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Resumo

Este trabalho propde uma abordagem baseada em Aprendizado Federado para a avaliacdo da
qualidade de imagens biomédicas, preservando a privacidade dos dados sensiveis dos pacientes.
Diferente de métodos tradicionais que centralizam os dados em um tnico servidor, o Aprendi-
zado Federado permite que o treinamento do modelo ocorra de forma descentralizada, com os
dados permanecendo localmente nos dispositivos das institui¢des participantes. Apesar de seus
beneficios de privacidade, o Aprendizado Federado enfrenta a heterogeneidade dos dados e a
participacao ineficiente dos clientes. A fim de otimizar a eficiéncia do treinamento colabora-
tivo, e de superar desafios referentes a heterogeneidade dos dados, € incorporado ao sistema
um mecanismo de selecdo de clientes baseado em Otimizagao por Enxame de Particulas (PSO),
que considera critérios como a qualidade dos dados, diversidade amostral e capacidade compu-
tacional dos clientes. Essa estratégia visa melhorar a performance global do modelo a0 mesmo
tempo em que reduz custos de comunicacgao e evita o uso ineficiente de recursos. Além disso,
supera desafios relacionados a selec@o aleatéria de clientes realizada com FedAvg, que pode
se tornar um problema intratdvel na andlise combinatdria para obtengdo dos melhores clientes.
Os experimentos foram conduzidos com conjuntos de dados publicos de doengas, avaliando a
robustez do modelo em ambientes heterogéneos. Os resultados demonstram que a combinagao
entre Aprendizado Federado e PSO permite selecionar diferentes quantidades de clientes inde-
pendente da heterogeneidade dos dados, mantendo os dados seguros e respeitando as restri¢cdes
de privacidade inerentes ao dominio médico. Dessa forma, o presente trabalho obteve como um

dos principais ganhos 99,84% de acurédcia com esta proposta.

Palavras-chave: Aprendizado Federado, Selecdo de Clientes, Otimizac¢do por Enxame de Par-
ticulas (Particle Swarm Optimization - PSO), FedAvg, Preservacdo de Privacidade em Aprendi-

zado de Mdaquina.



Abstract

This work introduces a Federated Learning approach to assess the quality of biomedical
images while protecting sensitive patient data. Unlike traditional methods that centralize data
on a single server, Federated Learning trains models in a decentralized way, keeping data on
the local devices of participating institutions. While Federated Learning offers privacy benefits,
it struggles with data heterogeneity and inefficient client participation. To address this and im-
prove the efficiency of collaborative training under heterogeneous data, the system integrates a
client selection mechanism based on Particle Swarm Optimization (PSO), using factors such as
data quality, sample diversity, and computational capacity. This strategy aims to boost overall
model performance, reduce communication overhead, and avoid wasting resources. In addi-
tion, the proposed method overcomes limitations of random client selection as used in FedAvg,
which can become combinatorially intractable when searching for the best subset of clients.
Experiments conducted on public disease datasets evaluate model robustness in heterogeneous
environments. Results indicate that combining Federated Learning with PSO enables adaptive
client selection across varying data heterogeneity levels while maintaining data security and
complying with inherent medical domain privacy constraints, achieving up to 99.84% accuracy

as one of the main performance gains of this work.

Keywords: Federated Learning, Client Selection, Particle Swarm Optimization, FedAvg,

Privacy-Preserving Machine Learning.
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CAPITULO

Introducao

O uso de imagens no diagndstico médico tem se mostrado altamente eficaz, permitindo
diagnosticos precisos de diversas enfermidades [Bysani et al. 2023]. Entre essas doencas,
destacam-se o cancer, em suas diferentes formas, e doencgas respiratérias [Mahmood et al.
2023, Bysani et al. 2023]. Com a crescente digitalizacdo de prontudrios médicos e arquivos
de imagens, hd um interesse crescente em utilizar Inteligéncia Artificial (IA) para desenvolver
sistemas automatizados de diagndstico que possam auxiliar os médicos e melhorar a precisdao
diagndstica [Rodrigues Moreira et al. 2025, Chen, Mat Isa e Liu 2025].

No contexto do aprendizado profundo, destaca-se a utilizagdo de Redes Neurais Convoluci-
onais (CNNs) na classificagdo de imagens provenientes de radiografias, tomografias e micros-
copia [Mahmood et al. 2023, Vezeteu, Andronescu e Nastac 2025]. As CNNs sdo arquiteturas
neurais projetadas para processar dados com estrutura em grade, como imagens, sendo capazes
de extrair automaticamente caracteristicas relevantes a partir de padrdes visuais complexos por
meio de camadas convolucionais, a0 mesmo tempo em que reduzem a complexidade dos dados
por meio de camadas de agrupamento (pooling) [Li et al. 2022]. A aplicac¢do dessas redes em
imagens de microscopia destaca-se como um dos métodos mais promissores no auxilio a detec-
¢do de cancer e de doengas autoimunes [Rodrigues, Naldi e Mari 2020, Costa et al. 2023, Li et
al. 2022].

Uma caracteristica relevante das CNNs € a profundidade. Grande parte dessas redes pos-
suem centenas de camadas e milhdes de parametros treindveis. Esse aumento de complexidade
tornou-se mais evidente apds competicdes de grande escala como o ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC)), que impulsionaram o desenvolvimento de arquiteturas
profundas e complexas [Russakovsky et al. 2015, Tan et al. 2023]. Por exemplo, a arquitetura
VGG-16 ainda serve como base de comparacao para diversos modelos modernos, mesmo com
a emergéncia de arquiteturas mais leves e eficientes como MobileNetV3 [Howard et al. 2019].

Uma abordagem promissora no diagndstico médico baseado em imagens € o Aprendizado
Federado (Federated Learning), uma técnica descentralizada que permite o treinamento cola-
borativo de modelos mantendo os dados localmente, ao invés de centraliza-los em um tnico

servidor. Essa abordagem apresenta vantagens significativas em termos de escalabilidade e
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privacidade, possibilitando que multiplos conjuntos de dados, armazenados localmente, contri-
buam para o treinamento do modelo global [McMahan et al. 2017, Guan et al. 2024].

O Aprendizado Federado € particularmente relevante no contexto médico, onde a privaci-
dade dos dados sensiveis dos pacientes é uma preocupacgdo central. Regulamentagdes como o
Regulamento Geral de Prote¢do de Dados (RGPD) e a Health Insurance Portability and Ac-
countability Act (HIPAA) proibem a transferéncia direta de dados médicos entre instituicoes,
com o objetivo de evitar a exposicdo de informagdes pessoais. A centralizacdo desses dados
pode acarretar em violacdes de privacidade, ataques cibernéticos ou uso indevido das informa-
coes, comprometendo a confianca entre pacientes e institui¢des [Guan et al. 2024].

Nesse cendrio, o Aprendizado Federado surge como uma solug¢do robusta, promovendo a
seguranca dos dados ao evitar sua transferéncia e garantindo conformidade com as regulamen-
tacOes éticas [Nguyen et al. 2022]. Além disso, essa abordagem permite lidar com grandes
volumes de dados sensiveis, como imagens categorizadas em classes, por exemplo, “cancer”
ou “saudavel”, sem a necessidade de compartilhar informagdes pessoais, como nome, idade ou
sexo. Apenas os parametros dos modelos treinados de forma colaborativa sdo agregados no ser-
vidor central, preservando a confidencialidade dos dados dos pacientes [Guan et al. 2024,Sohan
e Basalamah 2023].

No contexto do Aprendizado Federado, estratégias como a selecdo inteligente de clientes,
tém sido adotadas para priorizar dados mais relevantes e reduzir problemas de inconsistén-
cia [Souza et al. 2024, Rehman et al. 2024] por meio de algoritmos evolutivos. Ainda assim,
desafios como a heterogeneidade dos dados e a comunicacdo eficiente entre os clientes perma-
necem presentes [Tan et al. 2023]. Tais estratégias contribuem para a robustez dos modelos,
mesmo em cendrios com recursos computacionais limitados [Jiang et al. 2023].

Um dos principais desafios € que a selecdo de clientes é um problema combinatério que se
torna computacionalmente intratdvel a medida que o nimero de clientes aumenta. Este pro-
blema é formalmente classificado como NP-dificil, pois requer a andlise de um subconjunto
6timo a partir de um conjunto amplo e dindmico de clientes candidatos sob restri¢des de hetero-
geneidade de recursos e dados [Nishio e Yonetani 2019]. Apesar de sua importancia, a maioria
das implementacdes de Aprendizado Federado adota estratégias simples de amostragem aleatd-
ria, que ignoram a utilidade varidvel de clientes individuais e podem levar a uma convergéncia
abaixo do ideal, particularmente na drea médica, onde os dados sdo frequentemente escassos,

desequilibrados ou especializados.

1.1 Motivacao

Diversas pesquisas vém explorando a integracdo de Redes Neurais Convolucionais (CNNs)
ao Aprendizado Federado no contexto do diagndstico médico por imagem. Entre essas iniciati-
vas, destaca-se a classificacdo de cancer de mama, um dos temas mais recorrentes na literatura

recente. Abordagens incluem o uso combinado de Redes Adversdrias Generativas (GANs) com
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Aprendizado Federado [Rehman et al. 2024], além da aplicacdo de modelos leves, como a Mo-
bileNetV3 e a EfficientNet, em arquiteturas federadas [Tan et al. 2023]. No entanto, desafios
persistem, como a dependéncia entre amostras € o desequilibrio na distribuicdao dos dados, que
comprometem a capacidade de generalizacdo dos modelos e dificultam a captura de padrdes
relevantes em subconjuntos heterogéneos [McMahan et al. 2017, Guan et al. 2024].

No campo do diagndstico médico assistido por computador, as CNNs representam o estado
da arte e tém sido amplamente utilizadas em diversas especialidades médicas [Li et al. 2022].
Além disso, configuram-se como uma alternativa economicamente vidvel em paises emergen-
tes quando comparadas a métodos diagndsticos tradicionais [Mahmood et al. 2023]. Apesar
de seu potencial, a ado¢do de solu¢des baseadas em aprendizado profundo em cendrios clini-
cos reais ainda enfrenta obstaculos, como exigéncias regulatdrias, questdes éticas e, sobretudo,
preocupacdes com a privacidade e a seguranca dos dados dos pacientes. Tais fatores impdem
restri¢des severas ao compartilhamento de informacdes entre instituicdes de saide [Guan et al.
2024,Nguyen et al. 2022].

Diante desse cendrio, este trabalho busca contribuir para o avango do estado da arte em
Aprendizado Federado, enfrentando de forma eficaz os efeitos da abordagem de Dados ndo
Independentes e ndo Identicamente Distribuidos (non-I1ID) [Souza et al. 2024]. Propde-se, para
isso, uma estratégia de selecdo dinamica de clientes baseada em otimizacdo por enxame de
particulas (PSO), capaz de lidar com a complexidade combinatdria da sele¢do, um problema
classificado como NP-dificil. A abordagem visa promover maior robustez e confiabilidade nos
modelos treinados em ambientes clinicos, nos quais a precisio na classificacdo de doengas é

essencial para apoiar decisoes médicas seguras e eficazes.

