado e PSO permite selecionar diferentes quantidades de clientes inde-

pendente da heterogeneidade dos dados, mantendo os dados seguros e respeitando as restrições

de privacidade inerentes ao domínio médico. Dessa forma, o presente trabalho obteve como um

dos principais ganhos 99,84% de acurácia com esta proposta.

Palavras-chave: Aprendizado Federado, Seleção de Clientes, Otimização por Enxame de Par-

tículas (Particle Swarm Optimization - PSO), FedAvg, Preservação de Privacidade em Aprendi-

zado de Máquina.



Abstract

This work introduces a Federated Learning approach to assess the quality of biomedical

images while protecting sensitive patient data. Unlike traditional methods that centralize data

on a single server, Federated Learning trains models in a decentralized way, keeping data on

the local devices of participating institutions. While Federated Learning offers privacy benefits,

it struggles with data heterogeneity and inefficient client participation. To address this and im-

prove the efficiency of collaborative training under heterogeneous data, the system integrates a

client selection mechanism based on Particle Swarm Optimization (PSO), using factors such as

data quality, sample diversity, and computational capacity. This strategy aims to boost overall

model performance, reduce communication overhead, and avoid wasting resources. In addi-

tion, the proposed method overcomes limitations of random client selection as used in FedAvg,

which can become combinatorially intractable when searching for the best subset of clients.

Experiments conducted on public disease datasets evaluate model robustness in heterogeneous

environments. Results indicate that combining Federated Learning with PSO enables adaptive

client selection across varying data heterogeneity levels while maintaining data security and

complying with inherent medical domain privacy constraints, achieving up to 99.84% accuracy

as one of the main performance gains of this work.

Keywords: Federated Learning, Client Selection, Particle Swarm Optimization, FedAvg,

Privacy-Preserving Machine Learning.



Lista de ilustrações

Figura 1 – Principais características das imagens médicas. Adaptado de [Zhou et al.

2021]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figura 2 – Funcionamento do Aprendizado Federado . . . . . . . . . . . . . . . . . . 26

Figura 3 – Etapas da metodologia proposta. . . . . . . . . . . . . . . . . . . . . . . . 35

Figura 4 – Exemplos de imagens dos conjuntos utilizados, agrupadas por classes: a

linha superior representa amostras de classes normais, a linha inferior repre-

senta classes de câncer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figura 5 – Etapas do Primeiro Experimento. . . . . . . . . . . . . . . . . . . . . . . . 42

Figura 6 – Evolução dos valores de loss e acurácia ao longo dos rounds de treinamento

de C1 (imagens de pulmão – esquerda) e C2 (imagens de cólon – direita). . . 44

Figura 7 – Comparação das abordagens de acordo com o número de rounds. . . . . . . 46

Figura 8 – Visualização 3D do F1-Score em função do número de clientes e rounds de

comunicação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figura 9 – Processo de seleção de clientes nos experimentos com PSO (Clientes To-

tais/Selecionados). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figura 10 – Comparação das abordagens avaliadas. . . . . . . . . . . . . . . . . . . . . 49

Figura 11 – Comparação das abordagens PSO e Baseline quanto ao desempenho das

CNNs avaliadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figura 12 – Seleção de Clientes de acordo com cada CNN. . . . . . . . . . . . . . . . . 52

Figura 13 – Acuácia Delta de acordo com a CNN. . . . . . . . . . . . . . . . . . . . . . 53

Figura 14 – Relação entre a Acurácia, Tempo de Execução e Total de Clientes. . . . . . 54



Lista de tabelas

Tabela 1 – Resumo dos trabalhos relacionados sobre Aprendizado Federado para de-

tecção de doenças. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Tabela 2 – Desempenho de classificação considerando Aprendizado Centralizado e Fe-

derado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Tabela 3 – Comparação entre as configurações de melhor desempenho usando PSO e

FedAvg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Tabela 4 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a

SqueezeNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Tabela 5 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a

MobileNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Tabela 6 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a

ResNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Tabela 7 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a

EfficientNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Lista de algoritmos

1 Seleção Dinâmica de Clientes via PSO . . . . . . . . . . . . . . . . . . . . . . 38



Lista de siglas

CNN Rede Neural Convolucional

FedAvg Federated Averaging

GANs Redes Adversárias Generativas

HCPA Hospital das Clínicas de Porto Alegre

HIPAA Health Insurance Portability and Accountability Act

IA Inteligência Artificial

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoT Internet das Coisas

LC25000 Histopathological Images of Lung and Colon Cancer

LLA Leucemia Linfoide Aguda

non-IID Dados não Independentes e não Identicamente Distribuídos



PSO Otimização por Enxame de Partículas

RGPD Regulamento Geral de Proteção de Dados

SMOTE Superamostragem Minoritária Sintética

SVM Máquina de Vetores de Suporte



Sumário

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Motivação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Objetivos e Desafios da Pesquisa . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Hipótese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Contribuições . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Organização da Dissertação . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 FUNDAMENTAÇÃO TEÓRICA . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Diagnóstico por Imagem . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Redes Neurais Convolucionais . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Arquitetura Leve (Lightweight Architecture) . . . . . . . . . . . . . . . . . 25

2.3 Aprendizado Federado . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Agregação com FedAvg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Tipos de Distribuição de Dados entre Clientes . . . . . . . . . . . . . . . . 28

2.4 Otimização por Enxame de Partículas (PSO) . . . . . . . . . . . . . . . 28

3 TRABALHOS RELACIONADOS . . . . . . . . . . . . . . . . . . . . . 30

4 MATERIAL E MÉTODOS . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Conjuntos de Imagens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Seleção de Clientes no Aprendizado Federado baseada em PSO . . . . . 36

5 EXPERIMENTOS E ANÁLISE DOS RESULTADOS . . . . . . . . . . 41

5.1 Aprendizado Centralizado vs Aprendizado Federado . . . . . . . . . . . 41

5.2 PSO vs FedAvg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 PSO dinâmico vs FedAvg . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Principais Contribuições . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



6.2 Trabalhos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Contribuições em Produção Bibliográfica . . . . . . . . . . . . . . . . . 58

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



17

CAPÍTULO 1

Introdução

O uso de imagens no diagnóstico médico tem se mostrado altamente eficaz, permitindo

diagnósticos precisos de diversas enfermidades [Bysani et al. 2023]. Entre essas doenças,

destacam-se o câncer, em suas diferentes formas, e doenças respiratórias [Mahmood et al.

2023, Bysani et al. 2023]. Com a crescente digitalização de prontuários médicos e arquivos

de imagens, há um interesse crescente em utilizar Inteligência Artificial (IA) para desenvolver

sistemas automatizados de diagnóstico que possam auxiliar os médicos e melhorar a precisão

diagnóstica [Rodrigues Moreira et al. 2025, Chen, Mat Isa e Liu 2025].

No contexto do aprendizado profundo, destaca-se a utilização de Redes Neurais Convoluci-

onais (CNNs) na classificação de imagens provenientes de radiografias, tomografias e micros-

copia [Mahmood et al. 2023, Vezeteu, Andronescu e Năstac 2025]. As CNNs são arquiteturas

neurais projetadas para processar dados com estrutura em grade, como imagens, sendo capazes

de extrair automaticamente características relevantes a partir de padrões visuais complexos por

meio de camadas convolucionais, ao mesmo tempo em que reduzem a complexidade dos dados

por meio de camadas de agrupamento (pooling) [Li et al. 2022]. A aplicação dessas redes em

imagens de microscopia destaca-se como um dos métodos mais promissores no auxílio à detec-

ção de câncer e de doenças autoimunes [Rodrigues, Naldi e Mari 2020, Costa et al. 2023, Li et

al. 2022].

Uma característica relevante das CNNs é a profundidade. Grande parte dessas redes pos-

suem centenas de camadas e milhões de parâmetros treináveis. Esse aumento de complexidade

tornou-se mais evidente após competições de grande escala como o ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC)), que impulsionaram o desenvolvimento de arquiteturas

profundas e complexas [Russakovsky et al. 2015, Tan et al. 2023]. Por exemplo, a arquitetura

VGG-16 ainda serve como base de comparação para diversos modelos modernos, mesmo com

a emergência de arquiteturas mais leves e eficientes como MobileNetV3 [Howard et al. 2019].

Uma abordagem promissora no diagnóstico médico baseado em imagens é o Aprendizado

Federado (Federated Learning), uma técnica descentralizada que permite o treinamento cola-

borativo de modelos mantendo os dados localmente, ao invés de centralizá-los em um único

servidor. Essa abordagem apresenta vantagens significativas em termos de escalabilidade e
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privacidade, possibilitando que múltiplos conjuntos de dados, armazenados localmente, contri-

buam para o treinamento do modelo global [McMahan et al. 2017, Guan et al. 2024].

