
UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Maria Luísa Gabriel Domingues

Algoritmos para as principais variantes do

problema de escalonamento de tarefas

Uberlândia, Brasil

2025

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Maria Luísa Gabriel Domingues

Algoritmos para as principais variantes do problema de

escalonamento de tarefas

Trabalho de conclusão de curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, como parte dos requi-
sitos exigidos para a obtenção título de Ba-
charel em Ciência da Computação.

Orientador: Paulo Henrique Ribeiro Gabriel

Universidade Federal de Uberlândia – UFU

Faculdade de Computação

Bacharelado em Ciência da Computação

Uberlândia, Brasil

2025

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Faculdade de Computação

Av. João Naves de Ávila, nº 2121, Bloco 1A - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902
Telefone: (34) 3239-4144 - http://www.portal.facom.ufu.br/ facom@ufu.br

ATA DE DEFESA - GRADUAÇÃO

Curso de
Graduação em: Bacharelado em Ciência da Computação
Defesa de: GBC082 - Projeto de Graduação
Data: 26/09/2025 Hora de início: 17:00 Hora de

encerramento: 18:30
Matrícula do
Discente: 12121BCC010
Nome do
Discente: Maria Luísa Gabriel Domingues
Título do
Trabalho: Algoritmos para as principais variantes do problema de escalonamento de tarefas

A carga horária curricular foi cumprida integralmente? (X) Sim () Não

Reuniu-se remotamente por meio da plataforma MS Teams, da Universidade Federal de Uberlândia, a
Banca Examinadora, designada pelo Colegiado do Curso de Graduação em Ciência da Computação, assim
composta: Professores: Dr. Bruno Augusto Nassif Travencolo - FACOM/UFU; Dra. Márcia Aparecida
Fernandes - FACOM/UFU; e Dr. Paulo Henrique Ribeiro Gabriel - FACOM/UFU, orientador da candidata.
Iniciando os trabalhos, o presidente da mesa, Dr. Paulo Henrique Ribeiro Gabriel, apresentou a Comissão
Examinadora e a candidata, agradeceu a presença do público, e concedeu à discente a palavra, para a
exposição do seu trabalho. A duração da apresentação do discente e o tempo de arguição e resposta foram
conforme as normas do curso.
A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que
passaram a arguir a candidata. Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a
Banca, em sessão secreta, atribuiu o resultado final, considerando a candidata:

(X) Aprovada Nota [95] (Somente números inteiros)

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e
achada conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por Paulo Henrique Ribeiro Gabriel, Professor(a) do
Magistério Superior, em 26/09/2025, às 18:28, conforme horário oficial de Brasília, com fundamento
no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Bruno Augusto Nassif Travençolo, Professor(a) do
Magistério Superior, em 26/09/2025, às 18:28, conforme horário oficial de Brasília, com fundamento
no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Márcia Aparecida Fernandes, Professor(a) do Magistério
Superior, em 26/09/2025, às 18:29, conforme horário oficial de Brasília, com fundamento no art. 6º, §
1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 6716192 e o
código CRC 4B9C7604.

Referência: Processo nº 23117.067597/2025-27 SEI nº 6716192

Agradecimentos

Agradeço a Deus, acima de tudo, por ser meu amparo, força e fonte de amor

incondicional em todos os momentos de minha vida.

À minha família, que me forneceu todo o apoio e carinho em todos os caminhos

que tomei em minha vida, e aos meus amigos, que estiveram sempre ao meu lado nos

momentos bons e ruins.

Aos meus professores, que me orientaram durante a minha vida acadêmica e me

mostraram a alegria que é ser uma pessoa sedenta por conhecimento.

—

Resumo

O problema de escalonamento de tarefas é um dos vários problemas de otimização da

computação que pertencem à Classe NP-Completo, evidenciando a alta complexidade na

obtenção de soluções exatas, e abrindo espaço para a produção de algoritmos aproxi-

mados. Com o estudo de muitos pesquisadores do ramo no decorrer das décadas, vários

algoritmos aproximados foram projetados para obter soluções próximas da solução ótima

em tempo hábil para várias instâncias do problema, respeitando uma gama de restri-

ções atreladas a cada uma delas, buscando torná-las úteis para aplicação em ambientes

reais. Neste trabalho, abordamos as cinco variantes mais conhecidas do problema de es-

calonamento: escalonamento de tarefas em uma única máquina, multiprocessamento para

máquinas idênticas com memória compartilhada ou distribuída, e multiprocessamento

para máquinas não-idênticas com memória compartilhada ou distribuída. Para cada uma

dessas variantes, então, é descrito o sistema em que elas se inserem e as restrições e custos

que elas consideram, além de ser apresentado alguns algoritmos aproximados, analisando

a estratégia, complexidade e razão de aproximação de cada um deles. Por fim, é esperado

que essa exposição extensa de várias estratégias de aproximação para vários contextos de

escalonamento contribua para a sistematização do conhecimento de algoritmos aproxima-

dos para esse problema e sirva de base para outras pesquisas.

Palavras-chave: Escalonamento de tarefas; Algoritmos de aproximação; Heurísticas; Ta-

refas independentes; DAG.

Abstract

The task scheduling problem is one of several computing optimization problems that

belong to the NP-Complete class, highlighting the high complexity of obtaining exact

solutions and paving the way for the development of approximate algorithms. Through

the study of many researchers in the field over the decades, several approximate algo-

rithms have been designed to obtain solutions close to the optimal solution promptly for

various instances of the problem, respecting a range of constraints associated with each

one, aiming to make them useful for application in real environments. In this work, we

address the five best-known variants of the scheduling problem: task scheduling on a single

machine, multiprocessing for identical machines with shared or distributed memory, and

multiprocessing for non-identical machines with shared or distributed memory. For each of

these variants, we describe the system in which they are inserted and the constraints and

costs they consider. We also present some approximate algorithms, analyzing the strategy,

complexity, and approximation ratio of each of them. Finally, this extensive exposition

of several approximation strategies for various scheduling contexts will contribute to the

systematization of knowledge of approximate algorithms for this problem and serve as a

basis for further research.

Keywords: Task scheduling; Approximation algorithms; Heuristics; Independent tasks;

DAG.

Lista de ilustrações

Figura 1 – Representação Visual de duas soluções possíveis para o problema de

Escalonamento . 19

Figura 2 – Execução do EDD . 24

Figura 3 – DAG do exemplo de LS . 27

Figura 4 – Execução de LS . 27

Figura 5 – Execução de LPT . 28

Figura 6 – Execução do MULTIFIT . 32

Figura 7 – Grafo acíclico direcionado de Precedência P (V, A) e seu grafo de in-

comparabilidade G(V, E) . 34

Figura 8 – Visualização da ordem intervalar dada pelo grafo intervalar G(V, E) . . 34

Figura 9 – Execução do List Scheduling para ordens intervalares 35

Figura 10 – DAG de precedência MCP . 37

Figura 11 – DAG de precedência do exemplo de aplicação do MCP 39

Figura 12 – Exemplo de aplicação do MCP . 39

Figura 13 – DAG de precedência entre tarefas do exemplo do ETF 41

Figura 14 – Aplicação do exemplo do ETF . 42

Figura 15 – Ilustração do exemplo do ETF . 42

Figura 16 – Clãs . 43

Figura 17 – Clã Independente . 43

Figura 18 – Clã Linear . 44

Figura 19 – Clã Primitivo . 44

Figura 20 – DAG de precedência do exemplo de aplicação do CLANS 46

Figura 21 – Árvore hierárquica do exemplo de aplicação do CLANS 47

Figura 22 – Escalonamento CLANS . 47

Figura 23 – Escalonamento A-Scheduling . 49

Figura 24 – Escalonamento B-Scheduling . 51

Figura 25 – Escalonamento C-Scheduling . 52

Figura 26 – Escalonamento D-Scheduling . 53

Figura 27 – Escalonamento E-Scheduling . 55

Figura 28 – Escalonamento F-Scheduling . 56

Figura 29 – DAG de precedência do exemplo de aplicação do HEFT 60

Figura 30 – Aplicação do HEFT no exemplo . 61

Figura 31 – DAG de precedência do exemplo de aplicação do CPOP 63

Figura 32 – Aplicação do CPOP no exemplo . 64

Lista de tabelas

Tabela 1 – Dados sobre as tarefas do exemplo de EDD 23

Tabela 2 – Dados sobre as tarefas do exemplo de LS 26

Tabela 3 – Dados sobre as tarefas do exemplo de LPT 28

Tabela 4 – Dados sobre as tarefas do exemplo de MULTIFIT 31

Tabela 5 – Dados sobre as tarefas do exemplo de List Scheduling para ordens in-

tervalares . 35

Tabela 6 – Dados sobre as tarefas do exemplo do Algoritmo MCP 38

Tabela 7 – Dados sobre as tarefas do exemplo do Algoritmo ETF 41

Tabela 8 – Dados sobre as tarefas do exemplo do CLANS 46

Tabela 9 – Dados sobre as tarefas do exemplo do A-Scheduling 49

Tabela 10 – Dados sobre as tarefas do exemplo do B-Scheduling 50

Tabela 11 – Dados sobre as tarefas do exemplo do C-Scheduling 52

Tabela 12 – Dados sobre as tarefas do exemplo do D-Scheduling 53

Tabela 13 – Dados sobre as tarefas do exemplo do E-Scheduling 54

Tabela 14 – Dados sobre as tarefas do exemplo do F-Scheduling 56

Tabela 15 – Dados sobre as tarefas do exemplo do HEFT 60

Tabela 16 – Dados sobre as tarefas do exemplo do CPOP 63

Tabela 17 – Algoritmos aproximados para escalonamento em uma única máquina . 64

Tabela 18 – Algoritmos aproximados para escalonamento paralelo em máquinas

idênticas . 65

Tabela 19 – Algoritmos aproximados para escalonamento paralelo em máquinas não

idênticas . 65

Lista de abreviaturas e siglas

EDD Earliest Due Date rule

DAG Grafo Acíclico Direcionado

CP Caminho Crítico de um DAG de precedência de tarefas

LS List Scheduling

LPT Longest Processing Time First Scheduling

SPT Shortest Processing Time First Scheduling

FFD First Fit Decreasing

MCP Modified Critical Path

ETF Earliest Task First Scheduling

Lista de símbolos

T Conjunto de tarefas

K Subconjunto do conjunto de tarefas. K ⊂ T

E Conjunto de tarefas já escalonadas

P Conjunto de máquinas

I Conjunto de máquinas livres para escalonamento. I ⊂ P

m Número de máquinas

n Número de tarefas

Ti i-ésima tarefa de T , onde 1 ≤ i ≤ n

Tentrada Tarefa de entrada do DAG (Grafo Acíclico Direcionado) de precedência.

É uma tarefa que não possui nenhuma tarefa que a precede

Tsaida Tarefa de saída do DAG (Grafo Acíclico Direcionado) de precedência.

É uma tarefa que não precede nenhuma outra tarefa

Pj j-ésima máquina de P , onde 1 ≤ j ≤ m

p(Ti) Máquina onde a tarefa Ti se encontra escalonada

L Lista de escalonamento

Lj Lista de escalonamento com as tarefas escalonadas para a máquina Pj.

Lj ⊂ L

ri Tempo inicial da janela de execução de uma tarefa Ti

rmin Menor ri dentre todas as tarefas do sistema

di Tempo final da janela de execução de uma tarefa Ti

dmax Maior di dentre todas as tarefas do sistema

ei Tempo em que Ti foi escalonada

Ci Tempo em que Ti finaliza sua execução

µ Tempo de execução geral, para sistemas onde o custo de execução de

toda tarefa é o mesmo

µ(Ti) Tempo de execução da tarefa Ti, para problemas que envolvem pro-

cessamento em uma única máquina ou em paralelismo com máquinas

idênticas

µj(Ti) Tempo de execução da tarefa Ti na máquina Pj, para problemas que

envolvem processamento paralelo com máquinas não-idênticas

µ̄(Ti) Tempo médio de execução de uma tarefa Ti. Usado em ambientes com

máquinas não-idênticas

φj Tempo ocioso total da máquina Pj

wj Makespan da máquina Pj

w Makespan do sistema

αi Atraso de individual de uma tarefa Ti

αmax Atraso máximo do sistema

w∗ Makespan da solução ótima

α∗
max Atraso máximo da solução ótima

L∗ Lista de escalonamento da solução ótima

≺ Relação de precedência entre tarefas. Se Ti ≺ Tk, 1 ≤ i, k ≤ n, então

Ti precisa finalizar sua execução para que Tk esteja livre para proces-

samento

P (V, A) DAG (Grafo Acíclico Direcionado) que representa as relações de pre-

cedência entre todas as tarefas do sistema. Para uma aresta (v, u) ∈ A

é definida uma relação de precedência entre a tarefa do nó v e a do

nó u, de tal forma que v ≺ u. Para problemas que envolvem memória

compartilhada, o DAG (Grafo Acíclico Direcionado) é ponderado nas

arestas para representar o custo de comunicação entre tarefas

pred(Ti) Conjunto de tarefas que precedem Ti. Tk ∈ pred(Ti) ⇐⇒ Tk ≺ Ti

succ(Ti) Conjunto de tarefas que sucedem Ti. Tk ∈ succ(Ti) ⇐⇒ Ti ≺ Tk

C Tamanho limite de uma caixa para o problema bin-packing

OPT (T, C) Solução ótima do problema bin-packing ao empacotar o conjunto de

tarefas T em caixas de tamanho máximo C

FFD(T, C) Solução do FFD (First Fit Decreasing) ao empacotar o conjunto de

tarefas T em caixas de tamanho máximo C

Cl Limite inferior para o valor de C

Cl(T, m) Para todo C < Cl[T, m], FFD[T, C] > m

Cu Limite superior para o valor de C. É também o resultado do algoritmo

MULTIFIT

Cu(T, m) Para todo C ≥ Cu[T, m], FFD[T, C] ≤ m. Portanto, é a solução do

algoritmo MULTIFIT

τm Fator de expansão mínimo da capacidade C das caixas para que o FFD

(First Fit Decreasing) possa escalonar o conjunto T de tarefas em não

mais que m caixas

MF (k) Aplicação do MULTIFIT com k iterações para o problema de escalo-

namento de tarefas

Cu(k) Solução do MULTIFIT com k iterações

G(V, E) Grafo de incomparabilidade do grafo de precedência P (V, A), de forma

que se (v, u) ∈ E ⇐⇒ (v, u), (u, v) /∈ A

ASAP (Ti) Tempo mais cedo possível em que a tarefa Ti pode ser executada. É

calculado usando o ASAP Binding

ALAP (Ti) Tempo mais tardio possível em que a tarefa Ti pode ser executada. É

calculado usando o ALAP Binding

M(Ti) Mobilidade de uma tarefa Ti. É um valor resultante da diferença entre

ASAP (Ti) e ALAP (Ti)