1.2 Objetivos e Desafios da Pesquisa

O presente trabalho tem como objetivo aplicar técnicas de Aprendizado Federado, CNNs e
otimizacdo para enfrentar desafios na classificacdo de diferentes tipos de cancer, assegurando a

preservacao da privacidade dos dados. Os objetivos especificos incluem:

(1 Propor uma abordagem baseada em Aprendizado Federado e CNN’s para realizar a classi-

ficacdo de cancer a partir de imagens médicas, utilizando diferentes conjuntos de dados;

(d Avaliar o PSO para selecao de clientes no Aprendizado Federado, com foco na preserva-

¢do da privacidade dos dados durante a transmissao;

(1 Avaliar o desempenho do Aprendizado Federado tradicional, da combinagao PSO + Apren-

dizado Federado e da abordagem com PSO dindmico para a selecdo de clientes;

(1 Comparar os resultados obtidos com os presentes na literatura, buscando alcancar ou
superar os desempenhos relatados em termos de taxa de classificagdo, privacidade e efi-

ciéncia do treinamento.
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1.3 Hipoétese

O trabalho tem por objetivo investigar a seguinte hipotese referente ao Aprendizado Fede-

rado no contexto da deteccdo de doencas por imagem:

A aplicagdo de Aprendizado Federado, combinada ao uso do otimizador PSO, per-
mite a selecdo dindmica e eficiente de clientes para o treinamento colaborativo em

ambientes de dados heterogéneos, oriundos de miiltiplas bases.

1.4 Contribuicoes
As principais contribui¢gdes deste trabalho sdo:

1 Aplicacdo do Aprendizado Federado para o processamento de dados sensiveis proveni-
entes de diferentes instituicdes médicas, assegurando conformidade com normas éticas e

regulamentacdes de privacidade;

(1 Estratégia dindmica e otimizada de selecdo de clientes com base no algoritmo PSO, con-
siderando critérios como diversidade e variacao amostral, e capacidade computacional, a

fim de maximizar a contribuicao de cada cliente para o modelo global;

(1 Andlise focada na diversidade dos dados oncoldgicos, fornecendo subsidios para o de-

senvolvimento de modelos mais robustos € com maior capacidade de generalizacio;

(1 Eficiéncia computacional e estabilidade do treinamento, por meio da redugdo do uso de
clientes com dados redundantes ou pouco representativos, a0 mesmo tempo em que se
promove uma participacdo mais equilibrada dos clientes no processo de Aprendizado
Federado.

1.5 Organizacao da Dissertacao
Este trabalho estd organizado da seguinte forma:

(1 Capitulo 1 - Introducao: Apresenta o contexto, motivagao, objetivos e contribui¢cdes do

trabalho, além desta organizacgdo textual.

(d Capitulo 2 - Fundamentacao Tedrica: Aborda os conceitos tedricos essenciais para o
entendimento do trabalho, incluindo Aprendizado Federado, Otimizacao por Enxame de

Particulas (PSO) e técnicas de processamento de imagens médicas.
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(1 Capitulo 3 - Trabalhos Relacionados: Discute pesquisas anteriores relevantes na drea

de selecdo de clientes em Aprendizado Federado e otimizagdo inteligente.

(d Capitulo 4 - Material e Métodos: Detalha a abordagem proposta de sele¢dao dinamica

de clientes usando PSO, incluindo arquitetura, algoritmos e configura¢des experimentais.

(1 Capitulo 5 - Experimentos e Analise dos Resultados: Apresenta as etapas e confi-
guragdes dos experimentos realizados, conjuntos de dados utilizados, metodologia de

avaliacdo e andlise dos resultados obtidos.

(1 Capitulo 6 - Conclusao: Sumariza as principais contribui¢cdes do trabalho, discute limi-

tacdes e propde direcdes futuras de pesquisa.
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CAPITULO

Fundamentacao Teorica

Esta secdo aborda os principais conceitos que sustentam o desenvolvimento desta pesquisa,
bem como os estudos mais relevantes relacionados ao tema. Além disso, realiza-se uma andlise
comparativa das abordagens mais avancadas presentes na literatura, com €nfase naquelas que se
destacam por seu potencial em superar os desafios do diagndstico médico assistido por compu-
tador com uso de aprendizado federado, principalmente em cendrios que envolvem a aplicacao

em sistemas embarcados.

2.1 Diagnoéstico por Imagem

As imagens médicas constituem uma das principais fontes de evidéncia para andlises clini-
cas e intervencdes médicas, correspondendo a aproximadamente 90% dos dados gerados na drea
da sadde. Essas imagens desempenham um papel essencial no diagndstico e sdo amplamente
utilizadas no acompanhamento de pacientes, no planejamento de procedimentos cirtrgicos € na
aquisicao de imagens em tempo real durante intervengdes operatdrias [Zhou et al. 2021]. Com
o avango das técnicas de Inteligéncia Artificial (IA), abordagens como o Aprendizado Federado
emergem como solucdes promissoras para transformar o diagndstico médico por imagem, ao
automatizar tarefas tradicionalmente demoradas e suscetiveis a subjetividade dos especialistas.

Conforme ilustrado na Figura 1, as imagens médicas apresentam caracteristicas singulares
que impdem desafios especificos a visdo computacional, influenciando diretamente na escolha
de arquiteturas de deep learning e no desenho de estratégias baseadas em Aprendizado Fede-

rado.
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Figura 1 — Principais caracteristicas das imagens médicas. Adaptado de [Zhou et al. 2021].

Essas imagens englobam diversas modalidades como raio-X, tomografia computadorizada,
ressonancia magnética, ultrassom e patologia digital, que sdo frequentemente adquiridas de
forma isolada, sem padronizacdo, utilizando equipamentos e configuracdes de digitalizagao
distintas [Esteva et al. 2019]. Além disso, restri¢des relacionadas a privacidade dos pacientes e
a gestdo de dados clinicos dificultam o acesso a grandes bases de dados publicas, o que limita o
desenvolvimento de modelos robustos [Zhou et al. 2021].

Outro obstédculo relevante € a expressiva variabilidade nos padrdes patoldgicos presentes
nas imagens médicas. Na radiologia, por exemplo, sdo reconhecidos mais de 12 mil sintomas e
mais de 4 mil doengas detectdveis por imagem [Budovec, Lam e Kahn 2014]. Embora algumas
condi¢des sejam amplamente representadas em bases de dados, a maioria € rara no ambiente
clinico, o que, aliado ao surgimento de novas enfermidades, como evidenciado pela pandemia
de COVID-19, impde desafios adicionais a generalizacdo dos modelos [Esteva et al. 2019]
[Rodrigues et al. 2020] [Rodrigues Moreira et al. 2023].

A rotulagem das imagens médicas também representa um ponto critico. Trata-se de um
processo demorado, caro e dependente da expertise dos profissionais da drea. Como ainda
ndo hd um consenso sobre os critérios de anotagdo, € comum encontrar inconsisténcias entre
diferentes especialistas [Esteva et al. 2019]. Além disso, muitos conjuntos de dados apresen-
tam desbalanceamento significativo entre classes, o que compromete a eficicia dos modelos
de aprendizado. Diante disso, técnicas avancadas de classifica¢do, detec¢do, segmentagdo e
restauracdo tornam-se indispensdveis para enfrentar a complexidade inerente ao processamento
dessas imagens [Zhou et al. 2021].
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2.2 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (do inglés, Convolutional Neural Networks - CNNs) sao
amplamente utilizadas para tarefas de classificacdo de imagens. Essas redes realizam diversas
operacdes em etapas, aproveitando o contexto espacial das imagens e o compartilhamento de
pesos entre os pixels. Isso permite extrair representacdes hierdrquicas e de alto nivel dos dados
[Goodfellow, Bengio e Courville 2016, Ponti et al. 2017]. As bases para o desenvolvimento
das CNNs surgiram ainda no final da década de 1970 [Fukushima 1980]. Em 1995, elas foram
aplicadas na detec¢ao de nédulos pulmonares em radiografias tordcicas [Lo et al. 1995], e, em
1998, a arquitetura LeNet teve sucesso no reconhecimento de digitos manuscritos [Lecun et al.
1998].

Apesar dos resultados promissores, as CNNs s6 tiveram maior viabilidade com o avango
dos recursos computacionais, principalmente com a popularizacdo da computacdo paralela e
distribuida. A partir de 2012, a arquitetura AlexNet [Krizhevsky, Sutskever e Hinton 2017]
marcou um divisor de dguas ao vencer a competicdo ImageNet Large Scale Visual Recogni-
tion Challenge - ILSVRC, superando significativamente os métodos tradicionais baseados em
extracdo manual de caracteristicas. Desde entdo, diversas arquiteturas mais profundas e sofisti-
cadas foram propostas, consolidando as CNNs como referéncia em tarefas de visdo computaci-
onal [Russakovsky et al. 2015] [Rodrigues Moreira et al. 2025].

O nicleo das CNNs € a operacdo de convolucdo, que aplica filtros sobre as imagens de
entrada para gerar os chamados mapas de caracteristicas. Esses mapas sdo essenciais para que
a rede possa realizar tarefas como classificacdo [Goodfellow, Bengio e Courville 2016]. A
convolucdo é definida matematicamente como uma operagdo local entre a imagem e um filtro,
que percorre cada regido da imagem e calcula a soma ponderada dos pixels. A Equacgdo 1
formaliza esse processo, em que a nova imagem g(x,y) é obtida a partir da imagem original

f(x,y) e de um filtro w(x,y) de tamanho m X n:

a b

g(x,y)= Z Z W(S,t)f(X—S,y—t), (1)

sS=—at=—p

sendoa:(mz;l)eb:("z;l).

De forma geral, uma Rede Neural Convolucional (CNN) € estruturada em trés tipos princi-

pais de camadas [Ponti et al. 2017]:

(d Camada Convolucional: aplica filtros (ou kernels) sobre a imagem para extrair padrdes
locais, como bordas, texturas e formas. Essa camada gera os mapas de caracteristicas,
enquanto funcdes de ativagcdo, como a ReLU, introduzem ndo linearidade para capturar

relagdes mais complexas;

(d Camada de Pooling: reduz a dimensionalidade dos mapas de caracteristicas, mantendo

as informagdes mais relevantes e diminuindo o custo computacional. Os tipos mais co-
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muns sdo max pooling (seleciona o valor madximo em uma regido) e average pooling

(calcula a média dos valores);

(d Camada Totalmente Conectada: transforma os mapas de caracteristicas em vetores
unidimensionais, conectando todos os neurdnios entre as camadas. Essa etapa combina
as informacdes extraidas para realizar classificagdes, normalmente utilizando a fung¢do

softmax para estimar as probabilidades das classes.

A depender da arquitetura, essas camadas podem ser modificadas ou substituidas por outras

com funcionalidades semelhantes.

2.2.1 Arquitetura Leve (Lightweight Architecture)

Arquiteturas Leves de CNNs sdo variantes projetadas para manter bom desempenho com
menor demanda computacional, tornando-se ideais para dispositivos com recursos limitados

[Zhou et al. 2021]. A seguir, sdo descritas algumas dessas arquiteturas.