O Aprendizado Federado é particularmente relevante no contexto médico, onde a privaci-

dade dos dados sensíveis dos pacientes é uma preocupação central. Regulamentações como o

Regulamento Geral de Proteção de Dados (RGPD) e a Health Insurance Portability and Ac-

countability Act (HIPAA) proíbem a transferência direta de dados médicos entre instituições,

com o objetivo de evitar a exposição de informações pessoais. A centralização desses dados

pode acarretar em violações de privacidade, ataques cibernéticos ou uso indevido das informa-

ções, comprometendo a confiança entre pacientes e instituições [Guan et al. 2024].

Nesse cenário, o Aprendizado Federado surge como uma solução robusta, promovendo a

segurança dos dados ao evitar sua transferência e garantindo conformidade com as regulamen-

tações éticas [Nguyen et al. 2022]. Além disso, essa abordagem permite lidar com grandes

volumes de dados sensíveis, como imagens categorizadas em classes, por exemplo, “câncer”

ou “saudável”, sem a necessidade de compartilhar informações pessoais, como nome, idade ou

sexo. Apenas os parâmetros dos modelos treinados de forma colaborativa são agregados no ser-

vidor central, preservando a confidencialidade dos dados dos pacientes [Guan et al. 2024,Sohan

e Basalamah 2023].

No contexto do Aprendizado Federado, estratégias como a seleção inteligente de clientes,

têm sido adotadas para priorizar dados mais relevantes e reduzir problemas de inconsistên-

cia [Souza et al. 2024, Rehman et al. 2024] por meio de algoritmos evolutivos. Ainda assim,

desafios como a heterogeneidade dos dados e a comunicação eficiente entre os clientes perma-

necem presentes [Tan et al. 2023]. Tais estratégias contribuem para a robustez dos modelos,

mesmo em cenários com recursos computacionais limitados [Jiang et al. 2023].

Um dos principais desafios é que a seleção de clientes é um problema combinatório que se

torna computacionalmente intratável à medida que o número de clientes aumenta. Este pro-

blema é formalmente classificado como NP-difícil, pois requer a análise de um subconjunto

ótimo a partir de um conjunto amplo e dinâmico de clientes candidatos sob restrições de hetero-

geneidade de recursos e dados [Nishio e Yonetani 2019]. Apesar de sua importância, a maioria

das implementações de Aprendizado Federado adota estratégias simples de amostragem aleató-

ria, que ignoram a utilidade variável de clientes individuais e podem levar a uma convergência

abaixo do ideal, particularmente na área médica, onde os dados são frequentemente escassos,

desequilibrados ou especializados.

1.1 Motivação

Diversas pesquisas vêm explorando a integração de Redes Neurais Convolucionais (CNNs)

ao Aprendizado Federado no contexto do diagnóstico médico por imagem. Entre essas iniciati-

vas, destaca-se a classificação de câncer de mama, um dos temas mais recorrentes na literatura

recente. Abordagens incluem o uso combinado de Redes Adversárias Generativas (GANs) com
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Aprendizado Federado [Rehman et al. 2024], além da aplicação de modelos leves, como a Mo-

bileNetV3 e a EfficientNet, em arquiteturas federadas [Tan et al. 2023]. No entanto, desafios

persistem, como a dependência entre amostras e o desequilíbrio na distribuição dos dados, que

comprometem a capacidade de generalização dos modelos e dificultam a captura de padrões

relevantes em subconjuntos heterogêneos [McMahan et al. 2017, Guan et al. 2024].

No campo do diagnóstico médico assistido por computador, as CNNs representam o estado

da arte e têm sido amplamente utilizadas em diversas especialidades médicas [Li et al. 2022].

Além disso, configuram-se como uma alternativa economicamente viável em países emergen-

tes quando comparadas a métodos diagnósticos tradicionais [Mahmood et al. 2023]. Apesar

de seu potencial, a adoção de soluções baseadas em aprendizado profundo em cenários clíni-

cos reais ainda enfrenta obstáculos, como exigências regulatórias, questões éticas e, sobretudo,

preocupações com a privacidade e a segurança dos dados dos pacientes. Tais fatores impõem

restrições severas ao compartilhamento de informações entre instituições de saúde [Guan et al.

2024, Nguyen et al. 2022].

Diante desse cenário, este trabalho busca contribuir para o avanço do estado da arte em

Aprendizado Federado, enfrentando de forma eficaz os efeitos da abordagem de Dados não

Independentes e não Identicamente Distribuídos (non-IID) [Souza et al. 2024]. Propõe-se, para

isso, uma estratégia de seleção dinâmica de clientes baseada em otimização por enxame de

partículas (PSO), capaz de lidar com a complexidade combinatória da seleção, um problema

classificado como NP-difícil. A abordagem visa promover maior robustez e confiabilidade nos

modelos treinados em ambientes clínicos, nos quais a precisão na classificação de doenças é

essencial para apoiar decisões médicas seguras e eficazes.

1.2 Objetivos e Desafios da Pesquisa

O presente trabalho tem como objetivo aplicar técnicas de Aprendizado Federado, CNNs e

otimização para enfrentar desafios na classificação de diferentes tipos de câncer, assegurando a

preservação da privacidade dos dados. Os objetivos específicos incluem:

❏ Propor uma abordagem baseada em Aprendizado Federado e CNNs para realizar a classi-

ficação de câncer a partir de imagens médicas, utilizando diferentes conjuntos de dados;

❏ Avaliar o PSO para seleção de clientes no Aprendizado Federado, com foco na preserva-

ção da privacidade dos dados durante a transmissão;

❏ Avaliar o desempenho do Aprendizado Federado tradicional, da combinação PSO + Apren-

dizado Federado e da abordagem com PSO dinâmico para a seleção de clientes;

❏ Comparar os resultados obtidos com os presentes na literatura, buscando alcançar ou

superar os desempenhos relatados em termos de taxa de classificação, privacidade e efi-

ciência do treinamento.
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1.3 Hipótese

O trabalho tem por objetivo investigar a seguinte hipótese referente ao Aprendizado Fede-

rado no contexto da detecção de doenças por imagem:

A aplicação de Aprendizado Federado, combinada ao uso do otimizador PSO, per-

mite a seleção dinâmica e eficiente de clientes para o treinamento colaborativo em

ambientes de dados heterogêneos, oriundos de múltiplas bases.

1.4 Contribuições

As principais contribuições deste trabalho são:

❏ Aplicação do Aprendizado Federado para o processamento de dados sensíveis proveni-

entes de diferentes instituições médicas, assegurando conformidade com normas éticas e

regulamentações de privacidade;

❏ Estratégia dinâmica e otimizada de seleção de clientes com base no algoritmo PSO, con-

siderando critérios como diversidade e variação amostral, e capacidade computacional, a

fim de maximizar a contribuição de cada cliente para o modelo global;

❏ Análise focada na diversidade dos dados oncológicos, fornecendo subsídios para o de-

senvolvimento de modelos mais robustos e com maior capacidade de generalização;

❏ Eficiência computacional e estabilidade do treinamento, por meio da redução do uso de

clientes com dados redundantes ou pouco representativos, ao mesmo tempo em que se

promove uma participação mais equilibrada dos clientes no processo de Aprendizado

Federado.

1.5 Organização da Dissertação

Este trabalho está organizado da seguinte forma:

❏ Capítulo 1 - Introdução: Apresenta o contexto, motivação, objetivos e contribuições do

trabalho, além desta organização textual.

❏ Capítulo 2 - Fundamentação Teórica: Aborda os conceitos teóricos essenciais para o

entendimento do trabalho, incluindo Aprendizado Federado, Otimização por Enxame de

Partículas (PSO) e técnicas de processamento de imagens médicas.
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❏ Capítulo 3 - Trabalhos Relacionados: Discute pesquisas anteriores relevantes na área

de seleção de clientes em Aprendizado Federado e otimização inteligente.

❏ Capítulo 4 - Material e Métodos: Detalha a abordagem proposta de seleção dinâmica

de clientes usando PSO, incluindo arquitetura, algoritmos e configurações experimentais.

❏ Capítulo 5 - Experimentos e Análise dos Resultados: Apresenta as etapas e confi-

gurações dos experimentos realizados, conjuntos de dados utilizados, metodologia de

avaliação e análise dos resultados obtidos.

❏ Capítulo 6 - Conclusão: Sumariza as principais contribuições do trabalho, discute limi-

tações e propõe direções futuras de pesquisa.
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CAPÍTULO 2

Fundamentação Teórica

Esta seção aborda os principais conceitos que sustentam o desenvolvimento desta pesquisa,

bem como os estudos mais relevantes relacionados ao tema. Além disso, realiza-se uma análise

comparativa das abordagens mais avançadas presentes na literatura, com ênfase naquelas que se

destacam por seu potencial em superar os desafios do diagnóstico médico assistido por compu-

tador com uso de aprendizado federado, principalmente em cenários que envolvem a aplicação

em sistemas embarcados.