Γ(Ti) Lista que contém o ALAP de Ti e de todos os seus descendentes em

P (V, A) em ordem crescente

CM Marco do tempo atual da execução do sistema

NM Próximo marco de tempo atual da execução do sistema

r(Ti, Pj) Tempo em que a última mensagem endereçada a Ti chega na máquina

Pj, na qual Ti foi escalonada

n(Ti, Tk) Custo de enviar mensagens de uma tarefa Tj para outra tarefa Tk

t(Pj, Pk) Custo de abrir um canal de comunicação entre as máquinas Pj e Pk

Φ Número de tarefas de um clã independente

Ki Subgrupo agregado em um clã independente no algoritmo CLANS, 1 ≤
k ≤ n

|Ki| Número de tarefas envolvidas em um subgrupo Ki

µ(Ki) Soma do tempo de execução de todas as tarefas do subgrupo Ki

yk,i é o custo de uma informação entrar na tarefa Tk,i do subgrupo Ki

y′
k,i é o custo de uma informação sair da tarefa Tk,i do subgrupo Ki, 1 ≤

k ≤ n

yi é o custo de entrada de informação em uma tarefa Ti qualquer do clã

independente (sem distinção de subgrupos)

y′
i é o custo de saída de informação de uma tarefa Ti qualquer do clã

independente (sem distinção de subgrupos)

y Custo constante da entrada de uma informação em uma tarefa qualquer

do sistema

y′ Custo constante da saída de uma informação de uma tarefa qualquer

do sistema

Bj,k Taxa de transmissão de informações entre máquinas Pj e Pk. 1 ≤ j, k ≤
m

Xj Custo de abrir a máquina Pj para comunicação

B̄ Taxa de transmissão média do sistema

X̄ Custo de abertura média para comunicação no sistema

ranku(Ti) Upward Rank de Ti

rankd(Ti) Downward Rank de Ti

EST (Ti, Pj) Tempo mais cedo possível que uma tarefa Ti pode ser escalonada numa

máquina Pj

EFT (Ti, Pj) Tempo mais cedo possível que uma tarefa Ti pode ter sua execução

finalizada numa máquina Pj

AST (Ti, Pj) Tempo real em que uma tarefa Ti pode ser escalonada numa máquina

Pj

AFT (Ti, Pj) Tempo real em que uma tarefa Ti pode ter sua execução finalizada

numa máquina Pj

Sumário

1 INTRODUÇÃO . 16

2 FUNDAMENTAÇÃO TEÓRICA . 18

2.1 Problemas de Otimização e o Problema de Escalonamento 18

2.2 Algoritmos e Heurísticas de Aproximação 19

2.3 Classes de Complexidade . 20

3 PRINCIPAIS VARIANTES DO PROBLEMA DE ESCALONAMENTO

E SUAS APROXIMAÇÕES . 22

3.1 Processamento em uma única máquina 22

3.2 Processamento em Máquinas Paralelas Idênticas 24

3.2.1 Memória Compartilhada . 25

3.2.1.1 List Scheduling - LS . 25

3.2.1.2 Longest Processing Time First Scheduling - LPT 27

3.2.1.3 MULTIFIT . 28

3.2.1.4 List Scheduling para ordens intervalares de precedência 32

3.2.2 Memória Distribuída . 35

3.2.2.1 Modified Critical Path - MCP . 36

3.2.2.2 Earliest Task First Scheduling - ETF . 39

3.2.2.3 CLANS . 42

3.3 Processamento em Máquinas Paralelas não Idênticas 48

3.3.1 Memória Compartilhada . 48

3.3.1.1 A-Scheduling . 48

3.3.1.2 B-Scheduling . 50

3.3.1.3 C-Scheduling . 51

3.3.1.4 D-Scheduling . 52

3.3.1.5 E-Scheduling . 54

3.3.1.6 F-Scheduling . 55

3.3.2 Memória Distribuída . 56

3.3.2.1 Modified Critical Path - MCP . 57

3.3.2.2 Earliest Task First Scheduling - ETF . 58

3.3.2.3 Heterogeneous Earliest Finishing Time - HEFT 58

3.3.2.4 Critical Path on a Processor - CPOP . 62

3.4 Considerações Finais . 64

4 CONCLUSÃO . 66

REFERÊNCIAS . 67

16

1 Introdução

O problema de escalonamento de tarefas é um dos mais estudados na Ciência da

Computação devido à sua ampla aplicabilidade em ambientes industriais, computacionais

e logísticos (ROBERT, 2011). Esse problema consiste em atribuir uma lista de tarefas

a um conjunto de unidades de processamento, respeitando restrições específicas do con-

texto, com o objetivo de otimizar métricas como o tempo de execução total ou o atraso

máximo. No entanto, por ser um problema NP-Completo (GAREY; JOHNSON, 1979;

PAPADIMITRIOU; YANNAKAKIS, 1979), a complexidade das soluções ótimas torna-se

intratável à medida que as variantes do problema incorporam mais restrições realistas.

Essa inviabilidade prática impulsiona o desenvolvimento e estudo de algoritmos aproxi-

mados, os quais são capazes de fornecer soluções de qualidade subótima, porém aceitáveis,

em tempo computacional viável.

Devido à vastidão de variantes do problema de escalonamento, cada uma com suas

particularidades e algoritmos especializados, torna-se necessário um material que organize

e compare essas abordagens. Essa análise pode auxiliar tanto na escolha da melhor es-

tratégia para um cenário aplicado quanto no direcionamento de pesquisas futuras. Diante

desse contexto, o objetivo deste trabalho de conclusão de curso é analisar as diferentes

variantes clássicas do problema de escalonamento de tarefas, com foco nos algoritmos de

aproximação desenvolvidos para cada uma delas.

Neste trabalho abordaremos cinco variantes desse problema, organizadas em três

casos principais. Inicialmente, é abordado o escalonamento de tarefas em uma única

máquina (WILLIAMSON; SHMOYS, 2011). Em seguida, abordamos o caso do multi-

processamento em máquinas idênticas (GRAHAM, 1966; GRAHAM, 1969; EPSTEIN,

2008; PAPADIMITRIOU; YANNAKAKIS, 1979; KHAN; MCCREARY; JONES, 1994;

WU; GAJSKI, 1990; HWANG et al., 1989; LEE et al., 1988; MCCREARY; GILL, 1989)

e, finalmente, o multiprocessamento em máquinas não-idênticas (IBARRA; KIM, 1977;

HWANG et al., 1989; WU; GAJSKI, 1990; TOPCUOGLU; HARIRI; WU, 2002). Para

esses dois últimos casos, são estudados algoritmos projetados para as variações de memó-

ria compartilhada e memória distribuída. Esse trabalho busca apresentar essa variedade

de algoritmos com o objetivo de contribuir para a sistematização do conhecimento sobre

aproximações para o problema de escalonamento e suas principais variantes, e também

servir como base para futuras pesquisas desse ramo.

O restante desta monografia é organizado da seguinte forma: no Capítulo 2 apre-

sentamos os conceitos de escalonamento de tarefas, de algoritmos de aproximação e de

complexidade de algoritmos, no Capítulo 3, apresentamos as cinco variantes do problema

Capítulo 1. Introdução 17

de escalonamento de tarefas, bem como os principais algoritmos empregados em cada

caso. Finalmente, o Capítulo 4 apresenta as conclusões deste trabalho.

18

2 Fundamentação Teórica

2.1 Problemas de Otimização e o Problema de Escalonamento

Problemas de otimização são problemas, tanto para a Matemática quanto para a

Ciência da Computação, nos quais o objetivo é encontrar a melhor solução dentre todas

as soluções possíveis, respeitando todas as restrições que o problema traz (GOLDBARG;

GOLDBARG; LUNA, 2015). O conjunto de soluções para um problema de otimização

pode ser representado como uma função e sua melhor solução pode ser interpretada como

sendo um ponto mínimo (ou máximo) global dessa função (GOLDBARG; GOLDBARG;

LUNA, 2015). A Ciência da Computação listou, com o passar dos anos de estudo, vários

problemas que se enquadram como de otimização, e dentre eles está presente o problema

que trataremos neste trabalho, chamado de problema de escalonamento de tare-

fas (ROBERT, 2011).

O problema de escalonamento de tarefas se trata de um desafio clássico de oti-

mização combinatória, atribuindo uma lista de tarefas a uma quantidade fixa de

unidades de processamento, de forma que uma unidade de processamento só pode

executar uma tarefa por vez (GRAHAM, 1966), e uma solução possível desse problema

é justamente o tempo em que é finalizada toda a execução (makespan), de acordo com

a ordem estipulada para escalonamento das tarefas. Esse problema é de otimização jus-

tamente pelo fato de que, mesmo que uma certa solução seja viável, o interesse está em

obter a melhor solução dentre as viáveis, sendo essa a solução ótima para o problema.

Isso é evidenciado quando analisamos a Figura 1.

Observe, na Figura 1, como a ordem de escalonamento das tarefas impacta no

makespan w do sistema. Na primeira solução, a organização das tarefas gera tempos

ociosos φ2 na máquina P2, e φ3 na máquina P3, resultando num makespan w = 5, enquanto

na segunda solução as tarefas são organizadas de forma diferente, sem causar tempo ocioso

nas máquinas e resultando em um outro makespan w′ = 3, menor que o da primeira

solução. Uma simples troca de método de escalonar as tarefas pode causar melhoras

significativas nas soluções dadas para o problema.

A definição da solução ótima para esse problema se dá, portanto, como a ordem

de escalonamento das tarefas que resulta na minimização ou maximização de alguma

variável alvo, como o makespan, normalmente com o objetivo de minimizá-lo. O ma-

kespan é o mais usado dentre os objetivos que existem para otimização no problema de

escalonamento, mas para contextos como o escalonamento em uma única máquina, pode

não fazer sentido buscar a minimização desse valor, recorrendo assim a outros objetivos

Capítulo 2. Fundamentação Teórica 19

Figura 1 – Duas soluções possíveis para escalonar sete tarefas (T1, T2, T3, T4, T5, T6 e T7)
em três máquinas (P1, P2 e P3), com os custos de execução totais ω e ω′ para
cada solução, respectivamente.

Fonte: Autoria própria.

como o atraso de execução das tarefas, como veremos posteriormente nesse trabalho. A

Figura 1 representa uma das versões mais simples do problema de escalonamento, porém

algumas variantes dele podem apresentar outras restrições adicionais, dentre elas estão

a definição de precedência entre as tarefas, homogeneidade ou não das máquinas, o

número de máquinas envolvidas no escalonamento, o custo adicional de comunicação

entre as tarefas, determinação de janelas de execução para cada tarefa do sistema,

dentre vários outros. Para cada variante, especificamente, são necessários algoritmos

adequados para gerar soluções que respeitem as restrições definidas.

2.2 Algoritmos e Heurísticas de Aproximação

O mais básico método de obtenção de soluções para problemas são os algoritmos,

que são um conjunto de instruções não ambíguas que se baseiam numa lógica bem estru-

turada de execução, resultando numa solução exata para o problema. Como buscamos

pela solução ótima no problema de escalonamento, que é uma solução exata, o ideal seria

implementar algoritmos que a obtenham, mas até hoje não foram projetados algoritmos

capazes de encontrar a solução ótima em tempo menor que exponencial, que é um tempo

muito custoso para tamanhos grandes de tarefas e/ou máquinas.

Com isso, foram introduzidas estratégias para tentar obter soluções com um

custo de tempo menor que o exponencial, em sacrifício da qualidade da solução. Essas

estratégias, agora, buscam por soluções próximas da ótima, e dentre elas se destacam

Capítulo 2. Fundamentação Teórica 20

os algoritmos de aproximação e as heurísticas de aproximação. Diferentemente

dos algoritmos exatos, as heurísticas de aproximação procuram resolver problemas de

forma empírica, ou seja, baseando-se em regras mais práticas ou na intuição, o que pode

acelerar o tempo para a obtenção da solução, mas não há garantia, além da experiência,

sobre a qualidade da solução. Os algoritmos aproximados, em contraponto, são cons-

truídos baseando-se em métodos de aproximação nos quais há como provar a qualidade

da solução (WILLIAMSON; SHMOYS, 2011).

Como no momento não foram encontrados algoritmos que encontrem a solução

exata em tempo hábil, a Ciência da Computação têm investido em encontrar métodos

de aproximação, como as heurísticas de aproximação e os algoritmos aproximados, que

possam se aproximar o máximo possível da solução ótima. Posteriormente nesse trabalho

veremos alguns desses algoritmos projetados por pesquisadores do ramo (WILLIAMSON;

SHMOYS, 2011; GOLDBARG; GOLDBARG; LUNA, 2015).

2.3 Classes de Complexidade

A complexidade de tempo de um algoritmo é dita como o tempo gasto para

obter a solução no qual foi projetado para gerar, o mesmo vale para qualquer outro

modelo de resolução de problemas, sendo definida analisando a sequência de passos que

definem esses modelos. O conjunto de complexidades desses modelos podem ser divididas

em classes, sendo as principais P e NP.

