UNIVERSIDADE FEDERAL DE UBERLANDIA

Maria Luisa Gabriel Domingues

Algoritmos para as principais variantes do
problema de escalonamento de tarefas

Uberlandia, Brasil

2025

UNIVERSIDADE FEDERAL DE UBERLANDIA

Maria Luisa Gabriel Domingues

Algoritmos para as principais variantes do problema de

escalonamento de tarefas

Trabalho de conclusao de curso apresentado
a Faculdade de Computacgao da Universidade
Federal de Uberlandia, como parte dos requi-
sitos exigidos para a obtencao titulo de Ba-
charel em Ciéncia da Computacio.

Orientador: Paulo Henrique Ribeiro Gabriel

Universidade Federal de Uberlandia — UFU
Faculdade de Computacao

Bacharelado em Ciéncia da Computacao

Uberlandia, Brasil
2025

UNIVERSIDADE FEDERAL DE UBERLANDIA

Faculdade de Computagao
Av. Jodo Naves de Avila, n° 2121 , Bloco 1A - Bairro Santa Mdnica, Uberlandia-MG, CEP 38400-902
Telefone: (34) 3239-4144 - http://www.portal .facom.ufu.br/ facom@ufu.br

ATA DE DEFESA - GRADUACAO

Curso de~ Bacharelado em Ciéncia da Computagao

Graduagao em:

Defesa de: GBCO082 - Projeto de Graduacio

Data: 26/09/2025 Hora de inicio: 17:00 Hora de 18:30
encerramento:

Matriculado 1515 1BcCo10

Discente:

Npme do Maria Luisa Gabriel Domingues

Discente:

Titulo do . oL .

Trabalho: Algoritmos para as principais variantes do problema de escalonamento de tarefas

A carga hordria curricular foi cumprida integralmente? (X)Sim ()Niao

Reuniu-se remotamente por meio da plataforma MS Teams, da Universidade Federal de Uberlandia, a
Banca Examinadora, designada pelo Colegiado do Curso de Graduagdo em Ciéncia da Computacao, assim
composta: Professores: Dr. Bruno Augusto Nassif Travencolo - FACOM/UFU; Dra. Mércia Aparecida
Fernandes - FACOM/UFU; e Dr. Paulo Henrique Ribeiro Gabriel - FACOM/UFU, orientador da candidata.

Iniciando os trabalhos, o presidente da mesa, Dr. Paulo Henrique Ribeiro Gabriel, apresentou a Comissao
Examinadora e a candidata, agradeceu a presenga do publico, e concedeu a discente a palavra, para a
exposicao do seu trabalho. A duragdo da apresentacdo do discente e o tempo de argui¢cdo e resposta foram
conforme as normas do curso.

A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que
passaram a arguir a candidata. Ultimada a arguicdo, que se desenvolveu dentro dos termos regimentais, a
Banca, em sessao secreta, atribuiu o resultado final, considerando a candidata:

(X') Aprovada Nota [95] (Somente numeros inteiros)

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que apds lida e
achada conforme foi assinada pela Banca Examinadora.

1

-

Sel o
assinatura
eletrbnica

Documento assinado eletronicamente por Paulo Henrique Ribeiro Gabriel, Professor(a) do
Magistério Superior, em 26/09/2025, as 18:28, conforme hordrio oficial de Brasilia, com fundamento
no art. 6°, § 1°, do Decreto n° 8.539, de 8 de outubro de 2015.

1
-
Sel o
assinatura
eletrbnica

Documento assinado eletronicamente por Bruno Augusto Nassif Travencolo, Professor(a) do
Magistério Superior, em 26/09/2025, as 18:28, conforme hordrio oficial de Brasilia, com fundamento
no art. 6°, § 1°, do Decreto n° 8.539, de 8 de outubro de 2015.

1

-

Sel o
assinatura
eletrbnica

Documento assinado eletronicamente por Marcia Aparecida Fernandes, Professor(a) do Magistério
Superior, em 26/09/2025, as 18:29, conforme horario oficial de Brasilia, com fundamento no art. 6°, §
1°, do Decreto n® 8.539, de 8 de outubro de 2015.

% acao=documento conferir&id orgao acesso externo=0, informando o cédigo verificador 6716192 ¢ o
c6digo CRC 4B9C7604.

Referéncia: Processo n° 23117.067597/2025-27 SEIn° 6716192

Agradecimentos

Agradego a Deus, acima de tudo, por ser meu amparo, forca e fonte de amor

incondicional em todos os momentos de minha vida.

A minha familia, que me forneceu todo o apoio e carinho em todos os caminhos
que tomei em minha vida, e aos meus amigos, que estiveram sempre ao meu lado nos

momentos bons e ruins.

Aos meus professores, que me orientaram durante a minha vida académica e me

mostraram a alegria que é ser uma pessoa sedenta por conhecimento.

Resumo

O problema de escalonamento de tarefas ¢ um dos varios problemas de otimizagao da
computacao que pertencem a Classe NP-Completo, evidenciando a alta complexidade na
obtencao de solugoes exatas, e abrindo espaco para a producao de algoritmos aproxi-
mados. Com o estudo de muitos pesquisadores do ramo no decorrer das décadas, varios
algoritmos aproximados foram projetados para obter solu¢des proximas da solugao étima
em tempo habil para varias instancias do problema, respeitando uma gama de restri-
¢oes atreladas a cada uma delas, buscando torna-las tteis para aplicacgado em ambientes
reais. Neste trabalho, abordamos as cinco variantes mais conhecidas do problema de es-
calonamento: escalonamento de tarefas em uma tnica maquina, multiprocessamento para
maquinas idénticas com memoéria compartilhada ou distribuida, e multiprocessamento
para maquinas nao-idénticas com memoria compartilhada ou distribuida. Para cada uma
dessas variantes, entao, é descrito o sistema em que elas se inserem e as restrigoes e custos
que elas consideram, além de ser apresentado alguns algoritmos aproximados, analisando
a estratégia, complexidade e razao de aproximacao de cada um deles. Por fim, é esperado
que essa exposicao extensa de varias estratégias de aproximacao para varios contextos de
escalonamento contribua para a sistematizagao do conhecimento de algoritmos aproxima-

dos para esse problema e sirva de base para outras pesquisas.

Palavras-chave: Escalonamento de tarefas; Algoritmos de aproximacao; Heuristicas; Ta-~

refas independentes; DAG.

Abstract

The task scheduling problem is one of several computing optimization problems that
belong to the NP-Complete class, highlighting the high complexity of obtaining exact
solutions and paving the way for the development of approximate algorithms. Through
the study of many researchers in the field over the decades, several approximate algo-
rithms have been designed to obtain solutions close to the optimal solution promptly for
various instances of the problem, respecting a range of constraints associated with each
one, aiming to make them useful for application in real environments. In this work, we
address the five best-known variants of the scheduling problem: task scheduling on a single
machine, multiprocessing for identical machines with shared or distributed memory, and
multiprocessing for non-identical machines with shared or distributed memory. For each of
these variants, we describe the system in which they are inserted and the constraints and
costs they consider. We also present some approximate algorithms, analyzing the strategy,
complexity, and approximation ratio of each of them. Finally, this extensive exposition
of several approximation strategies for various scheduling contexts will contribute to the
systematization of knowledge of approximate algorithms for this problem and serve as a

basis for further research.

Keywords: Task scheduling; Approximation algorithms; Heuristics; Independent tasks;
DAG.

Lista de ilustracoes

Figura 1 — Representacao Visual de duas solugdes possiveis para o problema de
Escalonamento L oo
Figura 2 — Execucao do EDD oo oo
Figura 3 — DAG doexemplode LS
Figura 4 — Execucaode LS
Figura 5 — Execucaode LPT o
Figura 6 — Execugao do MULTIFIT,
Figura 7 — Grafo aciclico direcionado de Precedéncia P(V, A) e seu grafo de in-
comparabilidade G(V,E) o
Figura 8 — Visualizagdo da ordem intervalar dada pelo grafo intervalar G(V, E) . .
Figura 9 — Execucao do List Scheduling para ordens intervalares
Figura 10 — DAG de precedéncia MCP
Figura 11 — DAG de precedéncia do exemplo de aplicagao do MCP
Figura 12 — Exemplo de aplicacdo do MCP
Figura 13 — DAG de precedéncia entre tarefas do exemplo do ETF
Figura 14 — Aplicagdo do exemplodo ETF
Figura 15 — Tlustracao do exemplodo ETF
Figura 16 — Clas o
Figura 17 — Cla Independente L
Figura 18 — Cla Linear
Figura 19 — Cla Primitivo
Figura 20 — DAG de precedéncia do exemplo de aplicaggo do CLANS
Figura 21 — Arvore hierdrquica do exemplo de aplicacio do CLANS
Figura 22 — Escalonamento CLANS
Figura 23 — Escalonamento A-Scheduling
Figura 24 — Escalonamento B-Scheduling
Figura 25 — Escalonamento C-Scheduling
Figura 26 — Escalonamento D-Scheduling
Figura 27 — Escalonamento E-Scheduling
Figura 28 — Escalonamento F-Scheduling
Figura 29 — DAG de precedéncia do exemplo de aplicagao do HEFT
Figura 30 — Aplicagdo do HEFT no exemplo
Figura 31 — DAG de precedéncia do exemplo de aplicagao do CPOP
Figura 32 — Aplicacgdo do CPOP noexemplo

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5

Tabela 6
Tabela 7
Tabela 8
Tabela 9

Lista de tabelas

Dados sobre as tarefas do exemplode EDD
Dados sobre as tarefas do exemplode LS
Dados sobre as tarefas do exemplode LPT
Dados sobre as tarefas do exemplo de MULTITFIT
Dados sobre as tarefas do exemplo de List Scheduling para ordens in-

tervalares L
Dados sobre as tarefas do exemplo do Algoritmo MCP
Dados sobre as tarefas do exemplo do Algoritmo ETF
Dados sobre as tarefas do exemplo do CLANS

Dados sobre as tarefas do exemplo do A-Scheduling

Tabela 10 — Dados sobre as tarefas do exemplo do B-Scheduling

Tabela 11 — Dados sobre as tarefas do exemplo do C-Scheduling

Tabela 12 — Dados sobre as tarefas do exemplo do D-Scheduling

Tabela 13 — Dados sobre as tarefas do exemplo do E-Scheduling

Tabela 14 — Dados sobre as tarefas do exemplo do F-Scheduling
Tabela 15 — Dados sobre as tarefas do exemplo do HEFT
Tabela 16 — Dados sobre as tarefas do exemplo do CPOP

Tabela 17 — Algoritmos aproximados para escalonamento em uma Unica maquina .

Tabela 18 — Algoritmos aproximados para escalonamento paralelo em maquinas

dénticas

Tabela 19 — Algoritmos aproximados para escalonamento paralelo em maquinas nao

dénticas

Lista de abreviaturas e siglas

EDD FEarliest Due Date rule

DAG Grafo Aciclico Direcionado

CP Caminho Critico de um DAG de precedéncia de tarefas
LS List Scheduling

LPT Longest Processing Time First Scheduling

SPT Shortest Processing Time First Scheduling

FFD First Fit Decreasing

MCP Modified Critical Path

ETF FEarliest Task First Scheduling

T =mx S

~

n
1;

Tentrada

Tsaida

T

T'min

dmax

€;

Lista de simbolos

Conjunto de tarefas

Subconjunto do conjunto de tarefas. K C T

Conjunto de tarefas ja escalonadas

Conjunto de maquinas

Conjunto de maquinas livres para escalonamento. [C P
Ntmero de maquinas

Numero de tarefas

i-ésima tarefa de T', onde 1 < i <n

Tarefa de entrada do DAG (Grafo Aciclico Direcionado) de precedéncia.

E uma tarefa que nao possui nenhuma tarefa que a precede

Tarefa de saida do DAG (Grafo Aciclico Direcionado) de precedéncia.

E uma tarefa que nao precede nenhuma outra tarefa
j-ésima maquina de P, onde 1 < 7 <m

Maquina onde a tarefa T; se encontra escalonada
Lista de escalonamento

Lista de escalonamento com as tarefas escalonadas para a maquina P;.
L;CL

Tempo inicial da janela de execucao de uma tarefa T;
Menor r; dentre todas as tarefas do sistema

Tempo final da janela de execucao de uma tarefa 7T;
Maior d; dentre todas as tarefas do sistema

Tempo em que 7T; foi escalonada

Tempo em que 7; finaliza sua execucao

Tempo de execugao geral, para sistemas onde o custo de execugao de

toda tarefa é o mesmo

P(V, A)

pred(T;)

succ(T;)

OPT(T,C)

FFD(T,C)

Tempo de execucao da tarefa T;, para problemas que envolvem pro-
cessamento em uma Unica maquina ou em paralelismo com maquinas

idénticas

Tempo de execucao da tarefa 7; na maquina P;, para problemas que

envolvem processamento paralelo com maquinas nao-idénticas

Tempo médio de execucao de uma tarefa 7;. Usado em ambientes com

maquinas nao-idénticas

Tempo ocioso total da maquina FP;
Makespan da maquina P;

Makespan do sistema

Atraso de individual de uma tarefa T;
Atraso maximo do sistema

Makespan da solugao 6tima

Atraso maximo da solugdo 6tima

Lista de escalonamento da solucao 6tima

Relacao de precedéncia entre tarefas. Se T; < Ty, 1 < 7,k < n, entao
T; precisa finalizar sua execucao para que T} esteja livre para proces-

samento

DAG (Grafo Aciclico Direcionado) que representa as relagoes de pre-
cedéncia entre todas as tarefas do sistema. Para uma aresta (v,u) € A
¢ definida uma relacao de precedéncia entre a tarefa do né v e a do
noé u, de tal forma que v < u. Para problemas que envolvem memoria
compartilhada, o DAG (Grafo Aciclico Direcionado) é ponderado nas

arestas para representar o custo de comunicagao entre tarefas
Conjunto de tarefas que precedem T;. Ty, € pred(T;) <— T}, < T;
Conjunto de tarefas que sucedem T;. Ty, € succ(T;) < T; < T}
Tamanho limite de uma caixa para o problema bin-packing

Solucao o6tima do problema bin-packing ao empacotar o conjunto de

tarefas T' em caixas de tamanho maximo C'

Solucao do FFD (First Fit Decreasing) ao empacotar o conjunto de

tarefas T em caixas de tamanho maximo C'

C Limite inferior para o valor de C
Ci(T,m) Para todo C' < C)[T,m|, FFD|T,C| >m

Cy Limite superior para o valor de C. E também o resultado do algoritmo

MULTIFIT

Cu(T,m) Para todo C' > C,[T,m|, FFD[T,C] < m. Portanto, é a solu¢do do
algoritmo MULTIFIT

Tm Fator de expansao minimo da capacidade C' das caixas para que o FFD
(First Fit Decreasing) possa escalonar o conjunto 7' de tarefas em nao

mais que m caixas

MF(k) Aplicacao do MULTIFIT com k iteracoes para o problema de escalo-

namento de tarefas
Cy(k) Solugao do MULTTFIT com k iteragoes

GV, E) Grafo de incomparabilidade do grafo de precedéncia P(V, A), de forma
que se (v,u) € F <= (v,u),(u,v) ¢ A

ASAP(T;) Tempo mais cedo possivel em que a tarefa T; pode ser executada. E

calculado usando o ASAP Binding

ALAP(T;) Tempo mais tardio possivel em que a tarefa T; pode ser executada. E
calculado usando o ALAP Binding

M(T;) Mobilidade de uma tarefa T;. E um valor resultante da diferenca entre

ASAP(T;) e ALAP(T))

I(T;) Lista que contém o ALAP de T; e de todos os seus descendentes em

P(V, A) em ordem crescente

cM Marco do tempo atual da execucao do sistema
NM Préximo marco de tempo atual da execugao do sistema
r(T;, P)) Tempo em que a ultima mensagem enderecada a T; chega na maquina

P;, na qual T; foi escalonada
n(T;, T) Custo de enviar mensagens de uma tarefa 7} para outra tarefa Tj,
t(Pj, Py) Custo de abrir um canal de comunicagao entre as maquinas P; e P

P Ntumero de tarefas de um cla independente

Yi

Y;

7k

rank,(T1)
rankq(T1)

EST(T;, P,)

EFT(T, F))

AST(T;, Fy)

AFT(T;, Py)

Subgrupo agregado em um cla independente no algoritmo CLANS, 1 <
k<mn

Numero de tarefas envolvidas em um subgrupo K;
Soma do tempo de execucao de todas as tarefas do subgrupo K;
¢ o custo de uma informacao entrar na tarefa 7} ; do subgrupo K;

¢ o custo de uma informagcao sair da tarefa 7T} ; do subgrupo K;, 1 <
k<mn

é o custo de entrada de informacao em uma tarefa T; qualquer do cla

independente (sem distingdo de subgrupos)

¢ o custo de saida de informacao de uma tarefa T; qualquer do cla

independente (sem distingdo de subgrupos)

Custo constante da entrada de uma informacao em uma tarefa qualquer

do sistema

Custo constante da saida de uma informacao de uma tarefa qualquer

do sistema

Taxa de transmissao de informagoes entre maquinas Pj e P,. 1 < j,k <

m
Custo de abrir a maquina P; para comunica¢ao

Taxa de transmissao média do sistema

Custo de abertura média para comunicag¢ao no sistema
Upward Rank de T;

Downward Rank de T;

Tempo mais cedo possivel que uma tarefa T; pode ser escalonada numa

méquina P;

Tempo mais cedo possivel que uma tarefa T; pode ter sua execugao

finalizada numa maquina P;

Tempo real em que uma tarefa 7; pode ser escalonada numa maquina
P.