2.1 Diagnóstico por Imagem

As imagens médicas constituem uma das principais fontes de evidência para análises clíni-

cas e intervenções médicas, correspondendo a aproximadamente 90% dos dados gerados na área

da saúde. Essas imagens desempenham um papel essencial no diagnóstico e são amplamente

utilizadas no acompanhamento de pacientes, no planejamento de procedimentos cirúrgicos e na

aquisição de imagens em tempo real durante intervenções operatórias [Zhou et al. 2021]. Com

o avanço das técnicas de Inteligência Artificial (IA), abordagens como o Aprendizado Federado

emergem como soluções promissoras para transformar o diagnóstico médico por imagem, ao

automatizar tarefas tradicionalmente demoradas e suscetíveis à subjetividade dos especialistas.

Conforme ilustrado na Figura 1, as imagens médicas apresentam características singulares

que impõem desafios específicos à visão computacional, influenciando diretamente na escolha

de arquiteturas de deep learning e no desenho de estratégias baseadas em Aprendizado Fede-

rado.
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2.2 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (do inglês, Convolutional Neural Networks - CNNs) são

amplamente utilizadas para tarefas de classificação de imagens. Essas redes realizam diversas

operações em etapas, aproveitando o contexto espacial das imagens e o compartilhamento de

pesos entre os pixels. Isso permite extrair representações hierárquicas e de alto nível dos dados

[Goodfellow, Bengio e Courville 2016, Ponti et al. 2017]. As bases para o desenvolvimento

das CNNs surgiram ainda no final da década de 1970 [Fukushima 1980]. Em 1995, elas foram

aplicadas na detecção de nódulos pulmonares em radiografias torácicas [Lo et al. 1995], e, em

1998, a arquitetura LeNet teve sucesso no reconhecimento de dígitos manuscritos [Lecun et al.

1998].

Apesar dos resultados promissores, as CNNs só tiveram maior viabilidade com o avanço

dos recursos computacionais, principalmente com a popularização da computação paralela e

distribuída. A partir de 2012, a arquitetura AlexNet [Krizhevsky, Sutskever e Hinton 2017]

marcou um divisor de águas ao vencer a competição ImageNet Large Scale Visual Recogni-

tion Challenge - ILSVRC, superando significativamente os métodos tradicionais baseados em

extração manual de características. Desde então, diversas arquiteturas mais profundas e sofisti-

cadas foram propostas, consolidando as CNNs como referência em tarefas de visão computaci-

onal [Russakovsky et al. 2015] [Rodrigues Moreira et al. 2025].

O núcleo das CNNs é a operação de convolução, que aplica filtros sobre as imagens de

entrada para gerar os chamados mapas de características. Esses mapas são essenciais para que

a rede possa realizar tarefas como classificação [Goodfellow, Bengio e Courville 2016]. A

convolução é definida matematicamente como uma operação local entre a imagem e um filtro,

que percorre cada região da imagem e calcula a soma ponderada dos pixels. A Equação 1

formaliza esse processo, em que a nova imagem g(x,y) é obtida a partir da imagem original

f (x,y) e de um filtro w(x,y) de tamanho m×n:

g(x,y) =
a

∑
s=−a

b

∑
t=−b

w(s, t) f (x− s,y− t), (1)

sendo a = (m−1)
2 e b = (n−1)

2 .

De forma geral, uma Rede Neural Convolucional (CNN) é estruturada em três tipos princi-

pais de camadas [Ponti et al. 2017]:

❏ Camada Convolucional: aplica filtros (ou kernels) sobre a imagem para extrair padrões

locais, como bordas, texturas e formas. Essa camada gera os mapas de características,

enquanto funções de ativação, como a ReLU, introduzem não linearidade para capturar

relações mais complexas;

❏ Camada de Pooling: reduz a dimensionalidade dos mapas de características, mantendo

as informações mais relevantes e diminuindo o custo computacional. Os tipos mais co-
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muns são max pooling (seleciona o valor máximo em uma região) e average pooling

(calcula a média dos valores);

❏ Camada Totalmente Conectada: transforma os mapas de características em vetores

unidimensionais, conectando todos os neurônios entre as camadas. Essa etapa combina

as informações extraídas para realizar classificações, normalmente utilizando a função

softmax para estimar as probabilidades das classes.

A depender da arquitetura, essas camadas podem ser modificadas ou substituídas por outras

com funcionalidades semelhantes.

2.2.1 Arquitetura Leve (Lightweight Architecture)

Arquiteturas Leves de CNNs são variantes projetadas para manter bom desempenho com

menor demanda computacional, tornando-se ideais para dispositivos com recursos limitados

[Zhou et al. 2021]. A seguir, são descritas algumas dessas arquiteturas.

❏ SqueezeNet: é uma CNN compacta apresentada em 2016, com cerca de 50 vezes menos

parâmetros que a AlexNet. Sua estrutura é composta por uma camada inicial de convolu-

ção, oito módulos denominados “fire” e uma camada final de convolução. Cada módulo

fire inclui um filtro 1×1 seguido de uma camada de expansão, que utiliza filtros 1×1 e

3×3. Esses módulos desempenham papéis similares aos das camadas densas das redes

tradicionais [Iandola et al. 2016] [Koonce 2021];

❏ MobileNet: é uma CNN eficiente, projetada para dispositivos com recursos computaci-

onais limitados. Introduzida em 2017, sua principal inovação é o uso de convoluções

separáveis em profundidade, que decompõem a convolução padrão em duas etapas: uma

convolução espacial por canal e uma convolução 1×1 para combinação dos canais. Essa

abordagem reduz o número de parâmetros e operações, mantendo desempenho compe-

titivo. A MobileNet é estruturada com uma camada inicial de convolução, seguida por

múltiplos blocos com convoluções separáveis e, por fim, camadas densas para classifica-

ção. Assim como os módulos fire da SqueezeNet, os blocos da MobileNet atuam como

unidades modulares de processamento, otimizadas para eficiência em tarefas de visão

computacional em tempo real [Sandler et al. 2018] [Howard et al. 2019];

❏ ResNet: apresentada em 2015, revolucionou o treinamento de CNNs ao introduzir co-

nexões de atalho, conhecidas como blocos residuais. Esses blocos permitem que os

gradientes fluam mais facilmente durante o treinamento, reduzindo o problema do de-

saparecimento do gradiente. A estrutura da ResNet é composta por uma camada inicial

de convolução, seguida por vários blocos residuais que incluem convoluções 3×3 e cone-

xões de identidade, finalizando com uma camada de classificação totalmente conectada.
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Conforme ilustrado na Figura 2, o processo típico do Aprendizado Federado envolve as

seguintes etapas:

❏ Treinamento Local: Cada dispositivo (cliente) treina um modelo local utilizando seus

próprios dados;

❏ Envio de Atualizações: Após o treinamento local, os clientes transmitem as atualizações

dos parâmetros do modelo (por exemplo, os pesos de uma rede neural) a um servidor

central;

❏ Agregação Global: O servidor central realiza a agregação das atualizações recebidas

de todos os clientes, construindo um modelo global que reflete as contribuições de cada

dispositivo;

❏ Redistribuição: O modelo global é então redistribuído aos clientes, que reiniciam o

processo com os parâmetros atualizados.

Esse ciclo iterativo proporciona diversas vantagens, como a preservação da privacidade, o

uso eficiente da largura de banda e a capacidade de lidar com dados heterogêneos e geogra-

ficamente distribuídos. O Aprendizado Federado tem se mostrado particularmente eficaz em

aplicações sensíveis à privacidade, como as da área médica, permitindo realizar tarefas como

classificação, segmentação e detecção em imagens clínicas sem comprometer a confidenciali-

dade dos dados [Guan et al. 2024] [McMahan et al. 2017].

2.3.1 Agregação com FedAvg

O algoritmo Federated Averaging (FedAvg) constitui o método padrão para agregação de

modelos locais em ambientes de Aprendizado Federado [McMahan et al. 2017]. Nesta abor-

dagem, cada cliente realiza o treinamento do modelo de forma independente utilizando seus

dados locais, enviando posteriormente os parâmetros atualizados para um servidor central. O

processo de agregação considera o tamanho do conjunto de dados de cada cliente para ponderar

suas contribuições, conforme estabelecido pela Equação 2:

L(w) =
N

∑
i=1

ni

n
Li(w), (2)

onde ni denota o número de amostras no cliente i e n = ∑
N
i=1 ni representa o total de amos-

tras considerando todos os clientes. Li é a função de perda do modelo no cliente i, calculada

usando os parâmetros do modelo, que são representados por w. Cada round de comunicação

compreende uma iteração completa de treinamento local nos clientes e subsequente agrega-

ção no servidor. Ao final de cada rodada, o modelo global é atualizado mediante a agregação

ponderada dos modelos locais, conforme definido pela Equação 3:
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wt+1 =
N

∑
i=1

ni

n
w(t)

i , (3)

sendo wt+1 os parâmetros do modelo global após a rodada t + 1. Este mecanismo permite

explorar dados distribuídos entre múltiplos clientes, aprimorando o desempenho do modelo

enquanto preserva a privacidade dos dados locais.