Segundo Sipser (2013), a Classe P de complexidade contém todos os problemas

que podem ser resolvidos em tempo polinomial, enquanto a Classe NP de comple-

xidade contém todos os problemas que não possuem garantia de existência de algoritmos

que possam resolvê-los em tempo polinomial, mas podem ter suas soluções verificadas

em tempo polinomial. Dessa forma, a Classe P é garantidamente contida em NP, já que

os problemas da Classe P são justamente algoritmos da classe NP nos quais já foram

encontrados algoritmos que os resolvam em tempo polinomial, mas há suspeitas de que

NP = P, que permanecerá enquanto não for provado que todos os problemas de NP não

possuam algoritmos que os resolvam em tempo polinomial.

O problema de escalonamento pertence à Classe NP, mais especificamente, ele é

NP-Completo, ou seja, se for encontrado um algoritmo que o resolva em tempo po-

linomial, todos os problemas da classe NP também poderão ser resolvidos em tempo

polinomial.

Para saber se um problema é NP-Completo, basta provar que ele pertence à

classe NP, e que todo problema em NP pode ser reduzido, em tempo polinomial, a

esse problema. Ou então, basta provar que um problema que já é conhecido por ser NP-

Completo pode ser reduzido em tempo polinomial ao problema em questão. No caso do

Capítulo 2. Fundamentação Teórica 21

problema de escalonamento, é provado que ele pode ser reduzido do problema Number

Partition (MERTENS, 2006), que é NP-Completo (GAREY; JOHNSON, 1979), assim

provando que o problema de escalonamento também é NP-Completo.

22

3 Principais Variantes do Problema de Esca-

lonamento e suas Aproximações

O problema de escalonamento de tarefas é amplo e, por isso, pode ser aplicado em

vários contextos. Para cada um desses contextos, são envolvidas diferentes formas de fun-

cionamento do sistema em que o escalonamento será aplicado, exigindo a consideração de

certas restrições, como uma ordem de precedência entre tarefas, o número de máquinas

envolvidas e seus comportamentos, bem como a forma de obtenção de informações pelas

tarefas. Portanto, neste capítulo vamos abordar as principais variantes desse problema e

suas soluções aproximadas.

3.1 Processamento em uma única máquina

O problema de escalonamento em uma única máquina é a mais simples dentre as

variantes. Ele se caracteriza por estabelecer uma ordem de processamento para n tarefas

em uma única máquina, de forma que sempre seja processada no máximo uma tarefa por

vez.

Para esse problema, cada tarefa Ti dentre n tarefas deve ser processada por uma

quantidade µ(Ti) de tempo, além de precisar ser executada dentro da sua janela de

execução (entre o tempo de liberação ri e o tempo limite de finalização di), onde Ci

representa o tempo de finalização de execução da tarefa Ti. O objetivo desse problema

é minimizar o atraso máximo αmax = maxi=1,...,n αi, onde αi = Ci − di representa o

atraso individual de cada tarefa.

Esse problema, como descrito aqui, não permite a obtenção de aproximações di-

retas, já que para di positivos, resultando em αi ≤ 0, aproximações que envolvem zero

e valores negativos acarretam em muitas complicações. Para contornar isso, podemos

assumir que os valores di serão sempre negativos, gerando valores de αi positivos (WILLI-

AMSON; SHMOYS, 2011). Considerando esse caso, podemos obter uma 2-aproximação

para o problema: o algoritmo EDD (Earliest Due Date rule), um algoritmo guloso que

prioriza a tarefa com o menor αi.

Denotando α∗
max como a solução ótima e αmax como a solução do EDD (Earliest

Due Date rule), obtemos a seguinte inequação:

α∗
max ≥ rmin +

n
∑

i=1

µ(Ti)− dmax, (3.1)

onde:

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 23

• rmin = mini=1,...,n ri;

• dmax = maxi=1,...,n di.

A partir dessa inequação, Williamson e Shmoys (2011) provam que, sendo k o

índice da tarefa Tk que tem o maior atraso do sistema:

2α∗
max ≥ Ck − dk = αmax (3.2)

Portanto, o algoritmo EDD (Earliest Due Date rule) é uma 2-aproximação:

αmax

α∗
max

≤ 2 (3.3)

O custo computacional do EDD (Earliest Due Date rule) consiste no custo para

ordenação das tarefas, que pode ser O(n log n) se usarmos um algoritmo eficiente (COR-

MEN et al., 2024), e no custo para escalonamento O(n), totalizando O(n log n).

Para exemplificar a aplicação desse algoritmo, vamos usá-lo para escalonar qua-

tro tarefas T = {T1, T2, T3, T4} em uma única máquina P = {P1}. Para cada tarefa há

seu valor de tempo de abertura ri e fechamento di de sua janela de execução, além do seu

custo µ(Ti). Na Tabela 1 a seguir estão representados todos esses dados.

Tabela 1 – Tabela com o valor de tempo de abertura ri e fechamento di da janela de
execução, além do custo µ(Ti) para cada tarefa do exemplo.

Tarefa ri di µ(Ti)

T1 0 -1 2

T2 0 -5 4

T3 2 -2 6

T4 3 -3 8

Fonte: Autoria própria

O EDD, então, procede em fazer uma análise de prioridade de escalonamento

das tarefas do conjunto T , seguindo os seguintes passos:

Passo 1. Separa as tarefas disponíveis para execução, ou seja, tarefas cujas janelas de

execução estão abertas no tempo da iteração atual.

Passo 2. Calcula o possível Ci e o αi para cada tarefa separada na etapa anterior, si-

mulando uma execução no tempo da iteração atual.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 24

Passo 3. O Algoritmo EDD, então, escolhe para escalonamento a tarefa com o menor

valor de αi dentre os calculados na etapa passada. A partir do marco de tempo em

que a execução da tarefa escolhida finaliza, todos esses passos serão repetidos, até

que todas as tarefas tenham sido executadas.

A Figura 2 mostra como se deu o escalonamento com o conjunto T de tarefas antes

citado, descrevendo os passos efetuados a cada iteração.

Figura 2 – Execução do Algoritmo EDD, escalonando as quatro tarefas antes descritas
em uma única máquina em quatro iterações. Por fim, é possível concluir que
o atraso máximo αmax da solução gerada com o exemplo é 23.

Fonte: Autoria própria.

3.2 Processamento em Máquinas Paralelas Idênticas

O problema de escalonamento de tarefas a máquinas idênticas é a variante mais

comum desse problema. Como o próprio nome diz, trata-se de escalonar tarefas num

ambiente que envolve mais de uma máquina, sendo que todas elas possuem o mesmo

tempo de processamento para uma mesma tarefa.

Em termos matemáticos, o sistema no qual esse problema é aplicado envolve um

conjunto T de m máquinas e um conjunto de tarefas T com n tarefas que possuem entre

si uma relação de precedência ≺, onde para uma tarefa Ti e outra Tk, se Ti ≺ Tk, então,

para Tk ser disponível para execução, Ti precisa ter sua execução concluída primeiro.

O conjunto de relações de precedência de T é estruturada em forma de grafo acíclico

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 25

direcionado (DAG) P (V, A), onde cada nó de V é uma tarefa, e cada aresta (v, u) ∈ A

é uma relação de precedência na forma v ≺ u (GRAHAM, 1966).

Essas tarefas são escalonadas para execução seguindo uma lista de escalona-

mento L. Como as máquinas são idênticas, todas elas compartilham a mesma função µ

de tempo de processamento das tarefas, e o tempo para processar uma tarefa Ti é dado por

µ(Ti). Pode-se demonstrar que esse problema é NP-Completo para m ≥ 2 (GAREY;

JOHNSON, 1979).

A seguir, são mostradas duas variações desse problema: o caso em que a memó-

ria dos processadores (máquinas) é compartilhada e o caso em que a memória não é

compartilhada.

3.2.1 Memória Compartilhada

O paralelismo com memória compartilhada é o contexto mais simples de escalona-

mento em máquinas idênticas. Essencialmente, esse caso não possui nenhuma restrição a

mais pois, como a memória é compartilhada entre as tarefas, idealmente não há custo

de comunicação, exigindo que somente nos preocupemos com a restrição de precedência e

em encontrar o escalonamento que resulte no menor makespan w possível. Os principais

algoritmos para essa variante do problema são mostrados a seguir.

3.2.1.1 List Scheduling - LS

Um método de designar as tarefas às máquinas de forma aproximada foi proposto

por Graham (1966) e chamado List Scheduling (LS). O LS é um algoritmo guloso que

escolhe qual tarefa será escalonada para qual máquina de acordo com certa prioridade.

Essa prioridade pode ser definida de várias formas, como em ordem crescente de tempo

de processamento, caminho crítico, entre outros. A execução desse algoritmo se dá da

seguinte forma:

Passo 1. Ordenar as tarefas em uma lista L de prioridade de escalonamento.

Passo 2. Cada máquina Pj atribui a si uma tarefa de L de forma a minimizar seu

makespan individual wj, fazendo antes a verificação de disponibilidade da-

quela tarefa. Uma tarefa é disponível quando todas as tarefas que a precedem já

foram executadas. Quando o tempo de execução da tarefa atribuída é finalizado, Pj

procura por uma nova tarefa, e isso se repete até que L esteja vazio.

Passo 3. Caso não haja tarefa disponível, Pj fica em aguardo (tempo ocioso φj) até

que outra máquina finalize a execução de sua tarefa, e então ambas as máquinas

procuram por novas tarefas livres.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 26

Passo 4. O tempo total de execução desse escalonamento é w, que assume o valor do

tempo da máquina com maior makespan individual.

Assim como retratado em diferentes trabalhos (GRAHAM, 1966; GRAHAM, 1969;

EPSTEIN, 2008), o limite máximo do valor da sua solução w em relação à solução ótima

w∗ é representado pela inequação:

w

w∗ ≤ 2− 1

m
(3.4)

Visto que essa é uma inequação provada por Graham (1966) como sendo o limite

máximo da razão de aproximação para algoritmos que variam somente na lista de es-

calonamento (preservando outras características do sistema, como o comportamento das

máquinas, memória e relação de precedência entre tarefas), não importando muito qual

é a estratégia de prioridade. O custo assintótico de tempo do algoritmo é O(n log n),

onde n é o número de tarefas e log n é o custo para ordenar as tarefas em L. O List

Scheduling é um algoritmo com desempenho ótimo de resultado para m = 2 ou 3, mas

quando m ≥ 4 seu desempenho perde para outros algoritmos que veremos em sequência

(GRAHAM, 1966).

Aplicaremos agora um exemplo de escalonamento do List Scheduling, seguindo os

passos antes descritos: supondo que a prioridade definida é por menor custo de execução

µ(Ti) e que o conjunto de tarefas T para escalonar em duas máquinas P = {P1, P2} seja

{T1, T2, T3, T4, T5} (com valores de custo e relação de precedência na Tabela 2 e Figura 3

abaixo, respectivamente), o List Scheduling construirá uma solução aproximada conforme

descrito na Figura 4.

Tabela 2 – Tabela com o custo µ(Ti) para cada tarefa do exemplo.

Tarefa µ(Ti)

T1 10

T2 8

T3 6

T4 5

T5 7

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 27

Figura 3 – DAG de precedência das tarefas do exemplo.

Fonte: Autoria própria.

Figura 4 – Execução do List Scheduling. Seguindo a prioridade antes descrita, a lista L
assume o valor de [T4, T3, T5, T2, T1], que define a ordem para escalonar as
tarefas de T . As tarefas, então, são escalonadas com base em L e também
respeitando a ordem de precedência descrita no DAG (disponibilidade das
tarefas para escalonamento). Essa solução aproximada possui makespan w de
24, e tempo ocioso na segunda máquina φ2 de 10 unidades de tempo.

Fonte: Autoria própria.

3.2.1.2 Longest Processing Time First Scheduling - LPT

O LPT é um algoritmo guloso que usa da mesma estratégia do List Scheduling,

aplicando uma prioridade específica: as primeiras tarefas a serem escalonadas devem ser

as com maior tempo de execução. No entanto, é usado num contexto onde as tarefas

são independentes, ou seja, ela possui um DAG completamente desconexo (COFFMAN

JR; GAREY; JOHNSON, 1978).

Devido a essas alterações, o limite máximo da sua razão de aproximação, apre-

sentado por Coffman Jr, Garey e Johnson (1978) e provado por Graham (1966), se dá

por:

w

w∗ ≤
4

3
− 1

3m
(3.5)

O custo assintótico de tempo desse algoritmo é O(n log n), sendo que o custo

de ordenação das tarefas em ordem decrescente é O(n log n) (CORMEN et al., 2024), e o

custo de escalonar as tarefas é O(n).

Podemos usar as mesmas tarefas usadas para execução do List Scheduling como

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 28

exemplo para execução do LPT Scheduling, recordando, também, a partir da Tabela 3 os

custos das tarefas envolvidas. A partir disso, então, é construída uma solução aproximada

com base no algoritmo do LPT Scheduling, como representado na Figura 5.

Tabela 3 – Tabela com o custo µ(Ti) para cada tarefa do exemplo.

Tarefa µ(Ti)

T1 10

T2 8

T3 6

T4 5

T5 7

Fonte: Autoria própria

Figura 5 – Execução do LPT. Seguindo a prioridade descrita para os algoritmos LPT, a
lista L de escalonamento assume o valor de [T1, T2, T5, T3, T4], que é a ordem
definida para escalonar as tarefas de T , que então são escalonadas baseando-se
nessa lista de escalonamento. Para o LPT Scheduling, não há a necessidade
de considerar a disponibilidade das tarefas, visto que elas são independentes.
Essa solução aproximada possui makespan w de 23, e tempo ocioso na segunda
máquina φ2 de 10 unidades de tempo.

Fonte: Autoria própria.

3.2.1.3 MULTIFIT

O algoritmo aproximado MULTIFIT é um algoritmo projetado como uma adap-

tação do uso de um algoritmo aproximado de outro problema, chamado bin-packing (COR-

MEN et al., 2024). O bin-packing consiste em atribuir itens a caixas de forma dinâmica,

ou seja, uma nova caixa é criada à medida que as caixas já criadas se enchem. Cada

caixa tem uma capacidade fixa C, e o objetivo dos algoritmos aproximados para esse

problema é minimizar o número de caixas criados para encaixar todos os itens (COFF-

MAN JR; GAREY; JOHNSON, 1978).