(d SqueezeNet: ¢ uma CNN compacta apresentada em 2016, com cerca de 50 vezes menos
parametros que a AlexNet. Sua estrutura € composta por uma camada inicial de convolu-
¢do, oito médulos denominados “fire” e uma camada final de convolu¢do. Cada mddulo
fire inclui um filtro 1x1 seguido de uma camada de expansdo, que utiliza filtros 1x1 e
3x3. Esses mddulos desempenham papéis similares aos das camadas densas das redes
tradicionais [Iandola et al. 2016] [Koonce 2021];

(1 MobileNet: é uma CNN eficiente, projetada para dispositivos com recursos computaci-
onais limitados. Introduzida em 2017, sua principal inovagdo é o uso de convolucdes
separdveis em profundidade, que decompdem a convolucao padrdao em duas etapas: uma
convolucdo espacial por canal e uma convolugdo 1x1 para combinacio dos canais. Essa
abordagem reduz o nimero de parametros e operagdes, mantendo desempenho compe-
titivo. A MobileNet € estruturada com uma camada inicial de convolucao, seguida por
multiplos blocos com convolucdes separaveis e, por fim, camadas densas para classifica-
¢do. Assim como os médulos fire da SqueezeNet, os blocos da MobileNet atuam como
unidades modulares de processamento, otimizadas para eficiéncia em tarefas de visdo

computacional em tempo real [Sandler et al. 2018] [Howard et al. 2019];

(1 ResNet: apresentada em 2015, revolucionou o treinamento de CNNs ao introduzir co-
nexdes de atalho, conhecidas como blocos residuais. Esses blocos permitem que o0s
gradientes fluam mais facilmente durante o treinamento, reduzindo o problema do de-
saparecimento do gradiente. A estrutura da ResNet € composta por uma camada inicial
de convolugdo, seguida por varios blocos residuais que incluem convolugdes 3x3 e cone-

x0es de identidade, finalizando com uma camada de classificacdo totalmente conectada.
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Os blocos residuais funcionam como unidades modulares, facilitando a constru¢io de

arquiteturas com centenas de camadas sem degradacdo de desempenho [He et al. 2016];

(d EfficientNet: foi desenvolvida em 2019 com foco em escalabilidade eficiente. Ela in-
troduz um método composto de dimensionamento, que expande de forma equilibrada a
profundidade, largura e resolucdo da rede para otimizar acuricia e eficiéncia. A base
dessa CNN ¢€ construida sobre blocos de inversdes residuais, com convolugdes separaveis
em profundidade e conexdes tipo atalho. Sua estrutura modular e escaldvel permite atin-
gir alta precisao com menos parametros ¢ FLOPs em comparacdo a outras CNNs, como
ResNet e MobileNet [Tan e Le 2019].

2.3 Aprendizado Federado

O Aprendizado Federado é um paradigma que visa superar os desafios relacionados a pri-
vacidade e a governanca de dados, permitindo o treinamento colaborativo de modelos sem a
necessidade de centralizar os dados em um tnico repositorio [Guan et al. 2024]. Nessa abor-
dagem, o treinamento € distribuido entre os dispositivos participantes, de forma que os dados
sensiveis permanecam armazenados localmente [Guan et al. 2024]. Tal estratégia garante con-
formidade com restricdes legais e éticas sobre privacidade, sendo especialmente relevante em
dominios como a sadde, onde o compartilhamento irrestrito de informagdes de pacientes € proi-
bido [Rieke et al. 2020, Beutel et al. 2020].

Ao contrdrio dos métodos tradicionais, no Aprendizado Federado apenas os parametros
do modelo, como pesos e gradientes, sdo compartilhados entre os dispositivos e o servidor
central. Os dados em si nunca deixam os dispositivos de origem, reduzindo significativamente
o risco de exposicdo de informacdes sensiveis [KoneCny et al. 2016, McMahan et al. 2017].
Além disso, a descentraliza¢do do processo permite contornar restricdes impostas por firewalls
institucionais, mantendo os dados sob controle exclusivo das institui¢des, como hospitais e

centros de pesquisa [Rieke et al. 2020].
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Figura 2 — Funcionamento do Aprendizado Federado
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Conforme ilustrado na Figura 2, o processo tipico do Aprendizado Federado envolve as

seguintes etapas:

(d Treinamento Local: Cada dispositivo (cliente) treina um modelo local utilizando seus

préprios dados;

(d Envio de Atualizagdes: Apoés o treinamento local, os clientes transmitem as atualizacdes
dos parametros do modelo (por exemplo, os pesos de uma rede neural) a um servidor

central;

(1 Agregacao Global: O servidor central realiza a agregacao das atualizagdes recebidas
de todos os clientes, construindo um modelo global que reflete as contribui¢des de cada

dispositivo;

(d Redistribuicdo: O modelo global é entdo redistribuido aos clientes, que reiniciam o

processo com os parametros atualizados.

Esse ciclo iterativo proporciona diversas vantagens, como a preservacdo da privacidade, o
uso eficiente da largura de banda e a capacidade de lidar com dados heterogéneos e geogra-
ficamente distribuidos. O Aprendizado Federado tem se mostrado particularmente eficaz em
aplicacdes sensiveis a privacidade, como as da drea médica, permitindo realizar tarefas como
classificacdo, segmentacdo e deteccdo em imagens clinicas sem comprometer a confidenciali-
dade dos dados [Guan et al. 2024] [McMahan et al. 2017].

2.3.1 Agregacao com FedAvg

O algoritmo Federated Averaging (FedAvg) constitui o método padrdo para agregacio de
modelos locais em ambientes de Aprendizado Federado [McMahan et al. 2017]. Nesta abor-
dagem, cada cliente realiza o treinamento do modelo de forma independente utilizando seus
dados locais, enviando posteriormente os parametros atualizados para um servidor central. O
processo de agregacdo considera o tamanho do conjunto de dados de cada cliente para ponderar

suas contribui¢des, conforme estabelecido pela Equacdo 2:

N ..
L(w)= Y 2 Li(w), @)

onde »; denota o nimero de amostras no cliente i € n — Z{-V:ln,- representa o total de amos-
tras considerando todos os clientes. L; € a funcdo de perda do modelo no cliente i, calculada
usando os pardmetros do modelo, que sdo representados por w. Cada round de comunicagdo
compreende uma iteracdo completa de treinamento local nos clientes e subsequente agrega-
¢do no servidor. Ao final de cada rodada, o modelo global € atualizado mediante a agregacao

ponderada dos modelos locais, conforme definido pela Equagao 3:
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N
ni (t
Wi =Y w, (3)
i=1 1
sendo w1 os parametros do modelo global apds a rodada t + 1. Este mecanismo permite
explorar dados distribuidos entre multiplos clientes, aprimorando o desempenho do modelo

enquanto preserva a privacidade dos dados locais.

2.3.2 Tipos de Distribuicao de Dados entre Clientes

Esta secdo discute os tipos de distribui¢ao de dados utilizados neste trabalho.

(1 Distribuicao Independente e Identicamente Distribuida (/ID)

Na distribui¢do IID os dados de cada cliente seguem a mesma distribuicdo de proba-
bilidade e sdo estatisticamente independentes entre si. Esta configuracdo assume que
as amostras de um cliente ndo influenciam as dos outros, todos os clientes possuem a
mesma distribuicao de classes e caracteristicas, € mantém propor¢des similares de clas-
ses em todos os dispositivos. Este cendrio € comum em ambientes controlados, mas raro
em aplicacdes reais de Aprendizado Federado, onde os dados naturalmente exibem hete-
rogeneidade [McMahan et al. 2017, Nergiz 2023].

(1 Distribuicao Nao-Independente e Nao-Identicamente Distribuida (non-IID)

A distribui¢do non-I1ID reflete a heterogeneidade natural dos dados em ambientes federa-
dos reais. Suas principais manifesta¢des incluem variacdo na distribui¢ao de classes entre
clientes, diferencas na distribui¢do de caracteristicas dos dados, e disparidades quantitati-
vas na quantidade de amostras por cliente. Esta heterogeneidade introduz desafios signifi-
cativos para a convergéncia do modelo, podendo levar a viés de aprendizado e degradacao
de desempenho, representando o cendrio mais comum e desafiador em aplicacdes praticas
de Aprendizado Federado [Nergiz 2023, Sohan e Basalamah 2023].

2.4 Otimizacao por Enxame de Particulas (PSO)

O algoritmo PSO € uma técnica metaheuristica de otimizacdo populacional inspirada no
comportamento coletivo de organismos sociais, como bandos de passaros e cardumes de pei-
xes [Kennedy e Eberhart 1995]. Introduzido por Kennedy e Eberhart em 1995, o PSO simula a
interacao entre particulas em um espago de busca multidimensional, onde cada particula repre-
senta uma possivel solu¢do para um problema de otimizacao.

No contexto do Aprendizado Federado, o PSO tem se destacado como uma ferramenta efi-
caz para a selecdo dinamica de clientes participantes do treinamento colaborativo [Souza et al.

2024]. Nesse cendrio, cada cliente ¢ modelado como uma particula que se movimenta em um
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espaco de busca definido por atributos como a qualidade dos dados locais, a diversidade amos-
tral, a disponibilidade computacional e a largura de banda da rede. O objetivo € identificar, a
cada rodada de treinamento, o subconjunto ideal de clientes que contribuirdo com maior efici-
éncia para a atualizacdo do modelo global, maximizando o desempenho e reduzindo o custo de
comunicagao.

O movimento de cada particula no espaco de busca é guiado por duas componentes prin-
cipais: a melhor posi¢do ja alcancada individualmente (pbest) e a melhor posi¢do conhecida
pelo enxame (gbest). A atualizacdo da velocidade v; e da posi¢do x; de cada particula i em uma

iteracdo t € dada pelas Equagdes 4 e 5:

Vi(t+1)=w-vi(t)+cy-r - (pbest; —x;(t)) +ca -2 - (gbest —x;(t)) 4)

xi(t+1) =x;(t) +vi(t+1) (5)
Onde:

d w é o fator de inércia, responsdvel por balancear a exploracdo e o espaco de busca;

1 c; e ¢ s@o os coeficientes de aceleracdo, que controlam a influéncia dos componentes

cognitivo (local) e social (global), respectivamente;

O ry e rp sfo varidveis aleatérias com distribui¢do uniforme em [0, 1], introduzindo estocas-

ticidade ao processo;
(d pbest; representa a melhor posi¢do ja encontrada pela particula i;

(1 gbest representa a melhor posi¢do conhecida por todo o grupo de particulas.

No Aprendizado Federado, o valor da fun¢do objetivo associada a cada particula pode ser
definido com base em uma métrica composta, considerando acurécia local, qualidade dos dados,
taxa de perda e até mesmo a eficiéncia energética do dispositivo. Com isso, a sele¢do de clientes
torna-se mais inteligente e adaptativa ao ambiente heterogéneo tipico de redes federadas.

Essa estratégia tem se mostrado eficaz na mitigacdo dos problemas de heterogeneidade
(non-IID), desbalanceamento e limitacdo de recursos, promovendo maior robustez, eficiéncia e

escalabilidade do modelo treinado globalmente [Souza et al. 2024].
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CAPITULO

Trabalhos Relacionados

A aplicacdo do Aprendizado Federado na detec¢do de doencas tem ganhado destaque em
diversos contextos clinicos, devido a sua capacidade de preservar a privacidade dos dados sen-
siveis. Um exemplo relevante € o trabalho de Rehman et al. 2024, que propde uma abordagem
denominada FedCSCD-GAN, a qual integra o Aprendizado Federado com Redes Adversérias
Generativas (GANs) para a classificagdo de distintos tipos de cancer, incluindo cancer de pros-
tata, pulmdo e mama. Nesse estudo, diferentes hospitais sdo considerados como clientes dis-
tribuidos, possibilitando o treinamento colaborativo do modelo com dados heterogéneos pro-
venientes de multiplas institui¢des. A proposta demonstrou resultados expressivos, alcan¢ando
acurécias de 97,80% na detec¢do de cancer de pulmao, 96,95% para cincer de prostata e 97%
para cancer de mama, evidenciando a eficidcia da metodologia empregada.