2.3.2 Tipos de Distribuição de Dados entre Clientes

Esta seção discute os tipos de distribuição de dados utilizados neste trabalho.

❏ Distribuição Independente e Identicamente Distribuída (IID)

Na distribuição IID os dados de cada cliente seguem a mesma distribuição de proba-

bilidade e são estatisticamente independentes entre si. Esta configuração assume que

as amostras de um cliente não influenciam as dos outros, todos os clientes possuem a

mesma distribuição de classes e características, e mantêm proporções similares de clas-

ses em todos os dispositivos. Este cenário é comum em ambientes controlados, mas raro

em aplicações reais de Aprendizado Federado, onde os dados naturalmente exibem hete-

rogeneidade [McMahan et al. 2017, Nergiz 2023].

❏ Distribuição Não-Independente e Não-Identicamente Distribuída (non-IID)

A distribuição non-IID reflete a heterogeneidade natural dos dados em ambientes federa-

dos reais. Suas principais manifestações incluem variação na distribuição de classes entre

clientes, diferenças na distribuição de características dos dados, e disparidades quantitati-

vas na quantidade de amostras por cliente. Esta heterogeneidade introduz desafios signifi-

cativos para a convergência do modelo, podendo levar a viés de aprendizado e degradação

de desempenho, representando o cenário mais comum e desafiador em aplicações práticas

de Aprendizado Federado [Nergiz 2023, Sohan e Basalamah 2023].

2.4 Otimização por Enxame de Partículas (PSO)

O algoritmo PSO é uma técnica metaheurística de otimização populacional inspirada no

comportamento coletivo de organismos sociais, como bandos de pássaros e cardumes de pei-

xes [Kennedy e Eberhart 1995]. Introduzido por Kennedy e Eberhart em 1995, o PSO simula a

interação entre partículas em um espaço de busca multidimensional, onde cada partícula repre-

senta uma possível solução para um problema de otimização.

No contexto do Aprendizado Federado, o PSO tem se destacado como uma ferramenta efi-

caz para a seleção dinâmica de clientes participantes do treinamento colaborativo [Souza et al.

2024]. Nesse cenário, cada cliente é modelado como uma partícula que se movimenta em um
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espaço de busca definido por atributos como a qualidade dos dados locais, a diversidade amos-

tral, a disponibilidade computacional e a largura de banda da rede. O objetivo é identificar, a

cada rodada de treinamento, o subconjunto ideal de clientes que contribuirão com maior efici-

ência para a atualização do modelo global, maximizando o desempenho e reduzindo o custo de

comunicação.

O movimento de cada partícula no espaço de busca é guiado por duas componentes prin-

cipais: a melhor posição já alcançada individualmente (pbest) e a melhor posição conhecida

pelo enxame (gbest). A atualização da velocidade vi e da posição xi de cada partícula i em uma

iteração t é dada pelas Equações 4 e 5:

vi(t +1) = w ·vi(t)+ c1 · r1 · (pbesti −xi(t))+ c2 · r2 · (gbest−xi(t)) (4)

xi(t +1) = xi(t)+vi(t +1) (5)

Onde:

❏ w é o fator de inércia, responsável por balancear a exploração e o espaço de busca;

❏ c1 e c2 são os coeficientes de aceleração, que controlam a influência dos componentes

cognitivo (local) e social (global), respectivamente;

❏ r1 e r2 são variáveis aleatórias com distribuição uniforme em [0,1], introduzindo estocas-

ticidade ao processo;

❏ pbesti representa a melhor posição já encontrada pela partícula i;

❏ gbest representa a melhor posição conhecida por todo o grupo de partículas.

No Aprendizado Federado, o valor da função objetivo associada a cada partícula pode ser

definido com base em uma métrica composta, considerando acurácia local, qualidade dos dados,

taxa de perda e até mesmo a eficiência energética do dispositivo. Com isso, a seleção de clientes

torna-se mais inteligente e adaptativa ao ambiente heterogêneo típico de redes federadas.

Essa estratégia tem se mostrado eficaz na mitigação dos problemas de heterogeneidade

(non-IID), desbalanceamento e limitação de recursos, promovendo maior robustez, eficiência e

escalabilidade do modelo treinado globalmente [Souza et al. 2024].
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CAPÍTULO 3

Trabalhos Relacionados

A aplicação do Aprendizado Federado na detecção de doenças tem ganhado destaque em

diversos contextos clínicos, devido à sua capacidade de preservar a privacidade dos dados sen-

síveis. Um exemplo relevante é o trabalho de Rehman et al. 2024, que propõe uma abordagem

denominada FedCSCD-GAN, a qual integra o Aprendizado Federado com Redes Adversárias

Generativas (GANs) para a classificação de distintos tipos de câncer, incluindo câncer de prós-

tata, pulmão e mama. Nesse estudo, diferentes hospitais são considerados como clientes dis-

tribuídos, possibilitando o treinamento colaborativo do modelo com dados heterogêneos pro-

venientes de múltiplas instituições. A proposta demonstrou resultados expressivos, alcançando

acurácias de 97,80% na detecção de câncer de pulmão, 96,95% para câncer de próstata e 97%

para câncer de mama, evidenciando a eficácia da metodologia empregada.

Nergiz 2023 propôs uma abordagem para a classificação de câncer colorretal utilizando

aprendizado profundo, Aprendizado Federado e técnicas de aprendizado centralizado. O mo-

delo emprega uma estrutura chamada Big Transfer, que é um método de Aprendizado de Re-

presentação Visual Geral, juntamente com a arquitetura de aprendizado profundo VGG como

classificador. Os resultados demonstram o potencial do Aprendizado Federado para generalizar

bem em diversos cenários médicos, proporcionando uma avaliação robusta de imagens médicas.

Tan et al. 2023 propuseram o uso de Aprendizado Federado para classificação de câncer

de mama, garantindo a privacidade dos dados dos pacientes ao evitar o compartilhamento de

informações entre hospitais. A abordagem emprega Aprendizado por Transferência para extrair

características de imagens de mamografia, melhorando a precisão diagnóstica. Além disso,

aplica a técnica de Superamostragem Minoritária Sintética (SMOTE) para balancear o conjunto

de dados e aprimorar o desempenho do modelo. Os resultados experimentais mostram que a

abordagem proposta atingiu uma acurácia de classificação de aproximadamente 98%.

Subashchandrabose et al. 2023 propuseram uma abordagem baseada em Aprendizado Fede-

rado para classificação de câncer de pulmão em múltiplas ordens. Eles integraram modelos de

aprendizado de máquina convencionais, especificamente Máquina de Vetores de Suporte (SVM)

e redes neurais, treinados em diversos conjuntos de dados contendo imagens de câncer de pul-

mão. Agbley et al. Agbley et al. 2024 propuseram uma abordagem que combina diferentes
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fatores de ampliação de imagens histopatológicas utilizando uma rede residual e fusão de infor-

mações em Aprendizado Federado para apoiar a classificação automática de câncer de mama.

Hossain et al. Hossain et al. 2024 utilizaram o mesmo conjunto de dados considerado em nosso

estudo e avaliaram uma Inception-V3 com Aprendizado Federado. No entanto, a abordagem

deles abordou apenas dados IID, ao contrário do nosso estudo, que examinou um cenário mais

complexo de non-IID.

Ning et al. 2024 introduziram o framework FedGCS, que utiliza uma abordagem gerativa

para selecionar clientes de maneira eficiente no Aprendizado Federado. Ele combina otimiza-

ção baseada em gradientes com métricas como desempenho do modelo, consumo de energia

e latência. O método se baseia na geração de representações contínuas de clientes, que são

usadas para selecionar os participantes mais adequados para cada rodada de treinamento. Os

experimentos mostraram que o FedGCS melhora o desempenho do modelo global em até 15%

em relação a métodos tradicionais de seleção, ao mesmo tempo que reduz a latência de comu-

nicação em cenários com alta heterogeneidade de dispositivos.

Jiang et al. 2024 abordam a seleção de clientes com restrições de recursos, focando no

aprendizado federado para dispositivos de (Internet das Coisas (IoT)). Eles utilizaram uma

método baseado em clusters para otimizar a seleção de clientes, levando em consideração os

limites de energia e capacidade de processamento dos dispositivos. Os resultados mostraram

que a estratégia proposta melhora a eficiência do treinamento, reduzindo o consumo de energia

e tempo de comunicação em comparação com métodos convencionais

Para abordar os desafios de comunicação no Aprendizado Federado, Souza et al. 2024 pro-

puseram uma técnica de seleção adaptativa de clientes, onde a participação é ajustada com base

na relevância de suas contribuições para o modelo global. Este método, além de reduzir o custo

de comunicação, mostrou-se eficaz em melhorar a personalização do modelo, especialmente

em cenários com dados non-IID. Os resultados indicam uma convergência mais rápida e uma

melhor precisão global, demonstrando a importância de estratégias adaptativas em sistemas

distribuídos.