O MULTIFIT aproveita do fato de que tanto o bin-packing quanto o problema de

escalonamento são reduzíveis a um problema coincidente chamado PARTITION (COFF-

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 29

MAN JR; GAREY; JOHNSON, 1978), evidenciando a proximidade dos dois problemas

em estrutura para otimização, para gerar soluções para o problema de escalonamento

usando soluções do bin-packing. Dessa forma, as soluções geradas pelos algoritmos do bin-

packing se encaixam como soluções do problema de escalonamento se, ao empacotar as

tarefas de T em caixas com uma certa capacidade C (pensando que o peso de cada tarefa

é seu custo de execução), o número de caixas geradas na execução não for maior que o

número m de máquinas estipulado no sistema do problema de escalonamento, tornando

C o makespan w da solução gerada. Dessa forma, a solução ótima do problema de escalo-

namento w∗ se equivale à solução ótima do problema bin-packing OPT [T, C] da seguinte

forma:

w∗ = min{C : OPT [T, C] ≤ m} (3.6)

Para obtermos soluções do problema bin-packing, usaremos o algoritmo aproxi-

mado FFD[T, C] (First Fit Decreasing). Como os itens a atribuir às caixas são as tarefas,

a execução do FFD[T, C] será descrita levando isso em consideração:

Passo 1. Ordenar as tarefas de T por ordem decrescente de custo de execução µ(Ti).

Passo 2. Atribuir as tarefas uma a uma nas caixas, de acordo com a ordem estipulada

no passo anterior.

Passo 2.1. Varrer as caixas existentes uma a uma, encaixar a tarefa na primeira

caixa que ela couber. Caso a tarefa não caiba em nenhuma das caixas criadas

ou não existam caixas ainda, criar uma caixa de capacidade C e atribuí-la à

caixa. Repetir esse passo até que todas as tarefas estejam em caixas.

Passo 3. Por fim, o número de caixas criadas para atribuir todas as tarefas de T é o

valor resultante da execução de FFD[T, C].

É possível demonstrar que a razão de aproximação da solução do FFD (First Fit

Decreasing), FFD[T, C], perante a solução ótima OPT [T, C], é dada por (COFFMAN

JR; GAREY; JOHNSON, 1978; CORMEN et al., 2024):

FFD[T, C] ≤ 11

9
OPT [T, C] + 4 (3.7)

Esse algoritmo possui custo assintótico de O(n log n + n ·m), onde O(n log n) é

o custo para ordenar os itens, e O(n ·m) é o custo para alocar os itens às caixas (O(n2) no

pior caso). Para o problema de escalonamento, a capacidade C das caixas corresponde ao

makespan do sistema, e a limitação no número de caixas por m nas soluções geradas

do FFD (First Fit Decreasing) as tornam elegíveis como o escalonamento da melhor

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 30

solução aproximada para esse problema. Assim, o objetivo se torna minimizar o valor

de C de forma que ainda é possível encontrar soluções com o FFD em que a alocação das

tarefas é feita em até m caixas.

O algoritmo MULTIFIT, então, usa da busca binária para encontrar valores

de C, definindo um limite mínimo de capacidade Cl e um limite máximo de capacidade

Cu para busca. Em seguida, usa do FFD (First Fit Decreasing) para validá-los como

possíveis soluções para o problema de escalonamento, retornando em Cu(k) a solução

aproximada, para um número k qualquer de iterações. A execução do MULTIFIT con-

siste nos seguintes passos (COFFMAN JR; GAREY; JOHNSON, 1978):

1. Sendo m o número de máquinas para escalonamento e n o número de tarefas a serem

escalonadas, definir um limite superior e inferior para C: Cl e Cu, de tal forma

que:

• Cl[T, m] = max{
∑n

i=1
µ(Ti)

m
, maxTi∈T{µ(Ti)}}

(portanto, para todo C < Cl[T, m], FFD[T, C] > m).

• Cu[T, m] = max{2
∑n

i=1
µ(Ti)

m
, maxTi∈T{µ(Ti)}}

(portanto, para todo C ≥ Cu[T, m], FFD[T, C] ≤ m).

2. Fazer a busca binária em k iterações, sendo k um número qualquer maior que

zero:

Cl(0)← Cl[T, m];

Cu(0)← Cu[T, m];

i← 1;

while i < k do

C ← [Cl(i− 1) + Cu(i− 1)]/2.

if FFD[T, C] ≤ m then

Cu(i)← C;

Cl(i)← Cl(i− 1);

else

Cl(i)← C;

Cu(i)← Cu(i− 1);

end if

i← i + 1;

end while

Finalmente, a razão de aproximação desse algoritmo é dada por:

Cu(k)

w∗ ≥
(

τm +
(

1

2

)k
)

(3.8)

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 31

onde τm é o menor fator de expansão do valor da solução ótima para o FFD (First

Fit Decreasing) não usar mais que m caixas na execução, ou seja,

τm = min(τ : FFD[T, τ w∗] ≤ m) (3.9)

O custo assintótico do algoritmo é O(n log n + knm) se implementar o FFD

(First Fit Decreasing) sem ordenar as tarefas, ou O(n log n + kn log m) se ordená-las com

algum algoritmo eficiente (CORMEN et al., 2024).

Podemos, agora, mostrar como o MULTIFIT é executado na prática. Conside-

rando um exemplo onde aplicaremos quatro iterações do MULTIFIT (k = 4), com

T = {T1, T2, T3, T4, T5} e P = {P1, P2}. A Tabela 4 a seguir mostra o custo de execução

µ(Ti) de cada tarefa envolvida no escalonamento. No caso do MULTIFIT, ele somente se

aplica para sistemas com tarefas independentes, portanto seu DAG (Grafo Acíclico Dire-

cionado) é completamente desconexo, assim não precisando ser considerado no processo

de escalonamento.

Executaremos esse algoritmo passo a passo (como mostra na Figura 6) para melhor

visualização da busca binária, que se baseia no resultado de uma execução completa do

algoritmo FFD (First Fit Decreasing) para decidir o novo espaço de busca.

Tabela 4 – Tabela com o custo µ(Ti) para cada tarefa do exemplo.

Tarefa µ(Ti)

T1 2

T2 8

T3 3

T4 4

T5 7

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 32

Figura 6 – Execução do MULTIFIT. Usando dos valores dados a k, T e P e com os custos
descritos na tabela acima, é feita a execução do algoritmo MULTIFIT. Antes
da busca binária, é dado um valor inicial a Cu e Cl, de acordo com as fórmulas
para Cu[T, m] e Cl[T, m], e posteriormente a isso, são feitas quatro iterações
de busca binária, resultando num makespan w para essa solução aproximada
de 12 (é o valor que está em Cu(4)). As tarefas presentes na caixa1 e na caixa2
da execução do FFD da última iteração, preservando a ordem em que foram
inseridas, devem ser as que serão escalonadas nas máquinas P1 e P2 do sistema
dessa execução do MULTIFIT, respectivamente, para produzir o makespan
w = 12.

Fonte: Autoria própria.

3.2.1.4 List Scheduling para ordens intervalares de precedência

Os DAGs (Grafos Acíclicos Direcionados) que representam a precedência entre

tarefas no problema de escalonamento apresentam formatos diversos, como de árvores,

florestas ou árvores reversas (PAPADIMITRIOU; YANNAKAKIS, 1979). Além desses

casos, existem DAGs com outras propriedades que valem a pena serem notadas, como os

DAGs de precedência cujos grafos de incomparabilidade são de corda.

Para prosseguirmos com as definições desse algoritmo, é importante tomarmos

ciência de dois conceitos:

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 33

Grafo de Incomparabilidade: O grafo de incomparabilidade de um certo grafo P (V, A)

é o grafo não direcionado que contém ligações entre as tarefas de V que não se encon-

tram em A. Ou seja, P (V, A) é um grafo, e G(V, E) é seu grafo de incomparabilidade,

de forma que, para todo v, u ∈ V , (v, u) ∈ E ⇐⇒ (v, u), (u, v) /∈ A.

Grafo de Corda: Um grafo G é de corda se, para cada ciclo envolvendo mais de 3

vértices, existir uma corda. Ou seja, G é de corda se, para cada ciclo de vértices de

G [v1, v2, . . . , vk], k ≥ 4, existir uma aresta (vi, vj), j 6= i± 1(mod k).

Os grafos de corda, por serem detentores de importantes propriedades algorítmicas,

são aplicados para vários outros problemas em teoria de grafos, como mínima coloração,

clique máxima, entre outros (PAPADIMITRIOU; YANNAKAKIS, 1979). Por isso, po-

dem ter suas propriedades aproveitadas, também, para resolver instâncias do problema

de escalonamento, como: dado n tarefas de tempo unitário, encontrar uma forma de

escaloná-las em m máquinas de forma que todas sejam executadas respeitando a ordem

de precedência de P (V, A) e resultem num makespan mínimo.

O fato do grafo de incomparabilidade do DAG (Grafo Acíclico Direcionado) de

uma ordem de precedência ser, também, um grafo de corda evidencia que a mesma é

uma ordem intervalar (PAPADIMITRIOU; YANNAKAKIS, 1979), ou seja, o grafo de

incomparabilidade desse DAG de precedência é um grafo intervalar, onde cada vértice

(tarefa) pode ser representado por um intervalo nas reta dos valores reais, e cada aresta

do grafo carrega o significado de que seus dois vértices são intervalos que se sobrepõem

nessa reta. No contexto do problema de escalonamento, isso significa que esse grafo de

incomparabilidade tem a propriedade de apontar quais tarefas podem ser executadas em

paralelo nas máquinas do sistema. A partir disso, podemos desenvolver um algoritmo

que gere soluções aproximadas em função dos intervalos que representam cada uma das

tarefas:

Passo 1. Ordenar as tarefas em ordem decrescente pelo grau de saída (número de ares-

tas que sai do nó) dos nós que as representam no DAG (Grafo Acíclico Direcionado)

de precedência.

Passo 2. Escalonar as tarefas de acordo com a ordem de prioridade antes estabelecida,

respeitando também a disponibilidade das tarefas pela restrição de precedência.

O custo computacional desse algoritmo é O(|V | + |A|), sendo V e A, respectiva-

mente, o número de vértices e arestas do Grafo Acíclico Direcionado (DAG) de precedência

P (V, A). Esse algoritmo é comprovado como sendo um algoritmo correto, ou seja, sempre

retorna um escalonamento válido, respeitando as restrições definidas (PAPADIMITRIOU;

YANNAKAKIS, 1979).

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 34

A Figura 9 traz um exemplo do escalonamento de acordo com o algoritmo descrito,

cuja prioridade se baseia na Tabela 5, envolvendo cinco tarefas T = {T1, T2, T3, T4, T5} e

duas máquinas P = {P1, P2}, com seu DAG (Grafo Acíclico Direcionado) apresentado na

Figura 7, juntamente com seu grafo de incomparabilidade intervalar. A propriedade do

grafo de incomparabilidade intervalar antes descrita se apresenta na Figura 8. Todas as

tarefas do exemplo são de tempo de execução unitário (todas possuem custo de execução

µ com valor 1).

Figura 7 – Grafo de Precedência P (V, A) e seu Grafo de Incomparabilidade G(V, E), con-
tendo cinco tarefas (T1, T2, T3, T4 e T5).

Fonte: Autoria própria.

Figura 8 – Ordem intervalar na reta dos números reais R representada pelo grafo de in-
comparabilidade intervalar de P (V, A), G(V, E). Observe como a estrutura do
grafo intervalar mostrado na figura anterior nos mostra exatamente o com-
portamento do escalonamento das tarefas: T3 e T4 são vértices conectados em
G(V, E), mostrando que se sobrepõem na reta dos reais (e posteriormente
estarão em paralelo no escalonamento), enquanto as outras tarefas não se co-
nectam, portanto não se sobrepõem na reta dos reais (e posteriormente estarão
executadas linearmente no escalonamento).

Fonte: Autoria própria.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 35

Tabela 5 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, juntamente com o grau
de saída de cada uma delas.

Tarefa µ(Ti) grau de saída

T1 1 4

T2 1 3

T3 1 1

T4 1 1

T5 1 0

Fonte: Autoria própria

Figura 9 – Execução do List Scheduling para ordens intervalares. A ordem de execução
das tarefas L assume o valor de [T1, T2, T3, T4, T5]. O escalonamento, conforme
antes descrito, é feito envolvendo duas máquinas (P = {P1, P2}). A solução
aproximada gerada possui makespan w = 4 e tempo ocioso total na segunda
máquina φ2 = 3.

Fonte: Autoria própria.

3.2.2 Memória Distribuída

O paralelismo com memória distribuída é uma variação do problema de escalo-

namento que considera a comunicação entre as tarefas, tendo em vista que não com-

partilham a memória, portanto necessitando da transmissão de dados entre tarefas de-

pendentes. Quando uma tarefa é finalizada, informações são passadas dessa tarefa às

dependentes, tendo um custo adicional para o sistema.

Agora, o DAG (Grafo Acíclico Direcionado) de precedência é ponderado não

somente nos vértices (que é o comum para representar o tempo de processamento das

tarefas), mas também nas arestas, para representar o custo da comunicação de uma

tarefa a outra.

Conforme descrito por Khan, Mccreary e Jones (1994), as principais heurísticas

de aproximação que buscam soluções subótimas para ambientes de multiprocessamento

podem ser divididas em três categorias:

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 36

1. Heurísticas de Caminho Crítico: Denominando que, para grafos acíclicos dire-

cionados de precedência com pesos nos nós (custo de execução) e nas arestas (custo

de comunicação), o caminho crítico é o caminho feito no grafo que representa a

sequência de execução mais longa do sistema, e portanto é o limite mínimo

do makespan desse sistema. O objetivo das heurísticas dessa categoria é justamente

tentar reduzir o makespan total ao valor do makespan do caminho crítico. Aqui

apresentaremos o Modified Critical Path (MCP) (WU; GAJSKI, 1990).