Nergiz 2023 propds uma abordagem para a classificacdo de cancer colorretal utilizando
aprendizado profundo, Aprendizado Federado e técnicas de aprendizado centralizado. O mo-
delo emprega uma estrutura chamada Big Transfer, que € um método de Aprendizado de Re-
presentacdo Visual Geral, juntamente com a arquitetura de aprendizado profundo VGG como
classificador. Os resultados demonstram o potencial do Aprendizado Federado para generalizar
bem em diversos cendrios médicos, proporcionando uma avaliagdo robusta de imagens médicas.

Tan et al. 2023 propuseram o uso de Aprendizado Federado para classificacdo de cancer
de mama, garantindo a privacidade dos dados dos pacientes ao evitar o compartilhamento de
informacdes entre hospitais. A abordagem emprega Aprendizado por Transferéncia para extrair
caracteristicas de imagens de mamografia, melhorando a precisdo diagndstica. Além disso,
aplica a técnica de Superamostragem Minoritdria Sintética (SMOTE) para balancear o conjunto
de dados e aprimorar o desempenho do modelo. Os resultados experimentais mostram que a
abordagem proposta atingiu uma acurécia de classificacdo de aproximadamente 98%.

Subashchandrabose et al. 2023 propuseram uma abordagem baseada em Aprendizado Fede-
rado para classificagdao de cancer de pulmao em multiplas ordens. Eles integraram modelos de
aprendizado de maquina convencionais, especificamente Mdquina de Vetores de Suporte (SVM)
e redes neurais, treinados em diversos conjuntos de dados contendo imagens de cancer de pul-

mao. Agbley et al. Agbley et al. 2024 propuseram uma abordagem que combina diferentes
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fatores de ampliacdo de imagens histopatoldgicas utilizando uma rede residual e fusdo de infor-
macoes em Aprendizado Federado para apoiar a classificacdo automaética de cancer de mama.
Hossain et al. Hossain et al. 2024 utilizaram 0 mesmo conjunto de dados considerado em nosso
estudo e avaliaram uma Inception-V3 com Aprendizado Federado. No entanto, a abordagem
deles abordou apenas dados IID, ao contrdrio do nosso estudo, que examinou um cenario mais
complexo de non-1ID.

Ning et al. 2024 introduziram o framework FedGCS, que utiliza uma abordagem gerativa
para selecionar clientes de maneira eficiente no Aprendizado Federado. Ele combina otimiza-
cdo baseada em gradientes com métricas como desempenho do modelo, consumo de energia
e laténcia. O método se baseia na geracdo de representagdes continuas de clientes, que sdo
usadas para selecionar os participantes mais adequados para cada rodada de treinamento. Os
experimentos mostraram que o FedGCS melhora o desempenho do modelo global em até 15%
em relacdo a métodos tradicionais de selecdo, ao mesmo tempo que reduz a laténcia de comu-
nicacdo em cendrios com alta heterogeneidade de dispositivos.

Jiang et al. 2024 abordam a selecdo de clientes com restri¢des de recursos, focando no
aprendizado federado para dispositivos de (Internet das Coisas (IoT)). Eles utilizaram uma
método baseado em clusters para otimizar a selecao de clientes, levando em consideragcao os
limites de energia e capacidade de processamento dos dispositivos. Os resultados mostraram
que a estratégia proposta melhora a eficiéncia do treinamento, reduzindo o consumo de energia
e tempo de comunica¢do em comparacdo com métodos convencionais

Para abordar os desafios de comunicac¢do no Aprendizado Federado, Souza et al. 2024 pro-
puseram uma técnica de selecio adaptativa de clientes, onde a participagdo € ajustada com base
na relevancia de suas contribuicdes para o modelo global. Este método, além de reduzir o custo
de comunica¢do, mostrou-se eficaz em melhorar a personalizagdo do modelo, especialmente
em cendrios com dados non-IID. Os resultados indicam uma convergéncia mais rapida e uma
melhor precisdo global, demonstrando a importancia de estratégias adaptativas em sistemas
distribuidos.

Miao et al. 2025 propuseram o FedSAF, um novo algoritmo de Aprendizado Federado
voltado para a deteccao de cancer gastrico, visando melhorar o desempenho em cendrios com
dados nao independentes e identicamente distribuidos non-IID. O FedSAF incorpora técnicas
de passagem de mensagens baseadas em atencdo e utiliza a Matriz de Informacao de Fisher para
aprimorar a acurdcia do modelo, além de implementar uma fun¢do de divisdo de modelo para
reduzir os custos computacionais e de transmissao. Em experimentos conduzidos com o con-
junto de dados GC196, o FedSAF alcangou acurécia de até 99,45%, superando métodos como
FedAvg, FedProx e FedAMP, o que evidencia sua eficicia em ambientes de dados heterogéneos
e com requisitos de privacidade.

Ouyang et al. 2025 propuseram o método FedDPSO (Enhanced Knowledge Distillation and
Farticle Swarm Optimization for Federated Learning) para lidar com ruido extremo em rétulos.
Nos experimentos, o0 método alcangou 70,29% de acurédcia no CIFAR-10 e 51,96% no CIFAR-
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100 sob alta taxa de ruido, superando o FedAvg em até 15% e o estado da arte FOCUS em
até 11% de acuracia. Além disso, Muntaqim e Smrity 2025 propuseram um método baseado
em mecanismos de explicabilidade, com Aprendizado Federado e VGGI9. Eles alcancaram
98,45% de acuricia na classificacdo de tumores cerebrais em imagens de ressonancia magnética
num cendrio non-I1ID.

Em contraste com estudos anteriores, este trabalho compara aprendizado federado e cen-
tralizado em diferentes contextos. Ao desvincular o processo de otimizagdo da agregacdo e do
treinamento local, preservamos a simplicidade e a eficiéncia do FedAvg, a0 mesmo tempo em
que introduzimos um mecanismo adaptativo que prioriza os clientes com base no desempenho
empirico. Essa estratégia garante a compatibilidade com pipelines e Aprendizado Federado pa-
drdo e aumenta a robustez em condi¢des heterogéneas e non-IID. Consequentemente, 0 Apren-
dizado Federado oferece um framework promissor para detec¢do de doencas, permitindo que
as institui¢des mantenham os dados localmente para privacidade e seguranca, a0 mesmo tempo
em que se beneficiam de um modelo global treinado em dados distribuidos de vérias fontes,
como hospitais ou unidades de saide. Além disso, o PSO permite que essa deteccdo seja ainda
mais assertiva, ao priorizar clientes com melhor desempenho na selecao dinamica. A Tabela 1

sumariza os trabalhos relacionados abordados na presente secao.
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Tabela 1 — Resumo dos trabalhos relacionados sobre Aprendizado Federado para detecc¢do de

doencas.

Trabalho

Objetivo

Metodologia

Resultados

[Rehman et al. 2024]

Classificagdo de can-
cer (pulmido, prostata,
mama)

FedCSCD-GAN  com
GANS e hospitais como
clientes

Acuricia: 97,80% (pul-
mao), 96,95% (pros-
tata), 97% (mama)

[Nergiz 2023]

Classificagdo de cancer
colorretal

Big Transfer + VGG

Generalizagdo robusta
em cendrios médicos

[Tan et al. 2023] Classificag@o de cancer | Transferéncia + | Acurdcia: aproximada-
de mama com privaci- | SMOTE mente 98%
dade

[Agbley et al. 2024] Classificag@o de cincer | ResNet e fusdo de | Desempenho me-
de mama com fusdo | representacdes em | lhorado em imagens
multiescala Aprendizado Federado | histopatoldgicas

[Hossain et al. 2024]

Classificagdo de cancer
com Aprendizado Fe-
derado

Inception-V3 em con-
texto IID

Aplicado ao mesmo
conjunto de dados deste
trabalho

[Ning et al. 2024]

Selecdo eficiente de cli-
entes para Aprendizado
Federado

FedGCS, represen-
tagdes continuas e
gradientes

Melhoria de até 15%
no desempenho, redu-
cdo de laténcia

[Jiang et al. 2024]

Selec¢ao de clientes com
restricdo de recursos
(loT)

Clustering conside-
rando energia e CPU

Reducdo de tempo e
energia na comunica-
¢do

[Souza et al. 2024]

Selecdo adaptativa de
clientes para Aprendi-

Relevancia com dados
non-11D

Convergéncia mais ra-
pida e maior personali-

tremo em rétulos

distilacdo de conheci-
mento

zado Federado zacao

[Miao et al. 2025] Deteccdo de cancer | Atengdo espacial/canal, | Acurdcia: 99,45% no
gistrico em  dados | Fisher Information Ma- | conjunto GC196
non-11D trix, divisdo de modelo

[Ouyang et al. 2025] Robustez a ruido ex- | FedDPSO com PSO e | CIFAR-10:  70,29%;

CIFAR-100: 51,96%

[Muntaqgim e Smrity 2025]

Classificagdo de tumo-
res cerebrais com dados
non-11D

Atencao espacial e de
canal com Aprendizado
Federado

Acuracia: 98,45%

Presente Trabalho

Diagnéstico médico
por imagem com
Aprendizado  Fede-
rado

FedAvg + PSO: PSO
para selecio de clien-
tes + Aprendizado Fe-
derado + DNNs

Utilizando dados he-
terogéneos, a estraté-
gia alcancou resulta-
dos muito relevantes,
como 99,84% de acu-
racia.
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CAPITULO

Material e Métodos

O presente trabalho aplica técnicas de Aprendizado Federado e PSO para classificagdo e
avaliacdo de imagens médicas em ambientes distribuidos. A proposta visa atender as crescentes
demandas por privacidade e seguranga no contexto do diagndstico médico por imagem por meio
de uma estratégia de selecao dinamica de clientes.

A juncao do paradigma de Aprendizado Federado com o algoritmo PSO, emprega um me-
canismo de selecdo de um subconjunto de clientes com melhor desempenho em um conjunto
total de clientes no espaco de busca. Essa abordagem evita a centralizagdo de dados e pro-
move uma escolha mais criteriosa dos participantes, respeitando as limitacdes de comunicacdo
e processamento.

A arquitetura do método define um modelo global baseado em redes neurais convolucionais,
projetado para tarefas de classificacdo e extracdo complexa de caracterisitcas. Arquiteturas
como SqueezeNet, MobileNet, ResNet e EfficientNet sdo compativeis e utilizadas de acordo
com as caracteristicas computacionais do ambiente. A escolha de tais CNNs reside no fato
de que sdo arquiteturas leves e também profundas. Isso possibilita o treinamento de modelos
tanto em sistemas com menor quantidade de recursos computacionais, quanto em sistemas mais
robustos.

Posteriormente, o PSO seleciona, de forma inteligente, os clientes que terdo maior contri-
bui¢ao para o avan¢o do modelo global em cada rodada do Aprendizado Federado. Com essa
estratégia, promove-se uma otimizagdo tanto da performance do modelo quanto do uso dos
recursos computacionais de rede e processamento.

Apos a selecdo dos clientes, o treinamento do modelo ocorre nos clientes escolhidos. Cada
um realiza o ajuste local dos parametros do modelo com base em seus dados privados e, ao
final da iteracdo, envia apenas os parametros atualizados ao servidor central. Este, por sua vez,
realiza a agregacdo global, e redistribui o modelo atualizado para os clientes, reiniciando o ciclo
de treinamento.