Miao et al. 2025 propuseram o FedSAF, um novo algoritmo de Aprendizado Federado

voltado para a detecção de câncer gástrico, visando melhorar o desempenho em cenários com

dados não independentes e identicamente distribuídos non-IID. O FedSAF incorpora técnicas

de passagem de mensagens baseadas em atenção e utiliza a Matriz de Informação de Fisher para

aprimorar a acurácia do modelo, além de implementar uma função de divisão de modelo para

reduzir os custos computacionais e de transmissão. Em experimentos conduzidos com o con-

junto de dados GC196, o FedSAF alcançou acurácia de até 99,45%, superando métodos como

FedAvg, FedProx e FedAMP, o que evidencia sua eficácia em ambientes de dados heterogêneos

e com requisitos de privacidade.

Ouyang et al. 2025 propuseram o método FedDPSO (Enhanced Knowledge Distillation and

Particle Swarm Optimization for Federated Learning) para lidar com ruído extremo em rótulos.

Nos experimentos, o método alcançou 70,29% de acurácia no CIFAR-10 e 51,96% no CIFAR-
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100 sob alta taxa de ruído, superando o FedAvg em até 15% e o estado da arte FOCUS em

até 11% de acurácia. Além disso, Muntaqim e Smrity 2025 propuseram um método baseado

em mecanismos de explicabilidade, com Aprendizado Federado e VGG19. Eles alcançaram

98,45% de acurácia na classificação de tumores cerebrais em imagens de ressonância magnética

num cenário non-IID.

Em contraste com estudos anteriores, este trabalho compara aprendizado federado e cen-

tralizado em diferentes contextos. Ao desvincular o processo de otimização da agregação e do

treinamento local, preservamos a simplicidade e a eficiência do FedAvg, ao mesmo tempo em

que introduzimos um mecanismo adaptativo que prioriza os clientes com base no desempenho

empírico. Essa estratégia garante a compatibilidade com pipelines e Aprendizado Federado pa-

drão e aumenta a robustez em condições heterogêneas e non-IID. Consequentemente, o Apren-

dizado Federado oferece um framework promissor para detecção de doenças, permitindo que

as instituições mantenham os dados localmente para privacidade e segurança, ao mesmo tempo

em que se beneficiam de um modelo global treinado em dados distribuídos de várias fontes,

como hospitais ou unidades de saúde. Além disso, o PSO permite que essa detecção seja ainda

mais assertiva, ao priorizar clientes com melhor desempenho na seleção dinâmica. A Tabela 1

sumariza os trabalhos relacionados abordados na presente seção.
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Tabela 1 – Resumo dos trabalhos relacionados sobre Aprendizado Federado para detecção de
doenças.

Trabalho Objetivo Metodologia Resultados
[Rehman et al. 2024] Classificação de cân-

cer (pulmão, próstata,
mama)

FedCSCD-GAN com
GANs e hospitais como
clientes

Acurácia: 97,80% (pul-
mão), 96,95% (prós-
tata), 97% (mama)

[Nergiz 2023] Classificação de câncer
colorretal

Big Transfer + VGG Generalização robusta
em cenários médicos

[Tan et al. 2023] Classificação de câncer
de mama com privaci-
dade

Transferência +
SMOTE

Acurácia: aproximada-
mente 98%

[Agbley et al. 2024] Classificação de câncer
de mama com fusão
multiescala

ResNet e fusão de
representações em
Aprendizado Federado

Desempenho me-
lhorado em imagens
histopatológicas

[Hossain et al. 2024] Classificação de câncer
com Aprendizado Fe-
derado

Inception-V3 em con-
texto IID

Aplicado ao mesmo
conjunto de dados deste
trabalho

[Ning et al. 2024] Seleção eficiente de cli-
entes para Aprendizado
Federado

FedGCS, represen-
tações contínuas e
gradientes

Melhoria de até 15%
no desempenho, redu-
ção de latência

[Jiang et al. 2024] Seleção de clientes com
restrição de recursos
(IoT)

Clustering conside-
rando energia e CPU

Redução de tempo e
energia na comunica-
ção

[Souza et al. 2024] Seleção adaptativa de
clientes para Aprendi-
zado Federado

Relevância com dados
non-IID

Convergência mais rá-
pida e maior personali-
zação

[Miao et al. 2025] Detecção de câncer
gástrico em dados
non-IID

Atenção espacial/canal,
Fisher Information Ma-
trix, divisão de modelo

Acurácia: 99,45% no
conjunto GC196

[Ouyang et al. 2025] Robustez a ruído ex-
tremo em rótulos

FedDPSO com PSO e
distilação de conheci-
mento

CIFAR-10: 70,29%;
CIFAR-100: 51,96%

[Muntaqim e Smrity 2025] Classificação de tumo-
res cerebrais com dados
non-IID

Atenção espacial e de
canal com Aprendizado
Federado

Acurácia: 98,45%

Presente Trabalho Diagnóstico médico
por imagem com
Aprendizado Fede-
rado

FedAvg + PSO: PSO

para seleção de clien-
tes + Aprendizado Fe-
derado + DNNs

Utilizando dados he-
terogêneos, a estraté-
gia alcançou resulta-
dos muito relevantes,
como 99,84% de acu-
rácia.
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CAPÍTULO 4

Material e Métodos

O presente trabalho aplica técnicas de Aprendizado Federado e PSO para classificação e

avaliação de imagens médicas em ambientes distribuídos. A proposta visa atender às crescentes

demandas por privacidade e segurança no contexto do diagnóstico médico por imagem por meio

de uma estratégia de seleção dinâmica de clientes.

A junção do paradigma de Aprendizado Federado com o algoritmo PSO, emprega um me-

canismo de seleção de um subconjunto de clientes com melhor desempenho em um conjunto

total de clientes no espaço de busca. Essa abordagem evita a centralização de dados e pro-

move uma escolha mais criteriosa dos participantes, respeitando as limitações de comunicação

e processamento.

A arquitetura do método define um modelo global baseado em redes neurais convolucionais,

projetado para tarefas de classificação e extração complexa de caracterísitcas. Arquiteturas

como SqueezeNet, MobileNet, ResNet e EfficientNet são compatíveis e utilizadas de acordo

com as características computacionais do ambiente. A escolha de tais CNNs reside no fato

de que são arquiteturas leves e também profundas. Isso possibilita o treinamento de modelos

tanto em sistemas com menor quantidade de recursos computacionais, quanto em sistemas mais

robustos.

Posteriormente, o PSO seleciona, de forma inteligente, os clientes que terão maior contri-

buição para o avanço do modelo global em cada rodada do Aprendizado Federado. Com essa

estratégia, promove-se uma otimização tanto da performance do modelo quanto do uso dos

recursos computacionais de rede e processamento.

Após a seleção dos clientes, o treinamento do modelo ocorre nos clientes escolhidos. Cada

um realiza o ajuste local dos parâmetros do modelo com base em seus dados privados e, ao

final da iteração, envia apenas os parâmetros atualizados ao servidor central. Este, por sua vez,

realiza a agregação global, e redistribui o modelo atualizado para os clientes, reiniciando o ciclo

de treinamento.

O método proposto apresenta os seguintes diferenciais:

❏ Garante privacidade total dos dados, uma vez que nenhuma imagem médica deixa o dis-
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e granularidade, fornecendo um cenário propício para a avaliação non-iid para o método pro-

posto. A Figura 4 mostra exemplos de imagens dos conjuntos de imagens utilizados, incluindo

classes normais e cancerígenas.

O conjunto de dados LC25000 contém 25.000 imagens RGB de 768 × 768 pixels, igual-

mente distribuídas em cinco categorias histopatológicas [Borkowski et al. 2019]. O conjunto

LC25000 é composto por dois subconjuntos: imagens de tecido de cólon e de pulmão. O sub-

conjunto de cólon possui duas classes: tecido de cólon normal (10.000 imagens) e adenocar-

cinoma de cólon (10.000 imagens), que foram usadas diretamente para a classificação binária.

O subconjunto de pulmão contém três classes: tecido pulmonar benigno (5.000 imagens), ade-

nocarcinoma de pulmão (5.000 imagens) e carcinoma de células escamosas pulmonares (5.000

imagens). Nos experimentos, as duas classes malignas de pulmão foram categorizadas em uma

única classe de câncer, resultando em uma tarefa de classificação binária que contrastou tecidos

normais e cancerosos.

O conjunto Biglycan compreende fotomicrografias imuno-histoquímicas de amostras de

tecido mamário coletadas dos arquivos de patologia do Hospital das Clínicas de Porto Ale-

gre (HCPA), Brasil. As imagens foram adquiridas usando um microscópio óptico acoplado a

uma câmera digital colorida. O conjunto de dados contém 336 imagens RGB, cada uma com

resolução de 128 × 128 pixels, e está organizado em duas classes: câncer (203 imagens) e

tecido saudável (133 imagens) [Silva Neto et al. 2023].