2. Heurísticas de List Scheduling: São heurísticas que buscam encontrar o escalo-

namento ótimo associando prioridades às tarefas e escalonando-as de acordo com

as mesmas. Nessa categoria são aplicadas extensões no List Scheduling para tentar

obter melhores resultados, como por exemplo aplicando métodos gulosos, duplicação

de tarefas, entre outros. Aqui abordaremos o Earliest Task First Scheduling (ETF)

(HWANG et al., 1989).

3. Método da Decomposição de Grafos: É usado da Teoria da Decomposição

de Grafos para obter o escalonamento ótimo, recorrendo à redução do DAG (Grafo

Acíclico Direcionado) de precedência a uma hierarquia de subgrafos (grãos) que

representa a relação de independência/dependência entre as tarefas. Aplicando os

custos de comunicação e execução, pode-se determinar o tamanho dos grãos ideais

para o escalonamento ótimo. Aqui apresentaremos o CLANS (MCCREARY; GILL,

1989), principal representante dessa categoria.

Justamente por não fazer distinção da relação entre as máquinas (se são idênticas

ou não), é evidente que os algoritmos aqui apresentados se encaixam nos dois contextos,

e serão novamente tratados (no caso do Modified Critical Path (MCP) e Earliest Task

First Scheduling (ETF)) para o problema de escalonamento com máquinas heterogêneas

(Seção 3.3.2).

3.2.2.1 Modified Critical Path - MCP

O MCP de Wu e Gajski (1990) é uma modificação do algoritmo de caminho

crítico apresentado por Sethi (1976), acrescentando uma estratégia que considera a flexi-

bilidade que cada tarefa tem de ser executada em um certo ponto no tempo de execução,

de forma que não atrapalhe a execução das outras tarefas.

Para compreender esse algoritmo, é necessário considerar os seguintes termos:

ASAP : É o tempo mais cedo possível em que cada tarefa pode ser executada.

Para calculá-lo para cada tarefa, se executa o ASAP Binding, atribuindo um

ASAP (Ti) para cada tarefa Ti. Simularemos o ASAP Binding para a sequência de

tarefas [T1, T2, T3, T4, T5] com grafo de precedência representado na Figura 10.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 37

Figura 10 – Exemplo de grafo acíclico direcionado de precedência

Fonte: Autoria própria

Passo 1. Atribui a T1, tarefa de entrada do grafo, o menor tempo possível para

ser executado, que no caso é zero por ser a primeira tarefa a ser executada.

Passo 2. Quando T1 finaliza sua execução, envia as mensagens para suas tarefas

dependentes, e para todas essas tarefas o seu menor tempo possível de exe-

cução é o marco de tempo da execução do sistema no qual as informações de

T1 chegam às tarefas. Esse passo, então, se repetiria para grafos que possuem

mais tarefas e mais níveis que o do exemplo, até que todas as tarefas fossem

visitadas.

ALAP : É o tempo mais tardio possível no qual uma tarefa pode ser executada. O

processo de ALAP Binding é executado após o ASAP Binding de forma retró-

grada (passando das tarefas de saída até as de entrada), e considerando o tempo

mais tardio para escalonamento como o valor que define o ALAP de cada tarefa,

denominado ALAP (Ti).

Intervalo de Movimento : O intervalo de movimento de uma tarefa é justamente o

intervalo de tempo entre ASAP (Ti) e ALAP (Ti), ou seja, é o tempo que ela tem

para ser executada sem atrasar a execução de outras tarefas.

Mobilidade: É o comprimento do intervalo de movimento, denominado por M(Ti) =

ALAP (Ti)− ASAP (Ti).

A execução do MCP (Modified Critical Path) consiste nos seguintes passos:

Passo 1. Executar o ALAP Binding e atribuir ALAP (Ti) para cada nó do DAG (Grafo

Acíclico Direcionado) de precedência.

Passo 2. Para cada nó Ti, criar uma lista Γ(Ti) que contém o ALAP de Ti e de todos

os seus descendentes em ordem crescente. Ordenar todas as Γ(Ti) em ordem lexi-

cográfica, e a partir dela criar uma lista única de escalonamento L com todas as

tarefas.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 38

Passo 3. Escalona cada tarefa de L à primeira máquina livre. Assim que uma máquina

se liberar, procura por outra tarefa livre em L, respeitando a ordem estipulada e a

relação de precedência entre as tarefas.

O custo do primeiro passo é O(n2). Já o custo do segundo passo é O(n2 log n), para

gerar n listas, e O(n2 log n) para ordená-las. Por fim, o terceiro passo tem custo linear, ou

seja O(n), totalizando O(n2 log n).

A razão de aproximação desse algoritmo aproximado segue, também, o do al-

goritmo no qual foi inspirado, provada por Wu e Gajski (1990), e também por Kohler

(1975):

w

w∗ ≤ 2− 1

m
(3.10)

Podemos, então, apresentar um exemplo de aplicação do algoritmo MCP. Consi-

derando que devemos escalonar quatro tarefas (T = {T1, T2, T3, T4}) em duas máquinas

(P = {P1, P2}), a Tabela 6 representa os custos de execução de cada tarefa envolvida no

escalonamento, e suas relações de precedência são representadas pelo DAG (grafo acíclico

direcionado) da Figura 11. A Figura 12 mostra a aplicação do algoritmo MCP para o

exemplo que foi construído.

Tabela 6 – Tabela com o custo µ(Ti) para cada tarefa do exemplo.

Tarefa µ(Ti)

T1 2

T2 3

T3 5

T4 1

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 39

Figura 11 – Grafo acíclico direcionado de precedência das quatro tarefas do exemplo,
apresentando seus custos de comunicação.

Fonte: Autoria própria

Figura 12 – Aplicação do algoritmo MCP para escalonar quatro tarefas (T =
{T1, T2, T3, T4}) em duas máquinas (P = {P1, P2}) em um ambiente de me-
mória distribuída. O makespan da solução aproximada w é 10, com tempo
ocioso na primeira máquina φ1 de 2 e segunda máquina φ2 de 4.

Fonte: Autoria própria

3.2.2.2 Earliest Task First Scheduling - ETF

O algoritmo de aproximação ETF deriva do List Scheduling proposto por Graham

(1966), alterando o método de ponderação da prioridade das tarefas, considerando as

tarefas que podem ser escalonadas o mais cedo possível dentre as disponíveis (HWANG

et al., 1989).

Para entender o funcionamento do ETF (Earliest Task First Scheduling), é neces-

sário saber que a variável CM (Current Moment) representa o tempo atual do evento de

escalonamento, enquanto NM (Next Moment) representa um potencial próximo marco

de tempo que substituirá o valor atual de CM , marcando o menor tempo de finaliza-

ção entre todas as tarefas escalonadas no CM atual como o próximo CM . Com isso,

observaremos a execução do ETF:

Passo 1. Define um conjunto I para todas as máquinas disponíveis no tempo CM ,

define CM como 0, NM como ∞ e um conjunto A para todas as tarefas de

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 40

entrada, dado que uma tarefa de entrada é qualquer tarefa que não tiver tarefas

que a precedem. Inicialmente, I contém todas as máquinas, e é definido o valor

de r(Tentrada, Pj) para cada tarefa de entrada Tentrada como zero, onde r(Ti, Pj) é o

tempo para a última mensagem endereçada a Ti em Pj chegar. Esse cálculo inclui

o tempo de finalização do processamento da tarefa precedente e o tempo de envio

da mensagem. Para situações em que a memória é compartilhada entre as tarefas,

o custo de envio da mensagem é desconsiderado.

Passo 2. Escolher o par tarefa livre Ti e máquina disponível Pj que gera o menor

r(Ti, Pj), e atribuir ao tempo de escalonamento de Ti - ei - o maior valor entre

CM e r(Ti, Pj).

Passo 3. Decisão de escalonamento: se Ti antes escolhida tiver um tempo de escalo-

namento ei menor ou igual a NM , significa que ela será escalonada nessa iteração.

Ti é removida de A, assim como Pj de I. Assim, é calculado o seu tempo de finali-

zação Ci = ei + µ(Ti). NM assume o valor do menor tempo de conclusão Ci dentre

as tarefas que estão escalonadas no momento. A decisão de escalonamento se repete

para quantas tarefas tiver que satisfaçam as exigências feitas anteriormente.

Passo 4. Assim que não há mais tarefas com tempo de escalonamento menor que

NM , CM assume o valor de NM , reseta I, atualiza A com as novas tarefas livres e

r(Ti, Pj) recebe maxTk∈pred(Ti)(Ci + n(Ti, Tk) · t(p(Ti), Pj)) para cada nova tarefa Ti

livre. n(Ti, Tk) é o tempo de passar uma informação da tarefa "pai" Ti para a tarefa

"filha" Tk, e t(p(Ti), Pj) é o tempo de comunicação entre a máquina em que Ti está

e Pj.

Passo 5. O algoritmo volta à decisão de escalonamento, até que não sobre nenhuma

tarefa para ser executada. O makespan final está em CM .

O custo de execução desse algoritmo é O(n2m). A razão de aproximação desse

algoritmo pode ser construída pelo limite que Graham (1966) prova para o List Scheduling

(LS), mas já que esse limite é para sistemas de memória compartilhada (Seção 3.2.1), é

necessário um adicional nesse limite que represente a comunicação entre as tarefas do

escalonamento do ETF (Earliest Task First Scheduling). Portanto, a razão de aproximação

do ETF se dá pelo limite do LS de Graham (1966), em soma com o resultado da execução

do algoritmo C.

De forma descrita, o algoritmo C busca por momentos em que as máquinas ficaram

ociosas no escalonamento do ETF, e busca por tarefas que se fossem transferidas para

essas máquinas ociosas não causaria atraso na execução, tendo em vista que mudar

de máquina altera o custo de comunicação entre essa tarefa e as tarefas que a precedem.

Para cada tarefa que se encaixa nesse requisito, acumula-se numa variável C o tempo

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 41

de comunicação atualizado entre a tarefa transferida e as tarefas precedentes a ela.

Portanto:

w ≤
(

2− 1

m

)

w∗ + C (3.11)

A fim de ilustrar o funcionamento desse algoritmo, considere a Figura 13 e Tabela 7

que apresentam, respectivamente, a estrutura de precedência entre quatro tarefas e seus

custos de execução. Assim, a Figura 14 e a Figura 15 trazem o resultado da aplicação do

algoritmo ETF (Earliest Task First Scheduling) para escalonar quatro tarefas em duas

máquinas.

Figura 13 – Exemplo de grafo acíclico direcionado de precedência das tarefas do exemplo
da aplicação do algoritmo Earliest Task First - ETF - com os custos de
comunicação entre as tarefas.

Fonte: Autoria Própria

Tabela 7 – Tabela com o custo µ(Ti) para cada tarefa do exemplo.

Tarefa µ(Ti)

T1 2

T2 3

T3 2

T4 4

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 42

Figura 14 – Aplicação do algoritmo Earliest Task First - ETF em cinco iterações para
decisão de escalonamento. Cada iteração define um momento no tempo de
execução das tarefas nas máquinas. Nesse caso não há tempos de ociosidade
das máquinas para justificar aplicação do algoritmo C. O makespan dessa
solução é o valor final de CM = 8.

Fonte: Autoria Própria

Figura 15 – Ilustração da aplicação do algoritmo Earliest Task First - ETF, conforme o
exemplo descrito.

Fonte: Autoria Própria

3.2.2.3 CLANS

O algoritmo CLANS apresentado por McCreary e Gill (1989) é um algoritmo

que usa de algumas teorias aplicadas a grafos para encontrar uma aproximação da so-

lução ótima. A estratégia dessa heurística é conseguir separar as tarefas representadas

no grafo em grãos, onde cada grão é um subgrafo do grafo acíclico direcionado (DAG)

de precedência das tarefas do sistema, de forma que cada subgrafo desses contém tarefas

que possam ser executadas sequencialmente numa mesma máquina, e assim associar

grãos a máquinas.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 43

A partir dessa técnica, só nos resta um método para identificar os melhores grãos e

atribuí-los corretamente às máquinas do sistema. A estratégia de McCreary e Gill (1989)

é formar clãs, que são também subgrafos do grafo acíclico direcionado (DAG) de prece-

dência que se comportam da mesma forma: precedem e sucedem os mesmos nós, ou seja,

a comunicação com esse clã se dá sempre da mesma forma. Esses clãs, posteriormente,

serão analisados e diferenciados para grãos ou conjunto de grãos.

Figura 16 – Clãs formados do grafo acíclico direcionado dado. Se pegarmos como exemplo
o clã {2, 3}, os nós 2 e 3 pertencem a esse clã pois ambos são filhos de 1 e
ambos só possuem 7 como filho, sendo possível abstraí-los como um único nó
no grafo.

Fonte: Autoria Própria

Dentre os vários clãs gerados do grafo acíclico direcionado (DAG) de precedência,

os mesmos podem ser divididos em três categorias:

Independente: Clãs independentes são grafos que não possuem arestas, como na

Figura 17. Ou seja, as tarefas contidas nesse grafo são independentes.

Figura 17 – Clã Independente

Fonte: Autoria Própria

Linear: Clãs lineares são grafos onde, para cada par de tarefas Ti, Tj, ou Ti ≺ Tj, ou

Tj ≺ Ti, como na Figura 18

Primitivo: Clãs Primitivos são grafos que não respeitam as regras de nenhuma das

classificações antes citadas, e portanto, se fossem subdivididos em mais clãs, resul-

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 44

Figura 18 – Clã Linear

Fonte: Autoria Própria

tariam somente em clãs unitários (contendo um único nó). Um exemplo de um clã

primitivo é representado na Figura 19.

Figura 19 – Clã Primitivo

Fonte: Autoria Própria

Os clãs previamente separados, agora, serão organizados em uma árvore de hie-

rarquia onde os nós-folha são tarefas, os nós centrais são clãs e as arestas são a hierar-

quia entre esses nós. A hierarquia é dada de forma que um clã ou tarefa é subordinada a

outro clã se estiver contido no mesmo. Depois, é feito um cálculo do custo dos nós dessa

árvore de baixo para cima, seguindo os três tipos de clãs possíveis:

Linear: É um tipo de nó onde a paralelização não pode ocorrer, logo seus nós filhos

devem ser executados em sequência, e o custo desse nó resulta na soma do custo

de execução de cada nó filho.