J

Tempo real em que uma tarefa 7T; pode ter sua execucao finalizada

numa maquina P;

2.1
2.2
2.3

3.1
3.2
321
3.2.1.1
3.2.1.2
3.2.13
3.2.1.4
3.2.2
3.2.21
3.2.2.2
3.2.23
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.14
3.3.15
3.3.1.6
3.3.2
3.3.21
3.3.2.2
3.3.23
3.3.2.4
3.4

Sumario

INTRODUCAO i ittt e e et e et e et e e e 16
FUNDAMENTACAO TEORICA 18
Problemas de Otimizacao e o Problema de Escalonamento 18
Algoritmos e Heuristicas de Aproximacao 19
Classes de Complexidade 20

PRINCIPAIS VARIANTES DO PROBLEMA DE ESCALONAMENTO

E SUAS APROXIMACOES ittt e 22
Processamento em uma Gnica maquina 22
Processamento em Maquinas Paralelas Idénticas 24
Meméria Compartilhada 25
List Scheduling - LSo 25
Longest Processing Time First Scheduling - LPT 27
MULTIFIT . . o o e s e 28
List Scheduling para ordens intervalares de precedéncia 32
Meméria Distribuida 35
Modified Critical Path - MCPo 36
Earliest Task First Scheduling - ETF 39
CLANS . . e 42
Processamento em Maquinas Paralelas nao Idénticas 48
Meméria Compartilhada 48
A-Scheduling L 48
B-Scheduling 50
C-Scheduling e 51
D-Schedulingo 52
E-Scheduling 54
F-Scheduling 55
Meméria Distribuida 56
Modified Critical Path - MCP 57
Earliest Task First Scheduling - ETF 58
Heterogeneous Earliest Finishing Time - HEFT 58
Critical Path on a Processor - CPOP 62
Consideracoes Finais 0L 64

CONCLUSAOt e e e e e e e s s s s 66

REFERENCIAS

16

1 Introducao

O problema de escalonamento de tarefas é um dos mais estudados na Ciéncia da
Computacao devido a sua ampla aplicabilidade em ambientes industriais, computacionais
e logisticos (ROBERT, 2011). Esse problema consiste em atribuir uma lista de tarefas
a um conjunto de unidades de processamento, respeitando restri¢des especificas do con-
texto, com o objetivo de otimizar métricas como o tempo de execucao total ou o atraso
méaximo. No entanto, por ser um problema NP-Completo (GAREY; JOHNSON, 1979;
PAPADIMITRIOU; YANNAKAKIS, 1979), a complexidade das solugoes étimas torna-se
intratavel a medida que as variantes do problema incorporam mais restricoes realistas.
Essa inviabilidade pratica impulsiona o desenvolvimento e estudo de algoritmos aproxi-
mados, os quais sao capazes de fornecer solucoes de qualidade subétima, porém aceitaveis,

em tempo computacional viavel.

Devido a vastidao de variantes do problema de escalonamento, cada uma com suas
particularidades e algoritmos especializados, torna-se necessario um material que organize
e compare essas abordagens. Essa analise pode auxiliar tanto na escolha da melhor es-
tratégia para um cenario aplicado quanto no direcionamento de pesquisas futuras. Diante
desse contexto, o objetivo deste trabalho de conclusao de curso é analisar as diferentes
variantes classicas do problema de escalonamento de tarefas, com foco nos algoritmos de

aproximacao desenvolvidos para cada uma delas.

Neste trabalho abordaremos cinco variantes desse problema, organizadas em trés
casos principais. Inicialmente, ¢ abordado o escalonamento de tarefas em uma tnica
maquina (WILLTAMSON; SHMOYS, 2011). Em seguida, abordamos o caso do multi-
processamento em maquinas idénticas (GRAHAM, 1966; GRAHAM, 1969; EPSTEIN,
2008; PAPADIMITRIOU; YANNAKAKIS, 1979; KHAN; MCCREARY; JONES, 1994,
WU; GAJSKI, 1990; HWANG et al., 1989; LEE et al., 1988; MCCREARY; GILL, 1989)
e, finalmente, o multiprocessamento em méquinas nao-idénticas (IBARRA; KIM, 1977;
HWANG et al., 1989; WU; GAJSKI, 1990; TOPCUOGLU; HARIRI; WU, 2002). Para
esses dois ultimos casos, sao estudados algoritmos projetados para as variagoes de memo-
ria compartilhada e memoria distribuida. Esse trabalho busca apresentar essa variedade
de algoritmos com o objetivo de contribuir para a sistematizacao do conhecimento sobre
aproximacoes para o problema de escalonamento e suas principais variantes, e também

servir como base para futuras pesquisas desse ramo.

O restante desta monografia ¢ organizado da seguinte forma: no Capitulo 2 apre-
sentamos os conceitos de escalonamento de tarefas, de algoritmos de aproximacao e de

complexidade de algoritmos, no Capitulo 3, apresentamos as cinco variantes do problema

Capitulo 1. Introdugdo 17

de escalonamento de tarefas, bem como os principais algoritmos empregados em cada

caso. Finalmente, o Capitulo 4 apresenta as conclusoes deste trabalho.

18

2 Fundamentacao Tedrica

2.1 Problemas de Otimizacao e o Problema de Escalonamento

Problemas de otimizacao sdo problemas, tanto para a Matematica quanto para a
Ciéncia da Computagao, nos quais o objetivo é encontrar a melhor solugao dentre todas
as solugoes possiveis, respeitando todas as restrigdes que o problema traz (GOLDBARG;
GOLDBARG; LUNA, 2015). O conjunto de solugbes para um problema de otimizagao
pode ser representado como uma funcao e sua melhor solu¢ao pode ser interpretada como
sendo um ponto minimo (ou maximo) global dessa fun¢ao (GOLDBARG; GOLDBARG;
LUNA, 2015). A Ciéncia da Computagao listou, com o passar dos anos de estudo, varios
problemas que se enquadram como de otimizagao, e dentre eles esta presente o problema
que trataremos neste trabalho, chamado de problema de escalonamento de tare-
fas (ROBERT, 2011).

O problema de escalonamento de tarefas se trata de um desafio classico de oti-
mizacao combinatoéria, atribuindo uma lista de tarefas a uma quantidade fixa de
unidades de processamento, de forma que uma unidade de processamento sé pode
executar uma tarefa por vez (GRAHAM, 1966), e uma solugao possivel desse problema
é justamente o tempo em que é finalizada toda a execu¢do (makespan), de acordo com
a ordem estipulada para escalonamento das tarefas. Esse problema é de otimizacgao jus-
tamente pelo fato de que, mesmo que uma certa solugao seja viavel, o interesse esta em
obter a melhor solucao dentre as viaveis, sendo essa a solugdao 6tima para o problema.

Isso é evidenciado quando analisamos a Figura 1.

Observe, na Figura 1, como a ordem de escalonamento das tarefas impacta no
makespan w do sistema. Na primeira solugao, a organizagdo das tarefas gera tempos
0ciosos ¢9 na maquina P, e ¢3 na maquina P, resultando num makespan w = 5, enquanto
na segunda solucao as tarefas sao organizadas de forma diferente, sem causar tempo ocioso
nas maquinas e resultando em um outro makespan w’ = 3, menor que o da primeira
solugao. Uma simples troca de método de escalonar as tarefas pode causar melhoras

significativas nas solugoes dadas para o problema.

A defini¢ao da solugao 6tima para esse problema se d4, portanto, como a ordem
de escalonamento das tarefas que resulta na minimizagao ou maximizacao de alguma
variavel alvo, como o makespan, normalmente com o objetivo de minimiza-lo. O ma-
kespan é o mais usado dentre os objetivos que existem para otimizacao no problema de
escalonamento, mas para contextos como o escalonamento em uma tinica maquina, pode

nao fazer sentido buscar a minimizacao desse valor, recorrendo assim a outros objetivos

Capitulo 2. Fundamentacio Teorica 19

Figura 1 — Duas solugoes possiveis para escalonar sete tarefas (11, Ty, T3, Ty, T5, Ts e T7)
em trés maquinas (P, P e P3), com os custos de execucao totais w e w’ para
cada solugao, respectivamente.

py LTL | T4 | T7 |
I —— 3 i
PQIT2IT5I b L wes
1 1 3
py LT3 | T6 | b |
I —— 3 i
py LTL | T8 | T5 |
I R E——
by | T2 | T4 | T6 3
I B ——
| T7 |
P3
| ; i

Fonte: Autoria propria.

como o atraso de execucao das tarefas, como veremos posteriormente nesse trabalho. A
Figura 1 representa uma das versoes mais simples do problema de escalonamento, porém
algumas variantes dele podem apresentar outras restrigoes adicionais, dentre elas estao
a definicdo de precedéncia entre as tarefas, homogeneidade ou nao das méaquinas, o
nimero de maquinas envolvidas no escalonamento, o custo adicional de comunicagao
entre as tarefas, determinacdo de janelas de execugao para cada tarefa do sistema,
dentre varios outros. Para cada variante, especificamente, sdo necessarios algoritmos

adequados para gerar solugoes que respeitem as restrigoes definidas.

2.2 Algoritmos e Heuristicas de Aproximacao

O mais basico método de obtenc¢ao de solugdes para problemas sao os algoritmos,
que sao um conjunto de instrugoes nao ambiguas que se baseiam numa légica bem estru-
turada de execucgao, resultando numa solugao exata para o problema. Como buscamos
pela solucao 6tima no problema de escalonamento, que é uma solucao exata, o ideal seria
implementar algoritmos que a obtenham, mas até hoje nao foram projetados algoritmos
capazes de encontrar a solucao étima em tempo menor que exponencial, que é um tempo

muito custoso para tamanhos grandes de tarefas e/ou méaquinas.

Com isso, foram introduzidas estratégias para tentar obter solugdes com um
custo de tempo menor que o exponencial, em sacrificio da qualidade da solugao. Essas

estratégias, agora, buscam por solugoes proximas da 6tima, e dentre elas se destacam

Capitulo 2. Fundamentacio Teorica 20

os algoritmos de aproximacao e as heuristicas de aproximacao. Diferentemente
dos algoritmos exatos, as heuristicas de aproximacgao procuram resolver problemas de
forma empirica, ou seja, baseando-se em regras mais praticas ou na intui¢ao, o que pode
acelerar o tempo para a obtencao da solugdo, mas nao ha garantia, além da experiéncia,
sobre a qualidade da solucao. Os algoritmos aproximados, em contraponto, sdo cons-

truidos baseando-se em métodos de aproximacgao nos quais ha como provar a qualidade
da solugao (WILLIAMSON; SHMOYS, 2011).

Como no momento nao foram encontrados algoritmos que encontrem a solucao
exata em tempo habil, a Ciéncia da Computacao tém investido em encontrar métodos
de aproximagao, como as heuristicas de aproximacao e os algoritmos aproximados, que
possam se aproximar o maximo possivel da solu¢ao 6tima. Posteriormente nesse trabalho
veremos alguns desses algoritmos projetados por pesquisadores do ramo (WILLIAMSON;
SHMOYS, 2011; GOLDBARG; GOLDBARG; LUNA, 2015).

2.3 Classes de Complexidade

A complexidade de tempo de um algoritmo é dita como o tempo gasto para
obter a solugao no qual foi projetado para gerar, o mesmo vale para qualquer outro
modelo de resolucao de problemas, sendo definida analisando a sequéncia de passos que
definem esses modelos. O conjunto de complexidades desses modelos podem ser divididas

em classes, sendo as principais P e NP.

Segundo Sipser (2013), a Classe P de complexidade contém todos os problemas
que podem ser resolvidos em tempo polinomial, enquanto a Classe NP de comple-
xidade contém todos os problemas que nao possuem garantia de existéncia de algoritmos
que possam resolvé-los em tempo polinomial, mas podem ter suas solu¢oes verificadas
em tempo polinomial. Dessa forma, a Classe P é garantidamente contida em NP, ja que
os problemas da Classe P sao justamente algoritmos da classe NP nos quais ja foram
encontrados algoritmos que os resolvam em tempo polinomial, mas ha suspeitas de que
NP = P, que permanecera enquanto nao for provado que todos os problemas de NP néo

possuam algoritmos que os resolvam em tempo polinomial.

O problema de escalonamento pertence a Classe NP, mais especificamente, ele é
NP-Completo, ou seja, se for encontrado um algoritmo que o resolva em tempo po-
linomial, todos os problemas da classe NP também poderao ser resolvidos em tempo

polinomial.

Para saber se um problema é NP-Completo, basta provar que ele pertence a
classe NP, e que todo problema em NP pode ser reduzido, em tempo polinomial, a
esse problema. Ou entao, basta provar que um problema que ja é conhecido por ser NP-

Completo pode ser reduzido em tempo polinomial ao problema em questdao. No caso do

Capitulo 2. Fundamentacio Teorica 21

problema de escalonamento, é provado que ele pode ser reduzido do problema Number
Partition (MERTENS, 2006), que é NP-Completo (GAREY; JOHNSON, 1979), assim

provando que o problema de escalonamento também é NP-Completo.