O método proposto apresenta os seguintes diferenciais:

(d Garante privacidade total dos dados, uma vez que nenhuma imagem médica deixa o dis-
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positivo de origem;

(1 Implementa uma selecio adaptativa e otimizada de clientes por meio do PSO, priorizando

qualidade e diversidade dos dados;

(1 Suporta ambientes com dados heterogéneos e distribuidos geograficamente, caracteristica

comum em aplicacdes médicas em larga escala;

Q E compativel com miiltiplas arquiteturas de redes neurais, permitindo sua aplicacio em

diferentes contextos e conjuntos de dados.

Na Figura 3 € ilustrado o fluxo operacional do método proposto, organizado em etapas
sequenciais, mas com estrutura flexivel para permitir reavaliacdes iterativas do processo. Os
experimentos foram conduzidos com conjuntos de dados publicamente disponiveis, o que pos-

sibilita reprodutibilidade e comparagdes futuras com abordagens distintas.

CONJUNTOS DE IMAGENS

Conjunto 1 Conjunto 2 Conjunto n

- CLASSIFICAQAO
SELECAO DE CLIENTES SqueezeNet

APRENDIZADO FedA APRENDIZADO
FEDERADO edAvg CENTRALIZADO

Figura 3 — Etapas da metodologia proposta.

4.1 Conjuntos de Imagens

Este trabalho explora trés conjuntos distintos de imagens médicas, abrangendo diferentes
dominios clinicos: Histopathological Images of Lung and Colon Cancer (LC25000)', Bigly-
can® e ALL-IDB. Esses conjuntos de imagens apresentam diferentes desafios de complexidade

<https://www.kaggle.com/andrewmvd/lung-and-colon-cancer-histopathological-images>
<https://data.mendeley.com/datasets/mprsccwxb7/3>

3 <https://scotti.di.unimi.it/all/>
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e granularidade, fornecendo um cendrio propicio para a avaliagdo non-iid para o método pro-
posto. A Figura 4 mostra exemplos de imagens dos conjuntos de imagens utilizados, incluindo
classes normais e cancerigenas.

O conjunto de dados LC25000 contém 25.000 imagens RGB de 768 x 768 pixels, igual-
mente distribuidas em cinco categorias histopatolégicas [Borkowski et al. 2019]. O conjunto
LC25000 é composto por dois subconjuntos: imagens de tecido de cdlon e de pulmdo. O sub-
conjunto de cblon possui duas classes: tecido de célon normal (10.000 imagens) e adenocar-
cinoma de c6lon (10.000 imagens), que foram usadas diretamente para a classificacao bindria.
O subconjunto de pulmao contém trés classes: tecido pulmonar benigno (5.000 imagens), ade-
nocarcinoma de pulmao (5.000 imagens) e carcinoma de células escamosas pulmonares (5.000
imagens). Nos experimentos, as duas classes malignas de pulmao foram categorizadas em uma
unica classe de cancer, resultando em uma tarefa de classificacdo bindria que contrastou tecidos
Nnormais € cancerosos.

O conjunto Biglycan compreende fotomicrografias imuno-histoquimicas de amostras de
tecido mamadrio coletadas dos arquivos de patologia do Hospital das Clinicas de Porto Ale-
gre (HCPA), Brasil. As imagens foram adquiridas usando um microscopio optico acoplado a
uma camera digital colorida. O conjunto de dados contém 336 imagens RGB, cada uma com
resolucdo de 128 x 128 pixels, e estd organizado em duas classes: cancer (203 imagens) e
tecido saudével (133 imagens) [Silva Neto et al. 2023].

O ALL-IDB retne imagens microscépicas de esfregacos sanguineos, produzido pela Uni-
versidade de Mildo em parceria com o Laboratério de Citomorfologia do Hospital Maggiore
Policlinico. e projetado para avaliar métodos automatizados para diagnodstico de leucemia. Ele
visa especificamente a classificac@o bindria de leucécitos em termos da presenga ou auséncia de
Leucemia Linfoide Aguda (LLA). O conjunto de dados contém imagens com recortes centrali-
zados em células individuais adquiridas usando microscopia éptica com resolucao e condig¢des
de iluminag¢do consistentes. Cada imagem foi rotulada como normal ou leucémica, permitindo
aplicagdo direta em tarefas de aprendizado supervisionado [Labati, Piuri e Scotti 2011]. Neste
estudo, utilizamos o subconjunto ALL-IDB2, que inclui imagens de células individuais pré-

extraidas, adequadas para treinamento e avaliagdao de CNNs.

4.2 Selecao de Clientes no Aprendizado Federado baseada
em PSO

A escolha de quais clientes participardao de cada rodada de treinamento em Aprendizado
Federado é uma tarefa desafiadora diante da diversidade de dados e da variagdo dos recursos
computacionais disponiveis entre os dispositivos. Métodos tradicionais, como o FedAvg, nor-
malmente selecionam os clientes de forma aleatéria a cada rodada [McMahan et al. 2017, Guan

et al. 2024, Naghib, Gharehchopogh e Zamanifar 2025]. Embora essa estratégia seja simples
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(c) Biglycan (d) ALL-IDB

Figura 4 — Exemplos de imagens dos conjuntos utilizados, agrupadas por classes: a linha su-
perior representa amostras de classes normais, a linha inferior representa classes de
cancer

e eficiente, ela ignora aspectos importantes, como o histérico de desempenho dos clientes ou
suas capacidades locais, o que pode comprometer a qualidade do modelo treinado.

Neste trabalho, € proposta uma abordagem que substitui a selecdo aleatéria por um meca-
nismo baseado em PSO, com o objetivo de tornar o processo de selecdo mais eficiente e orien-
tado por dados. O FedAvg direciona a estratégia de agregacao, dada sua simplicidade e robustez.
A selecdo dinamica dos clientes € realizada com base no desempenho empirico de cada cliente.
Esse processo prioriza clientes com dados potencialmente mais uteis, promovendo melhorias
na convergéncia e na precisdo do modelo em cendrios com dados médicos heterogéneos.

O PSO [Kennedy e Eberhart 1995] utilizado, trata-se de uma metaheuristica populacional
que € eficiente na exploracdo de espacos de busca complexos e de alta dimensionalidade. Em
contraste a métodos exaustivos ou gananciosos, o PSO realiza uma busca adaptativa que equili-
bra exploragdo e aproveitamento ao simular particulas em movimento, ajustando suas posicoes
com base nas melhores solu¢des individuais e coletivas. Isso permite identificar subconjuntos
de clientes com alto potencial de contribui¢do ao modelo, considerando métricas recentes de de-
sempenho e mantendo baixo custo computacional. Aplica¢des anteriores do PSO em contextos
federados reforcam sua adequacdo para esta tarefa.

O Algoritmo 1 descreve o método proposto para a selecdo dindmica de clientes com base
em PSO. A populagio foi inicializada com 20 solu¢des candidatas, com o intuito de se obter
equilibrio entre eficiéncia na busca das melhores particulas e desempenho computacional. Os
pardmetros cl, ¢2 e w foram inicializados com 1,8 e 0,7 respectivamente de acordo com a
literatura, para melhor convergéncia dos movimentos no espaco de busca [Kennedy e Eberhart
1995].

O processo inicia com a identificacdo dos clientes cujo desempenho recente estd disponi-
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Algoritmo 1 Selecao Dinamica de Clientes via PSO

Require: Pontuagdes dos clientes disponiveis, nimero de clientes a selecionar k
Ensure: Conjunto de clientes selecionados
Obter a lista de clientes disponiveis no gerenciador
Filtrar apenas clientes com identificadores védlidos
if nimero de clientes vélidos < k then
Selecionar aleatoriamente k clientes
return clientes selecionados
end if
Obter os IDs e as pontuagdes correspondentes
Definir o problema de PSO para maximizar a soma das pontuacdes dos k melhores clientes
Inicializar o PSO com populagdo =20, ¢y =c, = 1,8, w=10,7
Executar a otimizagdo por 500 iteracdes
Selecionar os k clientes com maiores valores de prioridade na melhor particula
for all clientes selecionados do
Incrementar o contador de participacao do cliente
end for
return clientes selecionados

vel. Se o nimero de clientes com dados for insuficiente, aplica-se uma selecdo aleatéria. Caso
contrério, o problema € formulado como uma tarefa de otimizacao, cuja fun¢do objetivo busca
maximizar a soma das pontuacgdes dos k clientes mais promissores. Nesse cendrio, cada parti-
cula no PSO representa uma solucdo candidata, que é um vetor com valores continuos, cujos
elementos indicam a prioridade de selecdo dos clientes. A cada iteracdo, os k clientes corres-
pondentes aos maiores valores da particula sdo selecionados.

Ap6s 500 avaliagdes com parametros fixos, a melhor particula encontrada determina o sub-
conjunto de clientes que participard da rodada. Esse mecanismo adaptativo permite ao sistema
favorecer automaticamente os clientes com maior probabilidade de gerar atualizagdes de quali-
dade para o modelo global, promovendo melhorias de desempenho e reduzindo a aleatoriedade
do processo. O processo de sele¢do dinamica de clientes opera através de um mecanismo adap-
tativo baseado em otimizac¢ao por enxame de particulas (PSO) pode ser detalhado nas seguintes

etapas:

1. Identificacao de Clientes Disponiveis: O sistema verifica quais clientes possuem dados
de desempenho recentes armazenados no servidor central. Estes dados correspondem as

métricas de avaliacdo (acurdcia, loss, F1-Score) obtidas nas rodadas anteriores.

2. Verificacao de Viabilidade: Se o nimero de clientes com histérico disponivel for inferior
a um threshold pré-definido (ex: 5 clientes), o algoritmo recorre a uma selecao aleatdria

tradicional como recuo, garantindo que o treinamento nao seja interrompido.

3. Formulacdo do Problema de Otimizacao: Com clientes suficientes, o problema é mo-
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delado como uma tarefa de maximizagao:

k
max Z Si - Xj (6)
i=1

onde s; representa a pontuagdo do cliente i e x; € uma varidvel bindria indicando selecao,

sujeita a restricdo Y x; = k.

4. Representacio das Particulas: Cada particula no enxame PSO é um vetor p = [py, p2, ..., PN|
onde p; € R representa a prioridade de selecdo do cliente i. Valores mais altos indicam

maior aptidao para participagao.

5. Decodificacao das Solugoes: A cada iteracdo, decodifica-se a particula selecionando os
k clientes com os maiores valores no vetor. Esta abordagem € continua, e permite buscas

mais eficiente no espago de solucoes.

6. Funcao de Avaliacao: A qualidade de cada particula é calculada através de uma fungao

objetivo que considera:

k
fp)=Y a-sj+B-dj+y-(1—c)) (7)
j=1
onde s, € o score de desempenho, d; mede a diversidade dos dados, c; representa o custo
computacional, e &, 8, ¥ sdo pesos de ponderagdo. No presente trabalho, estes parimetros
foram inicializados com valores default. Apenas no o que utilizamos com valores de 0,5

e 0,6. Essa estratégia tornou o desempenho do PSO ainda mais eficiente.

7. Processo Iterativo: O PSO executa 500 avaliacdes da funcdo objetivo. Esse nimero esta
relacionado com o equilibrio entre convergéncia e custo computacional, visto que 50 pode
resultar em menor convergéncia, € 5000 em maior consumo de recursos computacionais

[Kennedy e Eberhart 1995]. Assim, o processo mantém:
A ppest: Melhor solucdo encontrada por cada particula
A gpest: Melhor solugdo global do enxame
A Atualizacdo de velocidades e posicOes pelas equacdes classicas do PSO

8. Selecao Final: Apds convergéncia, a particula gpes determina o subconjunto 6timo de

clientes. Os k clientes com maiores valores em gpeg; Sa0 selecionados para a rodada.