Primitivo: É um nó que agrega todos os seus filhos num mesmo grão. O custo desse nó

também é a soma do custo dos filhos.

Independente: É o tipo de nó que abre espaço para paralelização, e para que um

número arbitrário de seus filhos possam compor um mesmo grão. Portanto, é um

nó da árvore que pode ser composto por mais de um grão. Como a execução agora

é paralela, é preciso considerar novas variáveis no cálculo do custo do nó:

• Caso o custo de executar os nós desse clã seja menor se for feito em sequência

quando comparado com paralelizar, tendo em vista que os custos de comuni-

cação das tarefas em serialização é desconsiderado, o clã inteiro será um único

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 45

grão, portanto será executado em sequência. Custo é somente a soma do custo

de execução das tarefas.

• Caso contrário, será feito o processo de agregação: O nó será dividido em p

subgrupos K1, K2, . . . , Kp, 1 ≤ p ≤ m, onde cada um será atribuído a uma

máquina Pj diferente. O custo de comunicação só é considerado se o par

de tarefas dependentes não estiver na mesma máquina. Cada subgrupo Ki é

composto por tarefas T1,i, T2,i . . . , Tk,i.

• O makespan de Ki é a soma dos tempos de execução dos nós pertencentes

a ele, em conjunto com os custos de comunicação de saída ou entrada que

forem necessários. O custo de entrada de informações para esse subgrupo é

max{yk,i}, onde yk,i é o custo da informação entrar na tarefa Tk,i do subgrupo

Ki, e o custo de saída de comunicação para esse subgrupo é
∑

y′
k,i, onde y′

k,i

é o custo de saída de informações da tarefa Tk,i do subgrupo Ki.

A estratégia desse algoritmo para encontrar uma solução próxima da ótima é

criar os subgrupos dos nós independentes de forma que minimize os seus três custos

envolvidos: o custo de execução de cada subgrupo, o custo de entrada e de saída de

informações no subgrupo. Para um caso de sistema onde todas as tarefas possuem o

mesmo tempo de execução µ, mesmo custo de entrada de informações y e de

saída de informações y′, é mais fácil de obter uma agregação em grãos ótima das tarefas

dos nós independentes. Para esse caso, o custo total do clã independente será
(

d Φ
|Ki|e

)

y +

(Φ − |Ki|)y′ + µ|Ki| considerando que Φ é o número de nós desse clã, e o |Ki| ótimo é
√

yΦ
µ−y′

quando µ > y′, e 1 quando µ ≤ y′. Para casos gerais, o custo total do clã é limitado

por no máximo
∑

1≤i≤Φ(yi + y′
i) + max1≤i≤Φ µ(Ti), que é o custo de separar uma máquina

para cada tarefa do clã (subgrupos são de tamanho 1).

O algoritmo CLANS, então, para determinar os grãos, faz:

Passo 1. Transformar o grafo acíclico direcionado (DAG) de precedência em um árvore

hierárquica de fluxo de dados.

Passo 2. Atribuir custos de execução aos nós-folha do grafo acíclico direcionado (DAG)

de precedência.

Passo 3. Calcular os custos dos nós internos.

Passo 4. Determinar os grãos:

• Se o custo do nó for igual à soma dos custos de cada nó filho, todos os nós

filhos pertencem ao mesmo grão, devendo ser atribuídos à mesma máquina,

com senso sobre qual máquina está livre/com menos custo acumulado.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 46

• Já se o custo do nó for menor que a soma dos custos de cada nó filho (ou

seja, é o caso do nó clã independente cujos filhos não são todos nós-folha),

separa os nós filhos em grãos. Cada grão é um dos subgrupos mencionados, e

cada um deles deve ser atribuído a uma máquina diferente, com senso sobre

qual máquina está livre/com menos custo acumulado.

Já o algoritmo de escalonamento em si consiste em varrer a árvore por altura

reversa (da maior altura à menor), e escalonar seus nós filhos de acordo com o tipo de clã

no qual aquele grão se originou.

As Figuras 20, 21 e 22 são um exemplo da aplicação do CLANS para escalonar

sete tarefas em duas máquinas. Os custos das tarefas estão na Tabela 8.

Tabela 8 – Tabela com o custo µ(Ti) para cada tarefa do exemplo.

Tarefa µ(Ti)

T1 3

T2 3

T3 3

T4 3

T5 1

T6 1

T7 2

Fonte: Autoria própria

Figura 20 – Grafo acíclico direcionado (DAG) de precedência das sete tarefas envolvidas
no exemplo, com seus custos de comunicação.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 47

Figura 21 – Árvore de hierarquia formada pelo grafo acíclico direcionado (DAG) de pre-
cedência antes apresentado, onde C1, C2. . . , C6 são clãs. A forma na qual
os clãs organizam as tarefas determinam como as mesmas serão escalonadas
posteriormente.

Fonte: Autoria Própria

Figura 22 – Escalonamento após formar os grãos, baseando-se na árvore de hierarquia.
Veja que os clãs lineares dispõem seus grãos filhos sequencialmente numa
mesma máquina, e os grãos independentes possuem a liberdade de paralelizá-
los (como no caso do clã C5) ou de sequenciá-los (como no caso dos clãs C1
e C2), conforme vantagens de custo de execução. O makespan da solulção
gerada w é 14, com tempo ocioso na primeira máquina φ1 de 5.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 48

O custo de execução do algoritmo CLANS se comporta de forma próxima a O(n3)

(MCCREARY; GILL, 1989), dado que esse é o custo para montar a árvore hierárquica.

Não foi encontrado nesse estudo uma razão de aproximação para esse algoritmo.

3.3 Processamento em Máquinas Paralelas não Idênticas

Esse leque de variantes, agora, considera uma nova restrição quanto às máquinas. O

problema de escalonamento de máquinas não idênticas prevê que cada máquina envolvida

no problema possui um tempo de execução diferente para uma mesma tarefa.

Segundo Ibarra e Kim (1977), para esse problema, cada máquina Pj possui uma

função própria de tempo de execução µj, 1 ≤ j ≤ m de forma que, para executar

uma tarefa Ti, 1 ≤ i ≤ n, o custo é µj(Ti). Esse custo não possui o compromisso de

ter o mesmo valor em cada máquina, e além disso, a distribuição desses custos pode

ser uniforme (custos entre máquinas para uma mesma tarefa é proporcional) ou não

relacionada (não há padrão fácil de se encontrar entre as funções de custo). Todos os

algoritmos que serão apresentados a seguir valem para ambas as distribuições.

3.3.1 Memória Compartilhada

Essa variante tem exatamente as mesmas condições que a sua versão para má-

quinas idênticas (Seção 3.2.1), com o adicional da restrição das máquinas não serem

idênticas.

O problema, agora, consiste em encontrar a melhor forma de organizar as tarefas

entre as máquinas, de forma que resulte no menor makespan possível, considerando que

uma mesma tarefa tem tempos diferentes de execução, dependendo de qual máquina ela

é escalonada.

Serão apresentados, aqui, uma coleção de algoritmos aproximados apresentados por

Ibarra e Kim (1977), que são nada mais que adaptações de algoritmos conhecidos para

aproximações no contexto de máquinas idênticas (Seção 3.2.1), como o List Scheduling

e o LPT Scheduling (Longest Processing Time Scheduling). Esses algoritmos, também,

consideram que as tarefas a serem escalonadas são independentes entre si.

3.3.1.1 A-Scheduling

O A-Scheduling opta por uma escolha gulosa ao escalonar uma certa tarefa a

uma certa máquina, e é de forma arbitrária, tendo em vista que as tarefas envolvidas não

serão ordenadas numa lista de escalonamento. Esse algoritmo se dá da seguinte forma:

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 49

Passo 1. Cada máquina Pj atribui a si uma tarefa Ti de forma a minimizar o seu próprio

makespan, agora considerando que cada máquina tem seu próprio µj.

Passo 2. Retorna o resultado w = max{∑T ∈Lj
µj(T)}, onde Lj é a lista de tarefas que

foram escolhidas para serem executadas em Pj.

A complexidade do A-Scheduling é linear O(n), visto que faz decisões gulosas,

mas não ordena as tarefas em lista, ou seja, não tem custo adicional para ordenação das

tarefas. A razão de aproximação da solução de ambos os algoritmos se comporta da

mesma forma:

w

w∗ ≤ m (3.12)

Como o A-Scheduling é uma adaptação do LS (List Scheduling) arbitrário,

se as máquinas voltassem a ser idênticas, o limite máximo para a razão de aproxima-

ção voltaria a ser a proposta em Graham (1966) para List Scheduling e apresentada na

Seção 3.2.1.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas máquinas

não-idênticas. na Tabela 9 está os custos das tarefas do exemplo para cada máquina, e a

Figura 23 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 9 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina.

Tarefa µ1(Ti) µ2(Ti)

T1 2 3

T2 2 1

T3 3 1

T4 4 5

T5 5 2

Fonte: Autoria própria

Figura 23 – Escalonamento do exemplo usando A-Scheduling. O makespan da solução w
é 8, com tempo ocioso na primeira máquina φ1 de 3.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 50

3.3.1.2 B-Scheduling

O algoritmo B-Scheduling usa da base de processamento do A-Scheduling antes

visto. Sua estratégia de execução é a seguinte:

Ordena as tarefas Ti em uma lista de escalonamento L em ordem decrescente pelo menor

custo de execução da tarefa dentre as máquinas.

Escalona a lista L como no A-Scheduling.

A complexidade do B-Scheduling é O(n log n), pois o custo de escalonamento

é linear O(n), como visto no A-Scheduling, e a ordenação das tarefas é feita em tempo

O(n log n). A razão de aproximação de f com f ∗, dada como solução ótima, é provada

por Ibarra e Kim (1977) como sendo:

w

w∗ ≤ m (3.13)

O B-Scheduling, como descrito por Ibarra e Kim (1977), é um algoritmo que pode

ser reduzido ao algoritmo LPT (Longest Processing Time Scheduling) no contexto de

máquinas idênticas (Seção 3.2.1). Portanto, quando o B-Schedule é aplicado no contexto

de máquinas idênticas (Seção 3.2), sua razão de aproximação fica subordinada ao limite

máximo do LPT.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas máquinas

não-idênticas. na Tabela 10 está os custos das tarefas do exemplo para cada máquina, e

a Figura 24 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 10 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina.

Tarefa µ1(Ti) µ2(Ti)

T1 1 3

T2 3 1

T3 2 1

T4 4 5

T5 5 2

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 51

Figura 24 – Escalonamento do exemplo usando B-Scheduling. O makespan da solução w
é 5, com tempo ocioso na segunda máquina φ2 de 1.

Fonte: Autoria Própria

3.3.1.3 C-Scheduling

O algoritmo C-Scheduling é um método alternativo do B-Scheduling. Sua estra-

tégia de execução se dá por:

Passo 1. Ordena as tarefas Ti em uma lista de escalonamento L em ordem decrescente

pelo maior custo de execução da tarefa dentre as máquinas.

Passo 2. Escalona a lista L como no A-Scheduling.

A complexidade do C-Scheduling é a mesma do B-Scheduling, O(n log n), já

que o custo de escalonamento é linear O(n) e a ordenação das tarefas é feita em tempo

O(n log n). A razão de aproximação de w com w∗, dada como solução ótima, é provada

por Ibarra e Kim (1977) como sendo:

w

w∗ ≤ m (3.14)

O C-Scheduling, como descrito em Ibarra e Kim (1977), também é um algoritmo

que pode ser reduzido ao algoritmo LPT (Longest Processing Time Scheduling) no con-

texto de máquinas idênticas (Seção 3.2.1), e quando é aplicado nesse contexto, sua razão

de aproximação também fica subordinada ao limite máximo do LPT.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas máquinas

não-idênticas. na Tabela 11 está os custos das tarefas do exemplo para cada máquina, e

a Figura 25 apresenta o escalonamento feito conforme o algoritmo descrito.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 52

Tabela 11 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina.

Tarefa µ1(Ti) µ2(Ti)

T1 1 3

T2 3 1

T3 2 1

T4 4 5

T5 5 2

Fonte: Autoria própria

Figura 25 – Escalonamento do exemplo usando C-Scheduling. O makespan da solução w
é 6.

Fonte: Autoria Própria

3.3.1.4 D-Scheduling

O D-Scheduling se diverge dos outros algoritmos apresentados em estratégia de

escalonamento: usa do escalonamento dinâmico (escolher em tempo de execução a

tarefa a escalonar) para minimizar o tempo de finalização global do sistema. Com isso, a

execução se dá por:

Passo 1. escolher uma tarefa Ti para uma máquina Pj, de forma que esse escalonamento

resulte no menor makespan do sistema para aquela iteração (observa w iterativa-

mente).

Passo 2. retornar w = max{wj}, 1 ≤ j ≤ m.

O custo assintótico do D-Scheduling é O(n2), tendo em vista que, para cada

i-ésima tarefa escalonada, ele procura pela próxima tarefa adequada para escalonamento

dentre as n − i tarefas que sobraram. O limite máximo da razão de aproximação,

no entanto, não muda quando comparado com os outros algoritmos apresentados, como

provado por Ibarra e Kim (1977):

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 53

w

w∗ ≤ m (3.15)

No caso do D-Scheduling, esse limite é o melhor possível para m = 2, mas não

é o mais adequado para m ≥ 3 como nos outros algoritmos (IBARRA; KIM, 1977). O

D-Scheduling pode ser reduzido a um outro algoritmo se convertermos o contexto para

máquinas idênticas (Seção 3.2.1): o SPT Scheduling (Shortest Processing Time Sche-

duling), que possui a mesma estratégia do LPT Scheduling (Longest Processing Time

Scheduling), mas ordena as tarefas em ordem crescente de tempo de processamento µ.