22

3 Principais Variantes do Problema de Esca-

lonamento e suas Aproximacoes

O problema de escalonamento de tarefas ¢ amplo e, por isso, pode ser aplicado em
varios contextos. Para cada um desses contextos, sao envolvidas diferentes formas de fun-
cionamento do sistema em que o escalonamento sera aplicado, exigindo a consideragao de
certas restrigoes, como uma ordem de precedéncia entre tarefas, o nimero de maquinas
envolvidas e seus comportamentos, bem como a forma de obtencao de informacoes pelas
tarefas. Portanto, neste capitulo vamos abordar as principais variantes desse problema e

suas solugoes aproximadas.

3.1 Processamento em uma (nica maquina

O problema de escalonamento em uma inica maquina é a mais simples dentre as
variantes. Ele se caracteriza por estabelecer uma ordem de processamento para n tarefas
em uma unica maquina, de forma que sempre seja processada no maximo uma tarefa por

vez.

Para esse problema, cada tarefa T; dentre n tarefas deve ser processada por uma
quantidade p(7;) de tempo, além de precisar ser executada dentro da sua janela de
execugao (entre o tempo de liberacao r; e o tempo limite de finalizagao d;), onde C;
representa o tempo de finalizacao de execugao da tarefa T;. O objetivo desse problema
¢ minimizar o atraso maximo oy, = max;—i,_, ®;, onde o; = C; — d; representa o

atraso individual de cada tarefa.

Esse problema, como descrito aqui, nao permite a obtencao de aproximacoes di-
retas, ja que para d; positivos, resultando em «; < 0, aproximagoes que envolvem zero
e valores negativos acarretam em muitas complicacdes. Para contornar isso, podemos
assumir que os valores d; serdo sempre negativos, gerando valores de «; positivos (WILLI-
AMSON; SHMOYS, 2011). Considerando esse caso, podemos obter uma 2-aproximagao
para o problema: o algoritmo EDD (Farliest Due Date rule), um algoritmo guloso que

prioriza a tarefa com o menor «;.

Denotando «f . como a solugdo étima e ayax como a solucao do EDD (Farliest

max

Due Date rule), obtemos a seguinte inequagao:

a:nax > Tmin + ZN(E) - dmax, (31)
=1

onde:

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 23

® Tmin = Mi=1 . nTi;

® dmax = MaX;=1,..n d’L

A partir dessa inequagao, Williamson e Shmoys (2011) provam que, sendo k o

indice da tarefa T} que tem o maior atraso do sistema:

20k

ma

X > Ok - dk = O'max (32)

Portanto, o algoritmo EDD (Farliest Due Date rule) é uma 2-aproximagao:

Qmax o (3.3)

*
CMI‘IIaX

O custo computacional do EDD (FEarliest Due Date rule) consiste no custo para
ordenacao das tarefas, que pode ser O(nlogn) se usarmos um algoritmo eficiente (COR-

MEN et al., 2024), e no custo para escalonamento O(n), totalizando O(nlogn).

Para exemplificar a aplicacao desse algoritmo, vamos usa-lo para escalonar qua-
tro tarefas T' = {11, T3, T3, T4} em uma unica maquina P = {P;}. Para cada tarefa ha
seu valor de tempo de abertura r; e fechamento d; de sua janela de execucao, além do seu

custo u(T;). Na Tabela 1 a seguir estdo representados todos esses dados.

Tabela 1 — Tabela com o valor de tempo de abertura r; e fechamento d; da janela de
execucao, além do custo p(7;) para cada tarefa do exemplo.

Tarefa | r; | d; | p(T5)
Ty 0]-1 2
T 05| 4
T3 2 |-2 6
Ty 3 1|-3 8

Fonte: Autoria proépria

O EDD, entao, procede em fazer uma andlise de prioridade de escalonamento

das tarefas do conjunto 7', seguindo os seguintes passos:

Passo 1. Separa as tarefas disponiveis para execugao, ou seja, tarefas cujas janelas de

execucao estao abertas no tempo da iteragao atual.

Passo 2. Calcula o possivel C; e o a; para cada tarefa separada na etapa anterior, si-

mulando uma execugao no tempo da iteragao atual.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 24

Passo 3. O Algoritmo EDD, entao, escolhe para escalonamento a tarefa com o menor
valor de «; dentre os calculados na etapa passada. A partir do marco de tempo em
que a execucao da tarefa escolhida finaliza, todos esses passos serao repetidos, até

que todas as tarefas tenham sido executadas.

A Figura 2 mostra como se deu o escalonamento com o conjunto 7" de tarefas antes

citado, descrevendo os passos efetuados a cada iteracao.

Figura 2 — Execucao do Algoritmo EDD, escalonando as quatro tarefas antes descritas
em uma unica maquina em quatro iteragoes. Por fim, é possivel concluir que
0 atraso maximo ., da solucao gerada com o exemplo é 23.

&) T
tempo=0 | |
o} 2 T1! 01:0+2:2 Oﬂ1:2——1:3
TQ: CQ=0+4=4 a2=4——5=9
2) [T1 I T3 |
tempo=2 | | T
0 2 Ty p=2+44=6 ay=6--5=11
T3: C3=2+6=8 a3=8—-2=10
(3) T1 I T3 | T2 I
tempo=28 | | T |
o} 2 8 12
Ty: Co=8+4=12 ay=12—--5=17
Ty: C4=8+8=16 ay=16—-3=19
4) [TL T3 T2 | T4 |
tempo =12 | | | | |
0 2 8 12 20

T4: C4=12+8=20 CE4=20——3=23

Fonte: Autoria proépria.

3.2 Processamento em Maquinas Paralelas Idénticas

O problema de escalonamento de tarefas a maquinas idénticas é a variante mais
comum desse problema. Como o préprio nome diz, trata-se de escalonar tarefas num
ambiente que envolve mais de uma maquina, sendo que todas elas possuem o mesmo

tempo de processamento para uma mesma tarefa.

Em termos matematicos, o sistema no qual esse problema é aplicado envolve um
conjunto 7" de m maquinas e um conjunto de tarefas T" com n tarefas que possuem entre
si uma relacao de precedéncia <, onde para uma tarefa T; e outra T}, se T; < T}, entao,
para T} ser disponivel para execucao, T; precisa ter sua execuc¢ao concluida primeiro.

O conjunto de relagoes de precedéncia de T' é estruturada em forma de grafo aciclico

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 25

direcionado (DAG) P(V, A), onde cada n6 de V' é uma tarefa, e cada aresta (v,u) € A
¢ uma relacao de precedéncia na forma v < u (GRAHAM, 1966).

Essas tarefas sao escalonadas para execucao seguindo uma lista de escalona-
mento L. Como as maquinas sao idénticas, todas elas compartilham a mesma funcao u
de tempo de processamento das tarefas, e o tempo para processar uma tarefa T; é dado por
w(T;). Pode-se demonstrar que esse problema é NP-Completo para m > 2 (GAREY;
JOHNSON, 1979).

A seguir, sao mostradas duas variagoes desse problema: o caso em que a memo-
ria dos processadores (maquinas) é compartilhada e o caso em que a memoéria nao é

compartilhada.

3.2.1 Memoria Compartilhada

O paralelismo com memoéria compartilhada é o contexto mais simples de escalona-
mento em maquinas idénticas. Essencialmente, esse caso nao possui nenhuma restricao a
mais pois, como a memoria é compartilhada entre as tarefas, idealmente nao héa custo
de comunicacao, exigindo que somente nos preocupemos com a restricao de precedéncia e
em encontrar o escalonamento que resulte no menor makespan w possivel. Os principais

algoritmos para essa variante do problema sao mostrados a seguir.

3.2.1.1 List Scheduling - LS

Um método de designar as tarefas as maquinas de forma aproximada foi proposto
por Graham (1966) e chamado List Scheduling (LS). O LS é um algoritmo guloso que
escolhe qual tarefa sera escalonada para qual maquina de acordo com certa prioridade.
Essa prioridade pode ser definida de varias formas, como em ordem crescente de tempo
de processamento, caminho critico, entre outros. A execucdo desse algoritmo se da da

seguinte formas:

Passo 1. Ordenar as tarefas em uma lista L de prioridade de escalonamento.

Passo 2. Cada maquina P; atribui a si uma tarefa de L de forma a minimizar seu
makespan individual w;, fazendo antes a verificacao de disponibilidade da-
quela tarefa. Uma tarefa é disponivel quando todas as tarefas que a precedem ja
foram executadas. Quando o tempo de execucao da tarefa atribuida ¢ finalizado, P;

procura por uma nova tarefa, e isso se repete até que L esteja vazio.

Passo 3. Caso nao haja tarefa disponivel, P; fica em aguardo (tempo ocioso ¢;) até
que outra maquina finalize a execuc¢ao de sua tarefa, e entao ambas as maquinas

procuram por novas tarefas livres.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 26

Passo 4. O tempo total de execucao desse escalonamento é w, que assume o valor do

tempo da maquina com maior makespan individual.

Assim como retratado em diferentes trabalhos (GRAHAM, 1966; GRAHAM, 1969;
EPSTEIN, 2008), o limite maximo do valor da sua solugdo w em relagdo a solugao dtima

w* ¢ representado pela inequagao:

% <2- ; (3.4)

Visto que essa é uma inequagao provada por Graham (1966) como sendo o limite
maximo da razao de aproximacgao para algoritmos que variam somente na lista de es-
calonamento (preservando outras caracteristicas do sistema, como o comportamento das
méquinas, meméria e relagdo de precedéncia entre tarefas), ndo importando muito qual
é a estratégia de prioridade. O custo assintético de tempo do algoritmo é O(nlogn),
onde n é o nimero de tarefas e logn é o custo para ordenar as tarefas em L. O List
Scheduling é um algoritmo com desempenho 6timo de resultado para m = 2 ou 3, mas

quando m > 4 seu desempenho perde para outros algoritmos que veremos em sequéncia

(GRAHAM, 1966).

Aplicaremos agora um exemplo de escalonamento do List Scheduling, seguindo os
passos antes descritos: supondo que a prioridade definida é por menor custo de execucao
w1(T;) e que o conjunto de tarefas T' para escalonar em duas maquinas P = {P;, P,} seja
{11, T5,T5, Ty, T5} (com valores de custo e relacao de precedéncia na Tabela 2 e Figura 3
abaixo, respectivamente), o List Scheduling construird uma solu¢ao aproximada conforme

descrito na Figura 4.

Tabela 2 — Tabela com o custo u(7;) para cada tarefa do exemplo.

Tarefa | u(T;)
T 10
T, 8
T 6
Ty)
T 7

Fonte: Autoria propria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 27

Figura 3 — DAG de precedéncia das tarefas do exemplo.

Fonte: Autoria propria.

Figura 4 — Execucao do List Scheduling. Seguindo a prioridade antes descrita, a lista L
assume o valor de [Ty, T3, Ty, Ty, T1], que define a ordem para escalonar as
tarefas de T'. As tarefas, entdo, sdo escalonadas com base em L e também
respeitando a ordem de precedéncia descrita no DAG (disponibilidade das
tarefas para escalonamento). Essa solugdo aproximada possui makespan w de
24, e tempo ocioso na segunda maquina ¢, de 10 unidades de tempo.

| Tl | T3 | T2
P1] | | |

P2 I ‘?52 I T4 I TS5 I

Fonte: Autoria propria.

3.2.1.2 Longest Processing Time First Scheduling - LPT

O LPT é um algoritmo guloso que usa da mesma estratégia do List Scheduling,
aplicando uma prioridade especifica: as primeiras tarefas a serem escalonadas devem ser
as com maior tempo de execucgao. No entanto, é usado num contexto onde as tarefas
sao independentes, ou seja, ela possui um DAG completamente desconexo (COFFMAN
JR; GAREY; JOHNSON, 1978).

Devido a essas alteragoes, o limite médximo da sua razao de aproximacao, apre-
sentado por Coffman Jr, Garey e Johnson (1978) e provado por Graham (1966), se da

por:

w 4 1
— < - 3.5
w* — 3 3m (3:5)

O custo assintético de tempo desse algoritmo é O(nlogn), sendo que o custo
de ordenagao das tarefas em ordem decrescente ¢ O(nlogn) (CORMEN et al., 2024), e o

custo de escalonar as tarefas é O(n).

Podemos usar as mesmas tarefas usadas para execucao do List Scheduling como

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 28

exemplo para execucao do LPT Scheduling, recordando, também, a partir da Tabela 3 os
custos das tarefas envolvidas. A partir disso, entao, é construida uma solucao aproximada

com base no algoritmo do LPT Scheduling, como representado na Figura 5.

Tabela 3 — Tabela com o custo p(7;) para cada tarefa do exemplo.

Tarefa | u(T;)
Ty 10
T, 8
T 6
T, 5
T5 7

Fonte: Autoria propria

Figura 5 — Execu¢ao do LPT. Seguindo a prioridade descrita para os algoritmos LPT, a
lista L de escalonamento assume o valor de [T}, Ty, T5, T3, Ty, que é a ordem
definida para escalonar as tarefas de T', que entao sao escalonadas baseando-se
nessa lista de escalonamento. Para o LPT Scheduling, ndao ha a necessidade
de considerar a disponibilidade das tarefas, visto que elas sdo independentes.
Essa solucao aproximada possui makespan w de 23, e tempo ocioso na segunda
maquina ¢s de 10 unidades de tempo.

| Tl | T2 | T4 |
Pl | | |

$2 | T3 | T5

P2|
Fonte: Autoria propria.

3.2.1.3 MULTIFIT

O algoritmo aproximado MULTIFIT ¢é um algoritmo projetado como uma adap-
tagao do uso de um algoritmo aproximado de outro problema, chamado bin-packing (COR-
MEN et al., 2024). O bin-packing consiste em atribuir itens a caixas de forma dindmica,
ou seja, uma nova caixa ¢ criada a medida que as caixas ja criadas se enchem. Cada
caixa tem uma capacidade fixa C e o objetivo dos algoritmos aproximados para esse

problema é minimizar o nimero de caixas criados para encaixar todos os itens (COFF-

MAN JR; GAREY; JOHNSON, 1978).

O MULTIFIT aproveita do fato de que tanto o bin-packing quanto o problema de

escalonamento sao reduziveis a um problema coincidente chamado PARTITION (COFF-

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 29

MAN JR; GAREY; JOHNSON;, 1978), evidenciando a proximidade dos dois problemas
em estrutura para otimizacao, para gerar solugoes para o problema de escalonamento
usando solucdes do bin-packing. Dessa forma, as solugoes geradas pelos algoritmos do bin-
packing se encaixam como solugoes do problema de escalonamento se, ao empacotar as
tarefas de 7" em caixas com uma certa capacidade C' (pensando que o peso de cada tarefa
é seu custo de execugao), o nimero de caixas geradas na execugdo nao for maior que o
numero m de maquinas estipulado no sistema do problema de escalonamento, tornando
C' o makespan w da solugao gerada. Dessa forma, a solu¢do 6tima do problema de escalo-
namento w* se equivale a solu¢ao 6tima do problema bin-packing OPT[T, C] da seguinte

forma:

w* =min{C : OPT[T,C] < m} (3.6)

Para obtermos solugoes do problema bin-packing, usaremos o algoritmo aproxi-
mado FFDIT,C| (First Fit Decreasing). Como os itens a atribuir as caixas sao as tarefas,

a execucao do FFD[T,C| sera descrita levando isso em consideragao:

Passo 1. Ordenar as tarefas de T" por ordem decrescente de custo de execugao u(7;).

Passo 2. Atribuir as tarefas uma a uma nas caixas, de acordo com a ordem estipulada

no passo anterior.