Este mecanismo permite que o sistema adapte-se dinamicamente as condi¢des varidveis da
rede, priorizando clientes que oferecem maior potencial de contribui¢do para o modelo global.
A abordagem reduz significativamente a aleatoriedade do processo de selecao enquanto mantém

diversidade suficiente para evitar overfitting e viés de selecao.
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Ao integrar o PSO ao processo de selecdo de clientes a abordagem proposta oferece uma
alternativa eficaz a selecao aleatdria. A estratégia busca formar subconjuntos com maior poten-
cial de contribui¢ao, promovendo melhor convergéncia do modelo, maior acuricia e uso mais

eficiente dos recursos computacionais disponiveis no ambiente federado.
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CAPITULO

Experimentos e Analise dos
Resultados

Com o intuito de avaliar a solu¢do do método proposto, diversos experimentos foram reali-
zados com configuracdes distintas de: quantidade de clientes, nimero de clientes selecionados
por rodada e rodadas de transmissao. Os experimentos foram executados no ambiente de teste
Fabric [Baldin et al. 2019], utilizando uma mdaquina virtual com 32 GB de RAM, 16vCPUs
e uma GPU NVIDIA Quadro RTX 6000. O ambiente de simulacdo foi construido utilizando
Python 3.12.8, PyTorch 2.5.1 com CUDA 12.1 e Flower 1.17.0, e executando no Ubuntu 20.04.6
LTS.

Os experimentos compararam o método proposto com um baseline adotado pelo algoritmo
FedAvg, que realiza a selecdo aleatdria de clientes [McMahan et al. 2017]. A avaliacio de
cada abordagem foi feita por meio de quatro arquiteturas CNNs: SqueezeNet, MobileNet-V2,
ResNet-18 e EfficientNet-BO. Também foi feita uma comparacdo entre o FedAvg e o PSO

dindmico, utilizando a distribui¢ao de dados non-IID.

5.1 Aprendizado Centralizado vs Aprendizado Federado

Como ponto de partida, conduziu-se um estudo comparativo entre as abordagens de Apren-
dizado Centralizado e Federado para avaliar sua eficdcia na classificacdo de dados heterogéneos
e ndo independentemente distribuidos (non-1ID). Utilizou-se o conjunto LC25000, onde na
configuracao centralizada todos os dados foram consolidados em um tnico servidor para trei-
namento e teste do modelo, conforme ilustrado na Figura 5.

A metodologia proposta, detalhada na Figura 5, organiza os dados em duas configuracdes
distintas. Na abordagem centralizada, os dados sdo processados em um tunico servidor, en-
quanto no Aprendizado Federado, dois clientes (C; e C,) realizam treinamentos locais com
distribui¢do non-IID.

A escolha por dois clientes baseia-se na representatividade da heterogeneidade de dominios,

onde cada cliente incorpora um conjunto distinto de imagens (ex.: cancer colorretal vs. pulmo-
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nar). Um outro fator fundamental na decisdo foi o controle experimental, que isola o impacto
da heterogeneidade dos dados sem a complexidade adicional de multiplos clientes. Esta con-
figuracdo desbalanceada torna o processo de agregac@o no servidor particularmente desafiador,
testando a robustez do método em condig¢des adversas. Os gradientes ou parametros dos mode-
los locais sdo agregados periodicamente no servidor central apos cada rodada de comunicagao,

atualizando o modelo global através do algoritmo FedAvg ou similar.
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Figura 5 — Etapas do Primeiro Experimento.

Essas imagens foram divididas em duas classes: normal e cancer. Os dados foram treinados
em cada um desses clientes considerando trés rounds de treinamento. A quantidade de rounds
foi escolhida como ponto de partida para uma convergéncia valida dos modelos treinados. Ao
fim do terceiro round, o servidor global agrega todas as informacdes obtidas pelos clientes e
atualiza o modelo.

O pré-processamento das imagens incluiu redimensionamento para 224 x 224 pixels, for-
mato compativel com a arquitetura SqueezeNet. A configuracdo de treinamento empregou o
otimizador SGD com taxa de aprendizado de 0,001, tamanho de lote de 64 e 30 épocas —
parametros definidos mediante experimentos preliminares que demonstraram estabilidade de
convergéncia nestas condicdes.

A implementacio do Aprendizado Federado foi feita com o algoritmo FedAvg, organizando
os clientes nos grupos C; e C, e utilizando um servidor central para agregacdo. Neste para-
digma, cada cliente treina seu modelo local com dados particulares, enquanto o servidor conso-
lida periodicamente os parametros dos modelos locais para atualizar o modelo global.

Esta arquitetura evidencia contrastes fundamentais entre métodos centralizados e federados
quanto a privacidade, comunicagdo e fluxo de treinamento. O ambiente simulado reproduziu

cendrios realistas de dados distribuidos em multiplos dispositivos, onde a privacidade € preser-
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vada pela reten¢ado local dos dados, ainda que se permita o treinamento colaborativo através de
agregacao segura de parametros.

Na abordagem centralizada, foram conduzidos experimentos abrangendo seis cendrios dis-
tintos de treinamento e teste. Em todos os cendrios, considerou-se a estratégia holdout com
particionamento de 80% dos dados para treinamento e 20% para teste. O primeiro cendrio
utilizou imagens colorretais para treinamento € um conjunto hibrido (colorretal e pulmonar)
para teste. O segundo cendrio inverte esta configuracao, empregando imagens pulmonares para
treinamento e o conjunto hibrido para validagdao. Os cendrios trés e cinco mantém o treina-
mento com dados colorretais, porém diferem nos conjuntos de teste: pulmonar no terceiro e
colorretal no quinto. Similarmente, os cendrios quatro e seis utilizam dados pulmonares para
treinamento, mas variam entre testes colorretais (quarto) e pulmonares (sexto). Todos os expe-
rimentos empregaram a arquitetura SqueezeNet, visto que o intuito era apenas a comparagao

entre a abordagem centralizada e federada. Os resultados estdo sumarizados na Tabela 2.

Tabela 2 — Desempenho de classificagao considerando Aprendizado Centralizado e Federado.

Experimento Treino Teste Acuracia (%) Precisao (%) Recall (%) F1-Score (%)
Célon Coélon + Pulmio 89,86 89,45 89,41 89,43
Pulmao Colon + Pulmao 60,00 30,00 50,00 37,50
. Célon Pulmio 66,67 33,33 50,00 40,00
Centralizado
Pulmio Célon 50,00 25,00 50,00 33,33
Célon Célon 50,55 50,00 25,27 33,58
Pulmao Pulmao 100 100 100 100
: Col idor:
_ Ci: Colon —— Servidor: 99,32 99,28 99,31 99,32
Aprendizado C,: Pulmio Célon + Pulméo
Federad C;: Col Servidor:
ederado. Gz Lolon ervicor 98,43 98,85 97,64 98,21
C,: Pulmao Pulmio
: C6l Servidor:
€1z Colon ervicor 48,40 50,00 24,20 32,61
C,: Pulmio Colon

Os resultados demonstram que a estratégia de Aprendizado Federado emulou eficazmente
um ambiente hospitalar na detec¢cao simultanea de duas patologias distintas. Para fins de classi-
ficacdo, todas as imagens patoldgicas foram agrupadas numa Unica classe denominada cancer,
enquanto as imagens saudaveis constituiram a classe normal.

A Figura 6 ilustra a dinamica temporal da fun¢io de perda e da acurdcia durante o treina-
mento dos clientes C; e C, através de multiplas rodadas. Cada round corresponde a um ciclo
completo de treinamento local, transmissao de parametros ao servidor central, e agregacdo glo-
bal. A convergéncia acelerada para baixos valores de perda e altas taxas de acurdcia em ambos
os clientes indica que os modelos locais se adaptaram adequadamente aos seus respectivos con-
juntos de dados. Esta observacdo sugere que o processo de agregacdo no Aprendizado Federado
combina eficientemente as contribuicdes dos clientes, produzindo modelos com boa capacidade

de generalizacao.
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Figura 6 — Evolugdo dos valores de loss e acuricia ao longo dos rounds de treinamento de Cj
(imagens de pulmdo — esquerda) e C, (imagens de colon — direita).

A acurdcia de treinamento atingiu valores proximos a unidade (100%) apos poucas épocas
em todas as rodadas, demonstrando a capacidade do modelo em adaptar-se rapidamente aos
dados locais de cada cliente enquanto mantém desempenho consistente. A estabilizacdo das
curvas de perda e acurdcia nas rodadas subsequentes (2 e 3) indica que, apds uma rodada inicial
de treinamento bem-sucedida, atualizacdes adicionais ndo produzem alteracOes significativas
no desempenho do modelo, sugerindo que o modelo ja atingiu uma configuracdo otimizada
para os dados locais.

Foram considerados trés cendrios de classificacao adicional: no primeiro, o servidor central
possui acesso a imagens colorretais e pulmonares; no segundo, apenas imagens colorretais; e
no terceiro, exclusivamente imagens pulmonares. Este tltimo cendrio apresentou os resultados
mais modestos do estudo, indicando que o modelo ndo assimilou adequadamente as informa-
cOes necessdrias para generalizar entre as classes pulmonar e colorretal.

O primeiro cendrio destacou-se como o mais desafiador e melhor desempenho, tendo sido
treinado com dados distribuidos entre clientes diferentes e testado com amostras aleatérias de
ambos os conjuntos. A abordagem superou as dificuldades inerentes aos dados non-IID, alcan-
cando acurécia de 99,32% e recall de 99,31% para detecgdes positivas de cancer.

Na abordagem centralizada, observou-se que modelos treinados com um tipo especifico

de céncer (ex: colorretal) e testados com outro tipo (ex: pulmonar) apresentam desempenho
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substancialmente reduzido, com métricas de acuricia e precisdo significativamente menores,
além de tempo médio de 14 minutos. Esta limitagdo decorre das diferencas histopatoldgicas
marcantes entre os tipos cancerigenos, que impedem a transferéncia eficaz do conhecimento
entre dominios morfoldgicos distintos.

Em contraste, o desempenho melhora consideravelmente quando o treinamento e teste ocor-
rem no mesmo tipo cancerigeno, particularmente no cancer pulmonar, onde se atingiu acuracia
de 100%. Este resultado sugere que as imagens pulmonares do conjunto de dados exibem maior
homogeneidade ou caracteristicas visuais mais distintivas, facilitando o processo de classifica-
cao.

O experimento de treinar com imagens colorretais e testar com pulmonares representa um
cendrio relevante, pois investiga a capacidade do modelo em capturar caracteristicas oncogé-
nicas transversais a diferentes tipos cancerigenos. Contudo, os resultados obtidos (precisdo
préoxima a 50%) confirmam que estas caracteristicas gerais nao sao discriminativas para permi-
tir generalizacdo eficaz entre dominios morfoldgicos distintos.

No cendrio federado, os testes com ambos os tipos de cancer (c6lon e pulmao) resultaram
em valores de precisdo, acurdcia, recall e F1-Score proximos a 99%. Este desempenho pode
ser atribuido a combinagdo de dados que favorece a generalizacdo para ambos os tipos canceri-
genos no conjunto de teste. A capacidade do Aprendizado Federado de agregar conhecimento
proveniente de diferentes clientes produz um modelo mais robusto quando aplicado a conjuntos
de teste diversificados. Estes resultados evidenciam as vantagens da integracao de dados de fon-
tes diversas — neste caso, diferentes tipos de cancer — e da utilizacdo do Aprendizado Federado
para treinamento do modelo, possibilitando melhor generalizagdo em comparacdo a ambientes
centralizados.