O ALL-IDB reúne imagens microscópicas de esfregaços sanguíneos, produzido pela Uni-

versidade de Milão em parceria com o Laboratório de Citomorfologia do Hospital Maggiore

Policlinico. e projetado para avaliar métodos automatizados para diagnóstico de leucemia. Ele

visa especificamente a classificação binária de leucócitos em termos da presença ou ausência de

Leucemia Linfoide Aguda (LLA). O conjunto de dados contém imagens com recortes centrali-

zados em células individuais adquiridas usando microscopia óptica com resolução e condições

de iluminação consistentes. Cada imagem foi rotulada como normal ou leucêmica, permitindo

aplicação direta em tarefas de aprendizado supervisionado [Labati, Piuri e Scotti 2011]. Neste

estudo, utilizamos o subconjunto ALL-IDB2, que inclui imagens de células individuais pré-

extraídas, adequadas para treinamento e avaliação de CNNs.

4.2 Seleção de Clientes no Aprendizado Federado baseada

em PSO

A escolha de quais clientes participarão de cada rodada de treinamento em Aprendizado

Federado é uma tarefa desafiadora diante da diversidade de dados e da variação dos recursos

computacionais disponíveis entre os dispositivos. Métodos tradicionais, como o FedAvg, nor-

malmente selecionam os clientes de forma aleatória a cada rodada [McMahan et al. 2017,Guan

et al. 2024, Naghib, Gharehchopogh e Zamanifar 2025]. Embora essa estratégia seja simples
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Algoritmo 1 Seleção Dinâmica de Clientes via PSO

Require: Pontuações dos clientes disponíveis, número de clientes a selecionar k

Ensure: Conjunto de clientes selecionados
Obter a lista de clientes disponíveis no gerenciador
Filtrar apenas clientes com identificadores válidos
if número de clientes válidos < k then

Selecionar aleatoriamente k clientes
return clientes selecionados

end if
Obter os IDs e as pontuações correspondentes
Definir o problema de PSO para maximizar a soma das pontuações dos k melhores clientes
Inicializar o PSO com população = 20, c1 = c2 = 1,8, w = 0,7
Executar a otimização por 500 iterações
Selecionar os k clientes com maiores valores de prioridade na melhor partícula
for all clientes selecionados do

Incrementar o contador de participação do cliente
end for
return clientes selecionados

vel. Se o número de clientes com dados for insuficiente, aplica-se uma seleção aleatória. Caso

contrário, o problema é formulado como uma tarefa de otimização, cuja função objetivo busca

maximizar a soma das pontuações dos k clientes mais promissores. Nesse cenário, cada partí-

cula no PSO representa uma solução candidata, que é um vetor com valores contínuos, cujos

elementos indicam a prioridade de seleção dos clientes. A cada iteração, os k clientes corres-

pondentes aos maiores valores da partícula são selecionados.

Após 500 avaliações com parâmetros fixos, a melhor partícula encontrada determina o sub-

conjunto de clientes que participará da rodada. Esse mecanismo adaptativo permite ao sistema

favorecer automaticamente os clientes com maior probabilidade de gerar atualizações de quali-

dade para o modelo global, promovendo melhorias de desempenho e reduzindo a aleatoriedade

do processo. O processo de seleção dinâmica de clientes opera através de um mecanismo adap-

tativo baseado em otimização por enxame de partículas (PSO) pode ser detalhado nas seguintes

etapas:

1. Identificação de Clientes Disponíveis: O sistema verifica quais clientes possuem dados

de desempenho recentes armazenados no servidor central. Estes dados correspondem às

métricas de avaliação (acurácia, loss, F1-Score) obtidas nas rodadas anteriores.

2. Verificação de Viabilidade: Se o número de clientes com histórico disponível for inferior

a um threshold pré-definido (ex: 5 clientes), o algoritmo recorre a uma seleção aleatória

tradicional como recuo, garantindo que o treinamento não seja interrompido.

3. Formulação do Problema de Otimização: Com clientes suficientes, o problema é mo-
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delado como uma tarefa de maximização:

max
k

∑
i=1

si · xi (6)

onde si representa a pontuação do cliente i e xi é uma variável binária indicando seleção,

sujeita à restrição ∑xi = k.

4. Representação das Partículas: Cada partícula no enxame PSO é um vetor p= [p1, p2, ..., pN ]

onde pi ∈ R representa a prioridade de seleção do cliente i. Valores mais altos indicam

maior aptidão para participação.

5. Decodificação das Soluções: A cada iteração, decodifica-se a partícula selecionando os

k clientes com os maiores valores no vetor. Esta abordagem é contínua, e permite buscas

mais eficiente no espaço de soluções.

6. Função de Avaliação: A qualidade de cada partícula é calculada através de uma função

objetivo que considera:

f (p) =
k

∑
j=1

α · s j +β ·d j + γ · (1− c j) (7)

onde s j é o score de desempenho, d j mede a diversidade dos dados, c j representa o custo

computacional, e α,β ,γ são pesos de ponderação. No presente trabalho, estes parâmetros

foram inicializados com valores default. Apenas no α que utilizamos com valores de 0,5

e 0,6. Essa estratégia tornou o desempenho do PSO ainda mais eficiente.

7. Processo Iterativo: O PSO executa 500 avaliações da função objetivo. Esse número está

relacionado com o equilíbrio entre convergência e custo computacional, visto que 50 pode

resultar em menor convergência, e 5000 em maior consumo de recursos computacionais

[Kennedy e Eberhart 1995]. Assim, o processo mantém:

❏ pbest: Melhor solução encontrada por cada partícula

❏ gbest: Melhor solução global do enxame

❏ Atualização de velocidades e posições pelas equações clássicas do PSO

8. Seleção Final: Após convergência, a partícula gbest determina o subconjunto ótimo de

clientes. Os k clientes com maiores valores em gbest são selecionados para a rodada.

Este mecanismo permite que o sistema adapte-se dinamicamente às condições variáveis da

rede, priorizando clientes que oferecem maior potencial de contribuição para o modelo global.

A abordagem reduz significativamente a aleatoriedade do processo de seleção enquanto mantém

diversidade suficiente para evitar overfitting e viés de seleção.
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Ao integrar o PSO ao processo de seleção de clientes a abordagem proposta oferece uma

alternativa eficaz à seleção aleatória. A estratégia busca formar subconjuntos com maior poten-

cial de contribuição, promovendo melhor convergência do modelo, maior acurácia e uso mais

eficiente dos recursos computacionais disponíveis no ambiente federado.
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CAPÍTULO 5

Experimentos e Análise dos

Resultados

Com o intuito de avaliar a solução do método proposto, diversos experimentos foram reali-

zados com configurações distintas de: quantidade de clientes, número de clientes selecionados

por rodada e rodadas de transmissão. Os experimentos foram executados no ambiente de teste

Fabric [Baldin et al. 2019], utilizando uma máquina virtual com 32 GB de RAM, 16vCPUs

e uma GPU NVIDIA Quadro RTX 6000. O ambiente de simulação foi construído utilizando

Python 3.12.8, PyTorch 2.5.1 com CUDA 12.1 e Flower 1.17.0, e executando no Ubuntu 20.04.6

LTS.

Os experimentos compararam o método proposto com um baseline adotado pelo algoritmo

FedAvg, que realiza a seleção aleatória de clientes [McMahan et al. 2017]. A avaliação de

cada abordagem foi feita por meio de quatro arquiteturas CNNs: SqueezeNet, MobileNet-V2,

ResNet-18 e EfficientNet-B0. Também foi feita uma comparação entre o FedAvg e o PSO

dinâmico, utilizando a distribuição de dados non-IID.

5.1 Aprendizado Centralizado vs Aprendizado Federado

Como ponto de partida, conduziu-se um estudo comparativo entre as abordagens de Apren-

dizado Centralizado e Federado para avaliar sua eficácia na classificação de dados heterogêneos

e não independentemente distribuídos (non-IID). Utilizou-se o conjunto LC25000, onde na

configuração centralizada todos os dados foram consolidados em um único servidor para trei-

namento e teste do modelo, conforme ilustrado na Figura 5.

A metodologia proposta, detalhada na Figura 5, organiza os dados em duas configurações

distintas. Na abordagem centralizada, os dados são processados em um único servidor, en-

quanto no Aprendizado Federado, dois clientes (C1 e C2) realizam treinamentos locais com

distribuição non-IID.

A escolha por dois clientes baseia-se na representatividade da heterogeneidade de domínios,

onde cada cliente incorpora um conjunto distinto de imagens (ex.: câncer colorretal vs. pulmo-
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vada pela retenção local dos dados, ainda que se permita o treinamento colaborativo através de

agregação segura de parâmetros.