Passo 2.1. Varrer as caixas existentes uma a uma, encaixar a tarefa na primeira
caixa que ela couber. Caso a tarefa nao caiba em nenhuma das caixas criadas
ou nao existam caixas ainda, criar uma caixa de capacidade C' e atribui-la a

caixa. Repetir esse passo até que todas as tarefas estejam em caixas.

Passo 3. Por fim, o nimero de caixas criadas para atribuir todas as tarefas de T ¢é o
valor resultante da execugao de FFDIT,C].

E possivel demonstrar que a razéo de aproximacao da solucdo do FFD (First Fit
Decreasing), FFD|T,C], perante a solu¢ao 6tima OPT[T,C|, é dada por (COFFMAN
JR; GAREY; JOHNSON;, 1978; CORMEN et al., 2024):

FFDIT,C] < 1910PT[T,]+ 4 (3.7)

Esse algoritmo possui custo assintético de O(nlogn +n-m), onde O(nlogn) é
o custo para ordenar os itens, e O(n-m) é o custo para alocar os itens as caixas (O(n?) no
pior caso). Para o problema de escalonamento, a capacidade C' das caixas corresponde ao
makespan do sistema, e a limitagdo no ntimero de caixas por m nas solugoes geradas

do FFD (First Fit Decreasing) as tornam elegiveis como o escalonamento da melhor

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 30

solugao aproximada para esse problema. Assim, o objetivo se torna minimizar o valor
de C' de forma que ainda é possivel encontrar solucoes com o FFD em que a alocagao das

tarefas ¢é feita em até m caixas.

O algoritmo MULTIFIT, entdo, usa da busca binaria para encontrar valores
de C, definindo um limite minimo de capacidade C; e um limite méaximo de capacidade
C, para busca. Em seguida, usa do FFD (First Fit Decreasing) para valida-los como
possiveis solugoes para o problema de escalonamento, retornando em Cy(k) a solugao
aproximada, para um nimero k£ qualquer de iteragoes. A execucao do MULTIFIT con-
siste nos seguintes passos (COFFMAN JR; GAREY; JOHNSON, 1978):

1. Sendo m o nimero de maquinas para escalonamento e n o niimero de tarefas a serem
escalonadas, definir um limite superior e inferior para C: C) e C,, de tal forma

que:

o CIT,m) = max{ ==t maxyp {u(T)}}
(portanto, para todo C' < Cy[T,m], FFDI|T,C] > m).

o CulTm] = max{ 2= o (T}
(portanto, para todo C' > C, [T, m|, FFD[T,C] < m).

2. Fazer a busca binaria em £k iteragoes, sendo k£ um ntimero qualquer maior que
ZEro:
Ci(0) < C[T, m];
Cu(0) = Cu[T,m};
14 1;
while 7 < k£ do
C+[Ci—1)+C,Gi—1)]/2.
if FFD[T,C] <m then
Cu (i) + C,
Ci(i) < Ci(i — 1);
else
Ci(i) + C;
Cu(i) < Culi — 1);
end if
141+ 1;

end while

Finalmente, a razao de aproximacao desse algoritmo ¢é dada por:

Cz)(f) > <¢m + (;)k> (3.8)

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 31

onde 7, é o menor fator de expansao do valor da solucao 6tima para o FFD (First

Fit Decreasing) nao usar mais que m caixas na execugao, ou seja,

T = min(7 : FFD[T, 7w*] < m) (3.9)

O custo assintdtico do algoritmo ¢ O(nlogn + knm) se implementar o FFD
(First Fit Decreasing) sem ordenar as tarefas, ou O(nlogn + knlogm) se ordena-las com
algum algoritmo eficiente (CORMEN et al., 2024).

Podemos, agora, mostrar como o MULTIFIT é executado na pratica. Conside-
rando um exemplo onde aplicaremos quatro iteracoes do MULTIFIT (k = 4), com
T ={T1,T5,T3,T4,T5} e P = {P, P,}. A Tabela 4 a seguir mostra o custo de execugao
wu(T;) de cada tarefa envolvida no escalonamento. No caso do MULTIFIT, ele somente se
aplica para sistemas com tarefas independentes, portanto seu DAG (Grafo Aciclico Dire-
cionado) é completamente desconexo, assim nao precisando ser considerado no processo

de escalonamento.

Executaremos esse algoritmo passo a passo (como mostra na Figura 6) para melhor
visualizacao da busca binaria, que se baseia no resultado de uma execucao completa do

algoritmo FED (First Fit Decreasing) para decidir o novo espago de busca.

Tabela 4 — Tabela com o custo u(7;) para cada tarefa do exemplo.

Tarefa | u(T;)
Ty 2
Ty 8
Ty 3
T, 4
Ts 7

Fonte: Autoria prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 32

Figura 6 — Execugao do MULTIFIT. Usando dos valores dados a k, T" e P e com os custos
descritos na tabela acima, é feita a execucao do algoritmo MULTIFIT. Antes
da busca binéria, é dado um valor inicial a C', e Cj, de acordo com as férmulas
para C,[T,m| e C|[T, m], e posteriormente a isso, sao feitas quatro iteragoes
de busca binaria, resultando num makespan w para essa solucao aproximada
de 12 (é o valor que estd em C,(4)). As tarefas presentes na caixal e na caixa2
da execucao do FFD da ultima iteracio, preservando a ordem em que foram
inseridas, devem ser as que serao escalonadas nas maquinas P; e P, do sistema
dessa execucao do MULTIFIT, respectivamente, para produzir o makespan
w = 12.

24
Ci(0) = GI[T,m| = CI{Ty, Ty, T, T, T}, 2] = max{ -, 8} = 12
24
Cu(0) = CIT,m] = C.[{T1, Ty, T4, Ty, T5}, 2] = max{2-, 8} = 24

Execucio do FFD[T,18]:

. 12 +24 T2:8 T5:7 :
i1=1 C= ; =18 caixalI I I 33 I= 18
-) . I T4:4 |Tl:2 | _
FFD|T,18] =2 <m: caanZl | | =6
C.(1) = C =18, (1) = Ci(0) = 12
Execucio do FFD[T,15]:
. 12 + 18 T2:8 T5:7
i=2 C= ; =15 caixalI I I =15
T4:4 : T1:2
FFDT, 15| =2 <m: caixa2I I 13:3 I I =9
Cu(2) = C =15, C1(2) = Ci(1) = 12
Execucao do FFD[T,13]:
. 12+1 : :
1=3 C= ; 5=13 caixalI 128 I 144 I =12
FFDIT,13] =2 < m: caixa 2} 133 [T12) =12
Cu(3) = C =13, C1(3) = C1(2) = 12
Execucao do FFD[T,12]: .)
i— 4 C— 12 ; 13 — 192 caixal I T2:8 I T4:4 I — 12
FFDIT,12] =2 < m: caixa >} 133 [T12) =12

Cu(4) = C =12, C)(4) = Cy(3) = 12

Fonte: Autoria proépria.

3.2.1.4 List Scheduling para ordens intervalares de precedéncia

Os DAGs (Grafos Aciclicos Direcionados) que representam a precedéncia entre
tarefas no problema de escalonamento apresentam formatos diversos, como de arvores,
florestas ou arvores reversas (PAPADIMITRIOU; YANNAKAKIS, 1979). Além desses
casos, existem DAGs com outras propriedades que valem a pena serem notadas, como os

DAGs de precedéncia cujos grafos de incomparabilidade sao de corda.

Para prosseguirmos com as definicoes desse algoritmo, é importante tomarmos

ciéncia de dois conceitos:

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 33

Grafo de Incomparabilidade: O grafo de incomparabilidade de um certo grafo P(V, A)
¢ o grafo nao direcionado que contém ligagoes entre as tarefas de V' que nao se encon-
tram em A. Ou seja, P(V, A) é um grafo, e G(V, E) é seu grafo de incomparabilidade,
de forma que, para todo v, u € V, (v,u) € E < (v,u), (u,v) ¢ A.

Grafo de Corda: Um grafo G ¢é de corda se, para cada ciclo envolvendo mais de 3
vértices, existir uma corda. Ou seja, G é de corda se, para cada ciclo de vértices de

G [v1,v2,... v,k > 4, existir uma aresta (v, v;),j # @ = 1(mod k).

Os grafos de corda, por serem detentores de importantes propriedades algoritmicas,
sao aplicados para varios outros problemas em teoria de grafos, como minima coloracao,
clique maxima, entre outros (PAPADIMITRIOU; YANNAKAKIS, 1979). Por isso, po-
dem ter suas propriedades aproveitadas, também, para resolver instancias do problema
de escalonamento, como: dado n tarefas de tempo unitario, encontrar uma forma de
escalona-las em m maquinas de forma que todas sejam executadas respeitando a ordem

de precedéncia de P(V, A) e resultem num makespan minimo.

O fato do grafo de incomparabilidade do DAG (Grafo Aciclico Direcionado) de
uma ordem de precedéncia ser, também, um grafo de corda evidencia que a mesma é
uma ordem intervalar (PAPADIMITRIOU; YANNAKAKIS, 1979), ou seja, o grafo de
incomparabilidade desse DAG de precedéncia é um grafo intervalar, onde cada vértice
(tarefa) pode ser representado por um intervalo nas reta dos valores reais, e cada aresta
do grafo carrega o significado de que seus dois vértices sao intervalos que se sobrepoem
nessa reta. No contexto do problema de escalonamento, isso significa que esse grafo de
incomparabilidade tem a propriedade de apontar quais tarefas podem ser executadas em
paralelo nas maquinas do sistema. A partir disso, podemos desenvolver um algoritmo
que gere solugoes aproximadas em funcao dos intervalos que representam cada uma das

tarefas:

Passo 1. Ordenar as tarefas em ordem decrescente pelo grau de saida (ntimero de ares-
tas que sai do nd) dos nds que as representam no DAG (Grafo Aciclico Direcionado)

de precedéncia.

Passo 2. Escalonar as tarefas de acordo com a ordem de prioridade antes estabelecida,

respeitando também a disponibilidade das tarefas pela restricao de precedéncia.

O custo computacional desse algoritmo é O(|V| 4 |A]), sendo V' e A, respectiva-
mente, o nimero de vértices e arestas do Grafo Aciclico Direcionado (DAG) de precedéncia
P(V, A). Esse algoritmo é comprovado como sendo um algoritmo correto, ou seja, sempre
retorna um escalonamento valido, respeitando as restri¢oes definidas (PAPADIMITRIOU;
YANNAKAKIS, 1979).

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 34

A Figura 9 traz um exemplo do escalonamento de acordo com o algoritmo descrito,
cuja prioridade se baseia na Tabela 5, envolvendo cinco tarefas T = {14, Ts, T3, Ty, T5} e
duas maquinas P = {P;, P,}, com seu DAG (Grafo Aciclico Direcionado) apresentado na
Figura 7, juntamente com seu grafo de incomparabilidade intervalar. A propriedade do
grafo de incomparabilidade intervalar antes descrita se apresenta na Figura 8. Todas as
tarefas do exemplo sdo de tempo de execugao unitario (todas possuem custo de execugao

i com valor 1).

Figura 7 — Grafo de Precedéncia P(V, A) e seu Grafo de Incomparabilidade G(V, E), con-

tendo cinco tarefas (T4, Ty, T3, Ty e T5).

o X ()

Fonte: Autoria proépria.

Figura 8 — Ordem intervalar na reta dos nimeros reais R representada pelo grafo de in-
comparabilidade intervalar de P(V, A), G(V, E'). Observe como a estrutura do
grafo intervalar mostrado na figura anterior nos mostra exatamente o com-
portamento do escalonamento das tarefas: T3 e T, sao vértices conectados em
G(V, E), mostrando que se sobrepoem na reta dos reais (e posteriormente
estardo em paralelo no escalonamento), enquanto as outras tarefas nao se co-
nectam, portanto nao se sobrepoem na reta dos reais (e posteriormente estarao
executadas linearmente no escalonamento).

T1

T2

T3

T4

T5

A\ J

Fonte: Autoria proépria.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 35

Tabela 5 — Tabela com o custo p(7;) para cada tarefa do exemplo, juntamente com o grau
de saida de cada uma delas.

Tarefa | u(T;) | grau de saida
T 1 4
T 1 3
75 1 1
Ty 1 1
T 1 0

Fonte: Autoria propria

Figura 9 — Execucao do List Scheduling para ordens intervalares. A ordem de execucao
das tarefas L assume o valor de [T1, Ty, T3, Ty, Ts). O escalonamento, conforme
antes descrito, é feito envolvendo duas méquinas (P = {P;, P»}). A solugao
aproximada gerada possui makespan w = 4 e tempo ocioso total na segunda
maquina ¢s = 3.

N —— N
-
w4 w1
-
N

Fonte: Autoria propria.

3.2.2 Memobria Distribuida

O paralelismo com memoria distribuida é uma variacdo do problema de escalo-
namento que considera a comunicagao entre as tarefas, tendo em vista que nao com-
partilham a memoria, portanto necessitando da transmissao de dados entre tarefas de-
pendentes. Quando uma tarefa é finalizada, informacoes sdo passadas dessa tarefa as

dependentes, tendo um custo adicional para o sistema.

Agora, o DAG (Grafo Aciclico Direcionado) de precedéncia é ponderado nao
somente nos vértices (que é o comum para representar o tempo de processamento das
tarefas), mas também nas arestas, para representar o custo da comunicacdo de uma

tarefa a outra.

Conforme descrito por Khan, Mccreary e Jones (1994), as principais heuristicas
de aproximacao que buscam solugoes subotimas para ambientes de multiprocessamento

podem ser divididas em trés categorias:

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 36

1. Heuristicas de Caminho Critico: Denominando que, para grafos aciclicos dire-
cionados de precedéncia com pesos nos nés (custo de execugdo) e nas arestas (custo
de comunicacdo), o caminho critico é o caminho feito no grafo que representa a
sequéncia de execucao mais longa do sistema, e portanto é o limite minimo
do makespan desse sistema. O objetivo das heuristicas dessa categoria ¢ justamente
tentar reduzir o makespan total ao valor do makespan do caminho critico. Aqui
apresentaremos o Modified Critical Path (MCP) (WU; GAJSKI, 1990).

2. Heuristicas de List Scheduling: Sao heuristicas que buscam encontrar o escalo-
namento 6timo associando prioridades as tarefas e escalonando-as de acordo com
as mesmas. Nessa categoria sao aplicadas extensdes no List Scheduling para tentar
obter melhores resultados, como por exemplo aplicando métodos gulosos, duplicagao
de tarefas, entre outros. Aqui abordaremos o Earliest Task First Scheduling (ETF)
(HWANG et al., 1989).

3. Método da Decomposicio de Grafos: E usado da Teoria da Decomposicio
de Grafos para obter o escalonamento 6timo, recorrendo a redugao do DAG (Grafo
Aciclico Direcionado) de precedéncia a uma hierarquia de subgrafos (graos) que
representa a relagdo de independéncia/dependéncia entre as tarefas. Aplicando os
custos de comunicagao e execucao, pode-se determinar o tamanho dos graos ideais
para o escalonamento 6timo. Aqui apresentaremos o CLANS (MCCREARY; GILL,

1989), principal representante dessa categoria.

Justamente por nao fazer distingao da relagao entre as maquinas (se sdo idénticas
ou nao), é evidente que os algoritmos aqui apresentados se encaixam nos dois contextos,
e serdo novamente tratados (no caso do Modified Critical Path (MCP) e Earliest Task
First Scheduling (ETF)) para o problema de escalonamento com méquinas heterogéneas
(Segao 3.3.2).