Quando é aplicado no contexto de máquinas idênticas (Seção 3.2), sua razão de apro-

ximação também fica subordinada ao limite máximo do SPT, que é idêntico ao do List

Scheduling, como apresentado por Ibarra e Kim (1977) e Graham (1966):

w

w∗ ≤ 2− 1

m
(3.16)

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas máquinas

não-idênticas. na Tabela 12 está os custos das tarefas do exemplo para cada máquina, e

a Figura 26 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 12 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina.

Tarefa µ1(Ti) µ2(Ti)

T1 1 3

T2 3 1

T3 2 1

T4 4 5

T5 5 2

Fonte: Autoria própria

Figura 26 – Escalonamento do exemplo usando D-Scheduling. O makespan da solução w
é 5, com tempo ocioso na segunda máquina φ2 de 1.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 54

3.3.1.5 E-Scheduling

O E-Scheduling é muito semelhante ao D-Scheduling, ainda mais que os dois

são algoritmos de escalonamento dinâmico para minimizar o makespan global do sis-

tema, mas o E-Scheduling usa da seguinte estratégia: ele escalona as tarefas nas máquinas

observando diretamente o tempo de finalização da tarefa escolhida para escalonamento,

resultando no menor tempo de finalização global. Com isso, a execução se dá por:

Escalonar uma tarefa Ti à uma máquina Pj, de forma que esse escalonamento resulte no

menor tempo de finalização para Ti perante todas as máquinas.

Retornar w = max{wj}, 1 ≤ j ≤ m.

O custo assintótico do E-Scheduling é O(n2), já que usa a mesma estratégia de

escalonamento que o D-Scheduling. O limite máximo da razão de aproximação, como

provado por Ibarra e Kim (1977) é:

w

w∗ ≤ m (3.17)

O E-Scheduling pode ser reduzido ao LPT (Longest Processing Time Scheduling),

assim como o B-Scheduling e o C-Scheduling. Quando aplicado no contexto de máquinas

idênticas (Seção 3.2), sua razão de aproximação fica subordinada ao limite máximo do

LPT.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas máquinas

não-idênticas. na Tabela 13 está os custos das tarefas do exemplo para cada máquina, e

a Figura 27 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 13 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina.

Tarefa µ1(Ti) µ2(Ti)

T1 1 3

T2 3 1

T3 2 1

T4 4 5

T5 5 2

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 55

Figura 27 – Escalonamento do exemplo usando E-Scheduling. O makespan da solução w
é 5, com tempo ocioso na segunda máquina φ2 de 1.

Fonte: Autoria Própria

3.3.1.6 F-Scheduling

O F-Scheduling foi projetado com o objetivo de possuir um melhor limite

máximo para m = 2 que o dos algoritmos já apresentados, e como o foco é para m = 2, o

algoritmo procura soluções para escalonamento que envolva somente duas máquinas.

Esse algoritmo usa da lógica de corrigir o escalonamento inicialmente projetado para

tentar reduzir o tempo de finalização da máquina com o maior tempo de finalização:

Passo 1. Projetar um escalonamento completo, onde as tarefas Ti são associadas à

máquina P1 ou P2, cujo makespan é o menor possível.

Passo 2. Se o tempo de finalização das duas máquinas é o mesmo, o escalonamento é

ótimo, mas caso uma das máquinas possua tempo ocioso, o escalonamento pode não

ser ótimo. Para corrigir isso, o algoritmo procura reescalonar algumas tarefas da

máquina com maior tempo (suponha P1) para a com menor tempo (suponha P2), de

forma que reduza ao máximo o tempo em P1 e minimize o aumento de tempo

em P2:

• Reescalonar Ti de P1 para P2, sendo µ1(Ti)
µ2(Ti)

o menor possível.

• Repetir isso até que o makespan de P1 fique menor que o de P2.

Passo 3. retornar w = max{wj}, 1 ≤ j ≤ 2.

A complexidade da primeira etapa é O(n), e a segunda é O(m log m) pelo custo

de ordenação e reescalonamento das tarefas. Como O(n) + O(m log m) ≤ O(n log n), a

complexidade total é O(n log n) (IBARRA; KIM, 1977). Enquanto isso, Ibarra e Kim

(1977) prova que a razão de aproximação para esse algoritmo é:

w

w∗ =

√
5 + 1

2
(3.18)

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 56

Para exemplificar a aplicação do F-Scheduling, podemos aproveitar o escalona-

mento feito pelo A-Scheduling e aplicar a correção conforme descrito. A tabela 14 traz de

volta os custos descritos para o exemplo do A-Scheduling e a Figura 28 mostra o escalo-

namento das cinco tarefas em duas máquinas não-idênticas, conforme o descrito para esse

algoritmo.

Tabela 14 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina.

Tarefa µ1(Ti) µ2(Ti)

T1 2 3

T2 2 1

T3 3 1

T4 4 5

T5 5 2

Fonte: Autoria própria

Figura 28 – Escalonamento do exemplo usando F-Scheduling. As correções feitas para
minimizar o tempo ocioso que existia na segunda máquina anteriormente
tinha menção de reduzir o tempo ocioso das máquinas, mas, como podemos
ver, nesse caso houve aumento no makespan final do sistema e do tempo
ocioso das máquinas. O makespan da solução w é 9, com tempo ocioso na
segunda máquina φ1 de 6.

Fonte: Autoria Própria

3.3.2 Memória Distribuída

O paralelismo com memória distribuída para o problema de escalonamento em má-

quinas heterogêneas deve lidar tanto com as condições antes impostas para o paralelismo

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 57

com memória distribuída em máquinas idênticas (Seção 3.3.1) quanto com as restrições

para sistemas com máquinas heterogêneas (Seção 3.3).

Primeiramente, vale citar que os algoritmos MCP (Modified Critical Path) e o

ETF (Earliest Task First), antes tratados para máquinas idênticas, também se encaixam

para encontrar soluções subótimas em problemas com máquinas heterogêneas, mas além

desses, também serão comentados os algoritmos HEFT e CPOP de Topcuoglu, Hariri

e Wu (2002), que não possuem razões de aproximação formalmente provadas, justamente

por serem heurísticas, mas são algoritmos mais novos que representam o curso que está

tomando atualmente os novos projetos de algoritmos para o problema de escalonamento,

ao lado dos algoritmos de busca guiada.

3.3.2.1 Modified Critical Path - MCP

O MCP de Wu e Gajski (1990) é uma modificação do algoritmo de caminho crítico

apresentado por Sethi (1976), acrescentando uma heurística que considera a flexibilidade

que cada tarefa tem de ser executada em um certo ponto no tempo de execução, de forma

que não atrapalhe a execução das outras tarefas.

Assim como antes citado (Seção 3.2.2), o algoritmo possui o mesmo método de

execução, sendo pontualmente modificado na escolha da máquina para a execução da

tarefa no passo 3:

Passo 1. Executar o ALAP Binding e atribuir ALAP (Ti) para cada nó do grafo ací-

clico direcionado (DAG) de precedência.

Passo 2. Para cada nó Ti, criar uma lista Γ(Ti) que contém o ALAP de Ti e de todos

os seus descendentes em ordem crescente. Ordenar todas as Γ(Ti) em ordem lexi-

cográfica, e a partir dela criar uma lista única de escalonamento L com todas as

tarefas.

Passo 3. Escalona, em ordem, cada tarefa de L à máquina que a executa mais rapi-

damente, respeitando a função de tempo de execução individual a cada máquina.

Assim que uma máquina se liberar, procura por outra tarefa livre em L, respeitando

a ordem estipulada.

A complexidade do algoritmo não muda, sendo ela O(n2 log n), assim como a

sua razão de aproximação não altera de comportamento, como demonstrado por Wu

e Gajski (1990):

w

w∗ ≤ 2− 1

m
(3.19)

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 58

3.3.2.2 Earliest Task First Scheduling - ETF

O algoritmo ETF (Earliest Task First Scheduling) de Hwang et al. (1989), assim

como o MCP (Modified Critical Path), foi anteriormente citado no contexto de máquinas

idênticas (Seção 3.2.2), mas também é um algoritmo efetivo para o contexto de máqui-

nas heterogêneas. O código do ETF não precisa ser alterado em nada na mudança de

contexto, só vale lembrar agora que, no Passo 3, a escolha do escalonamento levará em

consideração que as máquinas possuem funções de tempo diferentes, já que a escolha é

feita baseando-se em Ci, e Ci = ei + µ(Ti).

A complexidade e razão de aproximação desse algoritmo se repetem, sendo

O(n2m) e w ≤
(

2− 1
m

)

w∗ + C, sendo C o resultado da execução do algoritmo C, antes

descrito (Seção 3.2.2).

3.3.2.3 Heterogeneous Earliest Finishing Time - HEFT

O algoritmo HEFT atribui prioridade de escalonamento a uma tarefa de acordo

com a contribuição que ela dará ao makespan (e como essa contribuição se propaga

- caminho crítico) do sistema ao ser escalonada. Essa prioridade é calculada com base

no grafo acíclico direcionado (DAG) de precedência, resultando em dois rankings para

a tarefa perante as outras do grafo: Upward Rank e/ou Downward Rank, definida por

Topcuoglu, Hariri e Wu (2002) como:

• Custo médio entre duas tarefas: Não é um custo considerado médio pelo fato

de ser feita a média entre os custos puros de transmissões datai,j entre duas tarefas

Ti e Tj, já que só existe um custo de comunicação entre elas. Para ambos algoritmos

HEFT e CPOP, são considerados, também, taxas de transmissão Bj,k entre pares

de máquinas Pj e Pk (1 ≤ k ≤ m) e custo de abertura de comunicação Xj para cada

máquina Pj. Então, o custo médio de comunicação entre tarefas é calculado usando

a média das taxas de transmissão B̄ e dos custos de abertura das máquinas X̄:

¯ci,j = X̄ +
datai,j

B̄
(3.20)

• Upward Rank de Ti: É o custo médio de execução do caminho crítico formado

de Ti até a tarefa de saída do grafo acíclico direcionado (DAG) de precedência.

ranku(Ti) = µ̄(Ti) + max
Tj∈succ(Ti)

{c̄i,j + ranku(Tj)} (3.21)

Onde µ̄(Ti) é a média de todos tempos de execução para Ti perante todas as má-

quinas. Para Tsaida, ranku(Tsaida) = µ̄(Tsaida)

• Downward Rank de Ti: É o custo médio de execução caminho crítico formado

da tarefa de entrada do DAG de precedência e comunicação (tarefa que não depende

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 59

de nenhuma outra tarefa) até Ti.

rankd(Ti) = max
Tj∈pred(Ti)

{rankd(Tj) + µ̄(Tj) + c̄i,j} (3.22)

Para Tentrada, rankd(Tentrada) = 0.

Sendo que o caminho crítico (CP) é um caminho formado a partir de um nó de

partida do DAG (Grafo Acíclico Direcionado) de precedência, e que é construído com os

nós filhos que possuem o maior ranking. Além disso, é a sequência de execução mais

demorada que começa na tarefa de início do caminho, e por ser irredutível (é sequencial),

se torna o limite mínimo do makespan de qualquer sequência de execução que comece com

essa tarefa.

Além disso, é importante conhecer as variáveis EST e EFT:

• Earliest Execution Starting Time: É o tempo mais cedo possível que uma

tarefa pode ser escalonada para execução em uma certa maquina. Para uma tarefa

de entrada, para qualquer máquina, seu EST é zero.

EST (Ti, Pj) = max{ (tempo em que Pj se libera), max
Tk∈pred(Ti)

{AFT (Tk) + ci,k}}
(3.23)

Onde AFT (Ti) é o tempo em que Ti de fato acabou de ser executada no sistema,

e ci,j é o custo de comunicação de uma tarefa Ti para uma tarefa Tj.

• Earliest Execution Finishing Time: É o tempo mais cedo possível para uma

tarefa ser finalizada em uma certa máquina.

EFT (Ti, Pj) = µ(Ti) + EST (Ti, Pj) (3.24)

O HEFT é composto por duas fases principais:

Definição das prioridades: Ordenar as tarefas em ordem descrescente por ranku,

com empates resolvidos de forma aleatória, significando que é feita uma ordenação

topológica que respeita as relações de dependência de comunicação entre as

tarefas e a prioridade estipulada.

Seleção de processador: Passo 1. Seleciona a primeira tarefa da ordem topológica

gerada e calcula o EFT da tarefa com todas as máquinas, analisando, tam-

bém, a possibilidade de "encaixar"essa tarefa em janelas de ociosidade dessas

máquinas. Essa técnica se chama política de inserção para escalonamento.

Passo 2. Escalona a tarefa à máquina que lhe oferece o menor EFT .

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 60

A complexidade do HEFT depende do número de relações de precedência pre-

sentes entre as tarefas do sistema, ou seja, o tamanho de A no grafo acíclico direcionado

(DAG) P (V, A) de precedência, e no número de máquinas, concluindo O(|A|m).

Para mostrar o funcionamento do algoritmo HEFT, podemos aplicá-lo a um exem-

plo, escalonando cinco tarefas em duas máquinas. A Tabela 15 mostra os custos das tarefas

para cada máquina, assim como o custo médio de comunicação c̄i,j de cada tarefa. A Figura

29 mostra a relação de precedência e comunicação entre as tarefas através de um DAG

de precedência, e a Figura 30 mostra o escalonamento resultante do algoritmo aplicado

no exemplo.

Tabela 15 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina,
e o custo médio de comunicação c̄i,j de cada tarefa.

Tarefa µ1(Ti) µ2(Ti) c̄i,j

T1 2 1 2

T2 1 2 2

T3 2 3 2

T4 3 3 2

T5 4 5 2

Fonte: Autoria própria

Figura 29 – Grafo acíclico direcionado (DAG) de precedência das cinco tarefas envolvidas
no exemplo.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 61

Figura 30 – Aplicação do algoritmo HEFT no exemplo antes descrito. Nesse caso, não
foi possível aplicar política de inserção para reduzir os tempos ociosos nas
máquinas envolvidas. o makespan da solução w é 13, com tempo ocioso na
primeira máquina φ1 de 5, e na segunda máquina φ2 de 9.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 62

3.3.2.4 Critical Path on a Processor - CPOP

O CPOP de Topcuoglu, Hariri e Wu (2002) usa dos rankings das tarefas como

prioridade de escalonamento assim como o HEFT. Além disso, usam do caminho crítico

do grafo acíclico direcionado (DAG) para minimizar o makespan do sistema, visto

que o tempo de executar as tarefas do caminho crítico (CP) do grafo acíclico direcionado

(DAG) é o menor tempo possível para executar o sistema como um todo, e se houver

atrasos nas tarefas inclusas nesse caminho, esse atraso impacta diretamente no makespan

total.