Na abordagem centralizada, foram conduzidos experimentos abrangendo seis cenários dis-

tintos de treinamento e teste. Em todos os cenários, considerou-se a estratégia holdout com

particionamento de 80% dos dados para treinamento e 20% para teste. O primeiro cenário

utilizou imagens colorretais para treinamento e um conjunto híbrido (colorretal e pulmonar)

para teste. O segundo cenário inverte esta configuração, empregando imagens pulmonares para

treinamento e o conjunto híbrido para validação. Os cenários três e cinco mantêm o treina-

mento com dados colorretais, porém diferem nos conjuntos de teste: pulmonar no terceiro e

colorretal no quinto. Similarmente, os cenários quatro e seis utilizam dados pulmonares para

treinamento, mas variam entre testes colorretais (quarto) e pulmonares (sexto). Todos os expe-

rimentos empregaram a arquitetura SqueezeNet, visto que o intuito era apenas a comparação

entre a abordagem centralizada e federada. Os resultados estão sumarizados na Tabela 2.

Tabela 2 – Desempenho de classificação considerando Aprendizado Centralizado e Federado.

Experimento Treino Teste Acurácia (%) Precisão (%) Recall (%) F1-Score (%)

Centralizado

Cólon Cólon + Pulmão 89,86 89,45 89,41 89,43

Pulmão Cólon + Pulmão 60,00 30,00 50,00 37,50

Cólon Pulmão 66,67 33,33 50,00 40,00

Pulmão Cólon 50,00 25,00 50,00 33,33

Cólon Cólon 50,55 50,00 25,27 33,58

Pulmão Pulmão 100 100 100 100

Aprendizado

Federado

C1: Cólon

C2: Pulmão

Servidor:

Cólon + Pulmão
99,32 99,28 99,31 99,32

C1: Cólon

C2: Pulmão

Servidor:

Pulmão
98,43 98,85 97,64 98,21

C1: Cólon

C2: Pulmão

Servidor:

Cólon
48,40 50,00 24,20 32,61

Os resultados demonstram que a estratégia de Aprendizado Federado emulou eficazmente

um ambiente hospitalar na detecção simultânea de duas patologias distintas. Para fins de classi-

ficação, todas as imagens patológicas foram agrupadas numa única classe denominada câncer,

enquanto as imagens saudáveis constituíram a classe normal.

A Figura 6 ilustra a dinâmica temporal da função de perda e da acurácia durante o treina-

mento dos clientes C1 e C2 através de múltiplas rodadas. Cada round corresponde a um ciclo

completo de treinamento local, transmissão de parâmetros ao servidor central, e agregação glo-

bal. A convergência acelerada para baixos valores de perda e altas taxas de acurácia em ambos

os clientes indica que os modelos locais se adaptaram adequadamente aos seus respectivos con-

juntos de dados. Esta observação sugere que o processo de agregação no Aprendizado Federado

combina eficientemente as contribuições dos clientes, produzindo modelos com boa capacidade

de generalização.
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substancialmente reduzido, com métricas de acurácia e precisão significativamente menores,

além de tempo médio de 14 minutos. Esta limitação decorre das diferenças histopatológicas

marcantes entre os tipos cancerígenos, que impedem a transferência eficaz do conhecimento

entre domínios morfológicos distintos.

Em contraste, o desempenho melhora consideravelmente quando o treinamento e teste ocor-

rem no mesmo tipo cancerígeno, particularmente no câncer pulmonar, onde se atingiu acurácia

de 100%. Este resultado sugere que as imagens pulmonares do conjunto de dados exibem maior

homogeneidade ou características visuais mais distintivas, facilitando o processo de classifica-

ção.

O experimento de treinar com imagens colorretais e testar com pulmonares representa um

cenário relevante, pois investiga a capacidade do modelo em capturar características oncogê-

nicas transversais a diferentes tipos cancerígenos. Contudo, os resultados obtidos (precisão

próxima a 50%) confirmam que estas características gerais não são discriminativas para permi-

tir generalização eficaz entre domínios morfológicos distintos.

No cenário federado, os testes com ambos os tipos de câncer (cólon e pulmão) resultaram

em valores de precisão, acurácia, recall e F1-Score próximos a 99%. Este desempenho pode

ser atribuído à combinação de dados que favorece a generalização para ambos os tipos cancerí-

genos no conjunto de teste. A capacidade do Aprendizado Federado de agregar conhecimento

proveniente de diferentes clientes produz um modelo mais robusto quando aplicado a conjuntos

de teste diversificados. Estes resultados evidenciam as vantagens da integração de dados de fon-

tes diversas – neste caso, diferentes tipos de câncer – e da utilização do Aprendizado Federado

para treinamento do modelo, possibilitando melhor generalização em comparação a ambientes

centralizados.

O Aprendizado Federado mostrou vantagem em cenários com conjuntos de dados heterogê-

neos. Esta abordagem possibilita que o modelo global agregue informações de múltiplas fontes

de dados, resultando em um modelo mais adaptável. Em contrapartida, o aprendizado centra-

lizado, que treina o modelo em apenas um tipo de dado, não captura a diversidade inerente a

conjuntos heterogêneos, limitando sua capacidade de generalização.

O aprendizado centralizado também apresenta desempenho reduzido quando testado em

domínios diferentes dos utilizados no treinamento. Por exemplo, nesses experimentos, o modelo

centralizado treinado com dados de câncer colorretal teve desempenho inferior quando testado

com dados de câncer pulmonar. Em comparação, o Aprendizado Federado mostrou eficácia

na generalização de dados diversos, atingindo valores elevados de precisão, recall e F1-Score,

mesmo execuções de tempo maiores do que o centralizado (cerca de 10 horas). Além disso, o

Aprendizado Federado oferece benefícios de privacidade, mantendo os dados nos dispositivos

dos clientes e transmitindo apenas atualizações do modelo para o servidor. Esta característica

impede o compartilhamento direto de dados brutos com o servidor, reforçando a segurança e

proteção dos dados.
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Tabela 3 – Comparação entre as configurações de melhor desempenho usando PSO e FedAvg.

Abordagem Clientes Selecionados Rodadas Acurácia (%) Recall (%) Precisão (%) F1-Score (%)

PSO 10 2 3 99,00 99,00 99,00 99,00
FedAvg 10 2 3 98,01 98,00 97,85 97,92

PSO 30 2 10 98,57 99,84 98,79 98,51
FedAvg 30 2 10 97,97 97,88 97,89 97,89

PSO 50 5 10 98,50 99,71 98,69 98,43
FedAvg 50 5 10 95,84 95,35 96,25 95,72

PSO 100 10 30 98,24 98,63 98,19 98,17
FedAvg 100 10 30 96,00 96,00 95,00 96,00

PSO 500 30 50 97,09 97,49 96,05 96,97
FedAvg 500 30 50 96,70 96,53 96,60 96,57

A Tabela 3 apresenta os resultados dos experimentos realizados. Conforme ilustrado na

Figura 8, o método PSO demonstra convergência mais eficiente que o FedAvg, com incre-

mentos progressivos no F1-Score a cada round adicional de comunicação, particularmente em

ambientes com grande número de clientes. Esse comportamento indica menor sensibilidade à

heterogeneidade dos dados e atualizações mais eficazes do modelo global quando comparado à

seleção aleatória tradicional.

Observa-se que o desempenho do aprendizado federado segue uma relação não-linear com

a quantidade de clientes e rounds. Configurações com poucos clientes atingem bons resultados

com número reduzido de rounds, enquanto cenários mais complexos demandam maior quanti-

dade de clientes para compensar os efeitos da heterogeneidade.

Figura 8 – Visualização 3D do F1-Score em função do número de clientes e rounds de comuni-
cação.

A Figura 9 detalha o processo de seleção nos experimentos de melhor desempenho, pontos

azuis, representando clientes disponíveis; cruzes vermelhas, melhores seleções do PSO.
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a chance de agregar contribuições estatisticamente significativas, o que está de acordo com sua

abordagem de agregação.

Tabela 4 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a Squeeze-
Net.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferença (%)

20 5 3 97,36 98,09 -0,73
30 3 5 97,77 98,03 -0,26
30 5 10 98,20 98,32 -0,12
50 5 3 96,70 94,79 +1,91
50 10 5 96,04 97,38 -1,34

100 5 3 92,36 92,23 +0,13
100 5 10 96,35 94,88 +1,47

De acordo com os dados da Tabela 5, o PSO demonstrou desempenho superior ao FedAvg na

maioria dos cenários analisados. A MobileNet, por ter uma arquitetura mais leve e com menos

parâmetros, mostra-se mais sensível à seleção dos dados, o que favorece a abordagem do PSO

ao priorizar clientes com informações mais relevantes. Nos poucos casos em que o FedAvg teve

desempenho melhor, é possível que a escolha aleatória de clientes tenha incluído, por acaso,

dados com alto valor informativo, o que pode ser explicado pela variabilidade elevada entre os

conjuntos locais.