3.2.2.1 Modified Critical Path - MCP

O MCP de Wu e Gajski (1990) é uma modificagao do algoritmo de caminho
critico apresentado por Sethi (1976), acrescentando uma estratégia que considera a flexi-
bilidade que cada tarefa tem de ser executada em um certo ponto no tempo de execucao,

de forma que nao atrapalhe a execucao das outras tarefas.

Para compreender esse algoritmo, é necessario considerar os seguintes termos:

ASAP : E o tempo mais cedo possivel em que cada tarefa pode ser executada.
Para calculé-lo para cada tarefa, se executa o ASAP Binding, atribuindo um
ASAP(T;) para cada tarefa T;. Simularemos o ASAP Binding para a sequéncia de

tarefas [T1, T, T3, Ty, Ts] com grafo de precedéncia representado na Figura 10.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 37

Figura 10 — Exemplo de grafo aciclico direcionado de precedéncia

Fonte: Autoria proépria

Passo 1. Atribui a 77, tarefa de entrada do grafo, o menor tempo possivel para

ser executado, que no caso é zero por ser a primeira tarefa a ser executada.

Passo 2. Quando T) finaliza sua execucao, envia as mensagens para suas tarefas
dependentes, e para todas essas tarefas o seu menor tempo possivel de exe-
cugao ¢ o marco de tempo da execugao do sistema no qual as informacgoes de
T chegam as tarefas. Esse passo, entao, se repetiria para grafos que possuem
mais tarefas e mais niveis que o do exemplo, até que todas as tarefas fossem

visitadas.

ALAP : E o tempo mais tardio possivel no qual uma tarefa pode ser executada. O
processo de ALAP Binding ¢é executado apés o ASAP Binding de forma retré-
grada (passando das tarefas de saida até as de entrada), e considerando o tempo

mais tardio para escalonamento como o valor que define o ALAP de cada tarefa,
denominado ALAP(T;).

Intervalo de Movimento : O intervalo de movimento de uma tarefa é justamente o
intervalo de tempo entre ASAP(T;) e ALAP(T;), ou seja, é o tempo que ela tem

para ser executada sem atrasar a execugao de outras tarefas.

Mobilidade: E o comprimento do intervalo de movimento, denominado por M (T;) =
ALAP(T;) — ASAP(T;).

A execugdo do MCP (Modified Critical Path) consiste nos seguintes passos:

Passo 1. Executar o ALAP Binding e atribuir ALAP(T;) para cada n6 do DAG (Grafo

Aciclico Direcionado) de precedéncia.

Passo 2. Para cada n6 T}, criar uma lista I'(7T};) que contém o ALAP de T; e de todos
os seus descendentes em ordem crescente. Ordenar todas as I'(T;) em ordem lexi-
cografica, e a partir dela criar uma lista tinica de escalonamento L com todas as

tarefas.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 38

Passo 3. Escalona cada tarefa de L a primeira maquina livre. Assim que uma maquina
se liberar, procura por outra tarefa livre em L, respeitando a ordem estipulada e a

relacao de precedéncia entre as tarefas.

O custo do primeiro passo ¢ O(n?). J4 o custo do segundo passo é O(n?logn), para
gerar n listas, e O(n?logn) para ordend-las. Por fim, o terceiro passo tem custo linear, ou

seja O(n), totalizando O(n*logn).

A razao de aproximacao desse algoritmo aproximado segue, também, o do al-
goritmo no qual foi inspirado, provada por Wu e Gajski (1990), e também por Kohler
(1975):

% <2 7711 (3.10)

Podemos, entdao, apresentar um exemplo de aplicacao do algoritmo MCP. Consi-
derando que devemos escalonar quatro tarefas (7" = {7}, T%,T5,74}) em duas maquinas
(P ={Py, P,}), a Tabela 6 representa os custos de execugao de cada tarefa envolvida no
escalonamento, e suas relagoes de precedéncia sao representadas pelo DAG (grafo aciclico
direcionado) da Figura 11. A Figura 12 mostra a aplicacao do algoritmo MCP para o

exemplo que foi construido.

Tabela 6 — Tabela com o custo p(7;) para cada tarefa do exemplo.

Tarefa | u(T;)
Ty 2
T, 3
Ty 5
T, 1

Fonte: Autoria propria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 39

Figura 11 — Grafo aciclico direcionado de precedéncia das quatro tarefas do exemplo,
apresentando seus custos de comunicagao.

Fonte: Autoria proépria

Figura 12 — Aplicagdo do algoritmo MCP para escalonar quatro tarefas (77 =
{11, T5,T5,T,}) em duas maquinas (P = {P;, P»}) em um ambiente de me-
moria distribuida. O makespan da solu¢do aproximada w é 10, com tempo
ocioso na primeira maquina ¢; de 2 e segunda maquina ¢, de 4.

ALAP(T;) =0
0(Ty) = [0,7,9
() =10m9 L=100,7,9,12] = [T\, Ts, T, T4]

ALAP(T;) =9 ALAP(T) =7 pp 1Ly T3 | b1 | T4 |
I(Ty) = [9,12] D(T3)=[7,12] 2'\ 7 /E 10 w=10
P2 i =
0 4 7

ALAP(Ty) = 12
I'(Ty) = [12]

Fonte: Autoria propria

3.2.2.2 Earliest Task First Scheduling - ETF

O algoritmo de aproximagao ETF deriva do List Scheduling proposto por Graham
(1966), alterando o método de ponderacdo da prioridade das tarefas, considerando as
tarefas que podem ser escalonadas o mais cedo possivel dentre as disponiveis (HWANG
et al., 1989).

Para entender o funcionamento do ETF (Earliest Task First Scheduling), é neces-
sario saber que a varidvel CM (Current Moment) representa o tempo atual do evento de
escalonamento, enquanto NM (Next Moment) representa um potencial préximo marco
de tempo que substituird o valor atual de C M, marcando o menor tempo de finaliza-
¢ao entre todas as tarefas escalonadas no CM atual como o préximo CM. Com isso,

observaremos a execucao do ETF":

Passo 1. Define um conjunto / para todas as maquinas disponiveis no tempo C'M,

define CM como 0, NM como oo e um conjunto A para todas as tarefas de

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 40

entrada, dado que uma tarefa de entrada é qualquer tarefa que nao tiver tarefas
que a precedem. Inicialmente, I contém todas as méaquinas, e é definido o valor
de 7(Ttntrada, Pj) para cada tarefa de entrada T.ptrqd, como zero, onde (7}, P;) é o
tempo para a tltima mensagem enderecada a T; em P; chegar. Esse calculo inclui
o tempo de finalizacdo do processamento da tarefa precedente e o tempo de envio
da mensagem. Para situagoes em que a memoria é compartilhada entre as tarefas,

o custo de envio da mensagem ¢é desconsiderado.

Passo 2. Escolher o par tarefa livre 7; e méquina disponivel P; que gera o menor

r(T;, P;), e atribuir ao tempo de escalonamento de 7 - e; - o maior valor entre

CM er(T;, Pj).

Passo 3. Decisao de escalonamento: se T; antes escolhida tiver um tempo de escalo-
namento e; menor ou igual a N M, significa que ela sera escalonada nessa iteragao.
T; é removida de A, assim como P; de I. Assim, ¢ calculado o seu tempo de finali-
zacao C; = e; + p(T;). NM assume o valor do menor tempo de conclusao C; dentre
as tarefas que estao escalonadas no momento. A decisao de escalonamento se repete

para quantas tarefas tiver que satisfacam as exigéncias feitas anteriormente.

Passo 4. Assim que nao ha mais tarefas com tempo de escalonamento menor que
NM, CM assume o valor de N M, reseta I, atualiza A com as novas tarefas livres e
r(T;, P;) recebe maxr, cprea(ry)(Ci + n(T5, Ty) - t(p(T3), P;)) para cada nova tarefa T;
livre. n(T;,Ty) é o tempo de passar uma informacao da tarefa "pai" T; para a tarefa
"filha' Ty, e t(p(T;), P;) é o tempo de comunicacao entre a maquina em que 7; estd
e P;.

Passo 5. O algoritmo volta a decisao de escalonamento, até que nao sobre nenhuma

tarefa para ser executada. O makespan final esta em CM.

O custo de execugao desse algoritmo ¢ O(n?m). A razdo de aproximacio desse
algoritmo pode ser construida pelo limite que Graham (1966) prova para o List Scheduling
(LS), mas ja que esse limite é para sistemas de meméria compartilhada (Secao 3.2.1), é
necessario um adicional nesse limite que represente a comunicagao entre as tarefas do
escalonamento do ETF (Earliest Task First Scheduling). Portanto, a razdo de aproximagao
do ETF se da pelo limite do LS de Graham (1966), em soma com o resultado da execugao

do algoritmo C.

De forma descrita, o algoritmo C busca por momentos em que as maquinas ficaram
ociosas no escalonamento do ETF, e busca por tarefas que se fossem transferidas para
essas maquinas ociosas nao causaria atraso na execucao, tendo em vista que mudar
de maquina altera o custo de comunicagao entre essa tarefa e as tarefas que a precedem.

Para cada tarefa que se encaixa nesse requisito, acumula-se numa varidavel C' o tempo

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 41

de comunicagao atualizado entre a tarefa transferida e as tarefas precedentes a ela.

Portanto:

w < (2—1) w4 C (3.11)

m

A fim de ilustrar o funcionamento desse algoritmo, considere a Figura 13 e Tabela 7
que apresentam, respectivamente, a estrutura de precedéncia entre quatro tarefas e seus
custos de execucao. Assim, a Figura 14 e a Figura 15 trazem o resultado da aplicacao do
algoritmo ETF (FEarliest Task First Scheduling) para escalonar quatro tarefas em duas

maquinas.

Figura 13 — Exemplo de grafo aciclico direcionado de precedéncia das tarefas do exemplo
da aplicacao do algoritmo Farliest Task First - ETF - com os custos de
comunicagao entre as tarefas.

1 1
Fonte: Autoria Propria

Tabela 7 — Tabela com o custo p(7;) para cada tarefa do exemplo.

Tarefa | u(T;)
Ty 2
T, 3
T, 9
T, 4

Fonte: Autoria propria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 42

Figura 14 — Aplicacao do algoritmo Farliest Task First - ETF em cinco iteragoes para
decisdo de escalonamento. Cada iteracdo define um momento no tempo de
execucao das tarefas nas maquinas. Nesse caso nao hé tempos de ociosidade
das maquinas para justificar aplicagdo do algoritmo C. O makespan dessa
solucao é o valor final de CM = 8.

Inicializacio: CM = 0, NM = o0, A = {T", Tz}, I = {P1, P»}
CM=0:

e; =max{CM,0} =0 Ci=e1+pu(T1)=2

es = max{CM,0} =0 Cy— e+ p(Ty) =3 VM =2

e1 < NM TI sera escalonado nessa iteracio, em Pl A = {To}, I = {P»} CM = NM =2
€9 < NM T2 sera escalonado nessa iteragio,em P2 A =0, T =0

cM=2: A ={T3}, I ={Pi} No tempo atual, somente T1 finalizou sua execugio ¢ liberou P1
e3 = max{CM,3} =3 C3=e¢3 +M(T3) =5 NM =3
Cg = e2 +ﬂ(T2) =3

e3 < NM T3 ser4 escalonado nessa iteragio,em Pl A =0, I =0 CM=NM-=3

cM=3: A ={Ty}, I ={P2} No tempo atual, somente T2 finalizou sua execucdo e liberou P2
eq4 = max{CM,4} =4 Cy=ey +;L(T4) =8 NM=5
Cy=e3 +M(T3) =5

eqs < NM T4 sera escalonado nessa iteragio,em P2 A =0, I =0 CM=NM=5
CM =35: T3 finaliza sua execugao e libera P1

CM = 8: T4 finaliza sua execugdo e libera P2

Fonte: Autoria Prépria

Figura 15 — Ilustracao da aplicagdo do algoritmo Farliest Task First - ETF, conforme o
exemplo descrito.

[Tl | T3

g
—

o —

[§]

b —t—

g

Il

-J

| T2 T4 |

o
L ——
-~

Fonte: Autoria Prépria

3.2.2.3 CLANS

O algoritmo CLANS apresentado por McCreary e Gill (1989) é um algoritmo
que usa de algumas teorias aplicadas a grafos para encontrar uma aproximagao da so-
lugdo 6tima. A estratégia dessa heuristica é conseguir separar as tarefas representadas
no grafo em graos, onde cada grao é um subgrafo do grafo aciclico direcionado (DAG)
de precedéncia das tarefas do sistema, de forma que cada subgrafo desses contém tarefas
que possam ser executadas sequencialmente numa mesma maquina, e assim associar

graos a maquinas.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 43

A partir dessa técnica, s6 nos resta um método para identificar os melhores graos e
atribui-los corretamente as maquinas do sistema. A estratégia de McCreary e Gill (1989)
é formar clas, que sdo também subgrafos do grafo aciclico direcionado (DAG) de prece-
déncia que se comportam da mesma forma: precedem e sucedem os mesmos nds, ou seja,
a comunicagdo com esse cla se da sempre da mesma forma. Esses clas, posteriormente,

serao analisados e diferenciados para graos ou conjunto de graos.

Figura 16 — Clas formados do grafo aciclico direcionado dado. Se pegarmos como exemplo
o cla {2,3}, os nés 2 e 3 pertencem a esse cla pois ambos sao filhos de 1 e
ambos s6 possuem 7 como filho, sendo possivel abstrai-los como um tnico né
no grafo.

Fonte: Autoria Prépria

Dentre os vérios clas gerados do grafo aciclico direcionado (DAG) de precedéncia,

os mesmos podem ser divididos em trés categorias:
Independente: Clas independentes sao grafos que nao possuem arestas, como na
Figura 17. Ou seja, as tarefas contidas nesse grafo sao independentes.

Figura 17 — Cla Independente

O
O
O

Fonte: Autoria Propria

Linear: Clas lineares sao grafos onde, para cada par de tarefas T;, T}, ou T; < T}, ou

T; < T;, como na Figura 18

Primitivo: Clas Primitivos sdo grafos que nao respeitam as regras de nenhuma das

classificacoes antes citadas, e portanto, se fossem subdivididos em mais clas, resul-

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 44

Figura 18 — Cla Linear

O—0—0

Fonte: Autoria Propria

tariam somente em clas unitarios (contendo um tnico né). Um exemplo de um cla

primitivo é representado na Figura 19.

Figura 19 — Cla Primitivo

Fonte: Autoria Propria

Os clas previamente separados, agora, serao organizados em uma arvore de hie-
rarquia onde os nos-folha sao tarefas, os nés centrais sao clas e as arestas sao a hierar-
quia entre esses nos. A hierarquia é dada de forma que um cla ou tarefa é subordinada a
outro cla se estiver contido no mesmo. Depois, é feito um calculo do custo dos nds dessa

arvore de baixo para cima, seguindo os trés tipos de clas possiveis:

Linear: E um tipo de né onde a paralelizacdo nao pode ocorrer, logo seus nés filhos
devem ser executados em sequéncia, e o custo desse né resulta na soma do custo

de execucao de cada né filho.

-

Primitivo: E um né que agrega todos os seus filhos num mesmo grao. O custo desse n6

também é a soma do custo dos filhos.