Para definir quais tarefas serão inclusas no caminho crítico, o CPOP define uma

prioridade que é composta pela soma do Upward Rank e do Downward Rank:

prioridade(Ti) = ranku(Ti) + rankd(Ti) (3.25)

Simbolizando que as tarefas mais importantes para esse algoritmo são as que apre-

sentam muitas conexões, além de um custo alto de comunicação e de processamento. Para

montar o caminho crítico (CP) do grafo acíclico direcionado (DAG), primeiro se as-

socia a própria tarefa de entrada Tentrada do DAG como tarefa do caminho crítico, e

a partir daí se elege uma tarefa que sucede a recentemente escolhida pela prioridade

antes estabelecida, até chegar em uma tarefa de saída Tsaida.

A máquina do sistema que executa o caminho crítico com o menor custo é reser-

vada somente para o caminho crítico, enquanto as outras tarefas são distribuídas entre as

máquinas restantes. Esse escalonamento é feito usando uma lista de prioridade cujas ta-

refas com maior valor de prioridade(Ti) vêm primeiro e, assim como no HEFT, considera

a política de inserção para escalonamento.

A complexidade desse algoritmo é O(|A|m), onde A é o número de arestas no

grafo acíclico direcionado (DAG) de precedência P (V, A) e n é o número de tarefas.

Agora exemplificaremos uma aplicação do algoritmo CPOP, escalonando seis ta-

refas em duas máquinas. A Tabela 16 mostra os custos das tarefas para cada máquina,

assim como o custo médio de comunicação c̄i,j de cada tarefa. A Figura 31 mostra a re-

lação de precedência e comunicação entre as tarefas através de um DAG de precedência,

e a Figura 32 mostra o escalonamento resultante do algoritmo aplicado no exemplo.

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 63

Tabela 16 – Tabela com o custo µ(Ti) para cada tarefa do exemplo, para cada máquina,
e o custo médio de comunicação c̄i,j de cada tarefa.

Tarefa µ1(Ti) µ2(Ti) c̄i,j

T1 10 6 5

T2 8 10 5

T3 6 6 5

T4 5 9 5

T5 6 2 5

T5 1 1 5

Fonte: Autoria própria

Figura 31 – Grafo acíclico direcionado (DAG) de precedência das seis tarefas envolvidas
no exemplo.

Fonte: Autoria Própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 64

Figura 32 – Aplicação do algoritmo CPOP no exemplo antes descrito. Foi aplicada a po-
lítica de inserção na sexta tarefa, pois, sem ferir as restrições de precedência
das tarefas, era possível encaixá-la em um momento ocioso da segunda má-
quina. o makespan da solução w é 24, com tempo ocioso na primeira máquina
φ1 de 5, e na segunda máquina φ2 de 15.

Fonte: Autoria Própria

3.4 Considerações Finais

Neste capítulo, foram apresentados os principais algoritmos para diferentes vari-

ações do problema de escalonamento de tarefas. A seguir, são apresentadas as tabelas

comparativas entre esses algoritmos, agrupados pelas variantes que tratam, de modo a

resumir as características de cada um deles.

Na Tabela 17 é apresentado o algoritmo EDD (Earliest Due Date rule) que é

o principal algoritmo de aproximação para o contexto de escalonamento em uma única

máquina. Na Tabela 18 são apresentados os algoritmos para o caso de máquinas paralelas

idênticas e, na Tabela 19, os algoritmos para máquinas não-idênticas.

Tabela 17 – Algoritmos aproximados para escalonamento em uma única máquina.

Algoritmo Seção Complexidade Aproximação (αmax/α∗
max ≤)

EDD 3.1 O(n log n) 2

Fonte: Autoria própria

Capítulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximações 65

Tabela 18 – Algoritmos aproximados para escalonamento paralelo em máquinas idênticas.
A razão de aproximação dos algoritmos LS (List Scheduling) para ordens
intervalares de precedência e CLANS não é especificada por seus autores.

Algoritmo Seção Complexidade Aproximação (w/w∗ ≤) Memória

List Scheduling 3.2.1 O(n log n) 2− 1
m

Compartilhada

LPT 3.2.1 O(n log n) 4
3
− 1

3m
Compartilhada

MULTIFIT 3.2.1 O(n log n + kn log m) τm + 1
2

k Compartilhada

LS ordens intervalares 3.2.1 O(|V |+ |A|) - Compartilhada

MCP 3.2.2 O(n2 log n) 2− 1
m

Distribuída

ETF 3.2.2 O(n2m) (2− 1
m

) + C Distribuída

CLANS 3.2.2 O(n3) - Distribuída

Fonte: Autoria própria

Tabela 19 – Algoritmos aproximados para escalonamento paralelo em máquinas não idên-
ticas. A razão de aproximação dos algoritmos HEFT e CPOP não é especifi-
cada por seus autores.

Algoritmo Seção Complexidade Aproximação (w/w∗ ≤) Memória

A-Scheduling 3.3.1 O(n) m Compartilhada

B-Scheduling 3.3.1 O(n log n) m Compartilhada

C-Scheduling 3.3.1 O(n log n) m Compartilhada

D-Scheduling 3.3.1 O(n2) m para m = 2 Compartilhada

E-Scheduling 3.3.1 O(n2) m Compartilhada

F-Scheduling 3.3.1 O(n log n) =
√

5+1
2

para m = 2 Compartilhada

MCP 3.3.2 O(n2 log n) 2− 1
m

Distribuída

ETF 3.3.2 O(n2m) (2− 1
m

) + C Distribuída

HEFT 3.3.2 O(|A|m) - Distribuída

CPOP 3.3.2 O(|A|m) - Distribuída

Fonte: Autoria própria

66

4 Conclusão

Este trabalho teve como objetivo analisar individualmente e expor algoritmos e he-

rísticas de aproximação aplicadas às principais variantes do problema de escalonamento,

fornecendo vários estilos de aproximações da solução ótima em tempo hábil, quando com-

parado com algoritmos exatos.

A partir da revisão bibliográfica e da análise de diferentes abordagens, foi possível

observar a relação entre variantes do problema de escalonamento e algoritmos de aproxi-

mação, e a importância de abordagens flexíveis e adaptativas no campo da otimização.

Espera-se que o que aqui foi exposto sirva de base para futuras pesquisas e aplicações em

problemas reais.

Por fim, vale destacar que há espaço para aprofundamentos, como a inclusão de

variantes mais específicas, testar a versatilidade de mais algoritmos de aproximação além

das que as já analisadas nesse quesito, quando se trata de adaptá-las para outras variantes,

e a abordagem de técnicas mais novas na busca de soluções próximas da ótima, como as

metaheurísticas, algoritmos de busca guiada, entre outros.

67

Referências

COFFMAN JR, E. G.; GAREY, M. R.; JOHNSON, D. S. An application of bin-packing
to multiprocessor scheduling. SIAM Journal on Computing, v. 7, n. 1, p. 1–17, 1978.
<https://doi.org/10.1137/0207001>. Citado 4 vezes nas páginas 27, 28, 29 e 30.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria
e prática. 4. ed. Barueri, SP: Editora LTC, 2024. 912 p. Citado 5 vezes nas páginas 23,
27, 28, 29 e 31.

EPSTEIN, L. Load balancing. In: KAO, M.-Y. (Ed.). Encyclope-
dia of Algorithms. Boston, MA: Springer US, 2008. p. 457–459.
<https://doi.org/10.1007/978-0-387-30162-4_206>. Citado 2 vezes nas páginas
16 e 26.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A guide to the
theory of NP-Completeness. San Francisco, CA: W. H. Freeman and Company, 1979.
338 p. (A Series of Books in the Mathematical Sciences). Citado 3 vezes nas páginas
16, 21 e 25.

GOLDBARG, E. F. G.; GOLDBARG, M. C.; LUNA, H. P. L. Otimização
Combinatória e Meta-heurísticas: Algoritmos e aplicações. Barueri, SP: Editora
LTC, 2015. 416 p. Citado 2 vezes nas páginas 18 e 20.

GRAHAM, R. L. Bounds for certain multiprocessing anomalies. The Bell
System Technical Journal, v. 45, n. 9, p. 1563–1581, nov. 1966. <https:
//doi.org/10.1002/j.1538-7305.1966.tb01709.x>. Citado 9 vezes nas páginas 16, 18, 25,
26, 27, 39, 40, 49 e 53.

. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, v. 17, n. 2, p. 416–429, mar. 1969. <https://doi.org/10.1137/0117039>.
Citado 2 vezes nas páginas 16 e 26.

HWANG, J.-J.; CHOW, Y.-C.; ANGER, F. D.; LEE, C.-Y. Scheduling precedence
graphs in systems with interprocessor communication times. SIAM Journal on
Computing, v. 18, n. 2, p. 244–257, 1989. <https://doi.org/10.1137/0218016>. Citado
4 vezes nas páginas 16, 36, 39 e 58.

IBARRA, O. H.; KIM, C. E. Heuristic algorithms for scheduling independent tasks
on nonidentical processors. Journal of the ACM, v. 24, n. 2, p. 280–289, abr. 1977.
<https://doi.org/10.1145/322003.322011>. Citado 8 vezes nas páginas 16, 48, 50, 51,
52, 53, 54 e 55.

KHAN, A. A.; MCCREARY, C. L.; JONES, M. S. A comparison of multiprocessor
scheduling heuristics. International Conference on Parallel Processing, v. 2, p.
243–250, 1994. <https://doi.org/10.1109/ICPP.1994.19>. Citado 2 vezes nas páginas
16 e 35.

KOHLER, W. A preliminary evaluation of the critical path method for scheduling
tasks on multiprocessor systems. IEEE Transactions on Computers, C-24, n. 12, p.

Referências 68

1235–1238, dez. 1975. <https://doi.org/10.1109/T-C.1975.224171>. Citado na página
38.

LEE, C.-Y.; HWANG, J.-J.; CHOW, Y.-C.; ANGER, F. D. Multiprocessor scheduling
with interprocessor communication delays. Operations Research Letters, v. 7, n. 3,
p. 141–147, 1988. <https://doi.org/10.1016/0167-6377(88)90080-6>. Citado na página
16.

MCCREARY, C.; GILL, H. Automatic determination of grain size for efficient parallel
processing. Communications of the ACM, v. 32, n. 9, p. 1073–1078, set. 1989.
<https://doi.org/10.1145/66451.66454>. Citado 5 vezes nas páginas 16, 36, 42, 43 e 48.

MERTENS, S. The easiest hard problem: Number partitioning. In: PERCUS, A.;
ISTRATE, G.; MOORE, C. (Ed.). Computational complexity and statistical
physics. New York, NY: Oxford University Press, 2006. p. 125–140. Citado na página
21.

PAPADIMITRIOU, C. H.; YANNAKAKIS, M. Scheduling interval-ordered
tasks. SIAM Journal on Computing, v. 8, n. 3, p. 405–409, 1979. <https:
//doi.org/10.1137/0208031>. Citado 3 vezes nas páginas 16, 32 e 33.

ROBERT, Y. Task graph scheduling. In: PADUA, D. (Ed.). Encyclopedia of
Parallel Computing. Boston, MA: Springer US, 2011. p. 2013–2025. <https:
//doi.org/10.1007/978-0-387-09766-4_42>. Citado 2 vezes nas páginas 16 e 18.

SETHI, R. Algorithms for minimal length schedules. In: COFFMAN JR, E. G. (Ed.).
Computer and Job-Shop Scheduling Theory. New York, NY: John Wiley & Sons,
1976. p. 51–100. Citado 2 vezes nas páginas 36 e 57.

SIPSER, M. Introduction to the Theory of Computation. 3. ed. Boston, MA:
Cengage Learning, 2013. 458 p. Citado na página 20.

TOPCUOGLU, H.; HARIRI, S.; WU, M.-Y. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems, v. 13, n. 3, p. 260–274, mar. 2002.
<https://doi.org/10.1109/71.993206>. Citado 4 vezes nas páginas 16, 57, 58 e 62.

WILLIAMSON, D. P.; SHMOYS, D. B. The Design of Approximation Algorithms.
Cambridge, MA: Cambridge University Press, 2011. 518 p. Citado 4 vezes nas páginas
16, 20, 22 e 23.

WU, M.-Y.; GAJSKI, D. Hypertool: a programming aid for message-passing systems.
ieee trans parallel distrib syst. IEEE Transactions on Parallel and Distributed
Systems, v. 1, n. 3, p. 330–343, jul. 1990. <https://doi.org/10.1109/71.80160>. Citado
4 vezes nas páginas 16, 36, 38 e 57.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Fundamentação Teórica
	Problemas de Otimização e o Problema de Escalonamento
	Algoritmos e Heurísticas de Aproximação
	Classes de Complexidade

	Principais Variantes do Problema de Escalonamento e suas Aproximações
	Processamento em uma única máquina
	Processamento em Máquinas Paralelas Idênticas
	Memória Compartilhada
	List Scheduling - LS
	Longest Processing Time First Scheduling - LPT
	MULTIFIT
	List Scheduling para ordens intervalares de precedência

	Memória Distribuída
	Modified Critical Path - MCP
	Earliest Task First Scheduling - ETF
	CLANS

	Processamento em Máquinas Paralelas não Idênticas
	Memória Compartilhada
	A-Scheduling
	B-Scheduling
	C-Scheduling
	D-Scheduling
	E-Scheduling
	F-Scheduling

	Memória Distribuída
	Modified Critical Path - MCP
	Earliest Task First Scheduling - ETF
	Heterogeneous Earliest Finishing Time - HEFT
	Critical Path on a Processor - CPOP

	Considerações Finais

	Conclusão
	Referências