Tabela 5 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a MobileNet.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferença (%)

20 5 3 96,46 96,41 +0,05
30 3 5 96,54 96,15 +0,39
30 5 10 97,38 88,71 +8,67
50 5 3 91,54 96,97 -5,43
50 10 5 94,57 94,12 +0,45

100 5 3 75,14 71,86 +3,28
100 5 10 92,99 94,51 -1,52

Entre as redes avaliadas, a ResNet destacou-se pela estabilidade e desempenho consistente,

como visto na Tabela 6. Sua profundidade e capacidade de extração de características conferem

maior robustez frente à variabilidade dos dados entre os clientes. Por conta disso, as diferenças

entre o desempenho do PSO e do FedAvg se tornam menos evidentes, com ambos os métodos

apresentando resultados similares em grande parte dos experimentos.

No caso da EfficientNet, a abordagem tradicional com FedAvg obteve melhores resultados

em diversos cenários (ver Tabela 7). Isso pode ser atribuído à alta capacidade de generalização

da CNN, que se beneficia da diversidade de dados promovida pela seleção aleatória de clientes.

Em contraste, o PSO tende a selecionar repetidamente os mesmos clientes com desempenho

elevado, o que pode reduzir a variedade de padrões apresentados ao modelo — especialmente
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Tabela 6 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a ResNet.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferença (%)

20 5 3 97,93 97,85 +0,08
30 3 5 98,20 97,68 +0,52
30 5 10 98,48 98,52 -0,04
50 5 3 96,39 96,74 -0,35
50 10 5 96,99 97,21 -0,22

100 5 3 93,65 91,68 +1,97
100 5 10 97,44 96,76 +0,68

aqueles menos frequentes, mas relevantes. Assim, para arquiteturas como o EfficientNet, man-

ter uma rotação diversificada de clientes parece ser mais vantajoso.

Tabela 7 – Resultado comparativo das acurácias do PSO e FedAvg (Baseline) com a Efficient-
Net.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferença (%)

20 5 3 97,01 96,60 +0,41
30 3 5 96,97 96,80 +0,17
30 5 10 97,42 97,62 -0,20
50 5 3 94,59 93,34 +1,25
50 10 5 93,93 95,96 -2,03

100 5 3 77,17 79,37 -2,20
100 5 10 93,07 94,75 -1,68

A Figura 11 mostra que a SqueezeNet tem resultados melhores com o PSO dinâmico, prin-

cipalmente em cenários com seleção limitada de clientes. A ResNet apresenta desempenho

estável em ambas as abordagens, sugerindo baixa sensibilidade ao método de seleção. Por

outro lado, a EfficientNet apresenta melhor desempenho com o FedAvg, devido à sua forte

generalização com diferentes dados de treinamento.

A Figura 12 apresenta os clientes selecionados pelo PSO na rodada 10, avaliados mediante

as métricas de acurácia e F1-Score em diferentes arquiteturas CNNs. A SqueezeNet destacou-se

pela seleção criteriosa de clientes com elevado desempenho local, maximizando sua contribui-

ção para o modelo global em ambientes heterogêneos. Embora a MobileNet também tenha

se beneficiado da seleção direcionada, a menor variação observada em suas pontuações sugere

certa limitação na diversidade de contribuições. A ResNet apresentou comportamento homo-

gêneo, com clientes selecionados e não selecionados obtendo desempenhos comparáveis. Já na

EfficientNet, o PSO priorizou clientes de desempenho relativamente inferior em detrimento de

opções mais qualificadas disponíveis, o que pode impactar na variedade de padrões incorpora-

dos ao modelo global.
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forçam a necessidade de adequar as estratégias de seleção de clientes às particularidades do

modelo e às condições operacionais do sistema.
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CAPÍTULO 6

Conclusão

O presente trabalho atingiu seus objetivos ao propor e validar um método de Aprendizado

Federado para classificação de diferentes tipos de câncer, integrando técnicas de otimização

por enxame de partículas (PSO) para seleção inteligente de clientes. A pesquisa demonstrou

concretamente como cada objetivo específico foi alcançado.

Inicialmente, a comparação sistemática entre paradigmas de aprendizado centralizado e fe-

derado permitiu quantificar as vantagens e limitações de cada abordagem em cenários médi-

cos realistas. Posteriormente, a implementação do mecanismo de seleção dinâmica com PSO

evidenciou ganhos significativos de eficiência e desempenho em relação às estratégias tradici-

onais de seleção aleatória. Por fim, a validação em ambientes intencionalmente heterogêneos

(non-IID) confirmou a robustez da abordagem proposta sob condições adversas, aproximando-a

de aplicações clínicas reais.

Diante dos resultados apresentados, o trabalho demonstra a viabilidade da aplicação de

Aprendizado Federado combinado com PSO para classificação de imagens médicas em ce-

nários realistas. Os experimentos realizados avaliaram de forma comparativa as abordagens

FedAvg, PSO estático e PSO dinâmico na classificação de diferentes tipos de câncer, mantendo

o foco na preservação da privacidade dos dados sensíveis. A utilização intencional de distri-

buições non-IID nos conjuntos de imagens aproximou o estudo a cenários reais de aplicação

clínica, onde a heterogeneidade de dados é notória, validando a robustez do método proposto

em condições adversas.

6.1 Principais Contribuições

As principais contribuições deste trabalho podem ser resumidas em três aspectos fundamen-

tais:

1. Método de Seleção Dinâmica: adoção de um mecanismo adaptativo baseado em PSO

para seleção inteligente de clientes em ambientes federados, capaz de identificar e priori-
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zar automaticamente os participantes com maior potencial de contribuição para o modelo

global;

2. Validação em Cenários Realistas: demonstração da eficácia do método em condições

de heterogeneidade extrema (non-IID), com dados distribuídos de forma não balanceada

entre clientes, simulando desafios reais de aplicações médicas distribuídas;

3. Preservação de Privacidade com Eficiência: combinação bem-sucedida dos benefícios

de privacidade do Aprendizado Federado com a eficiência computacional do PSO, redu-

zindo o custo de comunicação enquanto mantém ou melhora o desempenho do modelo.

Os resultados obtidos mostram que a abordagem proposta em muitos casos supera o desem-

penho de métodos tradicionais como FedAvg, principalmente em cenários complexos com alta

variabilidade de dados. A capacidade do método de generalizar para diferentes tipos de câncer

sugere seu potencial como ferramenta de apoio aos especialistas médicos na detecção precoce

e classificação de câncer.

6.2 Trabalhos Futuros

Com base nas limitações identificadas e nos resultados promissores obtidos, sugere-se as

seguintes direções para trabalhos futuros:

❏ Extensão para Arquiteturas Complexas: investigação do método proposto em con-

junto com arquiteturas mais complexas como EfficientNet e Vision Transformers, e com-

parando o PSO com algoritmos bioinspirados avaliando sua capacidade de generalização

em cenários de ainda maior heterogeneidade;

❏ Otimização de Hiperparâmetros: desenvolvimento de estratégias adaptativas para ajuste

automático dos parâmetros do PSO durante o processo de treinamento, melhorando ainda

mais a eficiência da seleção de clientes;

❏ Expansão de Domínios Médicos: aplicação da metodologia a outros domínios médicos

além da oncologia, como cardiologia, neurologia e radiologia, validando sua utilidade em

diferentes contextos de diagnóstico por imagem;

❏ Validação Clínica Real: testes em ambientes clínicos reais com fluxos de trabalho ope-

racionais, avaliando não apenas a acurácia técnica mas também a usabilidade e integrabi-

lidade com sistemas existentes.

Estas direções de pesquisa têm o potencial de expandir significativamente o impacto do

presente trabalho, contribuindo para o avanço tanto da área de Aprendizado Federado quanto

para a melhoria de ferramentas de apoio ao diagnóstico médico baseado em imagem.



Capítulo 6. Conclusão 58

6.3 Contribuições em Produção Bibliográfica

❏ Rodrigues et al. 2025: “Medical Image Classification with Privacy: Centralized and Fe-

derated Learning Comparison.” Revista de Informática Teórica e Aplicada 32.1 (2025):

180-187.

Neste artigo, são apresentados os resultados da comparação entre o Aprendizado Federado e

o Aprendizado Centralizado na classificação de câncer utilizando o conjunto de dados LC25000

tendo a SqueezeNet como CNN avaliada.

❏ Rodrigues et al. 2025 “PSO-based Client Selection to Improve Medical Image Classifi-

cation in Federated Learning.” Revista de Informática Teórica e Aplicada (aceito).

Neste trabalho são mostrados os resultados da comparação entre a seleção de clientes usando

PSO e o algoritmo FedAvg avaliando dois conjuntos de dados LC25000 e ALL-IDB. Nesta

configuração, foi utilizada a SqueezeNet.

❏ Rodrigues et al. 2025 “Dynamic Client Selection in Federated Learning using Particle

Swarm Optimization for Medical Image Classification.” Cluster Computing (em revisão).

Por fim, este trabalho utilizou três conjuntos de dados: LC25000, ALL-IDB e Biglycan com-

parando a seleção dinâmica de clientes com PSO com o FedAvg. Foram utilizadas as seguintes

CNNs: ResNet, MobileNet, SqueezeNet e EfficientNet.
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