Independente: E o tipo de ndé que abre espaco para paralelizacao, e para que um
numero arbitrario de seus filhos possam compor um mesmo grao. Portanto, é um
no6 da arvore que pode ser composto por mais de um grao. Como a execucao agora

¢é paralela, é preciso considerar novas variaveis no calculo do custo do no:

» Caso o custo de executar os nds desse cla seja menor se for feito em sequéncia
quando comparado com paralelizar, tendo em vista que os custos de comuni-

cacao das tarefas em serializagao é desconsiderado, o cla inteiro serd um tnico

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 45

grao, portanto sera executado em sequéncia. Custo é somente a soma do custo

de execucao das tarefas.

o (Caso contrério, serd feito o processo de agregacao: O né sera dividido em p
subgrupos K, Ks,...,K,, 1 < p < m, onde cada um serd atribuido a uma
méquina P; diferente. O custo de comunicagao s6 é considerado se o par
de tarefas dependentes nao estiver na mesma maquina. Cada subgrupo K; é

composto por tarefas 17 ;, To; ..., Ty..

e« O makespan de K; é a soma dos tempos de execucao dos nds pertencentes
a ele, em conjunto com os custos de comunicacao de saida ou entrada que
forem necesséarios. O custo de entrada de informagoes para esse subgrupo é
max{yx,}, onde y,,; é o custo da informagao entrar na tarefa 7} ,; do subgrupo
K;, e o custo de saida de comunicacao para esse subgrupo é 3>y ;, onde y; ;

¢ o custo de saida de informacoes da tarefa 7} ; do subgrupo K;.

A estratégia desse algoritmo para encontrar uma solucao proxima da Otima é
criar os subgrupos dos nés independentes de forma que minimize os seus trés custos
envolvidos: o custo de execucao de cada subgrupo, o custo de entrada e de saida de
informagoes no subgrupo. Para um caso de sistema onde todas as tarefas possuem o
mesmo tempo de execugado i, mesmo custo de entrada de informacgoes y e de
saida de informagoes ¢y, é mais facil de obter uma agregacao em graos 6tima das tarefas
dos noés independentes. Para esse caso, o custo total do cla independente sera ((%D Y+

(® — |Ki|)y' + pu|K;| considerando que ® é o ntimero de nds desse cla, e o |K;| 6timo é

./”{i, quando p > 9/, e 1 quando p < y'. Para casos gerais, o custo total do cla é limitado
por no maximo Y- <;<q(y; + ¥;) + maxi<i<ae (71;), que é o custo de separar uma maquina

para cada tarefa do cla (subgrupos sdo de tamanho 1).

O algoritmo CLANS, entao, para determinar os graos, faz:
Passo 1. Transformar o grafo aciclico direcionado (DAG) de precedéncia em um arvore
hierarquica de fluxo de dados.

Passo 2. Atribuir custos de execugao aos nés-folha do grafo aciclico direcionado (DAG)

de precedéncia.
Passo 3. Calcular os custos dos nés internos.
Passo 4. Determinar os graos:

e Se o custo do no for igual a soma dos custos de cada né filho, todos os nds
filhos pertencem ao mesmo grao, devendo ser atribuidos a mesma méquina,

com senso sobre qual méquina esté livre/com menos custo acumulado.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 46

o Ja se o custo do nd for menor que a soma dos custos de cada né filho (ou
seja, é o caso do né cla independente cujos filhos nao sao todos nés-folha),
separa os nos filhos em graos. Cada grao ¢ um dos subgrupos mencionados, e
cada um deles deve ser atribuido a uma maquina diferente, com senso sobre

qual maquina esta livre/com menos custo acumulado.

Ja o algoritmo de escalonamento em si consiste em varrer a arvore por altura
reversa (da maior altura & menor), e escalonar seus noés filhos de acordo com o tipo de cla

no qual aquele grao se originou.

As Figuras 20, 21 e 22 sdo um exemplo da aplicacdo do CLANS para escalonar

sete tarefas em duas maquinas. Os custos das tarefas estao na Tabela 8.

Tabela 8 — Tabela com o custo p(7;) para cada tarefa do exemplo.

Tarefa | u(T;)
Ty 3
T, 3
Ty 3
T, 3
T5 1
T, 1
T 2

Fonte: Autoria proépria

Figura 20 — Grafo aciclico direcionado (DAG) de precedéncia das sete tarefas envolvidas
no exemplo, com seus custos de comunicagao.

Fonte: Autoria Prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 47

Figura 21 — Arvore de hierarquia formada pelo grafo aciclico direcionado (DAG) de pre-

cedéncia antes apresentado, onde C1, C2..., C6 sao clas. A forma na qual
os clas organizam as tarefas determinam como as mesmas serao escalonadas
posteriormente.

CiE: 14 Linear

s (@)

c3 |Independente
C4

Linear Ci7 caT Linear
C1:6 C2: 6

Independente

OB OO

Fonte: Autoria Prépria

Independente

Figura 22 — Escalonamento apos formar os graos, baseando-se na arvore de hierarquia.
Veja que os clas lineares dispoem seus graos filhos sequencialmente numa
mesma maquina, e os graos independentes possuem a liberdade de paraleliza-
los (como no caso do cla C5) ou de sequencid-los (como no caso dos clas C1
e C2), conforme vantagens de custo de execucao. O makespan da solul¢ao
gerada w é 14, com tempo ocioso na primeira maquina ¢, de 5.

T1 T2

T5 P1 T7 |

o
[P

|
|
7 12 14, _ 1y
T3

0
O —_

|

|

6
T4 | T6

|

6 7

w—— w—

Fonte: Autoria Prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 48

O custo de execucio do algoritmo CLANS se comporta de forma préxima a O(n?)
(MCCREARY; GILL, 1989), dado que esse é o custo para montar a arvore hierarquica.

Nao foi encontrado nesse estudo uma razao de aproximacgao para esse algoritmo.

3.3 Processamento em Maquinas Paralelas nao ldénticas

Esse leque de variantes, agora, considera uma nova restricao quanto as maquinas. O
problema de escalonamento de maquinas nao idénticas prevé que cada maquina envolvida

no problema possui um tempo de execugao diferente para uma mesma tarefa.

Segundo Ibarra e Kim (1977), para esse problema, cada maquina P; possui uma
funcao proépria de tempo de execucao p;,1 < j < m de forma que, para executar
uma tarefa 7;,1 < i < n, o custo é pu;(7;). Esse custo nao possui o compromisso de
ter o mesmo valor em cada maquina, e além disso, a distribuicao desses custos pode
ser uniforme (custos entre maquinas para uma mesma tarefa é proporcional) ou nao
relacionada (nao ha padrao facil de se encontrar entre as fungdes de custo). Todos os

algoritmos que serao apresentados a seguir valem para ambas as distribuigoes.

3.3.1 Memoria Compartilhada

Essa variante tem exatamente as mesmas condi¢Oes que a sua versao para ma-
quinas idénticas (Segao 3.2.1), com o adicional da restricio das méaquinas nao serem

idénticas.

O problema, agora, consiste em encontrar a melhor forma de organizar as tarefas
entre as maquinas, de forma que resulte no menor makespan possivel, considerando que
uma mesma tarefa tem tempos diferentes de execucao, dependendo de qual maquina ela

¢é escalonada.

Serao apresentados, aqui, uma colecao de algoritmos aproximados apresentados por
[barra e Kim (1977), que sdo nada mais que adaptagées de algoritmos conhecidos para
aproximagoes no contexto de méaquinas idénticas (Secao 3.2.1), como o List Scheduling
e o LPT Scheduling (Longest Processing Time Scheduling). Esses algoritmos, também,

consideram que as tarefas a serem escalonadas sao independentes entre si.

3.3.1.1 A-Scheduling

O A-Scheduling opta por uma escolha gulosa ao escalonar uma certa tarefa a
uma certa maquina, e é de forma arbitraria, tendo em vista que as tarefas envolvidas nao

serao ordenadas numa lista de escalonamento. Esse algoritmo se da da seguinte forma:

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 49

Passo 1. Cada maquina P; atribui a si uma tarefa 7; de forma a minimizar o seu préprio

makespan, agora considerando que cada méaquina tem seu proéprio p;.

Passo 2. Retorna o resultado w = max{}r¢, 1;(T)}, onde L; é a lista de tarefas que

foram escolhidas para serem executadas em FP;.

A complexidade do A-Scheduling é linear O(n), visto que faz decisdes gulosas,
mas nao ordena as tarefas em lista, ou seja, nao tem custo adicional para ordenacgao das
tarefas. A razao de aproximacgao da solu¢ao de ambos os algoritmos se comporta da

mesma forma:

w
— < 12
2 <m (312)

Como o A-Scheduling é uma adaptagao do LS (List Scheduling) arbitrario,
se as maquinas voltassem a ser idénticas, o limite maximo para a razao de aproxima-
¢ao voltaria a ser a proposta em Graham (1966) para List Scheduling e apresentada na
Secao 3.2.1.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas maquinas
nao-idénticas. na Tabela 9 esta os custos das tarefas do exemplo para cada maquina, e a

Figura 23 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 9 — Tabela com o custo u(7;) para cada tarefa do exemplo, para cada maquina.

Tarefa | pi(T;) | p2(T;)
T 2 3
T, 2 1
Ty 3 1
Ty 4 5
Ts 5 2

Fonte: Autoria propria

Figura 23 — Escalonamento do exemplo usando A-Scheduling. O makespan da solugao w
¢ 8, com tempo ocioso na primeira maquina ¢; de 3.

1 | T3

|
|
8 w==8
|
|
8

Fonte: Autoria Prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 50

3.3.1.2 B-Scheduling

O algoritmo B-Scheduling usa da base de processamento do A-Scheduling antes

visto. Sua estratégia de execucao é a seguinte:

Ordena as tarefas T; em uma lista de escalonamento L em ordem decrescente pelo menor

custo de execucao da tarefa dentre as maquinas.

Escalona a lista L como no A-Scheduling.

A complexidade do B-Scheduling é O(nlogn), pois o custo de escalonamento
é linear O(n), como visto no A-Scheduling, e a ordenagao das tarefas é feita em tempo
O(nlogn). A razao de aproximacao de f com f* dada como solugao 6tima, é provada

por Ibarra e Kim (1977) como sendo:

% <m (3.13)

O B-Scheduling, como descrito por Ibarra e Kim (1977), é um algoritmo que pode

ser reduzido ao algoritmo LPT (Longest Processing Time Scheduling) no contexto de
méquinas idénticas (Segao 3.2.1). Portanto, quando o B-Schedule é aplicado no contexto
de maquinas idénticas (Segdo 3.2), sua razao de aproximagao fica subordinada ao limite

maximo do LPT.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas maquinas
nao-idénticas. na Tabela 10 esta os custos das tarefas do exemplo para cada maquina, e

a Figura 24 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 10 — Tabela com o custo u(7;) para cada tarefa do exemplo, para cada maquina.

Tarefa | i (T;) | pa(T5)
T 1 3
T, 3 1
Ty 2 1
T, 4 5
Ts 5 2

Fonte: Autoria prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 51

Figura 24 — Escalonamento do exemplo usando B-Scheduling. O makespan da solucao w
¢ 5, com tempo ocioso na segunda maquina ¢, de 1.

L= [T41 T51 Tl': TE:TE]
T4 T1

P1
0 4 5 w=~5

TS | T2 | T3
P2 I | ¢

I
0 2 3 4 5

Fonte: Autoria Propria

3.3.1.3 (C-Scheduling

O algoritmo C-Scheduling ¢ um método alternativo do B-Scheduling. Sua estra-

tégia de execucao se da por:

Passo 1. Ordena as tarefas T; em uma lista de escalonamento L em ordem decrescente

pelo maior custo de execucao da tarefa dentre as maquinas.

Passo 2. Escalona a lista L como no A-Scheduling.

A complexidade do C-Scheduling é a mesma do B-Scheduling, O(nlogn), ja
que o custo de escalonamento ¢é linear O(n) e a ordenagao das tarefas é feita em tempo
O(nlogn). A razao de aproximagao de w com w*, dada como solugao 6tima, é provada

por Ibarra e Kim (1977) como sendo:

w
— < 14
2 <m (3.14)

O C-Scheduling, como descrito em Ibarra e Kim (1977), também é um algoritmo
que pode ser reduzido ao algoritmo LPT (Longest Processing Time Scheduling) no con-
texto de maquinas idénticas (Segdo 3.2.1), e quando é aplicado nesse contexto, sua razao

de aproximacao também fica subordinada ao limite maximo do LPT.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas méaquinas
nao-idénticas. na Tabela 11 esta os custos das tarefas do exemplo para cada maquina, e

a Figura 25 apresenta o escalonamento feito conforme o algoritmo descrito.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 52

Tabela 11 — Tabela com o custo u(7;) para cada tarefa do exemplo, para cada maquina.

Tarefa | pi(7;) | p2(T;)
T 1 3
T, 3 1
Ts 2 1
T, 4 5
T; 5 2

Fonte: Autoria propria

Figura 25 — Escalonamento do exemplo usando C-Scheduling. O makespan da solugao w
é 6.

L= [T51T41T21T1:T3]
T5 I T2 T1
P1 |
0 2 5 6 w=~6
T4 T3

p2
0 5 6

Fonte: Autoria Propria

3.3.1.4 D-Scheduling

O D-Scheduling se diverge dos outros algoritmos apresentados em estratégia de
escalonamento: usa do escalonamento dindmico (escolher em tempo de execugao a
tarefa a escalonar) para minimizar o tempo de finalizacao global do sistema. Com isso, a

execucao se da por:

Passo 1. escolher uma tarefa 7; para uma maquina P;, de forma que esse escalonamento
resulte no menor makespan do sistema para aquela iteragao (observa w iterativa-

mente).

Passo 2. retornar w = max{wj}, 1<57<m.

O custo assintético do D-Scheduling é O(n?), tendo em vista que, para cada
1-ésima tarefa escalonada, ele procura pela proxima tarefa adequada para escalonamento
dentre as n — ¢ tarefas que sobraram. O limite maximo da razao de aproximacgao,
no entanto, nao muda quando comparado com os outros algoritmos apresentados, como

provado por Ibarra e Kim (1977):

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 53

% <m (3.15)

No caso do D-Scheduling, esse limite é o melhor possivel para m = 2, mas nao
é o mais adequado para m > 3 como nos outros algoritmos (IBARRA; KIM, 1977). O
D-Scheduling pode ser reduzido a um outro algoritmo se convertermos o contexto para
maquinas idénticas (Secao 3.2.1): o SPT Scheduling (Shortest Processing Time Sche-
duling), que possui a mesma estratégia do LPT Scheduling (Longest Processing Time
Scheduling), mas ordena as tarefas em ordem crescente de tempo de processamento .
Quando é aplicado no contexto de maquinas idénticas (Segdo 3.2), sua razao de apro-
ximagao também fica subordinada ao limite méaximo do SPT, que ¢é idéntico ao do List

Scheduling, como apresentado por Ibarra e Kim (1977) e Graham (1966):

w 1
—<2-— (3.16)

w* m
Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas méaquinas
nao-idénticas. na Tabela 12 esta os custos das tarefas do exemplo para cada maquina, e

a Figura 26 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 12 — Tabela com o custo u(7T;) para cada tarefa do exemplo, para cada maquina.

Tarefa | pq(T;) | p2(T3)
Ty 1 3
T, 3 1
Ty 2 1
Ty 4 5
T 5 2

Fonte: Autoria propria

Figura 26 — Escalonamento do exemplo usando D-Scheduling. O makespan da solugao w
é 5, com tempo ocioso na segunda maquina ¢, de 1.