O Aprendizado Federado mostrou vantagem em cendrios com conjuntos de dados heteroge-
neos. Esta abordagem possibilita que o modelo global agregue informagdes de multiplas fontes
de dados, resultando em um modelo mais adaptdvel. Em contrapartida, o aprendizado centra-
lizado, que treina 0 modelo em apenas um tipo de dado, ndo captura a diversidade inerente a
conjuntos heterogéneos, limitando sua capacidade de generalizag@o.

O aprendizado centralizado também apresenta desempenho reduzido quando testado em
dominios diferentes dos utilizados no treinamento. Por exemplo, nesses experimentos, o modelo
centralizado treinado com dados de cancer colorretal teve desempenho inferior quando testado
com dados de cancer pulmonar. Em comparagdo, o Aprendizado Federado mostrou eficicia
na generalizacdo de dados diversos, atingindo valores elevados de precisdo, recall e F1-Score,
mesmo execucdes de tempo maiores do que o centralizado (cerca de 10 horas). Além disso, o
Aprendizado Federado oferece beneficios de privacidade, mantendo os dados nos dispositivos
dos clientes e transmitindo apenas atualizacdes do modelo para o servidor. Esta caracteristica
impede o compartilhamento direto de dados brutos com o servidor, reforcando a seguranca e

protecdo dos dados.
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5.2 PSO vs FedAvg

Visto que a comparagdo anterior entre aprendizado centralizado e federado validou o uso
do paradigma federado para cendrios heterogéneos, esta se¢cdo avanga para a otimizagdo do
processo através da selecao inteligente de clientes. O propdsito dessa abordagem foi avaliar a
selecdo dos melhores clientes num cendrio desafiador de dados non-IID.

Nesta configuragao, o baseline de desempenho foi desenvolvido com uma selecao aleatéria
de clientes no aprendizado federado. O algoritmo FedAvg foi utilizado na estratégia de agrega-
¢do da atualiza¢do de modelos dos clientes selecionados. Além disso, na selecao aleatéria, um
numero fixo e aleatério de clientes foi escolhido a cada rodada sem considerar o desempenho e
a qualidade dos dados, e com nenhuma estratégica de otimizagao.

Os conjuntos de dados foram combinados de forma global em um tnico conjunto por meio
do aprendizado federado. Os dados foram distribuidos de forma non-IID, ou seja, ndo ha dis-
tincdo das contribui¢cdes individuais dos conjuntos de dados, tanto no treinamento quanto na
avaliagdo.

A Tabela 3 compara as configuragdes de melhor desempenho obtidas com PSO contra a se-
lecdo aleatdria padrao. Os resultados mostram que a estratégia PSO supera de forma consistente
a abordagem aleatdria em todas as configuracdes testadas, com diferencas mais significativas
nos cendrios de 50 a 100 clientes, onde se observa uma vantagem de 2,7% a 2,8% no F1-Score.
A andlise da Figura 7 revela que o desempenho do modelo tende a se estabilizar apds aproxima-
damente 30 rodadas de comunicagdo, com a abordagem PSO mantendo uma vantagem estdvel
desde as rodadas iniciais. Essa diferenca é notdvel nas primeiras 10 a 20 rodadas e varia de
acordo com a escala do modelo, sendo mais notdvel em configuracdes com 50 a 100 clientes,

onde a selecdo adaptativa mostra seu maior impacto.
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Tabela 3 — Comparacao entre as configuracdes de melhor desempenho usando PSO e FedAvg.

Abordagem Clientes Selecionados Rodadas Acuracia (%) Recall (%) Precisdao (%) F1-Score (%)

PSO 10 2 3 99,00 99,00 99,00 99,00
FedAvg 10 2 3 98,01 98,00 97,85 97,92
PSO 30 2 10 98,57 99,84 98,79 98,51
FedAvg 30 2 10 97,97 97,88 97,89 97,89
PSO 50 5 10 98,50 99,71 98,69 98,43
FedAvg 50 5 10 95,84 95,35 96,25 95,72
PSO 100 10 30 98,24 98,63 98,19 98,17
FedAvg 100 10 30 96,00 96,00 95,00 96,00
PSO 500 30 50 97,09 97,49 96,05 96,97
FedAvg 500 30 50 96,70 96,53 96,60 96,57

A Tabela 3 apresenta os resultados dos experimentos realizados. Conforme ilustrado na
Figura 8, o método PSO demonstra convergéncia mais eficiente que o FedAvg, com incre-
mentos progressivos no F1-Score a cada round adicional de comunicagdo, particularmente em
ambientes com grande nimero de clientes. Esse comportamento indica menor sensibilidade a
heterogeneidade dos dados e atualizacdes mais eficazes do modelo global quando comparado a
selecdo aleatoria tradicional.

Observa-se que o desempenho do aprendizado federado segue uma relagdo ndo-linear com
a quantidade de clientes e rounds. Configuracdes com poucos clientes atingem bons resultados
com numero reduzido de rounds, enquanto cendrios mais complexos demandam maior quanti-

dade de clientes para compensar os efeitos da heterogeneidade.
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Figura 8 — Visualiza¢ao 3D do F1-Score em func¢do do nimero de clientes e rounds de comuni-
cacdo.

A Figura 9 detalha o processo de selecao nos experimentos de melhor desempenho, pontos

azuis, representando clientes disponiveis; cruzes vermelhas, melhores sele¢cdes do PSO.
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Figura 9 — Processo de selegdo de clientes nos experimentos com PSO (Clientes Totais/Seleci-

onados).

A arquitetura SqueezeNet mostrou-se particularmente eficaz, alcancando convergéncia es-

tavel mesmo com apenas 10 clientes e poucos rounds. Essa caracteristica revela baixa depen-

déncia de ajustes de hiperparametros em cendrios homogéneos. Contudo, conforme aumenta o

numero de clientes (30, 50, 100), observa-se maior variabilidade nos resultados iniciais, prin-

cipalmente quando poucos clientes sdo selecionados, evidenciando os desafios impostos pela

heterogeneidade crescente.

O PSO supera a abordagem aleatdria ao identificar sistematicamente os clientes cujos gra-

dientes contribuem mais significativamente para o modelo global. Como demonstrado na Fi-

gura 10, essa estratégia proporciona melhor exploragdo do espaco de solucdes e reducdo da

variabilidade entre clientes, com base no F1-Score obtido para diferentes combinagdes de: total

de clientes, clientes selecionados e quantidade de rounds.
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Figura 10 — Comparagdo das abordagens avaliadas.

5.3 PSO dinamico vs FedAvg

Para elevar o nivel dos experimentos e tornd-los ainda mais desafiadores e proximos de
cendrios reais, optou-se por uma abordagem de selecdo dinamica de clientes utilizando PSO,
comparando seu desempenho com o FedAvg como linha de base. Diferentemente do PSO con-
vencional, que opera com parametros estaticos, a versao dinamica proposta adapta-se continua-
mente as condicdes do ambiente federado e heterogéneo, ajustando automaticamente a selecao
de clientes com base em seu desempenho histérico e contribuicao para o modelo global.

Esta comparagdo direta com o FedAvg justifica-se pela necessidade de avaliar ndo apenas a
eficdcia da selecdo inteligente frente a aleatoriedade, mas também a capacidade de adaptacao
em ambientes heterogéneos em constante mudanga. Enquanto o FedAvg mantém uma selecao
aleatoria fixa, o PSO dinamico redefine estrategicamente o subconjunto de clientes a cada ro-
dada, priorizando aqueles com maior potencial de contribuicdo para a convergéncia do modelo.
A Tabela 4 mostra que tanto o nimero total de clientes quanto a forma como sao selecionados
impactam diretamente o desempenho do modelo.

A relacdo entre o nimero de clientes e a quantidade de rounds foi escolhida com base em pa-
rametros consolidados na literatura para balancear custo computacional e eficicia [McMahan et
al. 2017]. No presente trabalho, notou-se que em alguns casos uma quantidade baixa de rounds
em funcdo de muitos clientes resultava em baixa convergéncia. Assim, em casos como: 100 cli-
entes totais, 5 selecionados e 3 rounds, foram realizados outros experimentos com quantidades
maiores de rounds na busca de melhores convergéncias.

Com o uso da SqueezeNet, observa-se que o PSO obtém melhores resultados em cendrios
com menor ndmero de clientes selecionados e maior espaco de busca, ja que a estratégia de
otimizagdo permite priorizar os clientes mais relevantes. Por outro lado, o FedAvg tende a al-

cancar melhores acurdcias quando mais clientes sdo selecionados por rodada, pois isso aumenta
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a chance de agregar contribui¢des estatisticamente significativas, o que estd de acordo com sua

abordagem de agregacao.

Tabela 4 — Resultado comparativo das acurdcias do PSO e FedAvg (Baseline) com a Squeeze-
Net.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferenca (%)

20 5 3 97,36 98,09 -0,73
30 3 5 97,77 98,03 -0,26
30 5 10 98,20 98,32 -0,12
50 5 3 96,70 94,79 +1,91
50 10 5 96,04 97,38 -1,34
100 5 3 92,36 92,23 +0,13
100 5 10 96,35 94,88 +1,47

De acordo com os dados da Tabela 5, o0 PSO demonstrou desempenho superior ao FedAvg na
maioria dos cendrios analisados. A MobileNet, por ter uma arquitetura mais leve e com menos
parametros, mostra-se mais sensivel a selecdo dos dados, o que favorece a abordagem do PSO
ao priorizar clientes com informag¢des mais relevantes. Nos poucos casos em que o FedAvg teve
desempenho melhor, é possivel que a escolha aleatdria de clientes tenha incluido, por acaso,
dados com alto valor informativo, o que pode ser explicado pela variabilidade elevada entre os

conjuntos locais.

Tabela 5 — Resultado comparativo das acurédcias do PSO e FedAvg (Baseline) com a MobileNet.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferenca (%)

20 5 3 96,46 96,41 +0,05
30 3 5 96,54 96,15 +0,39
30 5 10 97,38 88,71 +8,67
50 5 3 91,54 96,97 -5,43
50 10 5 94,57 94,12 +0,45
100 5 3 75,14 71,86 +3,28
100 5 10 92,99 94,51 -1,52

Entre as redes avaliadas, a ResNet destacou-se pela estabilidade e desempenho consistente,
como visto na Tabela 6. Sua profundidade e capacidade de extracdo de caracteristicas conferem
maior robustez frente a variabilidade dos dados entre os clientes. Por conta disso, as diferencas
entre o desempenho do PSO e do FedAvg se tornam menos evidentes, com ambos os métodos
apresentando resultados similares em grande parte dos experimentos.

No caso da EfficientNet, a abordagem tradicional com FedAvg obteve melhores resultados
em diversos cendrios (ver Tabela 7). Isso pode ser atribuido a alta capacidade de generalizacao
da CNN, que se beneficia da diversidade de dados promovida pela selecdo aleatéria de clientes.
Em contraste, o PSO tende a selecionar repetidamente os mesmos clientes com desempenho

elevado, o que pode reduzir a variedade de padrdes apresentados ao modelo — especialmente
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Tabela 6 — Resultado comparativo das acuracias do PSO e FedAvg (Baseline) com a ResNet.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferenca (%)

20 5 3 97,93 97,85 +0,08
30 3 5 98,20 97,68 +0,52
30 5 10 98,48 98,52 -0,04
50 5 3 96,39 96,74 -0,35
50 10 5 96,99 97,21 -0,22
100 5 3 93,65 91,68 +1,97
100 5 10 97,44 96,76 +0,68

aqueles menos frequentes, mas relevantes. Assim, para arquiteturas como o EfficientNet, man-

ter uma rotacdo diversificada de clientes parece ser mais vantajoso.