Ly = [Th,T4], Ly = [T, T3, T5]
Tl T4

P1

0 1 5 w=2>5

T2 | T3 | T5 |¢2
P2 | |

Fonte: Autoria Prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 54

3.3.1.5 E-Scheduling

O E-Scheduling é muito semelhante ao D-Scheduling, ainda mais que os dois
sao algoritmos de escalonamento dinamico para minimizar o makespan global do sis-
tema, mas o E-Scheduling usa da seguinte estratégia: ele escalona as tarefas nas maquinas
observando diretamente o tempo de finalizacdo da tarefa escolhida para escalonamento,

resultando no menor tempo de finalizacao global. Com isso, a execucao se da por:

Escalonar uma tarefa 7; a uma maquina P;, de forma que esse escalonamento resulte no

menor tempo de finalizagao para 7; perante todas as maquinas.

Retornar w = max{w;},1 < j <m.

O custo assintdtico do E-Scheduling é O(n?), j& que usa a mesma estratégia de
escalonamento que o D-Scheduling. O limite médximo da razao de aproximacao, como

provado por Ibarra e Kim (1977) é:

w
— < 1
L sm (3.17)

O E-Scheduling pode ser reduzido ao LPT (Longest Processing Time Scheduling),
assim como o B-Scheduling e o C-Scheduling. Quando aplicado no contexto de maquinas
idénticas (Secao 3.2), sua razao de aproximacao fica subordinada ao limite maximo do
LPT.

Podemos aplicar esse algoritmo para escalonar cinco tarefas em duas méaquinas
nao-idénticas. na Tabela 13 esta os custos das tarefas do exemplo para cada maquina, e

a Figura 27 apresenta o escalonamento feito conforme o algoritmo descrito.

Tabela 13 — Tabela com o custo u(7T;) para cada tarefa do exemplo, para cada maquina.

Tarefa | pq(T;) | p2(T3)
Ty 1 3
T, 3 1
Ty 2 1
Ty 4 5
T 5 2

Fonte: Autoria propria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 55

Figura 27 — Escalonamento do exemplo usando F-Scheduling. O makespan da solucao w
¢ 5, com tempo ocioso na segunda maquina ¢, de 1.

Ll — [T11T4]1 L2 — [T27T37T5]

Tl T4

P1

0 1 5 w=25

T2 | T3 | T5 |¢2
P2 |

|
0 1 2 4 5

Fonte: Autoria Propria

3.3.1.6 F-Scheduling

O F-Scheduling foi projetado com o objetivo de possuir um melhor limite
maximo para m = 2 que o dos algoritmos ja apresentados, e como o foco é param = 2, o
algoritmo procura solucoes para escalonamento que envolva somente duas maquinas.
Esse algoritmo usa da légica de corrigir o escalonamento inicialmente projetado para

tentar reduzir o tempo de finalizacdo da maquina com o maior tempo de finalizacao:

Passo 1. Projetar um escalonamento completo, onde as tarefas T; sao associadas a

maquina P, ou P, cujo makespan é o menor possivel.

Passo 2. Se o tempo de finalizacdo das duas maquinas é o mesmo, o escalonamento é
otimo, mas caso uma das maquinas possua tempo ocioso, o escalonamento pode nao
ser o0timo. Para corrigir isso, o algoritmo procura reescalonar algumas tarefas da
méquina com maior tempo (suponha P;) para a com menor tempo (suponha P,), de
forma que reduza ao maximo o tempo em P; e minimize o aumento de tempo

emPQ:

T .
e Reescalonar T; de P, para P, sendo % 0 menor possivel.
1

e Repetir isso até que o makespan de P, fique menor que o de P.

Passo 3. retornar w = max{w;},1 <j <2,

A complexidade da primeira etapa é O(n), e a segunda é O(mlogm) pelo custo
de ordenacdo e reescalonamento das tarefas. Como O(n) + O(mlogm) < O(nlogn), a
complexidade total é O(nlogn) (IBARRA; KIM, 1977). Enquanto isso, Ibarra e Kim

(1977) prova que a razdo de aproximacgao para esse algoritmo é:

w _\/5—1—1

w* 2

(3.18)

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 56

Para exemplificar a aplicacado do F-Scheduling, podemos aproveitar o escalona-
mento feito pelo A-Scheduling e aplicar a corre¢do conforme descrito. A tabela 14 traz de
volta os custos descritos para o exemplo do A-Scheduling e a Figura 28 mostra o escalo-
namento das cinco tarefas em duas maquinas nao-idénticas, conforme o descrito para esse

algoritmo.

Tabela 14 — Tabela com o custo pu(7;) para cada tarefa do exemplo, para cada maquina.

Tarefa | p1(T;) | po(T3)
7 2 3
Ty 2 1
Ty 3 1
o 4 5
Ty 5 2

Fonte: Autoria prépria

Figura 28 — Escalonamento do exemplo usando F-Scheduling. As corregbes feitas para
minimizar o tempo ocioso que existia na segunda maquina anteriormente
tinha mencao de reduzir o tempo ocioso das maquinas, mas, como podemos
ver, nesse caso houve aumento no makespan final do sistema e do tempo
ocioso das maquinas. O makespan da solugao w ¢ 9, com tempo ocioso na
segunda maquina ¢, de 6.

A-Scheduling

Pl | |
2 5 8 w=3
[T2| T5 | T4
P2 |
1 3 8
F-Scheduling
| Tl | T3 | T4
Pl | |
2 5 ° w=9
T2 TS | b2
P2] | |
1 3 9

Fonte: Autoria Prépria

3.3.2 Memboria Distribuida

O paralelismo com memoria distribuida para o problema de escalonamento em ma-

quinas heterogéneas deve lidar tanto com as condigoes antes impostas para o paralelismo

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 57

com memoria distribuida em méaquinas idénticas (Segao 3.3.1) quanto com as restrigoes

para sistemas com méquinas heterogéneas (Secao 3.3).

Primeiramente, vale citar que os algoritmos MCP (Modified Critical Path) e o
ETF (Earliest Task First), antes tratados para maquinas idénticas, também se encaixam
para encontrar solugoes subdtimas em problemas com maquinas heterogéneas, mas além
desses, também serao comentados os algoritmos HEFT e CPOP de Topcuoglu, Hariri
e Wu (2002), que nao possuem razoes de aproximagao formalmente provadas, justamente
por serem heuristicas, mas sao algoritmos mais novos que representam o curso que esta
tomando atualmente os novos projetos de algoritmos para o problema de escalonamento,

ao lado dos algoritmos de busca guiada.

3.3.2.1 Modified Critical Path - MCP

O MCP de Wu e Gajski (1990) é uma modificagao do algoritmo de caminho critico
apresentado por Sethi (1976), acrescentando uma heuristica que considera a flexibilidade
que cada tarefa tem de ser executada em um certo ponto no tempo de execugao, de forma

que nao atrapalhe a execucao das outras tarefas.

Assim como antes citado (Segdo 3.2.2), o algoritmo possui o mesmo método de
execucao, sendo pontualmente modificado na escolha da méquina para a execugao da

tarefa no passo 3:

Passo 1. Executar o ALAP Binding e atribuir ALAP(T;) para cada n6 do grafo aci-

clico direcionado (DAG) de precedéncia.

Passo 2. Para cada né T, criar uma lista I'(7};) que contém o ALAP de T; e de todos
os seus descendentes em ordem crescente. Ordenar todas as I'(7}) em ordem lexi-
cografica, e a partir dela criar uma lista Unica de escalonamento L com todas as

tarefas.

Passo 3. Escalona, em ordem, cada tarefa de L & maquina que a executa mais rapi-
damente, respeitando a funcao de tempo de execucao individual a cada maquina.
Assim que uma maquina se liberar, procura por outra tarefa livre em L, respeitando

a ordem estipulada.

A complexidade do algoritmo nio muda, sendo ela O(n?logn), assim como a
sua razao de aproximacao nao altera de comportamento, como demonstrado por Wu
e Gajski (1990):

—<2—-— (3.19)

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 58

3.3.2.2 Earliest Task First Scheduling - ETF

O algoritmo ETF (Farliest Task First Scheduling) de Hwang et al. (1989), assim
como o MCP (Modified Critical Path), foi anteriormente citado no contexto de maquinas
idénticas (Se¢ao 3.2.2), mas também é um algoritmo efetivo para o contexto de maqui-
nas heterogéneas. O c6digo do ETF nao precisa ser alterado em nada na mudanca de
contexto, s6 vale lembrar agora que, no Passo 3, a escolha do escalonamento levara em
consideracdo que as maquinas possuem fungoes de tempo diferentes, ja que a escolha é

feita baseando-se em C;, e C; = e; + u(T5).

A complexidade e razao de aproximagao desse algoritmo se repetem, sendo
O(n*m) e w < (2 — %) w* + C, sendo C' o resultado da execuc¢ao do algoritmo C, antes
descrito (Segao 3.2.2).

3.3.2.3 Heterogeneous Earliest Finishing Time - HEFT

O algoritmo HEFT atribui prioridade de escalonamento a uma tarefa de acordo
com a contribuicdo que ela dard ao makespan (e como essa contribui¢do se propaga
- caminho critico) do sistema ao ser escalonada. Essa prioridade é calculada com base
no grafo aciclico direcionado (DAG) de precedéncia, resultando em dois rankings para
a tarefa perante as outras do grafo: Upward Rank e/ou Downward Rank, definida por

Topcuoglu, Hariri e Wu (2002) como:

o Custo médio entre duas tarefas: Nao é um custo considerado médio pelo fato
de ser feita a média entre os custos puros de transmissoes data; ; entre duas tarefas
T; e T}, ja que s6 existe um custo de comunicagao entre elas. Para ambos algoritmos
HEFT e CPOP, sao considerados, também, taxas de transmissao B;j entre pares
de maquinas Pj e P, (1 <k < m) e custo de abertura de comunicagao X; para cada
maquina P;. Entao, o custo médio de comunicagao entre tarefas é calculado usando
a média das taxas de transmissdo B e dos custos de abertura das maquinas X:

= datam

« Upward Rank de T}: E o custo médio de execucio do caminho critico formado

de T; até a tarefa de saida do grafo aciclico direcionado (DAG) de precedéncia.

rank,(T;) = i(T;) + max){E@j + rank,(T;)} (3.21)

T esucc(T;

Onde i(T;) é a média de todos tempos de execugdo para T; perante todas as ma-

quinas. Para Tyige, ranky(Tseida) = (T saida)

e Downward Rank de T;: E o custo médio de execucao caminho critico formado

da tarefa de entrada do DAG de precedéncia e comunicagao (tarefa que nao depende

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 59

de nenhuma outra tarefa) até T;.

rankq(T;) = T_ergﬂ%ﬁT‘){rankd(Y}) + u(Ty) +cij} (3.22)

Para Tentradaa Tankd(Tentrada) =0.

Sendo que o caminho critico (CP) é um caminho formado a partir de um né de
partida do DAG (Grafo Aciclico Direcionado) de precedéncia, e que é construido com os
noés filhos que possuem o maior ranking. Além disso, é a sequéncia de execugao mais
demorada que comega na tarefa de inicio do caminho, e por ser irredutivel (é sequencial),
se torna o limite minimo do makespan de qualquer sequéncia de execucao que comece com

essa tarefa.

Além disso, é importante conhecer as variaveis EST e EFT:

« Earliest Execution Starting Time: E o tempo mais cedo possivel que uma
tarefa pode ser escalonada para execugao em uma certa maquina. Para uma tarefa
de entrada, para qualquer maquina, seu EST é zero.

EST(T;, P;) = max{ (tempo em que P; selibera), o lnax){AFT(Tk) + cik}}
kEpTre 3
(3.23)

Onde AFT(T;) é o tempo em que T; de fato acabou de ser executada no sistema,

e ¢;; ¢ o custo de comunicagao de uma tarefa 7; para uma tarefa 7j.

o Earliest Execution Finishing Time: E o tempo mais cedo possivel para uma

tarefa ser finalizada em uma certa maquina.

EFT(T, P) = u(T,) + EST(T,, P) (3.24)
O HEFT é composto por duas fases principais:

Definicao das prioridades: Ordenar as tarefas em ordem descrescente por rank,,
com empates resolvidos de forma aleatoria, significando que é feita uma ordenagao
topolégica que respeita as relagoes de dependéncia de comunicacao entre as

tarefas e a prioridade estipulada.

Selecao de processador: Passo 1. Seleciona a primeira tarefa da ordem topoldgica
gerada e calcula o EFT da tarefa com todas as maquinas, analisando, tam-
bém, a possibilidade de "encaixar'essa tarefa em janelas de ociosidade dessas

maquinas. Essa técnica se chama politica de insergao para escalonamento.

Passo 2. Escalona a tarefa a maquina que lhe oferece o menor EF'T.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 60

A complexidade do HEFT depende do ntimero de rela¢ées de precedéncia pre-
sentes entre as tarefas do sistema, ou seja, o tamanho de A no grafo aciclico direcionado

(DAG) P(V, A) de precedéncia, e no nimero de maquinas, concluindo O(|A|m).

Para mostrar o funcionamento do algoritmo HEFT, podemos aplica-lo a um exem-
plo, escalonando cinco tarefas em duas maquinas. A Tabela 15 mostra os custos das tarefas
para cada maquina, assim como o custo médio de comunicagao ¢; ; de cada tarefa. A Figura
29 mostra a relagdo de precedéncia e comunicacao entre as tarefas através de um DAG
de precedéncia, e a Figura 30 mostra o escalonamento resultante do algoritmo aplicado

no exemplo.

Tabela 15 — Tabela com o custo p(7}) para cada tarefa do exemplo, para cada méaquina,
e o custo médio de comunicacao ¢; ; de cada tarefa.

Tarefa | 11 (T;) | po(T3) | Gy
T; 2 1 2
7, | 1 2
Ty 2 3 2
Ty 3 3 2
Ts 4 5 2

Fonte: Autoria propria

Figura 29 — Grafo aciclico direcionado (DAG) de precedéncia das cinco tarefas envolvidas

no exemplo.

Fonte: Autoria Prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 61

Figura 30 — Aplicacao do algoritmo HEFT no exemplo antes descrito. Nesse caso, nao
foi possivel aplicar politica de insercdo para reduzir os tempos ociosos nas
maquinas envolvidas. o makespan da solucdo w é 13, com tempo ocioso na
primeira maquina ¢; de 5, e na segunda maquina ¢, de 9.

rank,(T)) = 13

rank,(T>) = 8,5

rank,(T3) = 9,5 T > L= [Ty, Ts,Ts, T, Ts]
rank,(Ty) =5

rank,(Ts) = 4,5

EST(Ty, P,) = EST(Ty, P;) =0
EFT(T,,P,) =2 > EFT(T\,P,) = 1

|
1|
0
le
0
EST(Ts, Py) = 3, EST(Ts, Py) =
EFT(T;,P,) = 5 > EFT(T;, P;) =

T1

|
|
1

p1|

P2

EST(T,, Py) = 3, EST(T,, P,) = 4
EFT(Ts, P)) = 4 < EFT(T», P;) =

Pl| T2

n!l f .
PZI T1 /' T3
0

|
1 4

EST(T,, Py) = E T(Ty, Py) = 6
EFT(T41P1 = (T4JP2) =

PII T2
0 34
pal T1 /' T3

EST(Ts, P) =9, EST(Ts, P;) = 11
EFT(T;, P) = 13 < EFT(T;, Py) = 16

[& T2 # T4 | T5 |
Pl| | |

0 3 4 6 9 13 w=13
Pl T1 /' T3 b2 |

|

| [
0o 1 4 13

9

Fonte: Autoria Prépria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 62

3.3.2.4 Critical Path on a Processor - CPOP

O CPOP de Topcuoglu, Hariri e Wu (2002) usa dos rankings das tarefas como
prioridade de escalonamento assim como o HEFT. Além disso, usam do caminho critico
do grafo aciclico direcionado (DAG) para minimizar o makespan do sistema, visto
que o tempo de executar as tarefas do caminho critico (CP) do grafo aciclico direcionado
(DAG) é o menor tempo possivel para executar o sistema como um todo, e se houver
atrasos nas tarefas inclusas nesse caminho, esse atraso impacta diretamente no makespan
total.

Para definir quais tarefas serao inclusas no caminho critico, o CPOP define uma

prioridade que é composta pela soma do Upward Rank e do Downward Rank:

prioridade(T;) = rank,(T;) + rankq(T;) (3.25)

Simbolizando que as tarefas mais importantes para esse algoritmo sao as que apre-
sentam muitas conexoes, além de um custo alto de comunicacao e de processamento. Para
montar o caminho critico (CP) do grafo aciclico direcionado (DAG), primeiro se as-
socia a propria tarefa de entrada T,,;.0,4, do DAG como tarefa do caminho critico, e
a partir dai se elege uma tarefa que sucede a recentemente escolhida pela prioridade

antes estabelecida, até chegar em uma tarefa de saida T,;4,.

A maquina do sistema que executa o caminho critico com o menor custo é reser-
vada somente para o caminho critico, enquanto as outras tarefas sao distribuidas entre as
maquinas restantes. Esse escalonamento é feito usando uma lista de prioridade cujas ta-
refas com maior valor de prioridade(T;) vém primeiro e, assim como no HEFT, considera

a politica de insercao para escalonamento.

A complexidade desse algoritmo é O(|A| m), onde A é o niimero de arestas no

grafo aciclico direcionado (DAG) de precedéncia P(V, A) e n é o ntimero de tarefas.

Agora exemplificaremos uma aplicacao do algoritmo CPOP, escalonando seis ta-
refas em duas maquinas. A Tabela 16 mostra os custos das tarefas para cada maquina,
assim como o custo médio de comunicacao ¢; ; de cada tarefa. A Figura 31 mostra a re-
lagao de precedéncia e comunicacao entre as tarefas através de um DAG de precedéncia,

e a Figura 32 mostra o escalonamento resultante do algoritmo aplicado no exemplo.

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 63

Tabela 16 — Tabela com o custo pu(7;) para cada tarefa do exemplo, para cada méaquina,
e o custo médio de comunicacao ¢; ; de cada tarefa.

Tarefa | p(T3) | pe(T3) | Gy
T 10 6 5
T, 8 10 5
T 6 6 5
T, 5 9 5
T5 6 2 5
Ts 1 1 5

Fonte: Autoria propria

Figura 31 — Grafo aciclico direcionado (DAG) de precedéncia das seis tarefas envolvidas
no exemplo.

Fonte: Autoria Propria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 64

Figura 32 — Aplicacao do algoritmo CPOP no exemplo antes descrito. Foi aplicada a po-
litica de insercao na sexta tarefa, pois, sem ferir as restrigoes de precedéncia
das tarefas, era possivel encaixa-la em um momento ocioso da segunda ma-
quina. o makespan da solucao w ¢ 24, com tempo ocioso na primeira maquina
¢, de 5, e na segunda maquina ¢, de 15.

rank,(T)) = 31,ranky(T,) =0
rank,(Ts) = 32, rankqs(T>2) =0
?‘anku(Tg) = 18,’Pankﬂ:(T3) =14 |:> L= [T2,T3,T4,TL,T’:,TGI
rank,(Ty) = 7,rankq(T;) = 25
rank,(Ts) = 4, rankq(Ts) = 25
rank,(Ts) = 1,ranky(Ts) = 14

Caminho Critico (CP) =[T2, T3, T4], a primeira maquina & reservada para o caminho eritico

b T2 |4y T3 | T4

| IRl

| R

0 17 22 24 w = 24
le T1 | b2 IT6l [« | T5 !

0 6 13 14 2 24

Fonte: Autoria Prépria

3.4 Consideracoes Finais

Neste capitulo, foram apresentados os principais algoritmos para diferentes vari-
acoes do problema de escalonamento de tarefas. A seguir, sdo apresentadas as tabelas
comparativas entre esses algoritmos, agrupados pelas variantes que tratam, de modo a

resumir as caracteristicas de cada um deles.

Na Tabela 17 é apresentado o algoritmo EDD (FEarliest Due Date rule) que é
o principal algoritmo de aproximacao para o contexto de escalonamento em uma tnica
maquina. Na Tabela 18 sao apresentados os algoritmos para o caso de maquinas paralelas

idénticas e, na Tabela 19, os algoritmos para maquinas nao-idénticas.

Tabela 17 — Algoritmos aproximados para escalonamento em uma tnica maquina.

Algoritmo | Segao | Complexidade | Aproximacao (max/ e <)
EDD 3.1 O(nlogn) 2

Fonte: Autoria propria

Capitulo 3. Principais Variantes do Problema de Escalonamento e suas Aproximagcioes 65

Tabela 18 — Algoritmos aproximados para escalonamento paralelo em maquinas idénticas.
A razdo de aproximagao dos algoritmos LS (List Scheduling) para ordens
intervalares de precedéncia e CLANS nao é especificada por seus autores.

Algoritmo Secao Complexidade Aproximagao (w/w* <) Meméria

List Scheduling 3.2.1 O(nlogn) 2-1 Compartilhada
LPT 3.2.1 O(nlogn) s — = Compartilhada
MULTIFIT 3.2.1 | O(nlogn + knlogm) Tm + %k Compartilhada
LS ordens intervalares | 3.2.1 O(|V| +14]) - Compartilhada

MCP 3.2.2 O(n*logn) 2-1 Distribuida

ETF 3.2.2 O(n’m) 2-L+C Distribuida

CLANS 3.2.2 O(n?) - Distribuida

Fonte: Autoria prépria

Tabela 19 — Algoritmos aproximados para escalonamento paralelo em maquinas nao idén-
ticas. A razao de aproximacao dos algoritmos HEFT e CPOP nao é especifi-
cada por seus autores.

Algoritmo | Secao | Complexidade | Aproximagao (w/w* <) Memoria
A-Scheduling | 3.3.1 O(n) m Compartilhada
B-Scheduling | 3.3.1 O(nlogn) m Compartilhada
C-Scheduling | 3.3.1 O(nlogn) m Compartilhada
D-Scheduling | 3.3.1 O(n?) m para m = Compartilhada
E-Scheduling | 3.3.1 O(n?) m Compartilhada
F-Scheduling | 3.3.1 O(nlogn) = */‘?’;1 para m = Compartilhada

MCP 3.3.2 | O(n%logn) 2—-L1 Distribuida
ETF 3.3.2 O(n’*m) 2-5)+C Distribuida
HEFT 3.3.2 O(|A| m) - Distribuida
CPOP 3.3.2 O(|Alm) - Distribuida

Fonte: Autoria propria

66

4 Conclusao

Este trabalho teve como objetivo analisar individualmente e expor algoritmos e he-
risticas de aproximacao aplicadas as principais variantes do problema de escalonamento,
fornecendo varios estilos de aproximacoes da solugao 6tima em tempo habil, quando com-

parado com algoritmos exatos.

A partir da revisao bibliografica e da analise de diferentes abordagens, foi possivel
observar a relagao entre variantes do problema de escalonamento e algoritmos de aproxi-
macao, e a importancia de abordagens flexiveis e adaptativas no campo da otimizagao.
Espera-se que o que aqui foi exposto sirva de base para futuras pesquisas e aplicagdes em

problemas reais.

Por fim, vale destacar que ha espaco para aprofundamentos, como a inclusao de
variantes mais especificas, testar a versatilidade de mais algoritmos de aproximacao além
das que as ja analisadas nesse quesito, quando se trata de adapta-las para outras variantes,
e a abordagem de técnicas mais novas na busca de solugdes proximas da 6tima, como as

metaheuristicas, algoritmos de busca guiada, entre outros.

67

Referencias

COFFMAN JR, E. G.; GAREY, M. R.; JOHNSON, D. S. An application of bin-packing
to multiprocessor scheduling. STAM Journal on Computing, v. 7, n. 1, p. 1-17, 1978.
<https://doi.org/10.1137/0207001>. Citado 4 vezes nas paginas 27, 28, 29 e 30.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria
e pratica. 4. ed. Barueri, SP: Editora LTC, 2024. 912 p. Citado 5 vezes nas paginas 23,
27,28, 29 e 31.

EPSTEIN, L. Load balancing. In: KAO, M.-Y. (Ed.). Encyclope-

dia of Algorithms. Boston, MA: Springer US, 2008. p. 457-459.
<https://doi.org/10.1007/978-0-387-30162-4 206>. Citado 2 vezes nas paginas
16 e 26.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A guide to the
theory of NP-Completeness. San Francisco, CA: W. H. Freeman and Company, 1979.
338 p. (A Series of Books in the Mathematical Sciences). Citado 3 vezes nas paginas
16, 21 e 25.

GOLDBARG, E. F. G.; GOLDBARG, M. C.; LUNA, H. P. L. Otimizacao
Combinatodria e Meta-heuristicas: Algoritmos e aplicagoes. Barueri, SP: Editora
LTC, 2015. 416 p. Citado 2 vezes nas paginas 18 e 20.

GRAHAM, R. L. Bounds for certain multiprocessing anomalies. The Bell

System Technical Journal, v. 45, n. 9, p. 1563-1581, nov. 1966. <https:
//doi.org/10.1002/j.1538-7305.1966.tb01709.x>. Citado 9 vezes nas paginas 16, 18, 25,
26, 27, 39, 40, 49 e 53.

. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, v. 17, n. 2, p. 416-429, mar. 1969. <https://doi.org/10.1137/0117039>.
Citado 2 vezes nas paginas 16 e 26.

HWANG, J.-J.; CHOW, Y.-C.; ANGER, F. D.; LEE, C.-Y. Scheduling precedence
graphs in systems with interprocessor communication times. STAM Journal on
Computing, v. 18, n. 2, p. 244-257, 1989. <https://doi.org/10.1137/0218016>. Citado
4 vezes nas paginas 16, 36, 39 e 58.

IBARRA, O. H.; KIM, C. E. Heuristic algorithms for scheduling independent tasks
on nonidentical processors. Journal of the ACM, v. 24, n. 2, p. 280289, abr. 1977.
<https://doi.org/10.1145/322003.322011>. Citado 8 vezes nas paginas 16, 48, 50, 51,

592, 53, 54 e 5.

KHAN, A. A.; MCCREARY, C. L.; JONES, M. S. A comparison of multiprocessor
scheduling heuristics. International Conference on Parallel Processing, v. 2, p.
243-250, 1994. <https://doi.org/10.1109/ICPP.1994.19>. Citado 2 vezes nas paginas
16 e 35.

KOHLER, W. A preliminary evaluation of the critical path method for scheduling
tasks on multiprocessor systems. IEEE Transactions on Computers, C-24, n. 12, p.

Referéncias 68

1235-1238, dez. 1975. <https://doi.org/10.1109/T-C.1975.224171>. Citado na pégina
38.

LEE, C.-Y.; HWANG, J.-J.; CHOW, Y.-C.; ANGER, F. D. Multiprocessor scheduling

with interprocessor communication delays. Operations Research Letters, v. 7, n. 3,
p. 141-147, 1988. <https://doi.org/10.1016/0167-6377(88)90080-6>. Citado na pagina
16.

MCCREARY, C.; GILL, H. Automatic determination of grain size for efficient parallel
processing. Communications of the ACM, v. 32, n. 9, p. 1073-1078, set. 1989.
<https://doi.org/10.1145/66451.66454>. Citado 5 vezes nas paginas 16, 36, 42, 43 e 48.

MERTENS, S. The easiest hard problem: Number partitioning. In: PERCUS, A.;
ISTRATE, G.; MOORE, C. (Ed.). Computational complexity and statistical
physics. New York, NY: Oxford University Press, 2006. p. 125-140. Citado na péagina
21.

PAPADIMITRIOU, C. H.; YANNAKAKIS, M. Scheduling interval-ordered
tasks. SIAM Journal on Computing, v. 8 n. 3, p. 405-409, 1979. <https:
//doi.org/10.1137/0208031>. Citado 3 vezes nas paginas 16, 32 e 33.

ROBERT, Y. Task graph scheduling. In: PADUA, D. (Ed.). Encyclopedia of
Parallel Computing. Boston, MA: Springer US, 2011. p. 2013-2025. <https:
//doi.org/10.1007/978-0-387-09766-4_42>. Citado 2 vezes nas paginas 16 e 18.

SETHI, R. Algorithms for minimal length schedules. In: COFFMAN JR, E. G. (Ed.).
Computer and Job-Shop Scheduling Theory. New York, NY: John Wiley & Sons,
1976. p. 51-100. Citado 2 vezes nas paginas 36 e 57.

SIPSER, M. Introduction to the Theory of Computation. 3. ed. Boston, MA:
Cengage Learning, 2013. 458 p. Citado na pagina 20.

TOPCUOGLU, H.; HARIRI, S.; WU, M.-Y. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems, v. 13, n. 3, p. 260-274, mar. 2002.
<https://doi.org/10.1109/71.993206>. Citado 4 vezes nas paginas 16, 57, 58 e 62.

WILLIAMSON, D. P.; SHMOYS, D. B. The Design of Approximation Algorithms.
Cambridge, MA: Cambridge University Press, 2011. 518 p. Citado 4 vezes nas paginas
16, 20, 22 e 23.

WU, M.-Y.; GAJSKI, D. Hypertool: a programming aid for message-passing systems.
ieee trans parallel distrib syst. IEEE Transactions on Parallel and Distributed
Systems, v. 1, n. 3, p. 330-343, jul. 1990. <https://doi.org/10.1109/71.80160>. Citado

4 vezes nas paginas 16, 36, 38 e 5H7.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Fundamentação Teórica
	Problemas de Otimização e o Problema de Escalonamento
	Algoritmos e Heurísticas de Aproximação
	Classes de Complexidade

	Principais Variantes do Problema de Escalonamento e suas Aproximações
	Processamento em uma única máquina
	Processamento em Máquinas Paralelas Idênticas
	Memória Compartilhada
	List Scheduling - LS
	Longest Processing Time First Scheduling - LPT
	MULTIFIT
	List Scheduling para ordens intervalares de precedência

	Memória Distribuída
	Modified Critical Path - MCP
	Earliest Task First Scheduling - ETF
	CLANS

	Processamento em Máquinas Paralelas não Idênticas
	Memória Compartilhada
	A-Scheduling
	B-Scheduling
	C-Scheduling
	D-Scheduling
	E-Scheduling
	F-Scheduling

	Memória Distribuída
	Modified Critical Path - MCP
	Earliest Task First Scheduling - ETF
	Heterogeneous Earliest Finishing Time - HEFT
	Critical Path on a Processor - CPOP

	Considerações Finais

	Conclusão
	Referências