Tabela 7 — Resultado comparativo das acurdcias do PSO e FedAvg (Baseline) com a Efficient-
Net.

Total de Clientes Clientes Selecionados Rounds PSO (%) Baseline (%) Diferenca (%)

20 5 3 97,01 96,60 +0,41
30 3 5 96,97 96,80 +0,17
30 5 10 97,42 97,62 -0,20
50 5 3 94,59 93,34 +1,25
50 10 5 93,93 95,96 -2,03
100 5 3 77,17 79,37 -2,20
100 5 10 93,07 94,75 -1,68

A Figura 11 mostra que a SqueezeNet tem resultados melhores com o PSO dindmico, prin-
cipalmente em cendrios com sele¢do limitada de clientes. A ResNet apresenta desempenho
estdvel em ambas as abordagens, sugerindo baixa sensibilidade ao método de selecdo. Por
outro lado, a EfficientNet apresenta melhor desempenho com o FedAvg, devido a sua forte
generaliza¢do com diferentes dados de treinamento.

A Figura 12 apresenta os clientes selecionados pelo PSO na rodada 10, avaliados mediante
as métricas de acuracia e F1-Score em diferentes arquiteturas CNNs. A SqueezeNet destacou-se
pela selecdo criteriosa de clientes com elevado desempenho local, maximizando sua contribui-
¢do para o modelo global em ambientes heterogéneos. Embora a MobileNet também tenha
se beneficiado da selecdo direcionada, a menor variacdo observada em suas pontuacdes sugere
certa limitacdo na diversidade de contribuicdes. A ResNet apresentou comportamento homo-
géneo, com clientes selecionados e ndo selecionados obtendo desempenhos comparaveis. J4 na
EfficientNet, o PSO priorizou clientes de desempenho relativamente inferior em detrimento de
opg¢oes mais qualificadas disponiveis, o que pode impactar na variedade de padrdes incorpora-

dos ao modelo global.
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Figura 12 — Selecdo de Clientes de acordo com cada CNN.

Para avaliar a eficiéncia do método PSO na selecao de clientes, comparamos seus resultados

com a abordagem tradicional FedAvg através da diferenca percentual de acuricia. Esta métrica
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calcula, para cada cendrio testado, o quanto o PSO superou ou ficou abaixo do FedAvg em ter-
mos de acuracia. Valores positivos mostram superioridade do PSO, enquanto negativos indicam
melhor desempenho do FedAvg. Na Figura 13, visualizamos essas comparacdes para todas as
CNN s analisadas, onde cada marca representa o desempenho relativo considerando diferentes

combinacdes de clientes totais, clientes selecionados e rounds de treinamento.
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Figura 13 — Acudcia Delta de acordo com a CNN.

Os experimentos demonstram que a MobileNet foi a arquitetura que mais se beneficiou da
selecdo por PSO dinamico, alcancando melhorias superiores a 8% em cendrios intermedidrios.
Contrastando estes resultados, a ResNet manteve estabilidade nas comparagdes, com ligeira
preferéncia pelo PSO em configura¢des mais complexas. A EfficientNet exibiu variagdes nota-
veis, com desempenho inferior do PSO em ambientes com elevado nimero de clientes. Quanto
a SqueezeNet, os resultados foram heterogéneos, o PSO mostrou-se mais eficaz em configura-
¢oes expandidas, enquanto o FedAvg obteve melhor desempenho em cendrios reduzidos. Estas
observacdes sugerem que a selecdo dinamica de clientes atinge seu potencial mdximo em mo-
delos compactos operando em ambientes com heterogeneidade controlada e nimero moderado
de rodadas de atualizag@o.

A Figura 14 apresenta uma andlise comparativa do desempenho das estratégias em diferen-
tes cendrios operacionais. O grafico demonstra a relacdo entre trés parametros fundamentais:
tempo de processamento (eixo X), escala de participacdo dos clientes (eixo Y) e desempe-
nho obtido (eixo Z), onde cada marcador corresponde a uma configuracdo especifica de trei-
namento. Os resultados do PSO (representados por marcadores circulares vermelhos) revelam

superioridade em cendrios com recursos limitados, enquanto a abordagem Baseline (indicada
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por tridngulos azuis) mantém padrdes de comportamento previsiveis que se fortalecem propor-
cionalmente ao aumento da base de clientes participantes.
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Figura 14 — Relagdo entre a Acuracia, Tempo de Execucdo e Total de Clientes.

Os experimentos realizados demonstram que a estratégia de selecdo dinamica baseada em
PSO influencia positivamente no desempenho dos modelos, com ganhos mais expressivos em
arquiteturas compactas e em cendrios de participacao restrita. Além disso, os tempos de execu-
¢do do PSO e do FedAvg, que foram de aproximadamente 36 minutos, sdo muito préximos para
configuracdes equivalentes. Isso indica que o PSO praticamente ndo adiciona custo computaci-
onal significativo em relagio ao treinamento federado em si.

A metodologia propicia ganhos de acurdcia em ambientes non-IID ao direcionar a sele¢do
para os clientes mais relevantes, preservando o mecanismo de agregacdo. Entretanto, esse be-
neficio € diretamente influenciado pela arquitetura CNN empregada, em virtude de retornos

decrescentes em modelos generalistas submetidos a selecdes aleatdrias. Essas evidéncias re-
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forcam a necessidade de adequar as estratégias de selecdao de clientes as particularidades do

modelo e as condi¢des operacionais do sistema.
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CAPITULO

Conclusao

O presente trabalho atingiu seus objetivos ao propor e validar um método de Aprendizado
Federado para classificacdo de diferentes tipos de cancer, integrando técnicas de otimizacao
por enxame de particulas (PSO) para selecdo inteligente de clientes. A pesquisa demonstrou
concretamente como cada objetivo especifico foi alcangado.

Inicialmente, a comparacdo sistemética entre paradigmas de aprendizado centralizado e fe-
derado permitiu quantificar as vantagens e limitagcdes de cada abordagem em cendrios médi-
cos realistas. Posteriormente, a implementacdo do mecanismo de selecdo dinamica com PSO
evidenciou ganhos significativos de eficiéncia e desempenho em relacdo as estratégias tradici-
onais de selecdo aleatdria. Por fim, a validagcdo em ambientes intencionalmente heterogéneos
(non-IID) confirmou a robustez da abordagem proposta sob condi¢des adversas, aproximando-a
de aplicagdes clinicas reais.

Diante dos resultados apresentados, o trabalho demonstra a viabilidade da aplicacdo de
Aprendizado Federado combinado com PSO para classificacdo de imagens médicas em ce-
ndrios realistas. Os experimentos realizados avaliaram de forma comparativa as abordagens
FedAvg, PSO estatico e PSO dinamico na classificacao de diferentes tipos de cancer, mantendo
o foco na preservacdo da privacidade dos dados sensiveis. A utiliza¢do intencional de distri-
bui¢des non-IID nos conjuntos de imagens aproximou o estudo a cendrios reais de aplicacao
clinica, onde a heterogeneidade de dados € notdria, validando a robustez do método proposto

em condi¢Oes adversas.

6.1 Principais Contribuicoes

As principais contribui¢des deste trabalho podem ser resumidas em trés aspectos fundamen-

tais:

1. Método de Selecao Dinamica: adocdo de um mecanismo adaptativo baseado em PSO

para selecdo inteligente de clientes em ambientes federados, capaz de identificar e priori-
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zar automaticamente os participantes com maior potencial de contribuicao para o modelo

global;

2. Validacao em Cenarios Realistas: demonstragdo da eficicia do método em condi¢des
de heterogeneidade extrema (non-IID), com dados distribuidos de forma nao balanceada

entre clientes, simulando desafios reais de aplicacdes médicas distribuidas;

3. Preservacao de Privacidade com Eficiéncia: combinag¢do bem-sucedida dos beneficios
de privacidade do Aprendizado Federado com a eficiéncia computacional do PSO, redu-

zindo o custo de comunicagdo enquanto mantém ou melhora o desempenho do modelo.

Os resultados obtidos mostram que a abordagem proposta em muitos casos supera o desem-
penho de métodos tradicionais como FedAvg, principalmente em cendrios complexos com alta
variabilidade de dados. A capacidade do método de generalizar para diferentes tipos de cancer
sugere seu potencial como ferramenta de apoio aos especialistas médicos na detec¢do precoce

e classificagcdo de cancer.

6.2 Trabalhos Futuros

Com base nas limitac¢des identificadas e nos resultados promissores obtidos, sugere-se as

seguintes direcdes para trabalhos futuros:

(d Extensdo para Arquiteturas Complexas: investigacdo do método proposto em con-
junto com arquiteturas mais complexas como EfficientNet e Vision Transformers, e com-
parando o PSO com algoritmos bioinspirados avaliando sua capacidade de generalizacio

em cendrios de ainda maior heterogeneidade;

1 Otimizacao de Hiperparametros: desenvolvimento de estratégias adaptativas para ajuste
automadtico dos parametros do PSO durante o processo de treinamento, melhorando ainda

mais a eficiéncia da selecdo de clientes;

(1 Expansao de Dominios Médicos: aplicacdo da metodologia a outros dominios médicos
além da oncologia, como cardiologia, neurologia e radiologia, validando sua utilidade em

diferentes contextos de diagndstico por imagem:;

(d Validacao Clinica Real: testes em ambientes clinicos reais com fluxos de trabalho ope-
racionais, avaliando ndo apenas a acurdcia técnica mas também a usabilidade e integrabi-

lidade com sistemas existentes.

Estas direcdes de pesquisa t€m o potencial de expandir significativamente o impacto do
presente trabalho, contribuindo para o avanco tanto da drea de Aprendizado Federado quanto

para a melhoria de ferramentas de apoio ao diagndstico médico baseado em imagem.
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6.3 Contribuicoes em Producao Bibliografica

(1 Rodrigues et al. 2025: “Medical Image Classification with Privacy: Centralized and Fe-
derated Learning Comparison.” Revista de Informdtica Teorica e Aplicada 32.1 (2025):
180-187.

Neste artigo, sdo apresentados os resultados da comparag¢do entre o Aprendizado Federado e
o Aprendizado Centralizado na classificagao de cancer utilizando o conjunto de dados LC25000

tendo a SqueezeNet como CNN avaliada.

(1 Rodrigues et al. 2025 “PSO-based Client Selection to Improve Medical Image Classifi-

cation in Federated Learning.” Revista de Informdtica Teorica e Aplicada (aceito).

Neste trabalho s@o mostrados os resultados da comparagdo entre a selecao de clientes usando
PSO e o algoritmo FedAvg avaliando dois conjuntos de dados LC25000 e ALL-IDB. Nesta

configuracio, foi utilizada a SqueezeNet.

(1 Rodrigues et al. 2025 “Dynamic Client Selection in Federated Learning using Particle

Swarm Optimization for Medical Image Classification.” Cluster Computing (em revisao).

Por fim, este trabalho utilizou trés conjuntos de dados: LC25000, ALL-IDB e Biglycan com-
parando a selecdo dindmica de clientes com PSO com o FedAvg. Foram utilizadas as seguintes
CNNs: ResNet, MobileNet, SqueezeNet e EfficientNet.
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